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Abstract

We study the optimal sustainable harvesting of a population that lives in a random environment. The
novelty of our setting is that we maximize the asymptotic harvesting yield, both in an expected value and
almost sure sense, for a large class of harvesting strategies and unstructured population models. We prove
under relatively weak assumptions that there exists a unique optimal harvesting strategy characterized
by an optimal threshold below which the population is maintained at all times by utilizing a local time
push-type policy. We also discuss, through Abelian limits, how our results are related to the optimal
harvesting strategies when one maximizes the expected cumulative present value of the harvesting yield
and establish a simple connection and ordering between the values and optimal boundaries. Finally,
we explicitly characterize the optimal harvesting strategies in two different cases, one of which is the
celebrated stochastic Verhulst Pearl logistic model of population growth.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

When trying to establish the best harvesting policy of a certain species, one needs to take
into account both the biological and economic implications. It is well known that overharvesting
might lead to the extinction of whole populations (see [8,12,25,29]). Many species of animals
(birds, mammals, and fish) are endangered because of unrestricted harvesting or hunting. In
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some instances people have overestimated the population density of a certain species, and since
it takes a while for a harvested population to recover to previous levels, this has led to either
local or global extinctions. However, if we underharvest a species, this can lead to the loss
of valuable resources. We are therefore presented with a conundrum: should we overharvest
and gain economically but possibly drive a species extinct or should we underharvest to make
sure extinction is less likely but lose precious resources? We present a model and a harvesting
method which give us, based on a rigorous mathematical analysis, the best possible sustainable
harvesting policy that does not drive the species extinct.

We study a population whose dynamics is continuous in time and that is affected by both
biotic (competition) and abiotic (rainfall, temperature, resource availability) factors. Since the
abiotic factors are affected by random disturbances, we look at a model that has environmental
stochasticity. This transforms a system that is modeled by an ordinary differential equation
(ODE) into a system that is modeled by a stochastic differential equation (SDE). We refer the
reader to [34] for a thorough discussion of environmental stochasticity.

We build on the results from [2,5] and [17]. Suppose that in an infinitesimal time dt we
harvest a quantity d Z t where (Z t )t≥0 is any adapted, non-negative, non-decreasing, and right
continuous process. We determine the optimal harvesting strategy maximizing the expected
average asymptotic yield

ℓ = lim inf
T→∞

Ex
1
T

∫ T

0
d Z t = lim inf

T→∞

Ex ZT

T
of harvested individuals. As in [17], and in contrast to what happens in a significant part of
the literature (see [5,24–26]), the optimal strategy will be such that the population is never
depleted and cannot be harvested to extinction. This is clear since if ZT → 0 in some sense
then ℓ = 0 in the above equation. Our main result is that the optimal harvesting strategy is of
the local time reflection type: the population is kept in the interval (0, b∗] at all times by first
harvesting (x−b∗)+ and then harvesting only when the population hits the boundary just enough
to maintain the population density below b∗. This result was conjectured in [17] where the
authors showed that if the harvesting rate is bounded the optimal strategy is of bang–bang type
i.e. there is a threshold x∗ > 0 such that if the population size is under x∗ there is no harvesting
while if the population size is above x∗ we harvest according to the maximal rate M > 0. If
one works with discounted yields like in [5], then interestingly the optimal harvesting strategy
is also of this local time reflection type. In our setting the diffusion governing the unharvested
population is much more general than the one from [5] and [17] where the authors mostly
work with a stochastic Verhulst–Pearl diffusion or its generalization. In the current paper we
present a unifying result that encompasses a large variety of stochastic models.

Another advantage of our framework is that it does not depend on parameters that are hard to
be quantified empirically. Many papers from the literature (see [5]) work with a time discounted
yield in order to capture the opportunity cost of capital. However, it is a difficult question to
come up with a good value for the discount factors (see [9]). Moreover, as [24] state in their
influential paper focusing on the relationship between discounting and extinction risk:

“Thus, even when the discount rate is less than the critical value predicted by determin-
istic models, the economically optimal strategy will often be immediate harvesting to
extinction. These results make a powerful argument that, for the common good, economic
discounting should be avoided in the development of optimal strategies for sustainable
use of biological resources”.

Our model does not involve any discount factors. We generalize the setting of [17] where the
authors assumed the harvesting rate was bounded by some parameter M > 0. This corresponds
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to having total control over the harvested population. Moreover, it also side-steps the need to
know the parameter M > 0 which could be hard to estimate realistically.

The paper is organized as follows. In Section 2 we introduce the model and prove the main
results. Section 3 showcases how our model relates to the discounted model from [2,5]. In
particular we show that by letting the discount rate go to zero, r ↓ 0, we can recover in a
sense the results of this paper. In Section 4 we look at two explicit applications of our results.
As a first application we look at the Verhulst–Pearl diffusion model studied in [5,17]. The
second model we analyze is the one studied in [1,26]. Finally, Section 5 is dedicated to a
discussion of our results.

2. Model and results

We consider a population whose density X t at time t ≥ 0 follows, in the absence of
harvesting, the stochastic differential equation (SDE)

d X t = X tµ(X t ) dt + σ (X t ) d Bt , (1)

where (Bt )t≥0 is a standard one dimensional Brownian motion. This describes a population X
with per-capita growth rate given by µ(x) > 0 and infinitesimal variance of fluctuations in the
per-capita growth rate given by σ 2(x)/x2 when the density is X t = x . We make the following
standing assumption throughout the paper.

Assumption 2.1. The functions µ, σ : (0,∞) → R are continuous and satisfy the
Engelbert–Schmidt conditions:

σ (x) > 0 and ∃ε > 0 s.t.
∫ x+ε

x−ε

1 + |yµ(y)|
σ 2(y)

dy <∞ for any x ∈ (0,∞).

These conditions ensure the existence and uniqueness of weak solutions to (1) (see for
example [10]). In addition, we want the population to persist in the absence of harvesting and
to not explode to infinity (which would be absurd from a biological point of view). To this end,
we will assume throughout our analysis that the boundaries of the state space of the population
density are unattainable (i.e. either natural or entrance) for X in the absence of harvesting. This
means that even though the process may tend towards a boundary, it will never attain it in finite
time. We refer the reader to Section 2.6 from [7] for a thorough discussion of the boundary
classification of one-dimensional diffusions.

We denote the density of the scale function of X by

S′(x) = exp
(
−

∫ x

c

2µ(y)y
σ 2(y)

dy
)
, (2)

where c ∈ R+ is an arbitrary constant. The density of the speed measure m is, in turn, denoted
by

m ′(x) =
2

σ 2(x)S′(x)
. (3)

We also set S((x, y)) =
∫ y

x S′(t)dt and m((x, y)) =
∫ y

x m ′(t)dt . The second order differential
operator

A :=
1
2
σ 2(x)

d2

dx2 + µ(x)x
d

dx
=

1
2

d
dm

d
d S

(4)

is the infinitesimal generator of the underlying diffusion X .
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For most harvesting applications it is sufficient to make the following assumption.

Assumption 2.2.

(A1) The function µ is nonincreasing and fulfills the limiting conditions limx→0+ µ(x) > η

and limx→∞ µ(x) < −η for some η > 0.
(A2) The function µ(x)x has a unique maximum point x̂ = argmax{µ(x)x} so that µ(x)x is

increasing on (0, x̂) and decreasing on (x̂,∞).
(A3) limx→0+ m((x, y)) <∞ for x < y.

Remark 2.1. It is worth pointing out that assumption (A1) guarantees that the per-capita
growth rate µ vanishes at some given point x0 = µ−1(0). In typical population models this
point coincides with the carrying capacity of the population. We naturally have that x̂ < x0.

Condition (A3) is needed for the existence of a stationary distribution for the process X .
Under our boundary assumptions, it guarantees that 0 is nonattracting for X and the condition
limx→0+ S′(x) = +∞ is satisfied (cf. p. 234 in [23]).

A stochastic process (Z t )t≥0 taking values in [0,∞) is said to be an admissible harvesting
strategy if (Z t )t≥0 is non-negative, nondecreasing, right continuous, and adapted to the filtration
(Ft )t≥0 generated by the driving Brownian motion (Bt )t≥0. We denote the class of all admissible
harvesting strategies (or controls) by Λ. Assume that (Z t )t≥0 ∈ Λ and that at time t we harvest
in the infinitesimal period dt an amount d Z t . Then our harvested population’s dynamics is
given up to the extinction date τ Z

0 = inf{t ≥ 0 : X Z
t ≤ 0} by

d X Z
t = X Z

t µ(X Z
t ) dt + σ (X Z

t ) d Bt − d Z t , X Z
0 = x > 0. (5)

As soon as the population becomes extinct we make the assumption that X Z
t = 0 for all

t ≥ τ Z
0 . However, as we will see below, these strategies will not be interesting since it will be

suboptimal to harvest the species to extinction.
We consider the following ergodic singular control problem:

sup
Z∈Λ

lim inf
T→∞

1
T
Ex

∫ T

0
d Zs . (6)

We are interested (as in [17]) in the maximization of the expected asymptotic harvesting yield
(also called the expected average cumulative yield) of the population.

Before presenting our main findings on the optimal ergodic harvesting strategy and the max-
imal expected average cumulative yield we first establish the following auxiliary verification
lemma.

Lemma 2.1. Let ℓ be a given positive constant and assume that v : R+ ↦→ R+ is a twice
continuously differentiable function satisfying the inequalities v′(x) ≥ 1 and (Av)(x) ≤ ℓ for
all x ∈ R+. Then

lim inf
T→∞

1
T
Ex

∫ T

0
d Zs ≤ ℓ

for all Z ∈ Λ.



Please cite this article as: L.H.R. Alvarez E. and A. Hening, Optimal sustainable harvesting of populations in random environments,
Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.008.

L.H.R. Alvarez E. and A. Hening / Stochastic Processes and their Applications xxx (xxxx) xxx 5

Proof. Applying the generalized Itô-Döblin (see [13]) change of variable formula to the
nonnegative function v yields

v(X Z
Tn

) = v(x) +
∫ Tn

0
(Av)(X Z

s )ds +
∫ Tn

0
σ (X Z

s )v′(X Z
s )d Bs

−

∫ Tn

0
v′(X Z

s )d Zs +
∑
s≤Tn

(v′(X Z
s−)∆Zs + v(X Z

s ) − v(X Z
s−)),

where T > 0 and Tn = T ∧ inf{t ≥ 0 : X Z
t ̸∈ (1/n, n)} is an increasing sequence of finite

stopping times converging to T as n → ∞. The twice continuous differentiability of v implies
that its derivative is bounded on (1/n, n) and since the harvesting policy has bounded variation
we notice that

0 ≤ v(X Z
Tn

) = v(x) +
∫ Tn

0
(Av)(X Z

s )ds +
∫ Tn

0
σ (X Z

s )v′(X Z
s )d Bs

−

∫ Tn

0
v′(X Z

s )d Z c
s +

∑
s≤Tn

(v(X Z
s ) − v(X Z

s−)),

where Z c denotes the continuous part of an arbitrary admissible harvesting strategy Z ∈ Λ.
Reordering terms and taking expectations shows that

Ex

∫ Tn

0
v′(X Z

s )d Z c
s + Ex

∑
s≤Tn

∫ X Z
s−

X Z
s

v′(y)dy ≤ v(x) + Ex

∫ Tn

0
(Av)(X Z

s )ds.

Imposing now the inequalities v′(x) ≥ 1 and (Av)(x) ≤ ℓ demonstrates that

Ex

∫ Tn

0
d Zs ≤ v(x) + ℓEx Tn.

Letting n → ∞ and applying Fatou’s lemma together with the monotone convergence theorem
yields

Ex

∫ T

0
d Zs ≤ v(x) + ℓT

from which the alleged results follow. □

It is natural to ask if there is a function v and a constant ℓ∗ satisfying the conditions of
Lemma 2.1. In order to show that the answer to this question is positive, we now follow the
seminal paper [22] and investigate the following question: can we find two constants ℓ∗, b∗

and a twice continuously differentiable function u(x) satisfying the conditions

lim
x↓0

u′(x)
S′(x)

= 0

(Au)(x) = ℓ∗, x ∈ (0, b∗),

u′(x) = 1, x ≥ b∗.

(7)

Using (4) we get

d
dx

(
u′(x)
S′(x)

)
= (Au)(x)m ′(x) = ℓ∗m ′(x), x ∈ (0, b∗).
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The last equality, together with the boundary condition limx↓0 u′(x)/S′(x) = 0, yields that

u′(x) =

{
ℓ∗S′(x)m((0, x)), if x ∈ (0, b∗)
1 if x ≥ b∗

(8)

Invoking the twice continuous differentiability of u across the boundary b∗, and noting that
u′′(b∗) = 0 then shows that the constants ℓ∗, b∗ are the solutions of the system

ℓ∗ = µ(b∗)b∗
=

1
S′(b∗)m((0, b∗))

. (9)

We can now establish the following.

Lemma 2.2. The optimality conditions (9) have a unique solution and for all Z ∈ Λ

lim inf
T→∞

1
T
Ex

∫ T

0
d Zs ≤ ℓ∗ = sup

b>0

{
1

S′(b)m((0, b))

}
=

1
S′(b∗)m((0, b∗))

where b∗ is the unique zero of

f (x) =
∫ x

0
(µ(y)y − µ(x)x)m ′(y)dy.

Furthermore, the function u defined by (7) satisfies the conditions of Lemma 2.1.

Proof. We first show that the optimality conditions (9) have a unique solution under our
assumptions. To this end we investigate the behavior of the continuous function f : (0,∞) →
R defined by

f (x) :=
1

S′(x)
− µ(x)xm((0, x)).

Making use of Assumption (A3) guarantees that∫ x

0
µ(y)ym ′(y)dy =

∫ x

0

(
1

S′(z)

)′

dz =
1

S′(x)
− lim

y→0+

1
S′(y)

=
1

S′(x)
.

Therefore, we can express f (x) as

f (x) =
∫ x

0
(µ(y)y − µ(x)x)m ′(y)dy.

It is clear that f (x̂) < 0 and

f (x0) =
∫ x0

0
µ(y)ym ′(y)dy > 0.

Therefore, using the intermediate value theorem, we conclude that f has at least one root
b∗

∈ (x̂, x0). To prove that the root is unique, we notice that if y > x , then

f (y) − f (x) =
1

S′(y)
− µ(y)ym((0, y)) −

(
1

S′(x)
− µ(x)xm((0, x))

)
=

∫ y

x
µ(t)tm ′(t)dt − µ(y)ym((0, y)) + µ(x)xm((0, x))

=

∫ y

x
(µ(t)t − µ(y)y)m ′(t)dt + (µ(x)x − µ(y)y)m((0, x)).
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Hence, if x < y ≤ x̂ then f (y) − f (x) < 0 proving that f is strictly decreasing on (0, x̂).
If, in turn, x̂ ≤ x < y then f (y) − f (x) > 0 proving that f is strictly increasing on (x̂,∞).
Combining these observations with the continuity of f and the fact that limx→0+ f (x) = 0
then proves that the root b∗

∈ (x̂, x0) is unique and, consequently, that a unique pair ℓ∗, b∗

exists. Moreover, since

d
db

[
1

S′(b)m((0, b))

]
=

−2 f (b)
σ 2(b)S′(b)m2((0, b))

we get that

b∗
= argmax

{
1

S′(b)m((0, b))

}
and

ℓ∗ =
1

S′(b∗)m((0, b∗))
= µ(b∗)b∗.

We now prove that the function u satisfies the conditions of Lemma 2.1. We first observe
that (Au)(x) = µ(x)x for all x ∈ [b∗,∞). Since µ(x)x is decreasing on (x̂,∞) and b∗ > x̂
we find that (Au)(x) ≤ ℓ∗ = µ(b∗)b∗ for all x ∈ R+. On the other hand, since

u′′(x) =
2S′(x)ℓ∗

σ 2(x)

(
1

S′(x)
− µ(x)xm((0, x))

)
=

2S′(x)ℓ∗

σ 2(x)
f (x) < 0

for all x < b∗ and u′(b∗) = 1 we find that u′(x) ≥ 1 for all x ∈ R+. The last alleged claim
now follows from Lemma 2.1. □

Remark 2.2. Lemma 2.2 also shows that the function u(x) satisfying the considered free
boundary value problem is concave on R+. This property is later shown to be the principal
determinant of the sign of the impact of increased volatility on the optimal harvesting policy
and the expected average cumulative yield.

Lemma 2.2 essentially shows that if there is an admissible harvesting strategy satisfying the
variational inequalities of Lemma 2.1, then the value of that policy dominates the value of the
maximal expected average cumulative yield. Naturally, if we could determine an admissible
policy yielding precisely the value characterized in Lemma 2.2, then that policy would
automatically constitute an optimal harvesting policy. This is accomplished in the following
theorem summarizing our main result on the optimal sustainable harvesting policy.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold and X Z
0 = x > 0. An optimal harvesting

strategy is

Zb∗
t =

{
(x − b∗)+ if t = 0,
(x − b∗)+ + L(t, b∗) if t > 0

(10)

where L(t, b∗) is the local time push of the process X Z at the boundary b∗ (cf. [13,22,32]).
The optimal harvesting boundary b∗ as well as the maximal expected average asymptotic yield
ℓ∗ are the solutions of the optimality conditions

ℓ∗ = µ(b∗)b∗
=

1
S′(b∗)m((0, b∗))

.
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Moreover,

sup
Z∈Λ

lim inf
T→∞

1
T
Ex

∫ T

0
d Zs = lim

T→∞

Ex [Zb∗
T ]

T
= ℓ∗ = µ(b∗)b∗.

Proof. It is clear that the proposed harvesting strategy Zb∗ is admissible. Our objective is
now to show that this policy attains the maximal expected average cumulative yield ℓ∗ and
is, therefore, optimal. To show that this is indeed the case, we first notice that the harvesting
policy Zb∗ is continuous on t > 0, increases only when X Zb∗

t = b∗, and maintains the process
X Zb∗

t in (0, b∗] for all t > 0 [13,22,32]. In this case (5) can be re-expressed as

Zb∗
T = x − X Zb∗

T +

∫ T

0
µ

(
X Zb∗

t

)
X Zb∗

t dt +
∫ T

0
σ

(
X Zb∗

t

)
d Bt .

The continuity of the diffusion coefficient σ (x) now guarantees that σ (X Zb∗

t ) is bounded for
all t > 0 and, therefore, that

Ex
[
Zb∗

T

]
T

=

x − Ex

[
X Zb∗

T

]
T

+
1
T
Ex

∫ T

0
µ

(
X Zb∗

t

)
X Zb∗

t dt.

Consequently,

lim
T→∞

Ex
[
Zb∗

T

]
T

= lim
T→∞

1
T
Ex

∫ T

0
µ

(
X Zb∗

t

)
X Zb∗

t dt.

Since m((0, b∗)) < ∞ we notice that the process is ergodic and has an invariant probability
measure π (·) =

m(·)
m((0,b∗)) (cf. [7], pp. 37–38). Hence, since the function p(x) = xµ(x) is

bounded on [0, b∗] we have by pp. 37–38 [7] and the optimality condition (9)

lim
T→∞

1
T
Ex

∫ T

0
µ

(
X Zb∗

t

)
X Zb∗

t dt =
∫ b∗

0
µ(x)x

m ′(x)
m((0, b∗))

dx = µ(b∗)b∗
= ℓ∗.

This demonstrates the optimality of the proposed policy. □

Remark 2.3. It is worth noticing that since (cf. pp. 36–38 in [7])

lim
t→∞

∫ t
0 µ(Xs)Xs1(0,b](Xs)ds∫ t

0 1(0,b](Xs)ds
=

1
S′(b)m((0, b))

= µ(b)b

our findings are in line with observations based on renewal theoretic approaches to ergodic
control (cf. Chapter 5 in [13]). On the other hand we also observe that

b∗
= argmax

b∈R+

{
E

[
µ(X Zb

∞
)X Zb

∞

]}
where X t denotes the population density in the absence of harvesting and X Zb

t → X Zb
∞

∼

m ′(x)1(0,b](x)/m((0, b)) as t ↑ ∞. Consequently, the same conclusion could be obtained by
focusing on the ergodic limit of the process controlled by Zb

t .

Theorem 2.1 demonstrates that the optimal harvesting policy is of the standard local time
push type in the ergodic control setting as well. Consequently, under the optimal harvesting
policy, the population is maintained below an optimal threshold by harvesting (in an infinitely
intense fashion) only at instants when the population hits the optimal boundary. Below the
critical threshold the population is naturally left unharvested.
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It is at this point worth mentioning that a different approach to this problem could also
have been possible. Namely, one could have tried to follow the approach developed in [35].
However, the setting from [35] does not apply directly as the drift µ will not always be positive,
the state space is (0,∞) instead of R, and we can have infx σ (x) = 0 (see Assumption 2.1
from [35]).

One may wonder whether the findings of Theorem 2.1 could be extended further to a setting
focusing on the almost sure maximization problem

sup
Z∈Λ

lim inf
T→∞

1
T

∫ T

0
d Z t = sup

Z∈Λ
lim inf
T→∞

ZT

T
. (11)

This is an almost sure statement, compared to the maximization from (6) which deals with
expected values. Related control problems have been analyzed in [6]. However, the particular
singular control problem we are interested in is not addressed in [6].

In order to delineate general circumstances under which the almost sure maximization
problem admits a local time push type solution, we initially analyze the problem by focusing
solely on this type of harvesting policies. Our main findings on that class are established in
the next proposition.

Proposition 2.1. Let Zb
∈ Λ be an arbitrary local time push type harvesting policy

maintaining the population density on (0, b) for all t > 0. Then, for any X Z
0 = x ∈ (0, b)

Px

{
lim

T→∞

Zb
T

T
= lim

T→∞

1
T

∫ T

0
µ

(
X Zb

t

)
X Zb

t dt =
1

S′(b)m((0, b))

}
= 1. (12)

Consequently,

Px

{
lim

T→∞

Zb
T

T
≤ lim

T→∞

Zb∗
T

T
= sup

b>0

{
1

S′(b)m((0, b))

}
= µ(b∗)b∗

}
= 1. (13)

Proof. Let b ∈ (0,∞) be an arbitrary finite boundary and consider the policy Zb
t ∈ Λ

maintaining the population density in (0, b) for all t > 0. As in the case of Theorem 2.1,
the policy is continuous on t > 0 and increases only when X Zb

t = b. Moreover,

Zb
T

T
=

x
T

+
1
T

∫ T

0
µ

(
X Zb

t

)
X Zb

t dt +
1
T

∫ T

0
σ

(
X Zb

t

)
d Bt −

X Zb

T

T
. (14)

Since |X Zb
t | ≤ b for all t > 0

lim
T→∞

X Zb

T

T
= 0 (15)

with probability 1. Since m((0, b)) <∞ the controlled process is ergodic on (0, b) and has an
invariant probability measure π (·) = m(·)

m((0,b)) . Invoking the ergodic results from [7] (pp. 37–38)
shows that almost surely

lim
T→∞

1
T

∫ T

0
µ

(
X Zb

t

)
X Zb

t dt =
∫ b

0
µ(x)x

m ′(x)
m((0, b))

dx =
1

S′(b)m((0, b))
. (16)
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Let LT =
∫ T

0 σ
(

X Zb
t

)
d Bt . Then (LT )T≥0 is a local martingale with quadratic variation

QT =
∫ T

0 σ
2
(

X Zb
t

)
dt . By the ergodic results from [7], one has that almost surely

lim sup
T→∞

Qt

T
=

∫ b

0
σ 2(x)

m ′(x)
m(0, b)

dx <∞.

This combined with the Law of Large Numbers for local martingales (see Theorem 1.3.4
from [28]) yields that almost surely

lim
T→∞

1
T

∫ T

0
σ

(
X Zb

t

)
d Bt = 0. (17)

Using (15), (16) and (17) in (14) we get that (12) holds almost surely. (13) then follows from
Lemma 2.2. □

Proposition 2.1 shows that the local time push controls affect the dynamics of the controlled
population density in a way where the almost sure asymptotic average cumulative harvest can
be computed explicitly in terms of the exogenous harvesting boundary. Since this representation
is valid for all local time push controls, we find that choosing the threshold according to
the rule maximizing the long run expected average cumulative harvest results in a maximal
representation in this setting as well. Given the generality of admissible harvesting strategies,
it is a challenging task to prove a general verification lemma analogous to Lemma 2.1.
Fortunately, there is a relatively large class of processes for which the desired result is valid.
To see that this is indeed the case, we first establish the following auxiliary result.

Lemma 2.3. Assume (1) has a pathwise unique solution and there exists an increasing
function ρ : R+ → R such that |σ (x) − σ (y)| ≤ ρ(|x − y|) for all x, y ∈ (0,∞) and∫

0+ ρ
−2(z) dz = +∞. Suppose X is the solution to (1) and X Z is the solution to (5) for a

fixed Z ∈ Λ. If X Z
0 ≤ X0 then almost surely

P{X Z
s ≤ Xs, s ≥ 0} = 1.

Proof. This is a modification of the arguments from the seminal papers [37] and [18]
for the comparison of one-dimensional diffusions and the paper [38] for the comparison of
semimartingales. For small ε > 0 define the process X ε via

d X ε
t = X ε

t (µ(X ε
t ) + ε) dt + σ (X ε

t ) d Bt .

Assume that X0 = X ε
0. By [18] we see that almost surely

Xs ≤ X ε
s , s ≥ 0.

By the pathwise uniqueness of solutions of (1), combined with the continuity of µ we have
almost surely that

Xs = lim
ε↓0

X ε
s , s ≥ 0.

We note that the semimartingales X Z and X ε satisfy the assumptions of Theorem 1 from [38].
Therefore, if X Z

0 ≤ X ε
0, we have that almost surely

X Z
s ≤ X ε

s , s ≥ 0.
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Taking the limit as ε ↓ 0 we get

X Z
s ≤ Xs, s ≥ 0

which finishes the proof. □

Remark 2.4. We make two remarks on the assumptions needed in Lemma 2.3. First of
all, sufficient conditions for pathwise uniqueness of solutions can be found, for example,
in [19,21,28]. Second, for most models of natural resources σ (x) = σ x for some σ > 0.
In those cases the required growth condition is satisfied by simply taking ρ(x) = σ (x) = σ x .

Lemma 2.3 states a set of conditions under which the solution of the uncontrolled dynamics
(1) dominates the solution of the dynamics subject to harvesting (5). It is worth pointing
out that similar comparison results have been previously established for Lipschitz-continuous
coefficients (see Theorem 54 in [30]). However, that result does not directly apply to our setting,
since most applied population models have only locally Lipschitz-continuous coefficients.
Given our findings in Lemma 2.3 we can now establish the following Theorem which extends
our results on the expected average cumulative yield to the almost sure setting.

Theorem 2.2. Assume that Assumptions 2.1 and 2.2 hold, that (1) has pathwise unique
solutions, that there exists an increasing function ρ : R+ → R such that |σ (x) − σ (y)| ≤

ρ(|x − y|) and
∫

0+ ρ
−2(z) dz = +∞, and that

1. The process X from (1) has a unique invariant probability measure on (0,∞).
2. One can find a twice continuously differentiable function v : R+ ↦→ R+ satisfying the

variational inequalities v′(x) ≥ 1 and (Av)(x) ≤ ℓ for all x ∈ R+.
3. The function g(x) := σ (x)v′(x) is non-decreasing and square-integrable with respect to

the speed measure of X.

Then for any admissible strategy Z ∈ Λ and any X Z
0 = x ∈ (0,∞)

Px

{
lim inf
T→∞

ZT

T
≤ ℓ

}
= 1. (18)

Moreover,

Px

{
lim inf
T→∞

ZT

T
≤ lim inf

T→∞

Zb∗
T

T
= ℓ∗ = µ(b∗)b∗

}
= 1 (19)

for all Z ∈ Λ and all X Z
0 = x ∈ (0,∞).

Proof. It is clear that for any admissible policy Z ∈ Λ we have

ZT

T
≤
v(x)

T
+ ℓ+

1
T

∫ T

0
σ (X Z

s )v′(X Z
s )d Bs . (20)

The local martingale

QT =

∫ T

0
σ (X Z

s )v′(X Z
s )d Bs

has quadratic variation

1
T

[Q, Q]T =
1
T

∫ T

0
(σ (X Z

s ))2(v′(X Z
s ))2ds.
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By our assumptions and Lemma 2.3 we have almost surely that

X Z
s ≤ Xs, s ≥ 0.

Then, almost surely, because of assumption 3 of the theorem,

1
T

[Q, Q]T =
1
T

∫ T

0
(σ (X Z

s ))2(v′(X Z
s ))2ds ≤

1
T

∫ T

0
(σ (Xs))2(v′(Xs))2ds.

By the ergodic results from [7] and the assumptions of the proposition, one has that almost
surely

lim sup
T→∞

1
T

[Q, Q]T ≤ lim
T→∞

1
T

∫ T

0
(σ (Xs))2(v′(Xs))2ds

=

∫
g(x)m ′(x)/m((0,∞))dx <∞.

The Law of Large Numbers for local martingales (see Theorem 1.3.4 from [28]) yields that
almost surely

lim
T→∞

QT

T
= 0.

If we combine this with (20) we get

lim inf
T→∞

ZT

T
≤ ℓ.

Finally, inequality (19) follows from (18) and (13). □

Remark 2.5. We make the following three remarks on the assumptions (1)–(3) needed in
Theorem 2.2.

(a) If 0,∞ are unattainable and nonattracting, i.e. for any x ∈ (0,∞) we have Px {X t → 0} =
Px {X t → ∞} = 0, and m((0,∞)) < ∞ then X has a unique invariant probability
measure with density m′(·)

m((0,∞)) on (0,∞). In terms of boundary behavior the points 0,∞
can be entrance or natural, and the natural boundaries have to be nonattracting.

(b) We note that the function u defined in (7) satisfies (Au)(x) ≤ ℓ∗ = µ(b∗)b∗ and
u′(x) ≥ 1, x ∈ R+.

(c) Checking condition (6) reduces to looking at the function

g(x) = σ (x)u′(x) =

{
σ (x)ℓ∗S′(x)m((0, x)), if x ∈ (0, b∗)
σ (x) if x ≥ b∗,

(21)

verifying that it is non-decreasing, and then checking whether
∫
∞

0 g2(x)m ′(x) dx < ∞.
If σ (·) is continuously differentiable and nondecreasing and

1
2
σ (x)σ ′(x)m((0, x)) +

∫ x

0
(µ(t)t − µ(x)x)m ′(t)dt ≥ 0

for all x ∈ (0, b∗) then g(·) is nondecreasing

Remark 2.6. Our work is related to [20] where the authors consider the more general case
where there are two controls. Consider the controlled diffusion

d X t = µ(X t ) dt + σ (X t ) d Bt + dξ+t − dξ−t
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where ξ is a right-continuous process with left limits that has finite variation and is adapted.
Fix a starting point X (0) = x ∈ R. The paper [20] is concerned with the minimization of

lim sup
T→∞

1
T
Ex

[∫ T

0
h(Xs) ds +

∫
[0,T ]

k+(Xs)dξ+s +

∫
[0,T ]

k−(Xs)dξ−s

]
and the almost sure minimization of

lim sup
T→∞

1
T

[∫ T

0
h(Xs) ds +

∫
[0,T ]

k+(Xs)dξ+s +

∫
[0,T ]

k−(Xs)dξ−s

]
.

Here h : R → R is a given function that models the running cost resulting from the system’s
operation, while k+, k− are given functions penalizing the expenditure of control effort. We
note that one of their assumption is that 0 < σ 2(x) ≤ C(1 + |x |), which is more restrictive
than what we have since in most population models σ (x) = σ x .

Our main result on the sign of the relationship between volatility and the optimal harvesting
strategy is summarized in the following.

Theorem 2.3. Increased volatility increases the optimal harvesting threshold b∗ and decreases
the long run average cumulative yield ℓ∗ = µ(b∗)b∗.

Proof. Denote by b̃ the optimal harvesting threshold and by ℓ̃ the maximal expected average
cumulative yield associated with the more volatile dynamics characterized by the diffusion
coefficient σ̃ (x) ≥ σ (x) for all x ∈ R+ and let

Ã =
1
2
σ̃ 2(x)

d2

dx2 + µ(x)x
d

dx
denote the differential operator associated with the more volatile process. Let u(x) be the
solution of the free boundary problem (7). Because u′′(x) ≤ 0 we get

(Ãu)(x) =
1
2

(σ̃ 2(x) − σ 2(x))u′′(x) + (Au)(x) ≤ ℓ∗

for all x ∈ R+. Since we also have u′(x) ≥ 1 we notice by combining Theorem 2.1 and
Lemma 2.2 that ℓ̃ ≤ ℓ∗. However, since ℓ̃ = µ(b̃)b̃, ℓ∗ = µ(b∗)b∗, and the optimal harvesting
threshold is on the set where the drift is decreasing, we find b̃ ≥ b∗ which completes the proof
of our claim. □

3. Discounting and harvesting: Connecting the harvesting problems

The previous section focused on the optimal ergodic harvesting policy maximizing the
expected (or almost sure) long-run average cumulative yield. It is naturally of interest to
analyze in which way the optimal policy differs from the optimal policies suggested by models
maximizing the expected present value of the cumulative yield. To this end, let (cf. [2])

Vr (x) = sup
Z∈Λ

Ex

∫
∞

0
e−rsd Zs (22)

denote the value of the harvesting policy maximizing the expected present value of the
cumulative yield. Our objective is to characterize how the different problems are connected
by relying on an Abelian limit result first developed within singular stochastic control in the
seminal paper [22] (see also [36] for a generalization).
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In order to present our main findings on the connection between the two different approaches
we first have to make a set of assumptions guaranteeing that the harvesting policy maximizing
the expected present value of the cumulative yield is nontrivial. Define the function θr : R ↦→ R
by

θr (x) = (µ(x) − r )x,

where r > 0 denotes the prevailing discount rate. In addition to our assumptions on the
boundary behavior of the population dynamics stated in Section 2 we now assume the
following.

Assumption 3.1. The function θr (x) satisfies

(B1) limx↓0 θr (x) ≥ 0 and limx→∞ θr (x) < −ε, where ε > 0.
(B2) the function θr (x) attains a unique maximum at x̂r ∈ (0, xr

0), where xr
0 = inf{x > 0 :

θr (x) = 0}.

Remark 3.1. Note that if µ is continuous on [0,∞) then Assumptions 2.1 and 2.2 imply
(B1) above.

As was established in [2], one gets

Vr (x) =

⎧⎪⎨⎪⎩
x +

1
r
θr (x∗

r ), x ≥ x∗
r ,

ψr (x)
ψ ′

r (x∗
r )
, x < x∗

r .
(23)

The quantity ψr (x) denotes the increasing fundamental solution of the differential equation
(Au)(x) = ru(x). The optimal harvesting boundary x∗

r = argmin{ψ ′
r (x)} ∈ (x̂r , x0) is

the unique root of the ordinary first order optimality condition ψ ′′
r (x∗

r ) = 0 which can be
re-expressed as∫ x∗r

0
ψr (z)(θr (t) − θr (x∗

r ))m ′(z)dz = 0. (24)

The value of the optimal harvesting policy Vr (x) is monotonically increasing, concave,
and twice continuously differentiable. Moreover, increased volatility decreases the value of
the optimal policy and expands the continuation region where harvesting is suboptimal by
increasing the optimal harvesting boundary x∗

r .
Under the optimal harvesting policy Z∗ the population density converges in law to its unique

stationary distribution. In other words, X Z∗

t ⇒ X̄r as t → ∞. The random variable X̄r is
distributed on (0, x∗

r ) according to the density

P
[
X̄r ∈ dy

]
=

m ′(y)dy
m((0, x∗

r ))
.

We can now establish the following limiting result

Lemma 3.1. Under our assumptions, increased discounting decreases the maximal expected
present value of the cumulative yield and accelerates harvesting by decreasing the optimal
harvesting boundary. Moreover, limr→0+ x∗

r = b∗ where b∗ is the optimal harvesting boundary
from Theorems 2.1 and 2.2.
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Proof. The monotonicity of the admissible harvesting strategy guarantees that increased
discounting decreases the value of the optimal policy. To see that it also accelerates harvesting
by decreasing the optimal harvesting boundary we first observe that under our assumptions the
conditions of Lemma 3.1 in [3] are met and, therefore,

ψr (x) − xψ ′
r (x)

S′(x)
=

∫ x

0
ψr (t)θr (t)m ′(t)dt (25)

for all x ∈ R+. Reordering terms shows that (25) can be re-expressed as

ur (x) :=
ψr (x)
ψ ′

r (x)
− x =

S′(x)
ψ ′

r (x)

∫ x

0
ψr (t)θr (t)m ′(t)dt. (26)

On the other hand, if τy = inf{t ≥ 0 : X t = y} denotes the first hitting time to y, then the
identity (cf. p. 18 in [7])

Ex
[
e−rτy ; τy <∞

]
=
ψr (x)
ψr (y)

guarantees that if r̂ > r then

ψr (x)
ψr (y)

≥
ψr̂ (x)
ψr̂ (y)

for all 0 < x < y <∞. Using the last inequality we note that if r̂ > r then

ψr (x)
ψr (y)

= exp
(
−

∫ y

x
d lnψr (t)

)
= exp

(
−

∫ y

x

ψ ′
r (t)
ψr (t)

dt
)
≥
ψr̂ (x)
ψr̂ (y)

= exp
(
−

∫ y

x

ψ ′

r̂ (t)
ψr̂ (t)

dt
)

for all 0 < x < y <∞. This implies∫ y

x

ψ ′
r (t)
ψr (t)

dt ≤
∫ y

x

ψ ′

r̂ (t)
ψr̂ (t)

dt

for all 0 < x < y <∞. This, together with the continuity of the functions and their derivatives,
shows that

ψ ′
r (x)
ψr (x)

≤
ψ ′

r̂ (x)
ψr̂ (x)

for all x > 0. Consequently, ur (x) ≤ ur̂ (x) for all x ∈ R+. Since ur (x∗
r ) = θr (x∗

r ) and
θr (x) ≥ θr̂ (x) for all x ∈ R+ we notice that

ur̂ (x∗

r ) ≥ θr (x∗

r ) ≥ θr̂ (x∗

r )

implying that∫ x∗r

0
ψr̂ (t)θr̂ (t)m ′(t)dt ≥ θr̂ (x∗

r )
ψ ′

r̂ (x∗
r )

S′(x∗
r )

and, therefore, that x∗

r̂ ≤ x∗
r . This shows that higher discounting accelerates harvesting by

decreasing the optimal threshold.
It remains to consider the limiting case where r ↓ 0. To this end, consider the function

Fr (x) =
∫ x

0

ψr (z)
ψr (x)

(θr (z) − θr (x))m ′(z)dz.
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Since

Ez[e−rτx ; τx <∞] =
ψr (z)
ψr (x)

for z ≤ x we notice by letting r ↓ 0 and invoking our assumptions that

lim
r↓0

ψr (z)
ψr (x)

= Pz [τx <∞] = 1.

Since limr↓0 θr (x) = µ(x) we finally notice that

lim
r↓0

Fr (x) =
∫ x

0
(µ(z)z − µ(x)x)m ′(z)dz = f (x).

The alleged claim now follows from (24) and Lemma 2.2. □

According to Lemma 3.1 higher discounting accelerates harvesting and results into a
lower expected asymptotic population density. Interestingly, the optimal harvesting threshold
approaches the one from the average cumulative yield setting as r → 0+. It is clear that
the same conclusion is not directly valid for the value of the optimal policy Vr (x). However,
there exists an Abelian limit connecting the value of the two seemingly different control
problems [22,36]. This connection is established in the following.

Theorem 3.1. Under our assumptions,

lim
r→0+

r Vr (x) = µ(b∗)b∗
= ℓ∗

for all x ∈ R+.

Proof. Utilizing the fact that r Vr (x∗
r ) = µ(x∗

r )x∗
r and reordering terms in (23) yields

r Vr (x) =

⎧⎪⎨⎪⎩
µ(x∗

r )x∗
r + r (x − x∗

r ), x ≥ x∗
r ,

µ(x∗
r )x∗

r − r
∫ x∗r

x

ψ ′
r (t)

ψ ′
r (x∗

r )
dt, x < x∗

r .

Since ψ ′
r (t)/ψ ′

r (x∗
r ) ∈ [1, ψ ′

r (x)/ψ ′
r (x∗

r )] for all t ∈ [x, x∗
r ] we find by invoking the limiting

result of Lemma 3.1 and the continuity of µ that

lim
r→0+

r Vr (x) =

{
µ(b∗)b∗, x ≥ x∗

r ,

µ(b∗)b∗, x < x∗
r .

This completes the proof. □

4. Applications

4.1. Verhulst-Pearl diffusion

Assume that the unharvested population follows the standard Verhulst–Pearl diffusion

d X t = µX t (1 − γ X t )dt + σ X t dWt , X0 = x ∈ R+, (27)

where µ > 0 is the per-capita growth rate at low densities, 1/γ > 0 is the carrying capacity,
and σ > 0 is the infinitesimal variance of fluctuations in the per-capita growth rate. In this
case

S′(x) = x−
2µ
σ2 e

2µγ
σ2 x
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and

m ′(x) =
2
σ 2 x

2µ
σ2 −2e−

2µγ
σ2 x

.

Moreover, if µ > σ 2/2 is satisfied, then

m((0, x)) =
2
σ 2

(
σ 2

2µγ

) 2µ
σ2 −1 (

Γ

(
2µ
σ 2 − 1

)
− Γ

(
2µ
σ 2 − 1,

2µγ x
σ 2

))
where Γ (·) is the gamma function and Γ (·, ·) is the upper incomplete gamma function. We
note that in this case Assumptions 2.1, 2.2 and the conditions of Theorem 2.2 hold (see [11]
for a thorough investigation of (27)). Consequently,

ℓ∗ =
1
2
σ 2

γ

(
σ 2

2µ

)1− 2µ
σ2

argmax

⎧⎨⎩ (γ x)
2µ
σ2 e−

2µγ
σ2 x

Γ
(

2µ
σ 2 − 1

)
− Γ

(
2µ
σ 2 − 1, 2µγ x

σ 2

)
⎫⎬⎭ .

The optimal boundary b∗ reads as b∗
= ρ∗γ−1, where ρ∗ is the unique root of the equation(

2µρ∗

σ 2

)1− 2µ
σ2

(1 − ρ∗)e
2µρ∗

σ2
2µ
σ 2

(
Γ

(
2µ
σ 2 − 1

)
− Γ

(
2µ
σ 2 − 1,

2µρ∗

σ 2

))
= 1.

This shows that the optimal harvesting boundary is directly proportional to the carrying
capacity.

As was shown in [5], in this case the harvesting boundary maximizing the expected present
value of the cumulative yield constitutes the root of the equation ψ ′′

r (x∗
r ) = 0, where r > 0

denotes the prevailing discount rate,

ψr (x) = (γ x)α1 M̂
(
α1, 1 + α1 − α2,

2µγ x
σ 2

)
,

M̂ denotes the Kummer confluent hypergeometric function,

α1 :=
1
2
−
µ

σ 2 +

√(
1
2
−
µ

σ 2

)2

+
2r
σ 2 > 0,

and

α2 :=
1
2
−
µ

σ 2 −

√(
1
2
−
µ

σ 2

)2

+
2r
σ 2 < 0.

We notice again that as in the ergodic setting, the optimal threshold is directly proportional to
the carrying capacity.

The optimal harvesting threshold is illustrated for two different volatilities as a function of
the discount rate in Fig. 1 under the assumptions that µ = 0.1, γ = 0.001.

4.2. Logistic diffusion

An alternative logistic population growth model was studied in [26] and in [1]. The dynamics
is characterized by the stochastic differential equation

d X t = µX t (1 − γ X t )dt + σ X t (1 − γ X t )dWt , X0 = x ∈ (0, 1/γ ). (28)
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Fig. 1. The optimal harvesting boundary as a function of the discount rate.

As was established in [26], this SDE has a unique strong solution defined for all t ≥ 0. In this
case we know that

S′(x) =
(

x
1 − γ x

)−
2µ
σ2
,

and

m ′(x) =
2
σ 2 x

2µ
σ2 −2(1 − γ x)−

2µ
σ2 −2

.

Moreover, if µ > σ 2/2 is satisfied, then for any x > 0

m((0, x)) =
2
σ 2 γ

1− 2µ
σ2 B

(
γ x,

2µ
σ 2 − 1,−

2µ
σ 2 − 1

)
,

where B denotes the incomplete beta-function. One can see that in this setting Assumptions 2.1,
2.2 and the conditions of Theorem 2.2 hold. Consequently,

ℓ∗ =
1
2
σ 2γ argmax

⎧⎨⎩
(

γ x
1 − γ x

) 2µ
σ2 1

B
(
γ x, 2µ

σ 2 − 1,− 2µ
σ 2 − 1

)
⎫⎬⎭

demonstrating that the optimal harvesting boundary is directly proportional to the carrying
capacity in this case as well. Standard differentiation now shows that the harvesting threshold
maximizing the expected average cumulative yield is b∗

= ρ∗γ−1 where ρ∗ constitutes the
unique root of the equation(

ρ∗

1 − ρ∗

) 2µ
σ2

= ρ∗(1 − ρ∗)
2µ
σ 2 B

(
ρ∗,

2µ
σ 2 − 1,−

2µ
σ 2 − 1

)
.

As was shown in [1], in this case the harvesting boundary maximizing the expected present
value of the cumulative yield is the unique solution of ψ ′′

r (x∗
r ) = 0, where

ψr (x) =
(

γ x
1 − γ x

)α1

F
(

a, b, c;−
γ x

1 − γ x

)
,
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Fig. 2. The optimal harvesting boundary as a function of the discount rate.

F is the standard hypergeometric function,

a := 1 −
α2

2
+
α1

2
−

1
2

√
(α2

2 − 2α2(2 + α1)) + (2 − α1)2,

b := 1 −
α2

2
+
α1

2
+

1
2

√
(α2

2 − 2α2(2 + α1)) + (2 − α1)2,

and

c := 1 − α2 + α1.

We notice again that, as in the ergodic setting, the optimal threshold is directly proportional to
the carrying capacity.

The optimal harvesting threshold is illustrated for two different volatilities as a function of
the discount rate in Fig. 2 under the assumptions that µ = 0.1, γ = 0.001.

5. Discussion

We investigated the optimal ergodic harvesting strategies of a population X whose dy-
namics is given by a general one-dimensional stochastic differential equation. The theory
we develop for optimal sustainable harvesting includes the risks of extinction from envi-
ronmental fluctuations (environmental stochasticity) as well as from harvesting. However, in
contrast to most of the literature, we do not work with discount factors (see, for example,
[1,5,24–26]) or maximal harvesting rates (see [17]). Instead, we concentrate on policies aiming
to the maximization of the average cumulative yield. We proved that the optimal policy is of
the same local time push type as in the discounted setting. Since the optimal threshold at
which harvesting becomes optimal is a decreasing function of the prevailing discount rate, our
results unambiguously demonstrate that policies based on ergodic (sustainable) criteria are more
prudent and imply higher population densities than models subject to discounting. Our results
show higher stochastic fluctuations negatively impact the population densities — this provides
rigorous mathematical support for the arguments developed in [24] based on approximation
arguments.
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There are at least three directions in which our analysis could be extended. As was originally
established in [22] in a model based on controlled Brownian motion, the value of the optimal
ergodic policy is associated with the value of the finite horizon control problem

J (T, x) = sup
Z∈Λ

Ex [ZT ] ,

where T > 0 is a known fixed finite time horizon. It would be of interest whether an analogous
limiting result connects J (T, x)/T to l∗ in the general setting.

More recently, [33] considered the determination of the harvesting strategy maximizing the
expected present value of the cumulative yield from the present up to the extinction time in a
case where the harvested population is subject to random regime switching characterized by an
underlying continuous time Markov chain (see also [14] for an application in forestry). Given
the time homogeneity of the developed model, it would naturally be of interest to consider the
determination of the harvesting policy maximizing the expected long run average yield in that
setting as well.

Finally, the present analysis focuses on the harvesting of a single unstructured population.
It would relevant to increasing the dimensionality of the considered model and introduce
interactions into the dynamics governing the evolution of the population stock (see for example
the population dynamics models from [15,16,31]). In light of the studies [4,27], this latter
problem seems to be very challenging and is left for future considerations.
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