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Abstract. In this paper we introduce a new height on P
1(K ) associated to an1

Abelian variety with real multiplication by K , and use it to study non-arithmetic2

triangle groups, Teichmüller curves, and billiards in lattice polygons. Com-3

plementary results on matrix coefficients and measures are obtained using4

modular symbols. In particular, we show the matrix entries m of the classical5

Hecke group �(2, 5,∞) are constrained by the condition that −γ−2(m′/m)6

lies in a countable, closed semigroup S ⊂ [−1, 1] homeomorphic to ωω + 1.7
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1 Introduction18

In this paper we use methods from Hodge theory to describe the arithmetic19

of certain non-arithmetic lattices � ⊂ SL2(R). A key role is played by a new20

height on P
1(K ) determined by an Abelian variety with real multiplication by21

K .22

As a complement, we also use the modular symbols of [Mc6] to give a23

qualitative description of the matrix coefficients of �. The circle of ideas we24

will discuss has its origins in the theory of polygonal billiards.25

Curves on Hilbert modular surfaces. We begin by briefly stating one of our26

two main results, discussed in detail in Sect. 5.27

Theorem 1.1 Let V = H/� � X K be a complex geodesic curve on a Hilbert28

modular surface. Then either V is a Shimura curve, or the cusps of � coincide29

with P
1(K ) and satisfy quadratic height bounds.30

Here K is a real quadratic field, and V is isometrically immersed for the31

Kobayashi metric on X K .32

To illustrate this result, we describe in detail several motivating applications33

and complements. References are collected at the end of this section.34

Triangle groups. Consider the triangle group35

�(p, q,∞) = 〈S, T 〉 ⊂ SL2(R),36

generated by37

S =
(

cos(π/p) sin(π/p)
− sin(π/p) cos(π/p)

)
and T =

(
1 τ
0 1

)
,38

where τ is chosen so that Tr(ST ) = −2 cos(π/q). Its invariant trace field is39

given by:40

K pq = Q(Tr(g2) : g ∈ �(p, q,∞))41

= Q(cos(2π/p), cos(2π/q), cos(π/p) cos(π/q));42

and�(p, q,∞) is arithmetic if and only if K pq = Q (cf. [Tak, Prop. 5], [MR,43

Ex. 4.9]).44

One can readily survey the global properties of an arithmetic group such as45

�(2, 3,∞) = SL2(Z): every integer occurs as a matrix entry, every pair of46

relatively prime integers (a, c) occurs as a matrix column, and the cusps of47

SL2(Z) coincide with Q ∪ {∞}.48

The non-arithmetic triangle groups are more mysterious. While it is easy49

to describe their generators, it is difficult to characterize the matrices they50
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Fig. 1 Cusps for the triangle group �(2, 5,∞)

contain. On the other hand, it can be shown that every non-arithmetic triangle51

group arises (up to commensurability) from a geodesic curve on a Hilbert52

modular variety of dimension g = deg(K pq/Q) > 1. Thus Theorem 1.153

yields (Sect. 6):54

Corollary 1.2 The cross-ratios of the cusps of the triangle group�(p, q,∞)55

coincide with P
1(K pq)− {0, 1,∞} whenever deg(K pq/Q) = 2.156

Many instances of this result were first proved with a case-by-case analysis.57

The proof we present in Sect. 5 is a conceptual and effective descent argument.58

Golden fractions. To explain the height bounds in Theorem 1.1, we will59

discuss the non-arithmetic group � = �(2, 5,∞) in more detail.60

Let γ = (1 + √
5)/2. Then O = Z[γ ] is the maximal order in the field61

K = Q(γ ), γ is a fundamental unit, and the (2, 5,∞) triangle group is given62

by63

� =
〈(

0 1
−1 0

)
,

(
1 γ
0 1

)〉
⊂ SL2(R).64

Although it is a lattice in SL2(R), it is equally natural to regard � as a thin65

subgroup of the arithmetic group SL2(O) ⊂ SL2(R)
2. Via Theorem 1.1, the66

latter perspective yields the following three equivalent assertions.67

1. The cusps of �(2, 5,∞) coincide with Q(γ ) ∪ {∞} (see Fig. 1).68

2. Every x ∈ Q(γ ) can be expanded as a finite golden continued fraction,69

x = [a1, a2, a3, . . . , aN ] = a1γ + 1

a2γ + 1

a3γ + · · · 1

aNγ

(1.1)70

1 Quadratic trace fields occur for signature (2, q,∞) with q = 5, 8, 10, 12, (3, q,∞) with
q = 4, 5, 6, and (4, q,∞) with q = 6, 12.
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with ai ∈ Z.71

3. Every x ∈ Q(γ ) can be expressed as a golden fraction x = a/c, charac-72

terized by the property that
(

a b
c d

) ∈ � for some b, d. This expression is73

unique up to a sign change, x = (−a)/(−c).74

Let us elaborate the last point. Since K has class number one, we can75

certainly write x = A/B as a ratio of relatively prime integers A, B ∈ Z[γ ].76

In fact, since γ is a unit, there are many such expressions: we also have x =77

(γ k A)/(γ k B) for any k ∈ Z.78

The golden fraction expression x = a/c uses the thin group � to pick out79

a particular value of k. The complexity of this expression is controlled by the80

height bounds in Theorem 1.1; in this case, they yield (Sect. 6):81

Corollary 1.3 The height of any nonzero golden fraction x = a/c satisfies82

h(a)+ h(c) = O(1+ h(x)2). (1.2)83

Moreover the continued fraction of x satisfies N+max log |ai | = O(1+h(x)).84

Here h(x) is the absolute logarithmic height on K = Q ⊕ Qγ ; for x =85

(p/q)+ (r/s)γ , it satisfies86

1+ h(x)2 � 1+ (log max{|p|, |q|, |r |, |s|})2.87

Material on heights, abelian varieties with real multiplication, and Hilbert88

modular varieties is developed in Sects. 2, 3 and 4, in preparation for the proof89

of Theorem 1.1 in Sect. 5. The exponent 2 in Eq. (1.2) is sharp; see Sect. 7.90

Matrix coefficients. We now turn to complementary results, based on modular91

symbols.92

Let M ⊂ Z[γ ] denote the set of all matrix entries that occur in �. The93

discussion of golden fractions above shows that94

Z[γ ] =
⋃
k∈Z

γ k M.95

As noted by Leutbecher in the 1970s [Le], there is no known characterization96

of the elements of M . The next result gives a qualitative description of M and97

also reveals its hidden multiplicative structure.98

Derived sets. In preparation for the statement, recall that any compact, count-99

able metric space E is homeomorphic to a countable ordinal. The derived100

set DE is E with its isolated points removed; Dn+1(E) = Dn(DE); and101

D∞E = ⋂
Dn(E). The derived set D∞E is a single point if and only if E is102

homeomorphic to the ordinal ωω + 1.103
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The ratio set. Now let x �→ x ′ denote the generator of Gal(K/Q) = Z/2,104

define105

δ : K× → K×
106

by δm = m′/m, and let107

δM = {m′/m : 0 �= m ∈ M}. (1.3)108

Define the (signed) ratio set for � by109

S = −γ−2 · δM. (1.4)110

In Sect. 7 we will show:111

Theorem 1.4 The closure of the signed ratio set S is a compact, countable112

subset of [−1, 1] satisfying S · S ⊂ S. In fact we have113

S = 〈S〉 ∪ {0} ∼= ωω + 1,114

and D∞S = {0}.115

Here 〈S〉 denotes the multiplicative semigroup generated by S.116

Unlike Corollary 1.3, this result is not limited to quadratic fields. Similar117

results on matrix entries hold for all triangle groups with deg(K pq/Q) > 1,118

and the general statement, Theorem 1.7 below, applies to any group with a119

contracting twist.120

For a hint of the complexity of the set δM , see Fig. 2. Note that if � were121

replaced by the arithmetic group SL2 Z[γ ], the set of ratios m′/m would122

become dense in R; in fact every element in K with norm 1 would arise,123

by Hilbert’s Theorem 90.124

Billiards. Many more examples of non-arithmetic lattices in SL2(R) arise125

from the theory of polygonal billiards, leading to dynamical applications of126

Theorem 1.1.127

To illustrate some of these, consider a finite polygon P ⊂ C with internal128

angles π(a1, . . . , an)/q, where gcd(a1, . . . , an, q) = 1. A standard unfold-129

ing construction associates to P a holomorphic 1-form (X, ω) on a compact130

Riemann surface, together with an action of the dihedral group D2q such that131

(X, |ω|)/D2q is isometric to (P, |dz|). The affine symmetries of (X, ω) give132

rise to a discrete group SL(X, ω) ⊂ SL2(R).133

Lattice polygons. We say P is a lattice polygon, with trace field K , if V =134

H/SL(X, ω) has finite volume and K is the trace field of SL(X, ω). It is known135

that K is a number field, and that SL(X, ω) is arithmetic if and only if K = Q.136
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Fig. 2 Matrix coefficients of �(2, 5,∞). The scatterplot shows part of the image of M under
m = x + yγ �→ (m′/m,max(|x |, |y|))

By a well-known result of Veech [V, Prop. 2.11], lattice polygons enjoy137

optimal dynamics: either all geodesics with slope s are periodic, or all are138

uniformly distributed. In the periodic case, we denote the length of the longest139

periodic trajectory by L(s).140

Let us say P is normalized if (i) it has a vertical or horizontal edge, and (ii)141

when q = 2, s = 1 is the slope of a periodic trajectory. The first condition142

can be achieved rotating P . The second condition, which arises only when143

all sides of P are vertical or horizontal, can be achieved by an affine stretch144

(which respects billiard paths). Theorem 1.1 then entails (Sect. 6):145

Corollary 1.5 Let P be a normalized lattice polygon with quadratic trace146

field K . Let α = tan(π/q) if q ≥ 3, and α = 1 if q = 2. Then its periodic147

slopes are given by148

S(P) = αK ∪ {∞}.149

Moreover, for any s ∈ K we have150

log L(αs) = O(1+ h(s)2). (1.5)151

A similar result (Theorem 6.1) holds for Teichmüller curves.152
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Fig. 3 Long periodic billiard paths, each with over 200 segments, with initial slopes 5 and 8
√

3
respectively

Example 1. The golden L . One of the simplest examples of a lattice polygon153

with quadratic trace field is the symmetric L-shaped region P built by attaching154

two golden rectangles to the unit square, as shown at the left in Fig. 3.155

Computer experiments quickly reveal that even small, rational slopes lead156

to very long trajectories in P; for example, L(5) ≈ 479, while L(6765) ≈157

1.734×1025. This rapid growth, which is consistent with Eq. (1.5), is explained158

in Sect. 7.159

The 1-form associated to P satisfies SL(X, ω) = �(2, 5,∞). Using this160

connection, we will give a simple dynamical proof that161

a + bγ ∈ M �⇒ ab ≥ 0162

and hence163

− γ−2 ≤ m′/m ≤ 1 (1.6)164

for all matrix entries m �= 0 in �(2, 5,∞). Equality occurs when m = 1 and165

m = γ ; see Corollary 7.4.166

Example 2. The golden arrow. A second lattice polygon, also based on167

the golden ratio, is shown at the right in Fig. 3; its internal angles are168

π(1, 1, 2, 8)/6, and its periodic slopes are given by S(P) = √
3 ·Q(γ )∪{∞}.169

Both examples belong to infinite families, discussed in [Mc1, §9] and170

[EMMW, §8] respectively, and their side lengths can be varied to produce171

infinitely many different quadratic trace fields.172

Cubic and rational trace fields. We remark that quadratic trace fields are the173

main case of interest for lattice billiards. Indeed, when K = Q the billiards174

in P is closely related to billiards in a square, and a closed trajectory at slope175
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s = p/q has length O(|p| + |q|). On the other hand, lattice polygons with176

trace fields of cubic and higher degree are rigid; that is, they are determined177

by their internal angles up to finitely many choices [EFW, Cor. 1.6]. These178

rigid examples include the regular polygons, discovered by Veech, provided179

we exclude the n-gons with n = 3, 4, 5, 6, 8, 10 and 12.180

Distribution of long billiard trajectories. We now turn to an application181

which was our original motivation for proving Theorem 1.4.182

Let P be a lattice polygon with trace field K �= Q. Even though billiards183

in P has optimal dynamics, long periodic trajectories in P need not be evenly184

distributed [DL]. To describe their behavior, let Ms denote the set of probability185

measures on P that arise as limits of closed trajectories with slopes sn → s186

and lengths tending to infinity. When s is not a periodic slope, equidistribution187

holds and Ms is a single point; but for periodic slopes, equidistribution fails188

and we have Ms
∼= ωω + 1 [Mc6].189

Now suppose P is the golden L and s = 0. In this case, M0 can be described190

directly in terms of the set δM defined by Eq. (1.3). For a precise statement,191

first observe that P can be regarded as two stacked golden rectangles, A1192

and A2, the first of width 1 and the second of width γ . Let αi = χAi |dz|2,193

i = 1, 2 denote their respective area measures, and let ν̂(r) denote the unique194

probability measure on P proportional to195

ν(r) = (1− r)α1 + (1+ γ−2r)α2. (1.7)196

We then have (Sect. 7):197

Theorem 1.6 The limit measures for billiards in the golden L at slope s = 0198

are given by199

M0 = {̂ν(r) : r ∈ δM}.200

By (1.6), the two most unevenly distributed measures in M0 are those pro-201

portional to202

νR = α2 and νL = γα1 + α2.203

These arise, as n →∞, as limits of trajectories of slope 1/(nγ ) starting near204

the right and left of the bottom edge of P , respectively. Since �(2, 5,∞) has205

only one cusp, the measures Ms for other periodic slopes are essentially the206

same as those for M0.207

Compression of cusps. A dynamical proof of Theorems 1.4 and 1.6 will be208

given in Sect. 7. We conclude by stating our second main theorem, which209

provides another route to Theorem 1.4 (and many similar results) in the spirit210

of Theorem 1.1.211
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Let � ⊂ SL2(R) be a lattice with at least one cusp. Let212

ρ : �→ �′ ⊂ SL2(R)213

be an isomorphism of abstract groups, such that214

g is parabolic ⇐⇒ ρ(g) is parabolic. (1.8)215

We do not require that �′ is discrete. Let F : H → H be a holomorphic map,216

such that217

F(g · t) = ρ(g) · F(t) (1.9)218

for all g ∈ � and t ∈ H. Then the pair (ρ, F) defines a twist of �. If F219

is an isometry, then ρ is simply conjugation by F . Otherwise, the twist is220

contracting.221

Given a pair of distinct cusps x, y of �, fixed by parabolics g, h ∈ �, let222

r(x, y) = Tr(ρ(gh))− 2

Tr(gh)− 2
· (1.10)223

This quantity is independent of the choice of g and h.224

We will see that r(x, y) ∈ [0, 1]. In fact, when g and h generate the parabolic225

stabilizers of x and y, the quantity226

D(x, y) = log |Tr(gh)− 2|227

can be interpreted as the renormalized distance between these two cusps, and228

log r(x, y) measures the amount this distance is reduced by F .229

Define the (absolute) ratio set by230

R = {r(x, y) : x, y are distinct cusps of �} ⊂ [0, 1]. (1.11)231

In Sect. 8 we will show:232

Theorem 1.7 The ratio set of a contractive twist of � as above satisfies R =233

〈R〉 ∪ {0} ∼= ωω + 1 and D∞(R) = {0}.234

This result implies Theorem 1.4 and related results for other triangle groups235

�(p, q,∞), as well as for the lattices SL(X, ω) associated to Teichmüller236

curves.237

For these groups, a finite cover of V = H/� can be realized as a complex238

geodesic on a Hilbert modular variety X K , d = deg(K/Q), and one obtains239

d − 1 contracting twists by projecting to the factors of its universal cover H
d .240
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See [CW, §2] and corrections in [Ri, §2] for the case of triangle groups, and241

[Mo1] for the case of Teichmüller curves.242

Questions. We conclude with some open problems related to fields of cubic243

and higher degree.244

1. Is there an n > 0 such that log L(s) = O(1+h(s)n) for all periodic slopes245

in the regular heptagon?246

2. Let V ⊂ X K be a Kobayashi geodesic curve on a Hilbert modular threefold.247

If V has no cusps, is V a Shimura curve?248

3. Suppose SL(X, ω) is a lattice with trace field K , and the cross-ratios of its249

cusps coincide with P
1(K )−{0, 1,∞}. Does this imply that deg(K/Q) ≤250

2?251

Notes and references. This paper is a sequel to [Mc5] and [Mc6].252

The theory of triangle groups has a long history, including works by253

Schwarz, Fricke, Klein, Hecke and many others (see e.g. [Sch,He,Mag], [SG,254

Ch. 14]). Many cases of Corollary 1.2 were proved first in [Le,Be] and [Se];255

the general case follows from [Mc2] and [BM] (see Sect. 6), and was also256

addressed recently in [Pa]. See [Bh,BR,Wo,AS] for work on Question (3) in257

the case of triangle groups, resolving the case �(2, q,∞); some additional258

cases are covered by [CSc].259

The geodesic curves on Hilbert modular varieties coming from triangle260

groups are discussed in [CW]. For more on connections between Hilbert mod-261

ular surfaces, Teichmüller curves and Kobayashi geodesics, see [Mc1,Mc4,262

Mo1,MV], and [We].263

An encoding of the periodic trajectories in the regular pentagon and the264

golden L is studied in detail in [DL]; Theorem 1.6 and [Mc6] address [DL,265

§4, Conj. 4.6]. See [Bo, Theorem 7.9] for related results on periodic points for266

interval exchange transformations.267

Notation. The expressions A = O(B) and A � B mean A ≤ C B and268

A/C ≤ B ≤ C A for some unspecified constant C > 0.269

2 Heights270

In this section we review the theory of heights for number fields, projective271

spaces, and groups such as SL2(K ), with an emphasis on formulations using272

integers and infinite places.273

Useful references include [BG,La] and [HS].274

Absolute values. Let K be a number field of degree d over Q, and let O be the275

ring of integers in K . Each place v of K determines a normalized absolute value276

|x |v on K ; taken together, these satisfy the product formula
∏
v |x |v = 1. For277

K = Q the absolute values are normalized so that |p|p = 1/p and |x |∞ = |x |;278
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in general, the absolute values are normalized so that279

|x |v = |N Kv
Qp
(x)|1/dp280

whenever v|p. For example, if v is a real place of K , and ρv : K → Kv ∼= R281

is the associated completion, then |x |v = |ρv(x)|1/d .282

Heights on projective space. The absolute multiplicative height on P
n(K ) is283

given by284

H(x) = H(x0 : x1 : · · · : xn) =
∏
v

max
i
|xi |v.285

It is well-defined by the product formula, which also implies that H(x) ≥ 1.286

The normalizations above are chosen so that H(x) remains constant under287

finite extensions of K . In addition, an automorphism f of P
n(K ) changes the288

height by at most a bounded factor; we have289

H( f (x)) � H(x) (2.1)290

for all x ∈ P
n(K ) (see e.g. [HS, Theorem B.3.1].)291

Logarithmic height. The logarithmic height on P
1(K ) is defined by292

h(x) = log H(x) ≥ 0.293

Throughout this paper we adopt the usual convention that multiplicative294

heights (such as H, HA and Hτ ) are written in upper case, and their loga-295

rithms (such as h, h A, hτ ) in lower case.296

Integer coordinates. A closely related height on P
n(K ) can be defined by297

H̃(x) = inf
a

∏
v|∞

max
i
|ai |v, (2.2)298

where the infimum is taken over vectors of integers a ∈ On+1 such that299

[a0 : · · · : an] = x . This height is comparable to the standard one; using300

finiteness of the class number, one can show that301

H(x) � H̃(x),302

and equality holds when O is a UFD (cf. [La, §3.1]). The implicit constants303

depend on (K , n).304

One useful feature of formula (2.2) is that it involves only the integers O305

and the infinite places of K . This motivates our definition of the height HA(x)306
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on P
1
A(K ) in Sect. 3, where O2 will be replaced by the integral homology307

H1(A,Z) of an Abelian variety with real multiplication by K .308

Heights on affine space. The restriction of H to the affine part of P
n(K ) gives309

a natural height on K n . The height on K itself, given explicitly by310

H(x) =
∏
v

max(1, |x |v), (2.3)311

satisfies H(xn) = H(x)n , H(xy) ≤ H(x)H(y) and H(x+ y) ≤ 2H(x)H(y)312

(an extreme case is x = y = 1).313

Lemma 2.1 For any embedding ρv : K → R, we have314

H(x)d ≥ ρv(x) ≥ H(x)−d
315

for all x �= 0 in K .316

Proof. Since each term in the product (2.3) is at least 1, we have H(x) ≥317

|x |v = |ρv(x)|1/d , giving the upper bound. For the lower bound, use the fact318

that H(1/x) = H(x). ��319

Totally real fields and SL2(R). We conclude with some observations of use320

in the sequel.321

Let ρ = |dt |/ Im(t) be the hyperbolic metric on H = {t : Im(t) > 0}, and322

let d(p, q) denote the hyperbolic distance between a pair of points.323

The group SL2(R) acts linearly on R
2 and isometrically on H. The operator324

norm of g ∈ SL2(R) and its translation distance on H are related by325

log ‖g‖2
2 = d(i, g(i)) ≥ 0. (2.4)326

To see this, use the polar decomposition to reduce to the case where g =327 (
a 0
0 a−1

)
, a ≥ 1, and both sides become log(a2). We also note that, since any328

two norms on M2(R) are equivalent, we have329

1 ≤ ∥∥(
a b
c d

)∥∥
2 � max(|a|, |b|, |c|, |d|). (2.5)330

Now let K be a totally real field of degree d over Q. The infinite places of331

K determine an embedding K ⊂ R
d sending k to (ki ); similarly, we have an332

embedding333

SL2(K ) ⊂ SL2(R)
d

334

sending g to (gi ). We define the height of g = (
a b
c d

) ∈ SL2(K ) by335

H(g) = H(a, b, c, d) and h(g) = log H(g), (2.6)336
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using the inclusion SL2(K ) ⊂ K 4 ⊂ P
4(K ). Note that H(g) = H(−g) =337

H(g−1), and338

‖gi‖2 = O(H(g)d) (2.7)339

for all i , by Lemma 2.1.340

Lemma 2.2 For all g ∈ SL2(O), we have H(g) � ∏d
1 ‖gi‖1/d

2 .341

Proof. In the product formula for the H(g), the finite places each contribute 1342

since the entries of g are integers; and at the infinite places, which are indexed343

by i , we can apply Eq. (2.5). ��344

Hyperbolic elements. For hyperbolic elements g ∈ SL2(R), we recall for345

later use that the translation length346

T (g) = inf
t∈H

d(t, g(t))347

and trace are related by348

|Tr(g)| = 2 cosh(T (g)/2), (2.8)349

as can be verified by reducing to the case where g is diagonal.350

3 Abelian varieties with real multiplication351

In this section we use Hodge theory to introduce a natural height HA(x) on the352

space of slopes P
1
A(K ) attached to an Abelian variety A with real multiplication353

by K . Our terminology is justified by354

Proposition 3.1 For any projective linear isomorphism ι : P
1
A(K )

∼= P
1(K ),355

we have356

HA(x) � H(ι(x)).357

This height, of interest in its own right, underlies the descent argument used358

to prove Theorem 1.1 in Sect. 5.359

In the next section we study the behavior of HA(x) as A varies in a Hilbert360

modular variety. For background on these topics, see [BL] and [vG].361

Abelian varieties. Let A be a polarized Abelian variety of dimension d. We362

can naturally identify A with the quotient space363

A = �(A)∗/H1(A,Z),364
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where �(A) ∼= C
d is the space of holomorphic 1-forms on A, and its paring365

with H1(A,Z) ∼= Z
2d is given by 〈C, ω〉 = ∫

C ω.366

The polarization of A is recorded by a positive-definite Hermitian inner367

product on �(A)∗, with the property that the symplectic form368

[C, D] = − Im〈C, D〉 (3.1)369

takes integral values on H1(A,Z). We denote the associated Hodge norm on370

H1(A,R) by ‖C‖A = 〈C,C〉1/2. The polarization also determines a norm and371

inner product on �(A), via duality.372

Example: The Jacobian. When A = �(X)∗/H1(X,Z) is the Jacobian of a373

compact Riemann surface X of genus g, we have a natural (principal) polar-374

ization given by the dual of the Hermitian form375

〈ω1, ω2〉 = i

2

∫
X
ω1 ∧ ω2376

on �(X). The associated symplectic form [C, D] agrees with the usual inter-377

section form on H1(X,Z), and the Hodge norm on homology is given by378

‖C‖X = sup

{∣∣∣∣
∫

C
ω

∣∣∣∣ : 〈ω,ω〉 = 1

}
.379

Real multiplication. Now let K be a totally real field of degree d over Q. We380

say A has real multiplication by K if it is equipped with an inclusion381

K ⊂ End(A)⊗Q,382

sending each k ∈ K to a self-adjoint operator Tk . (This means 〈TkC, D〉 =383

〈C, Tk D〉 for all C, D ∈ H1(A,R).)384

The action of Tk on homology makes H1(A,Q) into a two-dimensional385

vector space over K ; hence we can form the associated projective line386

P
1
A(K ) = (H1(A,Q)− {0}) /K× ∼= P

1(K ). (3.2)387

We can also decompose H1(A,R) ∼= R
2d into orthogonal eigenspaces Sv ∼=388

R
2, indexed by the infinite places of K .389

Let πv : H1(A,R)→ Sv be orthogonal projection to the v-eigenspace, and390

define NA : H1(A,R)→ R by391

NA(C) =
∏
v|∞

‖πv(C)‖A.392
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Note that393

NA(Tk(C)) = |N K
Q
(k)| · NA(C) (3.3)394

for all k ∈ K ; in particular, the value of NA(C) is invariant under the action395

of the units in K . When C ∈ H1(A,Z) is an integral cycle, we have396

NA(C) =
∏
v|∞

∣∣∣∣
∫

C
ωv

∣∣∣∣ , (3.4)397

where (ωv) is an orthonormal eigenbasis in �(A).398

Hodge norms and height. Using real multiplication and the Hodge norm, we399

now define a height on P
1
A(K ) by400

HA(x) = inf{NA(C)
1/d : C ∈ H1(A,Z) and [C] = x}.401

Here [C] denotes the point in P
1
A(K ) represented by C . This height measures402

the minimum size of an integral homology class C in a given orbit of K×
403

acting on H1(A,Q).404

Proof of Proposition 3.1. First recall that the height H̃(x) on P
1(K ) defined405

by (2.2) is comparable to H(x). Moreover, H̃(x) changes by at most a bounded406

factor if we change its definition by (i) replacing O2 by a commensurable lattice407

L ⊂ K 2; or (ii) replacing max{|a1|v, |a2|v} by another norm on K 2
v = R

2.408

Lift ι to a K -linear map I : H1(A,Q) ∼= K 2. Since (i) I sends H1(A,Z) to409

a lattice commensurable to O2, and (ii) Iv sends the Hodge norm on Sv to a410

norm on K 2
v , we have HA(x) � H̃(ι(x)) � H(x). ��411

Remark One can similarly use the Hodge norm on any Abelian variety A to412

define a height413

HA(x) = inf{‖C‖A : C ∈ H1(A,Z) and [C] = x}414

on PH1(A,Q) ∼= P
2d−1(Q). Other rings of endomorphisms besides K ⊂415

End(A)⊗Q can also be considered.416

4 Hilbert modular varieties417

In this section we introduce a height Hτ (x) on P
1(K ) for each point τ ∈ H

d ,418

the universal cover of the Hilbert modular variety X K . This height is given by419

Hτ (x) = HAτ (x),420
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where Aτ = C
d/O ⊕O∨τ .421

We will establish two results that control the behavior of Hτ (x) as τ varies.422

The first gives some insight into the geometric meaning of the height. Let423

δ(τ ) = inf
x

Hτ (x) > 0424

Proposition 4.1 The function δ(τ ) is comparable to the length of the shortest425

closed geodesic on Aτ .426

Corollary 4.2 For each r > 0, the locus X K (r) = {[τ ] ∈ X K : δ(τ ) ≥ r} is427

compact, and X K = ⋃
r>0 X K (r).428

The second result is conveniently phrased in terms of the logarithmic heights429

h(x) = log H(x) and hτ (x) = log Hτ (x). (4.1)430

Proposition 4.3 For any compact set D ⊂ H
d , there is an M > 0 such that431

|hτ (x)− h(x)| ≤ M432

for all x ∈ P
1(K ) and τ ∈ D.433

Construction of Aτ . We begin with some definitions. Let O be the ring of434

integers in a totally real field K of degree d, and let435

O∨ = {a ∈ K : TrK
Q
(ab) ∈ Z ∀b ∈ O}436

be its dual (the inverse different). There is a natural unimodular symplectic437

form on O ⊕O∨, defined by438

[(a, b), (c, d)] = TrK
Q

det
(

a b
c d

)
. (4.2)439

Let (v1, . . . , vd) denote the infinite places of K , and let a �→ (ai ) be the440

corresponding embedding K → R
d . Then for each τ ∈ H

d we have a natural441

map K 2 → C
d , sending (a, b) to (ai+biτi ). The image of O⊕O∨ is a lattice,442

and443

Aτ = C
d/(O ⊕O∨τ)444

is a principally polarized Abelian variety with real multiplication by K . In fact,445

we have an inclusion O ⊂ End(A) sending a to the linear map Ta(z) = (ai zi )446

on C
d . The polarization of Aτ is uniquely determined by the symplectic form447
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(4.2). The corresponding inner product on C
d , given by448

〈z, w〉τ =
d∑
1

ziwi

Im τi
,449

is readily verified to satisfy (3.1); and Ta is self-adjoint because it is given by450

a real diagonal matrix. The inner product above makes Aτ into a flat torus of451

volume one, since the symplectic form in (4.2) is unimodular.452

The moduli space X K . The isomorphism class of Aτ depends only on the453

location of τ in the Hilbert modular variety454

X K = H
d/SL(O ⊕O∨).455

Here g = (
a b
c d

) ∈ SL2(K ) acts on H
d by456

g · τ = ((aiτi + b)/(ciτi + di )),457

and SL(O ⊕ O∨) is the subgroup stabilizing the lattice O ⊕ O∨ ⊂ K 2. The458

action on P
1(K ), used below, is given similarly by459

g · x = (ax + b)/(cx + d).460

Markings and periods. We will work in the universal cover H
d of X K , so461

that for A = Aτ we have a natural isomorphism462

O ⊕O∨ ∼= H1(A,Z). (4.3)463

An orthonormal eigenbasis for �(A) is given by464

ωi = dzi/
√

Im τi , (4.4)465

i = 1, . . . , g, and for C = (a, b) ∈ O ⊕O∨ ∼= H1(A,Z) we have466

∫
C
ωi = ai + bτi .467

Norms and heights. We also have an isomorphism468

P
1
A(K )

∼= P
1(K ) = K ∪ {∞},469

compatible with (4.3), which we normalize so that x ∈ K ⊂ P
1(K ) corre-470

sponds to the line in K 2 defined by471

a + bx = 0. (4.5)472
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(The point x = ∞ corresponds to the line b = 0.) With these identifications,473

we can regard NA and HA as functions Nτ and Hτ on O ⊕ O∨ and P
1(K )474

respectively, given explicitly by475

Nτ (a, b) =
d∏
1

|ai + biτi |√
Im τi

and476

Hτ (x) = inf
a+bx=0

Nτ (a, b)1/d ,477

as can be seen using Eq. (3.4).478

Naturality. Since the height HA(x) is functorial, we have479

Hτ (x) = Hg·τ (g · x) (4.6)480

for all g ∈ SL(O ⊕O∨). It follows that δ(g · τ) = δ(τ ). One can also check481

that δ(τ ) is continuous, using the formula above.482

The case of elliptic curves. It is easy to describe the height and its minimum483

δ(τ ) geometrically when d = dim(A) = 1. In this case Aτ = Z ⊕ Zτ484

carries a unique flat metric |dz|/ Im(τ )1/2 of area one, Hτ (x) is the length of485

a shortest closed geodesic on Aτ with homological slope x , and the shortest486

closed geodesic on Aτ has length δ(τ ) > 0.487

Units: Proof of Proposition 4.1. These statements can be generalized to d > 1488

as follows.489

Note that for any unit ε ∈ O we have
∏ |εi | = 1 and hence490

Nτ (εa, εb) = Nτ (a, b).491

By Dirichlet’s unit theorem, the map ε → log |εi | sends O× to a lattice in492

R
d−1. Thus we can always adjust (a, b) by a unit so that the terms in the493

product formula for Nτ (a, b) have approximately the same size. Using the494

inequality between the arithmetic and geometric means, it follows that:495

Hτ (x) � inf
a+bx=0

‖a + bτ‖τ ,496

using the norm associated to the inner product (4.4). Proposition 4.1 follows497

immediately: we have498

δ(τ ) � inf{‖λ‖τ : 0 �= λ ∈ O ⊕O∨τ }. (4.7)499

��500
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Proof of Corollary 4.2. By Mahler’s criterion, the space of lattices in C
d

501

with volume one and shortest vector of length ≥ r > 0 is compact. Since502

vol(Aτ ) = 1, the condition δ(τ ) ≥ r > 0 also defines a compact subset of503

X K by Eq. (4.7). ��504

Control of Hτ . To conclude we estimate the variation of hτ (x) with respect505

to τ .506

Proposition 4.4 Given (a, b) �= (0, 0) ∈ R
2 and t ∈ H, let507

η(t) = log
|a + bt |2

Im t
.508

Then the level sets of η are horocycles resting on x = −a/b ∈ ∂H, and509

‖dη‖ = 1 in the hyperbolic metric.510

Proof. Using the action of SL2(R) on H and R
2, we can reduce to the case511

where (a, b) = (1, 0). Then η(τ) = − log Im τ , −a/b = ∞ and the result is512

immediate. ��513

Corollary 4.5 The trajectories of the vector field −∇η are unit speed514

geodesics converging to x = −a/b.515

The relation x = −a/b above explains our convention (4.5).516

Now observe that we can write517

hτ (x) = 1

2d
inf

a+bx=0

d∑
1

log
|ai + biτi |2

Im τi
. (4.8)518

Applying the estimate above to each term, we obtain519

Corollary 4.6 For any σ, τ ∈ H
d we have520

sup
x
|hσ (x)− hτ (x)| ≤ (1/2)max

i
d(σi , τi ).521

(The maximum on the right gives the Kobayashi distance dK (σ, τ ); see Sect. 5.)522

Proof of Proposition 4.3. The function M(τ ) = supx |hτ (x)− h(x)| is finite523

by Proposition 3.1, and continuous by the estimate above, so supD M(τ ) is524

finite by compactness of D. ��525

5 Geodesic curves on Hilbert modular surfaces526

In this section we prove Theorem 1.1, which we state in detail as follows.527
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Theorem 5.1 Let528

V = H/� � X K = H
2/SL(O ⊕O∨)529

be a complex geodesic curve on the Hilbert modular surface associated to530

a real quadratic field K . Then either V is a Shimura curve, or for every531

x ∈ P
1(K ) there exists a parabolic element g ∈ � satisfying g · x = x and532

h(g) = O(1+ h(x)2). (5.1)533

Here h(g) is the logarithmic height defined in (2.6).534

Remarks. 1. Theorem 5.1 implies the same result with SL(O⊕O∨) replaced535

by any commensurable subgroup of SL2(K ), e.g. SL2(O) or SL2(A⊕B).536

2. When V is a Shimura curve, � is arithmetic. Then either V is compact537

(and � has no cusps), or � is commensurable to SL2(Z), and its cusps are538

a copy of P
1(Q).539

3. In general, given a number field K and a subgroup � of SL2(K ), we say540

the cusps of � satisfy quadratic height bounds if each cusp x ∈ P
1(K ) is541

fixed by a parabolic g ∈ � satisfying (5.1). This property is inherited under542

commensurability.543

4. We can take g in (5.1) to be the generator of the stabilizer of x in � (up to544

±I ). Note that we also have545

log ‖g‖2 = O(1+ h(x)2),546

by Eq. (2.7).547

Conventions. In this section, K = Q(
√

D) will denote a real quadratic field548

with a distinguished real embedding. Thus we will regard K as a subfield of549

R, and SL2(K ) as a subgroup of SL2(R), with Galois involutions x �→ x ′ and550

g �→ g′ respectively.551

The action of SL(O⊕O∨) on H
2 is given by g · τ = (g · τ1, g′ · τ2). Note552

that the map ι(τ ) = (τ2, τ1) satisfies ι(g · τ) = g′ · ι(τ ), and descends to an553

involution on X K .554

Geodesic curves. We say an algebraic curve V = H/� � X K is a complex555

geodesic if it is isometrically immersed for the Kobayashi metrics on its domain556

and range.557

On H
d the Kobayashi distance dK is given in terms of the hyperbolic metric558

d by559

dK (z, w) = max
i

d(zi , wi ),560
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and its infinitesimal form is the Finsler metric give by max |dzi |/ Im(zi ). The561

Kobayashi metrics on V and X K are inherited from their universal covers.562

By the Schwarz lemma, every holomorphic map I : H → H
d is either563

a contraction or an isometry for the Kobayashi metric; and in the isometric564

case, the composition of I with projection to one of the factors of H
d is an565

isomorphism. It follows that, up to the action of ι, any geodesic curve V � X K566

is presented by the following data:567

• A lattice � ⊂ SL(O ⊕O∨) ⊂ SL2(R); and568

• A holomorphic map F : H → H; such that569

• We have570

F(g · t) = g′ · F(t) (5.2)571

for all t ∈ H and g ∈ �.572

The immersion of V = H/� into X K is then given by I (t) = (t, F(t)).573

Equivalently, V is covered by the graph of F in H×H.574

Galois contraction. Since F itself is either an isometry or a contraction,575

Eqs. (5.2), (2.4) and (2.8) imply:576

Proposition 5.2 For any g ∈ �, we have577

‖g′‖2 = O(‖g‖2) and |Tr(g′)| ≤ max(2, |Tr(g)|).578

In particular, the traces of hyperbolic elements in � lie in the discrete subset579

of O ⊂ R where |x ′| ≤ |x |. The number of such x with |x | ≤ R grows like580

R2.581

Shimura curves. We say V is a Shimura curve if F is an isometry. In this case582

V is also isometrically immersed for the symmetric Riemann metric on X K ,583

and � has trace field Q. For more on these much-studied curves, see e.g. [vG,584

§V] and references therein.585

For the remainder of this section, we will assume V is not a Shimura curve,586

and thus F is a contraction: the norm of its derivative in the hyperbolic metric587

satisfies ‖D f (t)‖ < 1 for all t ∈ H. Our goals is to prove Theorem 5.1.588

Thick-thin decomposition. Since� is a lattice, V is a finite volume hyperbolic589

surface with a finite number of cusps m. Let Vc ⊂ V be the union of m disjoint590

closed horoballs Bi , one for each cusp, chosen so the length of ∂Bi is a small,591

universal constant ε0 > 0. Let Vthick = V − Vc. Then Vthick, the thick part of592

V , is a compact submanifold bounded by m closed horocycles.593

Let π : H → V = H/� be the quotient map. By the functional equation594

(5.2), ‖D f (t)‖ is �-invariant; so by compactness, there exists an α > 0 such595

that596

π(t) ∈ Vthick �⇒ ‖DF(t)‖ < 1− α. (5.3)597
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Choose a compact set D ⊂ H such that π(D) = Vthick. Shrinking Vc if598

necessary, we can arrange that i = √−1 is in the interior of D; it will serve599

as a convenient basepoint.600

Height bounds. Let τ(t) = (t, F(t)) denote the isometric map H → H
2

601

covering the immersion V → X K . Note that for g ∈ � we have602

τ(g · t) = g · τ(t). (5.4)603

By Propositions 4.1 and 4.3, there exists an M > 0 such that604

π(t) ∈ Vthick �⇒ −M < inf
x

hτ(t)(x), (5.5)605

and606

sup
x
|hτ(t)(x)− h(x)| < M (5.6)607

for all t ∈ D; in particular, for t = i .608

Descending geodesics. Now fix a point x ∈ P
1(K ). To show x is a cusp of �,609

we consider the unit-speed geodesic ray γ : [0,∞)→ H with γ (0) = i and610

γ (s)→ x as s →∞.611

We aim to analyze the excursions of π ◦ γ : [0,∞) → V into the cusps,612

and its sojourns in the thick part. These alternating behaviors are described by613

a sequence of consecutive closed segments,614

[0,∞) = T1 ∪ C1 ∪ T2 ∪ C3 ∪ · · · (5.7)615

meeting end to end, such that
⋃

Ti and
⋃

Ci form the preimages under π ◦ γ616

of Vthick and Vc respectively. Since ∂Vc is convex, every sojourn in the thick617

part lasts a definite amount of time: we have |Ti | > c(ε0) > 0 for all i .618

Let T (s) = ∑ |Ti ∩ [0, s]|. The following are equivalent:619

1. The point x is a cusp of �.620

2. The total amount of time spent in the thick part, sups T (s), is finite.621

3. The decomposition (5.7) terminates with an interval of the form Cn =622

[sn,∞).623

In this case we refer to sn as the exit time for the geodesic descending to x .624

Evolution of height. To begin the analysis, we will show the amount of time625

spent in the thick part is controlled by h(x).626
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Proposition 5.3 For any s > 0, we have hτ(γ (s))(x) ≤ h(x)+M −αT (s)/4.627

Proof. Recall that for any (a, b) ∈ O ⊕ O∨ with a + bx = 0 we have, by628

Eq. (4.8),629

hτ(γ (s))(x) ≤ 1

4

(
log

|a1 + b1γ (s)|2
Im γ (s)

+ log
|a2 + b2 F(γ (s))|2

Im F(γ (s))

)
630

= η1(s)+ η2(s)

4
·631

Moreover, we can choose (a, b) such that equality nearly holds for s = 0, and632

thus, by the bound (5.6), we have633

η1(0)+ η2(0)

4
≤ h(x)+ M. (5.8)634

Fixing these values of a and b, we wish to study the behavior of η(s) =635

η1(s) + η2(s). By following the geodesic γ (s), we are driving η1(s) to zero636

as fast as possible; at the same time, the growth of η2(s) is damped by the637

contraction of F . More precisely, Corollary 4.5 yields:638

η′1(s) = −1 and η′2(s) ≤ ‖DF(γ (s))‖ < 1.639

These derivative estimates, combined with the bound (5.3) on the size of ‖DF‖640

over the thick part of V , yield641

η(s) ≤ η(0)− αT (s).642

Combining this inequality with Eq. (5.8), we obtain the stated result. ��643

Corollary 5.4 The total amount of time the geodesic π ◦ γ (s) spends in the644

thick part of V is O(1+ h(x)).645

Proof. The lower bound (5.5) on the height, combined with the upper bound646

in Proposition 5.3, gives sups T (s) ≤ (4/α)(h(x)+ 2M) = O(h(x)+ 1). ��647

Corollary 5.5 The point x is a cusp of �.648

Cuspidal excursions. Next we show the height also controls the cuspidal649

excursions of π ◦ γ , organized by Eq. (5.7).650

Proposition 5.6 We have |Ci | = O(1+ h(x)), provided |Ci | is finite.651

Proof. Suppose V has m cusps, represented by points x1, . . . , xm ∈ P
1(K ).652

Let B j ⊂ H be a closed horoball resting on x j , chosen so that Vc = π(
⋃

B j ).653
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Recall the bound (5.6) holds for all t ∈ D. Redefine D if necessary so that654

π(D ∩⋃
B j ) contains ∂Vc.655

Let Ci = [si , ti ]. Since π ◦ γ (Ci ) is contained in Vc, there exists a horoball656

B j and a g ∈ � such that g · γ (s) ∈ D ∩ B j . Then g · γ [si ,∞) is a geodesic657

ray that begins in the compact set D ∩ ∂B j , and converges to g · x �= x j .658

Suppose for simplicity that x j = 0. By the height comparison (5.6), the659

functional equation (5.4), naturality (4.6), and Proposition 5.3, we have660

h(g · x)− M ≤ hτ(g·γ (si ))(g · x)661

= hg·τ(γ (si ))(g · x)662

= hτ(γ (si ))(x) ≤ h(x)+ M.663

Lemma 2.1 then controls how close g · x can be to x j = 0: we have664

log |g · x | ≥ −2h(g · x) ≥ −2h(x)− 4M.665

Now a geodesic segment that descends from height y1 to y2 in H has length666

O(1+log(y1/y2)). For the segment g·γ [si , ti ]we have y1 � 1 and y2 � |g·x |2,667

which gives668

|Ci | = |ti − si | = O(1+ h(x))669

as desired. To handle the general case, choose an automorphism f j of P
1(K )670

for each j , such that f j (x j ) = 0, and observe that h( f j (x)) = h(x) + O(1)671

by Eq. (2.1). ��672

Corollary 5.7 The exit time for the geodesic π ◦ γ (s) is O(1 + h(x)2), and673

the number of cuspidal excursions is n = O(1+ h(x)).674

Proof. Suppose Cn = [sn,∞) is the final cuspidal excursion. Then the exit675

time is given by sn = |T1|+ |C1|+ |T2|+ |C2|+ · · ·+ |Tn|. By Corollary 5.4,676

we have
∑n

1 |Ti | = O(1 + h(x)); and since |Ti | is bounded below, we have677

n = O(1+ h(x)). The preceding result then gives678

n−1∑
1

|Ci | = O(n(1+ h(x)) = O(1+ h(x)2),679

completing the proof. ��680

Proof of Theorem 5.1. Given x ∈ P
1(K ), let γ : [0,∞)→ H be the unique681

geodesic ray with γ (0) = i and γ (s) → x , as above. We have seen that the682
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exit time for π ◦ γ is O(1 + h(x)2). Thus there exists a closed horoball B,683

resting on x and forming a component of π−1(Vc), such that684

d(i, B) = O(1+ h(x)2). (5.9)685

Let g ∈ � generate the stabilizer of B in �. We wish to control its height,686

which satisfies687

2h(g) = log ‖g‖2 + log ‖g′‖2 + O(1), (5.10)688

by Lemma 2.2 and the fact that � is conjugate to a subgroup of SL2(O). By689

elementary hyperbolic geometry, the parabolic translation distance D(t) =690

d(t, g(t)) grows linearly as t ∈ H moves away from B: that is, we have691

D(t) = O(1+ d(t, B)). Thus Eqs. (2.4) and (5.9) give692

log ‖g‖2
2 = d(i, g(i)) = O(d(i, B)) = O(1+ h(x)2),693

and a bound of the same form holds for log ‖g′‖2, by Proposition 5.2, Thus694

(5.10) yields h(g) = O(1+ h(x)2), as desired. ��695

6 Triangle groups and Teichmüller curves696

In this section we bring Teichmüller curves into play, to connect triangle697

groups, billiards and curves on Hilbert modular varieties. We then prove Corol-698

laries 1.2, 1.3, and 1.5.699

We will begin by showing:700

Theorem 6.1 Let (X, ω) be a holomorphic 1-form of genus g such that701

SL(X, ω) is a lattice with real quadratic trace field K . Assume 0, 1 and ∞702

are periodic slopes for (X, ω). Then:703

1. The cusps of SL(X, ω) ⊂ SL2(K ) coincide with P
1(K ) and satisfy704

quadratic height bounds; and705

2. The periodic slopes s for (X, ω) coincide with P
1(K ), and satisfy706

log L(s) = O(1+ h(x)2).707

Here L(s) is the length of the longest closed geodesic with slope s, and the708

quadratic height bounds are of the form h(g) = O(1+ h(x)2) as in Eq. (5.1).709

Teichmüller curves. For background material, see e.g. the surveys [Mas,Mo2,710

Z] and [Mc7], as well as [Mc1] and [Mc6].711

Let�Mg → Mg denote the moduli space of nonzero holomorphic 1-forms712

(X, ω) of genus g. The stabilizer of a given form under the natural action of713

SL2(R) will be denoted by SL(X, ω). It is related to the group of real affine714
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automorphism of (X, ω) via the exact sequence715

1 → Aut(X, ω)→ Aff+(X, ω) D→ SL(X, ω)→ 1.716

Suppose SL(X, ω) is a lattice. Then the orbit of (X, ω) covers an isometri-717

cally immersed Teichmüller curve718

V = H/SL(X, ω) � Mg.719

The curve V has at least one cusp, and the trace field K ⊂ R of SL(X, ω) is720

totally real (cf. [HL]).721

The geodesic flow on the singular flat surface (X, |ω|) satisfies the Veech722

dichotomy: every geodesic is either periodic or uniformly distributed. The map723

s �→ x = −1/s gives a bijection between the periodic slopes and the cusps724

of SL(X, ω); in particular, periodic slopes are dense. In the periodic case, the725

smooth closed geodesics with slope s sweep out a collection of open cylinders726

C(s) = {A1, . . . , An}, (6.1)727

whose closures cover X .728

Replacing the original form with h · (X, ω) for some h ∈ SL2(R), one729

can always normalize so that 0, 1 and ∞ are periodic slopes. We then have730

SL(X, ω) ⊂ SL2(K ) (cf. [CSm]).731

Modular embeddings and triangle groups. We will use the following two732

important results about Teichmüller curves.733

I. [Mo1, Cor. 2.11] After passing to a finite cover, V can be immersed as a734

totally geodesic curve in the Hilbert modular variety X K . Its image is a735

Shimura curve only when K = Q (in which case X K = H/SL2(Z)).736

II. [BM] Every triangle group �(p, q,∞) is commensurable to the funda-737

mental group SL(X, ω) of a Teichmüller curve V .738

Remarks on the proof of (I). One begins by showing that Jac(X) admits739

a canonical factor A with real multiplication by K , and ω is the pullback740

of an eigenform on A. The variation of A over V gives a map from V to a741

suitable moduli space of abelian varieties with real multiplication Y = H
d/�.742

Although A need not be principally polarized,� ⊂ SL2(K ) stabilizes a lattice743

M commensurable to O ⊕ O∨, so after passing to a finite cover we obtain a744

map V → X K . This map is a geodesic immersion because the periods of the745

eigenform ω vary as fast as possible; the other eigenforms vary more slowly,746

so it is not a Shimura curve.747

For d ≥ 3 the proof that A admits real multiplication rests on rigidity748

theorems of Deligne and Schmid. The case d = 2, which is sufficient for749
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Theorem 6.1, can be handled by more elementary means; see [Mc1], and750

[Mc3].751

Proof of Theorem 6.1. Part (1) follows immediately from Theorem 1.1 and752

(I) above. For part (2), let s be a slope in P
1(K ). Then x = −1/s is a cusp of753

SL(X, ω), whose stabilizer is generated by a parabolic element g = Dφ for754

some φ ∈ Aff+(X, ω). The geodesics at slope s decompose X into cylinders755

(A1, . . . , An) as in Eq. (6.1). Replacing φ with φn for some n = O(1), we756

can assume φ(Ai ) = Ai for all i , and φ fixes ∂Ai pointwise.757

Let (hi , ci ) be the height and circumference of Ai . Note that L(s) = max ci .758

The mapφ|Ai is a power of a Dehn twist, and hence it sends a geodesic segment759

of length hi to one of length greater than ci . It follows that760

‖g‖2 � ‖gn‖2 ≥ ci/hi = c2
i /(hi ci ) ≥ c2

i / area(X, ω) � c2
i .761

By the quadratic height bounds from part (1), we also have762

log ‖g‖2 = O(h(g)) = O(1+ h(x)2) = O(1+ h(s)2),763

and hence log L(s) = log max ci = O(1+ h(s)2) as desired. ��764

Proof of Corollary 1.2. Combining Theorem 1.1 with (II) above shows that765

every triangle group of the form�(p, q,∞) is conjugate to a group with cusps766

P
1(K ). ��767

Let us explicitly state the following complement:768

Corollary 6.2 The cusps of�(p, q,∞) satisfy quadratic height bounds when-769

ever K pq is a real quadratic field.770

Proof of Corollary 1.3. Let u = ( 1 γ
0 1

) ∈ �(2, 5,∞), and let x = a/c be the771

golden fraction for a cusp x of �(2, 5,∞). Then h = (
a b
c d

) ∈ � for some772

b, d, and hence x is fixed by the parabolic element773

g = huh−1 =
(

1 0
0 1

)
+ γ

(−ac a2

−c2 ac

)
∈ �.774

We then have775

h(a)+ h(c) = O(1+ h(g)) = O(1+ h(x)2),776

by the quadratic height bounds for �(2, 5,∞).777

The golden continued fraction (1.1) for x describes the behavior of the778

geodesic ray γ descending to x : each term ai corresponds to a cuspidal excur-779

sion of length O(1+ log |ai |). Thus N are max log |ai | are both O(1+ h(x))780

by Proposition 5.6 and Corollary 5.7. ��781

123

Journal: 222 Article No.: 1101 TYPESET DISK LE CP Disp.:2022/4/1 Pages: 43 Layout: Small-X



R
ev

is
ed

Pr
oo

f

C. T. McMullen

Proof of Corollary 1.5. Let P be a lattice polygon with quadratic trace field782

K , and internal angles (πai/q) as in Sect. 1. The periodic slopes S(P) for P783

coincide with those for the 1-form (X, ω) obtained by unfolding P .784

By Theorem 6.1, the set of all cross-ratios of 4-tuples in S(P) coincides785

with K − {0, 1}. Equivalently, there exists a vector space A ⊂ C, dense in C786

and 2-dimensional over K , such that S(P) coincides with the slopes of vectors787

in A. Here A is uniquely determined by S(P), up to multiplication by a real788

scalar.789

Now assume P is normalized so one of its sides is horizontal. Since S(P)790

is invariant under the dihedral group D2q generated by reflections through791

the sides of P , the same is true for A. Thus A is invariant under z �→ z and792

z �→ ζq z, where ζq = exp(2π i/q). Consequently A contains a real number793

a = z + z �= 0; rescaling by 1/a, we can assume that 1 ∈ A. We then have794

A = K ⊕ K ζq ,795

provided q > 2. In particular S(P) contains 0, ∞ and α = tan(π/q), these796

being the slopes of 1, ζq − ζ q and 1 + ζq . Since all cross-ratios of periodic797

slopes lie in K , it follows that798

S(P) = αK ∪ {∞},799

as desired. When q = 2, the normalization of P implies that 0, 1,∞ ∈ S(P),800

and hence we can take α = 1 in the equation above.801

The height bound on log L(αs) is a consequence of Theorem 6.1. ��802

We remark that Corollary 1.5 immediately implies:803

Corollary 6.3 Let P be a lattice polygon with quadratic trace field. Then804

every edge of P has periodic slope.805

Notes and references. Theorem 6.1, without the quadratic height bounds, first806

appears in [Mc2, Theorem A.1]. Its proof there, which uses interval exchange807

transformations and the Veech dichotomy, proceeds by contradiction. In [Mc5]808

we give an effective proof of the Veech dichotomy, using Hodge theory instead809

of interval exchange maps, and the argument above continues this develop-810

ment. One can also deduce Corollary 1.2 from [Mc2] and [BM].811

7 Study of triangle groups via dynamics812

In this section we use the connection between Teichmüller curves and triangle813

groups, made explicit in the case of �(2, 5,∞), to establish the results on814

matrix coefficients, ratio sets and limit measures stated as Theorems 1.4 and815
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1.6. We also present a plot of matrix coefficients and some examples of golden816

fractions, showing our height bounds are sharp.817

Algebraic preliminaries. Let γ = (1+√5)/2, so O = Z[γ ] is the maximal818

order, of discriminant D = 5, in K = Q(γ ) ⊂ R. Define a Q-linear map819

ψ : K → Q by820

ψ(x + yγ ) = y,821

where x, y ∈ Q. Using the fact that O∨ = D−1/2O, we find that822

[(a, b), (c, d)] = TrK
Q

D−1/2 det

(
a b
c d

)
= ψ(ad − bc) (7.1)823

gives a unimodular symplectic form on O2. (This modification of Eq. (4.2) is824

made to account for the conventional normalization of triangle groups.)825

We define a ring homomorphism I : K = Q⊕Qγ → M2(R) by826

I (x + yγ ) = x

(
1 0
0 1

)
+ y

(
0 1
1 1

)
. (7.2)827

The matrix I (m) represents multiplication by m on K with respect to the828

basis (1, γ ). Up to scale, I (m) depends only on δ(m) = m′/m; thus we829

have a continuous homomorphism of multiplicative semigroups J making the830

diagram831

K×

δ

��

I �� M2(R)

��
R

J �� M2(R)/R
×

(7.3)832

commute.833

Remarks. The target of J , with [0] removed, is homeomorphic to P
3; it con-834

sists of matrices of rank ≥ 1, up to scale. The map J is a homeomorphism835

to its image, which is an affine line R ⊂ P
1 ⊂ P

3. Every matrix in J (R) is836

invertible, except for837

J (0) =
[(

1 γ

γ γ 2

)]
. (7.4)838

With respect to a basis where I (γ ) =
(
γ 0
0 γ ′

)
, we have J (x) = [( 1 0

0 x

)].839
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Fig. 4 Core curves of cylinders on the surface (X, ω) = (P, dz)/ ∼

The golden surface. Let P ⊂ C be the golden L from Sect. 1. With the vertices840

shown in Fig. 4, P is a combinatorial octagon. By identifying parallel sides,841

we obtain a holomorphic 1-form (X, ω) = (P, dz)/ ∼ of genus two, with a842

single zero of order two coming from the marked points.843

The surface X decomposes into a pair of horizontal cylinders A = C(0) =844

{A1, A2} and vertical cylinders B = C(∞) = {B1, B2}. We associate to each845

of these cylinders an integral homology class on X , using the orientations846

shown. Since the intersection matrix [Ai , B j ] =
(

0 1
1 1

)
is unimodular, these847

cycles generate the integral homology of X . It is then readily verified that the848

period map849

π : H1(X,Z)→ O2,850

characterized by π(C) = (a, b) ⇐⇒ ∫
C ω = a + ib, is a symplectic851

isomorphism. For example, we have π(A1) = (1, 0), π(B2) = (0, γ ), and852

[A1, B2] = 1 = TrK
Q
(γ /

√
5).853

Affine automorphisms. Next we observe that the affine group of (X, ω) can854

be naturally identified with the (2, 5,∞) triangle group; that is, we have an855

isomorphism856

D : Aff+(X, ω) ∼= SL(X, ω) = �(2, 5,∞) ⊂ SL2(O).857

The action of first group on H1(X,Z), and of the last group on O2, are inter-858

twined by the period map π .859

Since �(2, 5,∞) is a maximal Fuchsian group, to show that D is an iso-860

morphism it suffices to observe that Aut(X, ω) is trivial, and that there exist861
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σ, τ ∈ Aff+(X, ω) such that862

Dσ =
(

0 −1
1 0

)
and DτA =

(
1 γ
0 1

)
.863

Indeed, we can takeσ to be a 90◦ rotation coming from the Euclidean symmetry864

of P/ ∼, and τA to be a product of Dehn twists on A1 and A2.865

Since �(2, 5,∞) is a lattice, (X, ω) generates a Teichmüller curve V =866

H/SL(X, ω)→ M2. (Indeed, in the terminology of [Mc1], V is the Weier-867

strass curve WD , D = 5.)868

Matrix entries and columns. Let e1 = (1, 0) and e2 = (0, 1) in O2. We869

remark that the first and second columns of matrices in � = �(2, 5,∞)870

represent the same vectors in O2; that is, � · e1 = � · e2. Similarly, the set of871

matrix entries in a given position, ei · � · e j , is independent of i and j . These872

assertions follow from the fact that � contains
(

0 1−1 0

)
and −I .873

As in Sect. 1, we denote the set of all matrix entries in � by M ⊂ O ⊂ R,874

and let875

δM = {m′/m : 0 �= m ∈ M}.876

As a hint of the multiplicative structure hidden in δM , we observe that877

δM ⊃ −γ−2 · δM. (7.5)878

To see this, note that879

(
1 nγ
0 1

)
·
(

a b
c d

)
=

(
a + nγ c ∗

∗ ∗
)
;880

thus if c ∈ M , we also have cn = a + nγ c ∈ M for all n ∈ Z, and c′n/cn →881

−γ−2c′/c. (Here ∗ denotes a matrix element whose value is irrelevant.)882

Classification of closed geodesics. Since V has only one cusp, for each peri-883

odic slope s there exists a φ ∈ Aff+(X, ω) such that884

C(s) = (φ(A1), φ(A2)) = (C1,C2).885

When represented in this way, the cylinders Ci inherit orientations from Ai886

and thus represent homology classes. The geodesics at slope s are of two types:887

short geodesics lying in C1, and long geodesics in C2. Their lengths differ by888

a factor of γ . Since889

π(C1) = Dφ · π(A1) =
(

a b
c d

)
.

(
1
0

)
=

(
a
c

)
,890
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we have:891

Proposition 7.1 A cycle C ∈ H1(X,Z) is represented by a short geodesic if892

and only if its period π(C) occurs as the column of a matrix in �(2, 5,∞).893

Any long geodesic parallel to C has period γ · π(C).894

In the terminology of Sect. 1, one can compute the period of a short geodesic895

with slope s by computing the golden fraction expression of its slope, s = c/a.896

Corollary 7.2 There exists a closed geodesic C with period π(C) = (∗, c) if897

and only if c ∈ M ∪ γM.898

Corollary 7.3 The entries m = x + yγ of matrices in �(2, 5,∞) satisfy899

xy ≥ 0.900

Proof. By the preceding Proposition, there exists an a ∈ O and a geodesic901

C such that π(C) = (a,m). Since the closed geodesics A1 and A3 shown in902

Fig. 4 have periods (1, 0) and (γ − 1, 0) respectively, Eq. (7.1) gives903

〈A1,C〉 = ψ(x + yγ ) = y and 〈A3,C〉 = ψ((γ − 1)x + y) = x .904

But A1 and A3 have the same direction, so their intersection numbers with C905

have the same sign. ��906

Using the fact that γ ′ = −1/γ , the previous Corollary easily implies:907

Corollary 7.4 We have δM ⊂ [−γ−2, 1].908

The endpoints are achieved when m = γ and m = 1.909

Proof of Theorem 1.6. The set M0 of probability measures arising from bil-910

liard trajectories in P , with slopes tending to zero, can be identified with the911

set of measures on (X, ω) arising from closed geodesics with slopes tending to912

zero. By [Mc6, Theorem 1.3], a dense subset of M0 is given by the probability913

measures μ̂(C) proportional to914

μ(C) =
2∑

i=1

〈Ai ,C〉
c(Ai )

χAi |ω|2,915

where C ranges over all closed geodesics and c(Ai ) denotes the circumference916

of Ai (given by 1 and γ for i = 1 and 2). Thus ifπ(C) = (∗, c) and c = x+yγ ,917

we have918

μ(C) = yα1 + γ−1(x + y)α2919
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by Eq. (7.1). A simple computation also shows that, if we set r = c′/c, then920

the ratio of the coefficients of α1 and α2 above satisfies921

γ−1(x + y)

y
= 1+ γ−2r

1− r
.922

Thus μ(C) is proportional to the measure ν(r) defined by (1.7), and hence923

μ̂(C) = ν̂(r).924

By Proposition 7.1, there exists a C such that π(C) = (∗, c) if and only if925

c ∈ M ∪ γM . For c ∈ M , the corresponding values of r range in δM , while926

for c ∈ γM , they range in −γ−2 · δM . Thus ν̂ provides a homeomorphism927

ν̂ : δM ∪ −γ−2 · δM → M0.928

But the domain of this map is simply the closure of δM , by Eq. (7.5); and thus929

the image δM is dense in M0, as desired. ��930

The last step in the proof says it suffices to consider the measures coming931

from ‘short’ closed geodesics. Geometrically, this reflects the fact that the932

homology class of the short geodesic τ n
A(B1), n " 0, is close to a multiple of933

the long geodesic A2.934

Intersection matrices. Let φ ∈ Aff(X, ω) be an affine automorphism. The935

intersections between the cylinder systems A and φ(A), given by the matrix936

〈A, φ(A)〉 =
(〈A1, φ(A1)〉 〈A1, φ(A2)〉
〈A2, φ(A1)〉 〈A2, φ(A2)〉

)
,937

are conveniently described using the function (7.2).938

Proposition 7.5 If Dφ = (
a b
c d

)
, then 〈A, φ(A)〉 = I (cγ ).939

Proof. Note that π(φ(A1)) = (a, c) and π(φ(A2)) = γ · (a, c). Thus if940

c = x + yγ we have, by Eq. (7.1),941

〈A, φ(A)〉 = ψ

(
c cγ

cγ cγ 2

)
= x

(
0 1
1 0

)
+ y

(
1 1
1 2

)
·942

��943

Proof of Theorem 1.4. Let944

T = {[〈A, φ(A)〉] : φ ∈ Aff+(X, ω)} ⊂ M2(R)/R
×.945

The set T coincides with the set of all possible intersection matrices between946

pairs of cylinder systems on (X, ω), up to scale. We also note that, by947
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1 0 2 0 3 0 4 0

1 0

2 0

3 0

4 0

Fig. 5 Matrix entries (x, y) = x + yγ . The line y = γ x is shown

Eq. (7.4), the heights and circumferences of the cylinders (A1, A2) satisfy948

J (0) = [h(Ai )c(A j )]. Thus, by Theorems 1.7 and 1.8 of [Mc6], we have949

T = 〈T 〉 ∪ {J (0)} ∼= ωω + 1. (7.6)950

Now let S = δ(γM) = −γ−2 · δM , as in Eq. (1.4). By Proposition 7.5 and951

the commutative diagram (7.3), we have952

T = [I (γM)] = J (δ(γM)) = J (S).953

Since the map J : [−1, 1] → J [−1, 1] is an isomorphism of topological954

semigroups, Eq. (7.6) implies that955

S = 〈S〉 ∪ {0} ∼= ωω + 1.956

��957

Survey of matrix entries. Next we present a picture of M . Recall that every958

matrix entry m = x + yγ of the triangle group�(2, 5,∞) determines a point959

(x, y) ∈ Z
2 in the first or third quadrant, by Corollary 7.3.960

The matrix entries with 0 ≤ x, y ≤ 40 are plotted in Fig. 5. By Theorem961

1.4, if this figure were extended to the whole first quadrant, the slopes of all962

marked points would form a set P satisfying P ∼= ωω + 1 and D∞P = {γ }.963

The line with slope γ is shown.964

Since P is a closed set of measure zero, the marked points in Fig. 5 can be965

covered by finitely many cones with small total angle, leading to the estimate:966

|{x + yγ ∈ M : |x | + |y| ≤ N }| = o(N 2).967
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Question. Is δM already closed in R
×? Equivalently, is γ−2δM itself a semi-968

group?969

Golden fractions. We conclude the study of�(2, 5,∞) with some examples970

of golden fractions.971

The golden fraction a/c for an algebraic integer x ∈ Z[γ ] is conveniently972

described by the unique integer N = N (x) such that a/c = (γ N x)/γ N . Note973

that974

N (x + nγ ) = N (x) (7.7)975

for any n ∈ Z, since adding a multiple of γ only changes the first term in the976

golden continued fraction for x .977

1. For k ≥ 0, we have N (γ 2k) = k2 − k + 1. This shows the exponent 2 in978

Eq. (1.2) is sharp.979

The proof is by induction on k, using the fact that n = γ 2k−1−γ 1−2k ∈ Z,980

and hence981

γ 2k = nγ + 1/γ 2k−2.982

By similar reasoning we have N (γ 2k+1) = k2.983

2. The Fibonacci sequence ( f1, f2, f3, . . .) = (1, 1, 2, 3, 5, 8 . . .) satisfies984

N ( f2k) = k2 and N ( f2k−1) = k2 − k + 1. In fact γ n = fn−1 + fnγ , so985

N ( fn−1) = N (γ n) by Eq. (7.7).986

Applying this observation to f20 = 6765 gives the trajectory length987

L(6765) = 2γ 101
√

f 2
20 + 1 ≈ 1025 for billiards in the golden L , as stated988

in the Introduction.989

3. On the other hand, N (nγ ) = 0 for all n. This shows the lower bound990

h(x) ≤ h(a)+h(c) on the complexity of a golden fraction is best possible.991

8 Compression of cusps992

In this section we prove Theorem 1.7 which, like Theorem 1.1, does not make993

direct reference to Teichmüller curves. As an application, we give a second994

proof of Theorem 1.4.995

We begin by defining the renormalized distance between a pair of cusps on996

a hyperbolic surface.997

Parabolics. Recall that a matrix g ∈ SL2(R) is parabolic (or unipotent) if and998

only if n = g− I is nilpotent of rank one. These nilpotent matrices are naturally999

identified with the open light-cone in the Lie algebra sl2(R). A parabolic is1000

positive if it is conjugate in SL2(R) to
(

1 1
0 1

)
. The positive parabolics correspond1001

to one component of the light cone.1002
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Using the trace form, we define a pairing on parabolics by1003

〈g1, g2〉 = Tr(g1g2)− 2 = Tr(n1n2),1004

where ni = gi − I . Note that1005

〈gi
1, g j

2 〉 = i j〈g1, g2〉 (8.1)1006

for all i, j ∈ Z.1007

Cusps. Let � be a lattice in SL2(R). For convenience, assume that (±I ) ⊂ �.1008

We say x ∈ ∂H is a cusp of � if it is fixed by a parabolic element g ∈ �. The1009

set of all cusps will be denoted κ(�).1010

For each x ∈ κ(�) there exists a unique positive parabolic g = gen(x) ∈ �1011

such that every other parabolic fixing x is a power of g. Given r ∈ R let1012

Br (x) ⊂ H denote the unique horoball resting on x such that the length of its1013

boundary, modulo the action of g, satisfies1014

|∂Br (x)/〈g〉| = exp(r). (8.2)1015

Note that Br (x) and Bs(x) are bounded by parallel horocycles, distance |r−s|1016

apart. One can think of Br (x) as the ball of renormalized radius r centered at1017

x ; we emphasize that r can be negative.1018

Let1019

π : H → V = H/�1020

denote the quotient map. By regarding Br (x) ∪ {x} as a neighborhood of x ,1021

we obtain a natural topology on the extended upper halfplane such that the1022

quotient1023

H ∪ κ(�)/� = V1024

is a compact Riemann surface. The added points κ(V ) = V −V are the cusps1025

of V .1026

Renormalized distance. We define the renormalized distance between a pair1027

of distinct cusps x, y by1028

D(x, y) = lim
r→−∞ d(Br (x), Br (y))+ 2r. (8.3)1029

Let γ ⊂ H denote the hyperbolic geodesic joining x to y. Geometrically,1030

D(x, y)measures the length of the geodesic π(γ ) ⊂ V , truncated at standard1031

horoball neighborhoods of the cusps of V .1032
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Proposition 8.1 We have exp(D(x1, x2)) = −〈g1, g2〉, where gi = gen(xi ).1033

Proof. Normalizing so (x1, x2) = (∞, 0), we can write1034

g1 =
(

1 b
0 1

)
and g2 =

(
1 0
−c 1

)
1035

with b, c > 0. Then B0(x1) is the region Im(t) ≥ b, B0(x2) is a Euclidean ball1036

of radius 1/c resting on t = 0, and—provided these balls are disjoint—we1037

have1038

exp(D(x, y)) = exp
∫ b

1/c
du/u = bc = 2− Tr(g1g2) = −〈g1, g2〉.1039

To treat the general case, use Br (xi )with r small enough to insure disjointness.1040

��1041

Indiscrete groups. The discussion above also goes through for an arbitrary1042

group � ⊂ SL2(R), subject only to the condition that its parabolic subgroups1043

are cyclic. In particular, � need not be discrete. Although the quotients spaces1044

V and V cannot be defined in this setting, Eq. (8.3) still gives a geometric1045

meaning to D(x, y) in terms of the universal cover H.1046

Contracting twists. We now return to the setting of Theorem 1.7. Let ρ : �→1047

�′ ⊂ SL2(R) and F : H → H define a contractive twist of �. For brevity, we1048

will write g′ = ρ(g); thus F(g · t) = g′ · F(t). Since the parabolic subgroups1049

of � are cyclic, the same is true for �′, by condition (1.8).1050

Let x be a cusp of � and let g = gen(x). Then there is a unique cusp x ′1051

of �′ fixed by g′. Below, functions of primed variables such as gen(x ′) and1052

Br (x ′) depend implicitly on �′; those of unprimed variables depend on �.1053

Proposition 8.2 The parabolic g′ = gen(x)′ is positive, and F(Br (x)) ⊂1054

Br (x ′) for all r ∈ R.1055

Proof. The map F descends to a holomorphic map between punctured disks,1056

f : �∗ ∼= H/〈g〉 → H/〈g′〉 ∼= �∗1057

inducing the identity on π1. Completing f across the origin and applying the1058

Schwarz lemma yields the result above. ��1059

Corollary 8.3 We have gen(x ′) = gen(x)′.1060

Compression. Consistent with Eq. (1.10), given x, y ∈ κ(�) with (g, h) =1061

(gen(x), gen(y)), we now define1062

r(x, y) = 〈g′, h′〉
〈g, h〉 .1063
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By Eq. (8.1), this quantity does not change if we replace g and h with a different1064

pair of parabolics in � fixing x and y. By Proposition 8.1 and Corollary 8.3,1065

we have1066

r(x, y) = exp(D(x ′, y′)− D(x, y)). (8.4)1067

This expression makes it clear that r(x, y) measures the rate at which F pulls1068

the cusps x and y closer together. A quantitative estimate for this compression1069

is given by:1070

Proposition 8.4 Let γ : R → H be a unit speed hyperbolic geodesic running1071

from x to y. Then1072

D(x, y)− D(x ′, y′) ≥
∫ ∞

−∞
1− ‖F ′(γ (s))‖ ds.1073

Here ‖F ′‖ < 1 is the norm of the derivative of F in the hyperbolic metric.1074

Proof. Choose r > 0 small enough that equality holds in Eq. (8.3) for D(x, y)1075

and D(x ′, y′). Let s1 < s2 be the moments when γ (s) leaves and enters Br (x)1076

and Br (y) respectively. Then by Proposition 8.2, F◦γ : [s1, s2] → H provides1077

a path connecting Br (x ′) to Br (y′). It follows that D(x, y)+2r = s2− s1 and1078

D(x ′, y′)+ 2r = d(Br (x
′), Br (y

′)) ≤
∫ s2

s1
‖F ′(γ (s)‖ ds.1079

Taking the difference and letting r → 0 yields the bound above. ��1080

Let Vthick denote the thick part of V , as in Sect. 5. Since ‖F ′(t)‖ depends1081

only on π(t), we have1082

δ = inf
π(t)∈Vthick

1− ‖F ′(t)‖ > 0.1083

Corollary 8.5 Let T be the total amount of time the geodesic π ◦ γ spends in1084

the thick part of V . Then r(x, y) ≤ exp(−δT ).1085

Proof. Immediate from Proposition 8.4 and Eq. (8.4). ��1086

Modular symbols. In preparation for the proof of Theorem 1.7, we briefly1087

review some material from [Mc6, §2].1088

A modular symbol of degree d is a formal product1089

σ = γ1 ∗ · · · ∗ γn1090
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of oriented geodesics on V , joining consecutive cusps (c0, . . . , cn) to form a1091

path from c0 to cn on V . We let Sd(V ) denote the modular symbols of degree1092

d, and S(V ) = ⋃∞
0 Sd(V ). The modular symbols form the morphisms in a1093

graded category whose objects are the cusps of V .1094

The geometric topology on S(V ) is defined so that σn → τ if the corre-1095

sponding paths converge uniformly, when suitably parameterized. Assuming1096

V has at least one cusp, we have S(V ) ∼= ωω; S1(V ) is dense among modular1097

symbols of degree d ≥ 1; and σn →∞ in S(V ) if and only if1098

L(σn ∩ Vthick)→∞.1099

We can also identify S1(V ) with the set of ordered pairs of distinct cusps1100

of �, subject to the equivalence relation [x, y] ∼ [gx, gy] for all g ∈ �. The1101

corresponding geodesic γ on V has a lift to H which runs from x to y. In the1102

geometric topology, if x, y, z are distinct cusps and g = gen(y), then1103

[x, gn(z)] → [x, y] ∗ [y, z] (8.5)1104

as n →∞.1105

Continuity of compression. By invariance of the trace, we have r(gx, gy) =1106

r(x, y) for all g ∈ �. Thus we can regard r as a function on S1(V ); r(γ )1107

measures the compression ofγ under F . Extending the definition to all modular1108

symbols by1109

r(γ1 ∗ γ2 ∗ · · · ∗ γn) = r(γ1)r(γ2) · · · r(γn),1110

we obtain a functor1111

r : S(V )→ [0, 1];1112

this means simply that r(σ ∗ τ) = r(σ )r(τ ).1113

Proposition 8.6 The functor r is continuous, and r(σn)→ 0 if σn →∞.1114

Proof. We begin by proving continuity in the representative case described by1115

Eq. (8.5). Let x, y, z be distinct cusps of �, and let gx = gen(x), gy = gen(y)1116

and gz = gen(z). Normalize coordinates so that x = x ′ = ∞, y = y′ = 0,1117

gx =
(

1 a
0 1

)
, gy =

(
1 0
b 1

)
, gz =

(∗ c
∗ ∗

)
,1118

and the same equations hold with primes on all variables. Then 〈gx , gy〉 = ab1119

and 〈gy, gz〉 = bc, and hence r(x, y) = (a′b′)/(ab) and r(y, z) = (b′c′)/(bc).1120
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Since gen(gn
y z) = gn

y gzg−n
y , and1121

〈gx , gn
y gzg−n

y 〉 = −n2(ab)(bc)+ O(n),1122

we similarly find that r(x, gn
y z)→ (a′b′)(b′c′)/((ab)(bc)) = r(x, y)r(y, z),1123

as required for continuity under Eq. (8.5). The general case is similar. (Cf.1124

[Mc6, Thm 4.1].)1125

Finally observe that if σn → ∞ in S(V ) then L(σn ∩ Vthick) → ∞ and1126

hence r(σn)→ 0 by Corollary 8.5. ��1127

Recall from Eq. (1.11) that the absolute ratio set is given by R = r(S1(V )).1128

Proposition 8.7 The ratio set R contains an accumulation point p �= 0.1129

Proof. Let x and y be two distinct cusps of �, normalized as in the preceding1130

proof. Let yn = gn
x (y) and z = gy(x). It is readily verified that1131

〈gn
x gyg−n

x , gygx g−1
y 〉 = ab(abn − 1)2,1132

and hence r(yn, z)→ p = (a′b′)3/(ab)3 �= 0. Using the fact that r(x, y) =1133

(a′b′)/(ab) < 1, we also find that r(yn, z) takes on infinitely many values as1134

n varies, and hence p is an accumulation point of R (cf. [Mc6, Cor. 6.2]). ��1135

Proof of Theorem 1.7. Let S = S(V ) ∪ {∞} denote the 1-point compactifi-1136

cation of S(V ). By Proposition 8.6, if we set r(∞) = 0 we obtain a continuous1137

map r : S → [0, 1]. Since1138

〈S1(V )〉 ∪ {∞} = S1(V )1139

in S, and r is a functor, the set R = r(S1(V )) similarly satisfies1140

〈R〉 ∪ {0} = R1141

in [0, 1]; and since D∞S = {∞}, we have D∞R ⊂ {0}. To see equality holds,1142

observe that there exists a point 0 < p < 1 in DR by Proposition 8.7; then1143

pn ∈ Dn R, and hence 0 = lim pn ∈ D∞R. Thus D∞R = {0} is a single1144

point, and hence the compact set R itself is homeomorphic to ωω + 1. ��1145

Remarks. The analysis above can be extended to the case where� ⊂ SL2(R)1146

is any finitely generated discrete group, and ρ : � → SL2(R) is any homo-1147

morphism compatible with a contracting map F . The essential point is not1148

that V has finite volume, but rather that the thick part of the convex core of V1149

is compact. In the more general case, r(x, y) can assume the value zero (e.g.1150

when ρ maps a parabolic element to an elliptic element). Examples where ρ1151

is not injective arise naturally for square-tiled surfaces; see e.g. [Mc6, §9].1152
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Second proof of Theorem 1.4. To conclude, we return to the triangle group1153

� = �(2, 5,∞). The group� admits a contractive twist (ρ, F)withρ(g) = g′1154

given by Galois conjugation. (See [Mc1, §10]; with the current normalizations,1155

F is antiholomorphic, but this causes no difficulties.) The map ρ preserves1156

parabolics, since they are characterized by the rational condition Tr(g) = ±2.1157

Let p = ( 1 γ
0 1

) = gen(∞), and let g = (
a b
c d

) ∈ �. As we have seen in1158

Sect. 7, every matrix entry for� occurs in every possible position, so it suffices1159

to consider the values of c which occur for g ∈ �.1160

We readily compute that1161

r(∞, g(∞)) = r(∞, a/c) = 〈p′, (gpg−1)′〉
〈p, gpg−1〉 =

(
γ ′c′

γ c

)2

.1162

Since � has only one cusp, every element of its absolute ratio set R arises as1163

above. Referring to Eq. (1.4), we see that the absolute and signed ratio sets for1164

� are related R = S2. Since R ∼= ωω + 1, it follows easily that S ∼= ωω + 11165

as well.1166

The statement S = 〈S〉 ∪ {0} is more subtle. It can be handled by defining1167

a new functor s : S(V )→ [−1, 1] satisfying1168

s(∞, g(∞)) = (γ ′c′)/(γ c).1169

This distinguished square root of r is still continuous, and the proof of Theorem1170

1.4 for S can then be completed along the same lines as the proof of Theorem1171

1.7 for R. ��1172
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