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Abstract—We explore in this paper sufficient conditions for the
H-property to hold, with a particular focus on the so-called line
graphons. A graphon is a symmetric, measurable function from
the unit square to the closed unit interval. Graphons can be used
to sample random graphs, and a graphon is said to have the
H-property if graphs on n nodes sampled from it admit a node-
cover by disjoint cycles—such a cover is called a Hamiltonian
decomposition—almost surely asymptically in the size of the
graph.. A step-graphon is a graphon which is piecewise constant
over rectangles in the domain. To a step-graphon, we assign
two objects: its concentration vector, encoding the areas of the
rectangles, and its skeleton-graph, describing their supports. These
two objects were used in our earlier work to establish necessary
conditions for a step-graphon to have the H-property. In this paper,
we prove that these conditions are essentially also sufficient for
the class of line-graphons, i.e., the step-graphons whose skeleton
graphs are line graphs with a self-loop at an ending node. We
also investigate borderline cases where neither the necessary nor
the sufficient conditions are met.

Index Terms—Network Control, Graph Theory, Graphons

I. INTRODUCTION

Graphons, introduced in [1], [2] to study very large graphs,
are increasingly relied upon as models for large networks.
Roughly speaking, a graphon is a symmetric, measurable
function W : [0, 1]2 → [0, 1] which can be thought of as
an infinite-dimensional adjacency matrix. Graphons have been
put to use in the statistical analysis of random graphs, where
the problem of graphon identification from sample networks [3]
and the problem of detection of clusters in networks [4],
among others, have been explored. In parallel, graphons have
appeared as models in control and game theory. For example,
in [5], the authors considered infinite-dimensional linear control
systems where the system “matrices” (more precisely, operators
on L2([0, 1],R)) are derived from graphons, and investigated
the associated controllability properties and finite-dimensional
approximations. We also mention [6], [7] where the authors
introduced different types of graphon games; broadly speaking,
these are the games that comprise a continuum of agents and
for which the relations between these agents are described by a
graphon. They then proceeded to investigate, among others, the
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existence of Nash equilibria and properties of finite-dimensional
approximations.

In the above mentioned works [5]–[7], graphons were
treated as infinite-dimensional extensions of finite dimensional
adjacency matrices. We take a different point of view in this
paper: we treat graphons as stochastic models for sampling
large graphs. We follow the research line initiated in our
earlier work [8] and investigate the so-called H-property (see
Definition 1 below) for graphons. More specifically, in the
earlier work, we provided a set of necessary conditions for
the H-property to hold. In the same paper, it was claimed
that these necessary conditions were also essentially sufficient.
In this paper, we elaborate on this sufficiency claim and
prove it for the class of line-graphons, introduced formally in
Subsection IV-B. The reason for the choice of the class of line
graphons is twofold: firstly, graphs sampled from line graphons
are common in practical situation, as they encode a simple line
topology. Secondly, the calculations for this class of graphons
can be made rather explicit. Indeed, relying on the form of the
necessary conditions, checking for their sufficiency in these
cases will only require elementary results from the theory of
Erdős-Rényi random graphs. This relative simplicity makes an
intuitive understanding of these conditions easier to attain. In
an upcoming paper, we will prove the sufficiency of these two
conditions in the general case, which will then rely on a more
abstract approach.

The remainder of the paper is organized as follows: In
Section II, we review the procedure to sample random graphs
from graphons and reproduce from [8] the definition of H-
property. Next, in Section III, we will first introduce step-
graphons and the associated key objects, namely, concentration
vector, skeleton graph, and the edge polytope derived from
the skeleton graph. In the same section, we will also state the
conditions that are necessary or sufficient for a step-graphon to
have the H-property. Then, in Section IV, we will establish the
sufficiency claim for the class of line graphons and investigate
a borderline case where neither the necessary nor the sufficient
conditions are met. The paper ends with conclusions.

II. THE H -PROPERTY

We start this section by describing how to sample graphs
from a graphon.
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Sampling procedure: Let Uni[0, 1] be the uniform distribution
on [0, 1]. Given a graphon W : [0, 1]2 → [0, 1], we sample
an undirected graph Gn = (V,E) ∼ W on n nodes from W
according to the following the procedure:

1) Sample y1, . . . , yn ∼ Uni[0, 1] independently. We call
yi the coordinate of node vi ∈ V .

2) For any two distinct nodes vi and vj , place an edge
(vi, vj) ∈ E with probability W (yi, yj).

According to the model, the probability of having an edge
between nodes vi and vj in Gn is thus a Bernoulli random
variable with coordinate dependent parameter W (yi, yj). If
the graphon is constant, say W (s, t) = p for all (s, t) ∈
[0, 1]2, then Gn ∼ W is an Erdős-Rényi random graph with
parameter p; see Subsection IV-A for a definition of this class
of graphs. One can thus think, in this context, of graphons as a
means to allow for an inhomogeneous probability of existence
of an edge.

H-property: We next recall the H-property introduced in [8].
To do so, we let W be a graphon and Gn ∼ W . We then define
the so-called directed version G⃗n = (V, E⃗) of an undirected
graph Gn = (V,E), which is obtained by replacing every
undirected edge of Gn with two directed edges. More precisely,
the node set of G⃗n is the same as the one of Gn, and the edge
set is given by

E⃗ := {vivj , vjvi | (vi, vj) ∈ E},

where, by convention, an undirected edge between vi and vj
is written as (vi, vj) and a directed edge from node vi to node
vj as vivj .

A Hamiltonian decomposition in G⃗n is a subgraph H⃗ =
(V, E⃗′), with the same node set of G⃗n such that H⃗ is a
disjoint union of directed cycles. Hamiltonian decompositions
appear in various guises in control problems. We just mention
here that they arise in the study of structural stability of
linear systems [9], [10] and structural controllability of linear
ensemble systems [11]. We refer to [8] for more details. We
now define the H-property:

Definition 1 (H-property [8]). Let W be a graphon and Gn ∼
W . Then, W has the H-property if

lim
n→∞

P(G⃗n has a Hamiltonian decomposition) = 1.

It turns out that the H-property is essentially a “zero-one”
property: for almost all graphons W , the probability of having
a Hamiltonian decomposition is either 0 or 1 in the limit. This
property is, however, not true for all graphons; we provide
in Subsection IV-C an example showcasing this fact. We will
elaborate on this property later in the next section.

III. STEP-GRAPHONS AND ASSOCIATED OBJECTS

A. Step-graphons

Following [8], we restrict our attention to the so-called step-
graphons, defined as follows:

Definition 2 (Step-graphon and its partition). We call a graphon
W a step-graphon if there exists an increasing sequence 0 =

σ0 < σ1 < · · · < σq = 1 such that W is constant over each
rectangle [σi, σi+1)× [σj , σj+1) for all 0 ≤ i, j ≤ q−1 (there
are q2 rectangles in total). The sequence σ = (σ0, σ1, . . . , σq)
is a partition for W .

In words, W is a step-graphon if the interval [0, 1] can be
split into subintervals R1, . . . ,Rq with the property that W is
constant over their products Ri ×Rj , which are rectangles in
the plane. Given a graph Gn sampled from a step-graphon W
with partition sequence σ, we let ni(Gn) be the number of
nodes vj of Gn whose coordinates yj ∈ [σi−1, σi) (see item 1
of the sampling procedure). When Gn is clear from the context,
we simply write ni.

B. Concentration vectors and skeleton graphs

We now present the key objects associated with a step-
graphon that are needed to decide whether it has the H-property,
namely, its concentration vector, skeleton graph, and the so-
called edge polytope of the skeleton graph. These objects were
introduced in [8]. We first have the following definition:

Definition 3 (Concentration vector). Let W be a step-graphon
with partition σ = (σ0, . . . , σq). The associated concentration
vector x∗ = (x∗

1, . . . , x
∗
q) has entries defined as follows: x∗

i :=
σi − σi−1, for all i = 1, . . . , q. The empirical concentration
vector of a graph Gn ∼ W is defined as

x(Gn) :=
1

n
(n1(Gn), . . . , nq(Gn)). (1)

When Gn is clear from the context, we will simply use x to
denote the empirical concentration vector. Observe that for n
fixed, nx = (n1, . . . , nq) is a multinomial random variable with
n trials and q outcomes with probabilities x∗

i , for 1 ≤ i ≤ q.
From Chebyshev’s inequality, we have that for any ϵ > 0,

P(∥x(Gn)− x∗∥ > ϵ) ≤ c

n2ϵ2
, (2)

where c is a constant independent of ϵ and n. We next have
the following definition:

Definition 4 (Skeleton graph). Let W be a step-graphon with
a partition σ = (σ0, . . . , σq). We define the undirected graph
S = (U,F ) on q nodes, called the skeleton graph of W for
the partition σ, with U = {u1, . . . , uq} and edge set F as
follows: there is an edge between ui and uj if and only if W
is non-zero over [σi−1, σi)× [σj−1, σj).

Note that there is a graph homomorphism which assigns the
nodes of an arbitrary Gn = (V,E) ∼ W to their corresponding
nodes in the skeleton graph S:

π : vj ∈ V 7→ π(vj) = ui ∈ U, (3)

where ui is such that σi−1 ≤ yj < σi, with yj the coordinate
of vj . Let S = (U,F ) be a skeleton graph. We decompose
the edge set of S as F = F0 ∪ F1, where elements of F0

are self-loops, and elements of F1 are edges between distinct
nodes. Given an arbitrary ordering of its edges and self-loops,
we let Z = [zij ] be the associated incidence matrix, defined
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as the |U | × |F | matrix with entries:

zij :=
1

2


2, if fj ∈ F0 is a loop on node ui,

1, if node ui is incident to fj ∈ F1,

0, otherwise.
(4)

Note that the columns of Z are probability vectors. We now
introduce the edge polytope:

Definition 5 (Edge polytope [12]). Let S = (U,F ) be a
skeleton graph and Z be the associated incidence matrix. Let
zj , for 1 ≤ j ≤ |F |, be the columns of Z. The edge polytope
of S, denoted by X (S), is the finitely generated convex hull:

X (S) := conv{zj | j = 1, . . . , |F |}. (5)

It is known [12] that if a connected S has an odd cycle
(i.e., a cycle of odd length including a self-loop), then the rank
of X (S) is full, i.e., (q − 1). Otherwise, the rank of X (S) is
(q − 2).

C. Conditions for the H-property

We start by introducing a set of conditions which will be
critical for deciding whether or not a step-graphon W has
the H-property. Let σ be a partition for W , and let S and
x∗ be the associated skeleton graph and concentration vector.
For simplicity, we assume in the sequel that S is connected
(in general, one needs to apply the conditions below for each
connected component of S). We state here without a proof
that if S is connected, then Gn ∼ W is also connected almost
surely as n → ∞.

We now state the conditions:

Condition 1: The graph S has an odd cycle.

Condition 2A: The vector x∗ belongs to the edge polytope of
S, i.e., x∗ ∈ X (S).

Condition 2B: The vector x∗ belongs to the relative interior
of the edge polytope of S, i.e., x∗ ∈ intX (S).

The following result has been established in [8]:

Theorem 1. Let W be a step-graphon with σ a partition. Let
S and x∗ be the associated (connected) skeleton graph and
concentration vector, respectively. Let Gn ∼ W and G⃗n be
the directed version of Gn. If either Condition 1 or Condition
2A is not satisfied, then

lim
n→∞

P(G⃗n has a Hamiltonian decomposition) = 0. (6)

We also claimed in [8] that if both Condition 1 and Condition
2B are satisfied, then

lim
n→∞

P(G⃗n has a Hamiltonian decomposition) = 1. (7)

A proof of this fact will be provided in a future publication, but
we illustrate it in Section IV for the special case where W is a
line graphon. We also point out that the borderline case between
Condition 2A and Condition 2B, i.e. when x∗ ∈ X (S) but
x∗ /∈ intX (S), is precisely the one for which the H-property
is not a zero-one property.

IV. THE H -PROPERTY FOR LINE GRAPHONS

In this section, we will focus on a special case, namely,
step-graphons whose skeleton graphs are line graphs (with a
self-loop at one of the ending nodes). To carry out analysis, we
need some preliminaries about Erdős-Rényi random graphs.

A. On Erdős-Rényi graphs

An Erdős-Rényi random graph R(n, p) = (V,E) on n nodes
V = {v1, . . . , vn} with parameter p ∈ [0, 1] is a random graph
obtained as follows: The existences of edges between pairs of
distinct nodes are independent, identically distributed Bernoulli
random variables with parameter p, i.e.,

P((vi, vj) ∈ E) = p for all 1 ≤ i < j ≤ n.

We first have the following elementary result:

Lemma 1. Let R(n, p) be an Erdős-Rényi random graph with
p > 0. Then, R(n, p) contains a triangle (which is a complete
graph on three nodes without self-loops) almost surely as
n → ∞.

Proof. Denote by K the event that R(n, p) contains at least
one triangle, and by K̄ the complementary event that it contains
no triangles; clearly, P(K̄) = 1− P(K). Furthermore, denote
by F̄ the event that R(n, p) is such no triple of consecutive
nodes (v3i+1, v3i+2, v3i+3), for 0 ≤ i ≤ ⌊n/3⌋ − 1, is a
triangle. Observe that if R(n, p) contains no triangle, then
obviously consecutive triples of nodes cannot be triangles,
i.e., K̄ ⊆ F̄ . Now, since the presence of each individual
edge in R(n, p) is an independent event, the probability that
(v3i+1, v3i+2, v3i+3) does not form a triangle is (1 − p3).
Relying again on the independence, we see that this probability
is the same for every triple (v3i+1, v3i+2, v3i+3). Since these
triples are pairwise disjoint, the events that they form triangles
are also independent of each other. Thus, the probability of
the event F̄ is (1 − p3)⌊n/3⌋. Since p > 0, this probability
vanishes as n → ∞. Consequently, P(K̄) ≤ P(F̄) → 0 and
P(K) → 1. This completes the proof. ■

We next recall that a bipartite graph [13] B = (V,E) is an
undirected graph whose node set V admits a partition into two
disjoint subsets VL and VR such that nodes in VL (resp. VR)
have no edge between them.

A perfect matching P in a bipartite graph is a subset of its
edge set so that each node is incident to exactly one edge in
the subset P (if a perfect matching exists, then it is necessary
that |VL| = |VR| = |P |).

When |VL| ≤ |VR|, we define a left-perfect matching as a
subset of |VL| edges that are incident to all nodes in VL and
so that each node in VR is incident to at most one edge.

Note that a perfect matching P in a bipartite graph B with
|VL| = |VR| = n gives rise to a Hamiltonian decomposition
in B⃗, the directed version of B. Indeed, the two oppositely
directed edges that replace an edge in P form a two-cycle in B⃗.
Since P is a perfect matching, these two-cycles are pairwise
disjoint and, moreover, cover all of the nodes in B⃗.
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Fig. 1. Left: A step-graphon W with the partition σ = (0, 0.2, 0.5, 0.75, 1).
Right: The associated skeleton graph S.

We can easily adapt the notion of Erdős-Rényi random
graphs to the class of bipartite graphs. Specifically, an Erdős-
Rényi random bipartite graph, denoted by B(n,m, p), with
|VL| = n and |VR| = m, has an edge set obtained as follows:
The probability of having an edge between any node in VL

and any node in VR is p, and the events of having such edges
are independent.

We have the following fact as a corollary of Erdős and
Rényi [14, Theorem 2] and its proof is omitted due to space
limitation.

Lemma 2. Let p ∈ (0, 1] be a constant and B(n,m, p) be a
random bipartite graph, with n ≤ m. Then, the probability that
B(n,m, p) contains a left-perfect matching is one as n → ∞.

The following result is then a corollary of Lemmas 1 and 2:

Corollary 2. Let R(n, p) = (V,E) be an Erdős-Rényi random
graph with p > 0. Then, R⃗(n, p) contains a Hamiltonian
decomposition almost surely as n → ∞.

Proof. Consider the following two cases for the parity of n:

Case 1: n is even. In this case, splitting the node set of
R(n, p) arbitrarily into two subsets of cardinality n/2, we see
that R(n, p) contains an Erdős-Rényi random bipartite graph
B(n/2, n/2, p) as a subgraph on the same node set V . Thus, by
Lemma 2, R(n, p) contains a perfect matching P almost surely
as n → ∞. Replacing every edge in P with two oppositely
directed edges, we obtain a Hamiltonian decomposition P⃗ in
R⃗(n, p).

Case 2: n is odd. This case is slightly more complicated as
there does not exist a perfect matching that covers all the
nodes of R(n, p). To resolve the issue, we take a two-step
approach: (1) By Lemma 1, we know that R(n, p) contains
a triangle K3 as a subgraph almost surely as n → ∞; (2)
The subgraph R′ of R(n, p) induced by the nodes that are
not in the triangle thus has an even number (n− 3) of nodes.
Using the same arguments as for Case 1, we have that R′ has
a perfect matching P ′ almost surely as n → ∞. In this way,
the triangle K3 and the matching P ′ are disjoint and, together,
they cover all the nodes of R(n, p). Moving from undirected to
pairs of oppositely directed edges as done in case 1, we have
that R⃗(n, p) admits a Hamiltonian decomposition, formed by
a directed triangle in K⃗3 and all the two cycles in P⃗ ′. ■

B. Line Graphons
We consider graphons W whose skeleton graphs S are line

graphs with a single self-loop attached on one of the ending
nodes (note that if there is no self-loop, then by Theorem 1,
W does not have the H-property). See Fig. 1 for illustration.
For convenience, we call such graphons line graphons.

Proposition 1. Let W be a line graphon (so Condition 1 is
satisfied). If Condition 2B is satisfied, then W has the H-
property.

To establish Proposition 1, we first express the incidence
matrix Z of the skeleton graph S as follows:

Z =
1

2



1 0 0 0 · · · 0 0 0
1 1 0 0 · · · 0 0 0
0 1 1 0 · · · 0 0 0
0 0 1 1 0 0 0
...

...
. . .

...
...

0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 · · · 0 1 2


(8)

We need the following lemma:

Lemma 3. If x = (x1, . . . , xq) ∈ intX (S), then the entries
of x satisfy the following inequalities:

k−1∑
ℓ=0

(−1)ℓxk−ℓ > 0, ∀k = 1, . . . , q. (9)

Proof. Since x ∈ intX (S), one can write x =
∑q

ℓ=1 αℓzℓ
where zℓ is the ℓth column of the matrix Z in (8), and 0 <
αℓ < 1, for all ℓ = 1, . . . , q. In particular,

xℓ =
1

2


α1 if ℓ = 1,

αℓ−1 + αℓ if 1 < ℓ < q,

αq−1 + 2αq if ℓ = q.

It then follows that for any k = 1, . . . , q,
k−1∑
ℓ=0

(−1)ℓxk−ℓ =
1

2

{
αk if 1 ≤ k < q,

2αq if k = q,

which is positive. This establishes (9). ■

We can now prove Proposition 1:

Proof of Proposition 1. Recall that for a given Gn ∼ W , ni =
|π−1(ui)|, where π is defined in (3). On the one hand, using (2),
we have that ni/n converges to xi as n → ∞. On the other
hand, from Lemma 3, we have the inequalities (9). These two
facts imply that almost surely as n → ∞, we have

k−1∑
ℓ=0

(−1)ℓnk−ℓ > 0, ∀k = 1, . . . , q. (10)

Thus, in the sequel, we can assume that the above inequalities
are satisfied. We claim that G⃗n admits a Hamiltonian decom-
position almost surely as n → ∞. If the claim is true, then W
has the H-property.
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We now proceed with the proof of the claim. For convenience,
let Vi := π−1(ui) for i = 1, . . . , q. To this end, consider the
subgraph G1,2

n of Gn induced by V1∪V2. Let σ = (σ0, . . . , σq)
be the partition for W and p1,2 be the value of W over
the rectangle [σ0, σ1) × [σ1, σ2). Note that p1,2 is strictly
positive (because otherwise there will be no edge (u1, u2) in the
skeleton graph). By construction, it should be clear that G1,2

n is
an Erdős-Rényi random bipartite graph B(n1, n2, p

1,2). Denote
by E1,2

n the event that G1,2
n admits a left-perfect matching.

Because n1 < n2 by (10) and because n1 → ∞ as n → ∞
(since n1/n converges to x1 > 0), we know from Lemma 2
that E1,2

n is true almost surely as n → ∞. In the sequel, we
condition on the event E1,2

n and fix a left-perfect matching
P 1,2
n in G1,2

n . Let G′1,2
n be the subgraph of G1,2

n induced by
P 1,2
n (more precisely, induced by the nodes incident to edges

in P 1,2
n ). Then, by construction, P 1,2

n is a perfect matching of
G′1,2

n . As argued in Subsection IV-A, if we let P⃗ 1,2
n be the

subset of edges in G⃗′1,2
n obtained by replacing every undirected

edge in P 1,2
n with two oppositely directed edges, then P⃗ 1,2

n

gives rise to a Hamiltonian decomposition of G⃗′1,2
n which is

comprised only of two-cycles.
Denote by V ′

2 the set of nodes in V2 that are not incident
to edges in P 1,2

n . Let n′
2 := |V ′

2 | = n2 − n1 > 0. Similarly,
define the subgraph G2,3

n of Gn induced by V ′
2 ∪ V3. It is

an Erdős-Rényi random bipartite graph B(n′
2, n3, p

2,3) where
p2,3 > 0 is the value of W over the rectangle [σ1, σ2)×[σ2, σ3).
By (10), we have that n3 − n′

2 = n3 − n2 + n1 > 0. Let E2,3
n

be the event that G2,3
n admits a left-perfect matching. Using

the same arguments as above, we know that E2,3
n is true almost

surely as n → ∞. Fix a left-perfect matching P 2,3
n of G2,3

n .
Let G′2,3

n be the subgraph of G2,3
n induced by P 2,3

n , which
admits P 2,3

n as a perfect matching. Consequently, P⃗ 2,3
n yields

a Hamiltonian decomposition of G⃗′2,3
n .

One can repeat the above arguments as follows: Given a
left-perfect matching P k−1,k

n , for 1 ≤ k ≤ q − 1, we let V ′
k

be the subset of Vk such that nodes in V ′
k are not incident to

the edges in the left-perfect matching P k−1,k. We have that
n′
k := |V ′

k| =
∑k−1

ℓ=0 (−1)ℓnk−ℓ > 0 and it follows from (10)
that n′

k < nk+1. We then consider the subgraph Gk,k+1
n of

Gn induced by V ′
k ∪ Vk+1, which is a random bipartite graph1

B(n′
k, nk+1, p

k,k+1) with pk,k+1 strictly positive. Then, the
event Ek,k+1

n that Gk,k+1
n admits a left-perfect matching P k,k+1

n

is true almost surely. Conditioning upon this, we fix a left-
perfect matching P k,k+1

n of Gk,k+1
n and let G′k,k+1

n be the
subgraph of Gk,k+1

n induced by P k,k+1
n . It admits P k,k+1

n

as a perfect matching. Then, P⃗ k,k+1
n yields a Hamiltonian

decomposition of G⃗′k,k+1
n .

Now, let V ′
q be the subset of Vq whose nodes are not incident

to the edges in the left-perfect matching P q−1,q and denote by
Gq

n of the subgraph Gn induced by V ′
q . First, note that n′

q :=

|V ′
q | =

∑q−1
ℓ=0 (−1)ℓnq−ℓ, which is strictly positive by (10).

1For the case k = q− 1, the subgraph Gq−1,q
n contains a random bipartite

graph, and additional edges are added randomly between nodes of Vq following
an Erdős-Rényi procedure. Note that edges that can appear in the bipartite
graph and the ones that can appear between nodes of Vq are distinct and,
hence, their appearances are independent.

π−1(u1) π−1(u2) π−1(u3) π−1(u4)

Fig. 2. Illustration of the proof of Proposition 1: The graph Gn is sampled
from the line graphon W illustrated in Fig. 1. The nodes in each π−1(ui), for
1 ≤ i ≤ 4, are placed in the correspondingly labelled columns. The subgraph
in brown corresponds to G′1,2

n in the proof which admits a perfect matching.
The subgraphs in blue, red, and green correspond to G′2,3

n , G′3,4
n , and G4

n,
respectively.

In fact, since ni/n → xi as n → ∞, we have that n′
q/n →∑q−1

ℓ=0 (−1)ℓxq−ℓ > 0. In particular, it holds that n′
q → ∞

almost surely as n → ∞. Next, note that Gq
n is an Erdős-

Rényi random graph R(n′
q, p

q,q), with pq,q > 0, where pq,q is
the value of W over the square [σq−1, σq]

2. It then follows
from Corollary 2 that Gq

n admits a Hamiltonian decomposition
almost surely as n′

q → ∞.
Finally, we conclude this proof by noting that the subgraphs

G⃗′1,2
n , . . . , G⃗′q−1,q

n and G⃗q
n of G⃗n are disjoint and cover all

nodes of G⃗n. Moreover, each subgraph admits a Hamiltonian
decomposition. The cycles in these decompositions are thus
all disjoint and cover every node of G⃗n. Together, they form
a Hamiltonian decomposition of G⃗n. ■

C. When is the H-property not a zero-one property?

In this subsection, we study a “borderline” case illustrating
that the H-property is not zero-one for all step-graphons. To
this end, consider the following step-graphon:

W (s, t) =

{
0 if 0 ≤ s, t < 0.5,

p otherwise,
(11)

where p ∈ (0, 1]. See Fig. 3 for illustration. This graphon
satisfies Conditions 1 and 2A, but does not satisfy Condition
2B. Indeed, the incidence matrix of its skeleton graph is given
by

Z =
1

2

[
1 0
1 2

]
, (12)

so the edge polytope X (S) is a line segment in R2 with the
ending points (0.5.0.5) and (0, 1). However, the associated
concentration vector x∗ is given by (0.5, 0.5), which is not in
the interior of X (S). We now have the following result:

Proposition 2. Let Gn ∼ W for the step-graphon W given
in (11). Then,

lim
n→∞

P(G⃗n has a Hamiltonian decomposition) = 0.5.
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s

t0 0.5

1

0.5

1

u1 u2

Fig. 3. Left: The step-graphon W given in (11), which has the partition
σ = (0, 0.5, 1). The step-graphon takes the values 0 (in white) and 0 < p ≤ 1
(in grey). Right: Its associated skeleton graph.

Proof. Recall that for Gn ∼ W , we have set ni = |π−1(ui)|,
for i = 1, 2. Now, consider two cases:

Case 1: n1 − n2 > 0. First, note that the probability of
occurrence of such a case is 1

2 . We next show that in this
case, G⃗n cannot admit a Hamiltonian decomposition. Suppose,
to the contrary, that H⃗ is a Hamiltonian decomposition in G⃗n.
Let v1 be an arbitrary node in π−1(u1). Consider the cycle
C⃗ ∈ H⃗ to which v1 belongs. We express C⃗ as a sequence
of nodes C⃗ = v1 · · · vkv1. Because the n1 nodes in π−1(u1)
do not have any edge between them, it is clear that no two
adjacent nodes in C⃗ can belong to π−1(u1). It then follows
that the number of nodes of C⃗ belonging to π−1(u1) is less
than or equal to |C⃗|/2. In particular, it implies that

|π−1(u1) ∩ C⃗| ≤ |π−1(u2) ∩ C⃗|.

This holds for all cycles in H⃗ . But since these cycles are
disjoint and cover all the nodes of G⃗n, we have to conclude
that n1 ≤ n2, which is a contradiction.

Case 2: n1 − n2 < 0. The probability of the occurrence
of this case is also 1

2 . Consider the subgraph B of Gn

obtained by removing the edges between nodes of π−1(u2).
By construction, it is a random bipartite graph B(n1, n2, p)
with n1 < n2. Moreover, since n1/n → 1/2 as n → ∞, it
is almost sure that n1 → ∞ as n → ∞. We can then apply
Lemma 2 to B and conclude that it contains a left-perfect
matching P almost surely. Similarly, as done in the proof of
Proposition 1, we consider the subgraph G′

n of Gn induced
by P ; the edges in P⃗ form a Hamiltonian decomposition of
G⃗′

n which is comprised of all two-cycles. We next consider
the subgraph G′′

n of Gn induced by the nodes in π−1(u2) that
are not incident to P . Then, clearly, G′

n and G′′
n are disjoint

and they together cover all the nodes of Gn. It thus suffices
to show that G⃗′′

n admits a Hamiltonian decomposition almost
surely to complete the proof of case 2. To establish this fact,
note that G′′

n is an Erdős-Rényi random graph on (n2 − n1)
nodes with parameter p. We now claim that (n2 − n1) → ∞
as n → ∞.

To see this, let Xi be the random variable defined as follows:
Xi = 1 if node i belongs to π−1(u1) and Xi = −1 if node i
belongs to π−1(u2). Following the sampling procedure given
in Section II, it should be clear that for the W as in (11),
the Xi’s are independent, identically distributed and follow a
Bernoulli distribution with parameter 1

2 . We now define their

normalized cumulative sum

τn :=
1√
n

n∑
i=1

Xi =
n1 − n2√

n
;

by the central limit theorem [15], τn converges in law to a
normal random variable τ ∼ N(0, 1) as n → ∞. Consequently,
it is almost sure that as n → ∞,

|n1 − n2| > log n,

which proves the claim.
Finally, by combining the claim with Corollary 2, we

conclude that G⃗′′
n admits a Hamiltonian decomposition almost

surely as n → ∞. ■

V. CONCLUSIONS

We have established in this paper the sufficiency of condi-
tions 1 and 2B given in Subsection III-C for line graphons to
have the H-property. We have also illustrated the importance
of the distinction between conditions 2A—which requires
the concentration vector to belong to the edge polytope
X (S) of the skeleton graph S— and condition 2B—which
requires the concentration vector to belong to the relative
interior of X (S). While condition 2A is necessary, it is
condition 2B which is sufficient. We have illustrated this fact by
exhibiting a graphon which satisfied conditions 1 and 2A, but
not 2B, and shown that graphs sampled from these graphons
admitted Hamiltonian decompositions with probability 1/2
asymptotically for n → ∞.
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