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ABSTRACT

As edge devices become increasingly powerful, data analytics are gradually moving from a central-
ized to a decentralized regime where edge computing resources are exploited to process more of
the data locally. This regime of analytics is coined as Federated Data Analytics (FDA). Despite the
recent success stories of FDA, most literature focuses exclusively on deep neural networks. In this
work, we take a step back to develop an FDA treatment for one of the most fundamental statis-
tical models: linear regression. Our treatment is built upon hierarchical modeling that allows bor-
rowing strength across multiple groups. To this end, we propose two federated hierarchical model
structures that provide a shared representation across devices to facilitate information sharing.
Notably, our proposed frameworks are capable of providing uncertainty quantification, variable
selection, hypothesis testing, and fast adaptation to new unseen data. We validate our methods
on a range of real-life applications, including condition monitoring for aircraft engines. The results
show that our FDA treatment for linear models can serve as a competing benchmark model for
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the future development of federated algorithms.

1. Introduction

The sheer amount of data collected nowadays is beginning to
overwhelm traditional centralized data analytics regimes
where data from the edge is continuously uploaded to a cen-
tral server to be processed. Excessive communication traffic
from data upload, significant central server storage needs,
energy expenditures from centralized learning of big data
models, and privacy concerns from sharing raw data are
becoming critical challenges in centralized systems. Statista, a
German company specializing in market and consumer data,
has predicted that, by 2024, data produced on edge devices
(e.g., cell phone data, self-driving vehicle data) will reach
more than hundreds of zettabytes while the global central
servers only have 10.4 zettabytes of storage (Morell and Alba,
2022). Transmitting such a vast amount of edge data into a
central server is infeasible. Adding to that, training a model
with moderately large datasets results in significant budget
costs and carbon emissions (Patterson et al, 2021).
Furthermore, data-sharing comes with serious privacy con-
cerns. According to Lawson et al. (2015), Canadian drivers
who refused to enroll in the automotive telematics program
demanded that their personal driving data (e.g., behavior,
location, web-browsing history) should be respected by
vehicle companies and that they be given control over the
data collection process. These debates over data protection
standards have not faded away over the past decade.
Fortunately, the Internet of Things (IoT) is undergoing a
new revolution in which the computing power of edge devi-
ces is tremendously increasing (Hassan et al., 2018). Al

Chips such as general-purpose chips (GPUs), semi-custom-
ized chips (FGPAs), and fully-customized chips (ASICs) are
becoming readily available across many applications
(Blanco-Filgueira et al, 2019; Rahman and Hossain, 2021;
Zhu et al., 2021). Such AI chips are able to process a vast
amount of data locally and provide timely responses and
decisions (Shi et al., 2016). For instance, the autonomous
vehicle company Perceptln has released a real-time edge
computing system, DragonFly+, that is three times more
power efficient and delivers three to five times of the com-
puting power of an Nvidia Tx1 and an Intel Core i7 proces-
sor (Liu et al, 2019). Another notable example is Tesla’s
autopilot system that has computing power on the car itself
comparable to hundreds of MacBook pros (CleanTechnica,
2021). As a consequence, the traditional IoT is on the verge
of shifting to a decentralized framework recently termed the
Internet of Federated Things (IoFT) (Kontar et al., 2021) in
which some of the data processing is deferred to the edge.
In this future, the central server only acts as an orchestrator
of the learning process and an integration point of model
updates from different devices, rather than the central loca-
tion where all data is processed. Indeed, IoFT is slowly infil-
trating various fields such as manufacturing, transportation,
and energy systems (Kontar et al., 2021).

The underlying data analytics framework in IoFT is
Federated Data Analytics (FDA), where edge devices exploit
their own computation power to collaboratively extract
knowledge and build smart analytics while keeping their
personal data stored locally. Consequently, edge devices no

CONTACT Raed Al Kontar @ alkontar@umich.edu

@ Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2022.2157912

Copyright © 2023 “lISE”


http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2022.2157912&domain=pdf&date_stamp=2023-01-31
https://doi.org/10.1080/24725854.2022.2157912
https://doi.org/10.1080/24725854.2022.2157912
http://www.tandfonline.com

2 . X. YUE ET AL.

longer need to upload their data to the cloud (or server),
and, in turn, the cloud does not need to store that immense
amount of data. As such, FDA resolves many of the afore-
mentioned drawbacks of the centralized computing system
and sets forth many intrinsic advantages, including privacy-
preserving and reducing storage/computation/communica-
tion costs, among many others.

In spite of some recent advances in FDA, most, if not all,
literature focuses on deep neural networks (Li, Sahu,
Talwalkar, et al., 2020) (learned via first-order methods). To
date, very few papers have delivered federated treatments of
traditional statistical models. Perhaps the closest field where
statistical models were investigated is Distributed Learning
(DL) (Jordan et al., 2019), yet DL and FDA have several
fundamental  differences.  Despite  the  terminology
“distributed”, DL is still a centralized computation approach
where different computing nodes operate on all data (Fan
et al., 2021). These nodes communicate often, observe each
other’s data, and can operate on different data partitions.
The underlying philosophy for DL is “divide-and-conquer”
where data is divided across the nodes (often dynamically),
and then the nodes collaborate to “conquer” (learn) a single
model. As a notable example, Zhang et al. (2015) propose a
DL algorithm that solves a ridge regression problem. The
basic idea of this paper is as follows: a server first evenly
divides a set of data into m disjoint sets and assigns each
set to a different node. Each node then solves a ridge
regression problem and sends the optimal solutions back to
the server. The server then aggregates local estimations. As
a result, this approach returns a single global model. In con-
trast, in FDA, data resides at the edge and cannot be
shuffled, randomized, or divided. Therefore, edge devices
cannot see each others’ data and data partitions for FDA
are fixed and often heterogeneous. In addition, devices have
datasets with unique features as they correspond to different
clients, components or systems (e.g., cars). Therefore, in
FDA we cannot divide the data and there is often no single
model to conquer, rather, our goal is to borrow strength
across edge devices to improve inference and prediction.

In this work, we take a step back and move out of the
regime of deep neural networks to study one of the most
fundamental statistical models: Linear Regression (LR).
Indeed, linear models may facilitate hypothesis testing,
uncertainty quantification, variable selection, deriving engin-
eering insight, and establishing a baseline with which to
compare other models. Needless to say, in reality, many real
applications can be sufficiently characterized by linear mod-
els (Liu et al., 2013; Si et al, 2017; Li et al., 2018; Schulz
et al., 2020; Arashi et al., 2021; Sahin et al., 2022). In add-
ition, building upon FDA for linear models, one may
develop approaches for more complex derivatives such as
logistic regression, mixed-effects, and kernel methods.

To this end, we exploit the properties and structure of
linear models and develop an FDA treatment for LR with
Gaussian noise, entitled FedLin. Our treatment is built
upon hierarchical models (HMs), which allow borrowing
statistical knowledge across groups (i.e., devices or clients in
FDA). Specifically, we propose two federated HM structures

that provide a shared representation across devices to facili-
tate information transfer. The first structure establishes a
shared representation defined through a structural prior
over concatenated device parameters. The second structure
is based on the assumption that all device parameters are
generated from the same underlying distribution. This
allows uncertainty quantification and, consequently, a
Bayesian treatment for variable selection in FedLin. Our
methods are validated on a range of real-life problems,
including variable selection and condition monitoring. The
results highlight the effective performance of our approaches
and their ease of implementation, which may help them
serve as benchmark models for many future developments
of federated statistical algorithms.

Organization: The remainder of this article is organized
as follows. In Section 2, we conduct a literature review, and
introduce the general setting and motivation. In Sections 3
and 4, we present our two model structures and their appli-
cations. We validate our proposed models on various simu-
lated and real-life datasets in Sections 5 and 6. Finally, we
draw conclusions in Section 7. The, codes used in this art-
icle, written in R language, can be found at https://github.
com/UMDataScienceLab/Federated-Linear-Models.

2. Background
2.1. Literature overview

The idea of FDA was first brought to the forefront of deep
learning by McMahan et al. (2017). In this work, they pro-
posed an FDA algorithm termed federated averaging
(Fedavg). The idea of FedAvg is simple: a central server
distributes initial deep learning model parameters and the net-
work structure to some selected devices, devices perform local
Stochastic Gradient Descent (SGD) steps using their data and
send their updated parameters back. The server then takes an
average of those parameters to update the global model. This
process is termed as one communication round and is iterated
several times. Although simple, FedAvg is currently still one
of the most competitive benchmark models (Kairouz et al,
2021). To date, some work has been proposed to improve the
performance of federated deep learning algorithms. For
instance, Yuan and Ma (2020) and Liu et al. (2020) and Yuan
and Ma (2020) provided several provable techniques to accel-
erate FedAvg and enable faster convergence. Li, Sanjabi,
et al. (2019); Du et al, (2021); Yu et al. (2020); Yue et al.
(2021); Du et al. (2021) developed variants of FedAvg that
ensure uniformly good performance across all devices to
achieve fairness. Another line of work aims to develop person-
alized solutions in FDA as excessive heterogeneity can greatly
impact the performance of a single global model (Deng et al.,
2020; Fallah et al., 2020; Li et al., 2021). Such approaches usu-
ally either follow a train-then-personalize philosophy where a
trained global model is fine-tuned on local devices or divide
the layers of a neural network into shared and individualized
ones (Tan et al., 2022), where devices collaborate to learn the
common layers using methods such as FedAvg. From a the-
oretical perspective, Stich (2018); and Li, Sahu, Zaheer, et al.
(2020) prove the convergence of FedAvg for convex
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functions and homogeneous independent and identically dis-
tributed (i.i.d.) datasets. Those results are then extended to a
non-convex setting by Wang and Joshi (2021). On the other
hand, Li, Huang, et al (2019) extend the results of Stich
(2018) to the non-i.i.d. setting. Furthermore, Shi et al. (2021)
extend the convergence results to a kernel regime. For a com-
prehensive overview of the current literature, please refer to
Kontar et al. (2021).

The major trend of FDA exclusively focuses on neural net-
works and classification tasks. FDA for statistical models is still
scarce. Yue and Kontar (2021) extend the Gaussian process to
a federated framework and show that their proposed algorithm
can achieve state-of-the-art performance on multi-fidelity mod-
eling problems. Yuan et al. (2021) develop a federated compos-
ite optimization framework that solves the federated Lasso
problem. Tong et al. (2020) propose a federated iterative hard
thresholding algorithm to tackle the non-convex 0-norm penal-
ized regression problem. The two aforementioned papers
mainly formulate penalized regression from a frequentist per-
spective. In Section 4, we will develop a Bayesian formulation
built upon HM for federated penalized regression.

2.2. General setting

We start by describing our problem setting. Suppose there
exists K > 2 edge devices. For device k € [K] := {1,...,K},
the dataset is given as Dy = {Xj, Y} with N, observations,
where Y, = b/kl,...,yka}T is a Nx x 1 output vector, X; =
[%k1s - Xiy,] 18 @ d X Ni input
([%Ki] 1> oo [xk,-]d)TVi =1,...,Nx. Here, d is the dimensionality
of the input space. In this work, we focus on linear models.
More specifically, data on device k is used to learn a linear

matrix and X =

model parameterized by 6; € R?. The distribution of y; is
given as

Viil % O ~ N (2,0, 07), Vi=1,..,Nj, (1)

where o7 is a noise parameter. For the sake of compactness,
denote by ® = (0, ...,0x) a d x K matrix concatenating all
device parameters.

Furthermore, we assume that a central server is con-
nected to all edge devices and can facilitate the collaborative
model learning process. As such, our goal in FDA is to let
devices leverage their commonalities to better learn model
parameters @; all the while distributing the learning efforts
and circumventing the need to share raw data.

2.3. FDA and HMs

Since our goal is to borrow strength across devices, the first
step is to create a shared representation across individual
device models in order to facilitate the inductive transfer of
knowledge. Here we adopt the natural hierarchy in FDA
where a central server is connected to edge devices and can
orchestrate the learning process. Specifically, we assume that
individual device parameters @ at the lower hierarchical
level are generated from a set of shared parameters at the
higher hierarchical level. Through collaboratively learning
these shared parameters in a federated manner, devices
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Figure 1. The first HM structure.

Devicek/

induce an update on their personalized parameters 6 that
uses information from all other devices.

Two hierarchical structures are proposed. The first defines
a joint prior over ® parameterized by a cross-covariance
matrix Q. This allows learning a graph that achieves inductive
transfer. Whereas, the second HM structure assumes that the
0’s are sampled from a common distribution (e.g.,
0r|¢ ~ N (u,X)). This allows a Bayesian treatment capable of
uncertainty quantification as well as learning a global random
variable ¢ that can be used to predict on new unseen devices.

We will detail our model formulations, inferences, and
applications in the following two sections.

3. A shared representation via correlation

In this section, we present our first hierarchical structure
(denoted as HM1) that establishes a shared representation by
defining a structural prior over @ (Figure 1). This prior is
parameterized by Q - a K x K cross-covariance matrix. In
Figure 1, the matrix Q acts as a graph on the central server
that encodes a shared representation among the K devices
and facilitates information sharing. By learning and exploit-
ing the matrix €, devices can borrow information from
each other to improve prediction performance.

Mathematically, we impose a structural prior A'(0, Q ® I)
on Vec(®), where Vec(+) is a vectorization operation and ®
is a Kronecker product. This prior encodes the belief on the
underlying distribution that generates components of ©.
More specifically, Q is a symmetric matrix whose (i, j)-th
component captures the covariance between device i and j.
Overall, the aforementioned description translates to the
following formulation:

0~ MN(0,1,Q), )

where MN (M, A, B) denotes a matrix normal distribution with
location (mean) parameter M, row covariance A, and column
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covariance B. In this prior, the column covariance € captures the
covariance across devices. Our prior assumes that the covariance
across devices is the same for different parameter components. In
fact, this is a common practice in the multitask learning literature
(Zhang and Yeung, 2012; Ruder, 2017) for multiple reasons: (i)
The goal here is to facilitate information transfer between devices
and € achieves exactly this goal. (ii) This is only a prior and, in
reality, it is hard to pre-define the within component covariance.
(iii) Posterior computations become rather challenging if the prior
(basically a regularization) is complex. As we will show in Sections
5-6, a single € is capable of providing excellent performance in
several prediction tasks.

By Bayes’ rule and incorporating (1) and (2), we can
obtain the posterior distribution of @ as a product of the
prior and the likelihood function. By omitting the constant
terms and taking the negative logarithm, we can obtain the
negative log-likelihood function:

— logp(®I2, {Yi}i_,) o —logp({Yi}i,|©)p(01R)

K
= —log <HP(Yk|0k)> — logp(0|)
K1 Tp 12 1T
x ;;inyk — X, 0l + Tr(O@Q'O")

+dlog|Q| :=L(0O, Q).
Therefore, our goal is to find the Maximum A Posteriori

(MAP) of (©,Q) that minimizes the negative log-likelihood
function, in a federated fashion:

(@, Q") = arg minL(O, Q).
0,Q

To solve this, notice that the derivative with respect to
0y, for all k, is

IL(®,Q) -2 - K .
R IX (Y- X0 +2 0.9
26, p k(Y — X 0) + ; Pk

where Q| is defined as the component located in the ith

row and kth column of Q!.

In IoFT, the central server does not have access to datasets
D = {D;,...,Dg}, nor do devices have access to each other’s
datasets. Furthermore, the central server cannot share Q and
® with any device, due to the privacy constraint. Therefore,

directly running gradient descent using %k is not feasible. Yet,

by scrutinizing g—(fk, one can observe that a gradient update on

each 0 is split into two gradients. The first term is an update
from local data Dy whereas the second is a regularization term
from all devices based on Q. Therefore, the local parameter
update can be done via the two local steps below

Stage 1: Multiple local GD or SGD steps 0y < 0y
m
9%

+ 22X (Y — X[ 0).

K
Stage 2 : Prior Shrinkage 0 «— 0y — 217220,»9;,1.

i=1

At the first stage, device k runs multiple steps of SGD or
Gradient Descent (GD) using the local gradient information

22X (Y — X 0;). To compute this gradient value, one
k

needs to estimate the local variance parameter ai. Yet, recall
that our main goal is to estimate 0; by borrowing informa-
tion from the covariance matrix Q. Adding to that, 0; and
O'i are independent. Therefore, it is not necessary to estimate
o7 at each local step. Here observe that #, is a tunable learn-
ing rate parameter and we can thus view 7, ::Z—% as a tun-

ing parameter in stage 1. In other words, we define 7, as
the tunable learning rate during the optimization procedure.
This circumvents the need to estimate o7 locally.
Nevertheless, o7 can be easily estimated from the linear
residual term if it is of practitioner’s interest. We here note
that, since each device k has a different o7, it is possible to
use device-specific learning rates 7, for all k. However, it
incurs a heavy tuning cost. In this article, we use the same
learning rate for each device. As we will show in Section 5-
6, this strategy works well.

At the second stage, device k will then use the aggregated
information from all devices Yk | 0;Q;; broadcasted from
the central server to update 0 by exploiting the covariance
matrix . One key notable feature of this updating frame-
work is that the central server only needs to share an aggre-
gated metric ZIK:1 0,{2[,1. This operation is indeed
reminiscent of federated averaging and can preserve privacy
while allowing devices to borrow strength from each other.

Finally, we will discuss the updating rule of Q on the
central server. The most straightforward way is to take the
derivative of L(®,Q) with respect to Q. By doing so, we
obtain

J0L(0,Q)
oQ
As a result, it is natural to update Q using this closed-form

expression. Here one can view that @' @® encodes the infor-
mation of device covariance. Unfortunately, this approach

.
—_0'0TOQ ' +dQ 0= Q= ?.

typically faces singularity issues when ®' @ is not a positive
definite matrix (e.g., contains zero elements). To resolve this,
we propose an updating procedure that prevents an abrupt
change in Q to safeguard against singularity. More specific-
ally, we express the updated Q as a convex combination
between € from the previous communication round and the

exact updating equation GTT@. That being said, we have

Q- (1-0)Q +%®T®.

Here, o is a parameter that controls the change in € and
%19 encodes the devices’ covariance. A small o renders a
conservative updating rule while a large o under-weights the
importance of the covariance matrix from the previous com-
munication round. When a =1, we recover the closed-form
updating equation.

Here note that, in the aforementioned framework, the central
server selects all devices at each communication round. This
scheme is known as full device participation. In reality, however,
some local devices are often offline or unwilling to respond due
to various reasons. To accommodate this situation, one can sam-
ple a subset of devices at each communication round. We term



this scenario as partial device participation. We summarize the
detailed algorithm in Algorithm 1.

Algorithm 1: Improving Device Performance by Exploiting
Structural Covariance

Data: Number of devices K, number of local iterations T,
set S that contains indices of the selected devices,
number of communication rounds C, randomly ini-
tialized model parameter @, initial matrix Q =1,
learning rate 7, (selected by grid-search or other tun-
ing methods), proportion o = 0.1 (default), dimen-
sion d.

forc=0:(C—1) do

Server broadcasts column of ® (i.e., 6;) and ZIK:1 01952
for all selected k;
for k€ S do
fort=0:(T—1) do
Device-side: (Sampling Batch) Sample a subset of data
(X%, Y?) from Dy, where superscript b means batch;
Device-side: (SGD or GD) 0,((”1) = 0,(:> + 21, X2 (Y?
—X{" 0);
end
Device-side: (Prior Shrinkage) 6" «— 0](€T> -2, 3K,
0; Qs
end
Server-side: Combine all 0, for k ¢ S, and all 6;", for
k € S, to create a new matrix Q;
Server-side: Q «— (1 — o)Q + %@TG).
end
Return O, Q.

As we will show in our numerical studies, this simple-to-
implement algorithm requires very few communication
rounds to recover the true parameters and excels at leverag-
ing knowledge across all devices.

4. An HM based on the distribution assumption

So far, we have presented HM1, which exploits the relation-
ship among devices to improve prediction performance. One
drawback of Algorithm 1 is that it only returns a point esti-
mate of ©. In practice, it is also desirable to quantify the
uncertainty in the parameter estimates. Additionally, the
estimated ® and € cannot provide any borrowable informa-
tion for new devices, yet the idea of fast adaptation to new
unseen data is crucial in many fields such as meta-learning
(Vanschoren, 2019). In this section, we will present an alter-
native model structure that is formulated from a Bayesian
perspective to tackle the aforementioned issues.

4.1. Structure and formulation

Our second structure (denoted as HM2) assumes all device
parameters are generated from the same underlying distribution.
To give a simple example, one can assume O|¢ ~ N (u,7I)
(Figure 2) where ¢ = (p, 1) is a set of a global hyper-parameters
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e.g., Ox|p~N(u,t

Observation i
Devicek/

on the central server. Here it is critical to note that 7I € R4 is
a within covariance matrix and does not denote covariances
across K devices as all 6;’s come from the same underlying distri-

N

Figure 2. The second HM structure.

bution. This assignment indicates that {Gk}l,;l are related and
generated from the same distribution, yet the degree of model
similarity is controlled by the variance parameter 7. A small ||
implies all model parameters are similar (i.e., homogeneous) and
the hierarchical model is closely related to learning a single com-
mon parameter 0 that fits all devices’ data. On the other hand, a
large variance |t| incurs more heterogeneity among devices. In
the extreme case when |t| — oo, the hierarchical model is
equivalent to a separate modeling approach where each device’s
data is fitted separately (Albert and Hu, 2019).

Now, we formally define the HM2 formulation. From our
hierarchical definition and taking a fully Bayesian treatment
by placing a prior p(¢) on the global hyper-parameters, the

joint posterior of {0;}1_, and ¢ for HM2 can be written as:

p(01, ...,0[(,¢|Y1, veey YK)
O(p(Yl, veey YK|01, ...,0](, ¢)p(01, ...,0[(, ¢)

K (3)
= p(®)] [p(Yil0k ¢)p(0kl9) -
k=1

To further contextualize HM2, we provide an example of
a possible formulation.

Example 4.1. Assume each device k fits a linear regression
parameterized by 0. The local dataset is given as (Xi, Yi)
for all k. Then one possible hierarchical formulation is:
Yklek) 4) ~ N(XkTOk, O'iI)
Okl ~ N (. <I)

p~ N(O,I)

7~ log N(0,1)

¢ = (w7
Clearly, inferring the joint posterior above is very challeng-
ing in a federated setting. Yet, in a hierarchical model, if we
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know the posterior over the upper hierarchical level
p(@{Yi}r,) (e, over global hyper-parameters ¢), we can
directly use this posterior as a prior to infer the lower level
p(0c/{Yx}c,) parameters locally.

More specifically, by integrating out device parameters
from (3), we can derive that

[p(ol, ey 01(,¢|Y1, s YK)d01d0K

K K

) = p@)]] [ 43100 #)p(0016)d0 — p( @[ [0

k=1 k=1

=p(d|Yy,..

where fi(¢) = [p(Yk|0k ¢)p(0k|p)d0. As a consequence,
our main goal is to collaboratively learn p(¢|Y7,...,Yk) in a
federated setting. One key challenge, however, is that the
central server does not have any access to any edge dataset
Dy and therefore directly computing p(¢|Yy,...,Yk) is
infeasible. For this reason, we resort to a trick based on the
approximate inference methods to learn this posterior
distribution.

4.2. Federated Bayesian inference - expectation
propagation

In this section, we will present the federated inference
framework for HM2. Specifically, our goal is to learn the
posterior density p(¢|Yy,...,Yg). In statistics, the most
straightforward and popular approaches to do so are
Markov Chain Monte Carlo (MCMC) methods. Yet, as will
be clear shortly, we argue that sampling methods are not
practical in the federated hierarchical setting, due to their
sequential nature. Take Gibbs sampling as an example,
device 1 needs to sample 6; from the density
(01104, ..., 0k, ¢, Y1) then pass those samples to the central
server. The central server then needs to transmit those
sampled 6, to device 2, and device 2 will sample from
p(0,]01,....,0k, ¢, Y,). Tt can be seen that this sequential
nature of MCMC significantly increases the communication
cost and also slows down the federated optimization process
when the total number of devices is large. Even if one can
smartly parallelize the sampling process, the number of
MCMC samples obtained locally will be large if the dimen-
sion is high, due to the curse of dimensionality (Jordan
et al., 2019).

To resolve the aforementioned issues, we resort to
Expectation Propagation (EP) (Minka, 2001) to approximate
the posterior distribution. EP is one of the most widely-used
algorithms for computing an approximate posterior distribu-
tion (Minka, 2013; Vehtari et al, 2020). Here, we first
briefly introduce the idea of EP in a centralized regime.
Consider a posterior distribution with independent data
points

n(¢) = p(9lY) o< p(e) [[ p(ri1#)

where Y = (y1,...yn) ' is the data vector. EP approxi-
mates 7(¢p) by a density g(¢) such that

Intuitively, EP uses ¢;(¢p) to approximate p(y;|¢), for all
i. The most common choice is the normal density (Vehtari
et al., 2020). To achieve this goal, at each iteration, EP first
takes an approximation factor q;(¢) out from the current
q(¢) and replaces it with the true factor p(y;|¢). This step
yields a new density ¢"*"(¢). This resulting new density can
be used as an updated approximated posterior. This step is
iterated over all 7 till convergence. Please, refer to Barthelme
(2016) for a comprehensive summary of EP. It can be seen
that EP can be naturally extended to FDA where each device
can be viewed as an independent “data point”. In the follow-
ing paragraphs, we will detail the federated extension of EP.

The main idea is to approximate terms f;(¢) by a local
device approximation function qx(¢) for all k=1,..,K.
More specifically, we have

SYk) = p(¢) [ [ ax(9) == a(). (4)

k=1

p(d|Y, ..

Using the framework of EP, we gradually update g(¢) by
iteratively renewing gix(¢) at each device k. During each
communication round, given the estimated g(¢) broadcasted
from the server, device k first computes the cavity distribu-
tion

(5)

and the tilted distribution
k(@) X fi(D)g—k(). (6)

It then computes the updated posterior approximation
such that

7" (¢) = q\(d)- 7)

Intuitively, the cavity distribution g_x(¢) removes the
impact of the old gi(¢) from the approximated posterior
density q(¢) and the tilted distribution adds the true target
density fi(¢) to q_i(¢). As a result, we use the tilted distri-
bution as an updated approximation to the posterior density
of ¢. This step is typically done through a sampling method
and is distribution-dependent. We will detail this approxi-
mation procedure in Section 4.2.2.

Afterward, device k calculates the change in its local
approximation by

7" ()
a(¢)

Instead of sending """ back to the server, we calculate
the change in the global posterior imposed by device k via
(8) and sends Aqy(¢) to the central server. The server aggre-
gates all device approximations by

Aqr(¢) = (8)

a(¢) — a(¢) [ [ Aax($). ©)
k=1

We summarize the EP algorithm in Algorithm 2.



Algorithm 2: The Federated Expectation Propagation Algorithm

Data: number of devices K, set S that contains indices of
the selected devices, number of communication
rounds C, initial approximation {gx(¢)}c,,
prior p(@).

forc=0:(C—1) do

Server broadcasts g(¢);
for k€ S do
Device-side: Calculate the cavity distribution
q-k(¢) using Eq. (5);
Device-side: Calculate the tilted distribution
q9\k(¢) using Eq. (6);
Device-side: Get new g(¢) from the tilted distri-
bution using Eq. (7);
Device-side: Calculate Agx(¢) using Eq. (8) and
update local gx(¢);
Device-side: Send Agi(¢) to the central server;
end
Server-side: Update q(¢) using Eq. (9);
end
Return q(¢).

4.2.1. Posterior of device parameters

Once we obtain g(¢) that approximates p(¢|Yy,...,Yx), we
can further estimate the posterior of device parameters.
Specifically, given a device k,

POV ) = Lj p(00 B (V1)< )d0,dg

0,4k

x jp(¢>p<n|ok, $)p(0:/)

HJp(Yj|0j,¢>p<0j|¢>d0;d¢
j#

~ [ 4-4(@)p(1il0 910 (0110 .

As a consequence, we can use the posterior of 0 to
quantify uncertainties or conduct hypothesis testing. The
posterior samples from p(0x|{Yx}c_,) can be obtained by
off-the-shelf posterior sampling techniques (see mcmc pack-
age in R or NumPyro library in Python). Here we provide a
simpler sampling trick. In the above equation, if we ignore
the integral, we can obtain the joint posterior

P06 d{Yi} 1) ~ q-1(d)p(Yi|0k &)p(Ok|).

As a result, one can ignore the integration and use sam-
pling methods to jointly sample (6, ¢) from (10) and dis-

(10)

card ¢. Now, given M samples {6} ,, we can readily use
the samples to estimate moments, coverage probability, and
do hypothesis tests.

Here we should note that the estimated posterior density
q(¢) encodes crucial information across all devices (recall
the explanation in Section 4.1). One can exploit this infor-
mation for a new device to achieve fast adaptation. For
example, we can treat the posterior mean of ¢ as an initial
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model parameter for a new device. This idea is similar to
meta-learning (Vanschoren, 2019), where one tries to learn
a global model that can quickly adapt to a new task.

4.2.2. Normal approximation

In practice, it is common to model p(¢) and gi(@),Vk as
normal densities. This is due to a very useful property of
normal random variables.

Lemma 1. (Williams and Rasmussen, 2006) Suppose there
are two normal random variables (with the same dimension)
such that 0y ~ N (u,E1) and 0, ~ N(py,X;). Let 1=
X, Q=X fori =1, 2. Define p(0) = p(0,)p(0,) and

p(0-) = igg;;. We have that

0, ~N(ri+1,Q + Q)
0_ NN(T‘l —1,Q; — Q2)~

Lemma 1 states that the product of two Gaussian den-
sities gives another unnormalized Gaussian density. We use
0, to represent this new Gaussian random variable.
Similarly, the quotient of two Gaussian densities gives an
unnormalized Gaussian density and we use 0_ to represent
this new random variable.

Using Lemma 1, one can efficiently implement the EP
algorithm, as all components in Algorithm 2 can be com-
puted in closed forms. Here, we detail the implementation
technique. We model the prior of ¢ as a multivariate nor-
mal random variable with mean p, and variance ¥X,. We
also assume qi(¢) has a normal density parameterized by
> X, for all k. If the support of some components in ¢
does not lie in R, one can always perform a logarithmic or
logistic transformation to those components. By Gaussian
properties, (4) can be computed in closed-form such that
q(¢) has a normal density parametrized by mean ry +
S e, 7+ and variance Qy + > f_, Qi where rj = L 'p; and
Qj = Ej_l, for all j=0,1,...,K. Similarly, by Lemma 1, the
cavity distribution in (5) can be computed in a closed-form
by a subtraction operation. This results in r_j:=
r— 1, Q_; := Q — Q. Compared to sampling approaches,
one key advantage of EP is that the computation and com-
munication steps are simple and efficient. The central ser-
ver and devices only need to transmit the mean vector and
variance matrix to perform model updating and aggrega-
tion. Notably, during each communication round, there is
no need to estimate or transmit normalizing constants. We
detail this idea in Algorithm 3. In Algorithm 3, one needs
to compute the tilted distribution and obtain r{*, Q.
These steps correspond to (6) and (7). However, as fi(¢)
may not be a normal density, the resulting tilted distribu-
tion is not normal. Therefore, we need to use a normal dis-
tribution to approximate the tilted distribution. To do so,
we can run a set of simulation draws (using any sampling
method coded in R or Python libraries) from fi(¢)q_i(¢)
and estimate the mean and covariance of those draws. We
set the resulting mean to be p; and the resulting covari-

ance to be X;.



8 X. YUE ET AL.

Algorithm 3: The Federated Expectation Propagation Algorithm
using Normal Approximation

Data: number of devices K, set S that contains indices of
the selected devices, number of communication
rounds C, initial approximation {ry, Qk}kK:p prior
19, Qo> initial posterior parame-
ters r = ry + Zf;l Q=Q,+ Zf;l Q..

forc=0:(C—1) do

Server broadcasts r, Q;

for k € S do
Device-side: Calculate the cavity distribution
with parameters r_y :=r — 1, Q_; := Q — Qy;
Device-side: Calculate the tilted distribu-
tion r\x, Q\;
Device-side: Obtain new 7}, Q{*";
Device-side: Calculate Ary = i —r, AQy =

Q" —Qu;

Device-side: Send Ary, AQ, to the cen-
tral server;
end
Server-side: Updater =r+ 3, ¢ Ar,, Q= Q+ ) s
AQy;
end
Return r, Q.

4.3. Federated and penalized regression for
variable selection

To move a step further, we ask “is it possible to let devices
exploit the shared representation structure to perform variable
selection?” Indeed, there are some attempts to tackle this
question from a frequentist perspective. Yuan et al. (2021)
develop a federated composite optimization framework that
solves the federated Lasso problem. Tong et al. (2020) propose
a federated iterative hard thresholding algorithm to tackle
non-convex penalized regression. Despite these few efforts in
exploring variable selection from a frequentist perspective, no
literature exists in the Bayesian setting.

Tibshirani (1996) has shown that a Lasso estimate can be
achieved when the regression parameters have i.i.d. Laplace
priors. Since then, researchers have started to build Bayesian
priors for many other penalized regressions such as the elas-
tic net and fussed Lasso. Please refer to the work of Van
Erp et al. (2019) for a detailed literature review. Inspired by
the Bayesian interpretation of penalized regressions, we
develop a hierarchical structure, based upon HM2, to per-
form federated variable selection. To proceed, we impose
priors on O, for all k, such that

Ol ~ (4, 0*),Vi=1,...d

where ¢ = (4,0?%), / is a regularization parameter and ¢ is
a variance parameter. Here, (4, ¢?) is a distribution para-
meterized by A,a%. For instance, if we set n(4,0%) to be a
Laplace distribution with zero mean and § diversity, then we
recover the Bayesian counterpart of Lasso regression
(Tibshirani, 1996). Another example is if we set (4, d?) to

be N(0,9), then we recover Ridge regression. There are

many possible choices of prior beliefs on ¢ and /. In this
work, we impose log-normal priors on ¢* and 4 (Van Erp
et al., 2019) and we set ¢ = (log 4, loga?). Our framework
can flexibly incorporate other priors such as a non-inform-
ative prior on a2 or a half-Cauchy prior on /. In this work,
we will use a log-normal prior as an illustrative example.

The posterior distribution of 6, for all k, and ¢ can be
learned by Algorithm 2. Here, one caveat is that, unlike fre-
quentist penalized regressions, the Bayesian methods do not
shrink regression coefficients to be exactly zero. As a result,
we will calculate the Credible Interval (CI) for each param-
eter. If the CI of a parameter, say Ok; covers zero, we will
exclude this predictor.

5. Simulation studies

5.1. HM1 : Proof of concept using Algorithm 1

Case I: We assume that K=2 and generate (6,,60,) from a
matrix-variate normal distribution with zero mean and

1 0.7]

I®Q:I®[O‘7 1

covariance. The input space dimension is d =5. Data on each
device are generated from linear models using the generated
parameters. We set noise to be 0.05. To demonstrate the bene-
fits of our correlation-based construction in HM1, we create
imbalanced sample sizes on the devices. Specifically, device 1
only has N; = 20 data points whereas device 2 has N, = 200
data points. We train Algorithm 1 with C=30,7, =
0.01,a = 0.1 and we set the number of local steps T to be 20.
We compare the performance of Algorithm 1 with a separate
modeling approach where each device fits its own model with-
out communication. Specifically, each device runs 600 local
SGD steps with learning rate 0.01.

Case II: We set K=100 and generate a 100 x 100 positive def-
inite matrix € using the R package clusterGeneration.
We then generate true device parameters based on the matrix
Q. We set d=38 and generate data using the linear models
with noise 62 = 0.1. For the first 30 devices, we assign 40
data points and for the remaining 70 devices, we assign 275
data points. Overall, we create an imbalanced data generation
scenario. Case II can be viewed as a generalization of Case I
with more devices. Again, we train models using the same
hyperparameters as those in Case I.

Case III: We use the same setting as the one in Case II, but
all devices have 20 data points (i.e., balanced
data generation).

Case IV: We increase the sample size on each device to 200
and use the same setting as the one in Case III.

Performance Evaluation: Denote by (X}, Y;) the testing
and Y; =

Wips oo yzNz]. The averaged Root-mean-square error (A-

. * * * T
dataset on device k where Xj = [xkl,...,ka:]



RMSE) across all devices is defined as

K|S (P — )

1
A —RMSE = — E
K&~ N}

>

where fi(x*) = x*T0;. On each device, we generate 1000
data points using the true device parameters for testing. In
Case I, the RMSE is calculated on device 1. In Case II, the
A-RMSE is calculated using devices k € {1,...,30}. Here our
goal is to assess the prediction accuracy on devices with
scant data. In Cases III/IV, we calculate A-RMSE using all
100 devices. We report our results in Table 1. It can be seen
that Algorithm 1 yields much smaller A-RMSE under the
imbalanced data scenario. This conveys the importance of
borrowing strength from other devices under the FDA
framework. In Case III, the local sample size is insufficient
to allow each model alone to perform well. However, our
FDA can still benefit devices’ training by borrowing infor-
mation from other devices. In case IV, Algorithm 1 does
not offer a major improvement, as all local devices have
enough data. In this case, doing local training without col-
laboration should be sufficient.

Accuracy of Parameter Estimation: The negative log-
likelihood function L(®,€Q) is a non-convex function of
(©,Q). To test the impact of the initialization, we conduct
a sensitivity analysis below. Denote by @ the concatenated

estimated device parameters and ®" the concatenated true

data-generating parameters. In Figure 3, we plot % ver-

sus communication round for Case II and III over 30

Table 1. The A-RMSE of our proposed model and the separate model over 30
independent runs. We report standard deviations of A-RMSEs in brackets.
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independent runs. Each independent run used a different
initialized ®. More specifically, we first generate d * K ran-
dom numbers from a standard normal distribution. We
then create a d * K matrix ® using these random numbers.
It can be seen that Algorithm 1 accurately recovers the true
underlying model parameters. Furthermore, it can be
observed that Algorithm 1 typically converges within 30-40
communication rounds. We observed that, in all simula-
tions, Algorithm 1 could be trained within 5seconds on a
standard laptop. In conclusion, our proposed algorithm is
easy to implement and optimize.

5.2, HM2 : Proof of concept

In this section, we test the variable selection performance of
HM2. Following the examples in Van Erp et al. (2019), we
create several simulation cases below:

Case I: We set K=10, 0, = (3,1.5,0,0,2,0,0,0) " and gen-
erate all columns of {X;};_, from a standard multivariate
normal distribution. We then generate {Yk}ff:1 using Oy,

and {X;}r_, for all k. We set the noise to 0.05. Each
device has 100 data points for training and 1000 data
points for testing.

Case II: We use the same setting as the one in Case I. The
difference is that the first two devices only have 20 data
points each, whereas the other devices have 200 data points
each. The number of testing data points is 1000.

Case III: We set K=20, 0, = (3,...3, 0,...,0, 3,....3)

10 10 10
Each device has 40 observations for training and 400
observations for testing.

T

We evaluate the performance of our model based on pre-

Case Algorithm 1 Separate .. . . . .
J d diction and variable selection accuracy. The prediction accur-
| 0.081(0.001) 0.094(+0.001) ) luated b ble selecti .
I 0.050(+0.000) 0.056(+0.001)  acy is evaluated by A-RMSE. Variable selection accuracy is
1] 0.044(+0.002) 0.072(+0.004) based on the averaged correct and false inclusion rates. To
v 0.035(+0.000) 0.035(+0.000)  decide whether to include a variable or not, we first calculate a
Case ll Case lll
. ol |
6 —e|,
’\/K S o
© T T T T T T 1 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Communication Round

Figure 3. Plot of% versus communication round. Each color represents one independent run.
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Table 2. The A-RMSE and averaged correct/false inclusion rates for different federated variable selection methods over 30 experi-

mental runs.
Methods A-RMSE Averaged Correct Inclusion Rate Averaged False Inclusion Rate
Lasso (HM2, Case I) 0.055(+0.001) 0.880(+0.003) 0.095(+0.001)
Lasso (HM2, Case II) 0.062(*0.002) 0.875(*0.004) 0.101(=*0.001)
Lasso (HM2, Case Il) 0.088(+0.001) 0.891(+0.005) 0.115(+0.001)
i O Estimated 3 O Estimated
o , ]
= 37 O Truth I O Truth
5 I
o] 2
£ :
& J {1
& 11 1 T E
3 i .
0 i = i 0 I
1 2 3 4 5 6 7 8 49 6, 0, 6, % /oé> /%o /o60
Parameter Index 2 & g %

Figure 4. Plot of parameter estimation and Cl.

90% CI for each parameter. If the CI covers zero, we will
exclude this predictor. Results are reported in Table 2. It can
be seen that our proposed federated variable selection meth-
ods can correctly identify more than 85% of effective predic-
tors while maintaining low false inclusion rates.

As mentioned in Section 4, one advantage of HM2 is that
it can provide Uncertainty Quantification (UQ) for param-
eter estimation. We will provide two examples to demon-
strate the UQ capability of HM2:

1. We collect the estimated posterior for parameters 6,
from an independent run in case I and calculate the
mean and 90% credible interval. The resulting plot is
presented in Figure 4 (Left). It can be seen that the true
parameters are included in the CI generated by HM2.

2. We create K=100 devices and generate device
parameter
0k|¢ ~ N(”true’ Ztrue)
1 1.17 0 0 0
3 0 23 0 0
frd N s
0.5 0 0 252 0
2 0 0 0 0.67

for k€ {1,..,100}. We then use 6, to generate 100 data
points for each device k. Our HM structure can be summar-
ized as follows:
Yk|0ka ¢ ~ ./\/(X,jok, 621)
Okl ~ N (u, diag(ty, ..., 74))
p~N(0.I)
7; ~ log N (0,1),Vi
¢ = (p, logty, ..., logty).

We calculate the posterior distribution of ¢ using
Algorithm 3 and plot the mean and 90% CI for each

component in Figure 4 (Right). It can be seen that the mean
of the posterior of ¢ is close to the truth and the 90% CI
also covers the true parameter. This estimated g(¢) can be
used as an initialization for new devices to achieve
fast adaption.

6. Real-world case studies
6.1. Student performance dataset

This is a public dataset that can be found at https://archive.
ics.uci.edu/ml/index.php. The dataset contains information
on student performance (measured by exam scores) in sec-
ondary education of two Portuguese schools, namely,
Gabriel Pereira and Mousinho da Silveira. It includes 29
predictors covering gender, grades, demographic, and many
other social/school-related features. Detailed information can
be found in Cortez and Silva (2008). We treat each school
as a “device” (i.e., K=2). On each device, we randomly pick
60% of the students as the training dataset and another 40%
of the students as the testing dataset. We create dummy var-
iables for all nominal variables, such as job and guardian.
All other numeric variables are standardized to a zero mean
and one standard deviation, following the guide in Cortez
and Silva (2008). This data processing yields 38 predictors.
Our first goal is to select relevant predictors using our
federated penalized regression technique (See Section 4.3).
We then use the selected predictors to predict the final
exam grades of students. We consider the two most widely-
used variable selection methods: Lasso and Ridge. Results
are reported in Table 3. The model performance is evaluated
based on the RMSE and the number of included predictors.
It can be seen that the variable selection performance of
HM2 is consistent with the centralized variable selection
method such as Lasso and Ridge regressions. This implies
that our framework can serve as a new paradigm for decen-
tralized variable selection problems. Additionally, HM2 also
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Table 3. The RMSE and number of included predictors for different federated variable selection methods.

Methods A-RMSE # included predictors (School 1) # included predictors (School 2)
Lasso (HM2) 0.825 21 23

Ridge (HM2) 0.817 21 22

Methods RMSE # included predictors

Lasso (Centralized) 0.820 21

Ridge (Centralized) 0.815 21

Table 4. The A-RMSE of all models over 30 independent runs. We report the standard deviation in the brackets.

Sensor HM1 (z =0.9) Separate FedAvg Ditto Dis-Ridge
Sensor 2 0.270(*0.001) 0.299(=*0.003) 0.450(*0.013) 0.281(*0.001) 0.552(*0.002)
Sensor 3 0.218(*+0.002) 0.223(*0.001) 0.303(=*0.009) 0.220(*0.001) 0.288(*0.002)
Sensor 7 0.369(*+0.004) 0.405(*0.003) 0.628(*0.011) 0.388(*0.005) 0.605(*0.001)
Sensor 8 0.267(*+0.001) 0.307(*0.001) 0.395(+0.008) 0.289(*0.001) 0.390(*0.003)

yields comparable A-RMSEs compared to centralized meth-
ods. This demonstrates the advantage of borrowing strength
from other devices. However, please note that, in terms of
prediction accuracy, federated variable selection can rarely
beat the centralized approach as the latter uses more data.

6.2. NASA aircraft gas turbine engines

In this case study, we consider condition monitoring data
generated from aircraft gas turbine engines using the NASA
commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) tools. The dataset is available at https://ti.arc.
nasa.gov/tech/dash/groups/pcoe/. This dataset contains 100
engines. In each engine, 24 sensors are installed to collect
time-series degradation signals. For each engine, we treat
the first 60% of the time-series observations as the training
dataset and the remaining 40% of the signals as the testing
dataset. Within the training dataset, we sample 20% of the
data as a validation dataset. Our goal is therefore to predict
the sensor signal trajectory on each gas turbine engine by
training Algorithm 1 using the training dataset. In this scen-
ario, each engine can be viewed as a device (i.e., K=100).

It can be observed that all signal trajectories exhibit poly-
nomial patterns and therefore, many existing works resort to
polynomial regression to analyze this dataset (Liu et al,
2013; Song and Liu, 2018). Here we detail the modeling pro-
cedure. Given a specific sensor, for all k € {1,...,K}, device
k fits a d = 6th-order polynomial regression in the form of

Yi = X] 04 + noise,

where the (d+ 1) x N design matrix Xj is in the form
of

bl [ [xkl]g
X}I _ L], el k2]
U oew], [ ok, ]

In the above expression, Y} represents the signal trajec-
tory for device k and xj; represents time. In HM1, device
parameters {0}, are estimated using Algorithm 1.

We benchmark our proposed model with the follow-
ing algorithms:

e FedAvg: FedAvg is one of the most fundamental and
competing benchmark models in the FDA. During each
communication round, device k, for all selected k, first
runs several steps of local SGD and then sends updated
parameters 0 back to the server. The server the aggre-
gates those parameters by calculating 0 :ﬁZkeS 0.

This step is repeated several times and ultimately, each
device will use the global parameter @ to per-
form prediction.

e Dis-Ridge (Zhang et al, 2015): Dis-Ridge is a dis-
tributed ridge regression method. The server first evenly
divides a set of data into m disjoint sets and assigns each
set to a different node. Each node then solves a ridge
regression problem, by optimizing y- SN (i — x00) +

2||0k])%, and sends the optimal solution back to the server.
The server then aggregates local estimations.

e Ditto: Ditto is a personalized FL algorithm. The first
stage of Ditto is the same as FedAvg and generates a
global parameter 0. Afterwards, each device k derives the
personalized solution v, by solving a constrained opti-

o || vy — 0| where Fi(-) is
the local loss function and Ap;y, is a tuning parameter.
The intuition is that each device can run several updating
procedures to collect personalized solutions while this
solution stays in the vicinity of the shared global model
to retain useful information from a global model.

e Separate: In Separate, each device simply fits its
own linear model without communication.

mization problem Fi(vg) + 2bitto

For all models, we set T =20,C =100, and use grid-
search to tune the learning rate (and other model hyper-
parameters). In Algorithm 1, we set o = 0.9. We report the
A-RMSE across all 100 devices in Table 4.

From Table 4, it can be seen that FedAvg and Dis-
Ridge consistently yield the worst prediction accuracy as
one shared global parameter 6 does not suit all devices,
especially in a heterogeneous setting. Personalized
approaches such as Ditto circumvent this disadvantage of
global models and generate personalized solutions for each


https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/

12 . X. YUE ET AL.

device. Those personalized methods, however, ignore related
information amongst devices. Our method, on the other
hand, improves the prediction accuracy by exploiting a joint
structure for inductive transfer.

7. Conclusion

This article proposes a federated treatment for linear regres-
sion by adopting a HM approach. We test our proposed
framework on a range of simulated and real-world datasets.
Despite the simplicity of our linear model framework, it can
outperform many state-of-the-art federated algorithms and
we argue that it can serve as a competing benchmark model
for the future development of federated algorithms. One
possible future direction is to extend our framework to gen-
eralized linear models such as linear mixed-effect models or
to more complicated models such as Gaussian processes and
tensor regression. We hope our work will help inspire con-
tinued exploration into the world of federated data analytics
and its engineering applications.

Funding

The authors acknowledge the generous support from the NSF CAREER
AWARD 2144147.

Notes on contributors

Xubo Yue is a PhD candidate in the Department of Industrial &
Operations Engineering at the University of Michigan. His research
focuses on federated and distributed data analytics. Currently, he is
developing federated data analytics methods that rethink how both pre-
scriptive and predictive analytics are achieved within IoT-enabled sys-
tems, specifically manufacturing and renewable energy. He has received
several best paper awards from the Institute for Operations Research
and the Management Sciences (INFORMS), the Institute of Industrial
and Systems Engineers (IISE), and other renowned organizations.

Raed Kontar is an assistant professor in the Industrial & Operations
engineering department at the University of Michigan and an affiliate
with the Michigan Institute for Data Science. Raed’s research focuses
on distributed and federated probabilistic modeling. Raed obtained an
undergraduate degree in civil & environmental engineering from the
American University of Beirut in 2014, a master’s degree in statistics in
2017 and a PhD degree in industrial & systems engineering in 2018,
both from the University of Wisconsin-Madison. Raed received the
NSF CAREER award in 2022. His research is currently supported by
both NSF and NIH.

Ana Maria Estrada Gomez is an assistant professor in the School of
Industrial Engineering at Purdue University. She received a BSc in
industrial engineering and a B.Sc. in mathematics from la Universidad
de los Andes in 2013 and 2015, respectively. She also holds a M.Sc. in
industrial engineering from la Universidad de los Andes (2015), and a
M.Sc. in statistics from Georgia Tech (2018). In 2021, she received her
PhD in industrial engineering with a specialization in statistics from
Georgia Tech. Her research interests lie in developing efficient method-
ologies and algorithms for modeling, monitoring, and diagnosing com-
plex systems collecting high-dimensional data, using statistics and
machine learning tools. The methods that she has developed have been
applied in the manufacturing, environmental, and healthcare sectors.
She is the recipient of the SPES+ Q&P Best Student Paper Award
from ASA, the QSR Best Poster Award from INFORMS, and the IISE
Doctoral Colloquium Best Poster Award. At Georgia Tech, she was rec-
ognized with the Graduate Teaching Fellowship, granted by the Center

for Teaching and Learning, and with the Stewart Fellowship, awarded
by the School of Industrial and Systems Engineering. She has also been
appointed as a Latina Trailblazer in Engineering Fellow by Purdue’s
College of Engineering.

References

Albert, J. and Hu, J. (2019) Probability and Bayesian Modeling, CRC
Press, Milton Park, Oxfordshire.

Arashi, M., Roozbeh, M., Hamzah, N.A. and Gasparini, M. (2021)
Ridge regression and its applications in genetic studies. Plos one,
16(4), €0245376.

Barthelme, S. (2016) Simon Barthelme: The expectation-propagation
algorithm: A tutorial - part 1. https://www.youtube.com/watch?v=
O0tomU1q3AdY&t=2373s

Blanco-Filgueira, B., Garcia-Lesta, D., Ferndndez-Sanjurjo, M., Brea,
V.M. and Lépez, P. (2019) Deep learning-based multiple object vis-
ual tracking on embedded system for iot and mobile edge comput-
ing applications. IEEE Internet of Things Journal, 6(3), 5423-5431.

CleanTechnica (2021) Tesla fsd hardware has 150 million times more
computer power than Apollo 11 computer. https://cleantechnica.
com/2021/05/24/tesla-fsd-hardware-has-150-million-times-more-
computer-power-than-apollo-11-computer/#:~:text=Tesla's%20twin%
20chips%20and%20combined,and%20Collins%20t0%20the%20moon
(accessed 24 May 2021).

Cortez, P. and Silva, A.M.G. (2008) Using data mining to predict sec-
ondary school student performance, in A. Brito and J. Teixeira
(eds.), Proceedings of 5th Annual Future Business Technology
Conference, EUROSIS-ETI, Porto, pp. 5-12.

Deng, Y., Kamani, M.M. and Mahdavi, M. (2020) Adaptive personal-
ized federated learning. arXiv preprint arXiv:2003.13461.

Du, W., Xu, D., Wu, X. and Tong, H. (2021) Fairness-aware agnostic
federated learning, In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), SIAM, Philadelphia, PA, pp.
181-189.

Fallah, A., Mokhtari, A. and Ozdaglar, A. (2020) Personalized federated
learning: A meta-learning approach. arXiv preprint arXiv:2002.07948.

Fan, J., Guo, Y. and Wang, K. (2021) Communication-efficient accurate
statistical estimation. Journal of the American Statistical Association,
116, 1-11.

Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I. and Imran, M. (2018)
The role of edge computing in internet of things. IEEE
Communications Magazine, 56(11), 110-115.

Jordan, M.I, Lee, ].D. and Yang, Y. (2019) Communication-efficient
distributed statistical inference. Journal of the American Statistical
Association, 114(526), 668-681.

Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji,
AN., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R. et al.
(2021) Advances and open problems in federated learning.
Foundations and Trends[textregistered] in Machine Learning, 14
(1-2), 1-210.

Kontar, R, Shi, N,, Yue, X., Chung, S., Byon, E., Chowdhury, M., Jin,
]., Kontar, W., Masoud, N., Nouiehed, M. et al. (2021) The internet
of federated things (ioft). IEEE Access, 9, 156071-156113.

Lawson, P., McPhail, B. and Lawton, E. (2015) The connected car:
Who is in the driver’s seat? A study on privacy and onboard vehicle
telematics technology. https://trid.trb.org/view/1348911

Li, J., Xu, J. and Zhou, Q. (2018) Monitoring serially dependent cat-
egorical processes with ordinal information. IISE Transactions,
50(7), 596-605.

Li, T., Hu, S., Beirami, A. and Smith, V. (2021) Ditto: Fair and robust
federated learning through personalization, in International
Conference on Machine Learning, Virtual Conference, International
Conference on Machine Learning, Vienna, Austria, pp. 6357-6368.

Li, T., Sahu, A.K., Talwalkar, A. and Smith, V. (2020) Federated learn-
ing: Challenges, methods, and future directions. IEEE Signal
Processing Magazine, 37(3), 50-60.


https://www.youtube.com/watch?v=0tomU1q3AdY&t=2373s
https://www.youtube.com/watch?v=0tomU1q3AdY&t=2373s
https://cleantechnica.com/2021/05/24/tesla-fsd-hardware-has-150-million-times-more-computer-power-than-apollo-11-computer/#:<:text=Tesla's%20twin%20chips%20and%20combined,and%20Collins%20to%20the%20moon
https://cleantechnica.com/2021/05/24/tesla-fsd-hardware-has-150-million-times-more-computer-power-than-apollo-11-computer/#:<:text=Tesla's%20twin%20chips%20and%20combined,and%20Collins%20to%20the%20moon
https://cleantechnica.com/2021/05/24/tesla-fsd-hardware-has-150-million-times-more-computer-power-than-apollo-11-computer/#:<:text=Tesla's%20twin%20chips%20and%20combined,and%20Collins%20to%20the%20moon
https://cleantechnica.com/2021/05/24/tesla-fsd-hardware-has-150-million-times-more-computer-power-than-apollo-11-computer/#:<:text=Tesla's%20twin%20chips%20and%20combined,and%20Collins%20to%20the%20moon
https://trid.trb.org/view/1348911

Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A. and Smith, V.
(2020) Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems, 2, 429-450.

Li, T., Sanjabi, M., Beirami, A. and Smith, V. (2019) Fair resource allo-
cation in federated learning. arXiv preprint arXiv:1905.10497.

Li, X., Huang, K., Yang, W., Wang, S. and Zhang, Z. (2019) On the
convergence of fedavg on non-iid data. arXiv preprint arXiv:
1907.02189.

Liu, K., Gebraeel, N.Z. and Shi, J. (2013) A data-level fusion model for
developing composite health indices for degradation modeling and
prognostic analysis. IEEE Transactions on Automation Science and
Engineering, 10(3), 652-664.

Liu, S., Liu, L., Tang, J., Yu, B.,, Wang, Y. and Shi, W. (2019) Edge
computing for autonomous driving: Opportunities and challenges.
Proceedings of the IEEE, 107(8), 1697-1716.

Liu, W., Chen, L., Chen, Y. and Zhang, W. (2020) Accelerating feder-
ated learning via momentum gradient descent. IEEE Transactions on
Parallel and Distributed Systems, 31(8), 1754-1766.

McMahan, B., Moore, E., Ramage, D., Hampson, S. and y Arcas, B.A.
(2017) Communication-efficient learning of deep networks from
decentralized data, in Artificial Intelligence and Statistics, The 20th
International Conference on Artificial Intelligence and Statistics,
Ft. Lauderdale, FL, pp. 1273-1282.

Minka, T.P. (2001) A family of algorithms for approximate Bayesian
inference. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Minka, T.P. (2013) Expectation propagation for approximate Bayesian
inference. arXiv preprint arXiv:1301.2294.

Morell, ]A and Alba, E. (2022) Dynamic and adaptive fault-tolerant
asynchronous federated learning using volunteer edge devices.
Future Generation Computer Systems, 133, 53-67.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M,,
Rothchild, D., So, D., Texier, M. and Dean, J. (2021) Carbon emis-
sions and large neural network training. arXiv preprint arXiv:
2104.10350.

Rahman, M.A. and Hossain, M.S. (2021) An internet-of-medical-
things-enabled edge computing framework for tackling covid-19.
IEEE Internet of Things Journal, 8(21), 15847-15854.

Ruder, S. (2017) An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098.

Sahin, D.O., AKkleylek, S. and Kilig, E. (2022) Linregdroid: Detection of
android malware using multiple linear regression models-based clas-
sifiers. IEEE Access, 10, 14246-14259.

Schulz, M.-A., Yeo, B., Vogelstein, ].T., Mourao-Miranada, J., Kather,
J.N., Kording, K., Richards, B. and Bzdok, D. (2020) Different scal-
ing of linear models and deep learning in ukbiobank brain images
versus machine-learning datasets. Nature Communications, 11(1),
1-15.

Shi, N, Lai, F.,, Kontar, R.A. and Chowdhury, M. (2021) Fed-ensemble:
Improving generalization through model ensembling in federated
learning. arXiv preprint arXiv:2107.10663.

Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016) Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5),
637-646.

Si, W, Yang, Q. and Wu, X. (2017) A distribution-based functional lin-
ear model for reliability analysis of advanced high-strength dual-
phase steels by utilizing material microstructure images. IISE
Transactions, 49(9), 863-873.

IISE TRANSACTIONS 13

Song, C. and Liu, K. (2018) Statistical degradation modeling and prog-
nostics of multiple sensor signals via data fusion: A composite
health index approach. IISE Transactions, 50(10), 853-867.

Stich, S.U. (2018) Local SGD converges fast and communicates little.
arXiv preprint arXiv:1805.09767.

Tan, A.Z, Yu, H,, Cui, L. and Yang, Q. (2022) Towards personalized
federated learning. IEEE Transactions on Neural Networks and
Learning Systems, 33, 1-17.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1), 267-288.

Tong, Q., Liang, G., Zhu, T. and Bi, J. (2020) Federated nonconvex
sparse learning. arXiv preprint arXiv:2101.00052.

Van Erp, S., Oberski, D.L. and Mulder, J. (2019) Shrinkage priors for
Bayesian penalized regression. Journal of Mathematical Psychology,
89, 31-50.

Vanschoren, J. (2019) Meta-learning, in Automated Machine Learning,
Springer Nature, Switzerland, pp. 35-61.

Vehtari, A., Gelman, A., Sivula, T., Jylanki, P., Tran, D., Sahai, S.,
Blomstedt, P., Cunningham, J.P., Schiminovich, D. and Robert, C.P.
(2020) Expectation propagation as a way of life: A framework for
Bayesian inference on partitioned data. The Journal of Machine
Learning Research, 21(17), 1-53.

Wang, J. and Joshi, G. (2021) Cooperative SGD: A unified framework
for the design and analysis of local-update sgd algorithms. Journal
of Machine Learning Research, 22(213), 1-50.

Williams, CK. and Rasmussen, C.E. (2006) Gaussian Processes for
Machine Learning, Volume 2. MIT press Cambridge, MA.

Yu, H,, Liu, Z,, Liu, Y., Chen, T., Cong, M., Weng, X., Niyato, D. and
Yang, Q. (2020) A fairness-aware incentive scheme for federated
learning, in Proceedings of the AAAI/ACM Conference on Al, Ethics,
and Society, Association for Computing Machinery, New York, NY,
pp. 393-399.

Yuan, H. and Ma, T. (2020) Federated accelerated stochastic gradient
descent. Advances in Neural Information Processing Systems, 33,
5332-5344.

Yuan, H., Zaheer, M. and Reddi, S. (2021) Federated composite opti-
mization, in International Conference on Machine Learning, Curran
Associates Inc., Red Hook, NY, pp. 12253-12266.

Yue, X. and Kontar, R.A. (2021) Federated Gaussian process:
Convergence, automatic personalization and multi-fidelity modeling.
arXiv preprint arXiv:2111.14008.

Yue, X., Nouiehed, M. and Kontar, R.A. (2021) Gifair-fl: An approach
for group and individual fairness in federated learning. arXiv pre-
print arXiv:2108.02741.

Zhang, Y., Duchi, J. and Wainwright, M. (2015) Divide and conquer
kernel ridge regression: A distributed algorithm with minimax opti-
mal rates. The Journal of Machine Learning Research, 16(1),
3299-3340.

Zhang, Y. and Yeung, D.-Y. (2012) A convex formulation for learning
task relationships in multi-task learning. arXiv preprint arXiv:
1203.3536.

Zhu, S., Ota, K. and Dong, M. (2021) Green AI for IIOT: Energy effi-
cient intelligent edge computing for industrial internet of things.
IEEE Transactions on Green Communications and Networking, 6,
79-88.



	Abstract
	Introduction
	Background
	Literature overview
	General setting
	FDA and HMs

	A shared representation via correlation
	An HM based on the distribution assumption
	Structure and formulation
	Federated Bayesian inference - expectation propagation
	Posterior of device parameters
	Normal approximation

	Federated and penalized regression for variable selection

	Simulation studies
	HM1: Proof of concept using Algorithm 1
	HM2: Proof of concept

	Real-world case studies
	Student performance dataset
	NASA aircraft gas turbine engines

	Conclusion
	Funding
	References


