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Abstract—AI-powered Medical Imaging has recently achieved
enormous attention due to its ability to provide fast-paced
healthcare diagnoses. However, it usually suffers from a lack
of high-quality datasets due to high annotation cost, inter-
observer variability, human annotator error, and errors in
computer-generated labels. Deep learning models trained on
noisy labelled datasets are sensitive to the noise type and
lead to less generalization on the unseen samples. To address
this challenge, we propose a Robust Stochastic Knowledge
Distillation (RoS-KD) framework which mimics the notion of
learning a topic from multiple sources to ensure deterrence in
learning noisy information. More specifically, RoS-KD learns
a smooth, well-informed, and robust student manifold by distilling
knowledge from multiple teachers trained on overlapping subsets
of training data. Our extensive experiments on popular medical
imaging classification tasks (cardiopulmonary disease and lesion
classification) using real-world datasets, show the performance
benefit of RoS-KD, its ability to distill knowledge from many
popular large networks (ResNet-50, DenseNet-121, MobileNet-
V2) in a comparatively small network, and its robustness to
adversarial attacks (PGD, FSGM). More specifically, RoS-KD
achieves > 2% and > 4% improvement on F1-score for lesion
classification and cardiopulmonary disease classification tasks,
respectively, when the underlying student is ResNet-18 against
recent competitive knowledge distillation baseline. Additionally,
on cardiopulmonary disease classification task, RoS-KD outper-
forms most of the SOTA baselines by ∼ 1% gain in AUC score.

Index Terms—Knowledge distillation, Noisy Learning, Car-
diopulmonary Disease Classification, Lesion Classification

I. INTRODUCTION

Deep learning advancements in the past decade have sig-

nificantly improved the development of AI-assisted medical

applications, particularly medical imaging interpretation, due

to their ability to impact millions of human lives. Researchers

from both academia and industry have explored several med-

ical imaging applications such as segmentation, detection,

classification, and summary generation. These applications

have shown impressive, and often unprecedented potential in

the assistance of healthcare specialists for preliminary diag-

nosis. However, the success of these applications is primarily

constrained by the unavailability of high-quality, accurately

annotated large training datasets. In medical imaging, dataset

annotations require domain expertise, and suffer from high

inter- and intra-observer variability, human annotator error,

and errors in computer-generated labels. While there has been

an abundance of work around developing medical imaging

algorithms [1]–[7], handling label noise has gone largely

unnoticed. Many recently proposed studies have identified that

label noise can significantly impact the performance of deep

learning models which can have catastrophic implication in the

medical domain, considering its direct association with safety

of human lives [8], [9].

Fig. 1. Model architecture of our Robust Stochastic Knowledge Distillation
Framework. In our approach, the training dataset is divided into overlapping
subsets and multiple teachers are trained using them. Knowledge from each
teacher is distilled using our stochastic knowledge distillation module. To
ensure the smooth update by any participating teacher, our model Msmooth

is updated by averaging multiple checkpoints along the training trajectory.

Due to its resource-intensive nature, the challenge of la-

beling a large volume of medical images has encouraged

researchers to use automated tools with weak supervision. For

example, many publicly available large radiology datasets such

as NIH ChestX-rays and MRI, MIMIC-CXR, and OpenI are

labelled using NLP-based label extraction tools on radiology

reports. To handle label noise with high variability, we borrow

fundamental ideas from ensemble learning and knowledge

distillation (KD), and propose a novel ensemble-based Robust

Stochastic KD framework: RoS-KD. In contrast to traditional

ensemble-based KD approaches in which all participating

teachers learn from the same training dataset [10]–[12], RoS-

KD unprecedentedly divides the training dataset into overlap-

ping subsets which allow each participating teacher to spot

unique noise patterns. Overlapping allows teachers to not be in

complete disagreement, while unique subsets of training data

help teachers break the symmetry of learning similar noise

patterns. Motivated by the work of [13], we propose to incor-

porate additional smoothening in the knowledge distillation

step of RoS-KD which helps in flattening the global minima

during the optimization, improving generalization.

RoS-KD is inspired by a classroom scenario, where a

student learns the same concept from multiple teachers (shar-
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ing core fundamentals along with individual noisy knowl-

edge), to be able to segregate noisy knowledge from the

core fundamentals. Our extensive experiments on two popular

medical classification tasks illustrate the superior performance

of RoS-KD with respect to several recent competitive KD

baselines. Additionally, we provide ablation to understand the

importance of learning from overlapping datasets. To ensure

that the student should learn by assimilating the knowledge

from multiple teachers instead of abruptly updating itself by

a single teacher, we propose a smooth parameter update using

weight averaging. Furthermore, we show that RoS-KD based

students are more robust to adversarial attacks. To the best of

our knowledge, we find that this is the first work to study the

adversarial robustness perspective of knowledge distillation in

the medical imaging domain using two challenging real-world

datasets of cardiopulmonary disease classification and lesion

classification. Our main contributions can be summarized as:

• We propose a novel stochastic knowledge distillation

framework (RoS-KD) which distills knowledge from

multiple teacher networks trained on overlapping subsets
of noisy labelled data and dynamically assign weights
to teacher models to enhance deterrence to noise and

improve generalization on unseen data during inference.

• We propose to use smooth parameter averaging update
with our novel knowledge distillation framework to ef-

fectively moderate any abrupt learning by the student.

• Our extensive experiments on two popular real-world
dataset based medical classification tasks show the per-

formance benefit of RoS-KD over several baseline meth-

ods. More specifically, RoS-KD achieves > 2% and >
4% improvement on F1-score for lesion classification and

cardiopulmonary disease classification task respectively,

when underlying student is ResNet-18. Additionally, on

cardiopulmonary disease classification task, RoS-KD out-

performs most of the state-of-the-art baselines by ∼ 1%
gain in AUC score.

• We experimentally verify that RoS-KD produces students

which are highly robust to adversarial attacks compared

to different baseline methods. RoS-KD students also have

highly smooth loss landscape, which can explain their

better generalization capability on unseen data.

II. BACKGROUND WORK

Knowledge Distillation (KD) [14] is an effective way to

compress large models into smaller ones with comparable per-

formance. KD is based on a teacher-student learning paradigm

in which the student learns from the soft-targets of the teacher

network. Recently, some methods employ multiple teachers

and show great promises in further boosting student model

performance effectively [10]–[12]. Most of these existing

methods using multiple teachers simply assign equal weight to

all teacher models during the whole distillation process. More-

over, they primarily use the same training data to train each

participating teacher network which make all teachers prone

to learning the similar noise pattern available in the training

data. Recently, [15] identified that individual teacher models

may perform differently on different data-points due to opti-

mization strategy and parameter initialization. This encourages

us to assign different weights to teacher models for different

training instances during training. RoS-KD provides a noise-

tolerant perspective of knowledge distillation and introduces

smoothening as a key to improving its performance. Compared

to previous knowledge distillation methods using multi-teacher

models usually fix the same weight for a teacher model

on all training examples, RoS-KD design allows stochastic

assignment of weights to each participating teacher models

for each training example during training.

III. THE PROPOSED APPROACH

A. Model Architecture

A schematic representation of our RoS-KD framework is

given in Figure 1. The core RoS-KD framework is based on

ensemble-based knowledge distillation where multiple teacher

networks are used to teach the student network. In RoS-KD,

the training data D is divided into k overlapping subsets with

an overlap ratio of p% such that D = {D1∪D2...∪Dk}. We

train k different model architectures {M1
D1 ,M2

D2 , ...,Mk
Dk}

corresponding to each Di using cross-entropy loss. We use

the overlapping dataset instead of a traditional non-overlapping

complete dataset D to ensure that each teacher has sufficient

agreement on the common representation of D along with its

unique share of disagreement due to noise. This setting mimics

the situation that each teacher knows the same topic in its

own unique style. Our student network M is trained using

our stochastic knowledge distillation module which combines

the soft-labels generated for each training example xi ∈ D
by an individual teacher. To mitigate the abrupt impact of

any teacher in the student’s learning process, we propose

to average multiple checkpoints of M along the training

trajectory to update Msmooth, which is our final student

network (RoS-KD). Smooth parameter averaging is extremely

easy to implement, which can improve standard generalization

of students, and has almost no computation overhead.

B. Robust Stochastic Noise-Tolerant Knowledge Distillation

Many large-scale medical imaging datasets [2], [16] are

labelled using automated tools under the weak supervision

of domain experts and have highly variable noise across data

samples. Many recent studies have shown that label noise can

significantly impact the performance of deep learning models

and lead to degraded generalization. Our robust stochastic KD

(RoS-KD) framework is motivated by the idea that teachers

know not only the common fundamental details of the topic

but also some unique explanations. Therefore, if a student

learns from multiple teachers, it enables the student to learn

multiple unique explanations of the topic along with the

common fundamentals of the concept. This will help the

student be better than individual teachers due to the diversity

of information the student has learned along with identifying

any conflicting information about the same topic. RoS-KD

incorporates this setting by proposing to divide the training

dataset into overlapping blocks and training multiple teachers
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architectures (e.g., ResNet-18, DenseNet-121, and MovileNet-

V2) on the overlapping datasets. RoS-KD differs from the

conventional ensemble KD approaches which use the same

dataset to train each participating teacher network, because

RoS-KD allows the teacher network to be consistent with each

other and learn additional unique information.

Next, we aggregate knowledge from the multiple trained

teachers using stochastic weighted distillation. In each itera-

tion, we randomly sample the weight of each teacher from

an exponential distribution. The weight is used to decide the

teacher’s contribution for updating student M in that iteration.

This aggregation process simulates that the student learns the

knowledge from one teacher and compares it to others. Our

stochastic weighted distillation ensures that only one teacher

plays a significant role in the update at one time. Therefore,

we do not need to jointly minimize KL divergence among

multiple teachers with an equal contribution at the same time.

Furthermore, to improve the generalization capability of our

RoS-KD framework, we propose to use smooth parameter

averaging update to effectively moderate any abrupt learning

by the student. This ensures that no teacher will be allowed to

make significantly large updates which helps students to relax,

think, and update gradually.

1) Smooth Parameter Averaging Update: In our RoS-KD

framework, we use a smooth parameter averaging update

to improve the generalizability. The update can effectively

moderate any abrupt learning by the student, thus ensures that

no teacher will make a significantly large update.

It is widely believed that the loss surface at the final learned

weights for well-generalized models is relatively “flat” [13]. To

ensure the smooth update of our final student model Msmooth,

we propose to enforce weight smoothness, by averaging mul-

tiple checkpoints along the training trajectory. Our parameter

averaging update can be interpreted as approximating the fast

geometric ensembling [17], by aggregating multiple check-

point weights at different training times [18].

WT
Msmooth

=
WT−1

Msmooth
× n+WT

M

n+ 1
(1)

WT
M = WT−1

M +ΔWT
M (2)

where T indexes the training epoch, n is the number of past

checkpoints to be averaged, WMsmooth
denotes the averaged

network weight, WM represents the current network weight,

and ΔWM indicates the SGD update.

The Smooth Parameter Averaging Update provides an op-

portunity to make the student network to be robust and learn

flatter solutions. Smooth parameter averaging is straightfor-

ward to implement with almost no computational overhead.

2) Loss Function: For a C-class classification task, given

a teacher network mi = M i
Di trained on a data subset Di and

input xi, we leverage the logit zi ∈ RC (final output before

the softmax layer) from mi to supervise the desired student

network M . Following the setting of knowledge distillation,

the logit zi is distilled to the knowledge qi ∈ RC by the

temperature τ according to the following:

qij = στ (z
i
j) =

exp(zij/τ)∑C
j=1 exp(z

i
j/τ)

(3)

where qij denote the jth element of qi and στ (.) represents

the standard softmax function with the distilling temperature

τ . Usually, τ is a positive value greater than 1, and a higher

value for τ can produce a softer probability distribution over

classes.

Next, we sample weights from the exponential distribu-

tion for K participating teacher models {m1, ...,mK} as

{wi, ..., wK}. Then, we supervise the student network M by

minimizing the following mini-batch loss l over L samples:

l =
L∑

i=1

{ατ2
K∑

m=1

{wm.KL(qimi
, pi)}+(1−α)CE(M(xi), yi)}

(4)

Here, KL and CE represent KL divergence and cross-entropy

loss, respectively. pi = στ (M(xi)). yi is hard label of xi.

The hyper-parameter α ∈ [0, 1] balances the KL divergence

and the cross-entropy loss. τ is a specified temperature.

IV. EXPERIMENTAL RESULTS

A. Task Formulation

While in principle, our method of multi-teacher learning

should be applicable to any deep learning task, we restrict our

focus to problems where the dimension of the output vector

is small. Such a constraint will remove tasks that require

intensive training for all the teacher networks, for example,

in tasks such as segmentation, localization. Thus, we restrict

our experiment and analysis to classification tasks to keep

focus on understanding the benefits of our design. In this

work, we evaluate the effectiveness of our RoS-KD framework

on two popular medical imaging classification tasks - lesion

classification and cardiopulmonary disease classification. The

skin lesion dataset consists of 25,331 skin lesion images

divided into eight different clinical scenarios [19]. We aim

to build a model to classify an image into one of the eight

clinical scenarios. The NIH Chest X-ray dataset consists of

112,120 chest X-rays collected from 30,805 patients, and each

image is labeled with 8 cardiopulmonary disease labels [2]. We

followed the same protocol as [20], to shuffle our dataset into

three subsets: 70% for training, 10% for validation, and 20%

for testing. In order to prevent data leakage across patients,

we ensure no overlap within our train, validation, and test set.

B. Experimental Settings

To prove the efficacy of our RoS-KD framework, we

have selected two popular medical imaging tasks - lesion

classification and cardiopulmonary disease classification. For

both tasks, we divide the training split of the dataset into 5

overlapping subsets (with overlap ratio 0.4) and train 5 teacher

networks (ResNet-18,34,50, MobileNet-v2, and DenseNet-

121) using an SGD optimizer with a momentum of 0.9 and
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weight decay of 2e−4. The initial learning rate is set to 0.1,

and the networks are trained for 50 epochs with a batch size

of 64. The learning rate decays by a factor of 10 at the 25th

and 40th epoch during the training. For all our experiments,

we have kept temperature hyperparameter τ = 0.5. We set

α = 0.9 to regulate the weight between the distillation and

cross-entropy loss during RoS-KD training. Additionally, we

provide an initial warmup of 10 epochs to Msmooth during

the smooth parameter averaging update. All our models are

trained using 4 Quadro RTX 5000 GPUs.

C. Baselines

1) Baseline I: RoS-KD proposes a noise-tolerant stochastic

knowledge distillation framework which distills knowledge

from multiple teacher networks in a student network. For eval-

uation of RoS-KD, we have selected ResNet-18 architecture

as the default student network. Our first baseline is a standard

ResNet-18 architecture trained on cardiopulmonary and lesion

classification task.

2) Baseline II: Our second baseline follows the standard

knowledge distillation setting proposed in [14] and train the

ResNet-18 student network with the assistance of compara-

tively larger teacher network DenseNet-121.

3) Baseline III: We implemented a multi-teacher ensemble

model similar to [12] where every teacher model is assigned

an equal weight in KD, and the student model (ResNet-18)

learns from an aggregated distribution by averaging teacher

outputs.

4) Baseline IV: Recently, [15] proposed reinforcement

based method to perform adaptive weight assignment to each

participating teachers in a multi-teacher learning framework.

We adapted their method for our tasks, and surprisingly found

that RoS-KD which randomly sample the weights from the

exponential distribution for each teacher, can significantly

outperform their computationally inefficient RL-based design.

5) Baseline V: Our baseline IV is the RoS-KD framework

which only uses overlapping subset of training data along with

stochastic importance to individual participating teacher net-

work. Note that this baseline doesn’t use smooth parameter
averaging during distillation.

D. Results and Discussion

1) Lesion Classification Task: The lesion classification task

is a one-class classification problem where RoS-KD assigns

one class to each input image among 8 class categories.

Table I presents the performance comparison of RoS-KD

with respect to several baseline methods explained in Section

IV-C. RoS-KD achieves a significant performance gain of

+3.2% in F1-score over traditional single teacher based KD

framework (Baseline II). It addition, it also outperforms fixed

weight multi-teacher KD framework (Baseline III) by +2.2%.

Note that Baseline III uses the exact same set of teacher

architectures and training hyperparameters for fair compari-

son. Surprisingly, RoS-KD beats recently published RL-based

dynamically weighted baseline [15] significantly by +3.9%.

Moreover, when compared to the performance of a stan-

dard network (ResNet-18), RoS-KD based ResNet-18 model

achieves +5.8% better F1-score. In order to investigate the

performance consistency of RoS-KD across different student

architectures, we experimented with popular ResNet-18/34/50,

MobileNet-v2, and DenseNet-121 as students. Noticeably, for

DenseNet-121 and ResNet-34, RoS-KD achieves +3.2% and

+3.1% gain in F1-score respectively.

Settings Lesion Classification Cardiopulmonary Classification

Precsion Recall F1 Precision Recall F1

Baseline I 0.653 0.664 0.658 0.298 0.301 0.299
Baseline II 0.680 0.692 0.684 0.312 0.348 0.329
Baseline III 0.691 0.704 0.694 0.300 0.316 0.308
Baseline IV 0.683 0.669 0.677 0.304 0.310 0.307
Baseline V 0.703 0.714 0.705 0.341 0.327 0.334

RoS-KD 0.713 0.726 0.716 0.360 0.339 0.349

TABLE I
PERFORMANCE COMPARISON OF ROS-KD WITH RESPECT TO BASELINES

ON THE LESION AND CARDIOPULMONARY CLASSIFICATION TASK.

Dataset Attack Settings Before Attack After Attack

Precsion Recall F1 Precision Recall F1

Lesion PGD Baseline III 0.691 0.704 0.694 0.363 0.293 0.309

RoS-KD 0.713 0.726 0.716 0.417 0.359 0.354

FSGM Baseline III 0.691 0.704 0.694 0.445 0.377 0.385

RoS-KD 0.713 0.726 0.716 0.475 0.422 0.447

Cardio. PGD Baseline III 0.312 0.348 0.329 0.150 0.131 0.139

RoS-KD 0.360 0.339 0.349 0.189 0.175 0.182

FSGM Baseline III 0.312 0.348 0.329 0.162 0.144 0.152

RoS-KD 0.360 0.339 0.349 0.201 0.187 0.194

TABLE II
PERFORMANCE COMPARISON OF ROS-KD WITH VARYING STUDENT

ARCHITECTURE WRT. BASELINE III. NOTE THAT WE HAVE USED EXACTLY

SAME TEACHER MODELS FOR KD IN BOTH BASELINE III AND ROS-KD
FOR FAIR COMPARISON. NORM IS l2 . RADIUS ε = 128

255
.

2) Cardiopulmonary Disease Classification Task: The car-

diopulmonary disease classification task is a multi-class clas-

sification problem. RoS-KD assigns one or more labels among

8 cardiopulmonary classes. Table I presents the performance

comparison of RoS-KD with respect to several baseline meth-

ods explained in Section IV-C. RoS-KD achieves a significant

performance gain of +2.0% in F1-score over traditional single

teacher based KD framework (Baseline II). It addition, it also

outperforms fixed weight multi-teacher KD framework (Base-

line III) by +4.1%. Note that Baseline III uses the exactly

same set of teacher architectures and training hyperparameters

for fair comparison. Moreover, when compared to the per-

formance of a standard network (ResNet-18), RoS-KD based

ResNet-18 model achieves +4.5% better F1-score. Finally, in

comparison with [15], which uses dynamic weight assignment

(Baseline IV), RoS-KD archives 2.7% better performance. To

investigate the performance consistency of RoS-KD across

different student architectures, we experimented with pop-

ular ResNet-18/34/50, MobileNet-v2, and DenseNet-121 as

students. It can be clearly observed that RoS-KD performs

significantly better across all student architecture. Noticeably,

for MobileNet-v2 and ResNet-18, RoS-KD achieves +3.8%
and +4.1% gain in F1-score respectively.
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Unlike the lesion classification task, cardiopulmonary dis-

ease classification task is comparatively well-studied by the

medical-imaging community and there exists many well es-

tablished baselines [1], [4]–[6], [21]–[23] to evaluate the

performance of newly proposed algorithms. We compare RoS-

KD performance with reference models, which have published

state-of-the-art performance of disease classification on the

NIH dataset [21]. We have used Area under the Receiver

Operating Characteristics (AUC) to estimate the performance

of our RoS-KD in Table III. Our results also present the 3-

fold cross-validation to show the robustness of our reported

AUC scores. Compared to other baselines, RoS-KD achieves a

mean AUROC score of 0.838 using DenseNet-121 across the 8

different classes, which is 1% higher than the best performing

baseline on disease classification.

Fig. 2. Performance comparison of RoS-KD with varying student networks
wrt. Baseline III on lesion and cardiopulmonary disease classification task.

3) How does overlapping impact the performance?: One

key contribution of this work is to identify the hidden gem

to use overlapping subsets of training data to train individual

teacher networks in a Multi-Teacher Knowledge Distillation

Framework. Figure 3 illustrates the performance comparison

of RoS-KD trained with overlapping subsets in comparison

with Baseline III. An overlap ratio of 0% imply that the train-

ing subsets are disjointed while overlap ratio of 100% implies

that all teachers are trained using exactly the same data. We

observed that distillation with 0% overlap have comparatively

better performance than 100% overlap. Based on our empirical

observations, we argue that with 0% overlap, each individual

teacher will attempt to learn its own discriminative features

which have unique properties compared to other teachers,

and these features can add significant value to the student

learning. To ensure minimal disagreement among teachers

trained on disjointed subsets, we investigated how sharing

training samples across the teachers will impact the RoS-

KD performance. For both lesion and cardiopulmonary disease

classification task, we observed that overlapping significantly

improves the performance of RoS-KD.

Fig. 3. Impact of overlapping ratio in training subsets of teacher models
trained with RoS-KD. Baseline III doesn’t use any overlapping training subset.

E. Adversarial Robustness
AI-assisted medical imaging can be used to make critical

medical decisions and directly impact patient life. Recently,

adversarial attacks have received significant attention in which

an adversary tries to malice the AI-classifier by adding a small

magnitude of noise to change its prediction [24]. Considering

high stakes of medical imaging in clinical decision-making,

it is very important to ensure that AI-algorithms are robust to

adversarial attacks. Table II presents the robustness of RoS-KD

in comparison to Baseline III under two representative attacks:

FSGM [25] and PGD [26]. FSGM and PGD attacks exploit the

gradients of the neural network to build an adversarial image

with goal of fooling the trained network. Our experiments

on the lesion classification task show +4.5% and +6.3%
higher robustness of RoS-KD than Baseline III on FSGM and

PGD attacks, respectively. Similarly, on the cardiopulmonary

disease classification task, RoS-KD has +4.3% and +4.2%
higher robustness than Baseline III under FSGM and PGD

attacks, respectively.

F. Smoothness
Introducing smoothness into the training paradigm of neural

networks has been widely accepted as it is a technique to

improve generalization and optimization. Smoothness can be

implemented by replacing the activation functions, adding

skip-connections in NNs [27], [28], using soft labels replacing

the hard labels [29]. In this work, we propose to enforce

weight smoothness, by averaging multiple checkpoints along

the training trajectory during the knowledge distillation. Our

experiments in Table I illustrate the significant gain by the

RoS-KD when we incorporate parameter averaging. To vali-

date the induced smoothness, we plotted the counter plots of

final loss landscape by Baseline III and RoS-KD using [13].

Figure 4 shows the comparison of counterplots of loss land-

scape of models trained with Baseline III and RoS-KD. We

observed that RoS-KD has comparatively larger counter shape

in the landscape with bigger basin for both lesion classification

and cardiopulmonary classification, strengthening our claim of

improved smoothness and better generalization of RoS-KD.

V. CONCLUSION

In this work, we propose a novel robust stochastic knowl-

edge distillation framework (RoS-KD) which distills knowl-

edge from multiple teacher networks trained on overlapping

subsets of noisy labelled data to enhance deterrence to noise

and improve generalization on unseen data. We additionally

propose to incorporate smoothing in the knowledge distillation

step of RoS-KD, which helps in flattening the global minima

during the optimization, and improving generalization. Our

extensive results on two popular real-world medical datasets

demonstrate the effectiveness of RoS-KD, its state-of-the-art

performance, and its robustness to adversarial attacks.
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Method Atel. Cardio. Effus. Infilt. Mass Nodule Pneum. Pneumo. Mean

Wang et. al. [21] 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
Wang et. al. [1] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
Yao et. al. [4] 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
Raj. et. al. [22] 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
Kum. et. al. [23] 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
Liu et. al. [5] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyed et. al. [6] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821

RoS-KD (Ours) 0.83 0.91 0.89 0.77 0.85 0.78 0.79 0.88 0.838
(std) ±0.00 ±0.01 ±0.01 ±0.01 ±0.02 ±0.00 ±0.01 ±0.02

TABLE III
COMPARISON WITH THE BASELINE MODELS FOR AUC OF EACH CLASS AND AVERAGE AUC (THREE INDEPENDENT RUNS).

Fig. 4. Comparison of loss landscape of models trained with Baseline III and RoS-KD framework for lesion classification and cardiopulmonary disease
classification task. Loss plots are generated with the same original images randomly chosen from the test dataset for Baseline III and RoS-KD. Z-axis denote
the loss value clamped at 8.0 for better visualization. We choose Baseline III because of its best performance.
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