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Abstract

Density functional theory (DFT) is the most widely used electronic structure method,

due to its simplicity and cost effectiveness. The accuracy of a DFT calculation de-

pends not only on the choice of the density functional approximation (DFA) adopted

but also on the electron density produced by the DFA. SCAN is a modern functional

that satisfies all known constraints for meta-GGA functionals. The density-driven er-

rors, defined as energy errors arising from errors of the self-consistent DFA electron

density, can hinder SCAN from achieving chemical accuracy in some systems, including

water. Density-corrected DFT (DC-DFT) can alleviate this shortcoming by adopting

a more accurate electron density which, in most applications, is the electron density

obtained at the Hartree-Fock level of theory due to its relatively low computational

cost. In this work, we present extensive calculations aimed at determining the accu-

racy of the DC-SCAN functional for various aqueous systems. DC-SCAN (SCAN@HF)

shows remarkable consistency in reproducing reference data obtained at the coupled

cluster level of theory, with minimal loss of accuracy. Density-driven errors in the

description of ionic aqueous clusters are thoroughly investigated. By comparison with

the orbital-optimized CCSD density in the water dimer, we find that the self-consistent

SCAN density transfers a spurious fraction of an electron across the hydrogen bond

to the hydrogen atom (H⋆, covalently bound to the donor oxygen atom) from the ac-

ceptor (OA) and donor (OD) oxygen atoms, while HF makes a much smaller spurious

transfer in the opposite direction, consistent with DC-SCAN (SCAN@HF) reduction

of SCAN over-binding due to delocalization error. While LDA seems to be the con-

ventional extreme of density delocalization error, and HF the conventional extreme

of (usually much smaller) density localization error, these two densities do not quite

yield the conventional range of density-driven error in energy differences. Finally,

comparisons of the DC-SCAN results with those obtained with the Fermi-Löwdin or-

bital self-interaction correction (FLOSIC) method show that DC-SCAN represents a

more accurate approach to reducing density-driven errors in SCAN calculations of ionic

aqueous clusters.
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1 INTRODUCTION

Water and solvated ions are not only widely studied in computational chemistry, but also in

environmental sciences, electrochemistry, and biochemistry due to their importance in vari-

ous chemical and biomolecular reactions.1 The presence of ions affects the conformations and

functions of proteins and nucleic acids.2–4 The activity of enzymes and drugs often depends

upon the concentration of ions,5,6 while the presence of ions determines the electrostatic

potentials, conductances, and permeabilities of cell membranes.7,8 Ions affect both reaction

rates and mechanisms, and are widely used in separation processes.9–11 Autoionization of

water leads to the generation of hydronium H3O
+ and hydroxide OH− ions which are the

main pillars of acid-base chemistry in solution.12

Understanding the structural and dynamical properties of ion–water interactions requires

careful theoretical and experimental investigation. Among all the available methods, Kohn-

Sham density functional theory (DFT)13,14 is widely used due to its trade-off between ac-

curacy and computational cost. DFT plays an important role in ab initio studies of ion

hydration, water autoionization, proton-transfer reactions, and various physical and chemi-

cal properties of hydrated ions.15–17 In this context, the study of ion–water clusters provides

fundamental insights into the multidimensional potential energy surface associated with ions

in aqueous solutions.18–22

It is well known that the accuracy of any DFT calculation depends upon the choice

of the “exchange-correlation” (XC) functional which transforms the many-body electronic

structure problem into a single-particle problem.23 Historically, DFT applications to aque-

ous systems have faced several roadblocks. The simplest XC functional, the local density

approximation (LDA), was found to overestimate the strength of hydrogen bonds which

resulted in predictions of an overstructured liquid phase.24,25 Although having some initial

success,24,26–28 the next-generation functionals developed within the generalized gradient

approximation (GGA)29–31 failed to make a long-lasting impression, as serendipitous error

cancellation often provided “the right answers for the wrong reasons”.15,32–35 Meta-GGA
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functionals,36,37 which belong to the third rung of Jacob’s ladder of density functional ap-

proximations (DFAs), provide improved results compared to their GGA predecessors due to

inclusion of a kinetic energy density term in the XC functional. Among the meta-GGA func-

tionals, the strongly constrained and appropriately normed (SCAN) functional has gained

particular attention since it satisfies all 17 exact constraints known for meta-GGA function-

als.38 SCAN has been found to outperform most of the other functionals when it is applied

to aqueous systems.39–41 However, like most other functionals, SCAN has been found to be

sensitive to density-driven errors,42–46 which artificially overstabilize hydrogen-bonded sys-

tems.47,48 The inclusion of a fraction of the Hartree-Fock (HF) exchange energy (making a

hybrid functional) partially removes density-driven errors in SCAN and often provides more

accurate results, although the improvement is not always consistent48 since the fraction of

exact exchange is determined by fitting to bonded systems and not by the exact constraints

that a meta-GGA can satisfy.

Density-driven errors are particularly prominent in anion–water interactions as LDA,

GGA, and meta-GGA functionals are unable to correctly describe the excess electrons due

to the excessive delocalization of the electron density.49 The Perdew–Zunger self-interaction

correction (PZ-SIC) addresses the self-interaction error (SIE) through orbital-by-orbital re-

moval of the SIE for semi-local XC functionals.42 However, PZ-SIC applied to the delocalized

Kohn-Sham orbitals of a molecule is not size-extensive, and consequently requires a trans-

formation to localized orbitals.42 The Fermi-Löwdin orbitals as implemented in the FLOSIC

method50 are localized and unitarily equivalent to the Kohn-Sham orbitals, but can be

constructed without the full panoply of a general unitary transformation. Wagle et al. re-

cently reported promising results for ionic aqueous clusters which were obtained by applying

the FLOSIC method in calculations with the PBE and SCAN functionals.49 Although the

FLOSIC method is exact for a one-electron system, its accuracy decreases for many-electron

systems, which thus require proper scaling.

Instead of improving the FLOSIC method, in this study we follow an alternative route by
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using density-corrected DFT (DC-DFT) to tackle density-driven errors in aqueous systems.

DC-DFT51–60 replaces the Kohn-Sham density with a more accurate density in a non-self-

consistent fashion. In practice, the most common flavor of DC-DFT is HF-DFT where a

DFA is evaluated on the HF electron density. Since, by construction, the HF density is free

from self-interaction errors, its application in DC-DFT calculations mitigates density-driven

errors in GGA and meta-GGA functionals. Herein, DC-DFT is employed in the form of

HF-DFT, and we preserve the DC-DFT notation, since the HF density is a good proxy for

the exact density in a water cluster. DC-SCAN has recently been found to improve the

accuracy of DFT calculations for water,61 effectively elevating the accuracy of the SCAN

functional to that of coupled cluster theory, the “gold standard” for chemical accuracy. 62

DC-SCAN does not achieve this level of accuracy for all systems, but it is overall somewhat

more accurate than self-consistent SCAN for a large and diverse data set of main-group

molecular properties.63

2 THEORY AND COMPUTATIONAL DETAILS

In ground-state Kohn-Sham DFT,23 the energy is self-consistently minimized as:

E = min
n

{
F [n] +

∫
d3r n(r)v(r)

}
(1)

where n(r) is ground-state density, v(r) is the external potential, and F [n] is the internal part

of energy functional. In the Kohn-Sham approach, orbitals are introduced to treat most of

F [n] exactly, leaving only the XC energy to be approximated. Since the exact XC functional

is unknown, different DFAs have been developed to solve eq 1. The error associated with

any DFA is given by the sum of the functional-driven error, ∆EF, and the density-driven

error, ∆ED:
55

∆E = ∆EF +∆ED (2)
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The functional-driven error arises from the difference between the approximate XC func-

tional, F [n], and the (unknown) exact functional, with both evaluated on the exact density,

while the density-driven error arises from using an approximate density n(r) that solves

eq 1 for the approximated F [n]. Since most functionals produce reasonably accurate elec-

tron densities, the functional error is, in many cases, the primary contributor to the total

error.52,53,55,64 In this context, it should be noted that non-empirical, constrained XC func-

tionals tend to produce more accurate electron densities for neutral and cationic atoms than

empirically parameterized XC functionals.65 Independently of the specific parameterization,

all (approximate) XC functionals, by construction, still deviate from the piecewise-linear

behavior66,67 of the exact functional for fractional charges, causing excess charge delocaliza-

tion and resulting in incorrect densities. For certain systems, the density-driven error thus

becomes the dominant contributor to the total error.55,68

The density-driven error can be understood by considering that the fully-nonlocal classi-

cal electrostatic repulsion term represented by the integral in eq 1 contains a self-interaction

contribution due to each electron interacting with itself.69 While this self-interaction contri-

bution should, in principle, be compensated by the XC energy, approximate XC functionals

contain substantial local components that prevent them from quantitatively removing elec-

tron self-interactions. As a result, the electron density thus tends to overdelocalize in order

to minimize the approximated functional. This prevents approximate XC functionals from

perfectly cancelling all one- and especially many-electron self-interactions,45,70,71 leading to

spurious fractional charges on separated atoms that underestimate the energy predicted by

the piecewise-linear total-energy variation of the exact functional.66,72 Semilocal approxima-

tions to the XC energy only need to be accurate for physical densities, but their XC potentials

are functional derivatives that need to be accurate for “arbitrary” (and sometimes unphysi-

cal) infinitesimal density variations. It follows that a fully nonlocal dependence on electron

density is more needed in the XC potential (which determines the electron density) than in

the XC energy.
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Since density-driven errors are expected from all approximate XC functionals and can

vary in magnitude depending on the type of system, using a more accurate density can

mitigate errors due to the overdelocalization of the self-consistent electron density. 52,56,73

However, obtaining an accurate density from wavefunction theories, such as Møller-Plesset

perturbation theory and coupled cluster theory, is computationally more expensive than

the corresponding DFT calculations. An approximate, yet efficient, approach to reducing

density-driven errors in DFT calculations consists in using the spin-restricted Hartree-Fock

density, nHF(r), because, by construction, it does not suffer from either electron overdelo-

calization or self-interaction errors.52,55–57,59,60 The resulting DC-DFT energy can then be

written as:

EDC−DFT ≈ EHF +
(
Eapprox

XC

[
nHF

]
− EHF

X

)
(3)

An alternative approach developed for dealing with density-driven errors is provided by

the Perdew-Zunger self-interaction correction (PZ-SIC) which is based on the orbital-by-

orbital removal of the SIE according to:42

EPZ−SIC = Eapprox
xc [n↑, n↓]−

∑
iσ

(Eapprox
XC [niσ, 0] + U [niσ]) (4)

Here, niσ is a single orbital density and U [niσ] is the Hartree energy of that density. However,

the PZ-SIC method is not size-extensive unless localized orbitals are used. The FLOSIC

method starts from (and symmetrically orthogonalizes) Fermi orbitals, 49,50

Fiσ(r) =

∑Nσ

j ψ⋆
jσ (aiσ)ψjσ(r)√∑Nσ

j |ψjσ (aiσ)|2
(5)

Here Nσ is the number of electrons with spin σ. The Fermi-orbitals, Fiσ(r), are labelled by

the position vectors aiσ of the Fermi orbital descriptors, and are constructed from the non-

interacting one-particle density matrix of orthonormal orbitals ψiσ(r) spanning the occupied

space.
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Unless otherwise stated, all DFT calculations were performed with the aug-cc-pVQZ

basis set74,75 using Q-Chem 5.76 The highly dense Euler-Maclaurin-Lebedev (99,590) grid77,78

was used in all DFT calculations to minimize possible grid errors, since it has been shown

that the accuracy of some recent meta-GGA and hybrid functionals is particularly sensitive

to the choice of the integration grid.79 The grid sensitivity of SCAN is strongly reduced

without loss of overall accuracy in r2SCAN.80 Single-point energy calculations using explicitly

correlated coupled cluster theory, with single, double, and perturbative triple excitations, i.e.,

CCSD(T)-F12b,81 were performed in the complete basis set (CBS) limit by extrapolating82,83

the energy values obtained with the cc-pVTZ-F12 and cc-pVQZ-F12 basis sets along with

associated auxiliary and complementary auxiliary (CABS) basis sets84,85 using the ORCA

quantum chemistry package.86

In the analysis of the energetics of the aqueous clusters presented in Section 3, the binding

energies are defined as

Ebinding = Ecluster − nEmonomer
opt (6)

where Ecluster is the total energy of the n-monomer cluster and Emonomer
opt is the energy of

an isolated monomer in its optimized geometry. The corresponding interaction energies are

defined as

Einteraction = Ecluster −
∑
i

Emonomer
i (7)

where Ecluster is the same total energy as in eq 6 and Emonomer
i is the energy of the ith

monomer in the same distorted geometry as in the cluster. All MP2 optimized geometries

used in the analyses of the energetics of the water clusters are taken from ref 87.

8



3 RESULTS AND DISCUSSION

3.1 Dependence of the binding energies on basis set and integra-

tion grid

Figure 1 shows the basis-set errors of the binding energies for various neutral, protonated, and

deprotonated water clusters of the WATER27 dataset88 calculated as a function of the basis

set size. The neutral water clusters consist of water dimer to hexamer structures, whereas

the protonated and deprotonated water clusters span from H3O
+(H2O) to H3O

+(H2O)6, and

from OH−(H2O) to OH−(H2O)6, respectively. Figure 1 shows the errors in binding energies

per water molecule (∆Ẽbind), where the tilde denotes “per monomer”, calculated with both

the SCAN and DC-SCAN functionals using the aug-cc-pVDZ (aDZ), aug-cc-pVTZ (aTZ),

aug-cc-pVQZ (aQZ) and aug-cc-pV5Z (a5Z) basis sets relative to reference values obtained at

the CCSD(T)/CBS level of theory.89 To understand the convergence of the binding energies

with respect to the basis set, (∆Ẽbasis
conv ) has been computed for SCAN and DC-SCAN, which

defines the error in binding energies for a given basis set relative to the aug-cc-pV5Z basis:

∆Ẽbasis
conv = Ẽbasis

bind − Ẽaug-cc-pV5Z
bind (8)

Here, Ẽbasis
bind is the binding energy per monomer of the cluster calculated using a given basis

set (aDZ, aTZ or aQZ), and Ẽaug-cc-pV5Z
bind is the binding energy per monomer of the cluster

calculated using the a5Z basis set.

Unsurprisingly, the aDZ basis set is the worst performer in both SCAN and DC-SCAN

calculations carried out for the neutral water clusters. In this case, the binding energies

converge quickly going from the aDZ to the aTZ and aQZ basis sets. The average |∆Ẽbind|

associated with aDZ calculations for neutral water clusters is 0.97 kcal/mol for SCAN and

0.13 kcal/mol for DC-SCAN, whereas the average |∆Ẽbasis
conv | associated with aDZ calculations

for neutral water clusters is 0.21 kcal/mol for SCAN and 0.15 kcal/mol for DC-SCAN.
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Figure 1: Convergence of the binding energies per monomer for the neutral (H2O)2−6, pro-
tonated H3O

+(H2O)1−6, and deprotonated OH−(H2O)1−6 water clusters of the WATER27
dataset88 calculated with SCAN and DC-SCAN using the aDZ, aTZ, and aQZ basis sets
relative to the CCSD(T)/CBS reference values.89

|∆Ẽbind| converges to 0.81 kcal/mol and 0.04 kcal/mol for both the aTZ and aQZ calculations

using SCAN and DC-SCAN, respectively. Conversely |∆Ẽbasis
conv | decreases to 0.04 kcal/mol

and 0.03 kcal/mol for the aTZ and aQZ calculations, respectively, carried out with both

SCAN and DC-SCAN. The SCAN results with the a5Z basis set display a mean unsigned

error (MUE) of 0.76 kcal/mol for SCAN, which decreases to 0.05 kcal/mol for the DC-

SCAN results relative to the CCSD(T)/CBS reference values. For the neutral water clusters
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|∆Ẽbasis
conv | converges quickly going from aDZ to aTZ to aQZ for both SCAN and DC-SCAN.

The protonated water clusters show a similar trend, with |∆Ẽbasis
conv | being 0.27 kcal/mol

for SCAN and 0.21 kcal/mol for DC-SCAN with the aDZ basis set, and decreasing to 0.04

kcal/mol for SCAN and 0.03 kcal/mol for DC-SCAN with the aQZ basis set. On the other

hand, |∆Ẽbind| displays a MUE of 1.39 and 0.59 kcal/mol for the aDZ basis set, which reduces

monotonically to 1.19 and 0.44 kcal/mol when the larger aQZ basis set is used in the SCAN

and DC-SCAN calculations, respectively.

It is worth mentioning that both SCAN and DC-SCAN binding energies calculated for

neutral and protonated water clusters using the aDZ basis set display relatively larger errors

for three-dimensional structures than planar structures.

In contrast, a different trend is found for the deprotonated water clusters, with the devia-

tions from the reference binding energies calculated with the a5Z basis set being appreciably

larger for both SCAN and DC-SCAN. This is particularly evident in the aDZ calculations

for which the mean |∆Ẽbasis
conv | is 0.63 kcal/mol for SCAN and 0.40 kcal/mol for DC-SCAN.

The addition of extra diffuse functions to the basis set results in similar trends as those

observed for the neutral and protonated water clusters, with the mean |∆Ẽbasis
conv | reducing to

0.13 kcal/mol and 0.06 kcal/mol in SCAN and DC-SCAN calculations, respectively, carried

out with the aQZ basis set. Figure 1 shows that the binding energies of the deprotonated

water clusters calculated with DC-SCAN converge relatively more quickly with the size of

the basis set than the corresponding SCAN values, as the MUE for |∆Ẽbind| decreases from

1.68 kcal/mol to 1.23 kcal/mol going from the aDZ to the a5Z basis sets in the SCAN calcu-

lations, and from 0.64 kcal/mol to 0.35 kcal/mol for the same DC-SCAN calculations. The

faster convergence observed for the DC-SCAN binding energies is related to the presence of

density-driven errors that prevent SCAN from fully binding the excess electron in OH− and

OH−(H2O) even when using large basis sets.49 This problem is, at least partially, removed

by using the more localized and SIE-free Hartree-Fock density, which thus explains the faster

convergence of the DC-SCAN binding energies with the basis set size.
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Table 1: Mean unsigned errors of SCAN binding energies for different integration grids
with respect to the (250,974) quadrature for neutral water, hydronium and hydroxide water
clusters. The cluster geometries have been extracted from the WATER27 dataset. 88 The
neutral water clusters consist of water dimer to hexamer geometries whereas the hydro-
nium and hydroxide clusters span from H3O

+· · ·H2O to H3O
+· · · (H2O)6 and OH−· · ·H2O

to OH−· · · (H2O)6 respectively. All the individual binding energies using different integration
grids have been presented in Figure S2

Quadrature SG-1 SG-2 SG-3 (75,302) (99,590)
MUE (kcal/mol) 0.11 0.04 0.02 0.06 0.04

It has been established that the choice of the integration grid is as important as the

choice of the basis set for calculations carried out with some modern XC functionals. In

particular, some recent meta-GGAs, such as SCAN, and some hybrid functionals, such as

M11, require a relatively large number of grid points in order to properly integrate the

kinetic energy density.79 To determine the sensitivity of SCAN calculations on the grid

size, the binding energies of the neutral, protonated, and deprotonated water clusters of the

WATER27 dataset were calculated using the standard pruned grids of Q-Chem,76 i.e., SG1,90

SG2,79 SG-379 as well as the unpruned (75,302), (99,590), and (250,974) grids, where the

first number in the parenthesis defines the number of radial points using the Euler-Maclaurin

quadrature77 and the second number defines the number of angular points using the Lebedev

quadrature.78 It was shown that smaller grids can be used for r2SCAN without loss of overall

accuracy.80

Table 1 reports the MUE associated with different grids relative to the highly dense

(250,974) grid which provides 243,500 grid points per atom. The SG-1 grid, which corre-

sponds to the pruned version of the (50,194) grid and provides ∼5000 grid points per atom,

is associated with a MUE of 0.11 kcal/mol. The MUE systematically decreases for larger

pruned integration grids, with the SG-2 (∼7500 points per atom) and SG-3 (∼ 17000 points

per atom) grids displaying MUEs of 0.04 kcal/mol and 0.02 kcal/mol, respectively. The

MUEs of the pruned integration grids are comparable with the MUEs associated with the

corresponding unpruned (75,302) and (99,590) grids, which provide 22,650 and 58,410 points
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points per atom, respectively. This analysis suggests that the standard SG-2 grid provides

an optimal compromise between accuracy and computational cost for SCAN calculations of

aqueous clusters although for more grid-sensitive systems it might be necessary to employ

the denser SG-3 grid. In this regard, it should be noted that both the SG-2 and SG-3 grids

have been extensively tested on different datasets and non-covalent interactions. 79

3.2 Interaction and binding energies for neutral water clusters

To study the effect of the density correction on neutral water clusters, we calculated the inter-

action and binding energies for the subset of neutral water clusters of the BEGDB dataset 91

which contains 38 low-energy isomers of the (H2O)n=2−10 clusters, with all structures opti-

mized at the RI-MP2/aug-cc-pVDZ level of theory.92 The different isomers correspond to

global and local minima of the corresponding (H2O)n=2−10 clusters obtained by combining

molecular dynamics sampling with high-level quantum-chemical calculations.91 In the fol-

lowing analyses, the reference interaction and binding energies are taken from ref 89, while

the corresponding values for SCAN and DC-SCAN were calculated with and without the

empirical D3 dispersion correction, resulting in the corresponding SCAN-D3 and DC-SCAN-

D3 functionals. The optimized D3 coefficients for the SCAN functional were adapted from

ref 93.

Figure 2 shows the absolute errors in interaction (panel a) and binding (panel b) energies

associated with the four SCAN-based functionals relative to the CCSD(T)-F12b reference

values.89 Note that these errors are for entire clusters, and not per molecule as in the pre-

vious section. The interaction energies calculated with SCAN increasingly deviate from the

reference values as a function of the cluster size, ranging from 0.44 kcal/mol for the dimer

(2Cs) to 10.84 kcal/mol for the decamer (10PP1 and 10PP2). By improving the quality of

the electron density, these errors are nearly completely removed in the corresponding calcu-

lations carried out with DC-SCAN. Specifically, the DC-SCAN errors for the entire dataset

comprising all 38 water clusters lie well within chemical accuracy (i.e., 1 kcal/mol), ranging
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Figure 2: Absolute errors in a) interaction and b) binding energies calculated for the neutral
water cluster subset of the BEGDB dataset using SCAN, DC-SCAN, SCAN-D3, and DC-
SCAN-D3 with respect to the CCSD(T)/CBS reference values.89

from 0.02 kcal/mol for the pentamer (5FRC) to 0.64 kcal/mol for the decamer (10PP1).

The addition of the D3 dispersion correction deteriorates the energetics of both SCAN

and DC-SCAN, with the MUE increasing from 5.66 kcal/mol for SCAN to 7.19 kcal/mol for

SCAN-D3, and from 0.22 kcal/mol for DC-SCAN to 1.49 kcal/mol for DC-SCAN-D3.

Similar trends are also observed for the binding energies, with the MUE for the SCAN

functional being 5.69 kcal/mol compared to 0.54 kcal/mol for DC-SCAN. As for the inter-

action energies, the addition of the D3 correction worsens the overall agreement with the
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CCSD(T)/CBS reference values, with SCAN-D3 and DC-SCAN-D3 displaying MUEs of 7.21

kcal/mol and 0.99 kcal/mol, respectively. Importantly, the MUE per monomer for both in-

teraction and binding energies remains almost constant in the DC-SCAN and DC-SCAN-D3

calculations for all 38 clusters (Figure S3 and S4), while it increases with the cluster size in

the SCAN and SCAN-D3 calculations. This trend indicates that density-driven errors grow

faster than the number of hydrogen bonds which can be qualitatively explained by consid-

ering that, as the cluster size increases, the electron density can delocalize over a larger

space.

3.3 Binding energies for the WATER27 dataset

In order to investigate whether the high accuracy of DC-SCAN is only specific to water

or it also transfers to other aqueous systems, we analyzed the binding energies of the WA-

TER27 dataset.88 The compiled database consists of 27 clusters optimized at the B3LYP/6-

311++G(2d,2p) level of theory,88 which includes a set of 14 neutral water clusters [(H2O)n,

with n = 2 − 6, 8, 20], 5 protonated water clusters [(H3O
+(H2O)n, with n = 1 − 3, 6], 7

deprotonated water clusters [OH−(H2O)n, with n = 1− 6], and 1 autoionized water cluster

[H3O
+(H2O)4OH−]. The absolute errors of the binding energies were calculated with respect

to the CCSD(T)-F12 reference values taken from ref 89. Figure 3 shows that, as for the

BEGDB dataset, DC-SCAN performs remarkably well for the neutral water clusters of the

WATER27 dataset, displaying a MUE of 1.43 kcal/mol which should be compared to a MUE

of 9.89 kcal/mol for SCAN. The MUEs calculated for the protonated water clusters are 1.55

kcal/mol and 5.24 kcal/mol for DC-SCAN and SCAN, respectively. For the deprotonated

water clusters, DC-SCAN displays a MUE of 1.39 kcal/mol that must be compared with a

MUE of 5.91 kcal/mol obtained with SCAN. By construction, all DFAs generally predict

large errors for the H3O
+(H2O)4OH− cluster since this cluster exhibits a relatively strong

multiconfiguration character which is thus difficult for DC-SCAN to describe. Without

symmetry-breaking of the Hartree-Fock density, DC-SCAN makes a large functional-driven
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Figure 3: Absolute errors in binding energies calculated for the WATER27 dataset mers
using SCAN, DC-SCAN, SCAN-D3, and DC-SCAN-D3, with respect to the CCSD(T)/CBS
benchmark.89

error. In this case, the error associated with DC-SCAN is 5.41 kcal/mol, whereas SCAN dis-

plays an error of 8.14 kcal/mol. The MUE for the whole WATER27 dataset is 1.59 kcal/mol

for DC-SCAN, which is significantly smaller than the MUE of 7.93 kcal/mol associated with

SCAN. As expected, the addition of the D3 dispersion correction results in significant over-

binding for all clusters, with SCAN-D3 and DC-SCAN-D3 being associated with MUEs of

10.10 kcal/mol and 2.34 kcal/mol, respectively. Overall, the analysis of the binding energies

of the WATER27 dataset indicates that, by largely reducing density-driven errors, DC-SCAN

is a highly accurate functional not only for neutral water, as demonstrated in ref 62, but

also for protonated and deprotonated water.

To summarize the performance of the SCAN, SCAN-D3, DC-SCAN, DC-SCAN-D3 func-

tionals, the corresponding error distributions associated with the binding energies calculated

relative to the reference CCSD(T) values for the combined BEGDB and WATER27 datasets

are shown as violin plots in Figure 4. A violin plot provides detailed information about a

given distribution and is based on a Gaussian kernel density estimation using Scott’s rule94

as implemented in Matlab. Specifically, the black box inside the violin holds 50% of the
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Figure 4: The violin-plot error distribution for binding energies of BEGDB+WATER27
dataset using SCAN, SCAN-D3, DC-SCAN, DC-SCAN-D3 with respect to reference
CCSD(T) values. The violin plots represent the data distribution and are based on a Gaus-
sian kernel density estimation using Scott’s rule94 as implemented in Matlab. In the box
plot, the boxes hold 50% of the data, with equal number of data points above and below
the median, marked by the diamond. The whiskers denote the range of data falling within
1.5×box-length beyond the upper and lower limits of the box. The horizontal line marks the
mean.

data, with an equal number of data points above and below the median that is marked by

the white circle. It follows that the bottom and top parts of the black box correspond to

the first and third quartiles, respectively. The horizontal line in the violin marks the mean

of the overall data, while the bottom and top points of the whisker define the first quartile

minus 1.5× IQR and third quartile plus 1.5×IQR, respectively, where IQR is the interquar-

tile range. The shape of the violin is proportional to the probability distribution of the data,

i.e., a wider shape indicates higher frequency of the corresponding value in the distribution.

From the statistics presented in Figure 4 it is evident that DC-SCAN outperforms SCAN

on the combined BEGDB and WATER27 datasets, consistently providing lower values for

the mean, median, and first and third quartiles of the error distribution. It is also worth

noting that DC-SCAN yields a significantly narrower error distribution than SCAN, which

can be traced back to the reduction of density-driven errors in DC-SCAN. Finally, the dele-

terious effect of adding the D3 dispersion correction discussed above becomes quite apparent
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from the analysis of the corresponding violin plots, with SCAN-D3 providing the worst per-

formance in terms of mean, median, and maximum error. Figures 2-4 demonstrate that

using the localized and self-interaction-free Hartree-Fock density significantly improves the

description of neutral, protonated, deprotonated, and autoionized water clusters, bringing

the binding energies calculated with DC-SCAN closer to the CCSD(T) reference values.

In Sections 3.4 and 3.5 we will take a closer look at the various electron densities for the

deprotonated, neutral, and protonated water dimers.

3.4 Density error and density sensitivity

For small atoms65 and typical molecules39 near equilibrium, including the water molecule,

the meta-GGA SCAN functional38 is more accurate for the electron density than the local

spin density approximation23 or the Perdew-Burke-Ernzerhof (PBE) GGA functional,31 and

(except in low-density tails of little importance to the energy) more accurate for the density

than the Hartree-Fock approximation. In particular, SCAN is superior for dipole moments 95

and polarizabilities.96 The energies of atoms and small molecules as well as the atomization

energies of small molecules are rather insensitive to the density, and can be slightly wors-

ened by using the Hartree-Fock density in place of the SCAN self-consistent density. The

Hartree-Fock density is mainly useful for density correction in weakly-bonded clusters or in

complexes with stretched bonds, including the transition states of chemical reactions, where

the delocalization errors of semi-local approximations become energetically important.

Quintessential delocalization errors of semilocal approximations occur for two chemically-

different open-shell atoms at infinite separation, which in exact theories are electrically neu-

tral. It has been known66,71,97 for more than 40 years that semi-local total energies of isolated

open systems vary with non-integer electron number like upward-curving parabolas. For sep-

arated Na· · ·Cl, LDA minimizes the total energy by a spurious transfer of 0.4 electrons from

Na to Cl, and makes the total energy lower than that of the isolated neutral atoms by about

5 kcal/mol (overbinding).98 Unusually large overbinding by an accurate semilocal functional
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like SCAN suggests density-driven error.

The exact density functional avoids spurious charge transfers by making the total energy

of an isolated open system vary linearly66,71 with electron number between adjacent inte-

gers, with derivative discontinuities at the integers. The Hartree-Fock approximation also

produces neutral atoms at infinite separation, but it does so by being too localizing, with its

total energy for an isolated open system varying between adjacent integer electron numbers

like a downward-curving parabola.

Before making a density correction (using for example the Hartree-Fock density as a

proxy for the exact one) to a particular energy difference evaluated with a particular DFA, it

is recommended to compute the density sensitivity57,59 (|EDFA@HF - EDFA@LDA|) or change of

the energy difference from DFA@LDA (using the LDA density) to DFA@HF (using the HF

density). Only if this difference is significantly large it is recommended to make a density

correction.

To this end, Figure 5 compares the SCAN errors relative to the CCSD(T) reference values

for the BEGDB clusters (ESCAN - ECCSD(T)) with the errors associated with SCAN calcula-

tions carried out non-self-consistently using the LDA density (ESCAN@LDA - ECCSD(T)). Also
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Figure 5: Absolute errors (ESCAN - ECCSD(T), ESCAN@LDA - ECCSD(T), and EDC−SCAN -
ESCAN@LDA) in interaction energies calculated for the water clusters of the BEGDB dataset.
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shown is the density sensitivity, i.e., the difference between the DC-SCAN and SCAN@LDA

results (EDC−SCAN - ESCAN@LDA). As expected from the discussion of density-driven errors

in Sections 3.2, Figure 5 shows that the BEGDB dataset exhibits large density sensitivity,

with a MUE of 4.82 kcal/mol.

Figure 5 shows that, relative to CCSD(T), the MUE of SCAN@LDA (4.78 kcal/mol) is

less than the MUE of self-consistent SCAN (5.66 kcal/mol). This might suggest that the LDA

density is somehow more accurate or less-delocalized than the SCAN density, which would

be unexpected (and untrue, as shown in Section 3.5). The smaller MUE of SCAN@LDA

can be explained by considering that the SCAN energy of a cluster is minimized by the

SCAN density, which has a small degree of delocalization error that leads to overbinding.

Suppose that delocalization error is only important in the cluster, and not in its constituent

molecules. Then any variation from the SCAN degree of delocalization, whether it is toward

greater localization (as in the Hartree-Fock density) or toward greater delocalization (as in

LDA) can move the energy of the cluster above its parabolic minimum and so reduce the

overbinding error of self-consistent SCAN. In other words, a change of binding energy in the

right direction can occur for either a right reason or a wrong reason.

The better performance provided by SCAN@LDA compared to SCAN suggests that

some caution should be exercised when using the original definition of density sensitivity99

to measure deviations in DFT energies calculated with the Hartree-Fock and LDA electron

densities as representative densities corresponding to the two extremes of the delocalization

error.

3.5 Visualization and quantification of density error

It can be argued, with caveats like the one discussed at the end of Section 3.4, that the

best measure of electron density error is the error it drives in an energy difference evaluated

for a given density functional. After all, the energy difference is a single number, and often

it is the needed number, while the density is defined by many numbers. Nevertheless, it

20



can also be of interest to investigate the density errors directly, as is done for the neutral,

protonated, and deprotonated water dimers in this section. First the errors of the SCAN

density relative to the HF density will be plotted in three dimensions and also projected

onto the hydrogen-bond axis. Then the errors of the HF and SCAN densities relative to an

accurate CCSD density will be reduced to single numbers. A single-number error measure

can lose a lot of relevant information and yet still aid human understanding. Understanding

density error is, however, still far from explaining the size of the density-driven error of an

energy or energy difference, for which computer calculations of the energy seem unavoidable.

A more reliable density correction to the energy would employ the accurate CCSD density

instead of the HF density. However, this is a difficult task. Finding the CCSD density itself is

the first and lesser difficulty. The bigger problem is that the CCSD kinetic energy and kinetic

energy density include kinetic energy of correlation, which would be double-counted since it

is already present in the exact and approximate XC energies of Kohn-Sham and generalized

Kohn-Sham theories. One might need to invert the CCSD density100 to find its Kohn-Sham

potential, which is not only demanding but also, in many approaches, insufficiently accurate.

Further insights into density errors can be gained from the analysis of ∆ρ(r) defined as

∆ρ(r) ≡ ρapprox(r)− ρexact(r) =⇒ ∆ρ(r) ≃ ρDFA(r)− ρHF(r) (9)

where ρapprox(r) and ρexact(r) are the approximate and (unknown) exact electron densities,

respectively. As discussed in Section 2, in this study, ρexact(r) is approximated by ρHF(r)

(unless otherwise stated), while ρapprox(r) = ρDFA(r). Figure 6 shows 3-dimensional repre-

sentations of ∆ρ(r) for the OH−(H2O), (H2O)2, H3O
+(H2O) dimers calculated using the

SCAN and SCAN0 functionals. In both cases, the isosurfaces corresponding to |∆ρ| = 0.006

e/Bohr3 are shown. In the case of OH−(H2O), the isosurface of ∆ρ(r) calculated with SCAN

has an area of 31.80 Bohr2 which shrinks to 16.28 Bohr2 when the calculations are carried

out with SCAN0. Similar trends are observed for (H2O)2 and H3O
+(H2O), with SCAN
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Figure 6: Isosurfaces for the density error corresponding to |∆ρ| = 0.006 e/Bohr3 calcu-
lated using SCAN/aug-cc-pVQZ and SCAN0/aug-cc-pVQZ for OH−· · ·H2O, H2O· · ·H2O
and H3O

+· · ·H2O. The orange and blue lobes represent the negative and positive isosurfaces
of ∆ρ(r), respectively. The reference density is the HF density.

and SCAN0 providing isosurface areas of 22.89 Bohr2 and 11.67 Bohr2, respectively, for the

neutral dimer, and 26.88 Bohr2 and 15.72 Bohr2, respectively, for the protonated dimer.

The larger isosurface area obtained with SCAN for OH−(H2O) provides further evidence for

the SCAN calculations of negatively charged clusters suffering from relatively larger density-

driven errors due to the SCAN density being overly delocalized and, therefore, unable to

correctly bind the excess electron as discussed in Section 3.1. In SCAN, the extra electron

is bound by the restriction to localized basis sets.

From the shape of the isosurfaces, it is evident that, compared to SCAN0, SCAN predicts

relatively higher electron density on the hydrogen atom of the water molecule that acts as

hydrogen-bond donor, which is accompanied by the reduction of the electron density near

the oxygen atoms of both hydrogen-bond donor (OD) and acceptor (OA) species. This leads

to artificially stronger intermolecular interactions and results in significant over-binding as

already shown in Figures 2 and 3. By reducing the density-driven errors, the addition of a
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fraction (25%) of HF exchange in SCAN0 results in a smaller delocalization of the electron

density and, consequently, improved description of all three hydrogen-bonded dimers.

More quantitative insights into the magnitude of the density errors can be obtained by

the analysis of ∆ρ(r) projected onto the hydrogen bond, which corresponds to the z-axis in

Figure 7,

∆ρ̃(z) =

∫
dx

∫
dy∆ρ(x, y, z) (10)

eq 10 is just eq 4 of ref 42 in the perfect resolution limit a−1 → 0, since, when a → ∞,

( a√
π
)exp[−a2(z′ − z)2] → δ(z′ − z). Figure 7 clearly shows the depletion of electron density

along the hydrogen bond which is accompanied by the deposition of additional electron

density on the hydrogen atom of the donor species.

Furthermore, Figure 7 demonstrates that density-driven errors are larger in SCAN than

SCAN0 (as would be expected since SCAN0 has 25% of HF exchange).

It is also worth noting that the fluctuations of ∆ρ̃(z) are larger for the ionic systems

(i.e., the protonated and deprotonated water dimers), which is consistent with the relatively

larger density-driven errors associated with these systems.

Section 3.4 discussed a quintessential density-driven error in which atoms at infinite
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Table 2: Benchmark CCSD(T)/CBS binding energies (BE) of the deprotonated, neutral,
and protonated water dimers, and the errors of various approximations, in kcal/mol.

Cluster BE error in BE
CCSD(T)/CBS urCCSD DC-SCAN SCAN PBE

OH−· · ·H2O -26.69 0.44 -1.87 -3.12 -2.72
H2O· · ·H2O -4.97 0.21 0.13 -0.44 -0.19
H3O

+· · ·H2O -33.74 0.40 -1.85 -3.11 -3.32

separation can be overbound through the spurious transfer of a fraction of an electron. It is

thus interesting to ask if any residue of this effect can be found in the three 20-electron water

dimers analyzed in Figures 6 and 7 whose binding energies are reported in Table 2. To try to

answer this question, we calculated the CCSD density for each dimer and divided the space

around each dimer by a plane perpendicular to the hydrogen-bond z-axis and positioned at

z = z0 so that the CCSD density has exactly 10 electrons on each side. It is then possible

to quantify the density-driven errors associated with a given density relative to the CCSD

density in terms of the error in the number of electrons on the H∗ side of the plane, which

is equal but of opposite sign to that on the OA side, as

∫ ∞

z0

dz∆ρ̃(z) (11)

The electron number errors associated with the HF, SCAN, and PBE densities are listed in

Table 3. It should be noted that the standard or unrelaxed CCSD density is not variational

and, therefore, does not satisfy the Hellmann-Feynman theorem. To address this potential

problem, the reference density is taken from orbital-optimized101 or partly relaxed CCSD.

As shown in Table 3, the orbital optimization is not very important for the water dimers

analyzed here.

The first thing to notice in Table 2 is that the deprotonated and protonated water dimers

are much more strongly bound than the neutral water dimer. There is a standard hydrogen

bond only in the neutral dimer.
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Table 3: Deviations in various approximations (including unrelaxed or urCCSD) from 10
electrons on the H∗ side of a plane perpendicular to the hydrogen-bond axis and positioned so
that, in benchmark orbital-optimized or partly-relaxed CCSD, there are exactly 10 electrons
on each side. ∆z/dOH, where ∆z is the distance along the hydrogen-bond from the H∗ nucleus
to that plane, and dOH is the length of the hydrogen- or longest bond. Note that this plane
is always between the OA and H⋆ nuclei. The calculations for Table 3 were done with the
ORCA code and the aug-cc-pVQZ basis sets. The dimensions (in bohrs) of the cube file were
25×25×25 for the deprotonated dimer, 25×25×28 for the neutral dimer, and 20×20×20 for
the protonated dimer. 1210 grid points were placed along each axis.

Cluster ∆z/dOH error in electron number
urCCSD HF SCAN PBE

OH−· · ·H2O 0.0818 0.0006 -0.0034 0.0057 0.0102
H2O· · ·H2O 0.2932 0.0001 -0.0008 0.0033 0.0044
H3O

+· · ·H2O 0.0003 0.0000 -0.0001 0.0001 0.0001

This is confirmed by the intermolecular and intramolecular OH bond lengths (OA · · ·H∗,

OD−H∗) which are (1.34 Å, 1.13 Å), (1.95 Å, 0.97 Å), and (1.20 Å, 1.20 Å) for the de-

protonated, neutral, and protonated water dimers, respectively. Thus an analysis based on

quintessential delocalization error is most likely to be relevant to the neutral dimer. The

second thing to notice is that, while DC-SCAN is always an improvement over self-consistent

SCAN, the correction is more effective in the neutral dimer than in the other two dimers,

suggesting that the HF density might be best for the neutral dimer. While PBE overbinds

the water dimer less than SCAN does, only SCAN correctly predicts47 the small energy dif-

ferences between the water hexamers that are more relevant to the bulk phases. Overbinding

of the dimer by PBE or SCAN is not large, but it is amplified in larger clusters.

Table 3 shows that in all three dimers, the SCAN error of electron number on the H⋆

(donor) side is larger in magnitude than, and of opposite sign to, the corresponding HF

density. This is consistent with the claim that SCAN is too delocalizing, and that HF is

slightly too localizing. In all cases, PBE is more delocalizing than SCAN. For the neutral

water dimer, LDA is still more delocalizing than PBE, as anticipated in Section 3.4, with an

error of electron number equal to 0.0058.

In the neutral water dimer, the SCAN error in electron number is more than three times
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larger in magnitude than the HF error, suggesting that the HF density should be a good

basis for density correction. In the deprotonated water dimer, all the errors of electron

number are larger in magnitude, and the HF error is closer in magnitude to the SCAN error,

suggesting that density correction based on HF should be less successful. In the protonated

water dimer, there is an approximate symmetry around the central H atom that makes all

errors in electron number fall close to zero, but there is still substantial density error for

SCAN, as shown in the more detailed Figures 6 and 7.

It is asserted here, not that these small errors of electron number by themselves explain

the density-driven errors of the SCAN water-dimer binding energy, but only that they indi-

cate a residue of the much larger SCAN delocalization error and also of the HF localization

error found in many pairs of infinitely-separated and chemically-different atoms. The results

in Table 3 are however consistent with the viewpoint of ref 102, which found that a GGA

description of liquid water became much more accurate when an additional subsystem ap-

proximation was made, and attributed that to the fact that each subsystem was a water

molecule constrained to have exactly 10 electrons.

3.6 Comparison between DC-DFT and FLOSIC-SCAN

As mentioned in the Introduction, an alternative approach to removing the SIE in DFT

calculations is provided by FLOSIC. Several variations of FLOSIC are being explored, but

we will only discuss the PZ-SIC42 version of eq 4). Using this version, ref 47 found that

self-interaction error in SCAN overbinds water clusters but nearly cancels out of structural

energy differences, while ref 49 found large FLOSIC-SCAN errors for some water-ion clusters.

Although FLOSIC-SCAN is just as free of one-electron self-interaction error as Hartree-

Fock theory, the FLOSIC-SCAN density sometimes displays more pronounced delocalization

error. For the neutral water dimer, FLOSIC-SCAN makes an error of electron number on

the H∗ side of about 0.0024, which is similar to the value of 0.0033 calculated with SCAN

(Table 2). This is surprising, since PZ-SIC typically reduces the spurious fractional charge
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on dissociated atoms to zero.97 The change in binding energy is negligible from SCAN to

SCAN@FLOSIC, but FLOSIC-SCAN yields an accurate binding energy of 5.1 kcal/mol. For

a different set of systems, small organic molecules adsorbed on a Cu+ ion, PBE@FLOSIC and

PBE@HF correct the PBE binding emergy to nearly the same extent.103 Comparisons104 of

SCAN@HF to SCAN@FLOSIC are underway for the transition states of chemical reactions.

To compare the performance of the FLOSIC and DC methods, in Figure 8 we consider

four different hydrogen-bonded systems, including protonated and deprotonated clusters,

as well as ionic aqueous clusters containing a single alkali-metal or halide ion.49 For each

system, the errors relative to the CCSD(T) reference values were calculated using SCAN

and DC-SCAN, while the FLOSIC-SCAN and SCAN@FLOSIC results were taken from ref

49. Following the same definitions introduced in ref 49, FLOSIC-SCAN corresponds to fully

self-consistent FLOSIC calculations with the SCAN functional, while SCAN@FLOSIC corre-

sponds to non-self-consistent calculations carried out using the self-interaction-free FLOSIC

density and Fermi orbitals. The difference between the SCAN and SCAN@FLOSIC energies

provides an alternative estimate of density-driven errors which is analogous to the difference

between the SCAN and DC-SCAN energies.

Figure 8 shows that SCAN predicts relatively large errors for the protonated water clus-

ters, with a MUE of 5.24 kcal/mol. The SCAN@FLOSIC results display similar errors,

resulting in a MUE of 5.69 kcal/mol. As expected from the analyses presented in Sections

3.2 and 3.3, the use of the localized HF density in the DC-SCAN calculations reduces the

error significantly, leading to a MUE of 1.56 kcal/mol. The fully self-consistent orbital-by-

orbital self-interaction corrected FLOSIC-SCAN displays a MUE of 2.88 kcal/mol. It is

worth mentioning that the accuracy of the self-interaction corrected FLOSIC-SCAN calcu-

lations for the protonated water clusters does not follow a monotonic trend as a function of

the cluster size, while the error per monomer systematically decreases in the corresponding

DC-SCAN calculations.

For the deprotonated water clusters, SCAN displays a MUE of 5.91 kcal/mol, which must
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Figure 8: Error in the binding energies of the a) Protonated water clusters b) Deprotonated
water clusters c) Alkali metal clusters d) Halide-water clusters using SCAN, DC-SCAN,
SCAN@FLOSIC and FLOSIC-SCAN with respect to the benchmark CCSD(T) values. The
SCAN@FLOSIC and FLOSIC-SCAN values are obtained from ref 49

be compared with the corresponding values of 5.10 kcal/mol and 1.39 kcal/mol obtained

with FLOSIC-SCAN and DC-SCAN, respectively. It should be noted that, in the case

of the deprotonated water clusters, the density-driven errors associated with the monomers

partially compensate the density-driven errors associated with the entire cluster, which is the

reason why the difference between the SCAN and FLOSIC-SCAN energies is not significant.

Since the alkali metal–water clusters are primarily stabilized by ion–dipole interactions,

their binding energy decreases with increasing atomic number because the increasing radius

of the alkali-metal ion reduces the ionic potential. Furthermore, increasing the cluster size

reduces the ion-dipole interaction which, consequently, results in a decrease of the error per

monomer. As already noted in ref 49, FLOSIC-SCAN displays a MUE of 1.72 kcal/mol
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alkali metal–water clusters, which is larger than that associated with SCAN (0.54 kcal/mol).

On the other hand, DC-SCAN improves significantly on SCAN, displaying a MUE of 0.33

kcal/mol.

Finally, similar to the other-aqueous ionic clusters, DC-SCAN performs well for the

halide-water clusters, displaying MUE of 0.44 kcal/mol. Relatively large errors are instead

associated with SCAN and FLOSIC-SCAN, which lead to MUEs of 2.12 kcal/mol and 2.38

kcal/mol, respectively.

Overall, the comparisons of Figure 8 demonstrate that DC-SCAN consistently improves

on SCAN for all the four classes of hydrogen-bonded systems examined in this study, while

the performance of FLOSIC-SCAN is somewhat erratic.

3.7 Many-body decomposition analysis

The many-body expansion (MBE) expresses the total energy, Etot, of an N -body system as

the sum of individual n-body energy contributions, ϵnB, where n ≤ N ,105

Etot(r1, .., rN) =
N∑
i=1

ϵ1B(ri) +
N∑
i<j

ϵ2B(ri, rj) +
N∑

i<j<k

ϵ3B(ri, rj, rk) + ...+ ϵnB(r1, .., rN) (12)

Here, ϵ1B represents the energy of an isolated monomer, and the n-body energies are defined

recursively as

ϵnB = ϵn(1, ..., n)−
N∑
i=1

ϵ1B(ri)−
N∑
i<j

ϵ2B(ri, rj)−
N∑

i<j<k<...<n−1

ϵ(n−1)B(ri, rj, ..rn−1). (13)

To investigate the impact of the density correction on each individual n-body contribution

to the interaction energies of different ion–water systems, many-body decomposition analyses

were carried out for two protonated water clusters, H3O
+(H2O)

(3d)
6 and H3O

+(H2O)
(2d)
6 ,

and two deprotonated water clusters, OH−(H2O)5 and OH−(H2O)6. The errors associated

with the SCAN and DC-SCAN nB energies were calculated relative to the CCSD(T)-F12b
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reference values and are shown in Figure 9.
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Figure 9: Errors relative to CCSD(T)-F12b reference values for each nB energy contribution

to the interaction energies calculated with SCAN and DC-SCAN for the a) H3O
+(H2O)

(3d)
6

b) H3O
+(H2O)

(2d)
6 c) OH−(H2O)5 d) OH−(H2O)6

For the protonated water clusters, SCAN displays large 2B errors of -7.54 kcal/mol and

-9.11 kcal/mol for H3O
+(H2O)

(2d)
6 and H3O

+(H2O)
(3d)
6 , respectively, which confirms the ten-

dency of SCAN to overbind aqueous clusters.47,62 The error of the 2B energy reduces to only

-2.05 and -1.97 kcal/mol in the corresponding DC-SCAN calculations. Figures 9a,b demon-

strate that the impact of the density correction is effectively negligible for nB energies with

n > 2 for the protonated water clusters. A similar trend for the 2B energies is also observed
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for OH−(H2O)5 and OH−(H2O)6. Unlike the neutral
62 and protonated water clusters, SCAN

is associated with large 3B and 4B errors for the deprotonated water clusters.

4 CONCLUSIONS

It is known that density-driven errors in DFT calculations are prominent for GGA and

meta-GGA functionals, and the SCAN functional also makes such errors, but its density

delocalization errors are less than those of PBE or LDA. Use of the Hartree-Fock density in

the density-corrected DFT formalism (DC-DFT) has been shown to mitigate density-driven

errors as the density-correction elevates the accuracy of the SCAN functional towards the

CCSD(T) limit, not only for neutral water but also (to a lesser extent) for all the hydrated-ion

systems.

The performance of density-corrected SCAN (DC-SCAN) is independent of the system

size as it reproduces the CCSD(T) interaction and binding energies for water dimer to

decamer with minimal loss of accuracy. Similarly, DC-SCAN has been succesful to reproduce

the CCSD(T) binding energies for various protonated and deprotonated water clusters.

The inability of semi-local density functional approximations to bind a full extra electron

in the smallest anionic water clusters is well known, as the excess electron leaks towards

the continuum due to the large density-driven errors, give rise to an unstable SCF solution.

The localized Hartree-Fock density minimizes this problem by binding the electron fully

as the deprotonated-water clusters move towards convergence with the addition of diffuse

basis function. The density-driven errors of water dimers using the SCAN functional can be

visualised in terms of the density-deviation of the self-consistent SCAN density with respect

to the density generated by the HF orbitals. These density-deviations can quantify the

extent of electron delocalization as well as demonstrate the quality of the density generated

by different density functionals.

For accuracy in water, DC-SCAN outperforms FLOSIC, which is an orbital-by-orbital
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SIE removal method. DC-SCAN consistently improves the accuracy of the SCAN functional

for all the protonated, deprotonated, alkali-metal and halide water clusters, whereas the

performance of FLOSIC-SCAN have been found to be somewhat erratic, as it improves the

accuracy of SCAN for all but the hydrated alkali-metal clusters.

In this study, we have demonstrated that density-corrected SCAN (DC-SCAN) effectively

removes density-driven errors from the water 2B energies, which brings both binding and

interaction energies of different water clusters very close to reference values calculated at

the CCSD(T) level of theory. The density-driven errors in neutral and protonated water

clusters have been found mostly in the 2B energies, which can be successfully mitigated by

the density-correction. On the other hand the notorious deprotonated-water clusters give

rise to large 3B errors along with the 2B due to their large density-driven errors, which can

also be successfully minimized by DC-SCAN. It is worth mentioning that DC-SCAN is not

a panacea. It can only alleviate energy errors driven by density errors, and is unable to

elevate the accuracy when functional-driven error is dominant, e.g., the binding energy of

H3O
+(H2O)6(OH)−.

What’s so right about the Hartree-Fock electron density? In neutral and positively

charged atoms or small molecules with integer electron numbers, the Hartree-Fock density

of an atom or small molecule is easily outperformed by non-empirical or few-parameter

empirical functionals, whose accuracy improves from LDA to PBE to SCAN to the PBE0

hybrid.65,95,96 The Hartree-Fock density of an atom is a best-performer only in the low-

density tail, where the FLOSIC density is still comparably accurate. But more relevant to

chemistry is how the density is shared among the atoms or molecules of the system. Here,

for weakly-bound fragments, the Hartree-Fock density shines.

We believe that this has not been shown before, although recent work106 on molecules has

identified localizing steps66,98 in the exact (but not in semi-local approximate) Kohn-Sham

potentials, and some approximations107 in condensed matter physics (motivated in part by

refs 42 and 66) have been aimed at improving the partitioning.
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While LDA seems to be the conventional extreme of density delocalization error, and

HF the conventional extreme of (usually much smaller) density localization error, these

two densities do not quite yield the conventional range of density-driven error in energy

differences.

In view of the fact that PZ-SIC typically97 eliminates fractional charges on separated

atoms, it is surprising that it does not better partition the density in water clusters and

some other systems. This might be related to the fact that the original PZ-SIC is more

accurate for atoms than for molecules. Perhaps future refinements of PZ-SIC will be more

successful in this regard.

Correctible density-driven overbinding by SCAN is not limited to water, and in particular

it can be expected in other hydrogen-bonded systems. In this context, the hydrogen-bonded

ionic dimers of the HB15 and the small- and medium-sized hydrogen-bonded systems of the

HB49 datasets are overbound108 in SCAN on average by 0.6 and 0.5 kcal/mol, respectively.
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