

Research Article

Genetic Characterization of Pierce's Disease Resistance in a *Vitis arizonica/monticola* Wild Grapevine

Karla Gabriela Huerta-Acosta,^{1*} Summaira Riaz,² Alan Tenscher,³
and M. Andrew Walker³

Author affiliations: ¹Special New Fruit Licensing Group (SNFL), Fresno, CA; ²United States Department of Agriculture, Fresno, CA; ³Department of Viticulture and Enology, University of California, Davis.

*Corresponding Author (kahuerta@ucdavis.edu)

Acknowledgments: The authors would like to thank the California Department of Food and Agriculture Pierce's Disease/Glassy-Winged Sharpshooter (PD/ GWSS) Board, the University of California Institute for Mexico and the United States (UC-MEXUS), and El Consejo Nacional de Ciencia y Tecnología (CONACYT) in Mexico for supporting this project. We declare no conflict of interests.

Manuscript submitted April 7, 2022, revised July 12, 2022 and July 27, 2022, accepted Aug 24, 2022

Copyright © 2022 by the American Society for Enology and Viticulture. All rights reserved.

By downloading and/or receiving this article, you agree to the Disclaimer of Warranties and Liability. The full statement of the Disclaimers is available at http://www.ajevonline.org/content/proprietary_rights-notice-ajev-online. If you do not agree to the Disclaimers, do not download and/or accept this article.

Abstract: Pierce's Disease (PD) is a bacterial disease that threatens vineyards across the US and Mexico.

Genetic resistance against this disease has been achieved using the resistance locus *PdR1*, which was

found in a wild grapevine from Mexico. In order to broaden the genetic base, we aimed to identify

additional unique sources of resistance. The objective of this study was to characterize PD resistance in

accession b46-43, a PD resistant wild grapevine from Texas. The manifestation of PD resistance in b46-

43 is different from b43-17, with even cane lignification, minor leaf scorch and minimum bacterial

growth. It was hypothesized that b46-43 possibly carry resistance that differ from the *PdR1* locus in

17. A total of 318 seedlings from population 14399 were evaluated for PD resistance and genotyped. The

framework genetic map was developed and a quantitative trait locus (QTL) analysis was carried out. The

QTL analysis identified a major locus that explained 55.5% of the phenotypic variation on chromosome

36 14, at the genomic position *PdR1* was mapped in earlier studies. No minor loci were identified on other
37 chromosomes. The rarity of additional loci indicates that PD resistance may have a common origin and it
38 is widespread as a result of gene flow.

39 **Key words:** genetic resistance, grapevine breeding, Pierce's disease, QTL, *Xylella fastidiosa*, wild
40 grapevines

41 **Introduction**

42 Pierce's Disease (PD), an important disease of grapes, is caused by the xylem-limited bacterium,
43 *Xylella fastidiosa*. PD has been reported in the southern regions of North America and central region of
44 South America (Hopkins and Purcell 2002, Walker et al. 2019). *Xylella fastidiosa* has a broad host range
45 that includes landscape, horticultural and agricultural crops within 300 different plant species and is
46 vectored by several sap-feeding insects like sharpshooters and spittle bugs (Rapicavoli et al. 2015). As
47 bacteria colonize the water-conducting xylem vessels, it clogs them by inducing the formation of
48 biofilms. As a defense response, grapevines produce an outgrowth of the parenchyma cells in the xylem
49 vessels, called tyloses, which severely limits water uptake, resulting in desiccation and eventual plant
50 death (Sun et al. 2013).

51 Pierce's Disease has limited grape production in California, the Gulf Coastal states, and Mexico
52 (Webster et al. 2014). All commercially grown wine, table and raisin grapes belong to the species *Vitis*
53 *vinifera* that are susceptible to *X. fastidiosa* and succumb to the disease. Different strategies to control its
54 vectors are in use, including insecticides and removal of riparian vegetation that house both vectors and
55 bacterium (Alston et al. 2013). Nonetheless, these methods are expensive, and harmful to human health,
56 the environment, and riparian ecosystems. As of today, no cure is available once the plants are infected
57 (Kyrkou et al. 2018). Hence, breeding of grape varieties with resistance to the pathogen is the only
58 environmentally friendly approach.

59 The Grape Breeding Program at University of California, Davis has identified PD resistance in
60 many North American wild grape accessions collected from Mexico and the Southwestern US (Riaz et al.
61 2018). The genomic location of *PdRI* locus was identified on chromosome 14 in accession b43-17
62 (Krivanek et al. 2006), and marker-assisted selection was used to develop PD resistant winegrape
63 selections with superior fruit quality. In 2019, five of these selections were released (Walker et al. 2019).
64 The accession b46-43, collected from the Big Bend area in southwestern Texas was among other tested
65 accessions with strong resistance to PD after multiple greenhouse screening trials. Accession b46-43, a
66 putative hybrid of *V. arizonica* and *V. monticola*, had markedly better cane lignification and less leaf
67 abscission and desiccation in comparison to accession b43-17 in greenhouse-based screenings. It also
68 harbored very low bacterial populations when inoculated with *X. fastidiosa*. The accession b46-43 also
69 had a different allelic profile with the nuclear and the chloroplast markers and population diversity
70 metrics placed it in a different genetic clade from b43-17 (Riaz et al. 2018). These results suggested that
71 b46-43 may possess a different form of PD resistance from accession b43-17.

72 The aim of a successful breeding program is to broaden the genetic base of resistance and stack
73 resistance genes that potentially have different modes of action. In order to achieve this goal, detailed
74 genetic characterization of accession b46-43's PD resistance was required to evaluate its potential use in
75 the breeding program. In this study, we characterized the PD resistance of accession b46-43. A F1 and a
76 pseudo backcross 1 (pBC1) populations were developed and phenotype PD resistance under greenhouse
77 conditions. A framework genetic map was developed using simple sequence repeat (SSR) markers and
78 finally a multiple Quantitative Trait Loci (QTL) analyses were carried out to identify major and potential
79 minor loci that contribute to PD resistance.

80

Materials and Methods

81 **Plant material.** The PD resistant accession b46-43, a natural hybrid between *V. arizonica* and *V.*
82 *monticola*, was collected from Big Bend, TX (Fig. 1A) by Harold P. Olmo in 1961. The maternal PD
83 susceptible *V. vinifera* 08326-61 (a selfed progeny from Cabernet Franc) was crossed with the male
84 accession b46-43 to produce F1 population 12305 (Fig. 1B). It was discovered that PD resistance was
85 controlled by a homozygous dominant allele as 100% of the progeny were PD resistant. One male F1
86 resistant seedling plant, 12305-55, was crossed with the susceptible female F2-35 to develop a pseudo
87 backcross (BC1) population, used for the genetic mapping. Its PD resistance segregated in a 1:1 ratio for
88 the pBC1 population, supporting b46-43's homozygous dominant nature. All F1 and pBC1 breeding
89 population individuals were maintained at the Department of Viticulture and Enology, University of
90 California, Davis, CA.

91 **Disease evaluation.** Three trials to evaluate PD resistance were carried out under greenhouse
92 conditions following the protocols described by Krivanek and Walker (2005) in three trials during 2015
93 (TD151217), 2016 (TD160809) and 2017 (TD171031). A total of 318 seedling plants were tested at least
94 once with four biological replicates each across the three trials. A set of grape accessions with known
95 strong and intermediate PD resistance, as well as the susceptible *V. vinifera* cultivar Chardonnay (un-
96 inoculated and inoculated), were used as references in every screen. The use of reference plants allowed
97 comparison among screen results across different trials and years.

98 Disease onset was evaluated using three different metrics after 12-14 weeks post inoculation,
99 when the susceptible reference plants were showing visible disease symptoms. The plants were evaluated
100 for their degree of cane maturation and necrosis development designated as Cane Maturation Index (CMI)
101 as described in an earlier study (Krivanek and Walker 2005), the mean percentage area of scorch on four
102 leaves above and nearest to the point of inoculation (POI) and leaf loss was recorded as Leaf Scorch-Leaf
103 Loss (LS-LL) (Krivanek et al. 2006). Finally, the enzyme-linked immunosorbent assay (ELISA) was

104 used to quantify the *X. fastidiosa* titer in ± 0.5 g of stem tissue as described in (Krivanek and Walker
105 2005).

106 The bacterial titer data was normalized for titers lower than 10,000 and higher than 6,500,000
107 cfu/ml and transformed to the natural log (*X. fastidiosa* cfu/ml (ln)) to obtain homogeneous variances.
108 The statistical analysis was performed using the lme4 package (Bates et al. 2015) in R (R Core Team
109 2019), and JMP Pro14 (Copyright 2018, SAS Institute Inc.).

110 **Genotyping, framework genetic map and QTL Analysis.** DNA was extracted from young leaf
111 tissue using the modified CTAB method (Riaz et al. 2011) which excluded the RNAase step and
112 precipitated DNA with one cycle of chloroform-isoamyl alcohol. Then, DNA dilutions were made. A
113 total of 497 SSR markers from previously published marker series (Thomas et al. 1993, Bowers et al.
114 1999, Scott et al. 2000, Decrooq et al. 2003, Arroyo-Garcia and Martinez-Zapater 2004, Riaz et al. 2004,
115 Di Gaspero et al. 2005, Merdinoglu et al. 2005, Doligez et al. 2006, Cipriani et al. 2008, the Vitis
116 Microsatellite Consortium managed by AGROGENE) were tested on a subset of eight samples including
117 parents, grandparents and progeny. The SSR marker sequences are available at NCBI database
118 (<http://ncbi.nlm.nih.gov>). Polymorphic markers were selected to genotype the pBC1 population.
119 Polymerase Chain Reactions (PCR) were based on a previously described protocol (Riaz et al. 2008).
120 PCR products were separated using an ABI 3500 capillary electrophoresis analyzer with GeneScan 500-
121 Liz Size Standard (Life Technologies, Carlsbad, CA, USA) and analyzed with GeneMapper 4.1 software
122 (Applied Biosystem Co., Ltd., USA). The parents and grandparents of the population were used as
123 internal references to verify and standardize the allele calls between plates.

124 In the first step, a genetic map was completed for only chromosome 14 using the 318 seedlings
125 and 21 SSR markers using JoinMap4 (Van Ooijen 2006). The phenotypic data from all three trials was
126 used to complete a Quantitative Trait Locus (QTL) analysis with MapQTL6 (Van Ooijen 2009). Both

127 Interval Mapping (IM) and the Kruskal-Wallis (KW) non-parametric tests were performed and the K*
128 significance (p-values) were obtained for every marker for all three phenotypic scores.

Later, a framework genetic map was developed to cover all nineteen chromosomes using a set of 92 seedling plants. Parental and a consensus genetic maps were constructed using the phenotypic data with the software previously described. The Kosambi mapping function was used to calculate the centiMorgan (cM) distance using linkage with a recombination frequency smaller than 0.4 and LOD larger than 1. A permutation test (PT) was carried out to determine the genome-wide and chromosome-wide LOD thresholds for significant QTLs based at a 5% significance level and with 1000 permutations. The automatic selection cofactor analysis was carried out with a p-value of 0.02 and 200 iterations with the consensus map. Using the selected cofactors, the multiple-QTL model approach (MQM mapping) was also performed to increase the power of identifying multiple QTLs and QTL-environment interactions.

Results

140 **Disease evaluation and segregation.** Statistical analysis of the three trials using the reference
141 plants found that there was a significant effect of the trial date on the bacterial titer at the $p < 0.05$ level
142 (F-statistics: 58.15 on 15 and 303 DF, p-value: $< 2.2\text{e-}16$). The post-hoc analysis found no statistical
143 differences between the 2015 and 2016 trials. However, the 2017 trial was significantly different with a
144 lower overall mean (11.569) (Supplemental Table 1). The values of bacterial titer of the reference plants
145 common in the three trials were similar to those we have observed in previous greenhouse screenings for
146 PD resistance (Riaz et al. 2018), confirming consistent results across different years (Table 1). The
147 threshold of natural log of above 13 for the bacterial titer values was considered to be susceptible based
148 on the intermediate reference genotypes. Figure 2 shows the phenotypic distribution of the seedling
149 plants. According to the Chi-square test, the resistance segregated in a 1:1 Mendelian ratio (143:175,
150 $X^2=3.22$, 1 d.f., $p=0.073$).

151 **Genotyping, framework genetic map and QTL Analysis.** *QTL analysis for chromosome*
152 14. Two markers (VMC6c10 and PD82-1b4) were removed due to missing data; hence, the genetic map
153 for the resistant parent was developed with the allelic data of 19 markers for chromosome 14. The total
154 map length was 98.6 cM with an average distance of 5.18 cM between markers (Fig. 3A). The KW
155 analysis indicated all markers of chromosome 14 had highly significant association to the three metrics of
156 disease evaluation. Fifteen out of nineteen SSR markers were significantly associated to the phenotypic
157 data. Similarly, the IM analysis identified marker ch14-78 with the highest percentage of phenotypic
158 variation for the bacterial titer, the CMI and the LS-LL explaining 44.2%, 22.5% and 11.5%, respectively
159 (Supplemental Table 2, Fig. 3B).

160 Results from the IM analysis suggested the presence of a QTL on chromosome 14 in the similar
161 genomic region where the *PdR1* locus was identified in accession b43-17 (Krivanek et al. 2006) (Fig.
162 3B). Given the high percentage of phenotypic variation explained for the *PdR1* locus in b43-17 (72%)
163 compared to the results in this breeding population, it was inferred that other major or minor loci found on
164 another chromosome in b46-43 were potentially contributing to PD resistance.

165 **Framework genetic map.** A total of 195 markers were fully informative for both parents and used
166 to generate the parental and consensus genetic maps (Table 2). One hundred and seventy-seven markers
167 were used for the consensus map, which had 23 linkage groups (LG) representing all 19 chromosomes
168 (Supplemental Figure 1). Chromosomes 5, 7, 12 and 19 were fragmented due to a lack of recombination.
169 The consensus map covered 988.03 cM, with an average of 7.69 markers per chromosome, and a 5.58 cM
170 distance between markers. For the 12305-55 and F2-35 parental maps, 20 LG and 21 LG were obtained,
171 respectively. The F2-35 parental map covered 830 cM with 126 markers. There was an average of 6
172 markers per chromosome and an average distance of 6.58 cM between markers (Table 2). For the PD
173 resistant line 12305-55, the genetic map covered 924.9 CM with 185 markers. There were 9.25 markers
174 per chromosome with an average distance of 4.99 cM between markers. Marker order between the three

175 maps was consistent (female and male parental genetic maps not shown), except for chromosomes 14, 16
176 and 18 where marker order was slightly different in the 12305-55 map compared to the consensus map.
177 Seven markers with high segregation distortion affected the order of other markers on chromosome 14
178 and they were excluded from the consensus map.

179 The KW results found that markers on chromosome 14 were highly significant for all three
180 phenotypic scores for the consensus map (Supplemental Table 3). For the bacterial titers on the
181 consensus map, 11 markers on chromosome 14 and three markers outside of chromosome 14 were
182 significant (p-value < 0.01) on the consensus map (UDV21 on chromosome 3, VMCNG3F11 and
183 VMCNG1e.2.2 on chromosome 9). For the CMI score, VVMD31 on chromosome 7, SC02-24 and
184 VMCNG1e2.2 on chromosome 9, UDV101 and ctg5592 on chromosome 10, 4 markers on chromosome
185 12, UDV78 on chromosome 15, and VMC3c11.1 on chromosome 17 were significant. For the LS-LL, 9
186 markers on chromosome 14 were highly significant. Interestingly, six markers on chromosome 1 were
187 also significant for LS-LL, as well as VMC3b10 on chromosome 2, VVIp77 and CTG0624 on
188 chromosome 4, VVIn33 and VVC71 on chromosome 5, VMC5c5 on chromosome 6, VMC2f6 on
189 chromosome 13, VVIq61 and UDV78 on chromosome 15, and Vchr19a on chromosome 19.

190 The IM analysis identified a major QTL only on chromosome 14 between markers chr14-29 and
191 UDV25 using the bacterial concentration and CMI phenotypic data (Fig. 4A), corroborating previous
192 results. The phenotypic variation percentage explained was 55.1%, 27.8% and 13.2% for the bacterial
193 titer, the CMI and the LS-LL scores, respectively. The genome wide threshold for a significant QTL was
194 4.2, 4.3, and 4.2 for the bacterial titer, CMI, and LS-LL, respectively. Unfortunately, no significant QTL
195 were identified on any other chromosome (Fig. 4A).

196 The automatic cofactor selection analysis selected five SSR markers on chromosome 14: ctg6140,
197 CF2513, VChr14a, VMC2b11, and UDV25. The Multiple QTL Model (MQM) mapping confirmed the
198 QTL found on chromosome 14 with a 33% phenotypic variation explained at marker UDV25 (Fig. 4B).

199 Marker UDV25 on chromosome 14 was the most closely linked marker across all three phenotypic
200 parameters – bacterial titer, CMI and LS-LL scores. The MQM analysis did not identify any other
201 additional QTLs apart from chromosome 14.

202 Discussion

203 Breeding for disease resistance in crops has proven to be a useful approach that prevents
204 infection, disease spread, and reduces the use of pesticides (Stuthman et al. 2007). The PD resistance
205 breeding program at the University of California, Davis hosts an extensive collection of wild *Vitis* spp.
206 that is a valuable and unique gene pool. The PD resistant accession b43-17, has served as the resistance
207 source in the development of multiple red and white winegrape selections that are up to 97% *V. vinifera*
208 with high fruit and wine quality and strong resistance to the disease (Walker et al. 2019). Nonetheless, to
209 ensure long lasting and broader resistance, plant breeders like to stack different forms of resistance in the
210 same background. The merging of different resistance loci is of great value for combining different
211 mechanisms of resistance that might stop the establishment of a pathogen at different stages of infection.

212 This study genetically characterized PD resistance in the accession b46-43 collected from Texas,
213 in an effort to identify new sources of PD resistance. In the first phase, the 318 seedlings from the
214 breeding population 14399, were evaluated for PD resistance in greenhouse-based screens and genotyped
215 using SSR markers on chromosome 14. Then, a framework map representing 19 chromosomes was
216 developed using 92 seedlings. The main goal was to identify unique major and minor loci that contribute
217 to PD resistance and develop markers that could be employed in the breeding program.

218 Interestingly, based on the phylogenetic analysis with nuclear SSR markers, b46-43, a *V.*
219 *arizonica/monticola* hybrid, was unique and placed in a different clade from the *PdR1*-bearing accession
220 b43-17 (Riaz et al. 2018). Additionally, b46-43 possesses desirable horticultural traits. For instance, b46-
221 43 did not show leaf scorch and had excellent cane maturation during the greenhouse evaluations, and
222 erect habit on the field in comparison to b43-17 (collected from Monterrey, Mexico), which had

223 moderate amount of leaf scorch and leaf loss, a shrub-like growth habit, and occasional irregular cane
224 maturation, while possessing very low bacterial titers.

225 Based on these observations, we expected to potentially identify a different chromosome bearing
226 PD resistance in b46-43. However, the results of this study identified a major locus on chromosome 14 in
227 the similar genomic region where the *PdR1* locus was previously mapped in b43-17 (Krivanek et al. 2006,
228 Riaz et al. 2008). The values of phenotypic variations were lower, indicating the possibility of other
229 major and/or minor QTLs on the other genomic regions (Supplemental Table 2). The QTL analysis with
230 the expanded genetic map of 92 seedlings also confirmed the results of a major locus on chromosome 14
231 that explained up to 55% of the phenotypic variation (Fig. 4A). No minor QTLs on other chromosomes
232 were identified. These results are in line with another study by Riaz *et al.* (2018) that reported on nine
233 accessions with PD resistance in the similar genomic region on chromosome 14 with phenotypic
234 variations explained from 17.3% to 86.4 %. It is still unknown why this broad phenotypic variation exists
235 within the same locus. One plausible explanation is the allelic diversity of the resistance genes, and the
236 impact of their hybrid nature. A recent study by Riaz *et al.* (2020) revealed that resistance to PD is
237 widespread in Southwestern US wild grapevines, particularly within the grape species *V. arizonica*. The
238 accession b46-43 described in this study is a *V. arizonica/monticola* hybrid based on the morphological
239 description, consistent with the description of all other accessions that harbor PD resistance on the
240 chromosome 14 (Riaz et al. 2018).

241 It might be possible that these accessions have differences in the underlying genes within the
242 genetic boundaries of the *PdR1* locus. Other studies have identified similar differences also (Cochetel et
243 al. 2021). Cochetel compared sequences of grape powdery mildew resistance locus *Run1* haplotype A and
244 B from cultivar Trayshed. The number of resistance genes were different between haplotypes representing
245 the same locus. In the same study, they identified a similar situation in the *Run2* locus on chromosome 18.
246 Furthermore, the genetic window of *PdR1* locus in b43-17 is less than 1 cM (Riaz et al. 2008). In

247 comparison, the genetic window of *PdR1* locus in b46-43 is around 10 cM. High resolution genetic
248 mapping of this region is necessary to bring the genetic window of *PdR1* locus in b46-43 to around 1 cM
249 to deduce if it is the same region.

250 In general, the presence of major QTLs makes it more challenging to map and validate minor loci
251 (Yang et al. 2013). The inability to find minor effect loci in this population could be the result of several
252 factors. For example, it is well-known that population sample size has a large influence on the accuracy
253 of mapping minor effect QTLs. In this study, a total of 92 seedlings were used to construct the
254 framework genetic map. Previous studies have shown that populations with 60 individuals are sufficient
255 to identify major loci (Riaz et al. 2018), but may not be capable of finding minor loci. An additional
256 study with a larger population size to develop a framework map would allow to carry out the QTL
257 analysis in the absence of a major locus (Pap et al. 2016).

258 The search for minor loci may also have been impeded by poor marker coverage. It is possible
259 we could not detect these minor QTLs due to the limited number of SSR markers used for the framework
260 genetic map. The consensus map was constructed from 177 markers with an average of 7.69 markers per
261 linkage group (Table 2). Ideally, more markers should have been used to ensure there were no gaps on
262 any chromosome. The KW analysis determines the association of phenotype to each SSR marker. The
263 KW results found few SSR markers were significant outside of chromosome 14 (Supplemental Table 3).
264 Nonetheless, the Interval Mapping analysis we did not identify any minor QTL in those regions. To
265 consider a major or minor QTL to be significant, multiple markers in a region of a chromosome should be
266 significant. In contrast, multiple markers on chromosome 1 were significant for the LS-LL score.
267 Ideally, more markers should be added to chromosome 1 to validate this association. As mentioned
268 previously, infected plants of b46-43 do not lose as many leaves as b43-17. It would be interesting to see
269 if this trait could be linked to this chromosome, but further analysis is needed. If after the addition of

more markers, the LS-LL score is still significant, it may be hypothesized a minor locus may influence leaf loss.

272 Lastly, the results from this study also validated the measurement of *X. fastidiosa* titers as the
273 most reliable parameter to identify resistance loci. These results are in line with previous studies that also
274 found that CMI and LS-LL scores were not as strongly correlated to the *PdRI* resistance locus as
275 compared to bacteria titers (Riaz et al. 2006, S. Riaz et al. 2008). However, the visible disease symptoms
276 are helpful to select superior potential parental selections that have minimum leaf scorch, leaf loss, and
277 better cane lignification.

Conclusion

279 The genetic mapping and QTL analysis identified a major locus on chromosome 14 in accession
280 b46-43. The genomic region was similar where *PdR1* locus had been previously identified in accessions
281 collected from the southwestern US and Mexico. No minor QTL was identified on other chromosomes.
282 The accession b46-43 can be used in the breeding program as it possesses desirable horticultural traits in
283 addition to PD resistance. Only further comparative genomic analysis of the region between all
284 accessions that have resistance on chromosome 14 can fully elucidate differences between b46-43 and
285 b43-17 *PdR1* locus. This comparison could also shed more light on the evolution and mechanism of
286 resistance, candidate genes and their molecular interactions. Finally, conservation of North American
287 wild grapevines has great value for the viticulture industry because of their outstanding potential for
288 breeding resistance to a wide range of biotic and abiotic problems.

Literature Cited

290 Alston JM, KB Fuller, JD Kaplan, and KP Tumber. 2013. Economic consequences of Pierce's Disease
291 and related policy in the California winegrape industry. *J Agric Res Econ* 38:269-297.

292 Arroyo-Garcia R, Martinez-Zapater JM. 2004. Development and characterization of new microsatellite
293 markers for grape. *Vitis* 43:175-178

294 Bates DM, Maechler B, Bolker, Walker S. 2015. Fitting Linear Mixed-Effects Models Using {lme4}. *J*
295 *Stat Softw* 67:1-48.

296 Bowers JE, Dangl GS, and Meredith C. 1999. Development and characterization of additional
297 microsatellite DNA markers for grape. *Am J Enol Vitic* 50:243–246.

298 Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, and Testolin R. A set of microsatellite
299 markers with long core repeat optimized for grape (*Vitis* spp.) genotyping. *BMC Plant Biol*
300 8(1):1-13.

301 Cochetel N, Minio A, Massonnet M, Vondras AM, Figueroa-Balderas R, and Cantu D. 2021. Diploid
302 chromosome-scale assembly of the *Muscadinia rotundifolia* genome supports chromosome fusion
303 and disease resistance gene expansion during *Vitis* and *Muscadinia* divergence. *G3-Genes Genom*
304 *Genet* 11(4).

305 Decroocq V, Favé MG, Hagen L, Bordenave L, and Decroocq S. 2003. Development and transferability
306 of apricot and grape EST microsatellite markers across taxa. *Theor Appl Genet* 106:912–922.

307 Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, and Testolin
308 R. 2005. Isolation of (AC)n-microsatellites in *Vitis vinifera* L. and analysis of genetic background
309 in grapevines under marker assisted selection. *Mol Breed.* 15:11–20.

310 Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz
311 S, Roux C, and This P. 2006. An integrated SSR map of grapevine based on Wye diVerent
312 populations. *Theor Appl Genet* 113:369–382.

313 Hopkins D, and Purcell A. 2002. *Xylella fastidiosa*: cause of Pierce's disease of grapevine and other
314 emergent diseases. *Plant Dis* 86:1056-1066.

315 Krivanek A, Riaz S, and Walker MA. 2006. Identification and molecular mapping of *PdR1*, a primary
316 resistance gene to Pierce's disease in *Vitis*. *Theor Appl Genet* 112:1125-1131.

317 Krivanek A, and Walker MA. 2005. *Vitis* resistance to Pierce's disease is characterized by differential
318 *Xylella fastidiosa* populations in stems and leaves. *Phytopathology* 95:44-52.

319 Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, and Hansen LH. 2018. Pierce's Disease of Grapevines:
320 A Review of Control Strategies and an Outline of an Epidemiological Model. *Front Microbiol*
321 9:2141-2141.

322 Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, and Decroocq S. 2005.
323 Development and characterization of a large set of microsatellite markers in grapevine (*Vitis*
324 *vinifera* L.) suitable for multiplex PCR. *Mol Breed* 15:349–366.

325 Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, and Walker MA. 2016.
326 Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild
327 Chinese grape species *Vitis piasezkii*. *BMC Plant Biol* 16(1):1-19.

328 R Core Team. 2019. R: A language and environment for statistical computing. *In R Foundation for
329 Statistical Computing*. Vienna, Austria.

330 Rapicavoli J, Ingel B, Blanco-Ulate B, Cantu D, and Roper C. 2015. *Xylella fastidiosa*: An examination
331 of a re-emerging plant pathogen. *Mol Plant Pathol* 19:786-800.

332 Riaz S, Huerta-Acosta K, Tenscher A, and Walker MA. 2018. Genetic characterization of *Vitis*
333 germplasm collected from the southwestern US and Mexico to expedite Pierce's disease-
334 resistance breeding. *Theor Appl Genet* 131:1589-1602.

335 Riaz, S., A. Krivanek, K. Xu, and M. Walker. 2006. Refined mapping of the Pierce's disease resistance
336 locus, *PdR1*, and Sex on an extended genetic map of *Vitis rupestris* × *V. arizonica*. *Theoretical
337 and Applied Genetics* 113:1317.

338 Riaz S, Tenscher A, Rubin J, Graziani R, Pao S, and Walker MA. 2008. Fine-scale genetic mapping of
339 two Pierce's disease resistance loci and a major segregation distortion region on chromosome 14
340 of grape. *Theo Appl Genet* 117:671-681.

341 Riaz S, Tenscher AC, Ramming DW, and Walker MA. 2011. Using a limited mapping strategy to identify
342 major QTLs for resistance to grapevine powdery mildew (*Erysiphe necator*) and their use in
343 marker-assisted breeding. *Theor Appl Genet* 122:1059-1073.

344 Riaz S, Dangl GS, Edwards KJ, and Meredith CP. 2004. A microsatellite marker based framework
345 linkage map of *Vitis vinifera* L. *Theor Appl Genet* 108:864-872.

346 Riaz S, Tenscher AC, Smith BP, Ng DA, and Walker MA. 2008. Use of SSR markers to assess identity,
347 pedigree, and diversity of cultivated muscadine grapes. *J Am Soc Hortic Sci* 133:559-568.

348 Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ. 2000. Analysis of SSRs
349 derived from grape ESTs. *Theor Appl Genet* 100:723-726

350 Sefc KM, Regner F, Turetschek E, Glossl J, Steinkellner H. 1999. Identification of microsatellite
351 sequences in *Vitis riparia* and their applicability for genotyping of different *Vitis* species.
352 *Genome* 42:367-373.

353 Stuthman DD, Leonard JJ, and Miller-Garvin J. 2007. Breeding crops for durable resistance to disease.
354 *Adv Agron* 95:319-367.

355 Sun Q, Sun Y, Walker MA, and Labavitch JM. 2013. Vascular occlusions in grapevines with Pierce's
356 disease make disease symptom development worse. *Plant Physiol* 161:1529-1541.

357 Thomas MR, and Scott N. 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when
358 analyzed as sequence-tagged sites (STSs). *Theor Appl Genet* 6:985-990.

359 Van Ooijen, J. 2006. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental
360 populations. Kyazma BV, Wageningen 33.

361 Van Ooijen, J. 2009. MapQTL® 6, Software for the mapping of quantitative trait in experiment
362 populations of diploid species. Kyazma BV, Wageningen.

363 Walker MA, Tenscher AC, Riaz S, and Romero N. 2019. Research Progress Reports: Pierce's Disease
364 and Other Designated Pests and Diseases of Winegrapes. *In* Proceedings of Pierce's Disease
365 Research Symposium. T. Esser (ed.), pp. 126–136. California Department of Food and
366 Agriculture, Sacramento, CA.

367 Webster RK, Esser T, Kirkpatrick BC, and Bruening G. 2014. Cooperative efforts contained spread of
368 Pierce's disease and found genetic resistance. Calif Agr 68:134-141.

369 Yang Y, Foulquié-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F,
370 and Thevelein JM. 2013. QTL analysis of high thermotolerance with superior and downgraded
371 parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved
372 in RNA processing. PLoS Genet. 9(8).

373

374

Table 1. Least square means (lsmeans) comparison of bacterial titer in biocontrols and 14399 genotypes across three trials. Genotypes connected by the same letter are statistically the same. According to the Tukey's test, genotypes are divided in three categories: resistant (R), tolerant (T) and susceptible (S). Tolerant genotypes have higher standard deviations as they perform differently depending on environmental effects. Similar trends in other PD trials are usually observed.

Genotype	lsmeans	SE	df	lower CL	upper CL	Groups	Category
b43-17	9.25	0.229	305	8.81	9.7	a	R
b46-43	9.43	0.318	305	8.8	10.1	ab	R
14399-029	9.58	0.329	305	8.93	10.2	ab	R
14399-047	10.63	0.329	305	9.99	11.3	bd	T
14399-055	10.26	0.34	305	9.59	10.9	abc	T
12305-55	10.25	0.318	305	9.62	10.9	abc	T
U0505-01	10.99	0.225	305	10.54	11.4	cd	T
14399-066	10.91	0.329	305	10.27	11.6	bd	T
Blanc de Bois	11.94	0.232	305	11.48	12.4	de	T
U0505-35	12.77	0.245	305	12.28	13.2	e	T
Roucaneuf	12.95	0.232	305	12.49	13.4	e	T
14399-009	14.66	0.329	305	14.01	15.3	f	S
U0505-22	14.9	0.236	305	14.44	15.4	f	S
Chardonnay	14.17	0.218	305	14.74	15.6	f	S

p-value <0.05

375

376

377

378

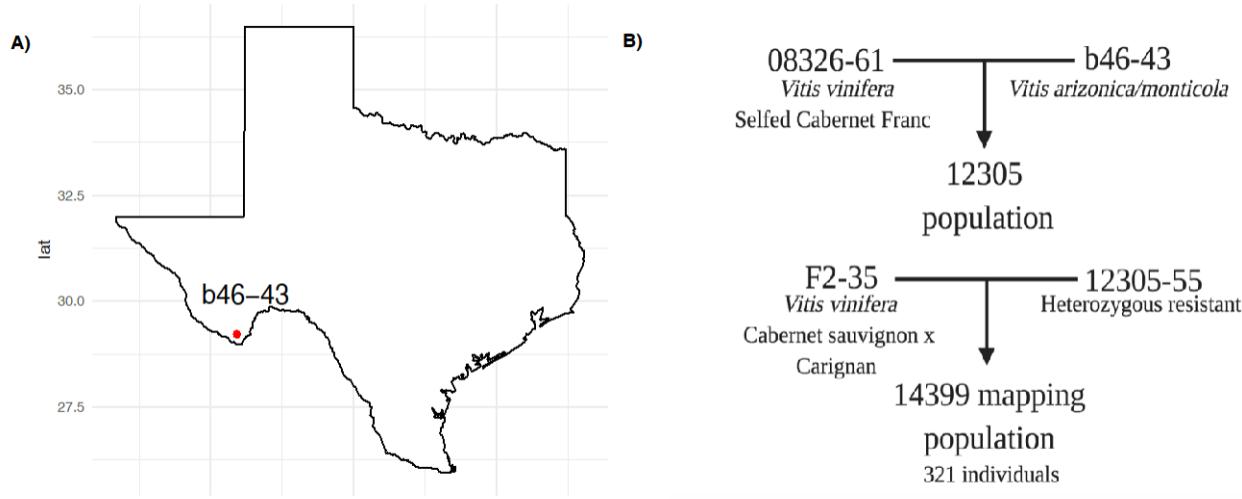
379

380

381

382

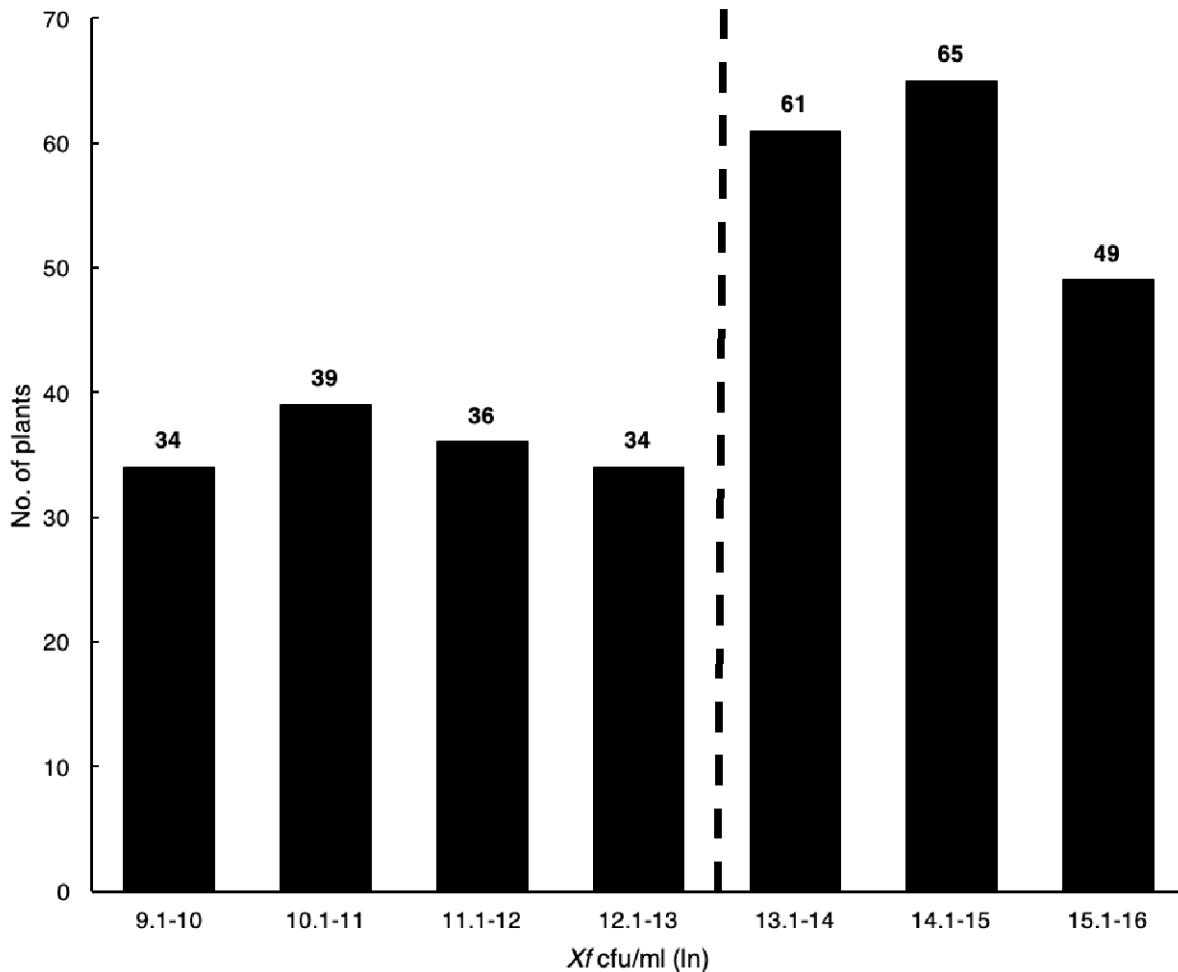
383


Table 2. Summary of consensus and parental maps from population 14399. All three maps had different numbers of linkage groups that represented all 19 chromosomes.

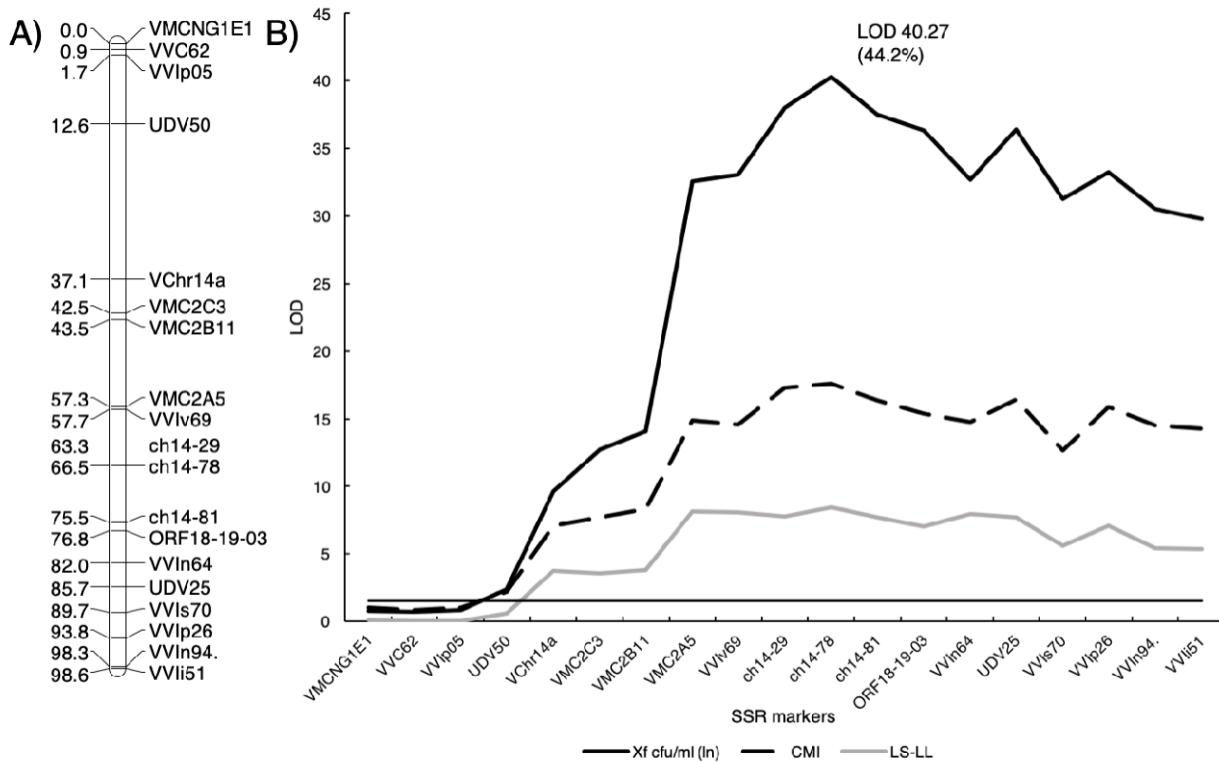
Consensus Map				12305-55 Map (Male Resistant Parent)				F2-35 (Female Susceptible Parent)			
Chr	Linkage Group	No. of markers used	cM covered	Chr	Linkage Group	No. of markers used	cM covered	Chr	Linkage Group	No. of markers used	cM covered
1	1	9	36.476	1	1	9	35.8	1	1	6	25.9
2	2	10	57.708	2	2	10	58.2	2	2	3	43.1
3	3	7	64.26	3	3	7	56.9	3	3	3	44
4	4	10	63.789	4	4	10	51.3	4	4	10	37.8
5	5	9	36.307	5	5	9	43.8	5	5	7	28.9
5	6	2	1.124	5	6	3	10.5	6	6	6	49.4
6	7	9	52.031	6	7	8	37.9	7	7	6	43.9
7	8	8	23.618	7	8	8	21.9	8	8	7	46.2
7	9	2	6.185	8	9	11	79.3	9	9	4	3.8
8	10	10	61.21	9	10	11	43	9	10	5	25.7
9	11	11	46.625	10	11	7	40	10	11	7	53.8
10	12	7	46.8	11	12	8	57.6	11	12	7	37.4
11	13	7	36.319	12	13	10	51.4	12	13	2	1.3
12	14	4	16.763	13	14	10	37.6	12	14	10	53.8
12	15	6	16.136	14	15	24	64.1	13	15	9	58.5
13	16	10	45.01	15	16	7	34.1	14	16	7	46.7
14	17	16	57.395	16	17	8	30.8	15	17	8	71.8
15	18	7	39.803	17	18	7	34.5	16	18	2	7.5
16	19	8	47.372	18	19	10	47.1	17	19	4	4.5
17	20	8	54.572	19	20	8	88.9	18	20	8	85.4
18	21	10	96.667					19	21	5	60.6
19	22	3	25.106								
19	23	4	56.76								
Total		177	988.03	Total		185	924.7	Total		126	830
Average		7.69	42.958	Average		9.25	46.235	Average		6	39.523

384

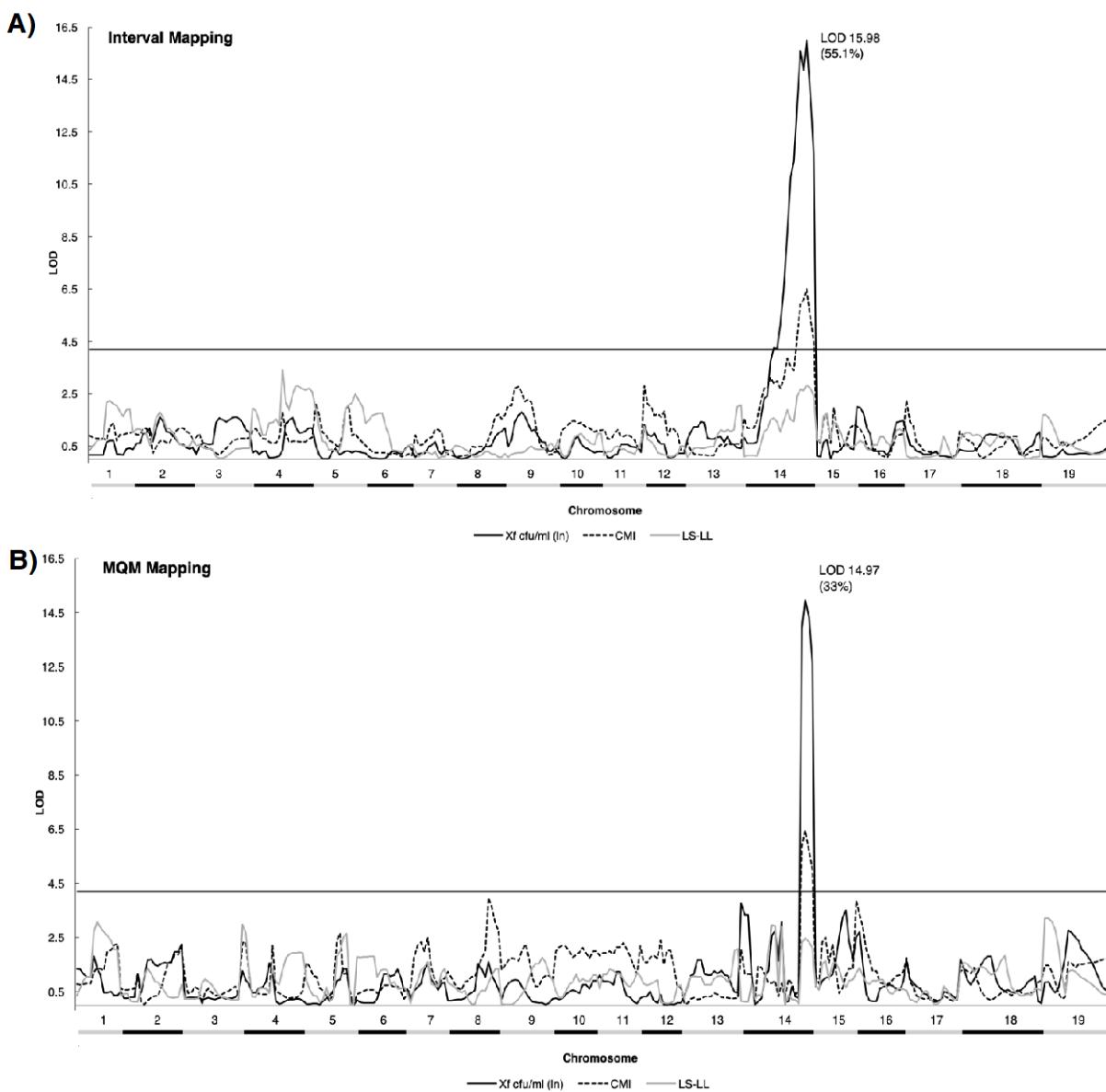
385


386 **Figure 1.** A) Geographical location of accession b46-43 found in Big Bend National Park, TX. B)
 387 Diagram of crosses for 14399 population. PD resistant accession was crossed to the susceptible *V.*
 388 *vinifera* 08326-61, a highly homozygous selfed Cabernet franc. All individuals in population 12305 were
 389 PD resistant, showing b46-43 was homozygous resistant. Individual 12305-55 from 12305 population
 390 (F1) was selected as the paternal parent for the development of the pseudo-backcross (pBC1) 14399. A
 391 susceptible *V. vinifera* F2-35 was selected as the female parent.

392
393


394

395 **Figure 2.** Phenotypic distribution of population 14399 across three trials. Bar plot shows the natural
396 logarithm of the bacterial titer (*X. fastidiosa* cfu/ml) ranges from 9 to 16. Number over bars shows the
397 number of 14399 population genotypes in the bacterial titer range. (n=318). Dashed line indicates the
398 selected threshold separation between resistant and susceptible genotypes (1:1 ratio).


399
400

401 **Figure 3.** A) Chromosome 14 linkage genetic map refined mapping. B) Identification of QTL by limited
 402 genetic mapping. Interval mapping results identified a major locus on chromosome 14 in the same
 403 location as the previously discovered *PdR1* locus. Straight thin horizontal line represents LOD value (1.5)
 404 from the Permutation Test for QTL detection. 1.5 was the lowest LOD calculated for the bacterial titer (*X.*
 405 *fastidiosa* cfu/ml (ln)), followed by 1.6 for CMI index and 1.7 for LS-LL index.

406
 407

408 **Figure 4.** Identification of QTL on chromosome 14 with interval and MQM mapping. A) results of
 409 interval mapping for all 19 chromosomes for the *Xf* bacterial titer (*X. fastidiosa* cfu/ml (ln)), CMI and LS-
 410 LL scores using consensus map. B) Results of MQM mapping on all 19 chromosomes using the
 411 consensus map. Markers ctg6140, CF2513, VChr14a, VMC2b11 and UDV25 were used as cofactors.
 412 Horizontal black line shows the Genome-Wide PT value (4.2 for bacterial titer, 4.3 for CM and 4.2 for
 413 LS-LL).

415 **Supplemental Table 1.** Tukey test results on effect of trial date on the bacterial titer. Biocontrols and five
 416 14399 population genotypes tested in all three trial dates were included in the analysis. Trial in 2015
 417 (TD151217) and 2016 (TD160809) were statically the same and trial in 2017 was different from both.

Takedown Date	mean	std	r	Min	Max	Q25	Q50	Q75	groups
TD151217	12.32605	2.4434	119	9.2	15.7	9.6	12.2	14.75	a
TD160809	12.125	2.2321	76	9.2	15.7	10.075	12	14.025	a
TD171031	11.56935	2.4052	124	9.2	15.7	9.2	10.95	13.725	b

418 p-value <0.05

419 **Supplemental Table 2.** QTL results for chromosome 14 in population 14399 from 2015, 2016 and 2017
 420 trials. A total of 318 individuals were used for the analysis. LOD values in bold are statistically
 421 significant according to the LOD threshold calculated with the Permutation test. The permutation test
 422 values were 1.5, 1.6 and 1.7 for bacterial titer, CMI and LS-LL, respectively.

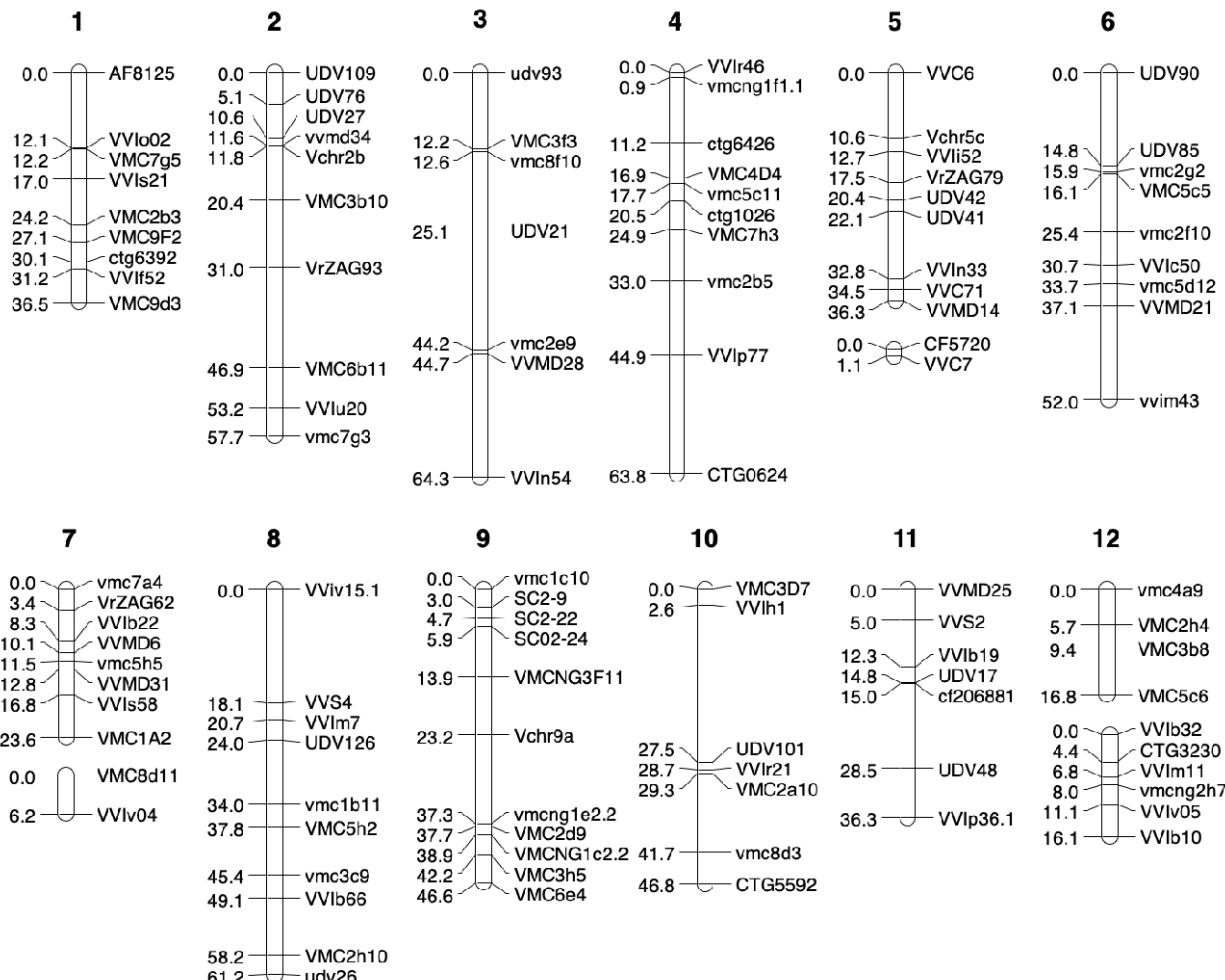
Locus	Position	<i>Xf</i> cfu/ml (ln)			CMI			LS-LL		
		Signif.	LOD	% Expl.	Signif.	LOD	% Expl.	Signif.	LOD	% Expl.
VMCNG1E1	0	*	0.79	1.1	*	1.05	1.5	-	0.12	0.2
VVC62	0.87	**	0.71	1	**	0.86	1.2	-	0.02	0
VVIp05	1.718	*	0.81	1.2	*	1.01	1.5	-	0.03	0
UDV50	12.575	****	2.37	3.4	***	2.18	3.1	-	0.6	0.9
VChr14a	37.09	*****	9.6	13	*****	7.07	9.7	*****	3.77	5.3
VMC2C3	42.527	*****	12.69	16.8	*****	7.71	10.6	*****	3.58	5
VMC2B11	43.505	*****	14.06	18.4	*****	8.32	11.4	*****	3.79	5.3
VMC2A5	57.347	*****	32.57	37.6	*****	14.86	19.4	*****	8.11	11.1
VVIv69	57.71	*****	33.08	38.1	*****	14.54	19	*****	8.06	11
ch14-29	63.308	*****	38.03	42.3	*****	17.27	22.1	*****	7.78	10.7
ch14-78	66.532	*****	40.27	<u>44.2</u>	*****	17.62	<u>22.5</u>	*****	8.43	<u>11.5</u>
ch14-81	75.49	*****	37.51	41.9	*****	16.35	21.1	*****	7.7	10.6
ORF18-19-03	76.8	*****	36.34	40.9	*****	15.39	20	*****	7	9.6
VVIIn64	81.996	*****	32.67	37.7	*****	14.77	19.3	*****	7.96	10.9
UDV25	85.67	*****	36.41	41	*****	16.45	21.2	*****	7.72	10.6
VVIIs70	89.708	*****	31.29	36.4	*****	12.63	16.7	*****	5.61	7.8
VVIp26	93.786	*****	33.27	38.2	*****	15.89	20.6	*****	7.11	9.8
VVIIn94.	98.25	*****	30.51	35.7	*****	14.51	18.9	*****	5.44	7.6
VVIi51	98.588	*****	29.77	35	*****	14.27	18.7	*****	5.34	7.4

*: 0.1; **: 0.01; ***: 0.001; ****: 0.0001; *****: 0.00001; *****: 0.000001; *****: 0.0000001.

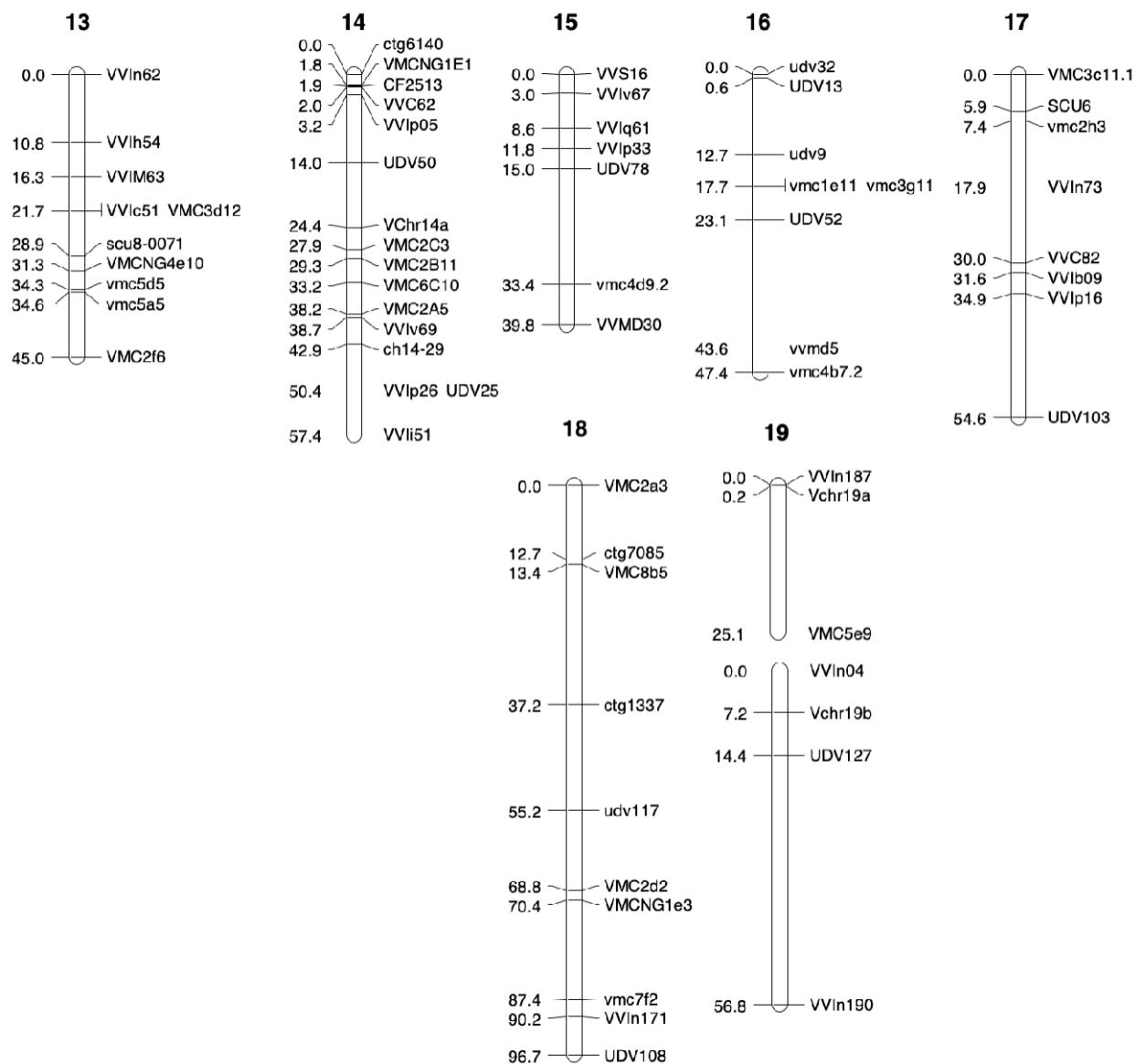
423

424 **Supplemental Table 3.** One-way ANOVA Kruskal-Wallis results test from the QTL analysis with the
 425 consensus map showing the K- test for all chromosomes. Markers on chromosome 14 were highly
 426 significant for all three phenotypic parameters. LS-LL showed multiple markers outside chromosome 14
 427 to be significant. Markers not shown did not show high significance (p-value < 0.01) for any of the
 428 phenotypic parameters.

Chromosome	Locus	Xf cfu/ml (ln)		CMI		LS-LL	
		K*	Signif.	K*	Signif.	K*	Signif.
1	VVIo02	0.106	-	0.013	-	4.913	**
1	VVIls21	3.84	-	2.589	-	12.65	***
1	VMC2b3	2.716	-	3.082	-	10.2	**
1	VMC9F2	0.925	-	1.466	-	11.49	***
1	VVIf52	0.129	-	0.557	-	5.433	**
1	VMC9d3	2.421	-	2.113	-	10.49	**
2	VMC3b10	2.902	*	3.129	*	5.694	**
3	UDV21	8.128	**	1.953	-	0.329	-
4	VVIp77	4.311	-	3.787	-	11.17	**
4	CTG0624	3.903	-	3.493	-	10.62	****
5	VVIn33	1.365	-	5.613	-	7.952	**
5	VVC71	0.639	-	3.283	-	8.693	**
6	VMC5c5	0.011	-	0.322	-	4.346	**
7	VVMD31	0.955	-	4.092	**	0.139	-
9	SC02-24	3.364	-	9.407	**	1.114	-
9	VMCNG3F11	5.491	**	6.176	**	0.936	-
9	VMC2d9	8.556	**	2.243	-	0.498	-
10	UDV101	3.343	-	8.665	**	3.424	-
10	CTG5592	2.382	-	8.236	**	2.685	-
12	vmc4a9	0.351	-	4.788	**	0.79	-
-12	VMC2h4	3.429	-	8.047	**	2.746	-
-12	VMC3b8	0.041	-	5.239	**	1.222	-
13	VMC2f6	1.412	-	1.63	-	10.9	**
14	UDV50	9.86	****	9.224	****	3.889	**
14	VChr14a	16.615	*****	12.2	*****	6.355	**
14	VMC2C3	16.858	*****	12	*****	6.446	**
14	VMC2B11	24.534	*****	13.16	*****	5.518	**
14	VMC6C10	30.794	*****	15.99	****	8.589	**
14	VMC2A5	35.837	*****	18.15	*****	8.006	**
14	VVIf69	38.478	*****	18.08	*****	6.362	*
14	ch14-29	39.427	*****	23.29	*****	9.37	****
14	VVIp26	33.869	*****	20.61	*****	5.801	-14
UDV25	47.781	*****	33.78	*****	12.57	***	14
VVIi51	33.77	*****	20.84	*****	9.324	***	15
VVIq61	2.898	-	5.002	-	8.508	**	15
UDV78	2.449	-	10.53	**	8.084	**	17
VMC3c11.1	6.276	*	9.968	**	0.993	-19	
	Vchr19a	0.762	-	3.638	-	9.241	**


K*: Kruskal-Wallis test statistic

*: 0.1; **: 0.01; ***: 0.001; ****: 0.0001; *****: 0.00001; *****: 0.000001; *****: 0.0000001.


429

430 **Supplemental Figures**

431 **Supplemental Figure 1.** Consensus linkage genetic map of the pBC1 population 14399 (*V. vinifera* and
 432 *V. arizonica/monticola* hybrids) generated with 177 polymorphic SSRs using JoinMap4. Markers on
 433 chromosomes 5, 7, 12 and 19 did not have sufficient linkage and were linked to two different groups.

434

