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Abstract

Relative entropy of coherence can be written as an entropy difference of the original
state and the incoherent state closest to it when measured by relative entropy. The
natural question is, if we generalize this situation to Tsallis or Rényi entropies, would
it define good coherence measures? In other words, we define a difference between
Tsallis entropies of the original state and the incoherent state closest to it when mea-
sured by Tsallis relative entropy. Taking Rényi entropy instead of the Tsallis entropy,
leads to the well-known distance-based Rényi coherence, which means this expression
defined a good coherence measure. Interestingly, we show that Tsallis entropy does
not generate even a genuine coherence monotone, unless it is under a very restrictive
class of operations. Additionally, we provide continuity estimate for Rényi coherence.
Furthermore, we present two coherence measures based on the closest incoherent state
when measures by Tsallis or Rényi relative entropy.

Keywords Coherence - Rényi entropy - Tsallis entropy - Genuine coherence

1 Introduction

Quantum coherence describes the existence of quantum interference, and it is often
used in thermodynamics [1, 6, 15], transport theory [23, 34], and quantum optics
[10, 25], among few applications. Recently, problems involving coherence included
quantification of coherence [2, 18, 21, 22, 26, 37], distribution [20], entanglement [5,
29], operational resource theory [3, 5, 9, 33], correlations [13, 16, 30], with only a few
references mentioned in each. See [28] for a more detailed review.

The golden standard for any ‘“good” coherence measure is for it to satisfy
four criteria presented in [2]: vanishing on incoherent states; monotonicity under

B Anna Vershynina
annavershynina@gmail.com

1 Department of Mathematics, Philip Guthrie Hoffman Hall, University of Houston, 3551 Cullen Blvd.,
Houston, TX 77204-3008, USA

Published online: 23 February 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-03872-y&domain=pdf

127  Page2o0f26 A.Vershynina

incoherent operations; strong monotonicity under incoherent operations; and con-
vexity. Alternatively, the last two properties can be substituted by an additivity for
subspace-independent states, which was shown in [37]. See Preliminaries for more
details.

A number of ways have been proposed as a coherence measure, but only a few
satisfy all necessary criteria [2, 38, 39]. A broad class of coherence measures are
defined as the minimal distance D to the set of incoherent states Z, as

CD(p) = min D(p, §).
sel

Here, “distance” is understood in a rather broad term, more of a distinguishability
measure. We discuss the properties it should satisfy in chapters below. It was shown in
[2] that for arelative entropy there is a closed expression of a distance-based coherence:

I;éi%l S(pl1d) = S(pllA(p)) = S(A(p)) — S(p) (1.1

where A(p) is the dephased state in a pre-fixed basis, see Notation 2.2.

Different sets of incoherent operations generate other physically relevant coherence
measures. The largest set one considers is the set of incoherent operations (I10) [2],
which have Kraus operators that each preserve the set of incoherent states (see Defi-
nition 2.3). A smaller set is called genuine incoherent operations (GIO) [8], which act
trivially on incoherent states, see Definition 2.4. See [4] for a larger list of incoherent
operations and their comparison. For these types of incoherent operations, one may
look at similar properties as the ones presented in [2]. Restricted to GIO, one would
obtain a measure of genuine coherence when it is non-negative and monotone, or a
coherence monotone when it is also strongly monotone under GIO.

Motivated by the last expression in (1.1), similar expressions were considered in
[7] for Tsallis and Rényi entropies:

SR(A(p)) — SE(p)
ST(A(p)) = ST (p).

It was found that these expressions define genuine coherence monotones (def-
inition will come later). They have advantage over distance-based measures by
being the explicit expressions, easy to calculate. Moreover, they can be regarded as
measurement-induced entropy increment related to the quantum thermodynamics [14].

In [31], the following generalized genuine coherence monotone was proposed:

Cr(p) = Sr(A(p) — S7(p)
where S¢(p) is a quasi-entropy, which could be defined in two ways, one of which is
Sr(p) = =Sr(pllD).

Here, we show the operational meaning of this f-coherence, by showing that it
is not possible to distill a higher coherence states from a lower coherence state via
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GIO (Theorem 3.4). To prove this result, we first show the continuity of f-coherence
(Theorem 3.2).

If one looks at (1.1) again, the last expression is the difference in entropies of the
state p and its closest incoherent state A(p), when measured by the relative entropy.
So we ask a question, if we change the entropy and relative entropy in this expression
to the Tsallis ones, would that generate a good coherence monotone/measure? Note
that this change will change the closest incoherent state as well. In other words, we
investigate the properties of the following Tsallis coherence

CTy(p) == SI(Au(p)) — ST ()

where A, (p) is the closest incoherent state to p when measured by Tsallis relative
entropy, i.e.,

SL(pll Ag(p)) := min ST (p|5).
sel

The explicit form of A, is given in [22], and it is the same for Rényi and Tsallis
relative entropies.

Surprisingly, taking Rényi entropies above leads to the well-known distance-based
Rényi coherence:

CR,(p) = min S (p|8)
seZ

= SX(pllaa (o)
= SR(Au(0) — SE(p).

We provide a continuity estimate for this Rényi coherence 4.1.

This means that the entropy increment for von Neumann entropy (with relative
entropy) and Rényi entropy is good coherence measures; however, we show that a
similar Tsallis entropy does not lead even to a good genuine coherence monotone. It
is a coherence monotone under a very restrictive class of operations.

At the end, we propose two new coherence measures, inspired by the expression for
the closest incoherent state when measured by the Tsallis or Rényi relative entropy.

2 Preliminaries
2.1 Coherence

Let H be a d-dimensional Hilbert space. Let us fix an orthonormal basis £ = {|j) }‘j:l
of vectors in H. '

Definition 2.1 A state § is called incoherent if it can be represented as follows: § =

38 1) Gl
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Notation 2.2 Denote the set of incoherent states for a fixed basis £ = {|j)}; as
IT={p= Zj pjj) {jl}. A dephasing operation in £ basis is the following map:

Ap) =Y _{jlpli) 1) Gl

J

Definition 2.3 A CPTP map @ with the following Kraus operators

®(p) =) KupK;
n

is called the incoherent operation (10) or incoherent CPTP (ICPTP), when the Kraus
operators satisfy

K,IK; CZ, foralln

besides the regular completeness relation ), K K, = 1.

Considering each K, in [36] it was shown that condition K,ZK,’ C Z implies that
there exists at most one nonzero entry in every column of K,.
Any reasonable measure of coherence C(p) should satisfy the following conditions:

e (C1)C(p) =0,and C(p) =0ifandonly if p € Z;
e (C2) Non-selective monotonicity under IO (monotonicity): for all IO @ and all
states p,

Clp) = C(@(p))

e (C3) Selective monotonicity under 10 (strong monotonicity): for all IO & with
Kraus operators K,,, and all states p,

C(p) = Y paClpn)

n
where p, and p, are the outcomes and post-measurement states

K, pK*
pu =220 b, =TrK, oK}
Pn

e (C4) Convexity,

> paClpn) = C (Z pnpn>

for any sets of states {0, } and any probability distribution {p,}.
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Conditions (C3) and (C4) together imply (C2) [2].
Alternatively, instead of the last two conditions, one can impose the following one:

e (C5) Additivity for subspace-independent states: For p; + p» = 1, p1, p2 > 0,
and any two states p; and p»,

C(p1p1 ® p2p2) = p1C(p1) + p2C(p2).

In [37], it was shown that (C3) and (C4) are equivalent to (C5) condition.

These properties are parallel with the entanglement measure theory, where the
average entanglement is not increased under the local operations and classical com-
munication (LOCC). Notice that coherence measures that satisfy conditions (C3) and
(C4) also satisfy condition (C2).

In [8], a class of incoherent operations was defined, called genuinely incoherent
operations (GIO) as quantum operations that preserve all incoherent states.

Definition 2.4 An IO map A is called a genuinely incoherent operation (GIO) which
is for any incoherent state § € Z,

A(S) = 6.

Additionally, it was shown that an operation A is GIO if and only if all Kraus
representations of A have all Kraus operators diagonal in a pre-fixed basis [8].

Conditions (C2), (C3), and (C4) can be restricted to GIO and obtain different classes
of coherence measures.

Definition 2.5 In this case, a genuine coherence monotone satisfies at least (C1) and
(C2). And if a coherence measure fulfills conditions (C1), (C2), and (C3), it is called
measure of genuine coherence.

A larger class than GIO, called SIO, was defined in [33, 35].

Definition 2.6 An IO A is called strictly incoherent operation (SI0) if its Kraus repre-
sentation operators commute with dephasing, i.e., for A(p) = Y ; KipK ;‘.‘, we have
for any j,

KjA(,O)K}F = A(ijKi;).

Since Kraus operators of GIO are diagonal in £ basis, any GIO map is SIO as well,
i.e., GIO c SIO, [8].
A class of operators generalizing SIO, called DIO, was introduced in [3].

Definition 2.7 An IO A is called dephasing-incoherent operation (DIO) if it itself
commute with dephasing operator, i.e.,

A(A(p)) = A(A(p)).

Thus, we have GIO c SIO c DIO.
One may consider an additional property, closely related to the entanglement theory:
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e (C6) Uniqueness for pure states: for any pure state |y) coherence takes the form:
Cy) = S(AW))

where S is the von Neumann entropy and A is the dephasing operation defined as

INOESIRUVININIGE

J

However, for other coherence measures the von Neumann entropy in (C6) may change
to another one, and the dephased state may also change to another free state.

2.2 Rényi and Tsallis coherences

As mentioned before, relative entropy of coherence can be defined using three
expressions:

Clp) = Ig}l S(plid) = S(pllA(p)) = S(A(p)) — S(p). 2.0

Letus point out that A (p) is the closest incoherent state to p when measured by relative
entropy, which was shown in [2].
Recall, that Tsallis entropy is defined as for « € (0, 2]

1
Sa () = 7= [Trp* — 1]
Tsallis relative entropy is defined as
T 1 agl—o
ST (p)16) = l[Tr( 5 )—1].

Rényi entropy is defined as for o € (0, c0)

1
SK(p) = log Trp®
-
and Rényi relative entropy is defined as

SRol8) =

1
n log Tr (p“élfo‘) .

Motivated by different forms involved in the definition of relative entropy of
coherence (2.1), Rényi coherence has been defined as

CRL(p) = min SRol18), (2.2)

CR? (p) = ij (A(p)) — SX(p), (2.3)
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CR}(p) = SK(pllA(0)). 2.4)

The first definition CR; is a particular case of any distance-based coherence [2] and
was separately discussed in [27]. The second definition CRé was introduced in [7].
The third definition CRg was introduced in [4].

Similarly, Tsallis coherence has been defined as

CT,(p) = min S; (p|3), 2.5)
seZ
CT,(p) = Sy (A(p)) — S (p). (2.6)

The first definition CT}X is a particular case of any distance-based coherence [2]. The
second definition CTg was introduced in [7].

These definitions are all different, in particular, due to the fact that the closest
incoherent state to a state p, when measured by either Rényi or Tsallis relative entropy,
is not a state A(p). From [4, 22], the closest incoherent state to a state p for either
Rényi or Tsallis relative entropies is

Ag(p) = Gl 1IN 1) Gl €T 2.7

N
(p) 7
where N(p) =Y j {1 p*1j) /@ The corresponding relative entropy becomes

1 _¢T — 1 o _
CTa(0) = Sq (Pl Aa(p)) = — [N(»)* — 1] 2.8)

and

CRL(p) = SR (pllAu(p)) = —

] log N(p). (2.9

o —

Interestingly, enough difference-based Tsallis coherence when o = 2 is related to
the distance-based coherence induced by the Hilbert—Schmidt distance [8]

C3(p) = min||p — 8|13 = S3 (A(p)) = 3 ()
where [|p — 8[15 = Tr(p — 8)>.

2.3 Generalized coherences

Any proper distance D(p, o) between two quantum states can induce a potential
candidate for coherence. The distance-based coherence measure is defined as follows

[2]:
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Definition 2.8

CD(p) := min D(p, §)
A

i.s. the minimal distance between the state o and the set of incoherent states 7 measured
by the distance D.

e (C1) is satisfied whenever D(p, §) = 0 iff p = 6.

e (C2) is satisfied whenever D is contracting under CPTP maps, i.e., D(p,0) >
D(®(p), ®(0)).

e (C4) is satisfied whenever D is jointly convex.

Since the relative entropy and Rényi and Tsallis relative entropies satisfy all three
above conditions for o € [0, 1), (C1), (C2), and (C4) are satisfied for C(p), CRJZ,
CT,).

Another generalization was considered in [31], which is based on quasi-relative
entropy.

Definition 2.9 For strictly positive bounded operators A and B acting on a finite-
dimensional Hilbert space H, and for any continuous function f : (0, c0) — R, the
quasi-relative entropy (or sometimes referred to as the f-divergence) is defined as

S¢(AllB) = Tr(f (LR A)

where left and right multiplication operators are defined as Lp(X) = BX and
Rs(X) = XA.

Having the spectral decomposition of operators, one can calculate the quasi-relative
entropy explicitly [12, 32]. Let A and B have the following spectral decomposition

A= 2198

. B=) k) (Yl (2.10)
k

Here, the sets {|¢x) (Wj|}j,k, {1 (1/fj|}j,k form orthonormal bases of B(H), the
space of bounded linear operators. By [32], the quasi-relative entropy is calculated as
follows:

Sf(A”B)ZZ)\jf<%>|<Wk||¢j>|2- (2.11)
Jk /

Assumption 2.10 To define f-coherence, we assume that the function f is operator
convex and operator monotone decreasing and f (1) = 0.

f-entropy was defined in two ways in [31]
1
SHp) i ==Sp(plD) ==Y _A;f (7) (2.12)
- J
J
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S3(p) 1= fQU/d) — Sp(pllT/dy = F(1/d) =Y o f (i) (2.13)
7P / @) :

where {A;}; are the eigenvalues of p.

Definition 2.11 For either f-entropy, the f-coherence is then defined as
Cr(p) = Sp(A(p)) — Sy (p). (2.14)

If {A;} are the eigenvalues of p, and the diagonal elements of p in £ basis are x; =
(jlp|Jj), then from (2.12), we have

1 1
chor=Yur () -Xur ()
j )\'] j Xj
1 1
=31 () - L1 (75):
J J

Since f(x) = —log(x) is operator convex, coherence measure defined above
coincides with the relative entropy of coherence (2.1) [2]:

Clog(p) = Siog(A(p)) — Siog(p) = S(A(p)) — S(p) = C(p).

The function f(x) = ﬁ(l — x'7) is operator convex for @ € (0,2). The
coherence monotone then becomes the Tsallis relative entropy of coherence

1
Calp)= 1= | 207 = D3 | = CTL0).
J J

2.4 Properties

Here, we list which properties (C1-C5) are satisfied by which coherences and under
which conditions. For Rényi and Tsallis entropies, we do not consider a case when
o = 1 and the entropies reduce to the relative entropy of coherence.

(C1) (C2) Under (C3) Under (C4) (C5)
CD v 10 [2] X v

CRLael0,1) v 10 X [27] v

CRZ « € (0,2] v GIO see (a) X
CR} v DIO [4]

CTL @ e0,1) v 10 X v

CT2 « € (0,2] v GIO see (a) X
Cy v GIO see (a) X
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The fact that CT2 and CR2 are monotone under GIO can be derived from GIO
monotonicity of C ¢ [31], or it was shown separately in [7]. There are examples when
the monotonicity of both is violated under a larger class of operators when o > 1, [7].

CTg satisfies a modified version of additivity (C5), which CRé also violates [7],

CT2(p1p1 @ p2p2) = pYCT2(p1) + pSCT2(02).

(a) In [31], it was shown that C ¢, and in particular, CRg and CTg reach equality in
the strong monotonicity under a convex mixture of diagonal unitaries in any dimension,
which implies these coherences reach equality in strong monotonicity under GIO in
two and three dimensions. Moreover, these coherences are strongly monotone under
GIO on pure states in any dimension.

CRé(p), CT&(,O) violate strong monotonicity [22, 27]. In [22], it was shown that
CTé (p) satisfies a modified version of the strong monotonicity: for « € (0, 2]

Z pgqi_aCng (o) < CTé (p)
n

where p, = Tr(K,pK), gn = Tr(K, Ay (p)K;) and p, is a post-measurement state.
Clearly, (C6) is not satisfied for any Rényi or Tsallis coherences in its original form;

therefore, it was not included in the list. However, the values of coherences on pure

states can be easily calculated in some cases.

3 f-Coherence distillation

3.1 Continuity of f-entropy and f-coherence

In addition to the above list of properties of the f-coherence, one can add its continuity
in the following form (this is a direct application of result in [19]).

Lemma 3.1 Let p and o be two states such that € := %Hp — o||1. Then,
S}(p) = Sf(o)] <
1 d—1
(i) ()
—€ €
2(p) — §2 N a_or(— ) _ep (¢t
1S%(p) Sf(d)lff(d> ¢ 6)f<d(1—6)> Ef( Je )

Denote either of the right-hand sides as H (€), and note that H is continuous in € and
goes to zero when € — Q.

Proof Recall that for any convex function f, the transpose of it f(x) = xf(1/x)is
also convex. We adaEt a con\iention 0 - 0o = 0, so for a convex function f such that
f(1) =0, wehave f(0) = f(1) = 0. Then, f-entropy (2.12) can be written using a
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transpose function as

SE(p) = =S (plll) = =Tr(pf(p~ ") = =Tr(f(p))

and
S7(p) = =Ss(pllI/d) = f(1/d) = Tr(p f({dp} "))
= FQd) ~ ZTe(Fdp).
In [19] Theorem 1, it was proven that for S;(p) = —Trg(p) and any convex

function g, the following holds

[Sg(0) = Sg(o) = g(1) =gl —€) =(d -1 (g <d€T1) - g(O))

when € = %Hp — o||1. And in Corollary 3, the result was generalized for non-unit

trace density matrices: Let p and o be two states of the same trace ¢, and let € =
3o =l €10, 1], then

1Sg(0) = Sg(0)| < g(t) — gt —€) —(d — 1) (g <d€T1> - g(0)> .

Adapting this result to our situation, it holds that

ISL(p) — St < (1 —e)f 1 —€f -1
! ! - 1 —¢ € )

And similarly, for € := de = %lldp —do|; € [0, d]
S%(p) — §7(0)]
1 - -
= = |Tr(F@p)) = Tr(f (o)

11~ ~ ~ ~
=< [fa-fa-o-w@-n(fE/a-1)-7o)]
1 1 d—1
=f<3>_(1_6)f<d<1—e>>_ef< de )

From this continuity result, one can obtain continuity of the f-coherence.

Theorem 3.2 Let p and o be two states such that € := %Hp — o||1. Let H(¢) be as
in the previous theorem for the corresponding f-entropy. Then, for f-coherences we
obtain

|ICr(p) — Cyr(o)] < 2H((e).
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Proof Let p and o be two states with € = %Hp — o||1. Since trace-norm is monotone
under CPTP maps, in particular, under dephasing operation, it follows that

IA(p) = A(0)llt < lp —alli = 2e.

Therefore, from continuity results above Theorem 3.1, for either f-coherence and the
corresponding f-entropy, we obtain

|Cr(p) — Cyr(o)]
< |Sr(AWP) — S(A)]+ |Sr(p) — Sy(o)]
<2H(e).

3.2 Coherence distillation

In [8], it was shown that it is not possible to distill a higher coherence state o from a
lower coherence state p via GI operations when coherence is measured by a relative
entropy of coherence (which equal to the distillable coherence). The same result holds
for f-coherences as well, which relies on the continuity property of coherence above,
and the GIO monotonicity of f-coherence [31]. For completeness sake, we present
the adapted proof from [8] below.

Definition 3.3 A state o can be distilled from the state p at rate 0 < R < 1 if there
exists an operation p®* — T such that ITrrert — o®R|| < eand e — 0 as
n — oo. The optimal rate at which distillation is possible is the supremum of R over
all protocols fulfilling the aforementioned conditions.

Theorem 3.4 Given two states p and o such that
Cr(p) < Cyr(o)

it is not possible to distill o from p at any rate R > 0 via GIO operations.
Proof Supposing the contradiction holds, assume that there are two states p and o
such that Cy(p) < Cr (o) and that the distillation is possible. In particular, for large
enough n, it is possible to approximate one copy of o. In other words, for any € > 0,
there is a GIO A such that

ITra1A(p®") — a1 <e.
By Lemma 12 in [8], there exists a GIO A acting only on one copy of p, such that

Tra-1A(0®") = A(p).

Thus, for any € > 0, there is a GIO A such that

IA(p) — oy <e.
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Using the asymptotic continuity of f-coherence, Theorem 3.2, for these two e-close
states, we obtain

Cr(A(p)) — Cyp(0)| < 2H(€/2).

Recall that H (¢) for either f-coherence is continuous in € € (0, 1) and it goes to zero
when € — 0. Therefore, summarizing from the beginning, for any § > 0, there is a
GIO A such that

Cr(A(p)) — Cr(o)| < 8. 3.1

Eake 8= %(Cf (0) — Cr(p)) > 0. Since C is GIO monotone, for any GIO A, we
ave

Cr(A(p) < Cy(p).
Therefore,
1 ~ -
8 = 5(Cp(o) = Cr(A(p)) < Cr(@) = Cr(A(p)).

This is a contradiction to (3.1). O

4 New Rényi and Tsallis coherences

Playing off the last expression in the definition of the relative entropy of coherence
2.1, we define coherence measure as follows:

CTa(p) = SL(Au(p)) — ST ()
for Tsallis entropy, and
CRu(p) := SR (A4 (0)) — SR(p)

for Rényi entropy. Recall that here Ay (p) is the closest incoherent state to p when
measured by the Rényi or Tsallis relative entropy, i.e.,

Sa(pllAg(p)) := min S (p||5).
seZ

Recall from (2.7) that

1
Balp) = 3 ; GLe% 1) 17) (5]
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where N(p) =Y j (1 p*1j) e Having this explicit form of A, (0), both coherences
can be explicitly calculated

1
CTa(p) = 7= [Tr (Au(p)®) — Trp"]

1 1 .
1w [N(p)a _I}T”’
_ N()*—1 Trp”
T a1 N~
— ST (ol Aa(p)) 2

P P N( )
Trp“
N(p)*

o

= CT},(p)
> 0.

The last two equalities come from (2.8). Similarly, from (2.9) for the Rényi coherence

1 o o
CRq(p) = 7—— [log Tr (Au(p)*) — log Trp®]

L U mep#) — log Trp®
(0] I — 10 r
el R Gl g Trp

o
= log N(p)
a—1

= SX(pllAa(p))
= CR}(p).

This means that for Rényi entropy of coherence we have a similar expressions to the
relative entropy of coherence (2.1)

CRL(p) = mmSR(pna) = SR (ol A (p) = SE(A(p)) — SE(p).

Therefore, the distance-based Rényi coherence CR& (p) coincides with the new def-
inition CR,, (p). Before moving on to investigation of the new Tsallis coherence, let
us show one result on Rényi coherence.

Theorem 4.1 Let p = ) (Y| and o = |¢) (¢| be pure states on C¢ such that %Hp —
o||1 = €. Then, we obtain

‘CR (p) — CR! (cr)‘ < log (d ~@ 4 H(e)) +logd ford <« < 1

and

‘CRé(p) —CRg{(O')‘ <= -log(1— H(e) forl <a <2
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where H(e) = 1 — (1 — e)l/@ — /2 (g — 1)175. Both right-hand sides converge to
zero when € goes to zero.

Proof Denote x; = |(y]j)|? and & = [(¢|j)|%. Then,

| ! o« 1/a 1/a
ICR, (p) — CR,(0)] = T—al log ;Xj — log ;Ej

1
=g llog Tr f (A(p)) — log Tr f (A(0))],

where f(x) = x'/® is convex function for 0 < & < 1 and — f is convex for o > 1,

and recall that A(p) = }_; x; |j) (jl and A(o) =3 & 1) (jl.
Since trace-norm is monotone under CPTP maps, and A is a CPTP map, we obtain

1 1
SI1ap) = Al = Slip —olli =«
By continuity of f-entropy [19], the difference for 0 < @ < 1 is bounded by

ITr f(A(p)) — Tr f(A(0))] < H(e)

where H (€) is calculated for f(x) = xY® and therefore has expression as in the

theorem statement. For o > 1, — f is convex, and therefore,
ITrf(A(p)) — Trf(A(0))| < —H(e)

where the right-hand side is positive for o > 1.
For0 < a < 1, notice that the constant sequence is majorized by both (%) i =<0

and (clt)j < (§);; therefore, since f(x) = x e

Schur concavity [11, 17, 24], we have Zj X Ve

J
1 1
x < x!'/* then )", Xj/a,zjéj/“ > 1.

For the function g(x) = logx and any 0 < 5 < ¢ < 1, we have |g'(s)| > |g’(c)],

is a convex function, by results on
1 _1 .
,Zjéj/a > d!"&.Fora > 1, since

1
and therefore, by the mean value theorem, there exist s, ¢ € (0, 1], such that d -3 <
s <c¢,and

[T f (AT = [Trf(A(N]™| = ITr f(A(p) — Trf(A@))] g (0)]
< H(e)lg'(s)

= ‘logdl_é — log (dl_é + H(e))‘ .
Therefore, by the mean value theorem, there exists s, ¢ > 1, such that
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ITr f (A(p)) — Tr f(A(0)]| €' ()]
—H(e)|g'(s)]
log(1 — H(e)).

|[Tr f (AN = [Trf(A(0)] |

Al

Thus, we obtain the statement of the theorem. O

5 Tsallis coherence
5.1 Positivity

As we noted above, the Tsallis coherence is non-negative. Note that this is a non-trivial
statement that cannot be directly observed by the monotonicity of entropy under linear

CPTP maps, as it was done for CTi, CRé, Cy,since the map p — Ay (p) is nonlinear.

5.2 Vanishing only on incoherent states

Proposition 5.1 CTy(p) = 0 if and only if p € 1L is incoherent.

Proof First, suppose that the state p € 7 is incoherent, then A, (p) = p. Therefore,
CTu(p) = 5L (Aa(p)) — ST (p) = 0.

Now, suppose that CT, (o) = 0. From calculations above, since Trp* > 0 for a
nonzero state, this means that Sg (pllAq(p)) = 0, which happens only when p =
Ay (p) € Z. Therefore, p € 7 is incoherent. O

5.3 Value on pure states

Let p = |¢) (| be a pure state. Since p* = p,

1
CTa(p) = 17— [Tr (Aa(p)”) = Tro"] = 5g (Au(p)).

To calculate this Tsallis entropy explicitly, we note that Tr(Ay(|¥) (¥ DY) =
N(y) ()™, where N(|%) (W) = 3_; [{¥]j)[/*. Thus,

—o

1
CTa(p) = 7—— | | 2wl | =1
J

5.4 Comparison with CT,

Recall that from our previous calculations,

o

Trp
N(p)*

CTu(p) = CT, (p)
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Let us denote as A; := (j| p“|j). Then,

Tr(p®) =Y (il p*13) = lIAl1.

J
And
N = DG 1Y | = xle-
J

Here, || - ||, denotes the Schatten p-norm. Since Schatten p-norms are monotone
decreasing in p, we have that

CTy(p) = CT.(p) for0 <o < 1
and

CTy(p) < CT.(p) for1 <a <2.

5.5 Monotonicity

Theorem 5.2 CT, (p) is invariant under diagonal unitaries.

Proof LetU =), ¢/ |n) (n| be a unitary diagonal in £ basis. Then,

1 : . N

Ag(UpU*) = S Gl U ) D GIUp U 1) 1) (]
1 \ i Zidi . "
TS (] €9 paeiti |y D Gile i p e 1) ) (i

= Ay(p).
Since the Tsallis entropy is invariant under unitaries itself, we have

CT, (U,OU*) = CTq(p).

Theorem 5.3 Tsallis coherence is not monotone under GIO.
Proof Let us fix the basis £ = {|0), 1)} Let p = |y) (Y| be a pure state with

(¥10)> = x =3/4and (Y| 1)]> =1 — x = 1/4.
For a pure state p, the entropy is zero, and therefore,

CTo(p) = ST (Ag(p)) — ST (p)
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= ST (Aa(p))
1

=T [Tr{Aa(p)*} —1]
1 1

_ 1 o
l—«o (Z] Xj/a>

1 [ 4 _
T (31/04+1)a '

Let A be GIO, with Kraus operators A(p) = K1 p K7+ K>p K} where Kraus operators
are diagonal in £ basis

L 9 Lo
K =2 Ky=|(+v2"}).
1<0%§> 2(()%)

Clearly ), K;'K, = I. Then,
3
= a
Ap) = <3 l)
)

where a = %3. The eigenvalues of this matrix are 81 2 = % <1 +,/ 4—1‘ + 4a2). And

the normalized eigenvector corresponding to f1 2 is

1 a
|¥1.2) = ( )
Joo+ Bra—2 P12

Therefore, Tr(A(p)*) = Bf + B, and

N(AP)) =Y Bl P + Bal (1) [P/
J

And the Tsallis coherence is then

1 1 o
CTL (M) = —— [N(A(p))a - 1i|Tr(A(p) ).

From Fig. 1, we see that, for example, for « = 0.2, monotonicity has failed

CTy(p) < 0.5 < CTy(A(p)).
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0,65 T T T T T T T T T
CT ()
\ — — CT, (A()

0.55 e A 4

0.45 -
0.4 R

035/ -

0‘3 1 1 1 1 1 1 | | |
0 0.2 0.4 0.6 0.8 1.6 1.8 2

—_
=
N
-
H

Fig. 1 Failure of monotonicity under GIO for small «

Definition 5.4 A GIO map A that commutes with A, is called « — GI1 0.

A unitary diagonal under a fixed basis £ is an ¢-GIO for any a. Fora = 1, Ay (p) =
A(p), which commutes with any GIO.

Theorem 5.5 Tsallis coherence is monotone under a-GIO.
Proof By definition

CTy(p) — CTo(A(p)) = Sg (A(p)) — Sy (p) + Si (Au(p)) — Sy (Au(A(p))).
Since Tsallis entropy is monotone under CPTP maps, Sg (A(p)) — SO{ (p) = 0. A

commutes with A, and A is GIO, so it leaves the incoherent states, such as Ay (p),
invariant, therefore

ST (A(p)) — ST (Aa(A(0))) = SL(Ax(p) — SL(A(AL(p))) = 0.

5.6 Strong monotonicity

Theorem 5.6 Tsallis coherence CTy(p) reaches equality in strong monotonicity for
convex mixtures of diagonal unitaries. Therefore, CTy(p) reaches equality in strong
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monotonicity under GIO in two and three dimensions, when Kraus operators are
proportional to diagonal unitaries.

Proof Consider a GIO A that is a probabilistic mixture of diagonal unitaries, i.e., let

Alp) = ) axUppU;
k

where o; € [0, 1] with > o = 1, and the unitaries Uy are diagonal in £. Then, from
Theorem 5.2, since CTy, is invariant under diagonal unitaries, we have

Y aCToUipU) = (Z oek) CTu(p) = CTa(p).
k k

In general, CT, fails strong monotonicity for IO maps.

Theorem 5.7 Tisallis coherence CT,(p) fails strong monotonicity under 10 maps.

Proof We use example from [27], which was used to show that C Ré fails strong
monotonicity under IO maps. Consider a three-dimensional space spanned by standard
orthonormal basis £ = {|0), |1), |2)}. Let the density matrix be

1 101
p=-1020
101
Let the Kraus operators of the IO map be
010 100
Ki=1000 K;=100b
00a 000

Here, |a|> + |b|*> = 1 to satisfy the condition K { K14+ K5 K> = I.1tis straightforward
to check that these Kraus operators leave the space of incoherent states 7 invariant.
The output states are

1 1 20 0 1 1 1 6% 0
p1=—KipKj=——[00 0 pr=—KypKs=—-|bb>0
P1 ! 2+|a|2 00|a|2 P2 2 1+|b|2 00 0

h _ 2al? _ 14pP : o
where p; = =;— and p, = ——. Notice that p; € 7 is diagonal and therefore
incoherent, and py = |) (| is the pure state with |) = L__(10) +b]|1)).

A 141b2
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Fig.2 Failure of strong monotonicity under IO
The o power of p is the state
1 101
o _
P = ST 020
101

And therefore, the Tsallis coherence is
4
CTa(p) = 87 (Ba(p)) = S (p) = 7= @+ 2"/ — 27+
—a

Since p € 7 is incoherent, CTy(p1) = 0. And since p; is a pure state, the Tsallis
coherence is

1 1+|b]? _
P2CTa(p2) = p2S] (Ba(p2) = T————— [(L+ )1 + 1B~ — 1]

From Fig. 2, for example, for b = 0.9 and @ = 0.21101, we have

CTu(p) < 0.35 < p2CTu(p2) = Y piCTalp)).

j O
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For strong monotonicity property, it is important how the quantum channel is written
in terms of its Kraus operators. We showed that in two or three dimensions, if GIO
is written as a convex mixture of diagonal unitaries, then Tsallis coherence reaches
equality. However, if GIO is written in some other way, we show that Tsallis coherence
may fail strong monotonicity.

Theorem 5.8 Tsallis coherence fails strong monotonicity under GIO, even on pure
states, if Kraus operators are not proportional to unitaries.

Proof We are going to use the same example as in Theorem 5.3. Let us fix the basis
E = {|0), 1)} Let p = |y) (Y] be a pure state with |[(¥|0)|> = x = 3/4 and

(WIDP=1-x=1/4
For a pure state p, the entropy is zero, and therefore,

CTo(p) = S (Ax(p))
[Tr {Aa (o))} — 1]

1 1
= -1

_ 1 o
l—« (Z/ Xj/a>

l—«

1 [ 4 »
= l_a (31/a+1)a .

Let A be GIO, with Kraus operators A(p) = K1pK| + K>pKJ where Kraus
operators are diagonal in £ basis

L 9 Lo
K =[v2 K,=[v2"].
1(()?) 2(()%)

Clearly >, KxK, = I. Then, the post-measurement states p, = p—an,,,oK;’; =
[¥n) (¥l are also pure, where [v,,) = J%Kil [¥) and p, = (V| K;;Kn [). Let us
denote [(Yul )I* = &nj = 51 Gl Kn 1¥) 17 = 5-lknjl? x5 and pu = 32 Tkl ;-
Then, p; = % and p, = %, and

1

§ —25 . 3 —65 =
n=73én=3 2=z én=z

Therefore,
CTy(p1) = ST (Ag(p1))
1
= [Tr {Aa(p1))*} — 1]

T l-a
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b=e| (2

- | 2V 1) _l]

Similarly,

CTo(p2) = ST (Ag(p2))

1 o
l— [Tr {Aa(p2)*} — 1]

1 1
= -1

e (x80)

1 T
= 1_a (61/O(+1)a .

From Fig. 3, for example, for @ = 0.20303, strong monotonicity fails since

CTq(p) < 0.42 < p1CTy(p1) + p2CTyo(02)-

6 Improved a-coherence measure

Note that even though A; = A, these two operators scale differently, in the fol-
lowing sense: A(pp) = pA(p), and Ay(pp) = A(p). For this reason, define the
“unnormalized” A,

Ao(p) =Y Glo* [N 15) Gl (6.1)

J

Note that Ay (p) = A(p%)V/e.
In [7], a coherence measure was proposed

1/a

Tr |A(p)* — p°| (6.2)
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0.55 - CT () |

— — P4CT (0)+P,CT ()

O
0.5 T _
r =
e
-7 /
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Fig.3 Failure of strong monotonicity under GIO for small «

which was shown to satisfy (C5). Since (C5) is equivalent to (C3) and (C4), and
the later two imply (C2), satisfying (C5) implies that the expression is a coherence

measure.
Similar to this, we propose the following coherence measures

Chp) =Tt |Ra(p) = p| = Tr|A(0™)/* = p| (6.3)
and

1
“ ==Tt|A(p“)-p“|5. (6.4)

C2p) = Tr|Au(p)® - p

Both C(}( and Cé can be easily shown to satisfy (C5): for p1 + p» = 1, p1, p2» > 0 and
any two states p; and po,

C(p1p1 ® p2p2) = p1C(p1) + p2C(p2).
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