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ABSTRACT

Over the years, Internet of Things (loT) devices have become more powerful. This sets forth a unique
opportunity to exploit local computing resources to distribute model learning and circumvent the need to
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share raw data. The underlying distributed and privacy-preserving data analytics approach is often termed

federated learning (FL). A key challenge in FL is the heterogeneity across local datasets. In this article,
we propose a new personalized FL model, PFL-DA, by adopting the philosophy of domain adaptation.
PFL-DA tackles two sources of data heterogeneity at the same time: a covariate and concept shift across
local devices. We show, both theoretically and empirically, that PFL-DA overcomes intrinsic shortcomings
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in state of the art FL approaches and is able to borrow strength across devices while allowing them to
retain their own personalized model. As a case study, we apply PFL-DA to distributed desktop 3D printing
where we obtain more accurate predictions of printing speed, which can help improve the efficiency of

the printers.

1. Introduction

Traditional Internet of Things (IoT) enabled systems mainly
follow a centralized approach for data analytics (Atzori, Iera, and
Morabito 2010). In IoT, data from connected devices is regularly
uploaded to a cloud/central server, where models are learned
and then deployed back to the edge devices. However, the vast
amount of data nowadays necessitates alternative data analytics
paradigms. For instance, the need to upload large amounts of
data to a central server incurs high communication and storage
costs, demands large internet bandwidth, and leads to latency in
deployment as models need to be transferred back to in-service
connected devices. In addition, the centralized paradigm of IoT
where data is agglomerated in a central server breeds concerns
about privacy and security.

However, connected devices have become much more pow-
erful in their computational capabilities over the years. Al
chips are rapidly infiltrating the market. The processing power
of mobile phones and wearable devices has seen significant
advances. Small local computers such as Raspberry Pis have
become commonplace in many industries such as manufac-
turing (Richardson and Wallace 2012). This poses a significant
opportunity to rethink traditional IoT so that most of the data
processing happens where it is created, instead of uploading it to
the cloud.

In light of these challenges, federated learning (FL) has
caught a lot of attention in recent years (McMahan et al.
2017; Li et al. 2020b). In FL, connected devices perform
data analytics at the edge and transmit only focused updates
needed for modeling learning to the cloud. As such, the cloud

becomes an orchestrator of the training process that integrates
updates from the local devices. With the orchestration of a
central server, devices exploit their compute resources, borrow
strength from each and retain local data privacy. Adding to
that, within IoT, FL can reduce storage and communication
costs as only minimum information needed to learn a model is
shared.

Though the idea of FL dates back decades ago, to the early
work of Mangasarian and Solodov (1994), it was only brought
to the forefront of data analytics after the paper by McMahan
et al. (2017) which proposed federated averaging (FedAverage)
for distributed learning of a neural network. In FedAverage,
edge devices receive the network architecture and initial weights
from the cloud, then perform multiple steps of stochastic gra-
dient descent to minimize the local empirical loss and send
the updated model weights back to the cloud. The cloud then
simply takes the average of all received weights and broadcasts
the averaged weights for the next round. The process repeats
until convergence. Despite its simplicity, Fed Average has seen a
lot of success in many applications. In addition, recent years have
brought many critical advances in FL, such as enabling faster
convergence (Reddi et al. 2021), improving model aggregation
schemes on the cloud (Acar et al. 2019; Karimireddy et al. 2020),
and promoting fairness (Du et al. 2021; Yue, Nouiehed, and
Kontar 2021), amongst many others. An in-depth overview of
the current state of FL can be found in Kontar et al. (2021); where
the future IoT system characterized by FL as the underlying data
analytics approach is termed the Internet of Federated Things
(TIoFT).
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Despite those many advances, data heterogeneity remains
a significant challenge in FL. Unlike centralized systems, in a
decentralized paradigm, data partitions are fixed as they reside
at the edge and cannot be changed, shuffled, or randomized.
Further, edge devices collect local datasets under diverse oper-
ational, environmental, cultural, and socio-economic condi-
tions; thus, contain distinguished patterns. Traditional wisdom
is to use a strong global model to fit all the patterns among
datasets. However, in FL, such an approach becomes prob-
lematic. First, when the local datasets have different or even
conflicting patterns, using a single model leads to slow conver-
gence in training and degenerated performance in inference.
Indeed, many papers have shown the wide gap in a global
model’s performance across different devices when heterogene-
ity exists (Hard et al. 2018; Wang et al. 2019a). Second, FL
methods usually require the server to average the updated
models with weights determined by dataset size. Therefore,
devices with limited data, bandwidth/memory or unreliable
connection may not be favored during training. This often
results in fairness concerns where performance is satisfactory
only on devices with large datasets while it degrades on other
devices.

Personalized FL has been proposed to address the hetero-
geneity issue. Instead of using one global model, edge devices
retain their own customized models. By personalization, models
combine knowledge both from common trends and individ-
ualized characteristics. One group of popular personalization
methods encourage the weights of personalized models to stay
in a small region in the parameter space of the global model
to balance shared knowledge and unique characteristics (Dinh,
Tran, and Nguyen 2020; Li et al. 2021). Though such meth-
ods obtain improved results compared with global FL, they
only handle a concept shift in the input-output relationship
across clients, and it is unclear how the closeness in parameter
space is related to incorporating unique client’s input-output
relationships.

In practice, we always want to design personalized FL sys-
tems based on the structure of data heterogeneity. For example,
besides a change in the input-output relationship, heterogeneity
in the input distribution across clients in FL is very common.
Clients may observe unique inputs unseen to other clients, while
in engineering settings, defects or failures types may vary across
devices based on their operational conditions (Kontar et al.
2017). With the above objective in mind, we delve into the
data generating process and classify heterogeneity of labeled
datasets into heterogeneity in the input space and heterogeneity
in the input-output relationship. We adopt a domain adaptation
route to handle the input space shift and design a flexible,
personalized model with strong local representation power. The
model we propose is fully personalized and yet insusceptible
to overfitting. We also provide statistical examples whereby
traditional models can fail while our approach excels. Extensive
simulations from simple curve fitting to classification on large
datasets and real-life applications show that our model improves
performance, promotes fairness compared with the state-of-the-
art, and addresses different types of heterogeneity across client
data.

We briefly summarize our contributions below:

o We propose PFL-DA: A personalized FL model that exploits
domain adaptation to handle heterogeneity in both the input
space (a covariate shift) and input-output relationship (a
concept shift).

»  We theoretically analyze the convergence of our algorithm.
We also provide a counterexample showing how traditional
personalized FL approaches can fail in the presence of large
covariate shifts and highlight the benefit of our model in such
instances.

» Experiments show that our method achieves higher average
testing accuracy on a wide range of benchmark datasets com-
pared with state-of-the-art personalized models. Our results
also indicate that PFL-DA promotes fairness across clients.

o Wetest our approach on a prototype featuring geographically
dispersed and connected 3D printers. The case study show-
cases the advantageous features of our approach and high-
lights its potential in enabling collaborative model building
in manufacturing.

The rest of the article is organized as follows: In Section 1.1,
we discuss current literature related to our work. Our person-
alized modeling approach is presented in Section 2. In Sec-
tion 3 we provide theoretical guarantees for our model along
with counterexamples showing that our model can excel in the
presence of heterogeneity while traditional methods can fail.
Section 4 provides case studies on various simple and large-
scale datasets. We also apply our approach to a distributed
and connected 3D printer dataset. Finally, we end with a brief
conclusion and a discussion on an interesting open direction in
Section 5. The proof of the main theorem and details of numer-
ical simulations are relegated to the supplementary materials.

1.1. Related Work

We first provide an overview of related work. The overview is by
no means an exhaustive list. For an in depth overview of FL we
refer readers to Kontar et al. (2021).

Global modeling. Currently, most FL methods focus on learn-
ing a global model that aims to maximize utility across all
devices (McMahan et al. 2017; Li et al. 2018; Acar et al. 2019;
Karimireddy et al. 2020; Reddi et al. 2021). One can view the
global model as one model that fits all clients, where the goal
is to yield better performance in expectation across all devices
as opposed to each device learning a separate model using its
own data. This approach has seen success in large scale mobile
applications (Yang et al. 2018; Wang et al. 2019b; Lim et al. 2020).
However, in engineering settings, devices are operated under
different environmental conditions, such as different levels of
speed, load and temperature (Fang, Paynabar, and Gebraeel
2017). As a result, data will exhibit highly heterogeneous trends
and behaviors across devices.

Personalized modeling. A few algorithms have been proposed
for personalized modeling in FL (Smith et al. 2017; Arivazha-
gan et al. 2019; Dinh, Tran, and Nguyen 2020; Liang et al.



2020; Yu, Bagdasaryan, and Shmatikov 2020; Li et al. 2021).
One line of work seeks to encourage model weights to stay
close to each other in the parameter space. For example, in
the train-then-personalize approach, one trains a global model
and then fine-tunes it to individual devices (Yu, Bagdasaryan,
and Shmatikov 2020). Also, by similar motivations, pedme
(Dinh, Tran, and Nguyen 2020), and Ditto (Li et al. 2021)
allow each model to have individualized weights and penalizes
the digression from individual weights to central weights by
regularization. One representative work is Ditto, which adds
regularization terms as the L, norm of the distance between
individualized weights and global weight trained by Fed Average.
Though attaining improved performance, these models usually
ignore the structure of data and only aim at tackling con-
cept shifts. We will show a counterexample where none of these
algorithms can extract useful shared knowledge from distributed
datasets.

Another popular personalization technique is parameter
sharing (Arivazhagan et al. 2019; Liang et al. 2020). Modern
deep neural networks contain multiple layers. One can person-
alize some of them and keep others the same among clients.
Among them, LG-Fedavg (Liang et al. 2020) trains personal-
ized networks for local feature representation and shared net-
works for global decision-making. Multi-task federated learning
(Smith et al. 2017) personalizes top layers for different tasks.
Such models pose strong structural assumptions on data which
limit representation power. With such structural assumptions,
coercive weight sharing may result in models underperforming
compared to separately learning using their own data. This
phenomenon is commonly referred to as negative transfer of
knowledge (Kontar, Raskutti, and Zhou 2020).

Fairness in federated learning. Current approaches to Fair FL
aim to reduce the discrepancy in model performance among
clients, that is, encourage models to perform similarly among
all clients. One useful technique to promote fairness is to design
special loss functions that attach higher importance to low-
performance agents (Li et al. 2020a; Yue, Nouiehed, and Kontar
2021).

For instance, Du et al. (2021) propose a minimax opti-
mization framework called agnostic federated learning (AFL)
to optimize the worst weighted combination of local devices.
Li et al. (2019) propose g-Fair federated learning (q-FFL).
q-FFL reweights loss functions such that devices with poor
performance will be given relatively higher weights in the
weighted sum of global objectives. Yue, Nouiehed, and Kon-
tar (2021) estimates the weighting coefficients by statistical
ordering and promotes both group level and individual level
fairness. The approaches above establish a global model. In
contrast, recent work has tried to improve fairness through
personalization. Through careful personalization, Ditto (Li
et al. 2021) achieves better fairness and robustness at the
same time. Improved fairness through personalization is also
observed in Wang et al. (2019a). The rationale is that per-
sonalization may help the performance of clients where the
global model usually performs poorly. Our work also investi-
gates along the line of exploiting personalization for improved
fairness.
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Domain adaptation. Domain adaptation seeks to extract
common features from inputs in different domains to be used
for prediction (Ganin and Lempitsky 2015; Tzeng et al. 2017;
Gulrajani and Lopez-Paz 2020). Common techniques involve
training a function that extracts features from different domains,
and then predictions are obtained through the training of a
decoder on the features. Such models are trained by minimizing
the summation of empirical loss on all domains. Since the
decoder is global, ideally, it does not contain information unique
to domains, and featurizers should fully adapt to different
domains. Therefore, to ensure featurizers learn useful common
data representations, several tricks have been proposed. For
example, some works use adversarial training to guarantee that
the learned features are domain-invariant (Ganin and Lempit-
sky 2015). Similarly, CORAL (Sun and Saenko 2016) matches
the feature mean and variance of different domains to make
these features similar. Since federated datasets are usually from
the same task but collected by geographically separated devices,
it is natural to assume they are from different domains.

2. Model Description

We consider a supervised learning setting. Suppose we have
N edge devices, each with a local labeled dataset D; =
{(xi15 ¥i1)> (Xi2, ¥i2) - - - (Xipn» Vin;) }> Where n; is the size of the
ith dataset. The total number of observations is denoted by
n = Zfil n;.We assume that local data are examples from
space X; x ), where &; is the input space for client i and Y
is R for regression and categorical for classification. We also let
fi(x) : X — Y denote the personalized model to be learned for
client i.

For client , the joint distribution of input-output tuple (x, y)
is ]P’;,y = IE”;]P’;,l .- As aforementioned, current literature focuses
predominantly on a concept shift where x; ~ Py is the same
for all clients, yet the conditional distribution IP’;,l . varies across
clients. Typically, this is modeled as y; = fy, (x;) where clients use
f from the same function class (linear models, neural networks)

yet with different parameters. Here f; = f(xi) = Jo,(xi).

However, a covariate shift where P! is different across clients
is not uncommon in real applications (Kontar et al. 2021).
Indeed, FLs decentralized nature and its ability to reach diverse
clients with different external conditions can lead to datasets
with both a concept and covariate shift. Take a simple engi-
neering example whereby a product design can differ from
one manufacturer to another. In this article, we adopt domain
adaptation to personalized FL. We first start by a simple domain
adaptation model that tackles a covariate shift and then use this
model to build PFD-DA which has increased representation
power and tackles both types of data heterogeneity.

2.1. Simple Domain Personalization

We start by tackling a covariate shift. The fundamental idea is
to exploit a representation function ®; : A; — H to map
inputs into the same feature space . Then a globalized decoder
g obtains predictions based on the features. More specifically, the
mapping from input space X; to output space ) is decomposed
into the composition of a featurerizer ®; : X; — H from the
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input into a feature space, and a decoder g : H — ) from the
feature to the output space.
More formally, the model is given as

Jo, (%) = gw(®p,(x)), 1

where 0; = {w, B;} denotes the set of parameters that parame-
terize g and ®;, respectively. Notice here that w is a set of global
shared parameters across all clients while each client retains
their own ;.

To learn g, and ®g,, FL minimizes the risk over all clients:

N N
. A .
min > piFr T (w, B) = min > PEy)pi, £ (28w (Pp, (1)) »
i=1 Pii=1

2)
where FIPOP (w, B;) is the population risk function for client
i, £ is some loss function such as mean-square error for
regression tasks or cross-entropy for classification tasks and
pi is a client weight given as p; = I%, Clearly, since IP’;)J, is
not known, Ff is approximated by the empirical risk F; =
nl,‘z(xi,j,}’i,j)EDiE(yi’j’ gw(CDI;i(xi,j))). Ideally, if trained effec-
tively ®g, can capture the covariate shift in the data and g,
learns the mapping from the feature space to the output. Hereon
we refer to the model in (1) as simple domain adaptation—
Simple-DA.

2.2. Flexible Domain Personalization

Notice that (1) only models a domain shift. We bridge the gap
by also individualizing g as gy, to characterize concept shifts. y;
denotes client specific weights that parameterize the mapping

g E 8y, * H — Y. This s given as
fo,(x) = gy, (Pg,(x) (3)

The model in (3) is fully personalized for increased flexibility
in modeling heterogeneity. Ideally, ®g, (x) should handle the
covariate shift and g, should handle the concept shift.

With this goal in mind, we use a bi-level optimization formu-
lation to solve ®g (x) and gy, separately. Client i optimizes the
objective:

minFi(y;, B, w) (4)

under the constraint that
N ~
{w.(BIL,} € arg_min " piFi(B;, W) (5)
WaPjlji=1 j=1
where p; is still set to % F; is a local empirical risk of function
(1) on client i:
1
FilBw) = - Y (i (g, (xiy)
(xi,j,yij) €Di

and E is a regularized local empirical risk that learns (3)
while penalizing deviations from parameters w of the global
decoder gy,

~ 1
Fi()'pﬁi»w):; Z f()’i,j,gy,(q>ﬂ,-(xi,j)))+?»1H)’i—WHZ-
" (xijyi) €D

We will briefly explain how encoder and decoder functions
are trained to handle covariate and concept shift, respectively.
In (5), the encoders ®g,’s learn to map inputs across different
domains into the same feature space with the help of g,,. Since
in (5) the decoder g, is shared by all clients, the mapping from
the feature space to the output is the same for all clients. Thus, to
fit training data, the encoders ®g’s are forced to output features
in similar distributions (i.e., domain invariant distributions).
When the encoders are properly trained, features encoded by
encoder functions follow similar distributions. Then to map
these features into outputs and to handle concept shifts, we
train personalized decoder functions as well. Since the features
are now domain invariant, we can use regularization-related
personalization schemes to handle the concept shifts. g,, learned
from (5) represents the common patterns of decoder functions,
thus, the ridge penalty term facilitates knowledge sharing of the
decoder function. In the inference stage, we use the personalized

>

8y, S
The hyperparameter A; controls the level of knowledge

transfer: a larger A; penalizes the deviation between y; and w
more severely, thus, making the model closer to simple domain
adaptation in (1). While a smaller 1, allows the decoder func-
tion gy, to have greater individuality. Our model thus balances
between a completely individualized model and Simple-DA.

2.3. Training Algorithm

So far we have introduced the general model in (3). In this
section we provide a federated algorithm for learning the global
parameters w and local parameters {f;,y;}, via an alternat-
ing descent approach. Our approach only requires sharing the
updated weights w from a global decoder g,, with the cloud. The
general framework is shown in Algorithm 1, while the functions
within Algorithm 1 are presented in Algorithms 2 and 3.

Our approach uses T communication rounds, where a com-
munication round is the process that the central server/cloud
sends an updated set of weights w' for t € [T] to the edge
devices, which update the weights and send them back to the
server. In communication round ¢, the cloud broadcasts global
weights w' to all edge devices. The edge devices then take w'
as their initialization and update w and B; on the local empir-
ical loss F; by performing several steps of gradient descent or
adaptive stepsize methods. After obtaining an updated solution
(wf“,ﬂf“), y! is updated using regularized loss F;. At the

Algorithm 1 Model Training

1: Input: Client datasets {Di}fi "
{y}N | and w?
2: fort=1,2,...Tdo

T, initialization for {8 ?}f\i 1

3. Server broadcasts model weight w' to clients C,

4:  for each client i do

5 ﬂfﬂ, wf“ = local update[w’, D]

6 ny = local_update_regularized[w’,ﬂf,Di]
7 Client i sends wa to server

8: end for

9. wtl =server_ update [w",...,wii'].

10: end for




Algorithm 2 1ocal update
: Input: {D;}Y |, ns, wl’., and B.
2: Initialize wi - w!,and B 5,0 =w
3 forqg=0,1,...E—1do
£,q+1 t, tq ot
4 wiq = wiq - ntvwFi(Wiq)ﬂiq)
5
6
7

—

t,q+1 t,q tq obtq
ﬂi :lBi _ntvﬂ,-Fi(wi )ﬁ,‘ )
. end for
t+1 _  GLE t+1 _ ptE
: Return w,™" =w;",and B, = B;

Algorithm 3 1ocal update regularized

1: Input: Client datasets {Di}fi 1> Stepsize n, wh, yf, and B f
2: Set initialization y?t’o) = ylF
3 forq=0,1,...E—1do

t,q+1 t.q ~ ¢ tq
4 yz = yi - Utvy,.Fi(W,» i )', )
5. end for

6:

Return yH'l = yf’E

end of local training, only global weights w'!™" are sent back to

the central server. The server then uses server_update to
calculate the aggregated global weights w'*!.

In Algorithm 1, local update is the clients update
function to optimize (5). An implementation is shown in
Algorithm 2. Similarly, local_update_regularized is
designed to optimize (4) and an implementation is shown in
Algorithm 3.

Further, in this article for server update we exploit
FedAverage (McMahan et al. 2017) as the aggregation scheme
for global parameters w: w't!l = % Zfil wﬁ“ . However, any
alternative aggregation scheme can be readily plugged in.

Also, Algorithm 1 is under full-device participation to sim-
plify notations. However, our training procedure can be readily
extended to partial device participation.

In the next section, we show that Algorithm 1 converges
to fixed points of our bi-level objective with sufficient com-
munication rounds. We then provide counterexamples where
existing personalized models fail while PFL-DA can handle
such instances.

3. Theoretical Analysis

In this section, we start by showing the convergence of
Algorithm 1 under a general nonconvex objective. Then we
introduce some simple examples to demonstrate our model’s
strengths.

3.1. Convergence

Though local solvers local update and
local update regularized can use any optimization
algorithm, we study gradient descent to understand the
convergence behavior of Algorithm 1. Specifically, at
communication round ¢, client i runs E steps of GD on F;
to update w and f3;, then the clients runs E steps of GD on Fi.
We use w, “? to denote the global weight update for client , at
communication round t, and local GD iterate g. The average of

TECHNOMETRICS (&) 5

w?’q is denoted as w1 = & >N, w:’q. For each communication
round t, local update index g can range from 0 to E — 1. As
an initialization, at the Oth iterate, w ?0 = w"? for every client
z At the Eth iterate all weights are averaged again w0 =
N Ly, wﬁE . Notice that the variable W is actually calculated

only when g = 0. Local variables ﬂ:’q, and y:’q are defined
similarly. We use V, F(v) to denote the gradient of F with respect
to vector v, keeping all other variables constant.

The following theorem shows that our algorithm converges
under very general conditions.

Theorem 3.1. Under assumptions:

1. Alllocal objectives F; are gradient Lipschitz continuous with
constant L, -

2. The norm of gradient of F; and F; over w, ;s and p;’s are all
bounded by G?

3. The function values of SN Fand YN, F; are lower
bounded by F* and F*,

Then when we Algorithms 1-3 with a diminishing stepsize

J’ the following holds:
2
i Vo Fi(wh, g1
telL,.. Thgel0,..E-1 L
(6)
al log T
+3 " pi || Vg Fit, tq” ( )
i;pz g Fi(W"1, B;) i
And
N
i ; v, F(w", 07, i1 H
te{l,...T}I,lc‘jléI{l(),...,E—l} |:P1121:H yiFi(w ﬁ’ i)
- (7)

ofE)

Ti

Theorem 3.1 shows that global weights w converge to critical
points of the global loss Y, piF;(w, B;), and local weights
(B> y;) converge to critical points of the local (regularized and
unregularized) losses F; and F;. This matches our intuition that
the global model should learn common knowledge, while local
models should also learn from local datasets. The detailed proof
of Theorem 3.1 is relegated to the supplementary materials.
We also note that our results are more general than current
personalized FL (Li et al. 2021) results as we do not assume

the convexity of the objective. The O (%) convergence rate is
standard for nonconvex optimization with diminishing stepsize
algorithms (Ghadimi and Lan 2013; Yue, Nouiehed, and Kontar

2021). The O < Y lolgT> rate is slightly slower, which is a price
T4

we pay for personalization.

3.2. Mathematical Proof of Concept

In this section, we use a simple mathematical example to
demonstrate the strengths of our model in datasets with covari-
ate shifts. We assume client i’s ground truth is a sine function,
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fi(x) = o;sin(2m (x+6;)), where «; and 6; are independent ran-
dom variables that model concept and covariate shifts, respec-
tively. We assume 6; follows a uniform distribution on [0, 1] and
the distribution of «; has mean u, and variance 0’02[. Basically,
devices have similar trends yet with a phase shift (often common
in vibration signals). Though sine functions are simple, they are
the basis of many periodic functions. If we train a global model
to minimize the population risk min,, E;[||f,, —fi |%], where f,, is
a global model with w as weights and || - ||, is a functional norm
defined as ||f] |% = fol f(x)%dx. Then f,, should minimize:

1
arg n}in Eq,6; |:/ (fw(x) —o;sin(2rx + 27190)2 dx]
w 0

1
= arg n}in Eg, 0 [ / fiw(0)? = 2fp(x)a; sin(2x + 2710,-)dxi|
w 0

1 1
=argminEy, g, |: / fw(x)zdx:| = arg min |: / fw(x)zdx:| .
fw 0 fw 0

Therefore, the unique minimizer is f,(x) = 0 for every x in
[0, 1]. Clearly, a global model does not learn anything from such
a dataset where there is a phase shift in the sine function. Now
suppose there exists a set of weights wyero such that f,, =~ = 0.
We then examine the performance of several personalized FL
models on this problem.

On the sine regression problem, Ditto’s local
objective becomes a local risk plus a regularization:
Jo ) — aisin @rx+ 270 dx + Ally; — Waerol
Jfwiero = 0. Then the optimal solution is the same as training
a completely individualized model with L, regularization. Not
only no useful shared information is learned. The regularization
will further exacerbate the problem by forcing y; close to Wyero
which is clearly unsatisfactory as it predicts a zero everywhere.
Another intuitive and popular personalization method is train-
then-optimize. For instance in Yu, Bagdasaryan, and Shmatikov
(2020), clients collaboratively train one global model, then
adapt it to local datasets for personalization. However, since
the optimal global model is a constant zero function, the
personalization starts from a possibly bad initialization. As
seen above, the phase shift across sinusoidal patterns prevents
central training from extracting useful information leading to
a wrong and uninformative global model. This invalidates the
justification for local training via distance-based regularization
from such an uninformative global model.

On the other hand, PFL-DA can address this challenge sim-

ply by its construction where the featurizer ®; 2o B, (x) only
needs to learn a phase shift which, here, can be fully represented
in just one parameter 6;. Mathematically, we can consider the
parametric model where ®g (x) = x + B; and the decoder
function g, is a square integrable function parameterized by w.
We assume the learned f; is only a function of 6;, 8; = B(6;),
since encoder functions should handle the covariate shifts.
Under such parameterization, we can show that the optimal
solution to (5) is B(6;) = 6; and gw(¢d) = pasin(2me).
Therefore, the global decoder function g, is a sine function whose
amplitude is the average amplitude [, over different clients.
Hence, it can be regarded as the “center” of all decoder functions.
Accordingly, if we parameterize gy, also to be sine functions:

8y, (#) = y;sin(2m ¢), the optimal solution to (4) is

o + 2A11q
Vi= 1420

>

which is a weighted average of @; and . Here one can observe
the interplay in F; where the first term encourages model fit and
the regularization encourages resemblance to the global decoder
(gw)- This is indeed reminiscent of the prior/posterior interplay
in Bayesian statistics where g,, plays the role of a prior for g, .

Therefore, the analysis of sine functions confirms our moti-
vations that (4) and (5) can handle both covariate and concept
shift. The detailed derivations are relegated to the supplemen-
tary materials. In Section 4, we revisit sinusoidal functions and
highlight the above ideas via simulations.

4. Numerical Experiments
4.1. Numerical Proof of Concept

We examine the performance of PFL-DA on the sine data
proposed in Section 3.2. Our target functions are shifted sine
functions with amplitudes uniformly sampled from [0.8,1.2].
We simulate 500 clients, with 490 clients containing 100 training
points each, and 10 clients containing 5 training points each.
The ground truth of every client is a sine function with a unique
phase shift sampled from [—%, %]. To recover the encoder and
decoder functions from data, we define the encoder function to
be ®g.(x) = T (x+NeuralNet; (1; 8;)), where NeuralNet; (-; 8;)
is a 4-layer fully connected neural network parameterized by ;.
The operator I is defined as [1(¢) = ¢ — [¢], where [¢] is the
closest integer to ¢. We use IT to remove the periodicity of the
sine function by mapping the feature ¢ onto the interval [— %, %].
Also, we define the decoder function as a 6-layer neural network
gw(®) = NeuralNet(¢; w). gy, has the same architecture as
gw» but the parameters (weights and biases) are different. Ideally,
NeuralNet; (1; 8;) should learn the domain shift of each client,
and NeuralNet; (¢; w) should learn the sine function.

To evaluate performance, we benchmark with Ditto,
PFL-DA and indiv. In indiv we train models on different
devices separately without any interaction among devices. To
evaluate the testing error, we first calculate the mean square
error between ground truth and model prediction on 100
equally spaced points on [0,1] for each client with five training
points, then average the error on all of them. We randomly
generate the sine functions and perform the simulation for
six times to estimate the deviation of average testing error. To
visualize the fittings of different algorithms, we plot training data
and model predictions, as well as ®g.’s in Figure 1.

From the first row of Figure 1, we can see that Dit to cannot
fit data well, possibly due to the negative transfer of knowledge
as we discussed in Section 3.2. Indiv can fit training data, but
cannot learn from other clients thus the prediction on data-
sparse region has an irregular shape. PFL-DA is able to fit data
and learn the patterns of the sine function. The second row of
Figure 1 shows the decoder functions on different clients. If the
modeling is appropriate, all the decoder functions should learn
the same sine function. This is indeed the case for PFL.-DA,
where decoders from all clients exhibit very similar sinusoidal
patterns. Such patterns are learned purely from data. However,
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Figure 1. Regression of sine functions by three algorithms. In the first row, we randomly select three clients and show the training data as dots and model prediction as
dashed lines. Different colors and markers denote different clients. In the second row, we illustrate the learned decoder functions by plotting output y versus feature @ (x).

_0.5_
wn
0 -1.0
9 PFL-DA
4 i -
$ -1.5 4 == |nd|V
[ .
o —— Ditto
3 —2.0

_25_

0 10 20 30 40 50

Communication round

Figure 2. The learning curves of sine functions. We run six independent exper-
iments for each algorithm and plot the mean and 95% confidence interval of
logarithm of the test loss.

for Ditto and indiv, the learned decoders do not have
clear collective trends, suggesting that no useful information is
shared. The decoder patterns confirm our analysis that PFL-DA
can learn useful information among clients while Ditto and
indiv cannot for the sine function regression.

We also plot the learning curves of the three algorithms in
Figure 2 to visualize the training process. After around 20 com-
munication rounds, the test loss of PDA-FL decreases steadily,
while that of indiv and Ditto remains high during the
course of training. PFL-DA achieves the lowest test error after
sufficient communication rounds. The results confirm the supe-
rior performance of PFL-DA and its ability to borrow strength
from other clients while retaining individualized features.

4.2. Case Studies

Next we test our model on multiple datasets. A central directory
for the datasets can be found in IoFT datasets (2021). Our
benchmark algorithms are:

e FedAverage (McMahan et al. 2017): Used to benchmark
with the performance of global modeling.

o Indiv: Completely individualized training where clients
only train on their local data. This model will shed light on
the extent of knowledge sharing across clients.

o TP (Yu, Bagdasaryan, and Shmatikov 2020): A train-
then-personalize approach where a global model using
FedAverage is learned and then it is fine-tuned on the
clients’ local data.

o Ditto (Li et al. 2021): Ditto is an iterative train-then-
personalize procedure.

o pfedme (Dinh, Tran, and Nguyen 2020): pfedme is a per-
sonalized FL approach that uses Moreau envelope to update
global parameters and personalize.

o Simple-DA: The simple domain adaptation model intro-
duced in (1). We note, in essence the model introduced
by Liang et al. (2020) can be posed in manner similar to
Simple-DA.

o PFL-DA: Our proposed personalized domain adaptation
model for addressing both concept and covariate shifts in FL.

4.2.1. Setup

We consider five popular image datasets: Colored MNIST, Rotat-
edMNIST, VLCS, PACS, and FEMNIST. These datasets con-
tain images whose labels we should classify. Unlike ordinary
image classification datasets like CIFAR or MNIST, the images
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Table 1. Sample images from case study datasets.

Dataset Client 1

ColoredMNIST

PACS

Client 2

Client 3

Client 4

Table 2. Average testing accuracies.

Dataset FedAverage Indiv TP Ditto Simple-DA pfedme PFL-DA
CMNIST 68.84+0.2 75.640.2 54.540.1 71.840.2 75.6+0.2 56.6 £ 1.4 75.8+0.1
RMNIST 93.8+0.4 98.4+0.1 93.94+0.2 93.9+0.2 98.4+0.1 914+ 0.6 98.4+0.1
FEMNIST 77.9+0.3 61.7 £0.3 77.7£0.3 80.2+0.3 46.0£3 78.6 +9.6 80.840.2
VLCS 82.8+0.3 82,5403 827403 824403 82.610.1 43.8£0.1 83.7+0.1
PACS 84.41+0.8 93.9+0.4 85.0+1.9 92.7+0.2 94.440.5 91.7+£0.2 95.6+0.1
NOTE: Bold values indicates the highest accuracy results that are statistically significantly better than the rest.

Table 3. Standard deviation of accuracies among clients.

Dataset FedAverage Indiv TP Ditto Simple-DA pfedme PFL-DA
CMNIST 1.1£0.1 12.840.1 7.6+0.4 18.0+0.2 13.0+0.2 51+08 12.8+0.5
RMNIST 5.5+0.4 0.340.1 5.440.2 5.74+0.2 0.240.1 8.0+0.2 0.2+0.1

FEMNIST 11.0£0.1 11.0£0.1 11.1£0.1 8.3+0.1 15.5+0.1 11.0 £ 0.1 8.7£0.1

VLCS 11.8+0.2 10.84+0.2 11.940.1 11.74+0.1 11.0+0.3 2.6+0.1 10.0+0.2
PACS 8.2+0.1 1.6+0.3 6.7+0.8 1.1+0.2 1.940.1 3.0+0.1 1.3+0.3

NOTE: Bold values indicates the highest accuracy results that are statistically significantly better than the rest.

from these datasets come from heterogeneous domains. Among
them, ColoredMNIST, RotatedMNIST, VLCS, and PACS are
datasets widely used for domain adaptation tasks, and FEM-
NIST is a popular FL dataset. Below we provide a brief overview
of the datasets along with an illustrative image of the data and
different domains in Table 1. In depth details on the setup are
deferred to the supplementary material.

o ColoredMNIST: We separate the popular hand-written digit
dataset MNIST into 100 clients and color pictures on one
client with green or red according to the labels.

o RotatedMNIST: We separate MNIST into six clients. On each
client, we rotate all images by a certain angle in [0, ¢max]-
The domains are different as images have different orienta-
tions. Intuitively, when omax becomes larger, domain shifts
grow.

o VLCS VLCS (Albuquerque et al. 2019) is a realistic dataset
from four domains. Each domain contains images from five
classes. We assume there are four clients, with each one
corresponding to one unique domain.

« PACS Similarly, PACS (Asadi, Hosseinzadeh, and Eftekhari
2019) is a dataset with four domains. Each domain has
images from seven classes. We also assume that one domain
corresponds to one client.

o FEMNIST FEMNIST (Caldas et al. 2019) is an FL dataset
with images of digits (0-9) and English characters (A-Z,
a-z) with 62 classes. It is naturally split over clients where
each client has data representing their handwritten digits and
characters.

As shown in Table 1, the images come from dissimi-
lar domains, but contain common information than can be
exploited for a stronger predictive model. As such, we can natu-
rally use PFL-DA to borrow strength across clients. To model
domain shifts, we set ®g’s to be convolutional neural net-
works (CNN). The convolutional layers have different param-
eters on different clients, thus, can potentially extract features
from different domains. In ColoredMNIST, RotatedMNIST, and
FEMNIST we train a 4-layer CNN from initialization. For PACS
and VLCS, we start from a pretrained Resnet50. We also use
a CNN for the decoder function gy, ’s. Due to dataset size, we
use Adam (Kingma and Ba 2015) as our stochastic optimizer
for local update and local regularized update
in Algorithm 1. The learning rate, weight decay, and batch
size are set to recommended values from literature. In the
supplementary materials, we provide recommended practices
from literature to calculate the gradient of a regularized loss,
such as the onein local regularized update.

4.2.2. Results

The results from the simulations above are summarized in
Tables 2 and 3. Table 2 shows the average of classification accura-
cies among clients and their corresponding standard deviations
from three independent random experiments. Many interest-
ing insights can be derived from the results. First, PFL-DA
outperforms all benchmarks. This highlights PFL-DA’s ability
to tackle heterogeneity in both the input space and input-
output relationship. Second, it is worthwhile to zoom in on the



FEMNIST dataset. Unlike the other datasets, the domain shift
in this dataset is small as most writers have data across different
classes. Here, the improvement of PFL-DA over Ditto is
rather marginal. This is intuitively expected as both methods
can handle a concept shift in the input-output relationship.
It is also not surprising that Simple-DA has a very bad
performance on FEMNIST as it cannot inherently handle a
concept shift. Third, we can observe that a domain shift has a
strong negative effect on Ditto. Indeed, in the case where the
domain shift is tangible (PACS), Ditto performs much worse
than individualized training. This sheds light on the coun-
terexample provided in Section 3.2 that shows that with exces-
sive domain heterogeneity, current personalized approaches can
hurt the personalization process by staying within the vicinity
of an uninformative global model. Here we note that the TP
approach did not suffer as much in PACS since it does not
restrict the personalized parameters to stay close to the global
model, yet it still under-performs compared to indiv as staring
from a bad global model can have a negative effect on the
final solution.

Table 3 shows the standard deviation of accuracies across
clients. This in turn measures fairness in FL which is usually
defined through accuracy disparity across clients, where the goal
is to incur a uniformly good performance across all devices
(Kairouz et al. 2019; Li et al. 2019). To better visualize the
distribution of predictive performance of personalized models
on different clients, we use a boxplot to see testing accuracy
of FEMNIST in Figure 3. The results show that PFL-DA pro-
motes fairness compared to benchmarked methods and can
even improve upon the fairness of Ditto.

4.2.3. Sensitivity Analysis on Heterogeneity

To evaluate the effect of domain shifts on model performance,
we change the heterogeneity in Rotated MNIST and Colored
MNIST. Remember that in Rotated MNIST, we rotate all images
on one client by a certain angle in [0, @max], Where omax can
represent the data heterogeneity. We change amax from 20 to
80 degrees and examine the performance of three representa-
tive algorithms: PFL-DA, FedAverage, and Ditto. Simi-
larly, in Colored MNIST, we change the maximum correlation

0.6

0.5 4

Test accuracy

0.4 -

0.3

0.2 1 1

FedA\/erage Ditto  PFL-DA TP Pfedme

Figure 3. Boxplot of testing accuracy at the 100th communication round on
FEMNIST.

TECHNOMETRICS (&) 9

parameter pmax from 0.2 to 0.8, and run the three algorithms.
Results are shown in Figure 4. From Figure 4, it is clear that
Ditto and PFL-DA perform comparably on datasets with
small domain shifts. However, when domain shifts grow larger,
PFL-DA significantly outperforms other algorithms.

4.3. Distributed and Connected Material Extrusion 3D
Printers

The experiments done above are based on artificial datasets.
Unfortunately, as FL is still in its infancy phase, real-life datasets
(in engineering, etc.) are largely missing. The few that exist
are largely based on mobile applications. To this end, there are
some recent efforts to build engineering-based datasets to test
FL and understand its domain-specific challenges (Kontar et al.
2021). One dataset is based on connected 3D printers (IoFT
datasets 2021). In this dataset, multiple desktop 3D printers
are installed in geographically separated locations. The goal
of this test is to allow different clients to share knowledge
and build better models for 3D printing while preserving their
privacy and intellectual merit and reducing latency in model
deployment.

A typical 3D printer constructs 3D models by successive
addition of materials. 3D printing has found successful applica-
tions in a wide range of fields, including the aerospace industry,
automotive industry, food industry, and much more (Ngo et al.
2018; Shahrubudin, Lee, and Ramlan 2019). Different types
of 3D printers are proposed to satisfy the diversified needs of
users, such as binder jetting printers and materials extrusion
printers.

Many popular desktop 3D printers use material extrusion
technology. These printers use motors to control the movement
of the printhead and printbed and usually stack thermoplastics
layer by layer. Such printers are often inexpensive and easy to
install. However, they can suffer from vibration-related issues.
The vibration of the print head directly affects the precision of
printed models: high vibration can lead to model distortions or
even scrapped parts (Duan, Yoon, and Okwudire 2018). Reduc-
ing printing speed helps to mitigate vibration issues. However,
lower printing speed can elongate printing time.

Our case study uses personalized FL methods to learn the
dependence of printing speed and vibration in printing cubic
objects. The findings can provide insights for balancing printing
quality with printing speed for desktop 3D printers. Indeed, this
balance is an active area of research (Duan, Yoon, and Okwudire
2018).

Data (Chou and Okwudire 2021) is collected from six Ender
3D printers located in different places. Notice that 3D printers
are delivered by parts and assembled by the user. Thus, the envi-
ronment, assembling, and adjusting process all introduce noise
to printers. Each printer is also equipped with two accelerome-
ters to measure the accelerations in the x and y axis. A central
server communicates with every printer. Thus, one printer nat-
urally represents one client, which is ideal for FL experiments.
Figure 5(a) is an illustration of the federated system.

The dataset is generated by printing the same 15-layer cube
on the six printers. Every printer prints the cube 12 times with
12 different printing speeds. For each experiment, accelerations
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Figure 4. Change of performance with respect to heterogeneity.
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Figure 5. Setup and raw data of desktop 3D printers.

on x and y axis are collected at sampling rate 227Hz. To evaluate
the overall vibrations, a program estimates the mean square of
acceleration signals on both axis for each layer: 0,, and 0, and

calculates the square root of the sumo, = /o2 + crazy. Then the

program calculates speed s by dividing the print head trajectory
length by the total time elapsed. The raw data is plotted in
Figure 5(b).

Our task is to learn customized models to predict the printing
speed at a given acceleration. The predictions are useful when
one user tries to set the printing speed at a given acceleration
(thus, model precision) constraint. Intuitively, since all printers
have the same type, the relations among different clients should
follow a similar trend. However, due to differences in shipping,
assembling, tuning, different clients have idiosyncratic charac-
teristics as shown in Figure 5(b). This individuality renders
personalized FL approaches suitable for model learning.

Now for model learning, a direct insight from the Figure 5(b)
is that the (0, ) curves on different printers have clear shifts
on the x-axis. For this reason, we set the encoder functions
®g. to be linear transformations. Further, the (0,,s) curves
are clearly nonlinear. Therefore, we use nonlinear functions for
the decoder g, including sigmoid functions, Gaussian basis
functions, and nonlinear neural networks. As such, the different
;s will mainly decide the different curve shapes and ®g. will
map the phased input into a domain invariant space.

We study three algorithms, Ditto, indiv, and PFL-DA.
For each algorithm, we use three models: a sigmoid decoder

Heterogeneity

(b) Rotated MNIST.

5" B ey
8 40 T s . - - -~
=3 A A -
wn 351 .
= . printerl
C 4 ¥
= printer2
g - - . 3
8= printer
1) rinter4
%20 i p :
S printer5
> rinter6
= P

0.‘6 0;8 1.v0 1.‘2 1?4 1.6 1.8 2.0

Mean Square Acceleration

Table 4. Model specifications for generalized linear model with sigmoid decoder,
generalized linear model with Gaussian decoder, and neural networks.

Model Di(x) gi(x)
Sigmoid decoder model D1,iX + @2, gu]_%% + g2,
_ (xfuk)z
v
Gaussian decoder model O1,iX + i Zfﬂ wye 20

Neural network Neural network Neural network

model, a Gaussian decoder model, and a neural network model.
The encoder and decoder functions are specified in Table 4.

To evaluate the performance of all methods, we split each
printer’s dataset into a training and testing set. The testing
set consists of all data collected in the experiment where the
printing speed is set to 30. The training set consists of the
remaining data. We fit the model with training data, then use
testing set to estimate testing loss between model prediction and
actual measurements. The metrics for both training and testing
loss are the mean squared error. Since the 3D printers usually
work smoothly at printing speed 30, the testing loss roughly
represents the prediction error in the moderate vibration region.
We set A1 = 0.9, to allow greater flexibility across the models.
We repeat this experiment three times, starting from different
random initialization.

The testing loss is presented in Table 5. The results show that
PFL-DA performs consistently well across all decoder functions
and achieves the lowest testing loss. Also, we find that Indiv



Table 5. Test loss with standard deviations.

Model Ditto indiv PFL-DA

Sigmoid GLM 0.28 4 0.02 0.268 £ 0.01 0.23 £+ 0.01
Gaussian GLM 0.26 £ 0.04 0.25 £ 0.01 0.25 £+ 0.01
Neural Network 0.48 + 0.04 0.25 £ 0.02 0.23 + 0.02

NOTE: Bold values indicates the highest accuracy results that are statistically signif-
icantly better than the rest.

outperforms Ditto. This is not surprising as Dit to can easily
fail in the presence of large domain shifts.

In the supplementary materials we provide an additional
illustrative figure on the predictions of the three benchmarks
across all decoder functions.

5. Conclusion

This article proposes PFL-DA: a personalized FL approach
to tackle heterogeneity in both a concept shift in the output-
input relationship and a covariate shift in the input space
across clients. Our approach learns a personalized featurizer
and decoder over all clients yet facilitates information sharing
by restricting the personalized decoder to the vicinity of a
global decoder. Through theoretical analysis, simple mathemat-
ical examples and case studies, we show that PFL-DA excels in
the presence of both a covariate and concept shift while yielding
comparable, often better, performance when only a concept shift
exists. Further, our approach is shown to circumvent fundamen-
tal shortcoming with state of the art approaches in FL and is able
promote fairness across clients.

Our approach assumes independent samples from indepen-
dent clients. However, modeling correlations is an interesting
yet challenging topic to investigate. Correlations are helpful in
network learning or clustering over clients, yet it poses new
challenges in optimization, communication, and privacy. This
is an exciting direction that we hope to investigate.

Supplementary Materials

The code for numerical experiments in this article are available in the
GitHub repository. In the supplementary material, we will show the proof
of Theorem 3.1. We will also present additional experiments and illustra-
tions, mathematical derivations of the proof of concept experiment, and
details of our case study implementations.
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