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Abstract

We present a genuine coherence measure based on a quasi-relative entropy as a dif-

ference between quasi-entropies of the dephased and the original states. The measure

satisfies non-negativity and monotonicity under genuine incoherent operations (GIO).

It is strongly monotone under GIO in two and three dimensions, or for pure states in any

dimension, making it a genuine coherence monotone. We provide a bound on the error

term in the monotonicity relation under GIO in terms of the trace distance between the

original and the dephased states. Moreover, the lower bound on the coherence measure

can also be calculated in terms of this trace distance.

1 Introduction

Quantum coherence is a fundamental property of quantum systems, describing the

existence of quantum interference. It is widely used in thermodynamics [1, 8, 17], trans-

port theory [26, 36], and quantum optics [11, 28], among few applications. Recently,

problems involving coherence included quantification of coherence [2, 20, 24, 25, 29,

38], distribution [23], entanglement [6, 31], operational resource theory [4, 6, 10, 35],

correlations [15, 18, 32], with only a few references mentioned in each. See [30] for

a more detailed review.

As a golden standard, it is taken that any “good" coherence measure should satisfy

four criteria presented in [2]: vanishing on incoherent states; monotonicity under inco-

herent operations; strong monotonicity under incoherent operations, and convexity.

Alternatively, the last two properties can be substituted by an additivity for subspace

independent states, which was shown in [38].

A number of ways has been proposed as a coherence measure, but only a few satisfy

all necessary criteria [2, 39, 40]. A broad class of coherence measure are defined as
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the minimal distance D to the set of incoherent states I, as

CD(ρ) = min
δ∈I

D(ρ, δ).

In [2], it was shown that coherence vanishes on incoherent states when the distance

vanishes only on identical states; the measure is monotone when the distance is con-

tractive under quantum channels; and it is convex when the distance is jointly convex.

Strong monotonicity property is more challenging to pinpoint. Measures that satisfy

the strong monotonicity that have been introduced up to date, are based on l1, rela-

tive entropy, Tsallis entropy, and real symmetric concave functions on a probability

simplex.

Another approach to generate physically relevant coherence measures is to con-

sider different incoherent operations. The largest class of incoherent operations is

called maximally incoherent (MIO), and it consists of all completely positive trace-

preserving (CPTP) maps that preserve the set of incoherent states. The smaller set,

called incoherent operations (IO) [2], has Krauss operators that each preserve the set

of incoherent states (see Definition 2.3). A smaller set consists of strictly incoherent

operations (SIO) [35, 37], which are the result of action on a primary and ancillary

systems that do not generate coherence on a primary system, see Definition 2.6. And

the last class of operations, that is discussed in this paper, is called genuine incoherent

operations (GIO) [9], which act trivially on incoherent states, see Definition 2.4. See

[5] for a larger list of incoherent operations, and their comparison. For these types

of incoherent operations, one may look at similar properties as the ones presented

in [2]. Restricted to GIO, one would obtain a measure of genuine coherence when

it is non-negative and monotone, or a coherence monotone when it is also strongly

monotone under GIO.

In [9], the following genuine coherence measure was proposed:

CD(ρ) = D(ρ‖�(ρ)) ,

for a distance D, and �(ρ) being the dephased state in a pre-fixed basis, see Notation

2.2. It was shown that this is a genuine coherence measure if the distance is contractive

under unital operations. If fact, the monotonicity holds not only for GIO maps but for

dephasing-covariant incoherent operations (DIO) as well (the ones that commute with

the dephasing operator).

Here we propose another genuine coherence measure based on a quasi-relative

entropy:

C f (ρ) = S f (�(ρ)) − S f (ρ) ,

where S f (ρ) is a quasi entropy, which could be defined in two ways, one of which

is S f (ρ) = −S f (ρ‖|I ). The motivation for this definition comes from the relative

entropy coherence. It was shown [2] that for a relative entropy S(·‖·), there is a closed

expression of a distance-based coherence measure:
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min
δ∈I

S(ρ‖δ) = S(ρ‖�(ρ)) = S(�(ρ)) − S(ρ) .

In general, for quasi-relative entropies neither of these equalities will hold. This

can be seen for Tsallis relative entropy, which is a particular case of a quasi-relative

entropy. The closest incoherent state is given in [25], and it is not a dephased state

�(ρ). The second equality does not hold either in general.

We show that quasi-relative entropy coherence, which we call f -coherence, is

unique for pure states, non-negative, zero if and only if a state is incoherent, and

monotone under GIO maps. Moreover, we give a lower bound on this coherence in

terms of a trace distance between a state and its dephased state, we provide an if and

only if condition on a GIO map that saturates the monotonicity relation, and bound

the error term in the monotonicity relation. Additionally, we investigate when the

f -coherence would be monotone under a larger class of SIO maps.

We show that f -coherence saturates strong monotonicity under GIO maps in two

and three dimensions, and it satisfies the strong monotonicity under GIO maps in any

dimensions for pure states.

2 Preliminaries

2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix a basis E = {| j〉}d
j=1 of vectors in

H.

2.1 Definition A state δ is called incoherent if it can be represented as follows:

δ =
∑

j

δ j | j〉 〈 j | .

2.2 Notation Denote the set of incoherent states for a fixed basis E = {| j〉} j as

I = {ρ =
∑

j

p j | j〉 〈 j |} .

A dephasing operation in E basis is the following map:

�(ρ) =
∑

j

〈 j | ρ 〈 j | | j〉 〈 j | .

2.3 Definition A CPTP map � with the following Kraus operators

�(ρ) =
∑

n

KnρK ∗
n ,
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is called the incoherent operation (IO) or incoherent CPTP (ICPTP), when the Kraus

operators satisfy

KnIK ∗
n ⊂ I, for all n ,

besides the regular completeness relation
∑

n K ∗
n Kn = 1l.

Any reasonable measure of coherence C(ρ) should satisfy the following conditions:

• (C1) C(ρ) = 0 if and only if ρ ∈ I;

• (C2) Non-selective monotonicity under IO maps (monotonicity)

C(ρ) ≥ C(�(ρ)) ;

• (C3) Selective monotonicity under IO maps (strong monotonicity)

C(ρ) ≥
∑

n

pnC(ρn) ,

where pn and ρn are the outcomes and post-measurement states

ρn = KnρK ∗
n

pn

, pn = TrKnρK ∗
n .

• (C4) Convexity,

∑

n

pnC(ρn) ≥ C

(

∑

n

pnρn

)

,

for any sets of states {ρn} and any probability distribution {pn}.
These properties are parallel with the entanglement measure theory, where the

average entanglement is not increased under the local operations and classical com-

munication (LOCC). Notice that coherence measures that satisfy conditions (C3) and

(C4) also satisfy condition (C2).

In [9], a class of incoherence operations was defined, called genuinely incoherent

operations (GIO) as quantum operations that preserve all incoherent states.

2.4 Definition An IO map � is called a genuinely incoherent operation (GIO) is for

any incoherent state δ ∈ I,

�(δ) = δ .

An operation � is GIO if and only if all Kraus representations of � has all Kraus

operators diagonal in a pre-fixed basis [9].

Conditions (C2), (C3) and (C4) can be restricted to GIO maps to obtain different

classes of coherence measures.
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2.5 Definition In this case, a measure of genuine coherence satisfies at least (G1)

and (G2). And if a coherence measure fulfils conditions (G1), (G2), (G3), it is called

genuine coherence monotone.

A larger class of IO maps was defined in [35, 37].

2.6 Definition An IO map � is called strictly incoherent operations (SIO) if its

Kraus representation operator commute with dephasing, i.e. for �(ρ) =
∑

j K jρK ∗
j ,

we have for any j ,

K j�(ρ)K ∗
j = �(K jρK ∗

j ) .

Since Kraus operators of GIO maps are diagonal in E basis, any GIO map is SIO

as well, i.e. GIO ⊂ SIO, [9].

One may consider an additional property, closely related to the entanglement theory:

• (C5) Uniqueness for pure states: for any pure state |ψ〉 coherence takes the form:

C(ψ) = S(�(ψ)) ,

where S is the von Neumann entropy and � is the dephasing operation defined as

�(ρ) =
∑

j

〈 j | ρ | j〉 | j〉 〈 j | .

2.2 Quasi-relative entropy

Quantum quasi-relative entropy was introduced by Petz [21, 22] as a quantum gener-

alization of a classical Csiszár’s f -divergence [7]. It is defined in the context of von

Neumann algebras, but we consider only the Hilbert space setup. Let H be a finite-

dimensional Hilbert space, and ρ and σ be two states (given by density operators).

2.7 Definition For strictly positive bounded operators A and B acting on a finite-

dimensional Hilbert space H, and for any continuous function f : (0,∞) → R, the

quasi-relative entropy (or sometimes referred to as the f -divergence) is defined as

S f (A||B) = Tr( f (L B R−1
A )A) ,

where left and right multiplication operators are defined as L B(X) = B X and

RA(X) = X A.

There is a straightforward way to calculate the quasi-relative entropy from the

spectral decomposition of operators [14, 34]. Let A and B have the following spectral

decomposition

A =
∑

j

λ j

∣

∣φ j

〉 〈

φ j

∣

∣ , B =
∑

k

μk |ψk〉 〈ψk | . (2.1)
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the set {|φk〉
〈

ψ j

∣

∣} j,k forms an orthonormal basis of B(H), the space of bounded linear

operators, with respect to the Hilbert–Schmidt inner product defined as 〈A, B〉 =
Tr(A∗ B). By [34], the product of left and right multiplication operators can be written

as

L B R−1
A =

∑

j,k

μk

λ j

Pj,k , (2.2)

where Pj,k : B(H) → B(H) is defined by

Pj,k(X) = |ψk〉
〈

φ j

∣

∣ 〈ψk | X
∣

∣φ j

〉

.

The quasi-relative entropy is calculated as follows:

S f (A||B) =
∑

j,k

λ j f

(

μk

λ j

)

| 〈ψk |
∣

∣φ j

〉

|2 . (2.3)

2.8 Theorem [21] For states, i.e. trace one positive density matrices ρ and σ , the

quasi-relative entropy is bounded below by

S f (ρ‖σ) ≥ f (1).

The equality happens for a nonlinear function f if and only if ρ = σ .

It is natural to require the quasi-relative entropy to be zero for equal state, and

therefore we assume throughout the paper that f (1) = 0.

For an operator convex function, f , the quasi-relative entropy is jointly convex and

monotone under CPTP maps [14]. The equality in monotonicity holds if and only if the

map is reversible on these two states, i.e. for two states ρ and σ with supp ρ ⊂ supp σ ,

and a CPTP map �, the equality

S f (ρ‖σ) = S f (�(ρ)‖�(σ))

is satisfied if and only if

Rσ (�(ρ)) = ρ ,

where Rσ is the Petz’s recovery map defined as

Rσ (ω) = σ 1/2�∗
(

�(σ)−1/2ω�(σ)−1/2
)

σ 1/2 . (2.4)

2.9 Assumption Throughout the paper, we will assume that the function f is operator

convex and f (1) = 0.
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For any function f , its transpose f̃ is defined as

f̃ (x) = x f

(

1

x

)

, x ∈ (0.∞) .

The transpose f̃ of an operator convex function f on (0,∞) is operator convex again,

[14]. From (2.3), it follows that

S
f̃
(ρ‖σ) = S f (σ‖ρ) .

2.10 Example For f (x) = − log x , the quasi-relative entropy becomes the Umegaki

relative entropy

S− log(ρ‖σ) = S(ρ‖σ) = Tr(ρ log ρ − ρ log σ) .

2.11 Example For p ∈ (−1, 1) and p �= 0 let us take the function

f p(x) := 1

p(1 − p)
(1 − x p) ,

which is operator convex. The quasi-relative entropy for this function is calculated to

be

S f p (ρ||σ) = 1

p(1 − p)

(

1 − Tr(σ pρ1−p)

)

.

2.12 Example For p ∈ (−1, 1) take q = 1 − p ∈ (0, 2), the function

fq(x) = 1

1 − q
(1 − x1−q)

is operator convex. The quasi-relative entropy for this function is known as Tsallis

q-entropy

Sq(ρ‖σ) = 1

1 − q

(

1 − Tr(ρqσ 1−q)

)

.

3 f -entropy

For a convex, operator monotone decreasing function f , such that f (1) = 0, defines

entropy two ways.

3.1 Definition The f -entropy is defined as

S f (ρ) := f (1/d) − S f (ρ‖I/d) . (3.1)

Ŝ f (ρ) := −S f (ρ‖I ) . (3.2)
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Let us use a notation S̃ f for either S f or Ŝ f .

3.2 Theorem f -entropy is non-negative, and is zero on pure states.

Proof Let {λ j } be the eigenvalues of ρ. Then from (2.3) we have

S f (ρ) = f (1/d) −
∑

j

λ j f

(

1

dλ j

)

, (3.3)

and

Ŝ f (ρ) = −
∑

j

λ j f

(

1

λ j

)

. (3.4)

A sequence of eigenvalues {λ j } is majorized by a sequence {1, 0, . . . , 0}. Since a

perspective function (or a transpose function) x f (1/x) is convex for a convex function

f [14], this implies that by results on Schur-concavity [12, 19, 27] we have

∑

j

λ j f

(

1

dλ j

)

≤ f (1/d) .

Here, if needed, we adopt a convention 0 · ±∞ := 0 [13].

Since f is monotonically decreasing and f (1) = 0, for any 0 ≤ λ j ≤ 1, f
(

1
λ j

)

≤
0. Thus, Ŝ f ≥ 0.

When ρ = |�〉 〈�| is a pure state, there is only one eigenvalue λ = 1. Then

S f (|�〉 〈�|) = f (1/d) − f (1/d) = 0 ,

and

Ŝ f (|�〉 〈�|) = − f (1) = 0 .


�

3.3 Theorem The maximum value of f -entropy is reached on the maximally mixed

state I/d, and it is

S f (ρ) ≤ f (1/d) ,

and

Ŝ f (ρ) ≤ − f (d) .

Proof From Theorem 2.8, S f (ρ‖I/d) ≥ 0, or since f is convex, we have

∑

j

λ j f

(

1

dλ j

)

≥ f

⎛

⎝

∑

j

λ j

1

dλ j

⎞

⎠ = f (1) = 0 .
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Similarly,

∑

j

λ j f

(

1

λ j

)

≥ f

⎛

⎝

∑

j

λ j

1

λ j

⎞

⎠ = f (d) .

From (3.3) and (3.4), the result follows. Clearly, when ρ = I/d, we have S f (I/d) =
f (1/d) − 0 = f (1/d), and from (3.4) we have Ŝ f (I/d) = − f (d). 
�

3.4 Theorem The f -entropies are concave in ρ. Let {pk} be a probability distribution

and ρk be some states, then for ρ =
∑

k pkρk , we have

S̃ f (ρ) ≥
∑

k

pk S̃ f (ρk) .

Proof This immediately follows from the joint convexity of f -divergence [13, 14]. 
�

3.5 Theorem The f -entropies are invariant under unitaries.

Proof Since a unitary operation UρU∗ does not change the eigenvalues of ρ, and the

f -entropies are the functions of eigenvalues of ρ, this implies that f -entropies are

invariant under any operations that preserve eigenvalues. 
�

3.6 Theorem The f -entropies are non-decreasing under untial CPTP maps, i.e. for

any linear CPTP map �, such that �(I ) = I , we have

S̃ f (�(ρ)) ≥ S̃ f (ρ) .

Proof Let us denote σ = I or σ = I/d, which corresponds to the appropriate f -

entropy. Then

S̃ f (�(ρ)) − S̃ f (ρ) = S f (ρ‖σ) − S f (�(ρ)‖σ) (3.5)

= S f (ρ‖σ) − S f (�(ρ)‖�(σ)) ≥ 0 . (3.6)

The last equality holds since � is unital, and the inequality holds due to the mono-

tonicity of f -divergence under CPTP maps [16, 21, 33]. 
�

4 Measure of genuine coherence

In a d-dimensional Hilbert space H, fix a basis E = {| j〉}d−1
j=0 .

4.1 Definition For any entropy function S, which is non-decreasing under CPTP maps,

define coherence as follows:

CS(ρ) := S(�(ρ)) − S(ρ) . (4.1)
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In particular, for any operator convex and operator monotone decreasing function f ,

define two f -coherence measures.

4.2 Definition For entropy defined in (3.1),

C f (ρ) := S f (�(ρ)) − S f (ρ) . (4.2)

For entropy defined in (3.2),

Ĉ f (ρ) := Ŝ f (�(ρ)) − Ŝ f (ρ) . (4.3)

Let us denote C̃ f as either one C f or Ĉ f for shortness.

If {λ j } are the eigenvalues of ρ, and the diagonal elements of ρ in E basis are

χ j = 〈 j | ρ | j〉, then from (3.3) and (3.4), we have

C f (ρ) =
∑

j

λ j f

(

1

dλ j

)

−
∑

j

χ j f

(

1

dχ j

)

, (4.4)

and

Ĉ f (ρ) =
∑

j

λ j f

(

1

λ j

)

−
∑

j

χ j f

(

1

χ j

)

. (4.5)

4.1 Example

4.1.1 Log

Since f (x) = − log(x) is operator convex, coherence measure defined above coin-

cides with [2]:

C(ρ) = Ĉ f (ρ) = Slog(�(ρ)) − Slog(ρ) (4.6)

=
∑

j

λ j log λ j −
∑

j

χ j log χ j (4.7)

= S(�(ρ)) − S(ρ) (4.8)

= S(ρ‖�(ρ)) (4.9)

= min
δ∈I

S(ρ‖δ) . (4.10)
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4.1.2 Power

The function f (x) = 1
1−α

(1− x1−α) is operator convex for α ∈ (0, 2). The coherence

monotone is then defined as

Cα(ρ) = dα−1

1 − α

⎡

⎣

∑

j

χα
j −

∑

j

λα
j

⎤

⎦ = dα−1
Ĉα(ρ) . (4.11)

5 Properties

5.1 Uniqueness for pure states

For any pure state, coherence becomes an entropy of a dephased state:

CS(ψ) = S(�(ψ)) .

This holds since entropies are zero on pure states.

5.2 Positivity

5.1 Theorem CS and, in particular, C̃ f are non-negative.

Proof By assumption S is non-decreasing under CPTP maps, it follows that C is non-

negative.

This holds for f -entropies as well due to Theorem 3.6, since the dephasing operation

is unital. 
�
Clearly, for any incoherent state ρ, coherence CS(ρ) = 0. Having no information on

the saturation condition for a general entropy S, it is impossible to say what happens

in the other direction. Consider f -coherences (4.2) and (4.3).

5.2 Theorem C̃ f (ρ) = 0 if and only if ρ ∈ I is incoherent state.

Proof In Theorem 3.6, the equality in the only inequality (3.6) holds if and only if

there is a recovery map R such that R(�(ρ)) = ρ and R(I ) = I , [13, 14]. By (2.4),

this map admits the following explicit form: denoting σ = I

Rσ (ω) = σ 1/2�∗
(

�(σ)−1/2ω�(σ)−1/2
)

σ 1/2 ,

where �∗ is a dual map of �. Since � is a linear unital GIO map, we have

Rσ (ω) = �∗(ω) . (5.1)

Therefore, condition Rσ (�(ρ)) = ρ implies that

ρ = �∗(�(ρ)) . (5.2)
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Since �∗ = �, we have that ρ = �(ρ), which happens if and only if ρ ∈ I. Thus,

C f (ρ) = 0 = Ĉ f (ρ) if and only if ρ ∈ I. 
�
A strengthening of the monotonicity inequality for f -divergence was presented in

[3]. Using this result, we obtain the following lower bound on f -coherence.

5.3 Theorem Let f be an operator monotone decreasing function, and T > 0. Suppose

for some constant c > 0, there is a constant C > 0 so that dt ≤ CT 2cdμ f (t) for

t ∈ [T −1, T ]. Then there is an explicitly computable constant K f (ρ) depending only

on the smallest nonzero eigenvalue of ρ, C and c, such that

C f (ρ) ≥ K f (ρ)‖ρ − �(ρ)‖4(1+c)
1 . (5.3)

Here, ‖A‖1 = Tr|A| = Tr
√

A∗ A is the trace-norm of an operator.

From this inequality, the above condition of a zero coherence becomes apparent, i.e.

C f (ρ) = 0 if and only if ρ ∈ I.

The upper bound given below extends the upper bound for a relative entropy of

coherence [2] to any f -coherence.

5.4 Theorem The coherence is upper bounded by

C f (ρ) ≤ f (1/d) ,

and

Ĉ f (ρ) ≤ − f (d) .

The maximum value is reached for a maximally coherent pure state ρ = |ψ〉 〈ψ |, with

|ψ〉 = 1√
d

∑

j | j〉.

Proof This follows from the upper bound on the f -entropy Theorem 3.3, and the

definition of coherence

C̃ f (ρ) = S̃ f (�(ρ)) − S̃ f (ρ) .

For a pure state the entropy is zero, S̃ f (|ψ〉 〈ψ |) = 0. The dephasing operation applied

to the state |ψ〉 = 1√
d

∑

j | j〉 gives a maximally mixed state I/d. The theorem follows

from the fact that the entropy is maximal on maximally mixed state. 
�

5.3 Monotonicity

5.5 Theorem CS and, in particular, C̃ f are monotone under GIO.

Proof Any GIO map � is also SIO, and, in particular, � commutes with the dephasing

operation. Therefore, �(�(ρ)) = �(�(ρ)) = �(ρ), and the last equality is due to

the fact that �(ρ) ∈ I and � as GIO preserves incoherent states. Therefore,

CS(ρ) − CS(�(ρ)) (5.4)
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= S(�(ρ)) − S(ρ) − S(�(�(ρ))) + S(�(ρ)) (5.5)

= S(�(ρ)) − S(ρ) (5.6)

≥ 0 , (5.7)

since � is a CPTP map and S is non-increasing under CPTP maps. For f -coherences,

the last inequality holds to Theorem 3.6 since a GIO map is unital. 
�

5.6 Theorem For GIO map �, the equality

C̃ f (ρ) = C̃ f (�(ρ))

happens if and only if any Kraus representation of �(ρ) =
∑

j K jρK ∗
j mush have

operators K j =
∑

n k jn |n〉 〈n| that satisfy: for any n, m such that 〈n| ρ |m〉 �= 0, it

must be that

∣

∣

∣

∣

∣

∣

∑

j

k jnk jm

∣

∣

∣

∣

∣

∣

2

= 1 .

Proof Similarly, to the positivity section, equality in (5.7) happens if and only if there

is a recovery map R such that R(�(ρ)) = ρ and R(I ) = I , [13, 14]. By (2.4), this

map admits the following explicit form: denoting σ = I

Rσ (ω) = σ 1/2�∗
(

�(σ)−1/2ω�(σ)−1/2
)

σ 1/2 ,

where �∗ is a dual map of �. Since � is a linear unital GIO map, we have

Rσ (ω) = �∗(ω) . (5.8)

Therefore, condition Rσ (�(ρ)) = ρ implies that

ρ = �∗(�(ρ)) . (5.9)

Denote a Kraus representation of � as �(ρ) =
∑

j KiρK ∗
j . From [9], since � is GIO,

any Kraus representation of � has diagonal operators, i.e. each K j =
∑

n k jn |n〉 〈n|
is diagonal in basis E . Since

∑

j K ∗
j K j = I , we have

∑

j |k jn|2 = 1 for every n. The

dual map is �∗(ρ) =
∑

j K ∗
j ρK j . Therefore, (5.9) becomes

ρ =
∑

j i

K ∗
j Kiρ

(

K ∗
j Ki

)∗
.

Writing both sides in basis E gives

∑

nm

〈n| ρ |m〉 |n〉 〈m| (5.10)
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=
∑

nm

∑

i j

k jnkink jmkim 〈n| ρ |m〉 |n〉 〈m| (5.11)

=
∑

nm

∣

∣

∣

∣

∣

∣

∑

j

k jnk jm

∣

∣

∣

∣

∣

∣

2

〈n| ρ |m〉 |n〉 〈m| . (5.12)

This implies that for every n, m such that 〈n| ρ |m〉 �= 0 we have

∣

∣

∣

∣

∣

∣

∑

j

k jnk jm

∣

∣

∣

∣

∣

∣

2

= 1 . (5.13)

This clearly confirms that any incoherent state saturates monotonicity for GIO maps.

If ρ is a coherent state, i.e. there exist n, m such that 〈n| ρ |m〉 �= 0, to saturate mono-

tonicity the map � should satisfy (5.13). Note that by Cauchy–Schwarz inequality we

have

∣

∣

∣

∣

∣

∣

∑

j

k jnk jm

∣

∣

∣

∣

∣

∣

2

≤
∑

j

|k jn|2
∑

j

|k jm |2 = 1 .

The equality above happens if and only if there exists a scalar αnm ∈ C such that for

any j : k jn = αnmk jm . 
�

Applying the strengthening of monotonicity inequality for f -divergences [3], we

obtain a strengthening on the monotonicity inequality for f -coherence.

5.7 Theorem Let � be any GIO map. Let f be an operator monotone decreasing

function, and T > 0. Suppose for some constant c > 0, there is a constant C > 0

so that dt ≤ CT 2cdμ f (t) for t ∈ [T −1, T ]. Then there is an explicitly computable

constant K f (ρ) depending only on the smallest nonzero eigenvalue of ρ, C and c,

such that,

C f (ρ) − C f (�(ρ)) ≥ K f (ρ)‖ρ − �∗(�(ρ))‖4(1+c)
1 . (5.14)

Proof Any GIO map� commutes with the dephasing operation, therefore, �(�(ρ)) =
�(�(ρ)) = �(ρ), the last equality is due to the fact that �(ρ) ∈ I and � as GIO

preserves incoherent states. Using this, we have

C f (ρ) − C f (�(ρ)) (5.15)

= S f (�(ρ)) − S f (ρ) − S f (�(�(ρ))) + S f (�(ρ)) (5.16)

= S f (�(ρ)) − S f (ρ) (5.17)

= S f (ρ‖I/d) − S f (�(ρ)‖I/d) (5.18)

= S f (ρ‖σ) − S f (�(ρ)‖�(σ)) , (5.19)
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where σ = I/d, and since σ ∈ I and � is GIO, �(σ) = σ .

Applying result in [3], which estimates the error in the monotonicity relation for

f -divergence, leads to the desired abound. 
�

The next theorem shows that C̃ f is not in general monotone under SIO operations.

5.8 Theorem If C̃ f is monotone under all SIO, then for all states ρ and |0〉 ∈ E , we

have

C̃ f (ρ ⊗ I/d) = C̃ f (ρ ⊗ |0〉 〈0|) .

In other words, if C f is monotone under SIO, then for all states with eigenvalues {λ j }
and diagonal elements {χ j } in the basis E , the following holds

∑

j

λ j f

(

1

dλ j

)

−
∑

j

χ j f

(

1

dχ j

)

=
∑

j

λ j f

(

1

d2λ j

)

−
∑

j

χ j f

(

1

d2χ j

)

. (5.20)

And, if Ĉ f is monotone under SIO, then for all states with eigenvalues {λ j }and diagonal

elements {χ j } in the basis E , the following holds

∑

j

λ j f

(

1

λ j

)

−
∑

j

χ j f

(

1

χ j

)

(5.21)

=
∑

j

λ j f

(

d

λ j

)

−
∑

j

χ j f

(

d

χ j

)

. (5.22)

Proof First, note that from (4.4) we have: for |0〉 ∈ E ,

C f (ρ ⊗ |0〉 〈0|) =
∑

j

λ j f

(

1

d2λ j

)

−
∑

j

χ j f

(

1

d2χ j

)

, (5.23)

and

C f (ρ ⊗ I/d) = C f (ρ) =
∑

j

λ j f

(

1

dλ j

)

−
∑

j

χ j f

(

1

dχ j

)

. (5.24)

Moreover,

Ĉ f (ρ ⊗ |0〉 〈0|) = Ĉ f (ρ) =
∑

j

λ j f

(

1

λ j

)

−
∑

j

χ j f

(

1

χ j

)

, (5.25)
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and

Ĉ f (ρ ⊗ I/d) =
∑

j

λ j f

(

d

λ j

)

−
∑

j

χ j f

(

d

χ j

)

. (5.26)

Let us consider two examples of SIO\GIO maps.

1. Let �(ρ) = I/d be the depolarizing quantum channel, which in Kraus form can

be written as

�(ρ) = I/d =
d−1
∑

i j=0

Ki jρK ∗
i j ,

where Ki j = 1√
d

|i〉 〈 j | .
Define an operation on a tensor product Hilbert space as follows:

�(ω) =
∑

i j

(I ⊗ Ki j )ω(I ⊗ Ki j )
∗ . (5.27)

Clearly, � is not a GIO, since its Kraus operators are not diagonal in E ⊗ E basis, or

since

�(ρ ⊗ |0〉 〈0|) = ρ ⊗ �(|0〉 〈0|) = ρ ⊗ I/d (5.28)

�= ρ ⊗ |0〉 〈0| ∈ E ⊗ E . (5.29)

But � is SIO, since for any n, m

(I ⊗ Knm)(�(ω)(I ⊗ K ∗
nm) (5.30)

= 1

d
(I ⊗ |n〉 〈m|)

⎛

⎝

∑

i j

〈i j | ω |i j〉 |i j〉 〈i j |

⎞

⎠ (I ⊗ |m〉 〈n|) (5.31)

= 1

d

∑

i j

〈i j | ω |i j〉 |i〉 〈i | ⊗ |n〉 〈m| | j〉 〈 j | |m〉 〈n| (5.32)

= 1

d

∑

i

〈im| ω |im〉 |in〉 〈in| , (5.33)

and

�((I ⊗ Knm)ω(I ⊗ K ∗
nm)) (5.34)

= 1

d

∑

i j

〈i j | (I ⊗ |n〉 〈m|)ω(I ⊗ |m〉 〈n|) |i j〉 |i j〉 〈i j | (5.35)
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= 1

d

∑

i

〈im| ω |im〉 |in〉 〈in| (5.36)

Therefore, � is a SIO map.

For either C f or Ĉ f , consider

C̃ f (�(ρ ⊗ |0〉 〈0|)) = C̃ f (ρ ⊗ �(|0〉 〈0|))) (5.37)

= C̃ f (ρ ⊗ I/d) . (5.38)

2. Consider another example, let �(ρ) = |0〉 〈0| be the erasure channel, which in

Kraus form can be written as

�(ρ) = |0〉 〈0| =
d−1
∑

j=0

K jρK ∗
j , where K j = |0〉 〈 j | .

Define an operation on a tensor product Hilbert space as follows

M(ω) =
∑

j

(I ⊗ K j )ω(I ⊗ K j )
∗ . (5.39)

Clearly, M is not a GIO, since its Kraus operators are not diagonal in E ⊗ E basis, or

since

M(ρ ⊗ I/d) = ρ ⊗ �(I/d) = ρ ⊗ |0〉 〈0| (5.40)

�= ρ ⊗ I/d ∈ E ⊗ E . (5.41)

But M is SIO, since for any n,

(I ⊗ Kn)�(ω)(I ⊗ K ∗
n ) (5.42)

=
∑

i j

〈i j |ω |i j〉 (I ⊗ |0〉 〈n|) |i j〉 〈i j | (I ⊗ |n〉 〈0|) (5.43)

=
∑

i

〈in| ω |in〉 |i〉 〈i | ⊗ |0〉 〈0| . (5.44)

and

�
(

(I ⊗ Kn)ω(I ⊗ K ∗
n )

)

(5.45)

=
∑

i j

〈i j | (I ⊗ |0〉 〈n|)ω(I ⊗ |n〉 〈0|) |i j〉 |i j〉 〈i j | (5.46)

=
∑

i

〈in| ω |in〉 |i0〉 〈i0| . (5.47)

Therefore, M is an SIO map.
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For either C f or Ĉ f , consider

C̃ f (M(ρ ⊗ I/d)) = C̃ f (ρ ⊗ �(I/d))) (5.48)

= C̃ f (ρ ⊗ |0〉 〈0|) . (5.49)

Now, compare (5.38) and (5.49). In order for monotonicity of f -coherence to hold

under all SIO, there must be an equality

C̃ f (ρ ⊗ I/d) = C̃ f (ρ ⊗ |0〉 〈0|) .

Invoking (5.23-5.26), we have the result stated in the theorem. 
�

Note that both (5.20) and (5.22) hold for the logarithmic function f (x) = − log(x),

but fail for the power function f (x) = 1
1−α

(1 − x1−α). This is in line with the fact

that the relative entropy of coherence is monotone under SIO, and it shows that Tsallis

coherence fails monotonicity for SIO.

5.4 Strongmonotonicity

5.9 Theorem f -coherences C̃ f saturate strong monotonicity for convex mixtures of

diagonal unitaries. Therefore, C̃ f saturates strong monotonicity under GIO in two

and three dimensions.

Proof Consider an example of GIO, which is a probabilistic mixture of diagonal uni-

taries: for some α j > 0, s.t.
∑

j α j = 1, define

�(ρ) =
∑

j

α jU jρU∗
j ,

where for some ρ jn the unitaries U j are diagonal in E , i.e.

U j =
∑

n

eρ jn |n〉 〈n| .

In [9] it has been shown that all GIO are of such form for dimensions two and three,

but it is no longer the case for higher dimensions.

Note that for σ = I or σ = I/d and for all unitaries U , we have

S f (UρU∗‖σ) = S f (ρ‖σ) . (5.50)

Taking U j diagonal in E above, it follows that

�(U jρU∗
j ) = �(ρ) .
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Therefore, C̃ f saturates the strong monotonicity under convex mixtures of diagonal

unitaries:

∑

j

α j C̃ f (U jρU∗
j ) (5.51)

=
∑

j

α j

[

S f (U jρU∗
j ‖σ) − S f (�(UρU∗)‖σ)

]

(5.52)

=
∑

j

α j

[

S f (ρ‖σ) − S f (�(ρ)‖σ)
]

(5.53)

= C̃ f (ρ) . (5.54)


�

5.10 Remark Expanding the set of operations to include all unitaries (not necessarily

diagonal in E), forces C̃ f to be invariant under all unitaries if it is monotone under

them. This results from the following observation: if C̃ f is monotone under all unitaries

U and all states ρ, then, since (5.50) holds, it must be that

S f (�(UρU∗)‖σ) ≥ S f (�(ρ)‖σ) .

But taking a unitary V = U∗ and an initial state ω = UρU∗ above results in the

opposite inequality:

S f (�(V ωV ∗)‖σ) = S f (�(ρ)‖σ) (5.55)

≥ S f (�(UρU∗)‖σ) = S f (�(ω)‖σ) . (5.56)

Therefore, the above inequality must be equality, which makes C̃ f invariant under

unitaries.

5.11 Theorem For any pure state ρ, the f -coherences are strongly monotone under

GIO maps in any finite dimension.

Proof Let us denote σ = I or σ = I/d depending on the f -coherence we are

considering. For a GIO map � with Kraus operators K j , denote

p j = TrK jρK ∗
j , ρ j = 1

p j

K jρK ∗
j .

For a pure state ρ, states ρ j are also pure. Therefore,

C̃ f (ρ) −
∑

j

p j C̃ f (ρ j ) (5.57)

=
∑

j

p j S f (�(ρ j )‖σ) − S f (�(ρ)‖σ) . (5.58)
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Since any GIO map is an SIO map as well, it follows that

�(ρ j ) = 1

p j

K j�(ρ)K ∗
j .

Dephased state �(ρ) is diagonal in E basis with eigenvalues χ j , i.e. �(ρ) =
∑

j χ j | j〉 〈 j |. The f -divergence is

S f (�(ρ)‖I ) =
∑

n

χn f

(

1

χn

)

.

Kraus operators of GIO map are diagonal in E basis, K j =
∑

n k jn |n〉 〈n|, with
∑

j |k jn|2 = 1 for all j . Then

K j�(ρ)K ∗
j =

∑

n

χn|k jn|2 |n〉 〈n| .

And

∑

j

p j S f (�(ρ j )‖I ) =
∑

jn

χn|k jn|2 f

(

p j

χn|k jn|2
)

.

Since f is convex, we have for every n:

∑

j

|k jn|2 f

(

p j

χn|k jn|2
)

≥ f

⎛

⎝

∑

j

p j

χn

⎞

⎠ (5.59)

= f

(

1

χn

)

. (5.60)

Similarly,

S f (�(ρ)‖I/d) =
∑

n

χn f

(

1

dχn

)

,

and

∑

j

p j S f (�(ρ j )‖I/d) =
∑

jn

χn|k jn|2 f

(

p j

dχn|k jn|2
)

.

Because f is convex, for any n:

∑

j

|k jn|2 f

(

p j

dχn|k jn|2
)

≥ f

⎛

⎝

∑

j

p j

dχn

⎞

⎠ (5.61)
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= f

(

1

dχn

)

. (5.62)

And thus,
∑

j p j S f (�(ρ j )‖σ) ≥ S f (�(ρ)‖σ), which implies that for any pure state

ρ, the f -coherence is strongly monotone under GIO:

C̃ f (ρ) ≥
∑

j

p j C̃ f (ρ j ) .


�
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