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Abstract

We present a genuine coherence measure based on a quasi-relative entropy as a dif-
ference between quasi-entropies of the dephased and the original states. The measure
satisfies non-negativity and monotonicity under genuine incoherent operations (GIO).
Itis strongly monotone under GIO in two and three dimensions, or for pure states in any
dimension, making it a genuine coherence monotone. We provide a bound on the error
term in the monotonicity relation under GIO in terms of the trace distance between the
original and the dephased states. Moreover, the lower bound on the coherence measure
can also be calculated in terms of this trace distance.

1 Introduction

Quantum coherence is a fundamental property of quantum systems, describing the
existence of quantum interference. It is widely used in thermodynamics [1, 8, 17], trans-
port theory [26, 36], and quantum optics [11, 28], among few applications. Recently,
problems involving coherence included quantification of coherence [2, 20, 24, 25, 29,
38], distribution [23], entanglement [6, 31], operational resource theory [4, 6, 10, 35],
correlations [15, 18, 32], with only a few references mentioned in each. See [30] for
a more detailed review.

As a golden standard, it is taken that any “good" coherence measure should satisfy
four criteria presented in [2]: vanishing on incoherent states; monotonicity under inco-
herent operations; strong monotonicity under incoherent operations, and convexity.
Alternatively, the last two properties can be substituted by an additivity for subspace
independent states, which was shown in [38].

A number of ways has been proposed as a coherence measure, but only a few satisfy
all necessary criteria [2, 39, 40]. A broad class of coherence measure are defined as

B Anna Vershynina
annavershynina@gmail.com

Department of Mathematics, Philip Guthrie Hoffman Hall, University of Houston, 3551 Cullen Blvd.,
Houston, TX 77204-3008, USA

Published online: 21 May 2022 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-022-03531-8&domain=pdf

184  Page2of22 A.Vershynina

the minimal distance D to the set of incoherent states Z, as
Cp(p) = min D(p, 8).
sel

In [2], it was shown that coherence vanishes on incoherent states when the distance
vanishes only on identical states; the measure is monotone when the distance is con-
tractive under quantum channels; and it is convex when the distance is jointly convex.
Strong monotonicity property is more challenging to pinpoint. Measures that satisfy
the strong monotonicity that have been introduced up to date, are based on /1, rela-
tive entropy, Tsallis entropy, and real symmetric concave functions on a probability
simplex.

Another approach to generate physically relevant coherence measures is to con-
sider different incoherent operations. The largest class of incoherent operations is
called maximally incoherent (MIO), and it consists of all completely positive trace-
preserving (CPTP) maps that preserve the set of incoherent states. The smaller set,
called incoherent operations (IO) [2], has Krauss operators that each preserve the set
of incoherent states (see Definition 2.3). A smaller set consists of strictly incoherent
operations (SIO) [35, 37], which are the result of action on a primary and ancillary
systems that do not generate coherence on a primary system, see Definition 2.6. And
the last class of operations, that is discussed in this paper, is called genuine incoherent
operations (GIO) [9], which act trivially on incoherent states, see Definition 2.4. See
[5] for a larger list of incoherent operations, and their comparison. For these types
of incoherent operations, one may look at similar properties as the ones presented
in [2]. Restricted to GIO, one would obtain a measure of genuine coherence when
it is non-negative and monotone, or a coherence monotone when it is also strongly
monotone under GIO.

In [9], the following genuine coherence measure was proposed:

Cp(p) = D(pllA(p))

for a distance D, and A(p) being the dephased state in a pre-fixed basis, see Notation
2.2. It was shown that this is a genuine coherence measure if the distance is contractive
under unital operations. If fact, the monotonicity holds not only for GIO maps but for
dephasing-covariant incoherent operations (DIO) as well (the ones that commute with
the dephasing operator).

Here we propose another genuine coherence measure based on a quasi-relative
entropy:

Cr(p) =Sr(A(p) — Sr(p),

where S¢(p) is a quasi entropy, which could be defined in two ways, one of which
is Sy(p) = =Sy (plll1). The motivation for this definition comes from the relative
entropy coherence. It was shown [2] that for a relative entropy S(-||-), there is a closed
expression of a distance-based coherence measure:

@ Springer



Measure of genuine coherence based of quasi-relative entropy Page3of22 184

Ialéi%l S(plId) = S(pllA(p)) = S(A(p)) — S(p) .

In general, for quasi-relative entropies neither of these equalities will hold. This
can be seen for Tsallis relative entropy, which is a particular case of a quasi-relative
entropy. The closest incoherent state is given in [25], and it is not a dephased state
A(p). The second equality does not hold either in general.

We show that quasi-relative entropy coherence, which we call f-coherence, is
unique for pure states, non-negative, zero if and only if a state is incoherent, and
monotone under GIO maps. Moreover, we give a lower bound on this coherence in
terms of a trace distance between a state and its dephased state, we provide an if and
only if condition on a GIO map that saturates the monotonicity relation, and bound
the error term in the monotonicity relation. Additionally, we investigate when the
f-coherence would be monotone under a larger class of SIO maps.

We show that f-coherence saturates strong monotonicity under GIO maps in two
and three dimensions, and it satisfies the strong monotonicity under GIO maps in any
dimensions for pure states.

2 Preliminaries
2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix a basis £ = {| j)}‘;:1 of vectors in
H. ’

2.1 Definition A state § is called incoherent if it can be represented as follows:
8= "68;1i) (il -
J
2.2 Notation Denote the set of incoherent states for a fixed basis £ = {|j)}; as

I={p=) pjli il
J

A dephasing operation in £ basis is the following map:

Ap) =Y (il p G Gl -

J
2.3 Definition A CPTP map ® with the following Kraus operators

®(p) =) KupK .
n
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is called the incoherent operation (I0) or incoherent CPTP (ICPTP), when the Kraus
operators satisfy

K,IK; C I, foralln,

besides the regular completeness relation ), KK, = 1.

Any reasonable measure of coherence C(p) should satisfy the following conditions:
e (C1)C(p) =0ifand only if p € T,

e (C2) Non-selective monotonicity under IO maps (monotonicity)

C(p) = C(P(p)) ;

e (C3) Selective monotonicity under IO maps (strong monotonicity)

C(p) = > puClpn) ,

where p, and p, are the outcomes and post-measurement states

KnpK*
on = %, pn=TrK,pK} .
n

e (C4) Convexity,

> paClpn) = C (Z pn,On) :

for any sets of states {p, } and any probability distribution {p,}.

These properties are parallel with the entanglement measure theory, where the
average entanglement is not increased under the local operations and classical com-
munication (LOCC). Notice that coherence measures that satisfy conditions (C3) and
(C4) also satisfy condition (C2).

In [9], a class of incoherence operations was defined, called genuinely incoherent
operations (GIO) as quantum operations that preserve all incoherent states.

2.4 Definition An IO map A is called a genuinely incoherent operation (GIO) is for
any incoherent state § € Z,

A@)=56.
An operation A is GIO if and only if all Kraus representations of A has all Kraus
operators diagonal in a pre-fixed basis [9].

Conditions (C2), (C3) and (C4) can be restricted to GIO maps to obtain different
classes of coherence measures.
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2.5 Definition In this case, a measure of genuine coherence satisfies at least (G1)
and (G2). And if a coherence measure fulfils conditions (G1), (G2), (G3), it is called
genuine coherence monotone.

A larger class of IO maps was defined in [35, 37].

2.6 Definition An IO map A is called strictly incoherent operations (SIO) if its
Kraus representation operator commute with dephasing, i.e. for A(p) = Y jKjpK X,
we have for any j,

I(J'A(,O)I(;< = A(Kj,OKjf) .

Since Kraus operators of GIO maps are diagonal in £ basis, any GIO map is SIO
as well, i.e. GIO c SIO, [9].
One may consider an additional property, closely related to the entanglement theory:

e (C5) Uniqueness for pure states: for any pure state |y) coherence takes the form:

C) =SAW) .,

where S is the von Neumann entropy and A is the dephasing operation defined as

Alp) =Y {ilpli) i) (il -

J
2.2 Quasi-relative entropy

Quantum quasi-relative entropy was introduced by Petz [21, 22] as a quantum gener-
alization of a classical Csiszar’s f-divergence [7]. It is defined in the context of von
Neumann algebras, but we consider only the Hilbert space setup. Let H be a finite-
dimensional Hilbert space, and p and o be two states (given by density operators).

2.7 Definition For strictly positive bounded operators A and B acting on a finite-
dimensional Hilbert space H, and for any continuous function f : (0, c0) — R, the
quasi-relative entropy (or sometimes referred to as the f-divergence) is defined as

S/(AlIB) = Tr(f(LpR3HA) ,

where left and right multiplication operators are defined as Lg(X) = BX and
Ra(X) = XA.

There is a straightforward way to calculate the quasi-relative entropy from the
spectral decomposition of operators [14, 34]. Let A and B have the following spectral
decomposition

A=Y 2ilei) o], B= welve) (Wl . Q.1
j p
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the set {|ox) (w j |} .k forms an orthonormal basis of B(), the space of bounded linear
operators, with respect to the Hilbert—Schmidt inner product defined as (A, B) =
Tr(A*B). By [34], the product of left and right multiplication operators can be written
as

_ Mk
LpRy' =)  Pix, 2.2)
T

where P; . : B(H) — B(H) is defined by
Pj i (X) = |yn) (o] (vl X |o;)

The quasi-relative entropy is calculated as follows:

Sr(AlB) =3 4;f (%) RAISIE 2.3)
j.k

J

2.8 Theorem [21] For states, i.e. trace one positive density matrices p and o, the
quasi-relative entropy is bounded below by

Srpllo) = f(1).
The equality happens for a nonlinear function f if and only if p = o.

It is natural to require the quasi-relative entropy to be zero for equal state, and
therefore we assume throughout the paper that (1) = 0.

For an operator convex function, f, the quasi-relative entropy is jointly convex and
monotone under CPTP maps [14]. The equality in monotonicity holds if and only if the
map is reversible on these two states, i.e. for two states p and o with supp p C suppo,
and a CPTP map A, the equality

S(pllo) = Sp(A(p)lIA(0))

is satisfied if and only if

Ro(A(p) =p,

where R, is the Petz’s recovery map defined as
Ry (@) = o /2A* (A(a)_l/za)A(o)_l/2> ol (2.4)

2.9 Assumption Throughout the paper, we will assume that the function f is operator
convex and f (1) = 0.
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For any function f, its transpose f is defined as
~ 1
fx)=xf <—> , x € (0.00) .
X

The transpose f of an operator convex function f on (0, co) is operator convex again,
[14]. From (2.3), it follows that

Si(pllo) = Sralip) .

2.10 Example For f(x) = —logx, the quasi-relative entropy becomes the Umegaki
relative entropy

S_10g(pllo) = S(pllo) = Tr(plog p — plogo) .

2.11 Example For p € (—1, 1) and p # 0 let us take the function

o) i= — (1= xP)
P p=p) ’

which is operator convex. The quasi-relative entropy for this function is calculated to
be

(1 —Tr(ap,ol_p)> .

1
S~ = —
i (pllo) = —

2.12 Example For p € (—1, 1) takeg = 1 — p € (0, 2), the function

_L _ yl=q
fq(X)—l_q(l x

is operator convex. The quasi-relative entropy for this function is known as Tsallis
g-entropy

1
SaPllo) = = (1-Tr(p?e"™) .

3 f-entropy

For a convex, operator monotone decreasing function f, such that f (1) = 0, defines
entropy two ways.

3.1 Definition The f-entropy is defined as

Sy(p) = f(1/d) = Sy(pl1/d) . 3.1
$r(p) = —=Ss(pllD). (3.2)
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Let us use a notation S for either S; or S Iz
3.2 Theorem f-entropy is non-negative, and is zero on pure states.

Proof Let {X;} be the eigenvalues of p. Then from (2.3) we have

1
Spp) = f(/dy =Y njf (K) : (3.3)
: J
J
and
" 1
S =— Aifl—) . 34
1) ==2 jf(kj) (3.4)
j
A sequence of eigenvalues {A;} is majorized by a sequence (1,0, ..., 0}. Since a

perspective function (or a transpose function) x f (1/x) is convex for a convex function
f [14], this implies that by results on Schur-concavity [12, 19, 27] we have

1
Do hif <dT) < f(/d).
j /

Here, if needed, we adopt a convention 0 - 00 := 0 [13].
Since f is monotonically decreasing and f(1) = 0,forany0 < X; <1, f ( 1 ) <

Ay
0. Thus, $ > 0.
When p = |¥) (W] is a pure state, there is only one eigenvalue A = 1. Then

Sp(W) (W) = f(1/d) — f(1/d) =0,
and
Sp(w) (W) =—f(1)=0.
O

3.3 Theorem The maximum value of f-entropy is reached on the maximally mixed
state 1/d, and it is

Spp) = f(A/d),

and

Sr(p) < —f@d).

Proof From Theorem 2.8, Sr(plll/d) > 0, or since f is convex, we have

1 1
Aifl-—1)= ri— | =rf1)=0.
; ’f<d/\j) f X/: i, f
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Similarly,

1 1
Do kit <E) > f Z,M_j = f@.
j J
From (3.3) and (3.4), the result follows. Clearly, when p = I /d, we have S¢(I/d) =
f(/d)—0= f(1/d), and from (3.4) we have S‘f(l/d) = —f(d). O

3.4 Theorem The f-entropies are concave in p. Let { px} be a probability distribution
and py. be some states, then for p = ) pkpk, we have

Sr(p) > Zpkgf(/)k) .
K

Proof This immediately follows from the joint convexity of f-divergence [13, 14]. O
3.5 Theorem The f-entropies are invariant under unitaries.

Proof Since a unitary operation U pU™* does not change the eigenvalues of p, and the
f-entropies are the functions of eigenvalues of p, this implies that f-entropies are
invariant under any operations that preserve eigenvalues. O

3.6 Theorem The f-entropies are non-decreasing under untial CPTP maps, i.e. for
any linear CPTP map A, such that A(I) = I, we have

Sr(A(P) = S5 (p) .

Proof Let us denote 0 = [ or 0 = I/d, which corresponds to the appropriate f-
entropy. Then

Sr(A(p)) — Sr(p) = Sr(pllo) — Sp(A(p)llo) 3.5
=St(pllo) — Sr(A(p)|IA(G)) > 0. (3.6)

The last equality holds since A is unital, and the inequality holds due to the mono-
tonicity of f-divergence under CPTP maps [16, 21, 33]. O

4 Measure of genuine coherence

In a d-dimensional Hilbert space H, fix a basis & = {| j)}‘j;é.

4.1 Definition For any entropy function S, which is non-decreasing under CPTP maps,
define coherence as follows:

Cs(p) == S(A(p)) — S(p) . 4.1
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In particular, for any operator convex and operator monotone decreasing function f,
define two f-coherence measures.

4.2 Definition For entropy defined in (3.1),

Cr(p) :==Sr(A(p)) — Sr(p) . (4.2)
For entropy defined in (3.2),

Cr(p) =87 (A(p)) = S (p) . 4.3)

Let us denote C as either one Cs or ¢ r for shortness.

If {X;} are the eigenvalues of p, and the diagonal elements of p in & basis are
Xxj = {Jjlp1j), then from (3.3) and (3.4), we have

1 1
Crp) =Y hjf (E)—Zx,'f <E> (4.4)
J J

and
N 1 1
Criy=) rif(—) =2 xr(—)- (4.5)
r Aj r Xj
4.1 Example
4.1.1 Log
Since f(x) = —log(x) is operator convex, coherence measure defined above coin-

cides with [2]:

C(p) = Cr(p) = Siog(A(p)) — Siog(p) (4.6)
ZZ)LjIOg)»j—ZXjIOng “@.7
J J
= S(A(p) — S(p) (4.8)
= S(pllA(p)) 4.9)
= min S(p||5) . (4.10)
sel
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4.1.2 Power

The function f(x) = ﬁ (1—x'"")is operator convex for « € (0, 2). The coherence

monotone is then defined as

da—l .
Calp) = Doxf =D | =d o) (4.11)
- .

l—«a
J

5 Properties

5.1 Uniqueness for pure states

For any pure state, coherence becomes an entropy of a dephased state:
Cs() = S(AW)) .

This holds since entropies are zero on pure states.

5.2 Positivity

5.1 Theorem Cg and, in particular, é £ are non-negative.

Proof By assumption S is non-decreasing under CPTP maps, it follows that C is non-

negative.
This holds for f-entropies as well due to Theorem 3.6, since the dephasing operation
is unital. o

Clearly, for any incoherent state p, coherence Cs(p) = 0. Having no information on
the saturation condition for a general entropy S, it is impossible to say what happens
in the other direction. Consider f-coherences (4.2) and (4.3).

5.2 Theorem éf (p) = 0ifand only if p € T is incoherent state.

Proof In Theorem 3.6, the equality in the only inequality (3.6) holds if and only if
there is a recovery map R such that R(A(p)) = p and R(I) = I, [13, 14]. By (2.4),
this map admits the following explicit form: denoting o = 1

Ro(w) = a2 A* (A(o)_l/za)A(o)_l/z) all?,
where A* is a dual map of A. Since A is a linear unital GIO map, we have
Ro(w) = A*(w) . 5.1
Therefore, condition R, (A(p)) = p implies that

p = A%(A(p). (5.2)
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Since A* = A, we have that p = A(p), which happens if and only if p € Z. Thus,
Cr(p) =0=Cy(p)ifandonlyif p € I. O

A strengthening of the monotonicity inequality for f-divergence was presented in
[3]. Using this result, we obtain the following lower bound on f-coherence.

5.3 Theorem Let f be an operator monotone decreasing function, and T > 0. Suppose
for some constant ¢ > 0, there is a constant C > 0 so that dt < CTzcduf (t) for
t € [T™', T. Then there is an explicitly computable constant K r(p) depending only
on the smallest nonzero eigenvalue of p, C and c, such that

Cr(p) = Koo — Alp) ]9 (5.3)

Here, | A|l1 = Tr|A| = Tra/ A* A is the trace-norm of an operator.

From this inequality, the above condition of a zero coherence becomes apparent, i.e.
Cr(p) =0ifand onlyif p € Z.

The upper bound given below extends the upper bound for a relative entropy of
coherence [2] to any f-coherence.

5.4 Theorem The coherence is upper bounded by

Cr(p) = f(1/d),

and

Cr(p) < —f(d).

The maximum value is reached for a maximally coherent pure state p = V) (¥|, with

W) =73 1.

Proof This follows from the upper bound on the f-entropy Theorem 3.3, and the
definition of coherence

Cr(p) = Sp(A(p) — S5 (p) .

For a pure state the entropy is zero, S (1Y) (¥]) = 0. The dephasing operation applied
to the state |) = JLJ > j | j) gives a maximally mixed state / /d. The theorem follows
from the fact that the entropy is maximal on maximally mixed state. O

5.3 Monotonicity

5.5 Theorem Cs and, in particular, C  are monotone under GIO.

Proof Any GIO map A is also SI10, and, in particular, A commutes with the dephasing
operation. Therefore, A(A(p)) = A(A(p)) = A(p), and the last equality is due to
the fact that A(p) € Z and A as GIO preserves incoherent states. Therefore,

Cs(p) — Cs(A(p)) (5.4
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= S(A(p)) — S(p) — S(A(A(p))) + S(A(p)) (5.5)
= S(A(p)) — S(p) (5.6)
>0, 5.7

since A is a CPTP map and S is non-increasing under CPTP maps. For f-coherences,
the last inequality holds to Theorem 3.6 since a GIO map is unital. O

5.6 Theorem For GIO map A, the equality
Cr(p) = Cr(A(p))

happens if and only if any Kraus representation of A(p) = > i K ij}k mush have
operators Kj = Y kj, |n) (n| that satisfy: for any n, m such that (n| p |m) # 0, it
must be that

2

> Kjnkjm| =1.
j

Proof Similarly, to the positivity section, equality in (5.7) happens if and only if there
is a recovery map R such that R(A(p)) = p and R(I) = I, [13, 14]. By (2.4), this
map admits the following explicit form: denoting o = 1

Ro(@) =0 20" (A@)Por@) ) o',
where A* is a dual map of A. Since A is a linear unital GIO map, we have
Reo (@) = A (w) . (5.8)
Therefore, condition R, (A(p)) = p implies that
p = A*(Ap)) . (5.9)

Denote a Kraus representation of A as A(p) = Y i KipK ;" From [9], since A is GIO,
any Kraus representation of A has diagonal operators, i.e. each K; = ), k;, [n) (n]
is diagonal in basis £. Since ) ; K7Kj = I, we have } |kjn|*> = 1 for every n. The
dual map is A*(p) = Zj K;.kaj. Therefore, (5.9) becomes

*
p=3 KiKip (K;‘K,-) .
ji

Writing both sides in basis £ gives

D (nlplm)In) (m| (5.10)

nm
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=Y Kjnkinkjmkim (0] p Im) n) (m| (5.11)
nm  jj
2
=YD kjnkjm| (nlplm)in) (m] . (5.12)
nm J

This implies that for every n, m such that (n| p |m) # 0 we have

2

> Kjnkjm| =1. (5.13)
j

This clearly confirms that any incoherent state saturates monotonicity for GIO maps.

If p is a coherent state, i.e. there exist n, m such that (n| p |m) # 0, to saturate mono-
tonicity the map A should satisfy (5.13). Note that by Cauchy—Schwarz inequality we
have

2
‘Zak,-m <Y kY kjmP =1
J J J

The equality above happens if and only if there exists a scalar oy, € C such that for
any j: kjp = apmkjm. O

Applying the strengthening of monotonicity inequality for f-divergences [3], we
obtain a strengthening on the monotonicity inequality for f-coherence.

5.7 Theorem Let A be any GIO map. Let [ be an operator monotone decreasing
function, and T > 0. Suppose for some constant ¢ > 0, there is a constant C > 0
so that dt < CTZCduf (1) for t € [T~', T). Then there is an explicitly computable
constant K r(p) depending only on the smallest nonzero eigenvalue of p, C and c,
such that,

Cr(p) — Cr(A(P)) = K (p)llp — A* (AT (5.14)

Proof Any GIO map A commutes with the dephasing operation, therefore, A(A(p)) =
A(A(p)) = A(p), the last equality is due to the fact that A(p) € Z and A as GIO
preserves incoherent states. Using this, we have

Cr(p) = Cr(A(p)) (5.15)
= 57(A(p)) = S7(p) — S(AA()) + Sp(A(p) (5.16)
= S;(A(p) — Sr(p) (5.17)
= S7(pll1/d) — Sp(A )| /d) (5.18)
= 5;(pllo) = Sp(AP)IA©)) . (5.19)
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where 0 = I/d, and since 0 € 7 and A is GIO, A(c) = 0.
Applying result in [3], which estimates the error in the monotonicity relation for
f-divergence, leads to the desired abound. O

The next theorem shows that C r is not in general monotone under SIO operations.

5.8 Theorem IfC~f is monotone under all SIO, then for all states p and |0) € &, we
have

Crp®1/d)=Cr(p®10)(0]) .

In other words, if Cy is monotone under SIO, then for all states with eigenvalues {J ;}
and diagonal elements {y ;} in the basis £, the following holds

1 1
Suif () - 2ot ()
1 1
= Z)»jf (ﬁ) - ZX,/f (ﬁ) . (5.20)
J J

And, lf(f 1 is monotone under SIO, then for all states with eigenvalues {X. ; } and diagonal
elements {x;} in the basis &, the following holds

1 1
rvifl—) - Fl— 5.21
;’f<f\/> ;X’f<x;> 62D
d d
=> Af (T) =Y xif <—> . (5.22)
. j , Xj
J J
Proof First, note that from (4.4) we have: for |0) € &,
1 1
Cr(p ®10) (O) = ;x,-f <ﬁ> —;x]-f <ﬁ> : (5.23)
and
1 1
Crip@1/d)=Cr(p)= rif|—)— Fl—). 5.24
#(p®1/d) = Cy(p) ;jf(dk) ;xjf(dxj) (5.24)
Moreover,
. . 1 1
Crp®10)(0) =Cr(p) =Y Ajf (7> - xif (X—) . (529
j / j /
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and
o d d
Crlp®@I/d)=Y x;f (7) - xf (—) :
j J j Xj

Let us consider two examples of SIO\GIO maps.

(5.26)

1. Let ®(p) = I/d be the depolarizing quantum channel, which in Kraus form can

be written as

d—1
®(p)=1/d =} KijpKj.
ij=0

where K;; = \/LJ i) (j].
Define an operation on a tensor product Hilbert space as follows:

Aw) =Y (I ®@Kij)o( & Kij)*.
ij

(5.27)

Clearly, A is not a GIO, since its Kraus operators are not diagonal in £ ® £ basis, or

since

Alp®10) (0) = p @ ®(|0) (O) = p @ 1/d
#p®0)(0efERE.

But A is SIO, since for any n, m
(I Q@ Kum)(A(w)(I ® K:m)
1, i an o
—5( ® |n) (m|) Z(ljlwlmllj)(ljl (I ® |m) (n])
ij

1
= EZ(ijlwliﬂ |0) (i1 @ |n) (m[ 1]} (j| |m) {n]

ij
I, o
= 32<zm|w|zm> lin) (in|
l
and
A @ Kym)o(I ® K:m))

1
=7 D iU @ In) (Do @ lm) (nl) [ij) 1ij) (il
ij

@ Springer
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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- %Z (im| w |im) |in) (in| (5.36)

Therefore, A is a SIQ map.
For either C ¢ or C, consider

Cr(A(p ®10)(0)) = Cr(p ® (0) (0))) (5.37)
=Cr(p®1/d). (5.38)

2. Consider another example, let W (p) = |0) (0| be the erasure channel, which in
Kraus form can be written as

d—1
W(p) =10) (0l =Y K;pK}j,  where K; =10)(j| .
j=0

Define an operation on a tensor product Hilbert space as follows
M) =) (K)ol ®K)*. (5.39)
J

Clearly, M is not a GIO, since its Kraus operators are not diagonal in £ ® £ basis, or
since

M(p®I1/d)=p®@¥(I/d) = p®|0)(0] (5.40)
£pQRI1/decERE. (5.41)

But M is SIO, since for any n,

I® KA ®K;) (5.42)
= Z (ijlwlij) I @ 10) (n]) 1ij) (ijl (I & |n) (O]) (5.43)

ij
= linlwlin) i) (il ®10) (0] . (5.44)

and

A(I® K)o ®K))) (5.45)
=Y _{ijl I ®10) (nDo(I @ |n) (0D 1ij) ij) (il (5.46)

ij
= (in|w|in)|i0) (i0] . (5.47)

Therefore, M is an SIO map.
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For either C s or C, consider

CrM(p®1/d)) =Cr(p®W(I/d)) (5.48)
=Cr(p®10)(0]) . (5.49)

Now, compare (5.38) and (5.49). In order for monotonicity of f-coherence to hold
under all SIO, there must be an equality

Crp®1/d)=Cr(p®10)(0]) .

Invoking (5.23-5.26), we have the result stated in the theorem. O

Note that both (5.20) and (5.22) hold for the logarithmic function f(x) = — log(x),
but fail for the power function f(x) = ﬁ(l — x17%), This is in line with the fact
that the relative entropy of coherence is monotone under SIO, and it shows that Tsallis
coherence fails monotonicity for SIO.

5.4 Strong monotonicity
5.9 Theorem f-coherences C~f saturate strong monotonicity for convex mixtures of

diagonal unitaries. Therefore, c r saturates strong monotonicity under GIO in two
and three dimensions.

Proof Consider an example of GIO, which is a probabilistic mixture of diagonal uni-
taries: for some or; > 0, s.t. Zj oj = 1, define

Alp) = a;UjpUs,
J

where for some p;, the unitaries U; are diagonal in £, i.e.
Uj=Y_e’"[n)(n] .
n

In [9] it has been shown that all GIO are of such form for dimensions two and three,
but it is no longer the case for higher dimensions.
Note that for 0 = I or ¢ = I /d and for all unitaries U, we have

SyUpU*|lo) = Sy(pllo) . (5.50)
Taking U; diagonal in £ above, it follows that
AU;pU;) = Alp) -
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Therefore, C ¢ saturates the strong monotonicity under convex mixtures of diagonal
unitaries:

Y a;Cr(UjpUT) (5.51)
J
= Za,- [Sf(U,pU;‘no—) - Sf(A(UpU*)HG)] (5.52)
J
= Zaj [Sr(pllo) — Sp(Ap)lo)] (5.53)
- é;(p) , (5.54)
O

5.10 Remark Expanding the set of operations to include all unitaries (not necessarily
diagonal in &), forces Cy to be invariant under all unitaries if it is monotone under

them. This results from the following observation: if C  ismonotone under all unitaries
U and all states p, then, since (5.50) holds, it must be that

Sr(AUpUM|lo) = Sp(Ap)llo)

But taking a unitary V = U™* and an initial state ® = UpU* above results in the
opposite inequality:

SHAVOVHo) = Sp(Ap)llo) (5.55)
> Sp(AUPU0) = SF(A@)]o) - (5.56)

Therefore, the above inequality must be equality, which makes c f invariant under

unitaries.

5.11 Theorem For any pure state p, the f-coherences are strongly monotone under
GIO maps in any finite dimension.

Proof Let us denote 0 = [ or o = [/d depending on the f-coherence we are
considering. For a GIO map A with Kraus operators K ;, denote

1
Dj
For a pure state p, states p; are also pure. Therefore,

Cr(p) =Y piCr(pj) (5.57)
J

=" piSs(Ap)lo) = S(Ap)]o) - (5.58)
J

@ Springer
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Since any GIO map is an SIO map as well, it follows that
1 *
A(pj) = —K;A(p)K7 .
Pj

Dephased state A(p) is diagonal in & basis with eigenvalues x;, i.e. A(p) =
> xj i) {jl. The f-divergence is

1
SHAMID =Y xnf (X—> :

Kraus operators of GIO map are diagonal in £ basis, K; = Y, kj, [n) (n], with
> |kjn|?> = 1 forall j. Then

KiAPKF =" xalkjnl* In) (] .

n

And

3 piSr A = ZXn"‘/"' f( oIk |2>'
J "

Since f is convex, we have for every n:

> kil ( Xnif |2) =7 (X (5-59)
J J

=f (i) . (5.60)
Xn

)
dxn '

Similarly,

SrAIT/d) =" xnf (
and

> piSrap)I1/d) = an"‘f” f( i |2)'
J e

Because f is convex, for any n:

Pj
2 S () =7 2 i, oD
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1
=f ( dXﬂ) . (5.62)

And thus, Zj PiSr(A(pj)llo) = Sy(A(p)llo), which implies that for any pure state
p, the f-coherence is strongly monotone under GIO:

Crp) =Y piCrip)) -
J

]

Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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