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Abstract. In this paper we introduce a new height on P! (K) associated to an
Abelian variety with real multiplication by K, and use it to study non-arithmetic
triangle groups, Teichmiiller curves, and billiards in lattice polygons. Com-
plementary results on matrix coefficients and measures are obtained using
modular symbols. In particular, we show the matrix entries m of the classical
Hecke group A(2, 5, co) are constrained by the condition that —y‘z(m’ /m)
lies in a countable, closed semigroup S C [—1, 1] homeomorphic to w® + 1.
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1 Introduction

In this paper we use methods from Hodge theory to describe the arithmetic
of certain non-arithmetic lattices ' C SL»>(R). A key role is played by a new
height on P! (K) determined by an Abelian variety with real multiplication by
K.

As a complement, we also use the modular symbols of [Mc6] to give a
qualitative description of the matrix coefficients of I". The circle of ideas we
will discuss has its origins in the theory of polygonal billiards.

Curves on Hilbert modular surfaces. We begin by briefly stating one of our
two main results, discussed in detail in Sect. 5.

Theorem 1.1 Let V = H/ " & Xk be a complex geodesic curve on a Hilbert
modular surface. Then either V is a Shimura curve, or the cusps of I coincide
with PY(K) and satisfy quadratic height bounds.

Here K is a real quadratic field, and V is isometrically immersed for the
Kobayashi metric on Xg.

To illustrate this result, we describe in detail several motivating applications
and complements. References are collected at the end of this section.
Triangle groups. Consider the triangle group

A(pv q, OO) — <Sv T> C SLZ(R)a

generated by

_( cos(z/p) sin(zw/p) (1T

o (— sin(zr/ p) cos(/p) and T = 01)”
where 7 is chosen so that Tr(ST) = —2cos(;r/g). Its invariant trace field is
given by:

Kpy = Q(Tr(g?) : g € A(p.q,00))
= Q(cos(2m/p), cos(2m/q), cos(/ p) cos(/q));

and A(p, g, o0) is arithmetic if and only if K, = Q (cf. [Tak, Prop. 5], [MR,
Ex. 4.9)).

One can readily survey the global properties of an arithmetic group such as
A(2,3,00) = SLy(Z): every integer occurs as a matrix entry, every pair of
relatively prime integers (a, ¢) occurs as a matrix column, and the cusps of
SL,(Z) coincide with Q U {c0}.

The non-arithmetic triangle groups are more mysterious. While it is easy
to describe their generators, it is difficult to characterize the matrices they
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Fig. 1 Cusps for the triangle group A(2, 5, 00)

contain. On the other hand, it can be shown that every non-arithmetic triangle
group arises (up to commensurability) from a geodesic curve on a Hilbert
modular variety of dimension ¢ = deg(K,,/Q) > 1. Thus Theorem 1.1
yields (Sect. 6):

Corollary 1.2 The cross-ratios of the cusps of the triangle group A(p, q, o)
coincide with IPI(qu) — {0, 1, oo} whenever deg(K ,,/Q) = 2.1

Many instances of this result were first proved with a case-by-case analysis.
The proof we present in Sect. 5 is a conceptual and effective descent argument.
Golden fractions. To explain the height bounds in Theorem 1.1, we will
discuss the non-arithmetic group I' = A(2, 5, 0co) in more detail.

Let y = (1 ++/5)/2. Then © = Z[y] is the maximal order in the field
K = Q(y), y is a fundamental unit, and the (2, 5, co) triangle group is given

by
_ 01 1y

Although it is a lattice in SLy(R), it is equally natural to regard I' as a thin
subgroup of the arithmetic group SL>(0) C SL,(R)?. Via Theorem 1.1, the
latter perspective yields the following three equivalent assertions.

1. The cusps of A(2, 5, 00) coincide with Q(y) U {oo} (see Fig. 1).
2. Every x € Q(y) can be expanded as a finite golden continued fraction,

x=lai,az,a3,...,an] = a1y + (1.1)

ay + 1
a3y+..._
any

I Quadratic trace fields occur for signature (2, g, c0) with ¢ = 5, 8, 10, 12, (3, g, c0) with
q =4,5,6,and (4, g, 00) with g = 6, 12.
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with a; € Z.

3. Every x € Q(y) can be expressed as a golden fraction x = a/c, charac-
terized by the property that (? Z) € I' for some b, d. This expression is
unique up to a sign change, x = (—a)/(—c).

Let us elaborate the last point. Since K has class number one, we can
certainly write x = A/B as a ratio of relatively prime integers A, B € Z[y].
In fact, since y is a unit, there are many such expressions: we also have x =
(y*A)/(y*B) for any k € Z.

The golden fraction expression x = a/c uses the thin group I' to pick out
a particular value of k. The complexity of this expression is controlled by the
height bounds in Theorem 1.1; in this case, they yield (Sect. 6):

Corollary 1.3 The height of any nonzero golden fraction x = a/c satisfies
h(a) + h(c) = 01 + h(x)?). (1.2)

Moreover the continued fraction of x satisfies N +max log |a;| = O (1+h(x)).

Here h(x) is the absolute logarithmic height on K = Q & Qy; for x =
(p/q) + (r/s)y, it satisfies

1+ h(x)? < 1+ (logmax{|pl, lg], I, |s|D?.

Material on heights, abelian varieties with real multiplication, and Hilbert
modular varieties is developed in Sects. 2, 3 and 4, in preparation for the proof
of Theorem 1.1 in Sect. 5. The exponent 2 in Eq. (1.2) is sharp; see Sect. 7.
Matrix coefficients. We now turn to complementary results, based on modular
symbols.

Let M C Z[y] denote the set of all matrix entries that occur in I". The
discussion of golden fractions above shows that

zlyl = Jv*m.
keZ

Asnoted by Leutbecherin the 1970s [Le], there is no known characterization

of the elements of M. The next result gives a qualitative description of M and
also reveals its hidden multiplicative structure.
Derived sets. In preparation for the statement, recall that any compact, count-
able metric space E is homeomorphic to a countable ordinal. The derived
set DE is E with its isolated points removed; D"T!(E) = D"(DE); and
D®E = (\ D"(E). The derived set D*°E is a single point if and only if E is
homeomorphic to the ordinal w® + 1.
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The ratio set. Now let x — x’ denote the generator of Gal(K/Q) = Z/2,
define

§:K* — K~
by 8m = m’/m, and let
SM={m'/m : 0 #£#m e M)}. (1.3)
Define the (signed) ratio set for I' by
S=—y"2.8M. (1.4)

In Sect. 7 we will show:

Theorem 1.4 The closure oj ﬂie sig,ined ratio set S is a compact, countable
subset of [—1, 1] satisfying S - S C S. In fact we have

S=(S)U{0} Zw®+1,
and D®S = {0}.

Here (S) denotes the multiplicative semigroup generated by S.

Unlike Corollary 1.3, this result is not limited to quadratic fields. Similar
results on matrix entries hold for all triangle groups with deg(K ,,/Q) > 1,
and the general statement, Theorem 1.7 below, applies to any group with a
contracting twist.

For a hint of the complexity of the set 6 M, see Fig. 2. Note that if ' were
replaced by the arithmetic group SLj Z[y], the set of ratios m’/m would
become dense in R; in fact every element in K with norm 1 would arise,
by Hilbert’s Theorem 90.

Billiards. Many more examples of non-arithmetic lattices in SL,(R) arise
from the theory of polygonal billiards, leading to dynamical applications of
Theorem 1.1.

To illustrate some of these, consider a finite polygon P C C with internal
angles m(ay,...,ay)/q, where gcd(ay, ..., a,, q) = 1. A standard unfold-
ing construction associates to P a holomorphic 1-form (X, w) on a compact
Riemann surface, together with an action of the dihedral group Dy, such that
(X, |w|)/ D4 is isometric to (P, |dz|). The affine symmetries of (X, w) give
rise to a discrete group SL(X, w) C SLo(R).

Lattice polygons. We say P is a lattice polygon, with trace field K, if V =
H/ SL(X, w) has finite volume and K is the trace field of SL(X, w). Itis known
that K is a number field, and that SL(X, w) is arithmetic if and only if K = Q.
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0 v gl
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Fig. 2 Matrix coefficients of A(2, 5, 0o). The scatterplot shows part of the image of M under
m=x+yy > (m'/m, max(x|, |y]))

By a well-known result of Veech [V, Prop. 2.11], lattice polygons enjoy
optimal dynamics: either all geodesics with slope s are periodic, or all are
uniformly distributed. In the periodic case, we denote the length of the longest
periodic trajectory by L(s).

Let us say P is normalized if (1) it has a vertical or horizontal edge, and (ii)
when ¢ = 2, s = 1 is the slope of a periodic trajectory. The first condition
can be achieved rotating P. The second condition, which arises only when
all sides of P are vertical or horizontal, can be achieved by an affine stretch
(which respects billiard paths). Theorem 1.1 then entails (Sect. 6):

Corollary 1.5 Let P be a normalized lattice polygon with quadratic trace
field K. Let o = tan(mw/q) if ¢ > 3, and o = 1 if g = 2. Then its periodic
slopes are given by

S(P) = aK U {oo}.
Moreover, for any s € K we have
log L(as) = O(1 + h(s)?). (1.5)
A similar result (Theorem 6.1) holds for Teichmiiller curves.
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Fig.3 Long periodic billiard paths, each with over 200 segments, with initial slopes 5 and 8+/3
respectively

Example 1. The golden L. One of the simplest examples of a lattice polygon
with quadratic trace field is the symmetric L-shaped region P built by attaching
two golden rectangles to the unit square, as shown at the left in Fig. 3.

Computer experiments quickly reveal that even small, rational slopes lead
to very long trajectories in P; for example, L(5) =~ 479, while L(6765) ~
1.734 % 10%. This rapid growth, which is consistent with Eq. (1.5), is explained
in Sect. 7.

The 1-form associated to P satisfies SL(X, w) = A(2, 5, o0). Using this
connection, we will give a simple dynamical proof that

a+byeM = ab>0

and hence

—y 2 <m'/m <1 (1.6)

for all matrix entries m # 0 1in A(2, 5, 00). Equality occurs when m = 1 and
m = y; see Corollary 7.4.
Example 2. The golden arrow. A second lattice polygon, also based on
the golden ratio, is shown at the right in Fig. 3; its internal angles are
(1,1, 2,8)/6,and its periodic slopes are given by S(P) = «/§-Q(y) U {o0}.
Both examples belong to infinite families, discussed in [Mcl, §9] and
[EMMW, §8] respectively, and their side lengths can be varied to produce
infinitely many different quadratic trace fields.
Cubic and rational trace fields. We remark that quadratic trace fields are the
main case of interest for lattice billiards. Indeed, when K = Q the billiards
in P is closely related to billiards in a square, and a closed trajectory at slope
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s = p/q has length O(]p| + |¢]). On the other hand, lattice polygons with
trace fields of cubic and higher degree are rigid; that is, they are determined
by their internal angles up to finitely many choices [EFW, Cor. 1.6]. These
rigid examples include the regular polygons, discovered by Veech, provided
we exclude the n-gons withn = 3,4, 5,6, 8, 10 and 12.

Distribution of long billiard trajectories. We now turn to an application
which was our original motivation for proving Theorem 1.4.

Let P be a lattice polygon with trace field K # Q. Even though billiards
in P has optimal dynamics, long periodic trajectories in P need not be evenly
distributed [DL]. To describe their behavior, let M denote the set of probability
measures on P that arise as limits of closed trajectories with slopes s, — s
and lengths tending to infinity. When s is not a periodic slope, equidistribution
holds and Mj is a single point; but for periodic slopes, equidistribution fails
and we have M; = o® + 1 [Mc6].

Now suppose P is the golden L and s = 0. In this case, My can be described
directly in terms of the set M defined by Eq. (1.3). For a precise statement,
first observe that P can be regarded as two stacked golden rectangles, A
and Ay, the first of width 1 and the second of width y. Let o; = x4, ldz|?,
i = 1, 2 denote their respective area measures, and let V(r) denote the unique
probability measure on P proportional to

v(ir) =1 —nrar+ 1+ y 2. (1.7)
We then have (Sect. 7):

Theorem 1.6 The limit measures for billiards in the golden L at slope s = 0
are given by

My ={v(r) : r € 5M}.

By (1.6), the two most unevenly distributed measures in M are those pro-
portional to

VR =ap and vy = ya + on.

These arise, as n — 00, as limits of trajectories of slope 1/(ny) starting near
the right and left of the bottom edge of P, respectively. Since A(2, 5, co) has
only one cusp, the measures M; for other periodic slopes are essentially the
same as those for M.

Compression of cusps. A dynamical proof of Theorems 1.4 and 1.6 will be
given in Sect. 7. We conclude by stating our second main theorem, which
provides another route to Theorem 1.4 (and many similar results) in the spirit
of Theorem 1.1.
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Let I' C SL;(R) be a lattice with at least one cusp. Let
p: T =T cSLR)
be an isomorphism of abstract groups, such that
g is parabolic <= p(g) is parabolic. (1.8)

We do not require that '’ is discrete. Let F : H — H be a holomorphic map,
such that

F(g-1)=p(g) - F() (1.9)

for all g € I" and ¢ € H. Then the pair (p, F) defines a twist of I". If F
is an isometry, then p is simply conjugation by F. Otherwise, the twist is
contracting.

Given a pair of distinct cusps x, y of I', fixed by parabolics g, h € T, let

_ Trlp(gh) — 2

rx,y) = Tr(gh) — 2 (1.10)

This quantity is independent of the choice of g and 4.
We will see that 7 (x, y) € [0, 1]. Infact, when g and & generate the parabolic
stabilizers of x and y, the quantity

D(x,y) = log|Tr(gh) — 2|

can be interpreted as the renormalized distance between these two cusps, and
log r(x, y) measures the amount this distance is reduced by F.
Define the (absolute) ratio set by

R ={r(x,y) : x,yaredistinct cusps of I'} C [0, 1]. (1.11)

In Sect. 8 we will show:

Theorem 1.7 The ratio set of a contractive twist of I as above satisfies R =
(R) U {0} = w®” + 1 and D*°(R) = {0}.

This result implies Theorem 1.4 and related results for other triangle groups
A(p, q,00), as well as for the lattices SL(X, w) associated to Teichmiiller
curves.

For these groups, a finite cover of V = H/I" can be realized as a complex
geodesic on a Hilbert modular variety X, d = deg(K/Q), and one obtains
d — 1 contracting twists by projecting to the factors of its universal cover H¢.

@ Springer

'é: Journal: 222 Article No.: 1101 [ TYPESET [__| DISK [__]LE [__] CP Disp.:2022/4/1 Pages: 43 Layout: Small-X ‘




242

243

244

245

246

247

248

249

250

251

252

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

27

272

273

274

275

276

277

278

C. T. McMullen

See [CW, §2] and corrections in [Ri, §2] for the case of triangle groups, and
[Mol] for the case of Teichmiiller curves.

Questions. We conclude with some open problems related to fields of cubic
and higher degree.

1. Isthere ann > O such thatlog L(s) = O (1 + h(s)") for all periodic slopes
in the regular heptagon?

2. Let V C X be aKobayashi geodesic curve on a Hilbert modular threefold.
If V has no cusps, is V a Shimura curve?

3. Suppose SL(X, w) is a lattice with trace field K, and the cross-ratios of its
cusps coincide with P! (K) — {0, 1, oo}. Does this imply that deg(K /Q) <
2?

Notes and references. This paper is a sequel to [Mc5] and [Mc6].

The theory of triangle groups has a long history, including works by
Schwarz, Fricke, Klein, Hecke and many others (see e.g. [Sch,He,Mag], [SG,
Ch. 14]). Many cases of Corollary 1.2 were proved first in [Le,Be] and [Se];
the general case follows from [Mc2] and [BM] (see Sect. 6), and was also
addressed recently in [Pa]. See [Bh,BR,Wo,AS] for work on Question (3) in
the case of triangle groups, resolving the case A(2, g, 00); some additional
cases are covered by [CSc].

The geodesic curves on Hilbert modular varieties coming from triangle
groups are discussed in [CW]. For more on connections between Hilbert mod-
ular surfaces, Teichmiiller curves and Kobayashi geodesics, see [Mc1,Mc4,
Mol,MV], and [We].

An encoding of the periodic trajectories in the regular pentagon and the
golden L is studied in detail in [DL]; Theorem 1.6 and [Mc6] address [DL,
§4, Conj. 4.6]. See [Bo, Theorem 7.9] for related results on periodic points for
interval exchange transformations.

Notation. The expressions A = O(B) and A < B mean A < CB and
A/C < B < CA for some unspecified constant C > 0.

2 Heights

In this section we review the theory of heights for number fields, projective
spaces, and groups such as SL,(K), with an emphasis on formulations using
integers and infinite places.
Useful references include [BG,La] and [HS].

Absolute values. Let K be a number field of degree d over Q, and let O be the
ring of integers in K . Each place v of K determines a normalized absolute value
|x|, on K; taken together, these satisfy the product formula [ [, [x], = 1. For
K = Q the absolute values are normalized so that |p|, = 1/p and [x|s = |x];
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in general, the absolute values are normalized so that

v ol/d
Iy = ING (01

whenever v|p. For example, if v is a real place of K, and p, : K — K, =R
is the associated completion, then |x|, = |p, (x)|!/ 4

Heights on projective space. The absolute multiplicative height on P"(K) is
given by

Hx)=H(xg:x1:-:Xp) =1_[ml_ax|x,~|v.
v

It is well-defined by the product formula, which also implies that H (x) > 1.

The normalizations above are chosen so that H (x) remains constant under
finite extensions of K. In addition, an automorphism f of P"(K) changes the
height by at most a bounded factor; we have

H(f(x)) < H(x) 2.1)

for all x € P*(K) (see e.g. [HS, Theorem B.3.1].)
Logarithmic height. The logarithmic height on P! (K) is defined by

h(x) =log H(x) > 0.

Throughout this paper we adopt the usual convention that multiplicative
heights (such as H, H4 and H;) are written in upper case, and their loga-
rithms (such as &, h 4, h;) in lower case.

Integer coordinates. A closely related height on P"(K') can be defined by

H(x) = inf [ | max|a;l,, (2.2)

v|oo

where the infimum is taken over vectors of integers a € O"*! such that
[ap : --- : a,] = x. This height is comparable to the standard one; using
finiteness of the class number, one can show that

H(x) < H(x),
and equality holds when O is a UFD (cf. [La, §3.1]). The implicit constants
depend on (K, n).

One useful feature of formula (2.2) is that it involves only the integers O
and the infinite places of K. This motivates our definition of the height Hy4 (x)
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on }P’k(l( ) in Sect. 3, where ©% will be replaced by the integral homology
H{(A, Z) of an Abelian variety with real multiplication by K.

Heights on affine space. The restriction of H to the affine part of P"(K) gives
a natural height on K”. The height on K itself, given explicitly by

H(x) = [ [max(1, x[,). (2.3)

satisfies H(x") = H(x)", H(xy) < Hx)H(y)and H(x+y) <2H(x)H (y)
(an extreme caseisx =y = 1).

Lemma 2.1 For any embedding p, : K — R, we have
Hx)? = py(x) = Hx) ™

forallx #0in K.

Proof. Since each term in the product (2.3) is at least 1, we have H(x) >
x|y = |pv(x)| l/d giving the upper bound. For the lower bound, use the fact
that H(1/x) = H (x). O

Totally real fields and SL;(R). We conclude with some observations of use
in the sequel.

Let p = |dt|/ Im(¢) be the hyperbolic metric on H = {¢ : Im(¢) > 0}, and
let d(p, q) denote the hyperbolic distance between a pair of points.

The group SL; (R) acts linearly on R? and isometrically on H. The operator
norm of g € SL»(R) and its translation distance on H are related by

log 1glI3 = d(i, g@)) = 0. (24)
To see this, use the polar decomposition to reduce to the case where g =

0a~!
two norms on M3 (RR) are equivalent, we have

(“ 0 ), a > 1, and both sides become log(az). We also note that, since any

1< [[(45)], = max(lal, b1, lcl, d)). (2.5)
Now let K be a totally real field of degree d over Q. The infinite places of
K determine an embedding K C R? sending k to (k;); similarly, we have an
embedding
SLa(K) C SLa(R)?
sending g to (g;). We define the height of g = (¢5) € SLa(K) by

H(g) = H(a,b,c,d) and h(g) =log H(g), (2.6)
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using the inclusion SL;(K) C K* c P*(K). Note that H(g) = H(—g) =
H(g™ "), and

lgilla = O(H(g)") (2.7)

for all i, by Lemma 2.1.
Lemma 2.2 For all g € SLy(O), we have H(g) < [1¢ laill3/* .

Proof. In the product formula for the H (g), the finite places each contribute 1
since the entries of g are integers; and at the infinite places, which are indexed
by i, we can apply Eq. (2.5). O

Hyperbolic elements. For hyperbolic elements g € SL»(R), we recall for
later use that the translation length

T(g) = inf d(z, g(1))
teH
and trace are related by
| Tr(g)| = 2 cosh(T'(g)/2), (2.8)

as can be verified by reducing to the case where g is diagonal.

3 Abelian varieties with real multiplication

In this section we use Hodge theory to introduce a natural height H4 (x) on the
space of slopes IP’l‘ (K) attached to an Abelian variety A with real multiplication
by K. Our terminology is justified by

Proposition 3.1 For any projective linear isomorphism t : IP’};(K ) = PY(K),
we have

Ha(x) = H(x)).

This height, of interest in its own right, underlies the descent argument used
to prove Theorem 1.1 in Sect. 5.

In the next section we study the behavior of H4 (x) as A varies in a Hilbert
modular variety. For background on these topics, see [BL] and [vG].
Abelian varieties. Let A be a polarized Abelian variety of dimension d. We
can naturally identify A with the quotient space

A =Q(A)"/H(A,Z),
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where Q(A) = C is the space of holomorphic 1-forms on A, and its paring
with H| (A, Z) = Z*! is given by (C, ») = [, o.

The polarization of A is recorded by a pos1t1ve-deﬁnite Hermitian inner
product on 2(A)*, with the property that the symplectic form

[C, D] = —Im(C, D) 3.1

takes integral values on H{(A, Z). We denote the associated Hodge norm on
Hi(A,R)by ||C|la = (C, C) 1/2 The polarization also determines a norm and
inner product on €2 (A), via duality.

Example: The Jacobian. When A = Q(X)*/H (X, Z) is the Jacobian of a
compact Riemann surface X of genus g, we have a natural (principal) polar-
ization given by the dual of the Hermitian form

i _
(w1, w2) = —/ w1 N @2
2 Jx

on 2(X). The associated symplectic form [C, D] agrees with the usual inter-
section form on Hj (X, Z), and the Hodge norm on homology is given by

e[ o]

Real multiplication. Now let K be a totally real field of degree d over Q. We
say A has real multiplication by K if it is equipped with an inclusion

K C End(A4) ® Q,

sending each k € K to a self-adjoint operator Tk. (This means (7;C, D) =
(C, Ty D) forall C, D € Hi(A,R).)

The action of T; on homology makes H(A, Q) into a two-dimensional
vector space over K ; hence we can form the associated projective line

Py(K) = (Hi(A, Q) — {0) /K* = P'(K). (3.2)
We can also decompose H; (A, R) = R?? into orthogonal eigenspaces S, =
RR?, indexed by the infinite places of K.

Letm, : Hi (A, R) — S, be orthogonal projection to the v-eigenspace, and
define N4 : Hi(A,R) — R by

NAC) = [ I (O) 4.

v|oo
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Note that
Na(Ti (C)) = IN(g(k)I - Na(C) (3.3)

for all k € K; in particular, the value of N4 (C) is invariant under the action
of the units in K. When C € H'(A, Z) is an integral cycle, we have

C

where (w,) is an orthonormal eigenbasis in 2 (A).
Hodge norms and height. Using real multiplication and the Hodge norm, we
now define a height on P}; (K) by

NaO) =[]

v|oco

, 34)

Hy(x) = inf{No(CO)Y¢ : C € Hi(A,Z) and [C]= x}.

Here [C] denotes the point in IP’L (K) represented by C. This height measures
the minimum size of an integral homology class C in a given orbit of K*
acting on Hy(A, Q).

Proof of Proposition 3.1. First recall that t~he height H (x) on P1(K) defined
by (2.2) is comparable to H (x). Moreover, H (x) changes by at most a bounded
factor if we change its definition by (i) replacing ©? by acommensurable lattice
L C K?;or (i) replacing max{|a |, |a2|,} by another norm on K2 = R2.
Lift ¢ to a K -linear map I : H; (A, Q) = K 2. Since (i) I sends H|(A, Z) to
a lattice commensurable to 02, and (ii) 7, sends the Hodge norm on S, to a
norm on Kl%, we have Ha(x) < H(1(x)) < H(x). |

Remark One can similarly use the Hodge norm on any Abelian variety A to
define a height

Hp(x) =1nf{||C|la : C € Hi(A,Z)and [C] = x}

on PH'(A, Q) = P??~1(Q). Other rings of endomorphisms besides K C
End(A) ® Q can also be considered.

4 Hilbert modular varieties

In this section we introduce a height H; (x) on P! (K) for each point T € He,
the universal cover of the Hilbert modular variety X g . This height is given by

Hy(x) = Hy, (x),
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where A, = C?/0 & OVr.
We will establish two results that control the behavior of H;(x) as T varies.
The first gives some insight into the geometric meaning of the height. Let

8(t) =inf H;(x) > 0

Proposition 4.1 The function §(t) is comparable to the length of the shortest
closed geodesic on A-.

Corollary 4.2 For eachr > 0, the locus Xg(r) = {[t] € Xk : 8(r) > r}is
compact, and Xg = J,-o Xk (r).

The second result is conveniently phrased in terms of the logarithmic heights
h(x) =logH(x) and h;(x) =log H;(x). 4.1)
Proposition 4.3 For any compact set D C H¢, there is an M > 0 such that
lhe(x) —h(x)| = M
forall x e PY(K) and t € D.

Construction of A;. We begin with some definitions. Let O be the ring of
integers in a totally real field K of degree d, and let

OV ={a €K : Trj(ab) € Z ¥b € O}

be its dual (the inverse different). There is a natural unimodular symplectic
form on O & OV, defined by

[(a,b). (c.d)] = Trfj det (¢5). 4.2)
Let (v, ..., vg) denote the infinite places of K, and let a +— (a;) be the
corresponding embedding K — R?. Then for each v € H’ we have a natural

map K2 — C¢, sending (a, b) to (a; +b;7;). The image of O @ OV is a lattice,
and

A, =CY /O80T
is a principally polarized Abelian variety with real multiplication by K. In fact,
we have an inclusion O C End(A) sending a to the linear map 7,(z) = (a;z;)

on C?. The polarization of A, is uniquely determined by the symplectic form
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(4.2). The corresponding inner product on C¢, given by

d_
j : 1Y

<Z7 w)‘[ = ’
| Im T;

is readily verified to satisfy (3.1); and 7}, is self-adjoint because it is given by
a real diagonal matrix. The inner product above makes A into a flat torus of
volume one, since the symplectic form in (4.2) is unimodular.

The moduli space X . The isomorphism class of A; depends only on the
location of 7 in the Hilbert modular variety

Xx =HY/SL(O @ OY).
Here g = (¢4) € SLy(K) acts on HY by
g 7= ((aiti +b)/(citi +d;)),

and SL(O @ OV) is the subgroup stabilizing the lattice O @ OV C K. The
action on P! (K), used below, is given similarly by

g-x=(ax+b)/(cx +d).

Markings and periods. We will work in the universal cover H¢ of X, so
that for A = A; we have a natural isomorphism

O 0¥ = H|(A,Z). (4.3)
An orthonormal eigenbasis for €2 (A) is given by

w; =dz;//ImT;, 4.4)

i=1,...,g,andfor C = (a,b) € O ® OV = H (A, Z) we have

/a),- =a; + br;.
C

Norms and heights. We also have an isomorphism
P} (K) = P'(K) = K U {00},

compatible with (4.3), which we normalize so that x € K C P'(K) corre-
sponds to the line in K2 defined by

a+bx =0. (4.5)
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(The point x = oo corresponds to the line » = 0.) With these identifications,
we can regard N4 and Hy as functions N; and H; on O @ O and PL(K)
respectively, given explicitly by

1 bl
N:(a,b) = H'a\/—i__: and

He(x)= inf Ne(a,b)!/?,

as can be seen using Eq. (3.4).
Naturality. Since the height H4(x) is functorial, we have

H:(x) = Hg~r(g “X) (4.6)

for all g € SL(O @ OY). It follows that §(g - T) = 8(). One can also check
that §(7) is continuous, using the formula above.
The case of elliptic curves. It is easy to describe the height and its minimum
3(t) geometrically when d = dim(A) = 1. In this case A; = Z & Zt
carries a unique flat metric |dz|/ Im(t)'/? of area one, H; (x) is the length of
a shortest closed geodesic on A; with homological slope x, and the shortest
closed geodesic on A, has length §(7) > 0.
Units: Proof of Proposition 4.1. These statements can be generalized tod > 1
as follows.

Note that for any unit e € O we have [ [ |¢;| = 1 and hence

N:(ea, eb) = N¢(a, b).

By Dirichlet’s unit theorem, the map € — log|e¢;| sends O to a lattice in
R?=! Thus we can always adjust (a, b) by a unit so that the terms in the
product formula for N;(a, b) have approximately the same size. Using the
inequality between the arithmetic and geometric means, it follows that:

He(x) = inf la+be:.

using the norm associated to the inner product (4.4). Proposition 4.1 follows
immediately: we have

S(r) < inf{|All; : 0£1eO0®OVT). (4.7)

O
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Proof of Corollary 4.2. By Mahler’s criterion, the space of lattices in C¢
with volume one and shortest vector of length > r > 0 is compact. Since
vol(A;) = 1, the condition 6(t) > r > 0 also defines a compact subset of
Xk by Eq. (4.7). O

Control of H;. To conclude we estimate the variation of A (x) with respect
to T.

Proposition 4.4 Given (a,b) # (0,0) € R and t € H, let

la + bt|?
t) =log —.
n(t) =log — —
Then the level sets of n are horocycles resting on x = —a/b € 0H, and

ldn|| = 1 in the hyperbolic metric.

Proof. Using the action of SL,(R) on H and R2, we can reduce to the case
where (a, b) = (1,0). Then n(r) = —loglm t, —a/b = oo and the result is
immediate. O

Corollary 4.5 The trajectories of the vector field —Vn are unit speed
geodesics converging to x = —a/b.

The relation x = —a /b above explains our convention (4.5).
Now observe that we can write

d 2

| la; + b7
h = — f log —M8 . 4.8
)= 57 it % g (4.8)

Applying the estimate above to each term, we obtain
Corollary 4.6 For any o, T € H we have
sup |he (x) — he(x)| = (1/2) ml_axd(oi, 7).
X

(The maximum on the right gives the Kobayashi distance dg (o, 7); see Sect. 5.)

Proof of Proposition 4.3. The function M (t) = sup, |h:(x) —h(x)]is finite
by Proposition 3.1, and continuous by the estimate above, so supp, M (7) is
finite by compactness of D. O

5 Geodesic curves on Hilbert modular surfaces

In this section we prove Theorem 1.1, which we state in detail as follows.
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Theorem 5.1 Let
V=H/T % Xx = H?/SL(O & O)

be a complex geodesic curve on the Hilbert modular surface associated to
a real quadratic field K. Then either V is a Shimura curve, or for every
x € PY(K) there exists a parabolic element g € T satisfying g - x = x and

h(g) = O(1 + h(x)?). (5.1)

Here h(g) is the logarithmic height defined in (2.6).

Remarks. 1. Theorem 5.1 implies the same result with SL(O@®O") replaced
by any commensurable subgroup of SL;(K), e.g. SL2(O) or SL, (2 P B).

2. When V is a Shimura curve, I' is arithmetic. Then either V is compact
(and I" has no cusps), or I' is commensurable to SL,(Z), and its cusps are
a copy of P1(Q).

3. In general, given a number field K and a subgroup I' of SL,(K), we say
the cusps of I satisfy quadratic height bounds if each cusp x € P!(K) is
fixed by a parabolic g € I satisfying (5.1). This property is inherited under
commensurability.

4. We can take g in (5.1) to be the generator of the stabilizer of x in I" (up to
+17). Note that we also have

log llglla = O(1 + h(x)%),

by Eq. (2.7).

Conventions. In this section, K = Q(+/D) will denote a real quadratic field
with a distinguished real embedding. Thus we will regard K as a subfield of
R, and SL;(K) as a subgroup of SL;(R), with Galois involutions x +> x” and
g > g respectively.

The action of SL(O @ O) on H? is givenby g - 7 = (g - 71, g’ - 7). Note
that the map ((t) = (12, 71) satisfies (g - 7) = g’ - 1(7), and descends to an
involution on Xg.

Geodesic curves. We say an algebraic curve V = H/ ' & Xk is a complex
geodesicifitisisometrically immersed for the Kobayashi metrics on its domain
and range.

On H the Kobayashi distance d is given in terms of the hyperbolic metric
d by

dk (z, w) = maxd(z;, w;),
l
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and its infinitesimal form is the Finsler metric give by max |dz;|/ Im(z;). The
Kobayashi metrics on V and X g are inherited from their universal covers.

By the Schwarz lemma, every holomorphic map / : H — H is either
a contraction or an isometry for the Kobayashi metric; and in the isometric
case, the composition of I with projection to one of the factors of H is an
isomorphism. It follows that, up to the action of ¢, any geodesic curve V & Xg
is presented by the following data:

e Alattice I’ € SL(O @ OY) c SL,(R); and
e A holomorphic map F : H — H such that
e We have

F(g-1)=g - F() (5.2)

forallt e Hand g € T.

The immersion of V = H/ I into X is then given by I(¢t) = (¢, F(¢)).
Equivalently, V is covered by the graph of F in H x H.

Galois contraction. Since F itself is either an isometry or a contraction,
Egs. (5.2), (2.4) and (2.8) imply:

Proposition 5.2 For any g € T', we have

Ig'll2 = O(llgll2) and |Tr(gh| < max(2, | Tr(g))).

In particular, the traces of hyperbolic elements in I lie in the discrete subset
of O C R where |x’| < |x|. The number of such x with |x| < R grows like
R

Shimura curves. We say V is a Shimura curve if F is an isometry. In this case
V is also isometrically immersed for the symmetric Riemann metric on Xg,
and I' has trace field Q. For more on these much-studied curves, see e.g. [VG,
§V] and references therein.

For the remainder of this section, we will assume V is not a Shimura curve,
and thus F is a contraction: the norm of its derivative in the hyperbolic metric
satisfies || Df (t)]| < 1 for all + € H. Our goals is to prove Theorem 5.1.
Thick-thin decomposition. Since I' is a lattice, V is a finite volume hyperbolic
surface with a finite number of cusps m. Let V. C V be the union of m disjoint
closed horoballs B;, one for each cusp, chosen so the length of d B; is a small,
universal constant €g > 0. Let Vipick = V — V.. Then Viyick, the thick part of
V, is a compact submanifold bounded by m closed horocycles.

Letwr : H — V = H/T be the quotient map. By the functional equation
(5.2), IDf (¢)|l is '-invariant; so by compactness, there exists an & > 0 such
that

7(t) € Vimieck = IIDFO] <1 —q. (5.3)
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Choose a compact set D C H such that 7 (D) = Vijck. Shrinking V. if
necessary, we can arrange that i = /—1 is in the interior of D; it will serve
as a convenient basepoint.

Height bounds. Let 7(¢) = (¢, F(t)) denote the isometric map H — H?2
covering the immersion V — Xk . Note that for g € I" we have

T(g-1)=g-t(). (5.4)
By Propositions 4.1 and 4.3, there exists an M > 0 such that

7(t) € Vihik = —M < ir)}fhr(t)(x), (5.5)

and

sup [ho(n)(x) — h(x)| < M (5.6)

for all ¢ € D; in particular, for t = i.
Descending geodesics. Now fix a point x € P!(K). To show x is a cusp of T,
we consider the unit-speed geodesic ray y : [0, co) — H with y(0) =i and
y(s) > x as s — o0.

We aim to analyze the excursions of 7w o y : [0, 0c0) — V into the cusps,
and its sojourns in the thick part. These alternating behaviors are described by
a sequence of consecutive closed segments,

[0,00) =TI UCTUTL,UC3U--- (5.7)

meeting end to end, such that | J 7; and | J C; form the preimages under 7z o y
of Vinick and V. respectively. Since dV, is convex, every sojourn in the thick
part lasts a definite amount of time: we have |T;| > c(eg) > O for all i.

Let T(s) = )_|T; N[0, s]|. The following are equivalent:

1. The point x is a cusp of I'.

2. The total amount of time spent in the thick part, sup, 7 (s), is finite.

3. The decomposition (5.7) terminates with an interval of the form C, =
[$n, 00).

In this case we refer to s, as the exit time for the geodesic descending to x.
Evolution of height. To begin the analysis, we will show the amount of time
spent in the thick part is controlled by & (x).
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Proposition 5.3 Foranys > 0, we have hy(y(5))(x) < h(x) + M —aT(s)/4.

Proof. Recall that for any (a,b) € O @ O with a + bx = 0 we have, by
Eq. (4.8),

1(10 lai + by (s)|? o |a2+b2F()/(S))|2>

he(ys)(x) = 4 Im y(s) . Im F(y(s))

_ Mmi(s) +mls)
B 4

Moreover, we can choose (a, b) such that equality nearly holds for s = 0, and
thus, by the bound (5.6), we have

M <h(x)+ M. (5.8)

Fixing these values of a and b, we wish to study the behavior of n(s) =
n1(s) + n2(s). By following the geodesic y (s), we are driving 1 (s) to zero
as fast as possible; at the same time, the growth of 7> (s) is damped by the
contraction of F. More precisely, Corollary 4.5 yields:

m(s) =—1 and ny(s) < IDF(y)I < 1.

These derivative estimates, combined with the bound (5.3) on the size of | D F||
over the thick part of V, yield

n(s) < n(0) —aT(s).
Combining this inequality with Eq. (5.8), we obtain the stated result. |

Corollary 5.4 The total amount of time the geodesic w o y (s) spends in the
thick part of V is O(1 + h(x)).

Proof. The lower bound (5.5) on the height, combined with the upper bound
in Proposition 5.3, gives sup, 7'(s) < (4/a)(h(x) +2M) = O(h(x) +1). O

Corollary 5.5 The point x is a cusp of T'.

Cuspidal excursions. Next we show the height also controls the cuspidal
excursions of 7 o y, organized by Eq. (5.7).

Proposition 5.6 We have |C;| = O(1 4+ h(x)), provided |C| is finite.

Proof. Suppose V has m cusps, represented by points x1, ..., x, € P!(K).
Let B; C H be a closed horoball resting on x ;, chosen so that V. = w (| B).
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Recall the bound (5.6) holds for all t € D. Redefine D if necessary so that
m(D N Bj) contains 9 V.

Let C; = [si, t;]. Since 7 o y (C;) is contained in V,, there exists a horoball
Bjandag € I"suchthat g - y(s) € DN B;. Then g - y[s;, 00) is a geodesic
ray that begins in the compact set D N d B}, and converges to g - x # Xx;.

Suppose for simplicity that x; = 0. By the height comparison (5.6), the
functional equation (5.4), naturality (4.6), and Proposition 5.3, we have

hg-x) =M = hegys)(8-x)
hgx(y(si)) (8 - %)
he(y(sin (X)) < h(x) + M.

Lemma 2.1 then controls how close g - x can be to x; = 0: we have
loglg - x| = —2h(g-x) > —2h(x) —4M.

Now a geodesic segment that descends from height y; to y, in H has length
O (14+1og(y1/y2)). Forthe segment g-y[s;, t;]wehave y; =< land y, =< |g-x|?,
which gives

ICil = 1t = sil = O + h(x))

as desired. To handle the general case, choose an automorphism f; of PL(K)
for each j, such that f;(x;) = 0, and observe that 2(f;(x)) = h(x) + O(1)
by Eq. (2.1). ]

Corollary 5.7 The exit time for the geodesic w o y(s) is O(1 + h(x)?), and
the number of cuspidal excursions isn = O(1 + h(x)).

Proof. Suppose C,, = [s,,, 00) is the final cuspidal excursion. Then the exit
time is given by s, = |T1| + |C1| + |T2| + |C2| + - - - + | T, |. By Corollary 5.4,
we have Z’l’ |T;] = O(1 + h(x)); and since |T;| is bounded below, we have
n = O(1 + h(x)). The preceding result then gives

n—1
> 1Ci = 01 + h(x)) = O(1 + h(x)?),
1

completing the proof. O

Proof of Theorem 5.1. Given x € P!(K), let y : [0, c0) — H be the unique
geodesic ray with y(0) = i and y(s) — x, as above. We have seen that the
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exit time for 7 o y is O(1 + h(x)?). Thus there exists a closed horoball B,
resting on x and forming a component of 7~ 1(V,), such that

d(i, B) = O(1 + h(x)?). (5.9)

Let g € I' generate the stabilizer of B in I'. We wish to control its height,
which satisfies

2h(g) = log||gll2 +log llg"ll2 + O(1), (5.10)

by Lemma 2.2 and the fact that I" is conjugate to a subgroup of SL,(QO). By
elementary hyperbolic geometry, the parabolic translation distance D(t) =
d(t, g(t)) grows linearly as t+ € H moves away from B: that is, we have
D(t) = O(1 +d(t, B)). Thus Egs. (2.4) and (5.9) give

logllgll3 = d(i, g(i)) = 0(d(, B)) = O(1 + h(x)?),

and a bound of the same form holds for log || g’||2, by Proposition 5.2, Thus
(5.10) yields h(g) = O(1 + h(x)?), as desired. |

6 Triangle groups and Teichmiiller curves

In this section we bring Teichmiiller curves into play, to connect triangle
groups, billiards and curves on Hilbert modular varieties. We then prove Corol-
laries 1.2, 1.3, and 1.5.

We will begin by showing:

Theorem 6.1 Let (X, w) be a holomorphic 1-form of genus g such that
SL(X, w) is a lattice with real quadratic trace field K. Assume 0, 1 and oo
are periodic slopes for (X, w). Then:

1. The cusps of SL(X,®) C SLa(K) coincide with P\ (K) and satisfy
quadratic height bounds; and

2. The periodic slopes s for (X,w) coincide with PY(K), and satisfy
log L(s) = O(1 + h(x)?).

Here L(s) is the length of the longest closed geodesic with slope s, and the
quadratic height bounds are of the form i(g) = O(1 + h(x)?) asin Eq. (5.1).
Teichmiiller curves. For background material, see e.g. the surveys [Mas,Mo2,
Z] and [Mc7], as well as [Mc1] and [Mc6].

Let Q M, — M, denote the moduli space of nonzero holomorphic 1-forms
(X, w) of genus g. The stabilizer of a given form under the natural action of
SL,(R) will be denoted by SL(X, w). It is related to the group of real affine
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automorphism of (X, w) via the exact sequence

1 = Aut(X, w) - AffT (X, ) 3 SL(X, w) — 1.

Suppose SL(X, w) is a lattice. Then the orbit of (X, w) covers an isometri-
cally immersed Teichmiiller curve

V = H/SL(X, 0) & M,.

The curve V has at least one cusp, and the trace field K C R of SL(X, w) is
totally real (cf. [HL]).

The geodesic flow on the singular flat surface (X, |@|) satisfies the Veech
dichotomy: every geodesic is either periodic or uniformly distributed. The map
s +— x = —1/s gives a bijection between the periodic slopes and the cusps
of SL(X, w); in particular, periodic slopes are dense. In the periodic case, the
smooth closed geodesics with slope s sweep out a collection of open cylinders

C(s) ={A1,..., An}, 6.1

whose closures cover X.

Replacing the original form with & - (X, ) for some & € SL;(R), one
can always normalize so that 0, 1 and oo are periodic slopes. We then have
SL(X, w) C SLy(K) (cf. [CSm]).

Modular embeddings and triangle groups. We will use the following two
important results about Teichmiiller curves.

I. [Mol, Cor. 2.11] After passing to a finite cover, V can be immersed as a
totally geodesic curve in the Hilbert modular variety Xg. Its image is a
Shimura curve only when K = @ (in which case Xx = H/ SLy(Z)).

II. [BM] Every triangle group A(p, g, 0o) is commensurable to the funda-
mental group SL(X, w) of a Teichmiiller curve V.

Remarks on the proof of (I). One begins by showing that Jac(X) admits
a canonical factor A with real multiplication by K, and o is the pullback
of an eigenform on A. The variation of A over V gives a map from V to a
suitable moduli space of abelian varieties with real multiplication ¥ = H?/A.
Although A need not be principally polarized, A C SL,(K) stabilizes a lattice
M commensurable to O @ OV, so after passing to a finite cover we obtain a
map V — Xk. This map is a geodesic immersion because the periods of the
eigenform w vary as fast as possible; the other eigenforms vary more slowly,
S0 it is not a Shimura curve.

For d > 3 the proof that A admits real multiplication rests on rigidity
theorems of Deligne and Schmid. The case d = 2, which is sufficient for
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Theorem 6.1, can be handled by more elementary means; see [Mcl], and
[Mc3].

Proof of Theorem 6.1. Part (1) follows immediately from Theorem 1.1 and
(I) above. For part (2), let s be a slope in PY(K). Then x = —1/s is acusp of
SL(X, w), whose stabilizer is generated by a parabolic element g = D¢ for
some ¢ € AffT(X, ). The geodesics at slope s decompose X into cylinders
(A, ..., Ay) asin Eq. (6.1). Replacing ¢ with ¢" for some n = O(1), we
can assume ¢ (A;) = A; for all i, and ¢ fixes dA; pointwise.

Let (h;, c;) be the height and circumference of A;. Note that L(s) = max c;.
The map ¢|A; is apower of a Dehn twist, and hence it sends a geodesic segment
of length £; to one of length greater than c;. It follows that

gl < 18" l2 = ci/ hi = ¢}/ (hici) > ¢}/ area(X, w) < cj.
By the quadratic height bounds from part (1), we also have
log ligllz = O(h(g)) = O(1 + h(x)*) = O(1 + h(s)?),

and hence log L(s) = logmaxc¢; = O(1 + h(s)?) as desired. |

Proof of Corollary 1.2. Combining Theorem 1.1 with (II) above shows that
every triangle group of the form A (p, g, 00) is conjugate to a group with cusps
PY(K). o

Let us explicitly state the following complement:

Corollary 6.2 The cuspsof A(p, q, 00) satisfy quadratic height bounds when-
ever K g is a real quadratic field.

Proof of Corollary 1.3. Letu = ( (1) ) € A(2,5,00),and let x = a/c be the
golden fraction for a cusp x of A(2,5,00). Then h = (¢4) € T for some

b, d, and hence x is fixed by the parabolic element

_ -1 _ (10 —ac a?
g = huh _(01 +vy —? ac erl.

We then have
h(a) + h(c) = O(1 + h(g)) = O(1 + h(x)?),

by the quadratic height bounds for A(2, 5, c0).

The golden continued fraction (1.1) for x describes the behavior of the
geodesic ray y descending to x: each term a; corresponds to a cuspidal excur-
sion of length O (1 +log|a;|). Thus N are max log |a;| are both O(1 + h(x))
by Proposition 5.6 and Corollary 5.7. O
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Proof of Corollary 1.5. Let P be a lattice polygon with quadratic trace field
K, and internal angles (;ra; /q) as in Sect. 1. The periodic slopes S(P) for P
coincide with those for the 1-form (X, w) obtained by unfolding P.

By Theorem 6.1, the set of all cross-ratios of 4-tuples in S(P) coincides
with K — {0, 1}. Equivalently, there exists a vector space A C C, dense in C
and 2-dimensional over K, such that S(P) coincides with the slopes of vectors
in A. Here A is uniquely determined by S(P), up to multiplication by a real
scalar.

Now assume P is normalized so one of its sides is horizontal. Since S(P)
is invariant under the dihedral group D, generated by reflections through
the sides of P, the same is true for A. Thus A is invariant under z — 7 and
Z > {4z, where ¢, = exp(2mi/q). Consequently A contains a real number
a = z + 7 # 0; rescaling by 1/a, we can assume that 1 € A. We then have

A=K ®K¢,

provided g > 2. In particular S(P) contains 0, co and & = tan(r/q), these
being the slopes of 1, {; — ¢, and 1 + 4. Since all cross-ratios of periodic
slopes lie in K, it follows that

S(P) = aK U {00},

as desired. When g = 2, the normalization of P implies that 0, 1, oo € S(P),
and hence we can take ¢ = 1 in the equation above.
The height bound on log L («s) is a consequence of Theorem 6.1. O

We remark that Corollary 1.5 immediately implies:

Corollary 6.3 Let P be a lattice polygon with quadratic trace field. Then
every edge of P has periodic slope.

Notes and references. Theorem 6.1, without the quadratic height bounds, first
appears in [Mc2, Theorem A.1]. Its proof there, which uses interval exchange
transformations and the Veech dichotomy, proceeds by contradiction. In [Mc5]
we give an effective proof of the Veech dichotomy, using Hodge theory instead
of interval exchange maps, and the argument above continues this develop-
ment. One can also deduce Corollary 1.2 from [Mc2] and [BM].

7 Study of triangle groups via dynamics
In this section we use the connection between Teichmiiller curves and triangle

groups, made explicit in the case of A(2, 5, o0), to establish the results on
matrix coefficients, ratio sets and limit measures stated as Theorems 1.4 and
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1.6. We also present a plot of matrix coefficients and some examples of golden
fractions, showing our height bounds are sharp.

Algebraic preliminaries. Let y = (1 4+ +/5)/2, so O = Z[y] is the maximal
order, of discriminant D = 5, in K = Q(y) C R. Define a Q-linear map
Y K — Qby

vx+yy) =y,
where x, y € Q. Using the fact that OV = D~1/20, we find that

[(a.b). (c.d)] = Trfy D'/ det (i 2) = ¥ (ad — be) (7.1)

gives a unimodular symplectic form on O2. (This modification of Eq. (4.2) is
made to account for the conventional normalization of triangle groups.)
We define a ring homomorphism / : K = Q & Qy — M>(R) by

I(x—l—yy):x(é?)—l—y(?i). (7.2)

The matrix I (m) represents multiplication by m on K with respect to the
basis (1, y). Up to scale, I(m) depends only on 8§(m) = m’/m; thus we
have a continuous homomorphism of multiplicative semigroups J making the
diagram

1

K> Ma(R) (7.3)
l |
R —~ My (R)/R*

commute.

Remarks. The target of J, with [0] removed, is homeomorphic to P3: it con-
sists of matrices of rank > 1, up to scale. The map J is a homeomorphism
to its image, which is an affine line R ¢ P' ¢ P3. Every matrix in J(R) is
invertible, except for

0 =[(5)]

0

With respect to a basis where I (y) = (](/) Y

), we have J(x) = [((1)2)].
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B2 B+
Fig. 4 Core curves of cylinders on the surface (X, w) = (P, dz)/ ~

The golden surface. Let P C C be the golden L from Sect. 1. With the vertices
shown in Fig. 4, P is a combinatorial octagon. By identifying parallel sides,
we obtain a holomorphic 1-form (X, w) = (P, dz)/ ~ of genus two, with a
single zero of order two coming from the marked points.

The surface X decomposes into a pair of horizontal cylinders A = C(0) =
{A1, A2} and vertical cylinders B = C(o0) = {Bj, B>}. We associate to each
of these cylinders an integral homology class on X, using the orientations
shown. Since the intersection matrix [A;, B;] = ((1) }) is unimodular, these
cycles generate the integral homology of X. It is then readily verified that the

period map
7 H(X,Z) —> O

characterized by n(C) = (a,b) <+— fc w = a + ib, is a symplectic
isomorphism. For example, we have w (A1) = (1,0), w(B2) = (0, ), and

[A1, By] =1 ="Te§ (v/V5).

Affine automorphisms. Next we observe that the affine group of (X, ) can
be naturally identified with the (2, 5, 0o) triangle group; that is, we have an
isomorphism

D : AffT (X, ) = SL(X, w) = A2, 5, 00) C SL2(O).

The action of first group on Hj (X, Z), and of the last group on 2, are inter-
twined by the period map 7.

Since A(2, 5, oo) is a maximal Fuchsian group, to show that D is an iso-
morphism it suffices to observe that Aut(X, w) is trivial, and that there exist
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o, T € AffT (X, w) such that

_(0-1 _(ly
Da_< O) and DIA_<01>.

Indeed, we can take o to be a 90° rotation coming from the Euclidean symmetry
of P/ ~, and t4 to be a product of Dehn twists on Aj and A5.

Since A(2,5, c0) is a lattice, (X, w) generates a Teichmiiller curve V =

H/SL(X, w) — Ma. (Indeed, in the terminology of [Mcl], V is the Weier-
strass curve Wp, D =5.)
Matrix entries and columns. Let ¢ = (1,0) and eo = (0, 1) in 0% We
remark that the first and second columns of matrices in I' = A(2, 5, 00)
represent the same vectors in O?%; thatis, T -e; =T - es. Similarly, the set of
martrix entries in a given position, e; - I" - e}, is independent of i and j. These
assertions follow from the fact that I" contains ( % {) and —1.

As in Sect. 1, we denote the set of all matrix entriesin ' by M € O C R,
and let

SM={m'/m : 0 #£#m e M)}.
As a hint of the multiplicative structure hidden in § M, we observe that
SM D> —y 2. 85M. (7.5)

To see this, note that

Lny\ (ab) _ (a+nycx\,

01 cd) * )
thus if ¢ € M, we also have ¢, = a +nyc € M foralln € Z, and ¢, /¢, —
—y~2¢Jc. (Here  denotes a matrix element whose value is irrelevant.)

Classification of closed geodesics. Since V has only one cusp, for each peri-
odic slope s there exists a ¢ € AffT(X, w) such that

C(s) = (¢(A1), 9(A2)) = (C1, ().

When represented in this way, the cylinders C; inherit orientations from A;
and thus represent homology classes. The geodesics at slope s are of two types:
short geodesics lying in Cy, and long geodesics in C,. Their lengths differ by
a factor of y. Since

7(C1) = D - w(A)) = (ﬁ Z) . ((1)) — (j)
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we have:

Proposition 7.1 A cycle C € H((X, Z) is represented by a short geodesic if
and only if its period 7w (C) occurs as the column of a matrix in A(2, 5, 00).
Any long geodesic parallel to C has period y - w(C).

In the terminology of Sect. 1, one can compute the period of a short geodesic
with slope s by computing the golden fraction expression of its slope, s = c¢/a.

Corollary 7.2 There exists a closed geodesic C with period w(C) = (*, ¢) if
andonlyifce MUy M.

Corollary 7.3 The entries m = x + yy of matrices in A(2,5, 00) satisfy
xy > 0.

Proof. By the preceding Proposition, there exists an ¢ € O and a geodesic
C such that 7 (C) = (a, m). Since the closed geodesics A; and A3 shown in
Fig. 4 have periods (1, 0) and (y — 1, 0) respectively, Eq. (7.1) gives

(A1, C) =y (x+yy)=y and (A3,C) =y ((y — Dx+y) =x.

But A; and A3 have the same direction, so their intersection numbers with C
have the same sign. O

Using the fact that " = —1/y, the previous Corollary easily implies:
Corollary 7.4 We have SM C [—y 2, 1].

The endpoints are achieved whenm = y and m = 1.

Proof of Theorem 1.6. The set M of probability measures arising from bil-
liard trajectories in P, with slopes tending to zero, can be identified with the
set of measures on (X, w) arising from closed geodesics with slopes tending to
zero. By [Mc6, Theorem 1.3], a dense subset of M is given by the probability
measures [£(C) proportional to

2

(Ai, C) 2
,.:ZI c(A))

where C ranges over all closed geodesics and c¢(A;) denotes the circumference
of A; (givenby 1 and y fori = 1 and2). Thusif 7 (C) = (x,c)andc = x+yy,
we have

w(C) = yai +y " (x + yaz
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by Eq. (7.1). A simple computation also shows that, if we set r = ¢’/c, then
the ratio of the coefficients of «; and wy above satisfies

y 'x+y)  1+y7?r
y 1= r

Thus w(C) is proportional to the measure v(r) defined by (1.7), and hence
w(C) =v(r).

By Proposition 7.1, there exists a C such that 7 (C) = (x, ¢) if and only if
c € MUyM.For c € M, the corresponding values of r range in 6 M, while
for ¢ € y M, they range in —y ~2 - M. Thus v provides a homeomorphism

V:SM U —y~2.8M — M.

But the domain of this map is simply the closure of 6 M, by Eq. (7.5); and thus
the image 5 M is dense in M, as desired. O

The last step in the proof says it suffices to consider the measures coming
from ‘short’ closed geodesics. Geometrically, this reflects the fact that the
homology class of the short geodesic ) (B1), n > 0, is close to a multiple of
the long geodesic A».

Intersection matrices. Let ¢ € Aff(X, ) be an affine automorphism. The
intersections between the cylinder systems A and ¢ (A), given by the matrix

(A1 6(AD) (A1, B(A2)
A, 04 = <<Az, (AD) (As, ¢(A2)>>’

are conveniently described using the function (7.2).
Proposition 7.5 If D¢ = (¢5), then (A, ¢ (A)) = I (cy).

Proof. Note that 7(¢(A1)) = (a,c) and w(¢p(Az)) = y - (a,c). Thus if
¢ = x + yy we have, by Eq. (7.1),

o =v (5 ) =x(To) 3 (13):

Proof of Theorem 1.4. Let
T ={[(A, ¢(A)] : ¢ € AffT(X, w)} C Ma(R)/R™.

The set T coincides with the set of all possible intersection matrices between
pairs of cylinder systems on (X, w), up to scale. We also note that, by
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I S |
30 40

Fig. 5 Matrix entries (x, y) = x + yy. The line y = yx is shown

Eq. (7.4), the heights and circumferences of the cylinders (A, Ay) satisfy
J(0) =[h(A;)c(A})]. Thus, by Theorems 1.7 and 1.8 of [Mc6], we have

T =(T)U{J()} = w® +1. (7.6)

Now let S = 8(y M) = —y~2-.8M, as in Eq. (1.4). By Proposition 7.5 and
the commutative diagram (7.3), we have

T =[IyM]=J06(yM) =J(S).

Since the map J : [—1, 1] — J[—1, 1] is an isomorphism of topological
semigroups, Eq. (7.6) implies that

S=(S)U{0} = w®+1.
O

Survey of matrix entries. Next we present a picture of M. Recall that every
matrix entry m = x + yy of the triangle group A(2, 5, co) determines a point
(x,y) € Z? in the first or third quadrant, by Corollary 7.3.

The matrix entries with 0 < x, y < 40 are plotted in Fig. 5. By Theorem
1.4, if this figure were extended to the whole first quadrant, the slopes of all
marked points would form a set P satisfying P = w® + 1 and D®P = {y}.
The line with slope y is shown.

Since P is a closed set of measure zero, the marked points in Fig. 5 can be
covered by finitely many cones with small total angle, leading to the estimate:

{x +yy e M : |x|+|y| < N} = o(N?).
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Billiards, heights, and the arithmetic

Question. Is § M already closed in R*? Equivalently, is y ~28 M itself a semi-
group?
Golden fractions. We conclude the study of A(2, 5, co) with some examples
of golden fractions.

The golden fraction a/c for an algebraic integer x € Z[y] is conveniently
described by the unique integer N = N (x) such thata/c = (y"Vx)/y". Note
that

N(x +ny) =N(x) (7.7)

for any n € Z, since adding a multiple of y only changes the first term in the
golden continued fraction for x.

1. For k > 0, we have N(ka) = k%> — k + 1. This shows the exponent 2 in
Eq. (1.2) is sharp.
The proof is by induction on k, using the fact that n = y>*~1 —1=2k ¢ 7,
and hence

y2k =ny + 1/]/2k_2.

By similar reasoning we have N (y2*t1) = k2.

2. The Fibonacci sequence (f1, f2, f3,...) = (1,1,2,3,5,8...) satisfies
N(fa) = k* and N(fu—1) = k* —k + 1. In fact y" = fo_i + fuy, s0
N(f—1) = N(y") by Eq. (1.7).

Applying this observation to fp = 6765 gives the trajectory length

L(6765) =2y 101 / 2+ 1 ~ 10% for billiards in the golden L, as stated
in the Introduction.

3. On the other hand, N(ny) = O for all n. This shows the lower bound
h(x) < h(a)+ h(c) on the complexity of a golden fraction is best possible.

8 Compression of cusps

In this section we prove Theorem 1.7 which, like Theorem 1.1, does not make
direct reference to Teichmiiller curves. As an application, we give a second
proof of Theorem 1.4.

We begin by defining the renormalized distance between a pair of cusps on
a hyperbolic surface.
Parabolics. Recall that a matrix g € SL,(R) is parabolic (or unipotent) if and
only ifn = g—1 is nilpotent of rank one. These nilpotent matrices are naturally
identified with the open light-cone in the Lie algebra sl (R). A parabolic is
positiveifitis conjugatein SLy (R) to ( (1) } ) . The positive parabolics correspond
to one component of the light cone.
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Using the trace form, we define a pairing on parabolics by

(g1, &2) = Tr(g182) — 2 = Tr(n1no),

where n; = g; — I. Note that

(¢l gd) =ij(g1, &) (8.1)

foralli, j € Z.

Cusps. Let I" be a lattice in SL, (R). For convenience, assume that (+/) C T.
We say x € dH is a cusp of I' if it is fixed by a parabolic element g € I'. The
set of all cusps will be denoted « (I").

For each x € «(I') there exists a unique positive parabolic g = gen(x) € I'
such that every other parabolic fixing x is a power of g. Given r € R let
B, (x) C H denote the unique horoball resting on x such that the length of its
boundary, modulo the action of g, satisfies

0B, (x)/(g)] = exp(r). (8.2)

Note that B, (x) and Bs(x) are bounded by parallel horocycles, distance |r — s |
apart. One can think of B, (x) as the ball of renormalized radius r centered at
x; we emphasize that r can be negative.

Let

n:H—->V=H/T

denote the quotient map. By regarding B, (x) U {x} as a neighborhood of x,
we obtain a natural topology on the extended upper halfplane such that the
quotient

HUxk@)/T =V
is a compact Riemann surface. The added points x (V) = V — V are the cusps
of V.

Renormalized distance. We define the renormalized distance between a pair
of distinct cusps x, y by

D(x,y) = lim d(Br(x), By(y)) +2r. (8.3)

Let y C H denote the hyperbolic geodesic joining x to y. Geometrically,
D(x, y) measures the length of the geodesic 7 (y) C V, truncated at standard
horoball neighborhoods of the cusps of V.
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Proposition 8.1 We have exp(D(x1, x2)) = —(g1, &2), where g; = gen(x;).

Proof. Normalizing so (x1, x2) = (o0, 0), we can write

(1D 4o (10
81=\o1) ¢ 82=\_¢1

with b, ¢ > 0. Then Bg(x1) is the region Im(¢) > b, Bo(x2) is a Euclidean ball
of radius 1/c resting on t = 0, and—provided these balls are disjoint—we
have

b

exp(D(x,y)) = GXP/ du/u =bc =2 —Tr(g182) = — (81, &2).
1/c

To treat the general case, use B, (x;) with » small enough to insure disjointness.
O

Indiscrete groups. The discussion above also goes through for an arbitrary
group I' C SL>(R), subject only to the condition that its parabolic subgroups
are cyclic. In particular, I' need not be discrete. Although the quotients spaces
V and V cannot be defined in this setting, Eq. (8.3) still gives a geometric
meaning to D(x, y) in terms of the universal cover H.
Contracting twists. We now return to the setting of Theorem 1.7.Letp : I’ —
I € SLy(R) and F : H — H define a contractive twist of I". For brevity, we
will write g’ = p(g); thus F(g-t) = g’ - F(t). Since the parabolic subgroups
of T are cyclic, the same is true for I'”, by condition (1.8).

Let x be a cusp of I' and let g = gen(x). Then there is a unique cusp x’
of I'” fixed by g’. Below, functions of primed variables such as gen(x") and
B, (x") depend implicitly on I'’; those of unprimed variables depend on T".

Proposition 8.2 The parabolic g’ = gen(x)’ is positive, and F(B,(x)) C
B, (x") forall r € R.

Proof. The map F descends to a holomorphic map between punctured disks,
fra*=H/(g) —» H/(g)) = A”

inducing the identity on 1. Completing f across the origin and applying the

Schwarz lemma yields the result above. O

Corollary 8.3 We have gen(x’) = gen(x)'.

Compression. Consistent with Eq. (1.10), given x, y € «(I") with (g, h) =

(gen(x), gen(y)), we now define

(g'. )

(g, h)

r(x,y) =
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By Eq. (8.1), this quantity does not change if we replace g and / with a different
pair of parabolics in I" fixing x and y. By Proposition 8.1 and Corollary 8.3,
we have

r(x,y) =exp(D(x',y") = D(x, y)). (8.4)

This expression makes it clear that » (x, y) measures the rate at which F pulls
the cusps x and y closer together. A quantitative estimate for this compression
is given by:

Proposition 8.4 Ler y : R — H be a unit speed hyperbolic geodesic running
from x to y. Then

D(x,y) = D(x,y) = / L—|[F'(y(s))l ds.

Here || F’|| < 1 is the norm of the derivative of F in the hyperbolic metric.

Proof. Choose r > 0 small enough that equality holds in Eq. (8.3) for D(x, y)
and D(x’, y'). Lets; < s7 be the moments when y (s) leaves and enters B, (x)
and B, (y) respectively. Then by Proposition 8.2, Foy : [s1, s20] — Hprovides
a path connecting B, (x") to B, (y’). It follows that D(x, y) +2r = s — s and

82
D', y) +2r = d(By (), B,(¥)) < / CIF )l ds.

Taking the difference and letting » — 0 yields the bound above. O

Let Vinick denote the thick part of V, as in Sect. 5. Since || F’(¢)| depends
only on 7 (¢), we have

§= inf 1—|F @] >D0.

7 (1) € Vihick

Corollary 8.5 Let T be the total amount of time the geodesic 7w oy spends in
the thick part of V. Then r(x, y) < exp(—4éT).

Proof. Immediate from Proposition 8.4 and Eq. (8.4). O

Modular symbols. In preparation for the proof of Theorem 1.7, we briefly
review some material from [Mc6, §2].
A modular symbol of degree d is a formal product

O =Y1%* - *Yn
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of oriented geodesics on V, joining consecutive cusps (co, . . ., ¢;) to form a
path from ¢ to ¢, on V. We let S4(V) denote the modular symbols of degree
d,and S(V) = USO S4(V). The modular symbols form the morphisms in a
graded category whose objects are the cusps of V.

The geometric topology on S(V) is defined so that o, — 7 if the corre-
sponding paths converge uniformly, when suitably parameterized. Assuming
V has at least one cusp, we have S(V) = o®; S' (V) is dense among modular
symbols of degree d > 1; and 0,, — oo in S(V) if and only if

Loy N Vipick) — 00.

We can also identify S!(V) with the set of ordered pairs of distinct cusps
of I', subject to the equivalence relation [x, y] ~ [gx, gy] for all g € I". The
corresponding geodesic y on V has a lift to H which runs from x to y. In the
geometric topology, if x, y, z are distinct cusps and g = gen(y), then

[x, 8" ()] — [x, yI* [y, z] (8.5)

asn — oo.
Continuity of compression. By invariance of the trace, we have r(gx, gy) =
r(x,y) for all g € I'. Thus we can regard r as a function on SL(v)y; r(y)
measures the compression of y under F. Extending the definition to all modular
symbols by

r(yrsyas--xyy) =r(yory2) - r(va),
we obtain a functor
r:SV)— [0, 1];
this means simply that (o * 1) = r(o)r (7).
Proposition 8.6 The functor r is continuous, and r(o,) — 0 if o;, — 0.

Proof. We begin by proving continuity in the representative case described by
Eq. (8.5). Let x, y, z be distinct cusps of I', and let g, = gen(x), gy = gen(y)
and g, = gen(z). Normalize coordinates so that x = x’ = 00, y = y' =0,

_(la (10 _(*c
8 =lo1) & 7p1) &7 \ss)

and the same equations hold with primes on all variables. Then (g, gy) = ab
and (gy, g;) = bc,andhencer(x, y) = (a’b’)/(ab) andr(y, z) = (b'c")/(bc).
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Since gen(g}z) = gyg:8,", and

(8x- 8p8:8,") = —n*(ab)(bc) + O(n),

we similarly find that r(x, g¥z) — (@'b"y(b'c")/((ab)(bc)) = r(x, y)r(y, z),
as required for continuity under Eq. (8.5). The general case is similar. (Cf.
[Mc6, Thm 4.1].)

Finally observe that if o,, — 0o in S(V) then L(o,; N Vipick) — oo and
hence r(0,) — 0 by Corollary 8.5. |

Recall from Eq. (1.11) that the absolute ratio set is given by R = r(S Lovy.
Proposition 8.7 The ratio set R contains an accumulation point p # 0.

Proof. Let x and y be two distinct cusps of I', normalized as in the preceding
proof. Let y, = g7 (y) and z = gy (x). It is readily verified that

(grgyg" gy8xg, ") = ablabn — 1),

and hence r(y,, z) — p = (a’b’)?/(ab)? # 0. Using the fact that r(x, y) =
(a'b")/(ab) < 1, we also find that r(y,, z) takes on infinitely many values as
n varies, and hence p is an accumulation point of R (cf. [Mc6, Cor. 6.2]). O

Proof of Theorem 1.7. Let S = S(V) U {oo} denote the 1-point compactifi-
cation of S(V'). By Proposition 8.6, if we set r (c0) = 0 we obtain a continuous
map r : § — [0, 1]. Since

(S'(V)) U oo} = S1(V)
in S, and r is a functor, the set R = r(S'(V)) similarly satisfies
(RYU{0} =R

in [0, 1]; and since D*°S = {oo}, we have D*°R C {0}. To see equality holds,
observe that there exists a point 0 < p < 1 in DR by Proposition 8.7; then
p" € D"R, and hence 0 = lim p” € D®R. Thus D®R = {0} is a single
point, and hence the compact set R itself is homeomorphic to w® + 1. O

Remarks. The analysis above can be extended to the case where I' C SL;(R)
is any finitely generated discrete group, and p : I' — SL>(R) is any homo-
morphism compatible with a contracting map F. The essential point is not
that V has finite volume, but rather that the thick part of the convex core of V
is compact. In the more general case, r (x, y) can assume the value zero (e.g.
when p maps a parabolic element to an elliptic element). Examples where p
is not injective arise naturally for square-tiled surfaces; see e.g. [Mc6, §9].
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Second proof of Theorem 1.4. To conclude, we return to the triangle group
' = A(2,5, 00). The group I admits a contractive twist (o, F) with p(g) = g’
given by Galois conjugation. (See [Mc1, §10]; with the current normalizations,
F is antiholomorphic, but this causes no difficulties.) The map p preserves
parabolics, since they are characterized by the rational condition Tr(g) = +£2.

Let p = (%) = gen(c0), and let g = (¢4) € I'. As we have seen in
Sect. 7, every matrix entry for I" occurs in every possible position, so it suffices
to consider the values of ¢ which occur for g € T'.

We readily compute that

r(00, g(00)) =r(00, a/c) =

(p'. (gpg™")) _ (V/C/>2
(p.grg™h) ye

Since I' has only one cusp, every element of its absolute ratio set R arises as
above. Referring to Eq. (1.4), we see that the absolute and signed ratio sets for
I are related R = S2. Since R = w® + 1, it follows easily that § = w® + 1
as well.

The statement S = (S) U {0} is more subtle. It can be handled by defining
anew functor s : S(V) — [—1, 1] satisfying

5(00, g(00)) = (¥'¢)/(yo).

This distinguished square root of 7 is still continuous, and the proof of Theorem
1.4 for S can then be completed along the same lines as the proof of Theorem
1.7 for R. O
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