
Laplacian-level meta-generalized gradient approximation for solid and liquid metals1

Aaron D. Kaplan1, ∗ and John P. Perdew1, 2, †
2

1Department of Physics, Temple University, Philadelphia, PA 191223

2Department of Chemistry, Temple University, Philadelphia, PA 191224

(Dated: August 1, 2022)5

We derive and motivate a Laplacian-level, orbital-free meta-generalized-gradient approximation
(LL-MGGA) for the exchange-correlation energy, targeting accurate ground-state properties of sp
and sd metallic condensed matter, in which the density functional for the exchange-correlation
energy is only weakly nonlocal due to perfect long-range screening. Our model for the orbital-free
kinetic energy density restores the fourth-order gradient expansion for exchange to the r2SCAN
meta-GGA [Furness et al., J. Phys. Chem. Lett. 11, 8208 (2020)], yielding a LL-MGGA we
call OFR2. OFR2 matches the accuracy of SCAN for prediction of common lattice constants and
improves the equilibrium properties of alkali metals, transition metals, and intermetallics that were
degraded relative to the PBE GGA values by both SCAN and r2SCAN. We compare OFR2 to the
r2SCAN-L LL-MGGA [D. Mejia-Rodriguez and S.B. Trickey, Phys. Rev. B 102, 121109 (2020)]
and show that OFR2 tends to outperform r2SCAN-L for the equilibrium properties of solids, but
r2SCAN-L much better describes the atomization energies of molecules than OFR2 does. For best
accuracy in molecules and non-metallic condensed matter, we continue to recommend SCAN and
r2SCAN. Numerical performance is discussed in detail, and our work provides an outlook to machine
learning.

I. INTRODUCTION6

Practical Kohn-Sham density functional theory (DFT)7

[1] seeks an accurate and computationally efficient de-8

scription of the ground state energy E[n↑, n↓] and spin-9

densities (n↑, n↓) of any many-electron system. This10

requires a density functional approximation (DFA) for11

the exchange-correlation energy Exc. First-principles12

DFAs are derived from purely theoretical considerations,13

whereas empirical DFAs are fitted to data (especially14

for bonded systems). Semi-empirical DFAs borrow from15

both approaches. Empirical DFAs often cannot extrap-16

olate well to systems unlike those used to parameterize17

them [2]. Recent machine-learned, semi-empirical DFAs18

[3, 4] which incorporate a greater number of exact con-19

straints have overcome some of the limitations inher-20

ent to empiricism. A semi-empirical, “human-learned”21

non-local DFA using a small number of parameters has22

been shown to rival highly-parametrized empirical DFAs’23

descriptions of thermochemical reactions [5], supporting24

this analysis. However, we will primarily discuss first-25

principles DFAs.26

The most widely-known first-principles DFAs at the27

time of writing are the local spin density approxima-28

tion (LSDA), and the Perdew-Burke-Ernzerhof general-29

ized gradient approximation (PBE GGA or PBE) [6].30

Both DFAs satisfy subsets of all known behaviors of the31

exact Exc: the Exc of a uniform electron gas, spin-scaling32

of Ex [7], the behaviors of Ex and Ec under uniform scal-33

ing of the position vector r[8–10], among others.34

LSDA and the gradient expansion approximation35

(GEA) [1, 11–13] were the first two DFAs to be pro-36
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posed (simultaneously). The LSDA gives the exact Exc37

of a uniform electron gas, and is the zeroth-order ap-38

proximation to the Exc of a slowly-varying electron gas.39

The GEA of a given order describes the exact response40

of a uniform electron gas to a static, long-wavelength41

perturbation [14] (a slowly-varying electron gas). While42

LSDA generally provides an accurate starting point for43

describing simple systems, the ungeneralized GEA offers44

no systematic correction to the LSDA [15–17].45

To quantify “slowly-varying,” we define a few dimen-46

sionless variables (in Hartree atomic units, e2 = me =47

~ = 1, unless otherwise specified). The appropriate48

length scale for the exchange energy is the Fermi wavevec-49

tor50

kF(n) =
[
3π2n(r)

]1/3
. (1)

Then let51

p(n, |∇n|) =

[
|∇n(r)|

2kF(r)n(r)

]2

(2)

be a squared dimensionless gradient of the density, and52

q(n,∇2n) =
∇2n(r)

4[kF(r)]2n(r)
(3)

be a dimensionless Laplacian of the density on this length53

scale. For a uniform density, p = q = 0. Let the positive54

definite kinetic energy density be55

τσ =
1

2

∑
i

fiσ|∇φiσ(r)|2, (4)

with integer occupancies fiσ = 0, 1. We also define a56

dimensionless kinetic energy variable57

α(n, |∇n|, τ) =
τ(r)− τW(n, |∇n|)

τunif(n)
, (5)
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which depends upon the Weizsäcker kinetic energy den-58

sity59

τW(n, |∇n|) =
|∇n(r)|2

8n(r)
, (6)

and the uniform electron gas, or Thomas-Fermi, non-60

interacting kinetic energy density61

τunif(n) =
3

10
k2

F(n)n(r). (7)

α = 1 for a uniform density. Thus, a density is considered62

slowly-varying when63

p� 1 and |q| � 1 and |1− α| � 1. (8)

Approximating α using p and q will be the primary64

topic of this work; thus we discuss a few rigorous prop-65

erties of α. α → 0 when τ approaches its lower bound,66

τW [18]. α = 0 uniquely identifies single-orbital densities67

where τ = τW exactly. A single-orbital (or “iso-orbital”)68

density has only one occupied spatial orbital, such as69

a fully spin-polarized one electron density, or a spin-70

unpolarized two-electron density. Density variables such71

as α that uniquely recognize single-orbital regions are72

often called iso-orbital indicators. For a slowly-varying73

density, τ has a known gradient expansion like the GEA74

[19]. These known limits are important, as they permit τ -75

meta-GGAs (T-MGGAs) to be essentially exact for typ-76

ical one- and two-electron densities and slowly-varying77

ones [20]. Here, “typical” refers to compact, un-noded78

[21] one-electron densities. Such a balanced description79

between finite and extended systems is not possible when80

using only p and q, as we shall demonstrate.81

A meta-GGA that depends on α of Eq. 5 can mis-82

takenly identify intershell regions in atoms as slowly-83

varying [22]. The same behavior will be demonstrated84

for a Laplacian-level meta-GGA (LL-MGGA). To make85

an indicator like α that better distinguishes between fi-86

nite and extended systems, one must consider the first87

and second derivatives of τ , ∇τ and ∇2τ respectively, in88

addition to those of n [22]. DFAs with all those ingre-89

dients are not currently available and are challenging to90

construct or use.91

Most common LL-MGGAs are “de-orbitalizations” of92

T-MGGAs. These orbital-free meta-GGAs replace the93

analytic expression for τ with an approximate form94

τ̃σ(nσ, |∇nσ|,∇2nσ) that may be constrained to recover95

exact constraints.96

The most popular correlation GGA in the quantum97

chemistry community, due to Lee, Yang, and Parr (LYP)98

[23], was originally cast as an empirical LL-MGGA.99

Miehlich et al. [24] demonstrated that an integration by100

parts, such as that used in Appendix B, could eliminate101

the density-Laplacian in favor of the density-gradient,102

yielding a conventional GGA. This latter GGA form is103

generally called LYP, and the Laplacian-dependent vari-104

ant is not commonly used. Other authors [25, 26] have105

built upon LYP to derive Laplacian-dependent exchange106

and correlation DFAs.107

Similarly, the exchange density matrix expansion108

(DME) of Negele and Vautherin [27], originally derived109

in the context of nuclear Hartree-Fock theory, leads [28]110

to an exchange energy density111

eDME
x (n, p, q, α)

eLDA
x (n)

= 1 +
35

27
(q − p) +

7

9
(1− α), (9)

with eLDA
x = −3kFn/(4π) the local density approxima-112

tion (LDA) for exchange. The DME was generalized and113

the q-dependence removed to construct the Van Voorhis-114

Scuseria (VS98) [29] and the M06-L [30] empirical meta-115

GGAs. More recently, a similar q-independent general-116

ization of the DME was used to construct the Tao-Mo117

meta-GGA [31].118

As will be discussed further, no single level of approx-119

imation (GGA, meta-GGA, etc.) in practical DFT can120

describe all systems with the same level of accuracy. This121

has been demonstrated empirically, for example, in the122

derivations of the PBEsol [32] and PBEmol [33] GGAs.123

PBE, PBEsol, and PBEmol all use the same Becke 1986124

[34] form for the exchange enhancement factor125

Fx(p) ≡ ex(n, p)

eLDA
x (n)

= 1 + κ− κ

1 + µp/κ
. (10)

In all three variants, κ = 0.804 to enforce an exact con-126

straint [6]. The PBE GGA, which sets µ = 0.21951, does127

not recover the correct second-order GEA coefficient for128

exchange (10/81), but does so for correlation. This choice129

is understood to improve PBE’s description of atomic130

and molecular properties at the expense of those of solids131

[32, 35]. By contrast, PBEsol [32], which sets µ = 10/81,132

recovers the second-order GEA coefficient for exchange,133

but not correlation, and tends to describe solids well, at134

the expense of atoms and molecules. PBEmol improves135

slightly [33] upon PBE’s description of molecules by set-136

ting µ = 0.27583 to recover the hydrogen atom exchange137

energy, thereby defining another GGA extreme. PBE is a138

“middle-path” GGA, describing finite and extended den-139

sities with reasonable accuracy, but is not competitive140

with either extreme (PBEmol and PBEsol, respectively)141

in either category.142

Similar but less severe limitations also appear at the143

meta-GGA level. For example, the strongly constrained144

and appropriately normed (SCAN) [20] and regularized-145

restored SCAN (r2SCAN) [36] T-MGGAs have achieved146

remarkable successes, not only for molecules, but also147

for semiconducting and insulating solids and liquids [37–148

43], including strongly-correlated ones [44–47]. But these149

T-MGGAs tend to predict unit cell magnetic moments150

that are somewhat too large compared to GGA predic-151

tions and experiment [48–50]. SCAN also tends to pre-152

dict longer lattice constants and smaller cohesive energies153

in alkali metals than PBE [51], thereby providing a less154

correct description of simple metals. Curiously, Ref. [52]155

found that SCAN predicts formation of a monovacancy156

in Pt to be energetically favorable.157
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PBE also describes the formation energies ∆Ef of158

many intermetallic alloys, such as HfOs, ScPt, and VPt2,159

more accurately than SCAN [53], although the PBE160

formation energies are substantially too large for these161

solids. Kingsbury et al. [54] demonstrated that r2SCAN162

makes modest improvements in ∆Hf of these three solids,163

and generally improves SCAN’s description of formation164

enthalpies for all solids tested. The random phase ap-165

proximation (RPA, which depends upon the occupied166

and unoccupied orbitals) predicts slightly more accurate167

formation energies for HfOs and ScPt than SCAN [55].168

For the convenience of the reader, we have compiled the169

results of Refs. [53] and [54] in Sec. IV F.170

A GGA is more nonlocal than the LSDA, because the171

existence of a derivative is conditioned upon the continu-172

ity of a function in the immediate neighborhood of a point173

r. Likewise, both variants of meta-GGAs are more non-174

local than GGAs, as these include higher-order deriva-175

tives of the density or Kohn-Sham orbitals. However,176

because the Kohn-Sham orbitals are highly-nonlocal, im-177

plicit functionals of the density, a T-MGGA is more non-178

local than an LL-MGGA. The exchange-correlation en-179

ergy functional of a semi-local (SL) DFA (LSDA, GGA,180

or meta-GGA) can be written as181

ESL
xc [n↑, n↓] =

∫
exc(n↑, n↓, ...; r)d3r, (11)

where the exchange-correlation energy density exc(r) de-182

pends explicitly only on local variables: nσ(r), ∇nσ(r),183

∇2nσ(r), τσ(r), etc. A hybrid functional, which includes184

some fraction of single-determinant exchange in its en-185

ergy density exc186

ehybrid
xc (r) = (1− a)eSL

xc (r) + eSL
c (r) (12)

− a

2

∑
σ

∫
|ρ1(rσ, r′σ)|2

|r − r′|
dr′,

is a non-local functional of the Kohn-Sham orbitals187

φiσ(r) through the reduced one-body density matrix188

ρ1(rσ, r′σ′) = δσ,σ′

∑
i

φ∗iσ(r)φiσ(r′)θ(εF − εiσ). (13)

δij = 1 if i = j and 0 if i 6= j is the Kronecker delta,189

and θ(x < 0) = 0, θ(x > 0) = 1 is the step function.190

Single-determinant exchange using Eq. 13 delivers the191

exact exchange energy (a = 1 in Eq. 12).192

Itinerant electron magnetism appears to be best de-193

scribed by more local DFAs. As shown elsewhere [48–50]194

and here, LSDA, non-empirical GGAs, and LL-MGGAs195

tend to better predict transition metal magnetic prop-196

erties than do T-MGGAs. Global hybrids, which use a197

constant parameter a in Eq. 12, are much more nonlocal198

and thus even less accurate than meta-GGAs for tran-199

sition metal magnetism [56]. Range-separated hybrids,200

generalizations of global hybrids that separate the short-201

and long-range components of the Coulomb interaction,202

also tend to predict markedly worse equilibrium proper-203

ties (e.g., lattice constants and bulk moduli) for struc-204

turally simple metals than they do for similarly simple205

insulators [57]. To the best of our knowledge, no study206

of extended systems using local hybrids, which use a func-207

tion a(r) in Eq. 12 (and may also be range-separated),208

has been undertaken. As meta-GGAs and global hybrids209

are more non-local, it stands to reason that the exchange-210

correlation holes of elemental transition metals may be211

surprisingly local, with the gradient terms of GGAs and212

LL-MGGAs offering meaningful corrections to LSDA.213

Why does the exact density functional for the214

exchange-correlation energy display a weaker nonlocal-215

ity in metallic solids than in molecules and non-metallic216

solids? A clue is provided by the exact expression [58, 59]217

Exc =
1

2

∫
d3r n(r)

∫
d3r′

nxc(r′, r)

|r′ − r|
, (14)

where nxc(r′, r) is the density at r′ of the coupling-218

constant-averaged exchange-correlation hole around an219

electron at r. Starting from the exact exchange hole, cor-220

relation makes the exchange-correlation hole more nega-221

tive at r′ = r, with a faster decay to zero as |r′−r| → ∞.222

At long range, the exchange hole density in a solid is223

screened (divided) by a dielectric constant which is fi-224

nite in non-metals but infinite in metals. In the uni-225

form electron gas [60], for example, the exact exchange226

hole density (averaged over oscillations) at long range de-227

cays as |r′ − r|−4, while the exact exchange-correlation228

hole density (averaged over oscillations) decays much229

faster as |r′ − r|−8. As the exact exchange-correlation230

hole becomes deeper and more localized around its elec-231

tron, the exact exchange-correlation energy functional232

becomes less non-local in the electron density. For ex-233

ample [61], the optimum fraction a of exact exchange234

in a global hybrid functional is the inverse of a long-235

wavelength dielectric constant, and vanishes for a metal.236

Thus, highly nonlocal information (e.g., the fundamental237

energy gap, the dielectric constant, or the descriptors of238

Ref. [22]) is required to determine the level of nonlocality239

needed in an approximate density functional.240

The search for a computationally efficient DFA that is241

highly accurate for nearly all systems of interest has not242

yet found an unequivocal choice. It has, however, shown243

that inclusion of exact constraints is perhaps the single244

most powerful aspect of DFA design [62]. In this work, we245

derive an orbital-free LL-MGGA and determine its accu-246

racy for a diverse set of common solid-state systems. Sec-247

tion II reviews extant LL-MGGAs and motivates the new248

model derived in Sec. III. Section IV applies this model249

to real solids: their structural properties in Sec. IV B;250

itinerant electron magnetism in Sec. IV C; bandgaps of251

insulators in Sec. IV D; formation of a monovancancy252

in Pt in Sec. IV E; intermetallic formation enthalpies in253

Sec. IV F; and alkali metals in Sec. IV G. Section IV H254

presents a test of molecular atomization energies. A dis-255

cussion of machine learning applications to LL-MGGAs256

is given in Sec. V.257



4

II. ORBITAL-FREE META-GGAS258

Orbital-free variants of T-MGGAs may be the most259

common LL-MGGAs to date. Finding a suitable re-260

placement for τ in terms of the density and its spatial261

derivatives alone permits, in principle, highly-accurate262

and computationally-efficient calculations within stan-263

dard Kohn-Sham theory. Early attempts, such as that264

of Perdew and Constantin [63], proposed de-orbitalized265

meta-GGAs but provided no self-consistent tests. Later266

works [64, 65] in the context of subsystem DFT suc-267

cessfully proposed semi-local, orbital-free approximations268

of τ for use in calculating the meta-GGA embedding269

potential. However, as noted in Ref. [65], a semi-270

local model of τ in subsystem-DFT only needs to ac-271

curately capture non-additive interactions between inde-272

pendent subsystems, which primarily involve the valence273

electrons. More recently, Mej́ıa-Rodŕıguez and Trickey274

[66, 67] have pioneered a general-purpose, self-consistent275

“de-orbitalization” procedure to replace the analytic τ276

with an approximate expression. Their work is the inspi-277

ration for ours.278

This construction has two primary benefits: a more279

localized exchange-correlation hole, and potential for280

greater numerical efficiency [68]. We posit that the more281

localized exchange-correlation holes of metals, includ-282

ing “atypical metals”, are unexpectedly local, a sugges-283

tion made long ago [69]. Thus meta-GGAs like SCAN284

and r2SCAN tend to make their holes too non-local,285

and more insulator-like. Indeed, Ref. [68] demonstrates286

that orbital-free versions of SCAN and r2SCAN predict287

smaller magnetic moments in ferromagnets (when eval-288

uated at the same geometry), and that the orbital-free289

variants tend to predict more accurate lattice constants of290

simple metals. However, the orbital-free variants worsen291

the cohesive energies of simple metals, presumably be-292

cause these energy differences involve atoms as well as293

metallic solids.294

Mej́ıa-Rodŕıguez and Trickey have shown [68] that an295

orbital-free version of r2SCAN, called r2SCAN-L, has296

a computational cost similar to PBE in solids, but is297

less accurate than r2SCAN for describing their equi-298

librium properties. We construct a similarly-efficient299

LL-MGGA that accurately describes solids (particularly300

metals) by restoring the gradient expansion to an orbital-301

free r2SCAN.302

The Perdew-Constantin (PC) [63] model approximates303

τ using an enhancement factor similar to that of semi-304

local exchange energies,305

τ̃(n, p, q) = τunif(n)FPC
s (p, q). (15)

We use the “s” subscript to indicate a single-electron306

property, i.e., Fs is used to approximate the non-307

interacting kinetic energy density of a spin-unpolarized308

system. Such a description is useful because the kinetic309

energy and exchange energy share the same spin-scaling310

relationship [7]311

Ts[n↑, n↓] =
1

2
(Ts[2n↑] + Ts[2n↓]) . (16)

For sufficiently slowly-varying densities,312

lim
p�1
|q|�1

FPC
s (p, q)→ FSVL = 1+

5

27
p+

20

9
q+∆+O(|∇n|6),

(17)
where ∆ stands for generalized fourth-order gradient ex-313

pansion terms. Because it employs only the variables314

p and q, the Perdew-Constantin model recovers only the315

second-order gradient expansion of τ and (via integration316

by parts) the fourth-order gradient expansion of Ts.317

For iso-orbital regions,318

FPC
s (p, q)→ FW = 5p/3 = τW/τunif. (18)

To approximately recover the iso-orbital limit of τ , the319

PC model interpolates between these limits320

FPC
s (p, q) = FW + ∆PCfab(∆

PC) (19)

∆PC = FSVL − FW. (20)

From Eq. (5), ∆PCfab(∆
PC) approximates α. The PC321

interpolation function is a smooth, non-analytic two-322

parameter function323

fab(z) =


0, z ≤ 0[

1+g1a(z)
g2a(z)+g1a(z)

]b
, 0 < z < a

1, z ≥ a
(21)

g1a(z) = exp

(
a

a− z

)
(22)

g2a(z) = exp
(a
z

)
. (23)

The parameters a = 0.5389 and b = 3 were deter-324

mined [63] by fitting to the kinetic energies of neutral325

atoms, ions, and jellium clusters; we will discuss the lat-326

ter system further in this work. The PC model assumes327

that ∆PC ≤ 0 indicates an iso-orbital density, and that328

∆PC ≥ a indicates a sufficiently slowly-varying density.329

For a uniform density, ∆PC = 1. Thus, a < 1 is needed330

to recover both the uniform density limit of τ and its331

low-order gradient expansion for weakly-inhomogeneous332

densities.333

If a < 1, as in the Perdew-Constantin work [63], then334

fab(∆
PC)→ 1− 40p/27 + 20q/9 + ∆ +O(|∇n|6), (24)

because335

dkfab
d(∆PC)k

∣∣∣∣
∆PC=1

= 0 (25)

for all k ∈ N+. However, if a > 1, as in the Mej́ıa-336

Rodŕıguez and Trickey re-parameterization (MRT or337
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PCopt) [66] of the PC functional, then fab no longer has338

a correct Taylor series about ∆PC = 1,339

fab(∆
PC) =fab(1) + f ′ab(1)(∆PC − 1) (26)

+O[(∆PC − 1)2].

The MRT parameters are a = 1.784720 and b = 0.258304;340

then the coefficients in the Taylor series of fab(∆
PC) are341

fab(1) =

{
1 + g1a(1)

g2a(1) + g1a(1)

}b
≈ 0.906485 (27)

f ′ab(1) = b

{
1 + g1a(1)

g2a(1) + g1a(1)

}b−1

×
{
g′1a(1)[g2a(1)− 1]− g′2a(1)[1 + g1a(1)]

[g1a(1) + g2a(1)]2

}
≈ 0.353363. (28)

For reference,342

g′1a(z) =
a

(a− z)2
g1a(z) (29)

g′2a(z) = − a

z2
g2a(z). (30)

Note that ∆PC − 1 = O(|∇n|2), and (∆PC − 1)2 =343

O(|∇n|4) to lowest order. As f ′ab(1) 6= 0 in the MRT344

model, the gradient expansion of the MRT τ no longer345

agrees with the known expansion, including the LSDA346

(uniform density) term,347

τMRT(n, p, q) = [0.906485 + 1.143167p

+0.785250q +O(|∇n|4)
]
τunif(n). (31)

Compare this to the exact expansion [19]348

τGEA(n, p, q) = [1 + 0.185185p

+2.222222q +O(|∇n|4)
]
τunif(n). (32)

The incorrect zeroth-order term in τMRT was identified349

in Ref. [66], but its relevance to the gradient expansion350

of τ was not. Replacing the exact τ in SCAN or r2SCAN351

by τMRT yields SCAN-L [66] or r2SCAN-L [68].352

It has been shown, by the r2SCAN authors and by353

many others [70–74] that the uniform density limit is354

critical for describing solid-state properties, molecular at-355

omization energies, and molecular formation enthalpies.356

The gradient expansion is expected to be particularly rel-357

evant to metals. The present work parallels the restora-358

tion of the uniform density and gradient expansion con-359

straints to the rSCAN T-MGGA [75] by r2SCAN [36].360

The loss of the correct uniform density and gradi-361

ent expansion constraints reduces the accuracy of an362

orbital-free meta-GGA when applied to jellium proto-363

types of solids. Table I compares the XC surface for-364

mation energies calculated for the planar jellium sur-365

face and clusters from two τ meta-GGAs, SCAN [20]366

and r2SCAN [36], with their deorbitalized counterparts367

SCAN-L [66, 67] and r2SCAN-L [68]. It is clear that368

SCAN and r2SCAN provide reasonably accurate descrip-369

tions of the jellium surface formation energies, while their370

deorbitalized counterparts do not.371

III. NEW MODEL OF THE KINETIC ENERGY372

DENSITY373

We now sketch the derivation of a simplified Laplacian-374

level model of τ , which is reasonably smooth and numer-375

ically stable. Previous works attempting to construct an376

exchange enhancement factor with the density Laplacian377

demonstrated [79] that the exchange-correlation poten-378

tial379

vxc(r) =
∂exc

∂n
−∇ ·

(
∂exc

∂∇n

)
+∇2

(
∂exc

∂∇2n

)
(33)

is easily destabilized when the “curvature” term, right-380

most in Eq. (33), is not well-constrained. Note that exc381

is the exchange-correlation energy density, the integrand382

of the exchange-correlation energy functional. It is not383

possible to eliminate all oscillations induced by this term384

into the Kohn-Sham potential, but these can be miti-385

gated.386

The Perdew-Constantin expression for the kinetic en-387

ergy density enhancement factor Fs interpolates between388

the rigorous lower bound389

FW =
5

3
p ≤ Fs (34)

and a regulated fourth-order gradient expansion for τ ,390

whose asymptotic limit is 1 + 5p/3. The “asymptotic391

limit” is defined by p, |q| → ∞ and typified by, e.g., a392

density tail. Here, we will interpolate between the iso-393

orbital or von Weizsäcker limit and the slowly-varying394

or second-order gradient expansion limit. Other choices395

are more suitable for atoms [80, 81], but solid and liquid396

metals are the targets of our work.397

A set of “appropriate norms” (see Sec. III A) could398

provide information about how best to extrapolate be-399

yond these two limits, in line with the construction of400

SCAN and r2SCAN. However, an interpolation between401

these two limits suffices for an accurate description of402

solids. Section V presents a less numerically-stable model403

for τ that extrapolates beyond these limits by fitting to404

appropriate norms.405

To recover the second-order gradient expansion for the406

exchange and correlation energies in r2SCAN, and the407

fourth-order gradient expansion for the exchange energy408

in SCAN, an approximate τ̃ must recover the second-409

order gradient expansion of τ . Therefore, we aim to re-410

cover only the second-order gradient expansion of τ , and411

not the fourth-order gradient expansion of Ts. However,412

as shown in App. B, we restore the fourth-order gra-413

dient expansion for the exchange energy to r2SCAN by414

constraining the fourth-order terms in τ̃ .415

From Eq. (5),416

α(r) = Fs −
5

3
p. (35)

0 ≤ α <∞ is positive semi-definite, therefore we make a417
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SCAN SCAN-L r2SCAN r2SCAN-L
Surface Cluster Surface Cluster Surface Cluster Surface Cluster

rs = 2 3448 3424 3173 3072 3288 3299 3245 2863
rs = 3 789 791 709 689 753 761 740 646
rs = 4 274 277 242 235 262 266 257 223
rs = 5 120 123 104 102 115 118 113 98
MAPE 2.51 3.35 8.39 10.96 2.79 2.62 3.60 15.97

TABLE I. Jellium surface formation energies σxc in erg/cm2 computed for two meta-GGAs, SCAN [20] and r2SCAN [36],
and their de-orbitalized counterparts SCAN-L [66, 67] and r2SCAN-L [68]. Surface formation energies are calculated from
LSDA reference densities for both the planar surface and the liquid drop model applied to spherical jellium clusters. The mean
absolute percentage errors (MAPEs) are computed with respect to RPA+ values [76, 77], as motivated in the text. As 1 hartree
≈ 27.211386 eV [78], 1 erg/cm2 ≈ 0.0624151 meV/Å2.

model of α with the same range as the true variable418

α̃RPP(x) =

 0, x < 0
x4(A+Bx+ Cx2 +Dx3), 0 ≤ x ≤ x0

x, x > x0

(36)

x(p, q) = 1− 40

27
p+

20

9
q + c3p

2e−|c3|p (37)

+ x4(p, q) exp

[
−
(
p

c1

)2

−
(
q

c2

)2
]

x4(p, q) = bqqq
2 + bpqpq + (bpp − c3)p2 (38)

FRPP
s (p, q) =

5

3
p+ α̃RPP(x(p, q)) (39)

We call this model RPP for “r2SCAN piecewise-419

polynomial”. Here, A, B, C are determined by requiring420

that α̃(x) is continuous up to its third derivative in x at421

x = x0,422

A = 20/x3
0 (40)

B = −45/x4
0 (41)

C = 36/x5
0 (42)

D = −10/x6
0. (43)

0 < x0 < 1, c1, c2, and c3 are model parameters deter-423

mined by minimizing the residuum errors of a set of ap-424

propriate norms, described below. Their optimal values425

are426

x0 = 0.819411 (44)

c1 = 0.201352 (45)

c2 = 0.185020 (46)

c3 = 1.53804 (47)

By construction, α̃(x) is a C3 function for all x. While we427

model α as α̃RPP, the actual quantity used to deorbitalize428

a meta-GGA is429

τRPP(n, p, q) = τunif(n)FRPP
s (p, q), (48)

with FRPP
s given by Eq. 39. When τRPP is used to de-430

orbitalize a T-MGGA, the resultant XC potential will431

0 1 2 3 4 5
p

0

2

4

6

8

F s
(p
,q
)

FW

q=-0.25

q=0

q=1

q=3

FIG. 1. The RPP kinetic energy density enhancement factor
of Eq. (39) compared to the Weizsäcker lower bound FW =
5p/3. For q . −0.25, FRPP

s (p, q) ≈ FW(p).

be continuous. bqq ≈ 1.801019, bpq ≈ −1.850497, and432

bpp ≈ 0.974002 enforce the fourth-order gradient expan-433

sion for the exchange energy (GEX4); exact expressions434

are given in App. B. The Perdew-Constantin expression435

is a “smooth non-analytic function,” a C∞ function that436

has Taylor series with zero radius of convergence about437

at least one point (z = 0, a in the Perdew-Constantin438

model). The current model has a Taylor series of nonzero439

convergence radius about x = 0, x0. Figure 1 plots the440

enhancement factor over a range of p typical for atoms441

and molecules (where the energetically important regions442

have 0 ≤ p ≤ 9).443

τRPP is intended for use in the r2SCAN meta-GGA.444

The numerical stability and general accuracy of r2SCAN445

make it a good candidate for this kind of work, as noted in446

Ref. [68]. As r2SCAN is still a relatively new meta-GGA,447

we briefly review its construction here. The interested448

reader is encouraged to review Refs. [36, 62] for a more449
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detailed presentation. SCAN, while broadly accurate,450

tends to need dense numerical grids for performing self-451

consistent calculations [38].452

The rSCAN meta-GGA of Bartók and Yates [75] at-453

tempted to remedy these issues by replacing the iso-454

orbital indicator used in SCAN, α, with a regularized455

indicator that tends to zero in density tails (where α456

diverges [82]), and by making the switching functions in457

SCAN, Eq. 9 of Ref. [20], with a less-oscillatory function.458

These modifications, while effective in improving the nu-459

merical performance of SCAN, broke exact constraints460

underpinning the construction of SCAN [62]. The abla-461

tion of these constraints in rSCAN resulted in marked462

increases in computed atomization energy errors [71], for463

example.464

The r2SCAN meta-GGA [36] was constructed to main-465

tain the numerical efficiency of rSCAN, but with accu-466

racy comparable to SCAN. This was accomplished by467

using an iso-orbital indicator,468

α =
τ − τW

τunif + η τW
= α

[
1 +

5

3
ηp

]−1

, (49)

where η = 0.001. α decays to zero in s-like density469

tails. Furthermore, the slowly-varying limit (see Eq. 8)470

of rSCAN was modified to ensure recovery of the gradient471

expansion constraints [62].472

The fourth-order terms in x(p, q) restore the GEX4473

terms to r2SCAN. The damped x4(p, q) term is mod-474

eled after the r4SCAN meta-GGA [62]. This meta-GGA475

restores the GEX4 to r2SCAN using the exact τ , at476

the price of some numerical stability and general accu-477

racy. We noticed in our testing that the gradient ex-478

pansion terms need exponential cutoffs, like those used479

in r4SCAN. This is primarily due to the bqqq
2 and bpqpq480

terms, which introduce numerical instabilities if they are481

not strongly regulated. However, the c3p
2 term provides482

more meaningful corrections at large p. For this rea-483

son, the damped c3p
2 term has a much longer tail than484

x4(p, q). We refer to the new orbital-free r2SCAN, in485

which the exact τ is replaced by486

τRPP(n, p, q) = τunif(n)[α̃RPP(p, q) + 5p/3], (50)

as “OFR2,” for orbital-free regularized-restored SCAN.487

Equivalently, one could replace the exact α in the right-488

most equality of Eq. 49 with α̃RPP; we make this dis-489

tinction because r2SCAN depends on α in place of α. Of490

course, the cluster of r2SCAN exact constraints associ-491

ated with the iso-orbital limit τ = τW can be satisfied492

only approximately by OFR2.493

The second-order gradient expansion for τ is unexpect-494

edly accurate in approximating the true τ in solids. Fig-495

ure 2 plots the exact kinetic energy density of the jellium496

surface, second-order gradient expansion for τ , the OFR2497

model derived here (after fitting, described below), and498

the Weizsäcker kinetic energy density for a bulk density499

parameter rs = 2, 4. We see that OFR2 reasonably ap-500

proximates τ in the jellium surface (even in its density501

tail), despite predicting oscillations of too small magni-502

tude and incorrect phase.503

It is also worth noting that SCAN, r2SCAN, and the504

orbital free variants SCAN-L, r2SCAN-L, and OFR2 are505

among the first meta-GGAs to respect the conjectured506

tight bound on the exchange energy of a spin-unpolarized507

density [83],508

Ex[n] ≥ 1.174ELDA
x [n] (51)

where n is an arbitrary density. GGAs like PBE and509

PBEsol [32] respect a more conservative bound [84, 85]510

Ex[n] ≥ 1.804ELDA
x [n]. (52)

A. Appropriate norms511

Reference [20] described the process of selecting sys-512

tems which a DFA tier can describe exactly or with high513

accuracy. This idea had been used previously in, e.g.,514

the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA515

[86], which was constrained to yield the exact exchange516

and correlation energies of the hydrogen atom when ap-517

plied to its exact density. Such auxiliary conditions,518

which may be satisfied by fitting to reference densities,519

are necessary in the absence of a sufficient number of520

known conditions on the exact exchange-correlation en-521

ergy functional (exact constraints).522

We distinguish first-principles DFAs, which build in all523

possible exact constraints prior to determining free pa-524

rameters with appropriate norms, from empirical func-525

tionals. Empirical functionals need not build in ex-526

act constraints first, however when the fit is done only527

with appropriate norms (e.g., rare gas atoms at the528

GGA level), they often emerge naturally [74, 87]. Semi-529

empirical functionals, like the Becke 1988 exchange GGA530

(B88) [88], build in some constraints prior to determining531

free parameters by fitting to data sets.532

At the LSDA level, the only appropriate norm avail-533

able is the uniform electron gas, for which “The LSDA”534

[1, 89] is exact (as opposed to empirical LSDAs [90]).535

The GGA level can add density-gradient expansions,536

or the lowest-order large-Z coefficients [74, 87] and the537

exchange-correlation energies of closed-shell atoms.538

LL-MGGAs cannot uniquely identify one-electron and539

many-electron regions as T-MGGAs can. Some appro-540

priate norms used to parameterize SCAN [20] (the com-541

pressed Ar dimer; the hydrogen and helium atoms) are542

not appropriate norms for an LL-MGGA, whereas oth-543

ers (the noble gas atoms and jellium surface formation544

energies) are still applicable.545

Thus we select the surface formation energies of546

planar jellium surfaces [91, 92], with rs values typi-547

cal of metals (rs = 2, 3, 4, and 5), and spherical jel-548

lium clusters [77] (with typical magic numbers N =549

2, 8, 18, 20, 34, 40, 58, 92, and 106) as LL-MGGA appro-550

priate norms. From the spherical jellium clusters, we ex-551
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FIG. 2. Plot of the exact τ (solid gray), second-order gradient expansion (GEA2, solid green), the RPP model (dashed blue),
and Weizsäcker (dash-dot orange) kinetic energy density for a jellium surface of bulk density parameter rs = 2, (left) and

4 (right). For a given density parameter rs, τUEG = (27/80)[3/(2π)]1/3[rs]
−5 and λF = 2(2π/3)2/3rs. The uniform positive

background fills the half-space x < 0.

tract surface formation energies σxc(rs) and surface cur-552

vature energies γxc(rs) via the liquid drop model [93]553

Exc

N
=εUEG

xc (rs) + 4πr2
sσxc(rs)N

−1/3

+ 2πrsγxc(rs)N
−2/3. (53)

The surface formation energies extracted from the jel-554

lium clusters will, in general, differ from those extracted555

from the planar surface, although the N →∞ limit of a556

spherical cluster is a planar surface. Density functionals557

that are more sensitive to the shell structure of small-N558

clusters, e.g., SCAN, predict less accurate σxc(rs) values559

extracted from the clusters than the surfaces. Moreover,560

to limit the effects of shell-structure oscillations, we al-561

ways fit the difference (Eapprox
xc −ELSDA

xc )/N , as described562

in Ref. 77.563

Plots of the self-consistent LDA planar jellium surface564

and jellium cluster densities for bulk background density-565

parameter rs = 4 bohr can be found in Figs. 3 and 4,566

respectively. These figures also plot the iso-orbital indica-567

tor α computed self-consistently with the LDA, and com-568

puted with the second-order gradient expansion (GE2)569

approximation for α,570

αGE2 = 1− 40

27
p+

20

9
q. (54)

In these figures, p and q are computed from self-consistent571

LDA quantities. When the GE2 is a reasonable approxi-572

mation to α, as for the planar surface in Fig. 3, a system573

can be considered slowly-varying, provided that p and |q|574

4 3 2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

rs=4

n(x)/n
n+ (x)

4 3 2 1 0 1 2
x/ F

1

2

3

4

5

(x
)

Exact
GE2

FIG. 3. Upper: plot of the self-consistent LDA planar jel-
lium surface density (blue, solid), scaled by the density of
the corresponding bulk jellium n = 3/(4πrs

3). Also shown
is the neutralizing positive background (gray, dotted), which
terminates at x = 0. Lower: plot of the self-consistent LDA
α = (τ−τW)/τunif (blue, solid) and the second-order gradient
expansion (GE2) approximation for αGE2 = 1−40p/27+20q/9
(orange, dot-dashed). Positions are scaled by the bulk Fermi

wavevector λF = 2π[4/(9π)]1/3rs, both plots are for rs = 4.
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0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

n(
r)/
n

rs = 4
n+ (x)
N= 2
N= 20
N= 106

0.5 1.0 1.5 2.0
r/R

0

1

2

3

4

5

(r)

Exact, N= 2
GE2, N= 2
N= 20
N= 106

FIG. 4. Upper: plot of the self-consistent LDA jellium clus-
ter density (blue, solid), scaled by the density of the cor-
responding bulk jellium n = 3/(4πrs

3), for a few values of
N = 2 (blue), 20 (orange), and 106 (green). Also shown
is the neutralizing positive background (gray, dotted), which

terminates at r = R = rsN
1/3. Lower: plot of the self-

consistent LDA α = (τ − τW)/τunif (solid curves) and the
second-order gradient expansion (GE2) approximation for
αGE2 = 1−40p/27+20q/9 (dotted curves). Both plots are for
rs = 4 bohr, as in Fig. 3. The GE2 only becomes relatively
accurate as N > 100.

are both small (which we confirmed, but did not plot for575

reasons of clarity).576

The jellium cluster densities for finite N much more577

closely resemble the densities of atoms (see Fig. 6 in Sec.578

IV) than the planar jellium surface. Indeed, the GE2 ap-579

proximation for α only becomes reasonable for N > 100.580

For N = 2, where the exact α = 0 (iso-orbital), the581

GE2 is wildly off the mark, unphysically making α < 0582

near the cluster’s surface. Thus the jellium clusters in-583

clude much more information about shell-structure than584

the planar jellium surface, helping to balance the perfor-585

mance of OFR2.586

The exchange-correlation energies of the noble gas587

atoms Ne, Ar, Kr, and Xe were also used as appropri-588

ate norms. In these rare-gas atoms, and especially in589

their large-Z limit, the exact exchange-correlation hole590

is reasonably short-ranged. These atoms are needed to591

help RPP/OFR2 deal with nearly-iso-orbital regions like592

those near nuclei. Furthermore, any error of the func-593

tional in the low-density tails of these atoms will be en-594

ergetically negligible. A Python library was written to595

generate self-consistent reference LSDA densities for the596

jellium appropriate norms, and to generate Roothaan-597

Hartree-Fock atomic densities [94]. The library is made598

-0.5 0.0 x0 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

(x
)

RPP
CR
PC
MRT

FIG. 5. Plot of the RPP model α̃(x) of Eq. (36) as a function
of an arbitrary measure of inhomogeneity x, which tends to
one for a uniform density. The Perdew and Constantin (PC)
[63], Cancio and Redd (CR) [80], and Mej́ıa-Rodŕıguez and
Trickey (MRT) [66] models of α̃(x) are also displayed.

available as a public code repository [95].599

To determine the model parameters, the objective600

function601

δ =

√
MAPE2

RGA + MAPE2
JS + MAPE2

JC (55)

where “RGA” stands for the exchange-correlation energy602

of the rare-gas atoms Ne, Ar, Kr, and Xe; “JS” (“JC”)603

stands for the jellium surface (cluster) σxc. MAPE is the604

mean absolute percentage error. For the planar jellium605

surfaces, rs ∈ {2, 3, 4, 5} were used; for the jellium clus-606

ters, rs ∈ {2, 3, 3.5, 4, 5} were used. The minimization607

was done in two steps: a Nelder-Mead simplex search,608

followed by a tiered grid search to (potentially) refine609

the parameters. The fitting routine stopped when the610

change in the lowest δ over a few iterations stagnated.611

A plot of the α̃(x) function, compared with similar612

models [63, 66, 80], is given in Fig. 5. While the PC,613

MRT, and RPP models do not share a common inhomo-614

geneity measure x, they assume that x = 1 indicates a615

uniform density, x → ∞ a density-tail, and x → −∞616

a core. Thus we can compare them using an arbitrary617

inhomogeneity measure x. The Cancio-Redd model618

α̃CR(zCR) = 1 + zCR{1− exp[−1/|z|a]}1/aΘ(−zCR)

+ zCRΘ(zCR) (56)

zCR = −40

27
p+

20

9
q (57)

Θ(z) =

{
1 z ≥ 0
0 z < 0

(58)

with a = 4, tends to its uniform density limit when its619

inhomogeneity measure zCR tends to zero, unlike the PC,620
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Atomic Norm Reference
(hartree)

OFR2
(hartree)

Percent
error

Ne -12.499 -12.229 -2.16%
Ar -30.913 -30.326 -1.90%
Kr -95.740 -94.308 -1.50%
Xe -182.202 -179.837 -1.30%

MAPE 1.71%
Jellium sur-
face rs (bohr)

Reference
(erg/cm2)

OFR2
(erg/cm2)

Percent
error

2 3413 3336 -2.25%
3 781 764 -2.16%
4 268 265 -1.19%
5 113 116 2.25%

MAPE 1.96%
Jellium clus-
ter rs (bohr)

Reference
(erg/cm2)

OFR2
(erg/cm2)

Percent
error

2 3413 3363 -1.47%
3 781 769 -1.57%
3.25 582 578 -0.84%
4 268 265 -1.05%
5 113 116 2.98%

MAPE 1.58%

TABLE II. Performance of the new orbital-free r2SCAN
(OFR2) for the appropriate norms. The reference atomic
exchange-correlation energies are taken from Refs. [70, 96],
respectively. Reference jellium surface exchange-correlation
formation energies are taken from the RPA+ values of Ref.
[76], and when needed, the fit to RPA+ data of Ref. [77].

MRT, and RPP models. Thus we plot α̃CR as a function621

of x ≡ zCR + 1, where x→ 1 indicates a uniform density.622

The RPP model recovers the fourth-order gradient ex-623

pansion for exchange when combined with r2SCAN. The624

RPP, PC, and CR models all recover the second-order625

gradient expansion for τ by construction, whereas the626

MRT model does not. This is seen in Fig. 5 by noting627

that α̃(x ≈ 1) ≈ x.628

Table II shows the appropriate norms errors used to629

determine x0, c1, c2, and c3 (Eqs. 44–47). We use the630

RPA+ [76], and the fit from Ref. [77] as needed, as refer-631

ence values for σxc. The RPA alone accounts for 100% of632

exact exchange and the long-range part of correlation in a633

metal like the jellium surface. The RPA+ makes a GGA-634

level correction to the RPA correlation energy at short635

range. Thus the values of σxc found with the RPA+ are636

comparable to higher-level methods like the Singwi-Tosi-637

Land-Sjölander self-consistent spectral function method638

[97], or careful quantum Monte Carlo (QMC) calculations639

of finite jellium surfaces [98]. Reference atomic exchange640

energies are taken from Ref. [70], and correlation energies641

from Ref. [96].642

IV. PERFORMANCE FOR REAL SYSTEMS643

OFR2 is constructed to accurately describe metallic644

densities. While this is a niche goal, T-MGGAs ade-645

quately describe non-metallic densities, but exhibit too646

much non-locality for simple metallic solids. This deficit647

can be rectified by an LL-MGGA like OFR2.648

Panels (a) and (b) of Fig. 6 plot p, q, and α in the Cr649

atom for the up- and down-spin densities, respectively.650

Note the similarity of p and q outside the 1s shell of651

the atom. In the region 0.07 . r . 2 bohr, both p652

and |q| are less than one, and there are numerous points653

where α = 1. The density in this region would thus be654

characterized as approximately slowly-varying or metallic655

by a T-MGGA. We define the spin-dependent variables656

as657

pσ = p(2nσ) = 2−2/3 |∇nσ|2

4(3π2)2/3n
8/3
σ

(59)

qσ = q(2nσ) = 2−2/3 ∇2nσ

4(3π2)2/3n
5/3
σ

(60)

ασ = α(2nσ, 2τσ) = 2−2/3 τσ − |∇nσ|2/(8nσ)

3(3π2)2/3n
5/3
σ /10

, (61)

i.e., the density variables as seen by the exchange energy658

using its spin-scaling relation [7].659

Panels (c) and (d) of Fig. 6 plot the errors made in660

approximating α with the MRT model [66] and the RPP661

model, Eq. 39. Because p and |q| are small, the second-662

order gradient expansion (GE2),663

τσ =

(
1 +

20

9
qσ +

5

27
pσ

)
τunif(nσ) (62)

is a reasonable approximation to τ in the region 0.07 .664

r . 2 bohr only. RPP closely follows the GE2 curve in665

this region. These semi-local models of α better describe666

this region than the 1s shell region, where they make667

α vanish too abruptly, or the density tail, where they668

make α diverge too quickly. For the Cr atom, the MRT669

model better approximates ασ than the RPP model of670

this work, except perhaps for the majority (↑) spin in671

the valence region.672

A. Numerical stability673

The LL-MGGA exchange-correlation potential is very674

sensitive to the dependence of exc on the density Lapla-675

cian. Figure 7 demonstrates this for the hydrogen atom676

(α↑ = 0) Kohn-Sham potential, using the exact density677

n(r) = e−2r/π. vxc presents unusual oscillations that678

could be misinterpreted as shell structure. Using this679

density,680

kF(r) = (3π)1/3e−2r/3 (63)

p(r) = k−2
F (64)

q(r) = (1− 1/r)k−2
F . (65)

Similar to the Cr atom in Fig. 6, there is a region near681

r = 1 bohr that an LL-MGGA can mistakenly identify as682
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FIG. 6. Upper: squared dimensionless density gradient p (blue, solid), dimensionless Laplacian q (orange, dashed), and
iso-orbital indicator α (green, dot-dashed) in the Cr atom for the (a) up-spin (↑) density, and (b) down-spin (↓) density. The
density, its derivatives, and kinetic energy density are spherically averaged after sampling 200 azimuthal points on a Gauss-
Legendre grid, using Roothaan-Hartree-Fock Slater-type orbitals from Ref. [99]. Lower: the percent error, 100

(αapprox

α
− 1
)
,

made by the model of α from Ref. [66] (MRT; blue, solid) and the present model, RPP (orange, dashed), for the (c) up-spin
density and (d) down-spin density. Also shown is the second order gradient expansion, GE2 (green, dot-dashed). When p� 1,
|q| � 1, and |1 − α| � 1, the density can be considered slowly-varying, and a semilocal model of τ can be approximately
accurate.

slowly-varying, because p . 1, and |q| ≈ 0. This induces683

an artificial shell structure not seen in the semi-local part684

of the r2SCAN Kohn-Sham potential [36]. A sixth-order685

finite difference was used to evaluate ∇ · [∂exc/∂(∇nσ)]686

and ∇2
[
∂exc/∂(∇2nσ)

]
. The derivatives of exc with re-687

spect to n, ∇n and ∇2n were computed analytically.688

Similarly, Fig. 8 plots the finite difference exchange689

and correlation potentials in a jellium surface with rs = 2,690

for OFR2 and and r2SCAN-L. As in the other calcu-691

lations of the jellium surface, reference LSDA densities692

were used. Both models manifest unphysical oscillations693

in the exchange and correlation potentials, which can be694

compared to the PBEsol potentials shown in Fig. 9 (us-695

ing the same density). PBEsol is expected to yield rea-696

sonable predictions of jellium surface properties by con-697

struction. Despite the alarming appearance of Figs. 7698

and 8, the method used by VASP to solve the general-699

ized Kohn-Sham equations, summarized in Appendix A,700

is numerically efficient and stable. It is clear, without701

plotting the associated electrostatic potential, that the702

oscillations in the LL-MGGA exchange-correlation po-703

tentials will be significant.704

B. Lattice constants705

All solid-state calculations were performed in the Vi-706

enna ab initio Simulation Package (VASP) [100–103],707

version 6.1. We used a Γ-centered k-point mesh of spac-708

ing 0.08 Å−1, with a plane-wave energy cutoff of 800 eV,709

except for a few cases, which we discuss below. Energies710

were converged below 10−6 eV, and calculated using the711

Blöchl tetrahedron method [104]. For reasons of numer-712

ical stability, ADDGRID was set to False. Equilibrium713

structures were determined using the stabilized jellium714

equation of state (SJEOS) [105, 106]. 12 single-point en-715

ergy calculations in a range of (1± 0.1)Vexpt., with Vexpt.716

the experimental (zero-point energy corrected) equilib-717

rium volume were performed. To fit hcp structures (hcp718

Co is discussed in Sec. IV C), we optimized the c/a pack-719

ing ratio at fixed volume, and found the optimal c/a by720

fitting to a reduced SJEOS. All input files can be found721
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FIG. 7. OFR2 Kohn-Sham potential calculated used Eq.
(33) for the up-spin channel, evaluated on the exact density,
n(r) = n↑(r) = e−2r/π (v↓xc = 0 identically for this system).
A 6th order finite difference was used to calculate the requisite
divergence and Laplacian terms. Oscillations are primarily
due to inclusion of the density-Laplacian.

in the code repository.722

Some of the standard VASP pseudopotentials cannot723

accommodate higher plane-wave energy cutoffs. For ex-724

ample, “PAW PBE Ba sv 06Sep2000” (“PAW PBE Pd725

04Jan2005”) can accommodate a maximum energy cutoff726

of about 600 eV (750 eV). Both settings were used here727

instead of the 800 eV cutoff used for the other solids. The728

LL-MGGAs exhibited a strong dependence on the num-729

ber of bands used when the cutoff was exceeded, whereas730

the GGAs and T-MGGAs did not appear to be similarly731

affected.732

Table III displays the relative error statistics in 20733

cubic lattice constants (the LC20 set) [107] made by a734

variety of common, first-principles functionals: PBEsol735

[32] (a benchmark GGA for this property), r2SCAN [36],736

r2SCAN-L [68] and OFR2. Tables XIII and XIV of Ap-737

pendix D present errors in the lattice constants and bulk738

moduli, respectively, for each solid in the LC20 set.739

OFR2 exceeds the performance of r2SCAN and740

r2SCAN-L overall, for both metals and insulators in741

the set of lattice constants. There are unusual cases742

where a LL-MGGA that is designed to mimic its par-743

ent T-MGGA, as r2SCAN-L is, outperforms it: see the744

SCAN and SCAN-L binding energy of hexagonal BN and745

graphite out-of-plane lattice constant in Table VI of Ref.746

[67]. As OFR2 is not designed to mimic r2SCAN, we747

find its superior performance for solid-state geometries748

less surprising. However, r2SCAN and PBEsol predict749

more accurate bulk moduli than do either of the orbital-750

free r2SCAN meta-GGAs.751

The lattice-constant results show the bias inherent in752

each meta-GGA’s construction. r2SCAN-L does not have753
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FIG. 8. The exchange and correlation potential in an rs = 2
jellium surface, evaluated on the same LSDA densities used
previously. The present OFR2 (RPP) (top, 8a) and r2SCAN-
L (MRT) [66] (bottom,8b) LL-MGGA potentials are shown.
The same finite difference coefficients as in Fig. 7 were used
to generate these plots. As before, the edge of the uniform
positive background lies at x = 0, and x is scaled by the bulk
Fermi wavelength, λF = 2π/kF. The potential is scaled by the
corresponding LSDA potential evaluated at the bulk density.

the correct uniform density limit and gradient expan-754

sion constraint that are critical to an accurate descrip-755

tion of metallic condensed matter (those systems most756

like an electron gas with weak variations about a uni-757

form density). One might argue that the 10% violation758

of the uniform density limit (see Eq. 31) is small even759

in the jellium surface exchange-correlation potential plot760

of Fig. 2b. However, it is clear that the loss of this761

limit is indeed important for accurate solid-state geome-762

tries. The data used to fit r2SCAN-L were biased toward763
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FIG. 9. Same as Fig. 8, but plotting the PBEsol exchange
and correlation potentials evaluated on the LSDA density.

finite systems (the 18 lightest neutral atoms were used764

to fit PCopt [66]). OFR2 recovers the uniform density765

limit constraint of r2SCAN, the second-order gradient766

expansion for correlation, and the fourth-order gradient767

expansion for exchange. While the rare gas atoms were768

included in the training set of OFR2, this was done to769

prevent overfitting to the jellium norms, and does not en-770

sure that OFR2 accurately describes finite systems. This771

biases the construction of OFR2 toward solid-state prop-772

erties. Therefore, the r2SCAN-L results show stronger773

performance for the lattice-constants of insulating solids774

than for those of the metals. OFR2 is constructed in the775

spirit of PBEsol, and shows a large gain in performance776

over its parent functional r2SCAN.777

However an obvious question remains: Why do PBEsol778

and OFR2 describe the structures of insulators more ac-779

curately than PBE (a GGA with a slight bias towards780

molecules) and r2SCAN-L? Narrow-gap insulators (e.g.,781

Si, Ge, GaAs), covalently bonded insulators (e.g. C and782

SiC), and “strongly-correlated” monoxides (e.g., MgO)783

have no classical turning surfaces in the Kohn-Sham po-784

tentials near equilibrium, whereas “normally-correlated”785

ionically-bound solids (e.g., LiF, LiCl, NaF, NaCl) do786

[108]. The gradient expansions for the exchange and cor-787

relation energies are semiclassical in nature, and thus can788

only be valid inside a classical turning surface. The lack789

of a turning surface permits these gradient expansions,790

which are preserved in PBEsol and OFR2 but not PBE791

and r2SCAN-L, to have some validity for non-metallic792

solids. There are caveats which we will discuss further in793

Sec. IV G.794

We derive a symmetric expression for the Laplacian795

contributions to the stress tensor in Appendix C. The to-796

tal exchange-correlation stress tensor Σijxc, in a gauge ap-797

propriate for a code with periodic boundary conditions,798

(Å) PBEsol SCAN r2SCAN r2SCAN-L OFR2
Metals

ME -0.044 0.004 0.024 0.011 -0.020
MAE 0.044 0.021 0.033 0.044 0.021

Insulators
ME 0.024 0.004 0.017 0.016 0.005
MAE 0.025 0.008 0.017 0.016 0.014

Total
ME -0.010 0.004 0.020 0.013 -0.007
MAE 0.035 0.015 0.025 0.030 0.018

TABLE III. Mean error (ME) and mean absolute error (MAE)
statistics for 20 common cubic lattice constants (LC20) [107],
all in Å. Subsets of metals and insulators are also shown.
None of the OFR2 calculations failed to converge in the allot-
ted number of self-consistency iterations (200 for each single-
point calculation). Six (of the 240 total) r2SCAN-L calcu-
lations failed to converge to 10−6 eV in 200 self-consistency
steps. Troublesome convergence is a common issue for LL-
MGGAs, and has been observed previously [68]. Reference
experimental equilibrium lattice constants (with zero-point
corrections included) are taken from Ref. [109].

is given by Eq. C18, reprinted here799

Σijxc =

∫ [
(exc − vxcn) δij −

1

|∇n|
∂n

∂ri

∂n

∂rj

∂exc

∂|∇n|
(66)

−2
∂exc

∂∇2n

∂2n

∂ri∂rj

]
d3r.

Here, r1 = x, r2 = y, and r3 = z, exc is the exchange-800

correlation energy density such that Exc =
∫
excd

3r, and801

vxc is the exchange-correlation potential, Eq. 33. To use802

the stress tensor to minimize structures, we used a few803

additional computational parameters, keeping the others804

unchanged. The magnitudes of forces were converged805

within 0.001 eV/Å.806

By setting ISIF = 3, the ion positions, computational807

cell shape, and computational cell volume were permit-808

ted to relax; we verified that no change of symmetry oc-809

curred during the force minimization. Generally, ISIF810

controls which degrees of freedom are permitted to re-811

lax, and if all elements or just the diagonal elements of812

the stress tensor are computed. The minimization algo-813

rithm is controlled by the IBRION setting; we used the814

conjugate gradient algorithm, IBRION = 2. First or-815

der Methfessel-Paxton smearing [110] (chosen by setting816

ISIGMA = 1) with width 0.2 eV was used for the metals817

(and Ge for PBEsol and r2SCAN-L), Gaussian smearing818

of width 0.05 eV was used for the insulators. ISIGMA819

selects a method for smearing electronic states near the820

Fermi level. We refer the reader to the VASP manual821

[111] for further details.822

The mean deviations in the LC20 lattice constants823

found by the equation of state fitting and by minimiza-824

tion of the stress tensor in VASP are presented in Tables825

IV and XV. These tables also present results for PBEsol826
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PBEsol r2SCAN r2SCAN-L OFR2
MD 7.191× 10−4 7.499× 10−4 7.132× 10−3 3.598× 10−3

MAD 2.013× 10−3 1.729× 10−3 8.073× 10−3 4.656× 10−3

TABLE IV. Mean deviation (MD) and mean absolute devi-
ation (MAD) in the LC20 cubic lattice constants found by
equation of state (EOS) fitting to the SJEOS and by min-
imization of the stress tensor (ST). From the PBEsol and
r2SCAN values, these lattice constants should agree to better
than 10−2 Å on average, which is satisfied. The deviations
are aEOS

0 − aST0 .

and r2SCAN to benchmark how closely the lattice con-827

stants found from both methods agree. The Laplacian-828

dependent stress tensor appears to agree to the same level829

of precision as the GGA and T-MGGA stress tensor.830

C. Transition metal magnetism831

As is well known by now [48–50], some of the most so-832

phisticated T-MGGAs predict correct structures for tran-833

sition metals, but too large magnetic moments. Previ-834

ous works studied the simplest ferromagnetic materials:835

body-centered cubic (bcc) Fe, face-centered cubic (Ni),836

and hexagonal close-packed (hcp) Co.837

Table V compares PBEsol, r2SCAN [36], r2SCAN-838

L [68], and OFR2. Consistent with Ref. [50], OFR2839

strikes a balance between the GGA and meta-GGA lev-840

els by providing more accurate geometries than PBEsol,841

and more accurate magnetic moments than r2SCAN.842

r2SCAN-L and OFR2 are comparably accurate for these843

solids.844

D. Bandgaps845

In a standard Kohn-Sham calculation, the exact846

exchange-correlation functional would lead to an under-847

estimation of the fundamental (charge) bandgap equal to848

the “exchange-correlation derivative discontinuity” [113].849

Even though GGAs like PBE may closely approximate850

the exact Kohn-Sham bandgap [108], only functionals de-851

fined within a generalized Kohn-Sham (GKS) theory with852

nonzero derivative discontinuity can realistically estimate853

the observed fundamental bandgap [114]. For this reason,854

some T-MGGAs, which are orbital-dependent and thus855

defined within a GKS theory, can provide surprisingly re-856

liable estimates of the bandgap [115, 116]. Similarly, hy-857

brid functionals reliably predict accurate bandgaps [117],858

as single-determinant exchange is an explicit functional859

of the Kohn-Sham orbitals.860

As LL-MGGAs are standard Kohn-Sham DFAs lacking861

a derivative discontinuity, we expect them to underesti-862

mate the fundamental bandgap. This was shown in Ref.863

[67] using SCAN-L. Table VI tabulates the bandgaps for864

a subset of the LC20 set of solids. To compute the865

bandgap, the equilibrium lattice constants from Table866

Solid
(structure)

Functional a (Å) ms (µB/atom)

Fe (bcc)

PBEsol 2.783 2.094
r2SCAN 2.864 2.64
r2SCAN-L 2.827 2.20
OFR2 2.791 2.12
Expt. 2.855 1.98 – 2.13

Ni (fcc)

PBEsol 3.465 0.620
r2SCAN 3.478 0.74
r2SCAN-L 3.500 0.67
OFR2 3.463 0.66
Expt. 3.509 0.52 – 0.57

a (Å) c/a ms (µB/atom)

Co (hcp)

PBEsol 2.455 1.615 1.57
r2SCAN 2.471 1.623 1.74
r2SCAN-L 2.494 1.623 1.66
OFR2 2.468 1.623 1.63
Expt. 2.503 1.621 1.52 – 1.58

TABLE V. Comparison of structural and magnetic predic-
tions for itinerant electron ferromagnets. Total energies for
r2SCAN and OFR2 are converged to 10−6 eV. Total ener-
gies for r2SCAN-L are converged to 10−4 eV (the default for
VASP); this is done for reasons of numerical stability. The
experimental (expt.) equilibrium cubic lattice constants (a)
are taken from Ref. [109], and experimental zero-temperature
extrapolated lattice constants for hcp Co are taken from Ref.
[112]. The ranges of experimental magnetic moments (ms in
units of the Bohr magneton µB per atom) are taken from Ref.
[48].

XIII were used as input to a single-point total energy867

calculation. From this, the Fermi energy was extracted,868

and a new density of states (DOS) grid was defined cen-869

tered at the Fermi energy, evenly spaced in intervals of870

0.01 eV. The calculation was then repeated with the finer871

DOS grid. A general-purpose functional should be able872

to reliably predict lattice parameters and bandgaps, thus873

we prefer to evaluate the bandgap using each DFA’s re-874

laxed structure.875

Interestingly, OFR2 and r2SCAN-L show no consis-876

tent behavior with respect to gaps. Both LL-MGGAs877

severely underestimate the fundamental gap, but often878

approximate the r2SCAN bandgap well. In Ref. [67],879

it was argued that the closeness of SCAN-L and SCAN880

bandgaps indicated that SCAN-L accurately approxi-881

mated the SCAN optimized effective potential (OEP).882

Recall that the OEP [118] is a general procedure that883

transforms a non-local Kohn-Sham potential operator884

(such as that of a meta-GGA) into a local, multiplica-885

tive potential. We lack a better explanation regarding886

the relative closeness of the r2SCAN, r2SCAN-L, and887

OFR2 bandgaps. As was reported in Ref. [67] for LiH888

computed using SCAN and SCAN-L, there are unusual889

cases where the orbital-free meta-GGA predicts a slightly890

larger bandgap than the parent T-MGGA: r2SCAN-L ap-891

pears to find a slightly larger gap for Si than r2SCAN.892
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Solid PBEsol OFR2 r2SCAN-L r2SCAN Expt. (eV)
Ge 0.00 0.22 0.06 0.31 0.74
Si 0.48 0.70 0.83 0.79 1.17
GaAs 0.42 0.73 0.65 0.94 1.52
SiC 1.24 1.41 1.69 1.74 2.42
C 4.03 4.06 4.23 4.34 5.48
MgO 4.66 5.04 5.41 5.74 7.22
LiCl 6.36 6.93 7.18 7.46 9.40
LiF 9.03 9.57 10.01 10.59 13.60
ME -1.92 -1.61 -1.44 -1.20
MAE 1.92 1.61 1.44 1.20

TABLE VI. Comparison of bandgaps (eV), extracted from
the DOS in VASP. GKS DFAs, like r2SCAN, are expected
to predict more realistic bandgaps than standard Kohn-Sham
DFAs, like PBEsol, OFR2, and r2SCAN-L. DFAs are listed
in anticipated order of predicted bandgap accuracy. Experi-
mental (expt.) values are taken from Ref. [115]. Mean errors
(MEs) and mean absolute errors (MAEs) are also reported.

E. Monovacancy in Platinum893

Reference [52] found that SCAN predicts the forma-894

tion of a monovacancy in Pt to be energetically favorable.895

Here, we compute the equilibrium lattice constants and896

vacancy formation energies of Pt using SCAN, r2SCAN,897

r2SCAN-L, and OFR2. The initial equilibrium lattice898

constants for face-centered cubic (fcc) Pt were found by899

fitting to the SJEOS, using the same computational pa-900

rameters as before. A 2 × 2 × 2 supercell containing 32901

atoms was constructed using that lattice constant, and902

the supercell was allowed to further relax (ISIF = 3, IB-903

RION = 2), using first-order Methfessel-Paxton smearing904

of width 0.2 eV, and forces converged within 0.001 eV/Å.905

The total energy was determined from the relaxed super-906

cell structure using the tetrahedron method (ISIGMA907

= -5). An identical supercell, but with an ion nearest908

the center of the cell removed, was used to model the909

monovacancy, and the same procedure was repeated. An910

11 × 11 × 11 k-point grid was used, as recommended in911

Ref. [52].912

Monovacancy formation (MVF) energies913

EMVF = E(N − 1)− N − 1

N
E(N), (67)

where E(N) is the total energy of an N -atom supercell914

(N = 32 here), are presented in Table VII. We found a915

small positive monovacancy formation energy for SCAN,916

unlike the negative value found in Ref. [52]. A nega-917

tive monovacancy formation energy implies that a solid918

is unstable. We find it unlikely that SCAN predicts Pt919

to be unstable, as SCAN describes its other equilibrium920

properties with experimental accuracy. OFR2 predicts a921

slightly larger monovacancy formation energy than PBE.922

PBEsol predicts the most accurate Pt monovacancy for-923

mation energy, but still underestimates the lowest exper-924

imental value.925

DFA a0 (SJEOS, Å) EMVF (eV)
Expt. 3.913 1.32–1.7
PBE 3.971 0.676
PBEsol 3.919 0.886
SCAN 3.913 0.126
r2SCAN 3.943 0.593
r2SCAN-L 3.980 0.590
OFR2 3.928 0.684

TABLE VII. Monovacancy formation energy and equilibrium
geometry of fcc Pt. The experimental, zero-point corrected
lattice constant is taken from Ref. [109], and the experimen-
tal monovacancy formation energy range is taken from Ref.
[52]. Note that the SJEOS-determined lattice constant (sec-
ond column) was later permitted to relax in the Pt supercell.
For all DFAs shown, the supercell lattice constant after relax-
ation did not change to the stated precision, again verifying
our implementation of the Laplacian-dependent stress tensor.

F. Intermetallic formation energies926

We follow the methodology of Ref. [53] to probe927

whether r2SCAN-L and OFR2 improve the r2SCAN de-928

scription of intermetallic formation energies. All initial929

geometries were taken from the Open Quantum Materi-930

als Database (OQMD) [119–121]. Following Ref. [53],931

geometries were relaxed, with all ionic degrees of free-932

dom permitted to change (ISIF = 3), and with first-order933

Methfessel-Paxton smearing of width 0.2 eV. After relax-934

ation, total energies were determined using the tetrahe-935

dron method at fixed geometry. All ions were initialized936

with a (ferromagnetic) magnetic moment of 3.5 µB. The937

plane-wave cutoff was 600 eV, and the k-grid was deter-938

mined as follows: for a fixed density of k-points κ (Å−3),939

the spacing ∆k between adjacent k-points along each axis940

(KSPACING tag) is941

∆k =

( ∏3
i=1 |bi|

|a1 · (a2 × a3)|
1

κ

)1/3

, (68)

where ai and bi are the direct and reciprocal lattice942

vectors, respectively, for the initial geometry. As in943

Ref. [53], we used κ = 700 k-points/Å−3 and com-944

puted ∆k from Eq. 68. For simplicity, we rounded ∆k945

and iteratively decreased its value (if needed) to ensure946

a uniformly-spaced grid with density of at least 700 k-947

points/Å−3. For VPt2, we needed to manually determine948

a grid with an equal number of k-points along each axis949

to ensure that VASP produced a k-grid with the right950

symmetry. Formation energies per atom ∆εf were com-951

puted from total energies per primitive unit cell E as952

follows: for compound Y =
∏M
i=1(Xi)xi

composed of M953

elements Xi with multiplicity xi as954

∆εf =
1∑
i xi

[
E(Y )−

M∑
i=1

xi
Ni
E(Xi)

]
(69)
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with Ni the number of ions in the unit cell for the pure955

solid Xi. We have assumed one formula unit per primi-956

tive cell for intermetallic compound Y .957

Our results and those of Refs. [53, 54] are presented958

in Table VIII. None of the DFAs considered here ac-959

curately predict the formation energies of these solids,960

however r2SCAN-L and OFR2 improve over SCAN and961

r2SCAN. Although scalar relativistic effects are included962

in the treatment of core electrons in the VASP pseudopo-963

tentials, relativistic corrections (e.g., spin-orbit coupling)964

for Hf, Os, and Pt may be needed here. Moreover, these965

are uncommon alloys with little representation in the lit-966

erature. Other experimental references for the forma-967

tion enthalpies could benefit further analysis. A recent968

QMC calculation [122] found the enthalpy of formation969

for VPt2 to be −0.764± 0.050 eV/atom, in line with the970

SCAN values here, but much larger than the experimen-971

tal and OFR2 values. In that work, the spin-orbit effect972

was found to reduce the magnitude of the formation en-973

ergy of VPt2, by about 0.05 eV. We therefore find it likely974

that the experimental reference values are unreliable.975

While PBE and SCAN overestimate the magnitudes976

of the intermetallic formation energies in comparison to977

the experimental values in Table VIII, these DFAs under-978

estimate this magnitude for Cu-Au intermetallics [126].979

However, the Cu-Au formation energies have magnitudes980

of 0.1 eV/atom at most, and SCAN underestimates them981

only by about 0.03 eV/atom. Even better agreement982

with experiment has been achieved by Ref. [126] in two983

different ways: (1) by using standard hybrid functionals,984

and (2) by using, for each element, a PBE GGA with its985

gradient coefficients for exchange and correlation tuned986

to the experimental lattice constant and bulk modulus987

for that element. The latter approach is motivated by a988

physical picture in which the correction to LSDA comes989

mainly from the core-valence interaction, in agreement990

with the analysis of Ref. [127].991

The tests of intermetallic formation energies described992

here and in Refs. [53, 54] test the ability of a DFA to pre-993

dict the correct equilibrium structure, spin-densities, and994

total energies for a solid and its constituents (or benefit995

from a random cancellation of errors). Thus it is hard to996

discern which aspect of this test a DFA fails. The subject997

of density-driven and functional-driven errors [128] is a998

useful framework for decomposing the various errors in999

this kind of test. However, we cannot apply this metric1000

without having exact or nearly-exact spin-densities (and1001

geometries).1002

Systems with a strong sensitivity to perturbations in1003

the Kohn-Sham potential can exhibit density driven er-1004

rors [129]. Evaluating a semi-local DFA (GGA, meta-1005

GGA) on the Hartree-Fock density can often eliminate1006

density-driven errors in molecules, as has recently been1007

shown for SCAN applied to liquid water [43]. It is unclear1008

what an equivalent density-correction method would be1009

for solid-state calculations, as such a method would need1010

to produce a density with a realistic geometry. A mod-1011

ern periodic Hartree-Fock calculation of face-centered1012

cubic LiH [130] found an equilibrium lattice constant1013

a0 = 4.105 Å and bulk modulus B0 = 32.3 GPa, in1014

significant error of the zero-point corrected experimen-1015

tal values a0 = 3.979 Å and B0 = 40.1 GPa [131] (and1016

less accurate than the PBE, PBEsol, and SCAN values1017

reported in Ref. [131]). We are unaware of periodic1018

Hartree-Fock calculations for the equilibrium properties1019

of metallic solids.1020

G. Alkaline solids1021

As discussed in the Introduction, Ref. [51] demon-1022

strated that SCAN less accurately describes the equilib-1023

rium properties of the alkali metals Li, Na, K, Rb, and1024

Cs than PBE. It is therefore worth investigating if a LL-1025

MGGA remedies this behavior.1026

We note two interesting computational features of1027

LL-MGGAs. Reducing the plane-wave kinetic energy1028

cutoff can stabilize the calculations of isolated atoms.1029

Therefore, the calculations of cohesive energies reported1030

here use a cutoff of 600 eV for both the bulk sys-1031

tem and isolated atoms. The k-point density was un-1032

changed, and the energy convergence criteria were 10−6
1033

eV for the bulk solid and 10−5 eV for the isolated1034

atom. The size of the computational cell for the iso-1035

lated atom was 14 × 14.1 × 14.2 Å3, and only the Γ1036

point was for k-space integrations. For atomic calcu-1037

lations, Gaussian smearing of the Fermi surface with1038

width 0.1 eV were used. Spin-symmetry was permit-1039

ted to break, and the energy was minimized directly1040

(ALGO=A, LSUBROT set to false). ALGO controls1041

the method used to minimize the total energy; ALGO1042

= A selects a preconditioned conjugate gradient algo-1043

rithm. The Hamiltonian is diagonalized in the occu-1044

pied and unoccupied subspaces using a perturbation-1045

theory-like method [102]; setting LSUBROT = False pre-1046

vents further optimization of the density matrix via uni-1047

tary transformations of the orbitals, as recommended1048

for semilocal DFAs. Convergence with a LL-MGGA is1049

generally more challenging for atomic systems, at least1050

within VASP at these higher computational settings.1051

Linear density mixing (AMIX=0.4, AMIX MAG=0.1,1052

BMIX=BMIX MAG=0.0001) was found to be helpful.1053

Beyond this, the input parameters remained the same1054

(ADDGRID set to false, etc.) as for the bulk solids.1055

The PBE pseudopotentials with s semi-core states1056

included in the valence pseudo-density (indicated with1057

a suffix “ sv”) appear to be less transferrable to LL-1058

MGGAs. Convergence for the isolated Li, Na, and Ba1059

atoms using s semi-core pseudopotentials was slow due to1060

charge sloshing. Thus, following the suggestion of Mej́ıa-1061

Rodŕıguez and Trickey [68], in this section, we have used1062

pseudopotentials without any suffix when possible. For a1063

few elements (K, Rb, Cs, Ca, Sr, and Ba), the s semi-core1064

pseudopotentials are the only ones available. However,1065

r2SCAN-L and OFR2 failed to converge within 10−5 eV1066

only for the Ba atom, with 500 self-consistency steps per-1067



17

∆εf
(eV/atom) Expt.

PBE,

Ref. [53]

SCAN,

Refs. [53, 54]

r2SCAN,

Ref. [54] LSDA PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2
HfOs −0.482± 0.052 -0.707 -0.874 -0.846 -0.724 -0.715 -0.708 -0.901 -0.847 -0.805 -0.743
ScPt −1.086± 0.056 -1.212 -1.473 -1.308 -1.233 -1.214 -1.204 -1.461 -1.301 -1.243 -1.193
VPt2 −0.386± 0.026 -0.555 -0.726 -0.601 -0.562 -0.548 -0.566 -0.712 -0.592 -0.524 -0.570

TABLE VIII. Formation enthalpies ∆εf, in eV/atom, of a few intermetallic elements. The DFT results are formation energies
and neglect the PV term in the enthalpy. The experimental formation enthalpy of HfOs is from Ref. [123]; experimental values
for ScPt and VPt2 are taken from Ref. [124]. Reference PBE values are taken from Ref. [53]. Reference SCAN values are
averages of those reported in Refs. [53] and [54]. Reference r2SCAN values are taken from Ref. [54]. The LSDA uses the
Perdew-Zunger parameterization [125] of the uniform electron gas correlation energy.

mitted. As both converged to about 1×10−4 eV, we have1068

not excluded Ba from the test set.1069

Both r2SCAN-L and OFR2 found a double-minimum1070

in the energy per volume curve for Rb. We chose to1071

exclude data for the second, deeper minimum, which oc-1072

curred at a larger, unrealistic volume.1073

This section analyzes the “LC23” set, the LC20 set1074

augmented with three alkali metals, K, Rb, and Cs.1075

Moreover, given the reduced computational parameters,1076

this section is more likely to reflect real-world usage of1077

the DFAs than the benchmark calculations reported pre-1078

viously. Table IX reports error statistics in the equilib-1079

rium properties of the alkali metals. Tables XVI–XVIII1080

of Appendix E present the data for each individual solid1081

in the set.1082

From Table IX, OFR2 finds more accurate lattice1083

constants a0 and bulk moduli B0 for the alkalis than1084

SCAN, r2SCAN, or r2SCAN-L. The average errors of1085

the r2SCAN-L bulk moduli are 5 or 10 times larger than1086

those of the other DFAs in Table IX. However, all meta-1087

GGAs presented in Table IX yield similarly inaccurate1088

cohesive energies E0 for the alkalis. PBEsol appears to1089

be the best general choice for studies of alkali-containing1090

solids, however OFR2 should yield similar accuracy for1091

their structural properties.1092

Isolated atoms, which have negative chemical poten-1093

tials and thus turning surfaces in the Kohn-Sham poten-1094

tial, are thus poorly described by the gradient expan-1095

sions for exchange and correlation. Therefore, PBEsol1096

and OFR2, which likely predict realistic total energies1097

for the solids in LC23, do not predict realistic atomic1098

energies for those solids, and thus generally inaccurate1099

cohesive energies, as shown in Table XVIII of App. E.1100

Conversely, PBE and r2SCAN-L benefit from error can-1101

cellation between the total energies of the solids and their1102

atomic constituents, yielding generally more accurate co-1103

hesive energies. This observation excludes the cohesive1104

energies of insulators, where a cancellation of errors ben-1105

efits PBEsol and OFR2, but not PBE and r2SCAN-L.1106

H. Molecules1107

Within the quantum chemistry community, the AE61108

set of six molecular atomization energies [132] is used1109

to rapidly estimate the performance of a DFA on a much1110

larger set of atomization energies. Geometries were taken1111

from the MGAE109 database [133]. Table X presents1112

the results of the AE6 set for r2SCAN, r2SCAN-L, and1113

OFR2.1114

These calculations were also performed in VASP. Each1115

atom or molecule was placed in an orthorhombic box of1116

dimensions 10 Å × 10.1 Å × 10.2 Å to sufficiently lower1117

the lattice symmetry and reduce interactions with image1118

cells. A plane-wave energy cutoff of 1000 eV was used.1119

Beyond this, all other computational parameters used for1120

the isolated atoms in Sec. IV G were unchanged.1121

From Table X, we see that r2SCAN-L broadly retains1122

the accuracy of r2SCAN for molecular systems. OFR2,1123

with a 11 kcal/mol mean absolute error (MAE) for AE6,1124

appears to be the “missing link” DFA between the GGA1125

level, with MAEs on the order of 20–40 kcal/mol, and the1126

T-MGGA level, with MAEs less than 10 kcal/mol. Con-1127

vergence with OFR2 for finite systems is generally more1128

challenging than with r2SCAN-L. Independent tests of1129

OFR2 [135] have confirmed our conclusions: r2SCAN-L is1130

faithful to the r2SCAN description of molecules, whereas1131

OFR2 is somewhat less accurate.1132

For an accurate description of solid state geometries1133

and magnetic properties, we recommend OFR2. To im-1134

prove its description of cohesive energies, which lie be-1135

tween those of PBEsol and r2SCAN-L in accuracy, one1136

might perform a non-self-consistent evaluation of the1137

r2SCAN or r2SCAN-L total energy using the (likely more1138

accurate) relaxed OFR2 geometry and density for a solid1139

as input. For an accurate description of finite systems,1140

we recommend r2SCAN-L at the LL-MGGA level. For1141

greater accuracy and general-purpose calculations of fi-1142

nite or extended systems, we recommend r2SCAN.1143

V. OUTLOOK: MACHINE LEARNING AND1144

KINETIC ENERGY DENSITY1145

Machine learning has already made leaps and bounds1146

in the construction of empirical DFAs. The work of Ref.1147

[3] suggests that the most sophisticated T-MGGAs have1148

essentially reached a fundamental limit of accuracy for1149

the meta-GGA level. The work of Ref. [4] built a local1150

hybrid-level DFA that approximately satisfies fractional1151
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PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

a0 ME (Å) 0.051 -0.017 0.084 0.111 -0.004 0.014
a0 MAE (Å) 0.061 0.019 0.095 0.114 0.055 0.039
B0 ME (GPa) -0.105 -0.056 -0.164 -0.329 2.481 0.008
B0 MAE (GPa) 0.446 0.340 0.467 0.360 3.639 0.760
E0 ME (eV/atom) -0.072 -0.005 -0.083 -0.092 -0.100 -0.099
E0 MAE (eV/atom) 0.072 0.022 0.083 0.092 0.100 0.099

TABLE IX. Error statistics in the equilibrium lattice constants a0, bulk moduli B0, and cohesive energies E0 for the alkali
metals Li, Na, K, Rb, and Cs. The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L
[68] and OFR2 LL-MGGAs are presented.

Molecule PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2
SiH4 313.64 322.92 328.54 322.07 321.43 320.35
SiO 195.93 204.09 191.06 186.81 188.03 186.46
S2 115.68 129.62 108.68 110.36 110.51 112.26
C3H4 727.09 751.97 703.40 702.50 700.24 686.80
C2H2O2 662.83 692.76 628.71 629.09 628.86 618.44
C4H8 1175.57 1221.27 1151.80 1147.71 1141.41 1126.86
ME LT03 14.57 36.55 1.48 -0.79 -2.14 -8.69
MAE LT03 17.49 36.55 3.83 3.69 5.08 12.22
ME HK12 15.21 37.19 2.12 -0.16 -1.50 -8.05
MAE HK12 18.86 37.75 3.80 3.65 3.93 11.06

TABLE X. Comparison of PBE [6], PBEsol [32], SCAN [20], r2SCAN [36], r2SCAN-L [68], and OFR2 atomization energies for
the AE6 set [132]. All values are in kcal/mol (1 eV ≈ 23.060548 kcal/mol). We report mean errors (MEs) and mean absolute
errors (MAEs) computed with respect to two sets of reference data: the original work of Ref. [132] (LT03), and the more recent
non-relativistic, frozen-core values from Table 4 of Ref. [134] (HK12). Given that the calculation in VASP is non-relativistic
with a frozen-core pseudopotential, these latter reference values appear to be most appropriate. Absolute total energies have
no physical meaning in a pseudopotential calculation, therefore we only report the energy differences here.

charge [113] and spin [136] exact constraints, heretofore1152

seldom satisfied.1153

Doubtless, machine learning techniques will be ap-1154

plied to the three-dimensional kinetic energy density. A1155

machine-learned model is important for practical pur-1156

poses, but excogitating the role of the parameters within1157

the model is nigh impossible. This section details a sim-1158

ple “human-learned” model (HLM) for the kinetic en-1159

ergy density, which can be instructive for future machine-1160

learning work. In particular, HLM shows how heavy1161

fitting can lead to wrong asymptotics and to numerical1162

instability.1163

As in our RPP model of τ (but without consideration1164

of the fourth-order gradient expansion), we will presume1165

that the exact (spin-unpolarized) τ can be represented as1166

an interpolation between exact limits,1167

τ(n, p, q) = τunif(n) [FW(p) + z(p, q)θ(z(p, q))] (70)

z(p, q) = FGE2(p, q)− FW(p) (71)

FW(p) =
5

3
p (72)

FGE2(p, q) = 1 +
20

9
q +

5

27
p (73)

We will model the function θ(z), which determines the1168

mixing between Weizsäcker and gradient expansion lim-1169

its. Moreover, θ(z) should permit extrapolation for arbi-1170

trary positive z, as suggested by Cancio and Redd [80].1171

Then for some of the appropriate norms considered here1172

– the neutral noble gas atoms Ne, Ar, Kr, and Xe, and1173

the jellium surfaces of bulk densities rs = 2, 3, 4, 5 – we1174

take a reference density and compute1175

θ(z) =
τ/τunif(n)− FW(p)

z(p, q)
. (74)

Since the right-hand side of Eq. 74 is not exactly a func-1176

tion of z, it is useful to bin the values of θ within a narrow1177

range of z.1178

The form selected for θ enforces three constraints: the1179

Weizsäcker lower bound, the uniform density limit, and1180

the second-order gradient expansion. A machine can1181

learn these constraints approximately by penalizing their1182

violation, but cannot satisfy them by construction as a1183

human-designed model can. Because the “exact” θ(z) is1184

complicated, we need an expression which has sufficient1185

freedom for fitting. Consider the M -parameter HLM1186

model1187

θM (z) = z3 1 + b1z + b2z
2

1 +
∑M
i=1 ciz

i
Θ(z), (75)

where Θ(z ≥ 0) = 1 and Θ(z < 0) = 0, and the ci are fit1188

parameters. To recover the uniform density limit requires1189
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FIG. 10. M -parameter mixing function θM (z) of Eq. 75
that determines the optimal mixing of Weizsäcker and second-
order gradient expansion kinetic energy densities. Acceptable
(pole-free and non-negative θ(z ≥ 0)) parameter sets M =
3, 4, 6,&11 are displayed. Solid points are the binned θ(z)
data taken from the appropriate norms: the neutral noble
gas atoms Ne, Ar, Kr, and Xe, and the jellium surfaces of
bulk densities rs = 2, 3, 4, 5.

θM (1) = 1; to recover the second-order gradient expan-1190

sion of τ requires θ′M (1) = 0. Enforcing these constraints1191

fixes the values of the bi1192

b1 = 3 +

M∑
i=1

(5− i)ci (76)

b2 =

M∑
i=1

ci − b1. (77)

It appears that θM (z � 1) ∼ b− a log z, for constants a1193

and b, however this model can approximately recover that1194

behavior. The minimum power of z in the numerator is1195

chosen to allow for sufficient smoothness of the exchange-1196

correlation potential for z ≈ 0.1197

We considered 2 ≤ M ≤ 20; for M ≥ 5, θM can be1198

bounded as z → ∞. A non-linear least-squares fit was1199

used to determine the ci. We discarded parameter sets1200

for which the denominator of θM had positive polyno-1201

mial roots or for which θM (z > 0) < 0. The possible1202

acceptable parameters found were for M = 3, 4, 6,&11,1203

as shown in Fig. 10. Clearly, M = 3 or 4 do not rep-1204

resent reliable extrapolations for z → ∞. θ6 appears1205

to represent the most realistic, long-tailed extrapolation1206

for z → ∞, however θ11 more accurately captures the1207

apparent oscillations in θ(z).1208

Thus we emphasize the need for human decision in1209

highly-empirical DFA design. Both θ6 and θ11 deliver1210

similar performance for the appropriate norms, as shown1211

in Table XI, however θ6 is much smoother and is thus1212

likely more numerically stable. It is purely for reasons1213

of numeric stability that the HLM models have been de-1214

ferred to this section. While we do not present plots of1215

r2SCAN SCAN
M RGA JS JC RGA JS JC

3 0.73 9.20 11.48 0.95 6.71 10.39
4 0.91 2.82 1.15 1.01 2.87 3.74
6 0.53 3.60 2.61 0.55 1.51 2.11

11 0.48 3.73 2.72 0.49 1.53 1.88
Exact τ 0.14 2.80 2.38 0.08 2.51 3.15

TABLE XI. Orbital free r2SCAN and SCAN appropriate
norm performance using the highly-parameterized mixing
function θ(FW − FGE2) of Eq. 75, compared to the orbital-
dependent variants (bottom row). Increasing the number
of parameters M generally improves the fidelity of the ap-
proximate τ , at the cost of more rapid oscillations. The
mean absolute percentage errors of the rare gas atom (RGA)
exchange-correlation energies, jellium surface (JS) exchange-
correlation surface formation energies, and jellium cluster
exchange-correlation surface formation energies are shown.

the r2SCAN + HL6 or HL11 Kohn-Sham potential for1216

the simple systems considered here, we have computed1217

them and determined they are wholly unrealistic.1218

VI. CONCLUSIONS1219

We developed a model Laplacian-level meta-GGA (LL-1220

MGGA) OFR2 that is an orbital-free or “deorbitalized”1221

variant of r2SCAN [36], in the tradition of Refs. [66–1222

68], but recovering the fourth-order gradient expansion1223

for exchange and the second-order gradient expansion for1224

correlation. Only α has been modified, although the rest1225

of r2SCAN could be re-optimized in future work. We ex-1226

tensively tested OFR2 against an existing deorbitaliza-1227

tion of r2SCAN, r2SCAN-L [68], which breaks the uni-1228

form density limit of r2SCAN.1229

OFR2 appears to improve upon r2SCAN for the lattice1230

constants of solids, matching or exceeding the accuracy1231

of SCAN. r2SCAN-L and OFR2 more accurately describe1232

transition-metal magnetism than r2SCAN, which pre-1233

dicts substantially larger magnetic moments than found1234

by experiment. OFR2 better describes the structural1235

properties of alkali metals than r2SCAN and r2SCAN-L,1236

but not their cohesive energies. We therefore recommend1237

OFR2 for an orbital-free description of solids and liquids1238

only, and particularly sp or sd metals. For best accuracy1239

in molecules and non-metallic condensed matter, we con-1240

tinue to recommend SCAN and r2SCAN.1241

For an orbital-free description of molecules, we recom-1242

mend r2SCAN-L, which retains the accuracy of r2SCAN1243

for the AE6 set [132] of atomization energies. This con-1244

clusion was independently confirmed for a different set1245

of molecules [135]. OFR2, which targets properties of1246

metallic solids, bridges the gap between PBE GGA er-1247

rors (MAE ∼ 19 kcal/mol) and r2SCAN T-MGGA errors1248

(MAE ∼ 4 kcal/mol).1249

Like the SCAN [20] and TPSS [86] T-MGGAs, and1250

unlike r2SCAN, OFR2 recovers the fourth-order gradi-1251
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ent expansion for the exchange energy. Thus OFR2 has1252

a correctly LSDA-like static linear density-response for1253

the uniform electron gas, which, along with its correct1254

description of slowly-varying densities and especially the1255

weaker nonlocality of OFR2, should bolster its accuracy1256

for metals.1257

Unlike chemistry, condensed matter physics must rely1258

on experimental reference values whose uncertainties can1259

be large or difficult to quantify. The smallest experi-1260

mental relative errors are probably those of lattice con-1261

stants from X-ray diffraction. Thus the high accuracy of1262

OFR2 lattice constants for metals is encouraging. Struc-1263

tural phase transitions are more challenging to DFAs1264

than lattice constants are [41], but good results have1265

been obtained [41] for semiconductors from SCAN. OFR21266

might improve the critical pressures for transitions be-1267

tween metallic phases, especially for transition metals.1268

Obtaining highly-converged results with an LL-MGGA1269

is generally more challenging than with other semi-local1270

approximations. Some PBE pseudopotentials also ap-1271

pear to be less transferrable to LL-MGGAs than τ -meta-1272

GGAs (T-MGGAs). Mej́ıa-Rodŕıguez and Trickey [68]1273

found that GW potentials were less transferrable to LL-1274

MGGAs. LL-MGGAs might have a particular niche for1275

exploratory purposes: if benchmark-quality results are1276

not desired, these can often match or surpass the accu-1277

racy of their T-MGGA counterparts. Thus for computa-1278

tionally intensive tasks, such as mapping the phase dia-1279

gram of transition metals, an LL-MGGA could be used1280

to rapidly obtain a good starting guess for more sophis-1281

ticated approximations.1282

The new OFR2 “deorbitalizes” the r2SCAN meta-1283

GGA while preserving and even enhancing the r2SCAN1284

exact constraints on the slowly-varying limit (α ≈ 1,1285

p � 1, |q| � 1). Thus a comparison of OFR2 and1286

r2SCAN results for metals could reflect mainly the differ-1287

ence between the fully (if modestly) nonlocal argument1288

τ(r) and the semilocal argument ∇2n(r) in the approx-1289

imated exchange-correlation energy functional. Weak-1290

ening the nonlocality of r2SCAN seems to improve (in1291

comparison to experiment) the magnetic moments of the1292

transition metals, the monovacancy formation energy of1293

solid Pt, and the formation energies of intermetallics,1294

producing results that are not very different (in the cases1295

studied here) from those of the much less-sophisticated1296

PBEsol [32]. However, for molecules and insulating ma-1297

terials, accuracy should improve from PBEsol to OFR21298

to r2SCAN.1299
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B. Alling, and I. A. Abrikosov, Phys. Rev. B 98, 0944131424

(2018).1425

[49] Y. Fu and D. J. Singh, Phys. Rev. Lett. 121, 2072011426

(2018).1427
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[68] D. Mej́ıa-Rodŕıguez and S. B. Trickey, Phys. Rev. B1465

102, 121109(R) (2020).1466

[69] J. P. Perdew, M. Ernzerhof, K. Burke, and A. Savin,1467

Int. J. Quantum Chem. 61, 197 (1997).1468

[70] B. Santra and J. P. Perdew, J. Chem. Phys. 150, 1741061469

(2019).1470
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[75] A. P. Bartók and J. R. Yates, J. Chem. Phys. 150,1482

161101 (2019).1483

[76] Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev. B 61,1484

16430 (2000).1485

[77] L. M. Almeida, J. P. Perdew, and C. Fiolhais, Phys.1486

Rev. B 66, 075115 (2002).1487

[78] We use the most recent NIST CODATA for1488

these values. Refer to https://physics.nist.gov/cgi-1489

bin/cuu/Value?hr and https://physics.nist.gov/cgi-1490

bin/cuu/Value?bohrrada0.1491

[79] A. C. Cancio, C. E. Wagner, and S. A. Wood, Int. J.1492

Quantum Chem. 112, 3796 (2012).1493

[80] A. C. Cancio and J. J. Redd, Mol. Phys. 115, 6181494

(2017).1495

[81] F. Della Sala, E. Fabiano, and L. A. Constantin, Phys.1496

Rev. B 91, 035126 (2015).1497

[82] J. W. Furness and J. Sun, Phys. Rev. B 99, 0411191498

(2019).1499

[83] J. P. Perdew, A. Ruzsinszky, J. Sun, and K. Burke, J.1500

Chem. Phys. 140, 18A533 (2014).1501

[84] E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19,1502

427 (1981).1503

[85] J. P. Perdew, in Electronic Structure of Solids ’91,1504

edited by P. Ziesche and H. Eschrig (Akademie Verlag,1505

Berlin, 1991) pp. 1–11.1506

[86] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuse-1507

ria, Phys. Rev. Lett. 91, 146401 (2003).1508

[87] P. Elliott and K. Burke, Can. J. Chem. 87, 1485 (2009).1509

[88] A. D. Becke, Phys. Rev. A 38, 3098 (1988).1510

[89] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 132441511

(1992).1512

[90] A. Pribram-Jones, D. A. Gross, and K. Burke, Annu.1513

Rev. Phys. Chem. 66, 283 (2015).1514

[91] N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).1515

[92] R. Monnier and J. P. Perdew, Phys. Rev. B 17, 25951516

(1978).1517

[93] C. Fiolhais and J. P. Perdew, Phys. Rev. B 45, 62071518

(1992).1519

[94] C. Bunge, J. Barrientos, and A. Bunge, Atomic Data1520

and Nuclear Data Tables 53, 113 (1993).1521

[95] Https://gitlab.com/dhamil/laplacian-level-meta-gga.1522

[96] K. Burke, A. Cancio, T. Gould, and S. Pittalis, J. Chem.1523

Phys. 145, 054112 (2016).1524

[97] L. A. Constantin, J. M. Pitarke, J. F. Dobson,1525

A. Garcia-Lekue, and J. P. Perdew, Phys. Rev. Lett.1526

100, 036401 (2008).1527

[98] B. Wood, N. D. M. Hine, W. M. C. Foulkes, and1528
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Appendix A: Implementing the Laplacian in VASP1623

White and Bird [138] suggested a non-standard way to1624

compute the exchange-correlation potential on a grid of1625

M finite points R (minimum fast Fourier transform grid).1626

This robust method is used in many standard plane wave1627

codes, including VASP, and was used in our VASP cal-1628

culations. We outline the method below.1629

Their analysis was tailored to the specific case of peri-1630

odic boundary conditions, thus we define the reciprocal1631

lattice vectors G. Using Fourier series, we can write the1632

density variables as1633

n(r) =
∑
G

n(G)eiG·r (A1)

n(G) =
1

M

∑
R

n(R)e−iG·R (A2)

∇n(r) = i
∑
G

Gn(G)eiG·r (A3)

=
i

M

∑
G,R

Gn(R)eiG·(r−R)

∇2n(r) = −
∑
G

G2n(G)eiG·r (A4)

=
−1

M

∑
G,R

G2n(R)eiG·(r−R).

Now let the discrete Exc within a cell volume Ω be1634

Ẽxc =
Ω

M

∑
R

exc(n(R),∇n(R),∇2n(R)), (A5)

with exc = εxc n(R). One can approximate the variations1635

in Ẽxc using1636

δẼxc =
Ω

M

∑
R

dẼxc

dn(R)
δn(R) ≡

∑
R

ṽxc(R)δn(R), (A6)

then the discrete potential ṽxc is represented as1637

ṽxc(R) =
∂exc

∂n(R)
+
∑
R′

{
∂exc

∂∇n(R′)
· d(∇n(R′))

dn(R)
(A7)

+
∂exc

∂∇2n(R′)

d(∇2n(R′))

dn(R)

}
.

It’s now trivial to insert the Fourier series representations1638

of the total derivatives on the RHS of the last equation.1639

Note that the density gradient vector is never used in1640

PBE-like GGAs, thus we can replace the derivatives with1641

respect to ∇n by1642

∂

∂(∇n)
=
∇n
|∇n|

∂

∂|∇n|
. (A8)

The discrete potential then becomes1643

ṽxc(R) =
∂exc

∂n(R)
+

1

M

∑
G,R′

{
iG · ∇n(R′)

|∇n(R′)|
∂exc

∂|∇n(R′)|

−G2 ∂exc

∂∇2n(R′)

}
eiG·(R

′−R). (A9)

Supplemental Tables S7, S8, and S9 of Ref. [68] present1644

lattice constants, bulk moduli, and cohesive energies for1645

a variety of solids, computed with r2SCAN and r2SCAN-1646

L. As these tables include every solid in the LC23 set,1647

we can roughly validate our implementation of r2SCAN-1648

L. We use “roughly” here because not all computational1649

parameters are available for that work. Table XII shows1650

that the results of this work and Ref. [? ] agree to1651

about 0.001 Å (r2SCAN) and 0.01 Å (r2SCAN-L) for the1652

lattice constants; to about 0.3 GPa (r2SCAN) and 1.41653

GPa (r2SCAN-L) for the bulk moduli; and to about 0.061654

eV/atom (r2SCAN) and 0.03 eV/atom (r2SCAN-L) for1655

the cohesive energies. This is reasonable agreement.1656
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Present work Ref. [68]
r2SCAN r2SCAN-L r2SCAN r2SCAN-L

a0 (Å)

ME 0.037 0.010 0.037 0.019
MAE 0.049 0.040 0.048 0.045
MD 0.000 -0.009
MAD 0.001 0.013

B0 (GPa)

ME 0.843 -3.284 0.692 -3.731
MAE 3.522 7.074 3.512 6.510
MD 0.151 0.447
MAD 0.258 1.403

E0

(eV/atom)

ME 0.032 -0.134 -0.022 -0.162
MAE 0.109 0.150 0.102 0.172
MD 0.053 0.028
MAD 0.057 0.032

TABLE XII. Comparison of the r2SCAN and r2SCAN-L LC23
equilibrium lattice constants a0 (Å), bulk moduli B0 (GPa),
and cohesive energies E0 (eV/atom) from this work and Ref.
[68]. Mean deviations (MDs) and mean absolute deviations
(MADs) between r2SCAN(-L) in this work and Ref. [68] are
also included.
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Appendix B: Restoring the fourth-order gradient expansion for exchange to r2SCAN1657

This section builds upon the derivation of r2SCAN presented in Ref. [62]. By construction, r2SCAN recovers the1658

exact second-order gradient expansion for exchange, but not the fourth-order terms. It will be shown in a forthcoming1659

work that r2SCAN severely overestimates the magnitude of the fourth-order gradient expansion coefficients. The exact1660

exchange enhancement factor has a fourth-order gradient expansion in p and q [11]1661

Fx = 1 +
10

81
p+

146

2025
q2 − 73

405
pq +O(|∇n|6). (B1)

Note that the coefficient of pq is known within some uncertainty, as is the coefficient of p2. We take the best estimates1662

from Ref. [11].1663

However, an orbital-free r2SCAN can be made to recover the right fourth-order gradient expansion for exchange.1664

This is accomplished by using different fourth-order terms in the gradient expansion of the approximate τ(p, q) than1665

those that appear in the gradient expansion of the exact τ [19]. To maintain the second-order gradient expansion1666

constraint of r2SCAN, we retain the correct second-order gradient expansion of τ ,1667

τ(p, q)

τ0
= 1 +

5

27
p+

20

9
q + bqqq

2 + bpqpq + bppp
2 +O(|∇n|6), (B2)

with fourth-order coefficients bqq, bpq, and bpp to be determined below. The iso-orbital indicator used in r2SCAN is1668

the numerically-stable1669

α =
τ − τW
τ0 + ητW

(B3)

where η = 0.001 [36]. It can be seen that the gradient expansion of the approximate α(p, q) is1670

α(p, q) = 1− 5(8 + 9η)

27
p+

20

9
q + bqqq

2 +

(
bpq −

100η

27

)
pq +

(
bpp +

200η

81
+

25η2

9

)
p2 +O(|∇n|6). (B4)

Note that the gradient expansion [19] of α using the exact τ cannot be expressed in terms of a polynomial in p and q.1671

We turn our attention to the enhancement factor F r2SCAN
x ,1672

F r2SCAN
x = {h1

x(p) + fx(α)[h0
x − h1

x]}gx(p). (B5)

In r2SCAN, gx(p) is a non-analytic smooth function, with Taylor series 1 + O(|∇n|∞). Therefore, gx(p) does not1673

contribute to the gradient expansion of the enhancement factor beyond order zero. Note that h0
x = 1 + k0, where1674

k0 = 0.174. As is done in Ref. [62] to construct the model r4SCAN functional, we seek a Taylor expansion of Fx in p1675

and α− 1, which approximately define the slowly-varying limit,1676

F r2SCAN
x =1 + h′x(0)p+

h′′x(0)

2
p2 +

[
f ′x(1)(α− 1) +

f ′′x (1)

2
(α− 1)2

] [
1 + k0 − 1− h′x(0)p− h′′x(0)

2
p2

]
(B6)

+O(|∇n|6).

Here, h′x(0) = dh1
x/dp(0), etc. Now, (α − 1) contains terms of both second- and fourth-order, whereas (α − 1)2 and1677

(α− 1)p contain terms of fourth- and sixth-order,1678

(α− 1)2 =
400

81
q2 − 200(8 + 9η)

243
pq +

25(8 + 9η)2

729
p2 +O(|∇n|6) (B7)

(α− 1)p =
20

9
pq − 5(8 + 9η)

27
p2 +O(|∇n|6). (B8)

The Taylor series of the enhancement factor can be simplified as1679

F r2SCAN
x = 1 + h′x(0)p+ k0f

′
x(1)(α− 1) +

h′′x(0)

2
p2 − h′x(0)f ′x(1)(α− 1)p+

k0

2
f ′′x (1)(α− 1)2 +O(|∇n|6). (B9)
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After inserting Eq. B4 for the gradient expansion of the approximate α, Eq. B7 for (α−1)2, and Eq. B8 for (α−1)p,1680

we find the OFR2 enhancement factor,1681

FOFR2
x = 1 +

[
h′x(0)− 5(8 + 9η)

27
k0f
′
x(1)

]
p+

20

9
k0f
′
x(1)q +

[
200

81
f ′′x (1) + f ′x(1)bqq

]
k0q

2 (B10)

−
[(

100η

27
− bpq

)
k0f
′
x(1) +

20

9
h′x(0)f ′x(1) +

100(8 + 9η)

243
k0f
′′
x (1)

]
pq

+

[
h′′x(0)

2
+

(
bpp +

200η

81
+

25η2

9

)
k0f
′
x(1) +

5(8 + 9η)

27
h′x(0)f ′x(1) +

25(8 + 9η)2

1458
k0f
′′
x (1)

]
p2 +O(|∇n|6).

As was shown in Ref. [62], the divergence theorem may be used to eliminate the term linear in q in favor of a term1682

linear in p plus a gauge function. Suppose an enhancement factor can separated as Fx = F̃x + n−4/3∇ ·Gx. Under1683

integration over a volume Ω with bounding surface bdy Ω, the exchange energy is1684

Ex[n] =

∫
Ω

Fxε
LDA
x d3r = Ax

∫
Ω

Fxn
4/3d3r = Ax

∫
Ω

F̃xn
4/3d3r +Ax

∫
bdy Ω

Gx · dS. (B11)

Provided that the integral of Gx vanishes at the bounding surface, Fx and the “integrated-by-parts” F̃x will yield the1685

same exchange energy and potential, but different exchange energy densities. Note that Ax = −3(3π2)1/3/(4π). As1686

is easily seen,1687

qn4/3 =
p

3
n4/3 +∇ ·

[
∇n

4(3π2)2/3n1/3

]
, (B12)

therefore the overall gauge function is n−4/3∇ · [n−1/3∇n]/[4(3π2)2/3]. Then the integrated-by-parts enhancement1688

factor is1689

F̃OFR2
x = 1 +

[
h′x(0)− 5(4 + 9η)

27
k0f
′
x(1)

]
p+

[
200

81
f ′′x (1) + f ′x(1)bqq

]
k0q

2 (B13)

−
[(

100η

27
− bpq

)
k0f
′
x(1) + h′x(0)f ′x(1)

20

9
+
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Now equate the terms in Eq. B13 with the terms of matching order in Eq. B1 to constrain F̃OFR2
x to have the1690

correct fourth-order gradient expansion,1691
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By construction, in r2SCAN, h′x(0) is constrained to satisfy Eq. B14. Therefore we need only solve for the bi,1692

bqq =

[
146

2025k0
− 200

81
f ′′x (1)

]
1

f ′x(1)
≈ 1.8010191875490722 (B18)
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≈ −1.850497151349339 (B19)

bpp = − 1
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− 200η
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9
≈ 0.974002499350257. (B20)
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In r2SCAN [36], the interpolation function fx is a piecewise function, but is a polynomial for 0 ≤ α ≤ 2.5,1693

fx(0 ≤ α ≤ 2.5) =

7∑
i=0

cxiα
i (B21)

f ′x(1) =

7∑
i=1

icxi ≈ −0.9353000875519996 (B22)

f ′′x (1) =

7∑
i=2

i(i− 1)cxi ≈ 0.8500359204920018, (B23)

with the coefficients cxi taken from rSCAN [75]. The h1
x function is unique to r2SCAN,1694

h1
x(p) = 1 + k1 − k1[1 + x(p)/k1]−1 (B24)

x(p) =

{
5(4 + 9η)

27
k0f
′
x(1) exp[−p2/d4

p2] +
10

81

}
p, (B25)

therefore1695

h′x(0) =
5(4 + 9η)

27
k0f
′
x(1) +

10

81
≈ 0.0026357640358089796 (B26)

h′′x(0) = −2h′x(0)2

k1
≈ −0.00021376160161427815. (B27)

It should be noted that the fourth-order terms in τ(p, q) are positive semi-definite, as they can be written in the1696

form1697

bqqq
2 + bpqpq + bppp

2 =

(√
bqqq +

bpq

2
√
bqq

p

)2

+

(
bpp −

b2pq
4bqq

)
p2,

and bpp − b2pq/(4bqq) > 0.1698

Appendix C: Laplacian-dependent stress tensor1699

For practical calculations, the exchange-correlation stress tensor, Σijxc, defined as [139]1700

Σijxc =

∫
Ω

n(r)rj
∂vxc

∂ri
d3r, (C1)

is greatly useful. Here, the system volume is Ω. We take r1 = x, r2 = y, and r3 = z. Thus the exchange-correlation1701

stress density,1702

σijxc = n(r)rj
∂vxc

∂ri
, (C2)

is only defined up to a certain gauge, like the exchange-correlation energy density exc. The gauge can be chosen up to1703

the curl of a tensor, as the divergence of this tensor must yield the force on the system due to the exchange-correlation1704

potential [140]. An overall choice of sign corresponds to consideration of internal or external stresses (for example,1705

VASP appears to use the opposite sign convention as Eq. C2). Moreover, the stress tensor and its density should be1706

symmetric.1707

While Eq. C1 is well-defined in a finite system, the term linear in rj makes this intractable in an extended system.1708

Following Ref. [139], we therefore take the system volume Ω to be finite, and seek an expression for σijxc that is1709

independent of the boundary conditions. The latter expression will be well-defined as the thermodynamic average in1710

an extended system. Consider that1711

σijxc =
∂

∂ri
(nrjvxc)− vxcnδij − vxcrj

∂n

∂ri
, (C3)
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where δij = 1 if i = j and 0 if i 6= j is the Kronecker delta. In a finite system, the integral of the total derivative1712

will vanish, as it can be evaluated on a bounding surface at infinity. Thus we will collect all terms that involve total1713

derivatives and use those as a choice of gauge.1714

Suppose that an exchange-correlation functional depends upon n, |∇n|, and ∇2n, and further that exc and vxc are1715

the exchange-correlation energy density and potential, respectively,1716

Exc =

∫
exc(n, |∇n|,∇2n)d3r (C4)

vxc =
∂exc

∂n
− ∂

∂rk

[
∂exc

∂(∂kn)

]
+

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
. (C5)

We use the Einstein or summation convention, wherein repeated indices imply summation,1717

∂

∂rk

∂exc

∂(∂kn)
≡

3∑
k=1

∂

∂rk

∂exc

∂(∂kn)
,

and the shorthand ∂kn ≡ ∂n/∂rk. Then1718

σijxc = −vxcnδij −
[
∂exc
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− ∂
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[
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∂(∂kn)

]
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)]
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+

∂

∂ri
(nrjvxc) . (C6)

We can express the gradient of exc as1719
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∂ri
=
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+
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∂rk∂rk∂ri
, (C7)

and thus replace1720

σijxc = −vxcnδij − rj
∂exc

∂ri
+ rj

∂exc
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Rearranging the term1721
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shows that it partly cancels with another term in Eq. C8,1722

σijxc = (exc − vxcn) δij −
∂n

∂ri

∂exc
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+ rj
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Now, assuming that ∂n/∂rk has equal mixed partials,1723

∂3n

∂rk∂rk∂ri
=

∂3n

∂rk∂ri∂rk
,
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we rearrange1724
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Inserting this latter equality into Eq. C10 shows further cancellation1725

σijxc = (exc − vxcn) δij −
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Let1726

σijxc = σ̃ijxc + Gijxc (C13)

σ̃ijxc = (exc − vxcn) δij −
∂n

∂ri

∂exc

∂(∂jn)
− 2

∂exc
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∂ri∂rj
(C14)
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The total stress due to the volume integral of σijxc and its integrated-by-parts counterpart σ̃ijxc will be the same provided1727 ∫
Ω

Gijxcd
3r = 0, (C16)

again in a finite system. Looking term by term, this requires that the factors multiplying ri in Gijxc vanish faster than1728

1/r. As the density decays exponentially as r →∞ [141], we can safely assume that the integral of Gijxc vanishes in a1729

finite system.1730

As a final note of simplification, modern DFAs tend not to depend upon the direction of the density gradient, only1731

its magnitude,1732

∂exc

∂(∂jn)
=

∂exc

∂|∇n|
∂

∂(∂jn)
[(∂kn)(∂kn)]

1/2
=

1

|∇n|
∂n

∂rj

∂exc

∂|∇n|
, (C17)

and thus the stress tensor density σ̃ijxc appropriate for extended systems is1733

σ̃ijxc = (exc − vxcn) δij −
1

|∇n|
∂n

∂ri

∂n

∂rj

∂exc

∂|∇n|
− 2

∂exc

∂∇2n

∂2n

∂ri∂rj
, (C18)

and the stress tensor is Σijxc =
∫
σ̃ijxcd

3r.1734
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Appendix D: Full LC20 data1735

Solid
(structure)

Reference

(Å)

PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 -0.018 -0.022 0.024 -0.039 -0.012
Na (bcc) 4.207 -0.036 -0.012 0.007 -0.039 -0.056
Ca (fcc) 5.555 -0.095 -0.003 0.023 -0.044 -0.046
Sr (fcc) 6.042 -0.129 0.041 0.061 0.015 -0.023
Ba (bcc) 5.004 -0.110 0.046 0.073 0.069 -0.006
Al (fcc) 4.019 -0.004 -0.014 -0.032 -0.046 -0.029
Cu (fcc) 3.595 -0.026 -0.029 -0.013 0.017 -0.028
Rh (fcc) 3.793 -0.013 -0.006 0.012 0.037 -0.006
Pd (fcc) 3.876 -0.003 0.018 0.037 0.062 0.006
Ag (fcc) 4.063 -0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.001 -0.000 0.007 0.014 0.023
SiC (zb) 4.348 0.011 0.004 0.007 0.008 0.022
Si (ds) 5.422 0.014 0.006 0.018 0.001 0.009
Ge (ds) 5.644 0.031 0.022 0.035 0.057 0.014
GaAs (zb) 5.641 0.023 0.019 0.028 0.048 0.003
LiF (rs) 3.974 0.035 -0.005 0.010 0.004 0.002
LiCl (rs) 5.072 -0.008 0.009 0.016 -0.002 -0.021
NaF (rs) 4.57 0.066 -0.015 0.011 0.016 0.020
NaCl (rs) 5.565 0.041 -0.002 0.026 0.005 -0.022
MgO (rs) 4.188 0.023 -0.002 0.008 0.004 0.003
ME (metals) -0.044 0.004 0.024 0.011 -0.020
MAE (metals) 0.044 0.021 0.033 0.044 0.021
ME (insulators) 0.024 0.004 0.017 0.016 0.005
MAE (insulators) 0.025 0.008 0.017 0.016 0.014
ME (total) -0.010 0.004 0.020 0.013 -0.007
MAE (total) 0.035 0.015 0.025 0.030 0.018

TABLE XIII. Relative errors (aapprox0 − aref.0 ) for the LC20 test set [107] of 20 cubic lattice constants, all in Å. Reference
experimental lattice constants (with zero-point vibration effects removed) are taken from Ref. [109]. We include mean absolute
(MAE) and mean errors (ME). The structures considered are face-centered cubic (fcc), body-centered cubic (bcc), cubic diamond
structure (ds), rock-salt (rs), and zinc-blende (zb). OFR2 exceeds the accuracy of the parent meta-GGA r2SCAN overall and
for the metallic and insulating subsets of LC20.
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Solid
(structure)

Reference
(GPa)

PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.619 -1.471 -4.659 -4.143 -1.461
Na (bcc) 7.9 0.021 0.683 0.254 1.546 -0.480
Ca (fcc) 15.9 2.084 2.141 1.959 3.237 3.190
Sr (fcc) 12.0 0.397 -0.739 -0.627 0.019 0.269
Ba (bcc) 10.6 -1.161 -2.062 -2.051 -1.001 -1.265
Al (fcc) 77.1 4.995 1.611 15.956 20.322 14.243
Cu (fcc) 144.3 20.498 24.233 15.450 -0.281 24.019
Rh (fcc) 277.1 19.283 15.178 4.888 -20.918 14.439
Pd (fcc) 187.2 17.506 8.133 -0.978 -19.524 11.245
Ag (fcc) 105.7 12.824 4.225 -2.764 -12.636 6.744
C (ds) 454.7 -5.144 3.611 -5.483 -21.214 -28.634
SiC (zb) 229.1 -8.101 -3.061 -2.166 -9.657 -11.991
Si (ds) 101.3 -7.744 -1.713 -4.034 -5.194 -6.490
Ge (ds) 79.4 -11.809 -8.053 -8.147 -17.672 -8.620
GaAs (zb) 76.7 -7.721 -4.294 -4.104 -30.596 -3.777
LiF (rs) 76.3 -2.860 7.068 3.965 4.592 5.766
LiCl (rs) 38.7 -3.517 1.040 -0.413 -3.648 -3.061
NaF (rs) 53.1 -4.571 7.039 2.988 2.640 3.033
NaCl (rs) 27.6 -1.714 0.763 -0.103 0.791 2.324
MgO (rs) 169.8 -9.361 2.552 0.801 0.774 -0.966
ME (metals) 7.707 5.193 2.743 -3.338 7.094
MAE (metals) 7.939 6.048 4.959 8.363 7.735
ME (insulators) -6.254 0.495 -1.669 -7.918 -5.241
MAE (insulators) 6.254 3.919 3.220 9.678 7.466
ME (total) 0.726 2.844 0.537 -5.628 0.926
MAE (total) 7.096 4.983 4.090 9.020 7.601

TABLE XIV. Relative errors (Bapprox
0 − Bref.

0 ) for the LC20 test set [107] of bulk moduli for 20 cubic solids, all in GPa (1
eV/Å3 ≈ 160.2176634 GPa). Reference experimental bulk moduli (with zero-point vibration effects removed) are taken from
Ref. [131]. It should be noted that the r2SCAN and r2SCAN-L values presented here and in Ref. [68] agree to within a few
GPa for each solid, generally. In a few cases, like Ge and GaAs for r2SCAN-L or NaCl for r2SCAN and r2SCAN-L, agreement
is quite poor. We attribute this to the different pseudopotentials used: Ref. [68] used “no-suffix” pseudopotentials, whereas we
used the recommended pseudopotentials from VASP. In these cases, the Ge d (which treats d-semicore states as valence states),
Ga d, and Na pv (which treats p-semicore states as valence states) pseudopotentials might give very different behaviors than
their no-suffix counterparts (which treat fewer electrons as valence electrons).
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Solid (struc) PBEsol r2SCAN r2SCAN-L OFR2
Li (bcc) 3.9698× 10−3 9.1842× 10−3 1.5553× 10−2 −9.6238× 10−3

Na (bcc) 9.8549× 10−4 7.0530× 10−4 4.1485× 10−3 1.1015× 10−2

Ca (fcc) 2.5486× 10−3 2.9326× 10−3 1.5698× 10−2 1.6111× 10−2

Sr (fcc) −1.2412× 10−2 1.2689× 10−3 2.5362× 10−2 6.6702× 10−3

Ba (bcc) 2.5548× 10−4 1.0728× 10−3 5.9928× 10−2 1.4873× 10−2

Al (fcc) 6.1313× 10−6 −7.9749× 10−4 2.6118× 10−3 3.0966× 10−3

Cu (fcc) 3.0698× 10−4 9.6047× 10−4 3.5296× 10−3 1.4137× 10−3

Rh (fcc) 2.9099× 10−4 3.6044× 10−5 3.8564× 10−4 3.7767× 10−4

Pd (fcc) −3.3150× 10−4 −6.9784× 10−4 −7.5960× 10−4 −3.4265× 10−4

Ag (fcc) 5.6017× 10−4 1.2080× 10−4 1.2583× 10−4 5.0807× 10−4

C (ds) 7.3743× 10−4 9.5259× 10−4 8.4424× 10−4 2.6446× 10−3

SiC (zb) 6.5009× 10−4 6.9223× 10−4 1.5169× 10−3 2.2265× 10−3

Si (ds) 1.5047× 10−4 1.8607× 10−4 −9.5398× 10−4 3.3177× 10−3

Ge (ds) 4.8177× 10−4 1.7996× 10−3 1.9719× 10−3 3.7134× 10−3

GaAs (zb) −1.9404× 10−4 −3.2999× 10−4 1.0211× 10−2 3.0868× 10−3

LiF (rs) 5.7602× 10−3 2.0001× 10−3 −2.7121× 10−3 7.1041× 10−4

LiCl (rs) 1.6706× 10−3 −1.0409× 10−3 −4.9830× 10−3 −6.1942× 10−4

NaF (rs) 6.0002× 10−3 1.7042× 10−3 3.5240× 10−3 8.9884× 10−3

NaCl (rs) 1.6417× 10−3 −6.9238× 10−3 6.5536× 10−3 1.8502× 10−3

MgO (rs) 1.3037× 10−3 1.1726× 10−3 7.7154× 10−5 1.9402× 10−3

MD 7.1911× 10−4 7.4993× 10−4 7.1316× 10−3 3.5979× 10−3

MAD 2.0129× 10−3 1.7289× 10−3 8.0725× 10−3 4.6564× 10−3

TABLE XV. Comparison of the LC20 cubic lattice-constant differences found by fitting (EOS) to the SJEOS and by mini-
mization of the stress tensor (ST) using Eq. C18. The deviations are aEOS

0 − aST0 ; mean deviations (MDs) and mean absolute
deviations (MADs) are also presented, in Å.



33

Appendix E: Full LC23 data1736

Solid (structure) Reference

(Å)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 -0.012 -0.008 0.018 0.029 -0.021 0.010
Na (bcc) 4.207 -0.014 -0.038 -0.026 -0.007 -0.083 -0.057
K (bcc) 5.211 0.072 0.004 0.111 0.139 -0.042 -0.006
Rb (bcc) 5.58 0.088 -0.012 0.132 0.166 0.025 0.054
Cs (bcc) 6.043 0.119 -0.032 0.186 0.228 0.103 0.069
Ca (fcc) 5.555 -0.024 -0.095 -0.005 0.024 -0.049 -0.046
Sr (fcc) 6.042 -0.020 -0.129 0.042 0.062 0.007 -0.018
Ba (bcc) 5.004 0.026 -0.110 0.045 0.073 0.055 0.000
Al (fcc) 4.019 0.021 -0.004 -0.014 -0.032 -0.046 -0.029
Cu (fcc) 3.595 0.040 -0.026 -0.027 -0.013 0.014 -0.028
Rh (fcc) 3.793 0.031 -0.018 -0.014 0.011 0.031 -0.010
Pd (fcc) 3.876 0.064 -0.003 0.018 0.037 0.062 0.005
Ag (fcc) 4.063 0.084 -0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.018 0.002 0.001 0.008 0.015 0.024
SiC (zb) 4.348 0.032 0.011 0.004 0.007 0.008 0.023
Si (ds) 5.422 0.047 0.014 0.005 0.018 0.004 0.005
Ge (ds) 5.644 0.138 0.057 0.040 0.037 0.061 0.039
GaAs (zb) 5.641 0.121 0.043 0.024 0.031 0.056 0.024
LiF (rs) 3.974 0.099 0.042 0.005 0.022 0.039 0.043
LiCl (rs) 5.072 0.081 -0.002 0.021 0.039 0.006 -0.003
NaF (rs) 4.57 0.062 -0.014 -0.091 -0.067 -0.056 -0.042
NaCl (rs) 5.565 0.090 -0.005 -0.047 -0.019 -0.047 -0.058
MgO (rs) 4.188 0.060 0.023 -0.002 0.008 0.009 0.006
ME (metals) 0.037 -0.037 0.037 0.058 0.010 -0.004
MAE (metals) 0.047 0.038 0.051 0.066 0.047 0.026
ME (alkalis) 0.051 -0.017 0.084 0.111 -0.004 0.014
MAE (alkalis) 0.061 0.019 0.095 0.114 0.055 0.039
ME (insulators) 0.075 0.017 -0.004 0.008 0.009 0.006
MAE (insulators) 0.075 0.021 0.024 0.026 0.030 0.027
ME (total) 0.053 -0.013 0.019 0.037 0.010 0.000
MAE (total) 0.059 0.031 0.039 0.049 0.040 0.026
ME (LC20) 0.047 -0.014 0.001 0.016 0.007 -0.005
MAE (LC20) 0.054 0.033 0.024 0.029 0.037 0.024

TABLE XVI. Relative errors in the equilibrium lattice constants a0 (in Å) for the LC23 set (LC20 augmented with K, Rb, and
Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs
are presented. Reference experimental lattice constants (with zero-point vibration effects removed) are taken from Ref. [109],
except for Rb, which is taken from [131]. LC20 error statistics are also reported to demonstrate the level of convergence with
respect to the benchmark results presented in Table XIII.
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Solid (structure) Reference
(GPa)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.839 0.583 0.596 0.013 1.239 0.045
Na (bcc) 7.9 0.014 0.125 0.163 0.065 -2.894 -0.671
K (bcc) 3.8 -0.207 -0.077 -0.349 -0.360 11.257 1.370
Rb (bcc) 3.6 -0.821 -0.648 -0.905 -0.963 2.295 -1.210
Cs (bcc) 2.3 -0.348 -0.265 -0.324 -0.400 0.509 0.506
Ca (fcc) 15.9 1.327 2.084 2.100 1.879 3.302 3.089
Sr (fcc) 12.0 -0.689 0.399 -0.745 -0.615 -0.108 0.038
Ba (bcc) 10.6 -1.761 -1.162 -2.070 -2.055 -3.387 -1.543
Al (fcc) 77.1 0.260 4.965 1.574 15.934 13.496 11.678
Cu (fcc) 144.3 -6.910 20.643 17.327 16.028 3.719 23.695
Rh (fcc) 277.1 -18.422 21.063 17.606 4.758 -20.703 14.192
Pd (fcc) 187.2 -18.081 17.501 8.447 -0.768 -18.533 11.649
Ag (fcc) 105.7 -16.360 12.857 3.767 -2.716 -14.355 6.616
C (ds) 454.7 -19.906 -3.552 3.901 -3.551 -19.449 -24.790
SiC (zb) 229.1 -16.873 -8.254 -2.853 -2.359 -10.102 -13.234
Si (ds) 101.3 -12.494 -7.742 -1.521 -4.008 -6.276 -6.069
Ge (ds) 79.4 -20.223 -11.949 -7.579 -6.319 -11.531 -8.730
GaAs (zb) 76.7 -14.665 -6.497 -1.881 -2.929 -8.244 -3.676
LiF (rs) 76.3 -8.886 -3.567 3.680 2.138 -0.878 -7.408
LiCl (rs) 38.7 -6.865 -3.591 -2.399 -3.768 -1.930 -1.460
NaF (rs) 53.1 -5.934 -0.959 9.802 6.859 5.564 5.555
NaCl (rs) 27.6 -3.345 -0.746 2.736 1.551 2.196 3.204
MgO (rs) 169.8 -17.938 -9.140 2.450 0.967 -0.729 -0.859
ME (metals) -4.704 6.005 3.630 2.369 -1.859 5.343
MAE (metals) 5.080 6.336 4.306 3.581 7.369 5.869
ME (alkalis) -0.105 -0.056 -0.164 -0.329 2.481 0.008
MAE (alkalis) 0.446 0.340 0.467 0.360 3.639 0.760
ME (insulators) -12.713 -5.600 0.634 -1.142 -5.138 -5.747
MAE (insulators) 12.713 5.600 3.880 3.445 6.690 7.498
ME (total) -8.186 0.960 2.327 0.843 -3.284 0.521
MAE (total) 8.399 6.016 4.121 3.522 7.074 6.578
ME (LC20) -9.346 1.153 2.755 1.055 -4.480 0.566
MAE (LC20) 9.590 6.869 4.660 3.964 7.432 7.410

TABLE XVII. Relative errors in the equilibrium bulk moduli B0 (in GPa) for the LC23 set (LC20 augmented with K, Rb, and
Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs
are presented. Reference experimental bulk moduli (with zero-point vibration effects removed) are taken from Ref. [131]. LC20
error statistics are also reported to demonstrate the level of convergence with respect to the benchmark results presented in
Table XIV.
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Solid (structure) Reference
(eV/atom)

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 1.67 -0.065 0.005 -0.105 -0.096 -0.060 -0.102
Na (bcc) 1.12 -0.033 0.038 -0.018 -0.031 -0.056 -0.050
K (bcc) 0.94 -0.073 -0.011 -0.074 -0.089 -0.100 -0.090
Rb (bcc) 0.86 -0.088 -0.025 -0.097 -0.111 -0.131 -0.101
Cs (bcc) 0.81 -0.099 -0.032 -0.121 -0.131 -0.154 -0.149
Ca (fcc) 1.87 0.032 0.233 0.206 0.201 0.181 0.174
Sr (fcc) 1.73 -0.122 0.077 0.078 0.060 0.001 0.078
Ba (bcc) 1.91 -0.035 0.203 0.117 0.077 -0.006 0.079
Al (fcc) 3.43 0.080 0.432 0.170 0.172 -0.006 0.016
Cu (fcc) 3.51 -0.025 0.522 0.375 0.350 -0.018 0.385
Rh (fcc) 5.78 -0.021 0.933 0.072 0.052 -0.335 0.462
Pd (fcc) 3.93 -0.189 0.541 0.437 0.236 -0.244 0.363
Ag (fcc) 2.96 -0.441 0.118 -0.075 -0.082 -0.450 -0.037
C (ds) 7.55 0.264 0.763 -0.051 -0.090 -0.196 -0.186
SiC (zb) 6.48 -0.012 0.411 -0.037 0.046 -0.203 -0.218
Si (ds) 4.68 -0.100 0.246 0.029 0.190 -0.084 -0.092
Ge (ds) 3.89 -0.180 0.211 0.246 0.133 -0.314 0.042
GaAs (zb) 3.34 -0.158 0.233 0.029 -0.016 -0.284 0.013
LiF (rs) 4.46 -0.023 0.085 -0.066 -0.065 -0.171 -0.271
LiCl (rs) 3.59 -0.189 -0.056 -0.102 -0.121 -0.179 -0.246
NaF (rs) 3.97 0.027 0.128 0.041 0.044 -0.074 -0.169
NaCl (rs) 3.34 -0.181 -0.071 -0.041 -0.056 -0.136 -0.205
MgO (rs) 5.2 -0.196 0.134 0.062 0.055 -0.060 -0.182
ME (metals) -0.083 0.233 0.074 0.047 -0.106 0.079
MAE (metals) 0.100 0.244 0.150 0.130 0.134 0.160
ME (alkalis) -0.072 -0.005 -0.083 -0.092 -0.100 -0.099
MAE (alkalis) 0.072 0.022 0.083 0.092 0.100 0.099
ME (insulators) -0.075 0.208 0.011 0.012 -0.170 -0.152
MAE (insulators) 0.133 0.234 0.070 0.082 0.170 0.163
ME (total) -0.079 0.222 0.047 0.032 -0.134 -0.021
MAE (total) 0.115 0.239 0.115 0.109 0.150 0.161
ME (LC20) -0.078 0.259 0.068 0.053 -0.135 -0.007
MAE (LC20) 0.119 0.272 0.118 0.109 0.153 0.169

TABLE XVIII. Relative errors in the equilibrium cohesive energies E0 (in eV/atom) for the LC23 set (LC20 augmented with
K, Rb, and Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2
LL-MGGAs are presented. Reference experimental cohesive energies (with zero-point vibration effects removed) are taken from
Ref. [131]. LC20 error statistics are also reported.
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