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The continuous decline in biodiversity despite global efforts to create new protected areas calls into question the
effectiveness of these areas in conserving biodiversity. Numerous habitats are absent from the global protected
area network, and certain taxonomic groups are not being included in conservation planning. Here, we analyzed
the level of protection that the current protected area system provides to viper species in the Neotropical region

Snakes . ) RS . " v
Prioritization through a conservation gap analysis. We used distribution size and degree of threat to set species-specific con-
Biodiversity servation goals for 123 viper species in the form of minimum percentage of their distribution that should be

covered by protected areas, and assessed the level of protection provided for each species by overlapping their
distribution with protected areas of strict protection. Furthermore, using species richness and evolutionary
distinctiveness as priority indicators, we conducted a spatial association analysis to detect areas of special
concern. We found that most viper species have <1/4 of their distribution covered by protected areas, including
22 threatened species. Also, the large majority of cells containing high levels of species richness were signifi-
cantly absent from protected areas, while evolutionary distinctiveness was particularly unprotected in regions
with relatively low species richness, like northern Mexico and the Argentinian dry Chaco. Our results provide
further evidence that vipers are largely being excluded from conservation planning, leaving them exposed to
serious threats that can lead to population decline and ultimately extinction.

1. Introduction global terrestrial area and 10 % of the global marine area by 2020 has

been partially met (Secretariat of the Convention on Biological Di-

The establishment of protected areas (PAs) is one of the most
prominent strategies in conservation planning (Bruner et al., 2001;
Sinclair et al., 2002). Indeed, since the establishment of the World Parks
Congress in 1962 and the Convention on Biological Diversity (CBD) in
1992, protected areas became the heart of most conservation initiatives
due to their proven effectiveness in protecting endangered species
(Rodrigues et al., 2004a; Jenkins and Joppa, 2009). In the last 50 years,
the area covered by protected areas has increased by 1000 % (Joppa,
2016). While the Aichi Target 11 set by the CBD to protect 17 % of the

versity, 2020), wildlife populations continue to decline around the
world and many important habitats remain fragmented and uncovered
by protected areas (Shiono et al., 2021; Starnes et al., 2021; WWF, 2020;
UNEP-WCMC et al., 2018). Evidence shows that endangered species that
are poorly represented in protected areas are declining faster than those
well represented (e.g., Butchart et al., 2012). Hence, it is of paramount
importance to assess the quality of the PA network to guarantee its
effectiveness in protecting biodiversity (Rodrigues et al., 2004a, 2004b;
Leverington et al., 2010; Nelson and Chomitz, 2011; Ferreira et al.,
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2020).

Protected areas have become targets of criticism regarding their cost-
efficiency and effectiveness, raising the question of whether a higher
number of protected areas have in fact led to a proportionate increase in
the protection of biodiversity (Scott et al., 1993; Rodrigues et al, 2003;
Rodrigues et al., 2004b). Evidence also indicates that many areas are
only protected in theory (i.e., paper parks), remaining under threat by
illegal logging, mining and occupation due to weak institutions failing to
establish effective governance and enforcement of biodiversity protec-
tion (see Figueroa and Sanchez-Cordero, 2008; Joppa et al., 2008;
Armendariz-Villegas et al., 2015; Boni et al., 2019; Bonilla-Mejia and
Higuera-Mendieta, 2019). Moreover, as the funds available for conser-
vation programs are usually limited, it is necessary to strengthen and
expand the PA network to maximize the return of these investments
(Joppa, 2016).

Despite the high levels of species richness (Roll et al., 2017) and
endemism observed in Neotropical ecosystems (Jankowski and Rabe-
nold, 2007; Morawetz and Raedig, 2007; Nogueira et al., 2011; Witt-
mann et al., 2013; Gumbs et al., 2020; Murali et al., 2021), there is a
general lack of solid investments to protect the habitats and biodiversity
in this region. The South American Gran Chaco, for instance, holds a
variety of habitats such as woodlands, savannahs, and dry forests (Nori
et al., 2013) that contain hundreds of species of birds, mammals, rep-
tiles, and amphibians, as well as over 3400 plant species (WWF, 2016).
However, only 9.1 % of the Gran Chaco is covered by protected areas,
representing on average only 9 % of the distribution of endemic species
(Nori et al., 2016). The Brazilian Cerrado is the most biodiverse
savannah in the world, containing approximately 5 % of the world's
animal and plant species, of which nearly 40 % are endemic to this
biome (excluding fishes) (Klink and Machado, 2005). The Cerrado is also
one of the most threatened biomes in the world, with around half of its
area converted to agriculture and other human activities in the last two
decades (Myers et al., 2000; Garcia et al., 2017) and only 8.3 % of its
area legally protected, mostly by sustainable-use protected areas
(Francoso et al., 2015).

Snakes are a group that includes several threatened species and is
also affected by this lack of protection (Gibbons et al., 2000; Reading
et al., 2010; Bohm et al., 2013; IUCNredlist.org, 2018; Cox et al., 2022).
Despite evidence of the impacts of anthropogenic activities on snakes,
the group still receives relatively little attention from conservation ini-
tiatives in comparison with more charismatic groups like birds and
mammals (Roll et al., 2017), particularly in the Neotropics (Fajardo
et al., 2014; Maritz et al., 2016). From a conservation perspective, the
family Viperidae (“vipers”, comprising about 360 species, Uetz et al.,
2021) is especially important given the ecological role they play in their
communities, with several species being large-bodied and abundant
predators (Campbell and Lamar, 2004; Alencar et al., 2018).

Furthermore, vipers present a combination of life history aspects that
make them ecologically and evolutionarily unique among snakes
(Alencar et al., 2018). Vipers can be viviparous or oviparous, some of
them show parental care behavior (Greene, 2002), have diverse diet
types (Luiselli and Capizzi, 1997; Martins et al., 2008), predominantly
hunt by ambush foraging (Shine and Sun, 2003), and have low energy
requirements (Maritz et al., 2016). This combination of traits is believed
to have contributed to the successful colonization of almost all conti-
nents and habitats (Alencar et al., 2018). On the other hand, some of
these traits make vipers less resilient to environmental changes. For
example, Reed and Shine (2002) suggest that threatened elapids in
Australia are mainly associated with ambush foraging. This foraging
strategy shared with vipers makes species more vulnerable to habitat
alteration because snakes rely on certain types of vegetation cover
necessary for a successful ambush. Also, ambush foraging (also known as
sit-and-wait strategy) is usually associated with slow metabolism and
reproduction rates (see, e. g., Almeida-Santos and Salomao (2002),
which make populations more sensitive to environmental changes (Reed
and Shine, 2002). Maritz et al. (2016) called attention to a number of
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vipers that deserve special attention for conservation due to their
vulnerability to threats and/or because they are ecologically and
evolutionarily distinct within the group.

Although many vipers are abundant and have large geographic
ranges, a few are rare, occurring in small areas or in a single type of
habitat, which makes them especially sensitive to habitat disturbance
(Birskis-Barros et al., 2019). Also, given that vipers contribute to a high
number of snakebites and pose significant threats to public health
(Thiagarajan et al., 1986; Pengo et al., 1997; Campbell and Lamar, 2004;
Carrasco et al., 2016), persecution and indiscriminate killing driven by
fear and lack of knowledge concerning venomous snakes, including vi-
pers, continue to be a serious threat to several species (Weatherhead and
Madsen, 2011; Ballouard et al., 2015; Nonga and Haruna, 2015).

With limited resources available for conservation, it is paramount to
establish priorities during conservation planning to guarantee the sur-
vival of the species that are most vulnerable to extinction (Weitzman,
1998). For this reason, the degree of threat of species has been one of the
most used criteria for prioritization and resource allocation for the
conservation of certain species or groups of species (Brooks et al., 2006).
Conservation gap analyses are especially useful to evaluate the effec-
tiveness of existing systems of protected areas and to prioritize addi-
tional areas that could improve the effectiveness of conservation efforts
(Rodrigues et al., 2003; Brooks et al., 2004; Rodrigues et al., 2004b).
Additionally, there is a recent shift to a ‘biodiversity-focused’ conser-
vation that includes not only the protection of species, but also the
conservation of their genetic diversity and the ecological and evolu-
tionary contexts they are part of (Hartmann and Steel, 2006; UNEP-
WCMC et al., 2018). For instance, Isaac et al. (2007) developed a con-
servation prioritization method that takes into account the evolutionary
distinctiveness (ED) and the degree of threat.

As a way to contribute to the conservation of vipers in the
Neotropical region through site and species prioritization, our goal here
was to evaluate the degree of protection of these snakes under the cur-
rent PA network by performing a conservation gap analysis. Considering
that an effective PA network should guarantee the protection of
threatened species and evolutionary processes (Nori et al., 2016), we
discuss the needs of this group in the Neotropical region, calling atten-
tion to those species that present high degrees of threat and high
evolutionary distinctiveness (Isaac et al., 2007).

2. Methods
2.1. Species pool and geographic distribution

We included in our analyses a total of 123 viper species native to the
Neotropical region according to the Reptile Database (Uetz et al., 2021).
We defined the northern and southern limits of the geographical area
focus of this study by the viper species occurring within the Neotropical
realm.

We used the geographic distribution maps for these 123 viper species
generated by Rautsaw et al. (2022). Briefly, in this study occurrence
records were downloaded from GBIF (GBIF.org; Downloaded 2021-08-
09), Bison (bison.usgs.gov; Downloaded 2021-08-09), HerpMapper
(herpmapper.org; Downloaded 2021-08-19), Brazilian Snake Atlas
(Nogueira et al., 2019), BioWeb (BioWeb.bio; Downloaded 2021-07-07),
and custom databases. These records were updated for taxonomic
changes and manually examined. Next, a variety of preliminary distri-
bution maps were collected, including those from the International
Union for Conservation of Nature (IUCN; Downloaded 2018-11-27),
Global Assessment of Reptile Distributions (GARD) v1.1 (Roll et al.,
2017), Heimes (2016), and Campbell and Lamar (2004).

Using QGIS, new distribution maps were manually curated using the
occurrence records and preliminary occurrence records as reference. A
digital relief map (maps-for-free.com) and The Nature Conservancy
Terrestrial Ecoregions (TNG.org) were also used to help identify distri-
bution boundaries. Once complete, distributions were clipped to a land
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boundary (GADM.org v3.6) and smoothed with the R package smoothr
using the “chaikin” method (Strimas-Mackey, 2020) to produce the final
distribution maps.

2.2. Species-specific conservation goals

For each viper species we defined a conservation goal, which consists
of the minimum percentage of the species distribution that should be
covered by the PA network (e.g., Rodrigues et al., 2003). We set each
species conservation goal by taking into consideration two partial goals
proposed by Fajardo et al. (2014): Degree of Threat goal and Distribu-
tion goal. Degree of Threat goal is the minimum percentage of species
distribution to be covered by protected areas based on the conservation
status of the species, which was either obtained from the IUCN Red List
(published and unpublished assessments) or calculated by a Red List
specialist in our team following the IUCN Red List categories and criteria
(IUCN, 2018). Although methods have been developed to assign provi-
sional threat categories to species assessed as Data Deficient (de Oliveira
Caetano et al., 2022), we maintained DD species under that status in this
study as they were all evaluated by Red List specialists prior to running
the analyses. Degree of Threat goals were set progressively in proportion
to the conservation status, with a 0 % Degree of Threat goal for Data
Deficient (DD) and Least Concern (LC) species, 5 % for Near Threatened
(NT), 10 % for Vulnerable (VU), 17.5 % for Endangered (EN), and 25 %
for Critically Endangered (CR) species (cf. Fajardo et al., 2014). While
Data Deficient species might be under threat at present or in the near
future, we decided to assign DD species the lowest Degree of Threat goal
in our study to avoid arbitrary threat status estimations.

Distribution goal is the minimum percentage of the distribution to be
covered by protected areas based on the total area (in km?) of the species
distribution; Distribution goal works on a regressive scale, with higher
Distribution goals being assigned for species with more restricted extent
of occurrence. The Distribution goals were fixed at 5 % for species with
distribution > 200,000 km? and at 25 % for species in the lower third
with distribution < 1000 km?; the Distribution goal for the species with
distribution between these two values were calculated proportionally by
interpolation with logarithmic transformation (cf. Rodrigues et al.,
2004b).

After calculating the Degree of Threat and Distribution goals, we
selected the highest value between the two goals to set the final Con-
servation goal for each species; if the value was the same for both goals,
we only considered one of them in our analysis. The exclusion of one of
the goals allowed us to avoid possible redundancies between the Degree
of Threat and Distribution since the conservation status of a species is
often calculated based on Area of DIstribution or Extent of Distribution.
As a result, the final Conservation goal for each species could range
between 5 %, in the case of Data Deficient and Least Concern species
with a distribution > 200,000 km?, and 25 %, for a Critically Endan-
gered species or for any species with a distribution of 1000 km? or less.
The Distribution goal is particularly important for Data Deficient spe-
cies, as it guarantees that extinction risk associated with their extent of
occurrence is taken into account despite lack of data for those species.

We obtained shapefiles for protected areas from the World Database
on Protected Areas (UNEP-WCMC and IUCN, 2018), and we only
considered in this study protected areas of strict protection corre-
sponding to the IUCN categories Ia, Ib, II, III, and IV (Dudley, 2008).
Protected areas of sustainable use (IUCN categories V and VI) were
excluded from the analysis since there is evidence of wildlife pop-
ulations being in danger inside protected areas of sustainable use,
particularly in comparison with strict protected areas. For instance,
Francoso et al. (2015) showed that the deforestation rate inside pro-
tected areas with sustainable use in the Brazilian Cerrado is the same as
in non-protected areas. A survey of mammal diversity conducted by
Ferreira et al. (2020) in strict and multiple-use protected areas in the
Brazilian Cerrado found that mammal species richness was nearly twice
as large in strict protected areas, and the difference in richness of
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threatened and large mammal species was even higher between the two
types of protected areas. At a global scale, Jones et al. (2018) found that
strict protected areas are under significantly lower human pressure and
lower proportions of their area are affected by intense human activities
(following the human footprint framework by Venter et al., 2016).

For Mexico (data from CONANP, 2017), we considered as strictly
protected areas the categories Reservas de la Biosfera (corresponding to
IUCN categories Ia and Ib), Parques Nacionales (II), Monumentos Nat-
urales (IIT), Areas de Proteccién de Recursos Naturales (IV), and Areas de
Proteccion de Fauna y Flora (IV), although Parques Nacionales may
include areas where sustainable use is allowed (see Iniguez-Davalos
et al., 2014).

2.3. Gap analyses

We superimposed the distribution maps of each species on a shape-
file of protected areas using QGIS to determine how much of the extent
of occurrence of each species is represented in the PA network, and if
this representation is in line with the conservation goal set for each
species. After calculating the area of intersection between the extent of
occurrence and the shapefile of protected areas, we calculated the gap
status for each species: we classified species that fully met their con-
servation goals as Protected species and those not present in any pro-
tected area as Gap species. The species represented in protected areas
but with percentages below their goals of representation were classified
as Partial gap species (Rodrigues et al., 2003).

To test whether the current protected area network covers the
taxonomic diversity of Neotropical vipers, we calculated the amount of
protected area cover (in kmz) and the species richness value of each cell
in a grid of 1 x 1 degree of the Neotropical region (as defined by Mor-
rone, 2014), using the shapefile provided by Lowenberg-Neto (2016).
Evolutionary distinctiveness (ED) was calculated for each Neotropical
viper species included in the molecular phylogeny provided by Alencar
et al. (2016) using the fair proportion scoring method (Isaac et al., 2007)
implemented in the caper R package (Orme et al., 2012; R Core Team,
2021) (Table S1). We summed the ED score of all species that co-
occurred in each cell. We also performed a gap analysis by consid-
ering the relative ED, calculated by dividing the amount of ED of each
cell by its corresponding species richness. We performed this additional
step to detect regions comprising species with very high ED indepen-
dently of species richness.

We calculated the Lee's L statistics (Lee, 2001) which is indicated for
measuring spatial association of continuous data (Lin et al., 2020), to
measure the association between protected area cover, species richness,
and relative ED. To identify regions with significant association between
two variables, we calculated a modified version of the Lee's L statistic to
estimate a Local L statistic and a pseudo p-value. The analysis allowed us
to identify the clusters of spatial association of two variables with values
higher or lower than expected. In this analysis, we used the lee.mc
function from the spdep R package (Bivand and Wong, 2018, see their SI
for the script used for calculating modified Lee's L).

3. Results
3.1. Distribution and conservation status

The distribution of the 123 analyzed species of vipers in the
Neotropical region ranged from 0.11 to 6,367,401.82km? (mean
416,852.58km? + 1,082,481.418km?). Eleven species have distribu-
tions < 1000 km? (Bothrops alcatraz, B. caribbaeus, B. insularis,
B. lanceolatus, B. muriciensis, B. otavioi, B. sazimai, Crotalus tancitarensis,
C. unicolor, Ophryacus sphenophrys, and Porthidium volcanicum), seven of
them endemic to islands. Eight of these restricted range species are
classified as VU, EN or CR, while Crotalus tancitarensis, Ophryacus sphe-
nophrys and Porthidium volcanicum are listed as DD (Table S2). Among
the species with intermediate distribution (1000 to 200,000 km% N =
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78), 41 species are classified as LC, three as NT, 11 as VU, seven as EN
and 16 as DD (Table S2). Considering the species with distribution >
200,000 km? (N = 34), all of them are LC, except for Agkistrodon bili-
neatus and Bothrops sonene, which are NT and DD respectively
(Table S2).

3.2. Species-specific conservation gaps

We identified 13 viper species as “Gap species” (10.5 % of all species
analyzed), seven of them endemic to Mexico (Cerrophidion tzotzilorum,
Crotalus ericsmithi, C. exiguus, C. stejnegeri, Mixcoatlus barbouri, M. browni
and Ophryacus sphenophrys). Bothrocophias colombianus, B. lojanus,
Bothrops sanctaecrucis, B. sazimai, Crotalus unicolor and Porthidium
arcosae are the Gap species from South America (Colombia, Ecuador and
Peru, Bolivia, Brazil, Aruba and Ecuador, respectively). Forty-three
species (—~35 % of all species analyzed) that occur throughout the
Neotropical region have fully met their representation goals and have
therefore been considered “Protected” (Table S2). Most of the species
analyzed were classified as “Partial gaps” (67 species; 54.4 % of all
species analyzed), all having <20 % of their distribution protected
(Table S2).

Threatened species (VU, EN and CR) represented 21.1 % (N = 26) of
the species analyzed in this study: 12 VU, 10 EN and four CR (Fig. 1 and
Table S2). Only five of those threatened species were considered Pro-
tected (Bothrops alcatraz, B. insularis, B. otavioi, Metlapilcoatlus indomitus
and Mixcoatlus melanurus, Fig. 1). Six of the threatened Neotropical vi-
pers are Gap species (Fig. 1), three in Mexico (Crotalus stejnegeri, Mix-
coatlus barbouri and M. browni), one in Brazil (Bothrops sazimai), one in
Aruba (Crotalus unicolor) and one in Ecuador and Peru (Bothrocophias
lojanus). The remaining 15 threatened species were considered Partial
Gap species (Fig. 1), most of which (N = 12) have <50 % of their con-
servation goals achieved (Table S2). Data Deficient species (Fig. 1)
comprise three Gap species (Crotalus ericsmithi, C. exiguus and Ophryacus
sphenophrys), eleven Partial Gap species (Bothriechis nubestris, Bothrops
ayerbei, B. jonathani, B. monsignifer, B. pulcher, Cerrophidion petlalcalensis,
Crotalus ehecatl, C. mictlantecuhtli, Ophryacus smaragdinus, Porthidium
hespere and P. volcanicum), and six Protected species (Bothriechis gui-
farroi, B. sonene, Crotalus campbelli, C. lannomi, Crotalus tancitarensis and
C. tlaloci; Table S2).

3.3. Protection of viper species richness

Our results show that viper species richness in the Neotropics is
closely associated with biodiversity hotspots identified in the region by
Myers et al. (2000) and updated by Hoffman et al. (2016) (Fig. 2B).
These concentrations of richness are located in Mesoamerica from
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Fig. 1. Number of species in each IUCN threat category classified as Gap,
Partial gap and Protected following the gap analysis of this study. DD = Data
Deficient, LC = Least Concern, NT = Near Threatened, VU = Vulnerable, EN =
Endangered, CR = Critically Endangered.
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central Mexico to northern Panama, in the Tropical Andes, in the east
and south of the Amazon basin, in the Brazilian Cerrado, and in the
Atlantic Forest (Fig. 2C). The spatial association analysis for protected
areas and species richness identified gaps in the protected area network
(low protected area cover and high species richness, i. e., Low PA-High
SR cells in Fig. 2D) comprising hotspots of viper species diversity in the
Brazilian Atlantic Forest and the Cerrado, the northern sector of the
Andes that includes parts of Colombia, Ecuador and Peru, and parts of
Central America and southern Mexico. Additionally, a large portion of
the Amazon rainforest in Brazil, Colombia and Peru present a mosaic
including well protected (high protected area cover-high species rich-
ness, High PA - High SR cells in Fig. 2D) and poorly protected (low
protected area cover-high species richness, Low PA-High SR cells)
richness hotspots, showing the fragmented state of the PA network in the
Amazon when considering the coverage of species richness. Transitional
and dry ecoregions like the Llanos, the Maranhao Babacu forest, extreme
northern Cerrado and northern Caatinga in Brazil, the Humid Pampas,
Espinal, Low Monte, and Patagonian Steppe in Argentina, and small
areas in the northern end of the Neotropical region in Mexico presented
clusters of cells with low species richness and low presence of protected
areas (Low PA - Low SR cells, Fig. 2D). Finally, Venezuela, Mexico and
Brazil presented the largest clusters of High PA-Low SR cells (Fig. 2D),
where the presence of protected areas is significantly associated with
low diversity of viper species.

3.4. Protection of evolutionary distinctiveness

When weighted for the number of species in a cell, evolutionary
distinctiveness shows a distribution pattern markedly different from that
of species richness in the Neotropics. Relative ED score is particularly
high in the broadleaf forests of northern Mexico, Guatemala, Belize and
Nicaragua; the moist and dry forests and shrublands along the Pacific
coast from Nicaragua to Peru; and the extreme south of the Neotropics in
Argentina (Fig. 2E). Significant matches between protected areas and
relative ED (High PA - High RED cells) were mainly concentrated in
small areas in the northern-central Amazonian Andes and in the eastern
Amazon (Fig. 2F). The Espinal, Low Monte and Humid Pampas ecor-
egions in south-central Argentina presented the largest continuous
cluster of Low PA - High RED cells in the Neotropics due to the nearly
exclusive occurrence of Bothrops ammodytoides in that region, a species
with a high ED score (13.20). The central-northern Andean countries
also presented high concentrations of Low PA - High RED cells. High PA -
Low RED (High protected area cover and low relative ED) and Low PA -
Low RED cells were concentrated in western Brazil and northern
Amazon, highlighting the lower phylogenetic uniqueness found in those
regions (Fig. 2F).

4. Discussion

Our assessment of the protection status of viper species is the first
investigation of the effectiveness of protected areas focusing on pro-
tecting viper diversity. Here we show that the current network of pro-
tected areas of strict protection in the Neotropics is far from adequate to
ensure the conservation of vipers: only 35 % of the 123 species analyzed
have fully met their conservation goal, over 40 % have less than half of
their conservation goal achieved, and 67 % of the species have <10 % of
their distribution covered by protected areas. Our study also shows that
only a few of the threatened vipers in the Neotropics are considered
Protected, and six of those are completely absent from the network of
protected areas, indicating that even species that are in clear, urgent
need of conservation actions are not receiving the required attention,
especially considering that the Neotropical region has been indicated as
a hotspot for habitat loss affecting reptile species (Bohm et al., 2013).

With a large proportion of Partial Gap species (61 %) having less than
half of their Conservation goal met, our study not only supports the
results by Maritz et al. (2016) that indicate the Neotropics as a hotspot of
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Fig. 2. Percentage of coverage of grid cells by strict protected areas (A), biodiversity hotspots by Hoffman et al. (2016) (B), species richness per grid cell (C), spatial
association between protected areas and species richness (D), relative evolutionary distinctiveness (ED) per grid cell (E), and spatial association between protected
areas (PA) and relative evolutionary distinctiveness (RED) (F). “High PA - High SR/RED” depict areas with high presence of protected areas and high species
richness/relative evolutionary distinctiveness, “High PA - Low SR/RED” depict areas with high presence of protected areas and low species richness/relative

evolutionary distinctiveness and so on.
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vipers facing high levels of threat and low levels of protection, but also
shows that most viper species in that region are far from receiving ideal
levels of protection that would contribute to their long-term survival.
Thus, it is important to monitor Partial Gap species to detect any de-
clines and avoid them becoming more threatened with extinction.

The results of our spatial association analysis between species rich-
ness and protected areas show that around 75 % of the cells containing
high levels of species richness are significantly absent from protected
areas, and that the large majority of these cells are located in biomes
considered by Myers et al. (2000) as important biodiversity hotspots for
their ecological importance and vulnerability to anthropogenic threats
(Fig. 2B). Our results support the assessment by Maritz et al. (2016) that
identified the same areas mentioned above as priority areas for viper
conservation based on a threat index and ecological and evolutionary
distinctiveness.

The spatial association analysis considering relative evolutionary
distinctiveness and protected areas presented a different pattern from
that of species richness, with the highest levels of relative ED found in
concentrated clusters in the extreme north and south of the Neotropics
and in the northern Andes. Weighting our analysis with the number of
species per grid cell allowed us to identify areas that, despite containing
species with invaluable phylogenetic history, would not receive as much
attention and prioritization as biodiversity hotspots do due to their low
species richness, such as the areas in Argentina and central Mexico
where Bothrops ammodytoides and Crotalus polystictus occur, respec-
tively. Our results support the findings by Murali et al. (2021) that
identified strong spatial association between squamate phylogenetic
endemism (corrected for richness) and biodiversity hotspots (Myers
et al., 2000) in the Neotropics. Additionally, the authors identified the
Neotropics as the only region presenting lower protected area coverage
for hotspots of phylogenetic endemism than for non-hotspots. The same
pattern of lack of protection for evolutionary distinctiveness is revealed
by the results of our analysis.

The results of our gap analysis for species endemic to Mexico (seven
Gap species and ten Partial Gap species with less than half of their
Conservation goal met) contrast with those found by Paredes-Garcia
etal. (2011) that indicated a high representation of Neotropical vipers of
the genus Crotalus in Mexican protected areas. However, these authors
included the entire Mexican protected area network in their analysis
instead of considering only strict protection protected areas. Our study
also found that threatened and restricted range species, considered top
priorities for conservation, are proportionally the least represented in
the network of protected areas. These results indicate that the current
conservation efforts are not fully contemplating the conservation needs
of vipers in the Neotropical region. Some countries in the Neotropics
may appear to have a good network of protected areas by having a
proportionally low number of Gap species in their territories (e.g.
Argentina, Brazil, Mexico and Peru), but the high number of Partial Gap
species meeting a small percentage of their Conservation goal deserves
special attention. It is important to consider that species classified by
this study as Partial Gap may become Gap species in the near future
unless measures are taken to include viper diversity in conservation
planning. For instance, Bothrops itapetiningae, a Partial Gap species from
central Brazil, could soon become a Gap species if the destruction of the
Brazilian Cerrado continues in the next decades (see Strassburg et al.,
2017). Furthermore, a few countries hold most Gap and Partial gap
species (e.g., Brazil, Mexico, Colombia and Guatemala), indicating that
Neotropical vipers heavily depend on the conservation efforts within
their political boundaries.

The low number of Protected viper species in the Neotropics, espe-
cially in Brazil, Mexico, and Colombia may be at least partially due to
the establishment of most protected areas in low-productive areas
instead of areas of high biodiversity (Ceballos, 2007; Foster et al., 2014).
As snakes tend to have richness patterns similar to those of most other
vertebrates (see Roll et al., 2017), the establishment of protected areas
focused on high overall biodiversity would also result in a good coverage
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of this group. Indeed, the policy-driven establishment of protected areas
is a serious problem when attempting to protect species and habitats
because it leads to misplacement and downsizing of protected areas
(Svancara et al., 2005). Along with the physical properties of protected
areas, their management categories should also be reviewed and
improved as a whole. Protected areas of sustainable use, like those of the
categories V and VI of IUCN, are a serious concern for the protection of
several populations (e. g., Francoso et al., 2015; Jones et al., 2018),
especially of snakes, due to their relatively high sensitivity to habitat loss
and disturbance (Gibbons et al., 2000; Locke and Dearden, 2005).

As with any gap analysis research, it is important to note that our
study is limited by the accuracy of the species distribution maps used, as
they rely on the quality and quantity of occurrence records available.
This type of assessment is meant to be revisited and updated as new data
is collected to improve its accuracy. Furthermore, the protection statuses
(Protected, Partial Gap and Gap species) identified by our results depend
on the Conservation goals set for each species, which in turn are based
on the thresholds set for different distribution sizes and degrees of
threat. To guarantee that the results obtained here are not a direct
consequence of the methods applied, we conducted a Pearson's corre-
lation test to assess the relationship between thresholds set and results
obtained (protection status). The test indicates a weak correlation be-
tween the final Conservation goals and the resulting Protection status
(Protected, Partial gap, Gap species) for the species analyzed (r-value =
0.2373494, p-value = 0.008209, see Fig. S1). We also note that the
thresholds used in our study follow the methods set by Fajardo et al.
(2014), which derive from Rodrigues et al. (2003) and were replicated
by several gap analysis studies (e.g. Vergilio et al., 2016; Li et al., 2018;
Delso et al., 2021).

Additional studies are necessary to explore the best options to
improve the current network of protected areas in the Neotropical re-
gion. The results of the present study highlight a well-known and serious
cause for the general decline of snake populations and provide further
evidence that certain taxonomic groups are being largely excluded from
conservation planning. Besides habitat loss, overexploitation, and the
presence of invasive species (Gibbons et al., 2000; Martins et al., 2008;
Watari et al., 2013; Ettling et al., 2015), the poor investment in strictly
protected areas and the presence of gaps in the PA network (Brandon
et al., 1998; Brooks et al., 2004; Rodrigues et al., 2004a, 2004b) may
seriously push several viper species to the brink of extinction.

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.biocon.2022.109750.
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