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Spin Hall conductivity of interacting two-dimensional electron systems
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We consider a two-dimensional electron system subjected to a short-ranged nonmagnetic disorder potential,
Coulomb interactions, and Rashba spin-orbit coupling. The path-integral approach incorporated within the
Keldysh formalism is used to derive the kinetic equation for the semiclassical Green’s function and applied
to compute the spin current within the linear response theory. We discuss the frequency dependence of the spin
Hall conductivity and further elucidate the role of electron interactions at finite temperatures for both the ballistic
and diffusive regimes of transport. We argue that interaction corrections to the spin Hall effect stem from the
quantum interference processes whose magnitude is estimated in terms of parameters of the considered model.
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I. INTRODUCTION

At the present day the physics phenomena originating from
the Rashba spin-orbit coupling [1,2] dominate the fields of
spintronics [3] and topological systems [4]. One fundamen-
tally important example of the quantum spin transport that
intertwines with topological properties of the band structure
is the spin Hall effect (SHE). It represents a collection of
transport phenomena whereby charge currents propagating in
nonmagnetic materials are converted to transverse spin cur-
rents and vice versa. The resulting spin current is even under
the application of the time-reversal operator, so that in this
regard this effect is similar to the appearance of dissipationless
current in s-wave superconductors. Studies of the extrinsic
mechanisms of the SHE have rich history dating back to
the original works [5,6]; see also review [7] and references
therein. In general, this effect has conceptual overlap with the
anomalous Hall effect (AHE) [8], where one distinguishes
extrinsic side-jump and skew-scattering mechanisms of the
transverse responses, as well as an intrinsic source generated
by the Berry curvature in materials with topologically nontriv-
ial band structure [9].

In the SHE the transverse z-component spin current is
induced by an electric in-plane field through the spin-orbit
coupling,

Ji = osue€ij&;j, (D

and therefore one would naturally expect that the correspond-
ing spin Hall conductivity should depend on the value of
the spin-orbit coupling A. In the inspiring work by Sinova
et al. [10] it was proposed that the spin current may appear
in n-type spin-orbit coupled semiconductors; furthermore, it
was shown that in the bulk of a clean and homogeneous
two-dimensional electronic system (2DES), the spin Hall con-
ductivity is reactive and predicted to have a universal value
osu = e/8n independent of the spin-orbit coupling (in units
of i = 1). This specific result pertains to the Rashba model
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of the spin-orbit interaction. The universality is bounded by
the condition on the carrier concentration that must exceed a
threshold, n > (mhg)? /7, where m is an effective mass, so
that both spin-split bands are occupied. This is not a unique
example, as universal SHE was predicted also to occur in the
Luttinger model Hamiltonian [11,12].

These works generated significant interest and ignited
intense research on this peculiar transport effect [13—17], scru-
tinizing particularly the robustness of the universality of spin
Hall conductivity [18-35]. The resulting conclusions seem
to differ between the model cases. In the Luttinger model
an intrinsic spin Hall conductivity remains largely intact by
scattering [19,20,27,28,30], whereas in the Rashba model in-
clusion of even the smallest amount of nonmagnetic disorder
with the short-range impurity potential leads to the vanish-
ing of the dc spin Hall conductivity [21,22,24-26,35]. This
is due to the fact that scattering introduces the dissipative
contribution to the spin Hall conductivity o2, = —e/87 that
cancels out the reactive part o, = ¢/8m. This result was
verified independently by employing a variety of complemen-
tary techniques that include the diagrammatic Kubo formula
approach [21,24-26], Boltzmann equation [35], semiclassical
Eilenberger kinetic equation [22,34], and direct numerical
finite-size analysis [29,31]. With diagrams the cancellation
can be traced to the delicate interplay of self-energy effect
and current vertex corrections. However, despite the general
consensus questions still remained whether this is just specific
properties of the linear Rashba model and perhaps an artifact
of the model assumptions on the properties of the disorder
potential.

Further detailed analyses suggest the following. (1) In the
delta-function disorder model the weak-localization correc-
tions still yield vanishing dc spin Hall conductivity [26];
however, going beyond Born approximation and incorpo-
rating certain diffractive scattering processes with crossed
impurity lines may render finite contributions [36]. (2) This
cancellation is also not complete in an extended model with
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the finite range impurity potential [33] and requires a refined
definition of the spin current operator [37]. (3) The dc spin
Hall conductivity also remains finite in the disordered artifi-
cially engineered contacts and/or heterostructures [22,38,39].
(4) Concerning the impact of electron interaction, general
arguments were put forward to suggest that vanishing of the
dc spin current is an exact property of the Rashba 2DES
with any nonmagnetic interaction [25,26]. The argument is
based on the observation that the Heisenberg equation of
motion for the spin § = 6/2 of the electron, § = i [H,3], gives
a simple relation between the spin precession and the spin
current

§i(t) = —2mAso (1), i=x,). 2)

The presence of disorder provides a relaxation mechanism so
that the system is expected to reach a steady state in a long-
time evolution where the expectation value of magnetization
(8) reaches some stationary value. Therefore, the rate of spin
polarization change, (§), must vanish, and as an immediate
consequence of Egs. (1) and (2) o,g = 0 for the static electric
field. In contrast, in clean systems it was found that the long-
range or screened electron-electron interactions will modify
the universal value of crslf_[ [25]. (5) Finally, the ac spin Hall
conductivity remains finite due to its relation with the Pauli
susceptibility [17,25].

In order to reconcile the initial prediction of Ref. [10] with
the rest of the studies that followed on the Rashba model
with short-ranged disorder it is most instructive to study spin
Hall conductivity at finite frequency. It becomes then clear
that orders of taking the clean limit first or sending frequency
to zero first do not commute. Indeed, keeping the impurity
scattering time t finite and sending the external frequency
to zero gives oy = (e/4mi)wt, thus indeed resulting in van-
ishing dc spin Hall conductivity. Instead, keeping frequency
finite but taking a ballistic limit with T — oo gives universal
o = e/8m, which happens to be frequency independent, but
this is not a dc expression. Strictly speaking the saturated
value of oy occurs at the intermediate range of frequencies,
rs_' < w < t~!, between the rates of spin relaxation and elas-
tic scattering where it is given by oy = (e/4m)(t/7;). The
ratio 7 /7, is strongly suppressed in the diffusive limit by
the Dyakonov-Perel mechanism of spin relaxation [40] at the
same time it saturates to 1/2 in the ballistic regime. Finally, at
highest frequencies wt >> 1 ac spin Hall conductivity decays
algebraically as oy = (e/27)(1/wt)?. This behavior is fur-
ther illustrated in Fig. 1 for both real and imaginary parts of
osn(w) and an analytical formula is derived later in the paper.

Despite all these research efforts and to the best of our
knowledge the general problem of an interplay between the
electron-electron interactions and disorder on spin current has
not been fully addressed yet. In this work, we attempt in
part to fill this gap. Specifically, we take the general theo-
retical framework developed earlier in Refs. [22,34,41] one
step further and study the problem of the effects of Coulomb
interactions on spin Hall conductivity in the presence of
nonmagnetic disorder scattering. We find the quantum in-
terference correction to the spin Hall conductivity at finite
temperatures. The physical origin of the interaction correction
is analogous to the Al’tshuler-Aronov effect in electrical con-
ductivity of disordered 2DES and stems from the interference
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FIG. 1. Frequency dependence of the spin Hall conductivity in
the Rashba model of spin-orbit coupling for 2DES subjected to
the short-ranged quenched disorder potential characterized by the
elastic scattering time 7. Plots of the real part (a) and imaginary
part (b) are made for the different strength of the disorder potential
as characterized by the parameter { = At, where A = Ay, pr is the
energy scale of spin-orbit-induced band splitting.

between the two semiclassical electronic paths: the first path
corresponds to a scattering on impurity, while the second one
corresponds to a scattering off the Friedel oscillations created
by an impurity [42,43]. This interaction correction appears in
the 1/(prl) order with pr the Fermi momentum and / the
mean-free path. It shows linear in temperature dependence,
which is further independent of the strength of spin orbit in
the ballistic regime.

The rest of the paper is organized as follows. In Sec. II
we introduce model of interacting 2DES with spin-orbit cou-
pling subjected to the disorder potential and present main
ingredients of the formalism. In Sec. III we derive the kinetic
equation for the quasiclassical Green’s function. An equa-
tion for the density matrix is obtained in Sec. IV. The spin
current response to the alternating field is analyzed in Sec. V,
and interaction corrections to the spin Hall conductivity are
estimated. Technical calculations of the collision integrals are
delegated to several Appendixes.

II. MODEL

In the following we provide the technical ingredients of
our theory. The detailed introduction to the main theoretical
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framework can be found in the original paper by Zala
et al. [43]. The generalization of their results to a disordered
system of the two-dimensional interacting Fermi gas with
Rashba spin-orbit coupling has been given by Li and Li [41].
Our technical discussion here can be viewed as an extension of
the results of Ref. [41] by retaining in the kinetic equation the
terms linear in powers of Ay, /vr. Last, we note that in what
follows we adopt the energy units 7 = ¢ = kg = 1.

We start with the partition function in the Keldysh formu-
lation of nonequilibrium systems [44,45]

z= f DIV ¥l exp(—iS[T. ¥]), 3)

Wherega, V¥, are fermionic Grassman fields, « is a spin label,
and S[y, ¥] is an action defined as

ST, ¥ = /C t [ @ Y Va0 Lpte (e )
af

+a /wer”ezA(q No(—a.1). @)
— —0(q,7)o(—q,1).
Atoo o2 1l

In this expression the time integration is performed over the
Keldysh contour, (q, ¢) is the Fourier transform of the parti-
cle density operator 9(r,t) = >, Vo (r, )Yy (r, 1), A= L?,

J

and L is a characteristic linear size of the sample. £ is an
operator defined in the two-by-two matrix in spin space

=2 Y h v |bett  ©

r, = |\l - — r X )
lat 2m F 2x2 7T e

where Er is the Fermi energy, 7l = Asole; X 6] - (—iV), As

is the spin-orbit coupling, and U(r) is the random disorder

potential with the correlator

U@U X)) ais = 3(r—r'). (6)

2T VET

Averaging (-)qis is performed over disorder realizations, and
vr is the density of states at the Fermi level.

Since the physical observables are generally expressed in
terms of the fermionic correlators we consider the single-
particle Green’s function

Gop(x, x') = %’ / DY ey O 5 (e SW0(7)

and T¢ refers to the time-ordering operator on a Keldysh
contour.

A. Hubbard-Stratonovich transformation

Our goal is to obtain an equation for the Green’s function.
This is done in two steps. The first step consists in performing
the Hubbard-Stratonovich transformation:

. 2
exp (—é fc 'y %@(q,n@(—q,m) - / Diglexp {i /C dry (%)m,r)qﬁ(—q,m]

q70

q

x exp{z% /C dt;[@(q,rm(—q,o+@(—q,r>¢<q,t>]}. ®)

In the second step, we consider separately the fermionic and
bosonic fields which reside on two sides of the Keldysh
contour: _l-a, Yy and ¢; with i = 4 for the top part of the
contour and i = — for the bottom part, so that we can treat the

fermionic fields as doublets in the Keldysh space:

_ 1/51,-&- _ ¢+
vo=(Ver) e=(3) ®

The original action in Eq. (4) can now be written as a sum of
the term quadratic in the fermionic fields and a term which is

purely bosonic: S[V, ¥; ] = Seo[ ¥, ¥; ¢] + Sp[¢p] with
Seo = / T (0 Lap (0)3 — €916 (1) W5 (1),
6‘2
Sy = -5 // ST ()W x — XN D). (10)

Here the summation over repeated indices is assumed.
Further, we use the shorthand notations x = (r, 1), fx =

(

00 2 .
J°., dt [ d*r and matrices

. (1 0 (1 0y . (0 o0
3= 0 —1) Y+ = 0 0/ V- = 0 —1)
(11)

which all operate in the Keldysh space. The function V! (x —
x') is defined according to V™ '(x —x) =V~ (r —r)8(t —
t') and V~!(r) can be found by solving the equation

2
eZ/V_'(r—rl) d s, (12)

[ry —r’|
The bosonic fields are described by the correlators
Dap(x, X') = i{pa(x)pp(x")). (13)
Let us single out the second term in Sty [E, ¥; @] and denote

it by Sim[w, Y¥; ¢]. Introducing the partition function corre-
sponding to a fixed configuration of the bosonic fields

Z[p] = / DY, Y1Tc exp(—iSi[ ¥, Y3 81, (14)
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we consider the corresponding fermionic Green’s function for
this fixed configuration

Gop(x,x'|9p) = #;]/D[Jw]fcxpa(x)wﬂ(xf)e—isf,b[%wwy
(15)

Here G(x, x) is a 4 x 4 matrix in Keldysh and spin spaces,
Gg;}) (x;, X}) (i, j = %). It then follows

~ no b A b )o—iSld]
Gupl. ) = f DIg1Gus(r. ¥ [$)e 9. (16)

where Sg[¢] = Sp[¢p] + iIn Z[¢p]. Averaging both parts of this
expression over disorder yields

A 1 R )
(Gap(x, X)) ais = E/D[(f)] (Gaﬂ(x,_xl|¢)>dise_’<SB[¢]>dis‘

a7
This expression is approximate since it ignores mesoscopic
fluctuations between polarizability of the medium due to the
action of the bosonic fields and conduction electrons: the
effect of these fluctuations is of the order of o (Er7)~? [43].

B. Basic equations

We proceed to introduce quantities which will be central
to our subsequent discussion. Our presentation below follows
closely the discussion in Ref. [43]. We treat the bosonic action
Sg[¢] in the saddle-point approximation:

Fl¢] = iln(e ®¥) = F[0] + 14" T1p + O(¢*),  (18)

where (-) formally denotes the averaging over bosonic degrees
of freedom around the saddle-point value and IT is the elec-
tronic polarization operator

§*Fl¢] )
—_ . 19
8¢a (x)8¢ﬁ (.X/) $=0 ( )

In order to express the polarization operator in terms of the
fermionic propagator (15) it would be convenient to perform
the Keldysh rotation for the fermionic fields (we suppress the
spin label for brevity):

Mep(x,x') = (

1

1
Yy = ﬁ(w-‘r +¥), Y= ﬁ(lh— —vo),
— 1 — — _ 1 — _
Y, = E(w+ —Y¥_), Y= ﬁ(er +¥_). (20)

The corresponding relations for the bosonic fields are ¢;2) =
(s £ ¢_)/2. As aresult of this rotation, the Green’s function
in Eq. (15) has the form

R / K /
GRy(x, x'|¢) Ga,f,(x,xw))' on

Gaﬂ@ﬁx’l(b) = <G§ﬂ(x’x/|¢) Géﬂ(x,x’w))

In accordance with the standard convention G*/4/X denotes
retarded/advanced/Keldysh Green’s function. It is important
to emphasize that Gf 8 (x, x'|¢) by itself is not zero, but its
average over the bosonic fields must be zero by causality,
(GZy(x, X' |¢))y = 0.

The bosonic propagators (13) in the rotated basis are de-
fined as follows:

(61 ()1 (x')) = %@K (x, ),
(61 (X)ba (x')) = éD’*(x, ),

(21 (x)) = %DA(x, X, (D)2 (x)) =0.  (22)

From Eq. (18) we find that if we were to ignore
Stb, then DY(x,x') = DR(x,x') = -V (r —r)8(r — ') and
DO (x,x") = 0. With the help of the saddle-point approxima-
tion (18), the Dyson equation for the bosonic propagators can
be compactly written as

D(x.x") = Do(x, x')
+/dx3/dx4®0(x,x3)f[(X3,x4)f)(x4,x’),
. orf DX - nc ok
@_(0 DA), n_<0 HA). 23)
Furthermore, from expanding Z[¢] around the saddle point,

we obtain the following relations between the polarization
operators and the fermionic correlators:

R _ i 8 AK
1,52 = (5) 55 gy (T 167 (o X160

K _ L 8 AK
MK (x1, x2) = (2)—5 i TG Cexig)

l A
+(3) (Tr, [G7(x, xlp)]), (24)
27 8¢ (x2)
and T4 (x, x") = TR/, x).
It is well known that fermionic Green’s function satisfies
the pair of Dyson equations [45]:

(Gy'=%)oG=1, Go(Gy'—%)=1. (25)
In these equations the matrix product implies the convolution

in time and space as well as the matrix product in spin and
Keldysh spaces, and the operator G is given by

(&)

- '8+V2+E Ur) —éx) |1
=|i—+ — — —¢(x x
0 ot 2m £ 22

Cole: x 81 (—iV), = (ﬁ; ﬁj) (26)

We can now perform the averaging over disorder in the lead-
ing in the 1/(EFrt) approximation. This procedure transforms
the first equation (25) to the following form:

M1)G(x1, x2l¢) — p(x)G(x1, x2])
— hsole; x 61+ (—=iV1)G(x1, x2]¢)

= 150 —x) + / ds$ 00, 616)00, xle),  27)

where h(1) = id/dt; + V%/(2m) + Er and the self-energy
part, on the account of Eq. (6), is given by

d(ry —ry)

5 G(x1, x2|9). (28)
TVET

2 (x1, xal¢) =
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Consequently, the second equation (25) averaged over disor-
der reads

1*(2)G(x1, x21¢) — G(x1, x2|P)(x2)
— ko (iV2G(x1, 2] 9))Ne, x 6]

= 180 —x) + / dGn, 119)E 00 xald). (29)

Formally, Egs. (27) and (29) together with the relations (24)
and (23) form a closed set. Notice that Egs. (27) and (29)
include the bosonic field explicitly and not the bosonic cor-
relators. However, it would be desirable to transform (27)
and (29) into the form which would allow us to express G
directly in terms of 9. This goal can be accomplished in
several steps. The first step consists in treating the equations of
motion (27) and (29) semiclassicaly [46—48].

C. Eilenberger equation

At this point we introduce the quasiclassical Green’s func-
tion. It is obtained from the function G(x;, x2|¢), which has
already been averaged over disorder, by averaging over the
distance from the Fermi surface:

N i
g(tlvtz;nvr)=_/
g

—00

+00
G, n:p§). rlgp)de,  (30)
|

oo
g, r)g(n, r) = / dt Y 3, t33m, 0)]ul2(t, 1m0y = 1,

—00 ]

o0
f drTe{g(t, 0, 1)] = 0,

oo

and ¢ has the same matrix form in the Keldysh space as (21).
We note that the right-hand side of Eq. (31) contains con-
tributions in the parameter Ay, /v that are important for the
calculation of the spin current (see Sec. IV). These terms can
be neglected if one is only interested in studying the effects of
interactions on dynamics of the spin relaxation [41].

III. KINETIC EQUATION

A. Deriving the kinetic equation for g¥

The physical observables are determined by the Keldysh
component of the quasiclassical function g [45]. Therefore,
our next task will be to derive the kinetic equation for g&
averaged over the bosonic fields, (g¥),. The equation for
&% can be obtained from the corresponding matrix block of
Eq. (31):

A‘SO A A . A A
[0, + vr(n - VIR + T2 {0, V&) + [y, 8]
= —il¢1(r, 1) — 1 (r, 1)1~
— ia(r, 1)F + i (r, 1)

1
+ E@R@’m + 8@ — (@8 — (&g, 34

where p(§) ~ (p/p)+/pr +&/vr and r = (r; +13)/2. Fol-
lowing the avenue of Refs. [41,43,47,48], we subtract Eq. (29)

from Eq. (27) and keep only linear in spatial gradient terms
assuming that g(¢, t; n, r) varies slowly with r. The resulting
equation is the Eilenberger equation for the quasiclassical
function g(¢1, ,;n, r):

A
d&+vr(m-V)g+ g{fz, Vel +iAlip, &
1
= 7= (@@ — (@nd). (31)
T

The product of the functions on the right-hand side should
be understood as convolution in time and product in spin and
Keldysh spaces. On the left-hand side of this equation the
curly brackets denote the anticommutation relation while the
square brackets denote the commutator. Also, we consider
parameter A, = Ay,p, where {(...), stands for the averaging
over the directions of momentum,

09 09 A o an
a=-2 4+ %8 Lidg—izdrn) (G2
ot oty

and #) = [e, x 6]. It is important to keep in mind that the
solutions of Eq. (31) are subjected to the constraints [43]

(33a)

(33b)

(

Similarly, function g satisfies the following equation:
)\'SO A A . A A,
[0, + vr(n - V1" + =210, V&Y + i [, &

= —ilgi(r, 1) — ¢1(r, 2)]F"
— i (r, )R + i (r, 1)@

1
+ ;@Z@’Wn + 81 n — (@) — @ 0E). (35)

By virtue of the constraints imposed by Eq. (33) only two
components of ¢ are independent. It is convenient to fix the
diagonal components [41,43]. The extra complication here, in
comparison to the procedure carried out in Ref. [41], is that
we need to retain the terms up to the first order in powers of
)‘so / VF:

R . Ao, . A
gR:\/Jl— = fp — 8K, g“=—\/]l— = fp — B28K.
UF Vr

(36)

The square root should be understood in an operator sense as
an expansion in powers of corresponding functions with their
products understood as time convolutions and matrix products
with respect to spin indices. As for the functions g€ and &,
we will look for their expressions by perturbation theory:

=5 +885, & =6 (37
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As we have already mentioned, (§%), = 0 by causality. There-
fore, up to the linear order in §3%%, we have

2)\’SO ~

np—(éK)¢§Z,
UF
i + 887 (854, (38)

where &y is a unit matrix in spin space. These expressions can
now be inserted into Egs. (34) and (35).

=608t — 1) —

& =—608(t — 1) 42

1. Equation for §g*

In the equation for §3° we only need to keep the terms
linear in bosonic fields. It follows then

9 1
[5 + vp(n - V)}ng + iAlfp, 8871 — ;(ééz — (68" )n)

= —2igy(r, 1)608(t1 — 12). (39)

Note that here we can safely ignore the gradient term propor-
tional to A4, as it exceeds the accuracy of the calculation. The
formal solution of this equation can be written as

887 (1, tsm, ) = 2i60S(t —tz)/dl"/dts

dn, / / /
X / ¢2(r7t3)r(t3 _tl;n’n;r’r)s
2r
(40)

and the kernel of the integral is a diffusion propagator. It
satisfies

(—iw +vp - QI'(n', n; 0, q)
1
+ ;[F(n’, n;o,q)— (T, n; o, q))n]

= 27 S 41

where the Fourier transformation for the diffusion propagator
is defined as

L@ o', n;r,r') = ig(r—r')—ior

: C(n', n;w, q)e
42)

2. Equation for §g%

To derive an equation for 8% we use the same approxima-
tions as we did in obtaining Eq. (39). We thus find

[% +up(n- V)}sg‘( + iy, 581+ 68 — 68
= 2igpa(r, 11)608(ty — 1) — il 1 (r, 11) — 1 (x, 1)1(885 )
+ —[ (€5)5 02 (8))n — (&) p)nd (85
— (#6887 ((8%)9)n + (85988 )n ()0 (43)

In order to write the solution of this equation we separate
88X into the (traceless) spin and charge components: §gK =
5gK + 8gX - 6 (we use the same representation for gX as well).
In addition, to simplify the analytical analysis of Eq. (43),
we will assume that (gX)4 varies slowly on the length scale

Ly = vpmin(1/T, /t/T). Consistent with this assumption is
an approximation

@t s e))e ~ (@5 (1L i, 0)g)n
+ 20 (@ (11, 1230, 1)) g)n

+ (r1 =)V, 12, 1)) ).
(44)

The expression for the §gX is found similarly to the one for
8g”. There are three terms in the right-hand side of Eq. (43),
which means that we can look for the solution in the form
88y =886, + 8gf, + 88 .. For the first one we find

Sgl(ia(tl,tz;n, r) = 2i608(t —l‘z)/dl'/‘/.dlh

dn/ / . ’ . /
X | =—¢(r',53)I'(t1; —tz;0', myr, 1),
2
45)

Note the different time dependence in the diffusion propaga-
tor, which is due to the opposite sign in front of the third term
in left-hand side of Eq. (43) compared to the similar term in
Eq. (39). The second contribution to 8gi originates from the
term proportional to ¢;:

5g§b(11,t2;n, r)

) , dn’
=—l/d1‘ /dtS/E[(bl(rl,tl —83) — ¢1(r1, 1 — 13)]

x D(tyn,n'sr, v) (gl (t — 5, — 350, ¥))y. (46)

This expression can be further simplified by employing the
approximation of Eq. (44). For the remaining contribution we
will provide the approximate expression only neglecting the
term which will not contribute to the spin current within the
accuracy of our approximations. The expression for Sgg . we
will use in what follows is

886 (. 1'sm, 1)

~ —l_[/dta/dzrg/ fdll dl’lz

x {T(ts
x D(oim, 0’5, 1)((g6 (t — 13, 133my, 1) )
x (g (13, 1" = tsmy, 1)) ), 9212, 1), (47)

and the contribution o< (g%)(gX) has been neglected.

Finally, the expression for §gX can be computed in the
same way. We will not provide the corresponding expressions
here for the same reasons as the approximation we have
adopted in the expression for 3g§ .. the functions that enter
into the expression for g€ ultimately will not contribute to
the spin current.

—tsm,n";r, 1) — [ty — t3;m0, 012, 1)}

3. Equation for (%),

The expressions for the functions 6§ and §gX listed above
can be used to write the kinetic equation for the function
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(8%)4. Averaging both sides over the bosonic fields yields

)"SO A A
[8; + vr(m - V)IEX) s + -, V(E5))
+ iA[p, ()]
1 "~ A )"SO N
= ;(<<g’<>¢>n — (8% ot (®))
+ St {85} + Stin{&"). (48)

The last two terms on the right-hand side are the collision
integrals for the elastic and inelastic scattering processes.

B. Collision integral for the elastic scattering

The elastic scattering contribution to the collision integral
is of the form

1 dn’
Stel{gK}:E/dg/z—

x {FR(ty, t:m, 05 10) (@5 (13, 1231/, 1))

— FR @, msn’, mio) (@5 (3, 13m, 1),
+ (@5, ', 1) P 13, 30 my )
— (@0 im0 P13, 3m i)} (49)
Functions £ and F* are related by the equality
FR(e,t;ny,m, v) = FA(e, t;m1, my, 1)*. (50)

For the components of £* we have

L d
FR(t,e;nl,nz,r)%if—wfd2r3fd2r4
dn dn
/ 3f 4Z)R(t w;T3,Ty)

x [['(w;n3, ny, 13, 1)
—I'(w;n3,ny, 13, 1)[IN(@;n;, N4, 1, 14)
x (85t € — w;ny,14)) . (5D

By construction the elastic collision integral satisfies

/;i—nStel{gk(fl,lz;ll, r)} =0, (52)
P

which means that the total number of electrons on a given
energy shell is preserved at any given time #; and 7,.

1. Expansion in angular components

The terms with the bosonic propagators need to be treated
approximately. First, we make use of the following approxi-
mate relation:

/dtsﬁR(tl,ts;n, n';r)(g (5, s, 1))

~ FR(t, e;m,m';0) (851, €;0', 1))y, (53)

where t = (¢; +1,)/2. Here we performed the Fourier trans-
form with respect to T =1#; —, and the terms proportional
to 8, FR(t, e;m, n';r) and 8. FR(r, €;n, n’; r) have been disre-
garded. Second, only for the collision integral do we adopt an

approximation equivalent to an assumption of spatial smooth-
ness:

/d—/FR(t e;n’,n, )
/ /dn// "\ PR
[142m-n")]F*¢, e;n',n", 1),

dll A ’
X 2—F (t,e;n,n', 1)

/ /dn [1+2m-n")FA¢, e;n’, 0, r). (54)

Furthermore, we use (44) so that

(m-n")ER@t, ;0,0 0))w (851, €50, 1))y
~ ((n : n//)FR(t’ G;n I n 9r) n/,n” gK(tv E;H’ r)>¢>ﬂ

2. Interaction correction to the collision integral

Using the approximations above, we find three separate
contributions to the collision integral:

Sta{g) = Z Stii{a). (55)

a=1

Below we will write the corresponding expressions for
Stl“{g} and will use the compact notations by replacing
(&% (t,&;m, 1))y — &, &;m, ). The first one is

st'{g) = ——/—n R ()
X <g0(tv & —win, r))n(njg(t’ gn, r))n’ (56)

where the kernel of the integral is

d*q
[1] —
Rij (w) = Im/ 2

DR (w, q)

5
X [(Fni)(f‘ﬂﬂ - 7] (PNr) — (FF))]- (57)

In the expression above the angular averages of the diffusion
propagators are defined as

dndn’ , ,
(fTg) = / Sl "o, q)gm),

P
e = [N farm o
@y
< g (0, 0" 0, (0. (58)

The second contribution to the collision integral is
d —
stP(g) = / R ()
27 Y
x (n;g(t, ¢

d
- SR

—w;n, 1)) (87, &5m, 1))y

T

x (g, e;m, 1)), (n;8(t, ¢ —w;m, 1)), 59)
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and the kernel of the integral is

—2] d*q
Rij (@) = / G D @0
x ((C)(n;'n;) — (Tn;)(T'nj) — (Cn;T'ny)).  (60)

Finally, the third contribution to the collision integral appears
as a result of the gradient expansion of Eq. (44) in the expres-
sions for F®4. We find the following expression for it:

. 2 (do
st == [ SonRE @)

2
X Va <go(tv & —wn, r))n(g(t’ gn, r))]p
(61)
where
d*q d
[3] _ .
Riy (0) = Re[ (271)2@R(w, Q)<<F)aqa (n;I")

X —<Fniir‘> — (Fni)i(r‘)) (62)

0qa G
We discuss the specific details pertaining to the dependence of
the kernel functions on frequency below in the section devoted
to the calculation of the spin current. In addition, it should be
noted that in the presence of external field, the vector potential
enters spatial gradients in the gauge invariant way, therefore
inclusion of the field amounts to the replacement, e.g., V —
0=V +e&Eo..

C. Collision integral for the inelastic scattering

Formally, the inelastic scattering collisions are accounted
for by the collision integral

Stin{@"} = —i{[¢1(r, 11) — 1 (r, 12)188") -

From this expression it is clear that St;,{g5}(z1, 1, n, r) = 0.
This means that the total number of particles moving in a
given direction n is conserved. We are not going to give a
detailed expression for St;,{£X} since in what follows we are
going to limit our analysis to the limit of small electric fields,
which means we will retain the terms linear in electric field. In
this approximation inelastic processes do not affect the (g),.

IV. EQUATION FOR THE DENSITY MATRIX

The analysis of preceding sections prepared us to derive the
diffusion equation for the density matrix p, = (g(t, &;m, r))y
in the presence of the finite electric field &. Using the result of
our earlier discussion our starting point is the kinetic equation

(& +vrn - )3+ 7°{n, 38} + iAlfp, 8]

(g>n - g )\so

T VFT

= {7p, (8)n) + Sta{8), (63)
where now A = A, pp. It is clear that if we were to average
both sides of this equation over n, then the matrix function
2n(n’'g)y will also appear. If we were interested in the spin
dynamics we could have determined 2n(n’g),  perturbatively
and thus established the corresponding correction to (), [41].

This procedure would also work for the computing Al’tshuler-
Aronov correction to conductivity; however, it is not sufficient
for the spin Hall effect.

In order to obtain the equation for the density matrix, which
would ultimately produce a reactive contribution to the spin
current, we first rewrite Eq. (63) as follows:

1 .
(8z + ;>§+ iAl7p, 8] = K18, (64)

where we use K[8] = Kol[p.] + K1[28] + Ko[W, ] and

N A
Kolpel = = — A1, e},
T UFT

7> )\’SO A A
Ki[g]l = —vr(n-0)g — 7{77» 02},
K>[8] = Sta{8). (65)

The formal solution of Eq. (64) is obtained by using the
Fourier transform with respect to time ¢:

@) o ow
§= Zo(Z24+402) " Z,(22 +4A?) Ll
iA N N
— ———[fy, K] = FIK]. 66
7 anilie KI=FIR] (66)
Here Z,, = —iw + t~'. We can now derive the equation for p,

by solving Eq. (66) by consecutive iterations in analogy to the
approach used earlier in Ref. [22].

A. First iteration

To find the first iterative solution, §®, in Eq. (66) we
replace K with Ky, and average both sides of the equation
over n:

(8 = (FKoDn- (67)
As a result, we find
Pe | MPe)

—iwpy = —— + .
Pe T, 27

(68)

Here we introduced the spin-relaxation time t, expressed in
terms of a dimensionless parameter ¢,

T, =202/ + 4] ', ¢ =1A. (69)

The expression for the matrix function W is found by mul-
tiplying ¢ by n and performing the averaging over n. It
follows

. ic .
' =~ a2 e Pl =

Aso o 4

—{ilp. pe}.  (70)
F

B. Second iteration

The second iteration leads to the appearance of the linear-
in-gradient terms in the equation for the density matrix as well
as in the expression for 2n(n’g), . By definition

") = (FIKi(E™)D)n- (71)
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After a somewhat lengthy calculation (the details can be found
in the Appendix A) we find
C s peq)
—iwpe = —— + —— ) -

TS s

+ B{(@), 3p:} +iC[#, 3p:1,  (72)
where the expressions for the coefficients B and C are
given by
_ hol? Rt
1+4¢% (144527

In order to calculate the gradient correction to W, it will be
sufficient to use the approximation

3pe(x) ~ 3360, 4
where function f; is the single particle density. We thus have

2n(n'g")w

_ UrT )\0 2 lé‘
———{<n 8f.)60 +( ) i

(73)

[npv ﬁ : afs]}
(75)

We can now use these expressions to compute the interaction
correction to the equation for the density matrix.

C. Third iteration

In our case, the third iteration produces terms still linear in
gradient, but (by construction) they have additional smallness
due to interaction effects. Thus, it is defined as

(@) = (FIR2 @) (76)

The details of the calculation are given in Appendix B, so here
we give the final form of the equation for the density matrix:

—iwp, = _& i No:H
T, 27,

—elij{f:}le: x &li6;, (77

+ B{i), 9p:} + iC[Q, D]

where in the last term we have used Eq. (74) and the summa-
tion over repeated indices is assumed. The matrix elements of

I;j(e) are
¢C/2 [R[O]( )<8f5 “’)fg

+(R (@) + ¢RI (@) fe-o i] (78)

[fs] =

and we introduced

(2) o2 ]

RO(w) = Im[R;} ()], R? (@) = —Re[R} (@)]. (79

We solve Eq. (77) up to the linear order in electric field. To do
that, we fist use the spin-basis representation for the density
matrix:

~

pe = %50 + (s¢ - 6). (80)

Then, for the components of the spin-density s, in the bulk of
the sample we find

st = —et3< ff&, +1 {f3}>[ez x &J;. (81)

Three comments are in order: (1) the interaction correction
to the spin density is small, O()@O /v%); (2) it is proportional
to the coefficient C, while the first term is proportional to the
coefficient B; and (3) since electric field lies in the plane, the z
component of the spin polarization is not generated even in the
presence of interactions. As we will see below, the magnitude
of the reactive part of the spin Hall conductivity is determined
by the value of B. Since we assumed that the coefficient ¢
can be arbitrary, it follows that in the limit when ¢ > 1,
the interaction correction acquires an extra small prefactor

0(1/¢?).

V. SPIN CURRENT

We use the standard (i.e., conventional) definition of the
spin current defined by a symmetric product of the spin and
velocity operators, j' ,i = (6;0r + 016;)/4. Alternatively, one
may also consider the definition in which the spin current
satisfies the continuity equation [33]. Our subsequent results
concerning the interaction correction to spin Hall conductivity
are not affected by this choice.

The expectation value of the spin current J ,’( as defined
above, can be expressed in terms of the Keldysh component
of the Green’s function:

| . . Aso
Ji = %Tr{ﬁ’(v;( = VGE(x, X ) }vor + —€®N. (82)

2
Here N is the total particle number
o0
N=vr [ dete) (83)
—o0

€'** is an absolutely antisymmetric tensor of the second rank,
and vy = m/2m is the density of states at the Fermi level.
The Dyson equation (25) can be manipulated in a way which
allows us to express GX in terms of p, via GX = GREG* (as
before, this product should be understood as convolution in
time and space and matrix product for spin). After performing
the Fourier transformations and making use of Eq. (28) we
find

) i o0
e p— v A v de | d*
jk Snmr( k k)/—oo 8/ y

)\so i
X Tr{GiGF (x = VPG (Y = XD}t €N
(84)
To streamline the calculation of the area integral we will again
rely on the gradient expansion for the density matrix:

Pe(y) % Pe(X) + (¥ — X) - 3ps(X). (85)

As the next step, the integral over the area can be done by go-
ing into the momentum representation. We use the following
expressions for the retarded and advanced components of the
Green’s function:

A 1
R(A) —
G p) =7 >

a=+ € —

6o — sgn(a)ilp

= —. (86)
m +Er+ Sgn(a)ksop + 2r

Given Eq. (85), it is clear that there are two contributions to
the spin current stemming from Eq. (84)

Ji=ji+]i (87)
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The first contribution originates from the p. (x), and it is found
to be

o Upé'
= T ae

where S* is the kth component of the spin polarization

(8i8% — 5,57, (88)

T ~n
S = —/ deTr(6p,). (89)
2 J

Equation (88) represents a reactive (dissipationless) part of
the spin current. The second contribution to the spin current
is proportional to dp.(x). Since this term is small, we approx-
imate the gradient term as in Eq. (74). Using the integration
by parts it turns out that the only nonvanishing contribution to
the current is proportional to 9, GR and is given by

_ (e ¢ i
_ _(277) Tt x 8l (90)

—

This contribution can be interpreted as Drude (dissipative)
part of the spin current.

A. Noninteracting case

Let us briefly discuss the noninteracting case, [;j{n;} =0
and assuming the static limit. For the reactive part of the spin
current from Eqgs. (81) and (89) we find

i i UrC
Jk = 1402 ——— (vreTAgo)le; X Elx

(L)% texen=—i  on
= |— )|—|¢e., X = — s
2w )14z R T T

In deriving this expression, we took into account that for small
deviations from equilibrium we can express f; in terms of the
Fermi distribution functions ny(¢) = [exp(¢/T) + 1] and T
is temperature. Specifically, given definitions (80) and (83) it
follows that f, = np(e + A) + np(e — A), so that

+o00
/ afg =-2. (92)

o 88

Thus, we verify that in the absence of interactions the reactive
and dissipative contributions to the spin current cancel each
other out in the bulk.

B. Finite frequency spin Hall response

It is of interest to consider spin Hall effect in response
to the alternating field &(t) = &, cos(wt). After the Fourier
transformation, the equation for the density matrix can be
found in the following form:

hy MDei) 9
Ciwpe = —Pe L PN e xs16,0 . 03)
sw 27:3(4) 36
where
1 2A%T Asol?

—=—, B,=—"7T7—7"7"7——. (%94

T (1 —iwT)?+4¢2 (1 —iwt)? + 422 ©4)
With the parametrization from Eq. (80) the equation for the
spin component becomes

3
(1) — iw)s. = —eB,[e. x aw]a—f. (95)
€

The expression for the spin current has been derived earlier
and can be reduced to

() 51( e) A’ le. x E,]
w) = —— ) —=—|e. w
Ji N\ 27/ 72+ 4N k

—}—81 UFA

— = _Nw), S= /des 96
ZT(ZZ)+4A2) (w) VF e (96)

We solve for s, from Eq. (95) and then after the final inte-
gration and a few simple algebra steps extract the spin Hall
conductivity

_ e{z T
(@) = (E) ot — G traorp 12 O

This result was plotted in Fig. 1 for various values of ¢. In
the ballistic regime ¢ > 1 one can easily extract the limiting
cases

—iwt 0Lt
e
o(w) = z— x 1 1/4 <okt (98)
—2/(@1)? 0>t

In contrast, in the diffusive regime ¢ < 1, the maximum value
of the spin Hall conductivity remains strongly suppressed
om ~ el /(2m). These results are consistent with earlier cal-
culations reported in Refs. [22,26].

C. Interaction correction to spin current

In order to find the interaction correction to spin current,
we first need to compute the spin polarization (89) by inte-
grating Eq. (78) over ¢ using our result Eq. (81). Inserting
the resulting expression for S* into Eq. (88) and given the
cancellation of the noninteracting terms (91), the net spin
current is given by the sum of two terms,

Ti =81} + 82J;. (99)

For the first one we utilize the property of the kernel functions

*® dw *® dw
f ZRE?'“"):/ 2 Rl @) =0
—00 —00

along with the fact that R[)(w) = —R (@) = 8§;;R(w) (see
Appendix C for details). It follows then

2
e ¢ Aso
dilj = =3, (8n><1+4;2> s

X / ﬁ %: aa Wab coth( )]R(a})[e, x Elk.
(101)

(100)

In this expression the summation is performed over (a, b) =
+1, wap = o + sgn(a — b)Aopr, and we used the following

identity:
(%)) aw

> 3fe °
24 [
[ % i
As could have been expected, the magnitude of the spin-
current correction is determined by the additional smallness
of the dimensionless parameter Ay,/vr. For the remaining
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contribution we found

2
[ [ e é‘ A‘SOC
SJi = —5i(—
>k z(871><1+4;2> 2vr

ded dfe
x / . © Ro(@) o L e x ELL.
T de

(103)

where we again used le () = §;jR2(w). The remaining in-
tegrals with the collision kernels are known to be divergent
in the ultraviolet and thus require regularization. The same
issue arises in the context of interaction corrections to the
conductivity (see Ref. [43] for a detailed discussion) since
the corresponding collision integrals have exactly the same
physical origin. We thus adopt the same procedure and replace

o 0 w Ep
/ dco—(a) coth —) — 2T 4+ Epcoth =X, (104)
0 ow 2T 2T
where E is put for the upper limit of the integral. This is legit-
imate and consistent with the approximations in momentum
integration, where one relies on fast convergence in order to
set the integration limit (otherwise determined by the Fermi
energy) to infinity and to set all momenta in the numerator
to the Fermi momentum in magnitude. This approach en-
ables us to find the low-temperature asymptote since we are
interested only in temperatures 7 < Er, where the second
term is essentially a temperature independent constant. These
considerations lead to the following estimate in the ballistic

limit
T E
SOy =~ i(—) In (—F),
p[:l Ep T

where we used Ry(Tt > 1)~ iln(%‘f‘) with the mo-
mentum cutoff ¢g* & pp. Curiously, we notice that spin-orbit
coupling XAy, drops out from this result. We have not attempted
to further verify cancellations of interaction corrections in
the static limit stemming for all the interaction channels, but
based on the general grounds we conjecture that this can-
cellation indeed takes place. We remind that cancellation of
this kind were demonstrated earlier diagrammatically in the
context of AHE [49-51]. The scale of dosy gives an order
of magnitude estimate for the quantum interference effects to
the spin Hall conductivity in the range where it is frequency
independent w1y > 1. As expected, this correction contains
an extra smallness in 1/(prl). In the diffusive case further
suppressions occur in the parameter of ¢ < 1.

(105)

VI. SUMMARY

To summarize, in this work we have attempted to con-
sistently describe the effect of impurity scattering and
electron-electron interaction on the spin Hall conductiv-
ity of two-dimensional electron gas in the Rashba model.
Our approach is valid for the arbitrary relationship between
temperature and elastic scattering time and as such covers
both ballistic region, Tt > 1, and diffusive transport regime,
Tt < 1. We found that interactions lead to the temperature-
dependent correction to the spin Hall conductivity. We also
provided a detailed discussion of the frequency dependence
of the spin Hall effect. On a technical level, our approach
is distinct from the previously employed methods, but it is

complementary in many ways, as we reproduced various
results in the course of derivation. This technique can be
successfully applied to analyze other relevant models and
problems. For instance, the calculation can be pushed further
to derive the spin- and charge-diffusion equations from which
the spin-relaxation time can be determined explicitly. With
the derived collision kernels it is possible to elucidate the
influence of the electron-electron interaction on the dynamics
of spin relaxation. Future work may focus on extensions of the
theory to hydrodynamic regime of strong electron interactions
where conserved spin currents may lead to peculiar magneto-
transport phenomena.
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APPENDIX A: DERIVATION OF THE EXPRESSIONS FOR
THE COEFFICIENTS IN THE EQUATION FOR
THE DENSITY MATRIX

In this section we provide additional details for the calcula-
tion of the coefficients B and C in Eqgs. (73). For convenience
we will consider the separate contributions as K; = K ll”] +

K l[b] with

N . . N R Aso o o
K = —opm- 2%, KO = -1, 920,

(AT)

A simple calculation of angular averages yields

olal\ __ ivp A A an Aso N
(&), = 27147 +4A2)r["’ el + 5 (0, 97,

2 2
0=~ (5) o s .30

2 ) (22 +4A%)Z,7

> fal iz dape}ila.
a

(A2)

(3o
2 ) (Z2+40%)Z,T

The remaining step is calculating averages of the type
(71pK171p)n and ([71p, K11)n, Which is straightforward to do with
the expression for K; obtained above. Collecting all these
terms together in the function 7[K,] yields the expressions
for the coefficients B and C in the main text.

APPENDIX B: INTERACTION CORRECTION TO THE
EQUATION FOR THE DENSITY MATRIX

We will use the following auxiliary expressions:

@O, :m, 1) & %60,

dfe

@V, 1, 1))n ~ _eBa—[eZ x&E]-6 (B1)
&
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and similarly for the functions

A
/\(0) . ~ SO A
n; t,e;n,r ~ — iy
(n;g™( ))n Yo Jeh;
(1 ] N eVFT ofe .
(n; 80, e3m, 1))y ~ —(—4 )8,—88 60

etAlc  df
20p(1 +4¢2%) de

Keeping the terms which are linear in electric field, we have

[6 x &];. (B2)

. 1 {do .
N FR —;/ Znﬂ%,[}](w)fg-w(njg“)(t, &M, 1))y

:/‘Zniﬂlj (a))fsfw

evr ., .
X T(SjO'O +

erle N 0fs
s <)
(B3)

Here the f, is determined by the single-particle distribution
functions in each of Rashba’s two bands in equilibrium. The
second term here is the one which produces the nonzero ex-
pectation value of the electron’s spin.

Since we are interested in the contribution of the gradient
terms only, we will use the expressions above to rewrite the
kernel of Eq. (59) as follows:

[(n;8(t, & — wim, 1)), (8(, &3m, 1)), ]

) ()

e)»?o 0fe—w
dop (1 +4c2)\ d¢

el B 0
- == fe—w< fs)&m. (B4)

2UF g

)fs[& X 8]]

Using these expressions along with Eq. (59) we have
dw 0fe—w [ €VF
[y 41 [0] e~ A
Stel {g( )} = / ZniRij (a))I:T<TSJO'0
ekgog
2up (1 +422)

+6AS°Bf5_w<%>8iéo}, (B5)

VE de

[& X 8]])fs

where the expression for Rl[?](w) is given in the main text.
Last, there remains one more contribution

eroB [ dw 0fe\, .
sifgt) = =2 [ —nniﬂﬁi'w)fm(i)[a < &l;.

VE 2 de

(B6)

We close this section by looking at Eq. (76). Since the

collision integral is proportional to n, it is clear that averaging

over n will render the contributions from the first two terms in

F to vanish. Furthermore, only terms o [& x 6] in K,(3")

will contribute, which means that the part of the collision

integral proportional to Rl[?](a)) does not contribute to the spin
current.

APPENDIX C: CALCULATION OF THE COLLISION
KERNELS R!(») and R} (@)

In this section our goal will be to compute the angular
averages of the diffusion propa;ators which enter into the
expressions for the functions Rl[. j] (w). We start with the ex-
pression for the diffusion propagator

278(m —n')
—iw +ivpq+ 1

(F'(n,n; w, q))n
[ —iw+iveq+ 1]
(CD)

I'(n,n;w,q) =

1
T

We can now integrate both parts over n, which yields

Y, (z¥, — 1)7!
(T, n'; 0, Q) = L)l, (C2)
—iw+ivrq + ¢

where we use the shorthand notation ¥, = Y (w, q) and

2
Y, = \/(qu)2 + (—iw + %) . (C3)

As the next step, averaging Eq. (C2) over the directions of the
remaining n we find

Now, = . Cc4

@ @) = (C4)
Note that from the last expression it follows

(T(~w, —q)) = (T(w, q))". (C5)

1. Kernel function Rl[j'.](w)

Let us discuss the averages which enter into the expression
for R (w), Eq. (57). We have

(1 —iwt)
(IT) = 2
Y,(z¥, - 1)
<nxr>=<rnx>=C.OS%<1+ - )
ivpq Y, —1
sin ¢q 1014
I = (Tn,) = 1 , Cco6
(n,T) = (T'ny) qu< +tyq_1> (C6)

where we use parametrization cos ¢q = ¢./q and singq =
qy/q. It becomes clear from these expressions that matrix Rl[}]

is diagonal since '
2
) (o)

/%(n[[’)(njl"): i <1+ ot

2 _2v12pq2 1Y, —1

Using these expressions we obtain

R = (% Jim [ £, 0
’ 2

2

y Y~ L+io (¥, -1+iw)? s)
Yy_lz 22y_12 '
(Y= 7) vrg* (Y, — 1)

In order to compute the momentum integral, we need to find
the explicit expression for the retarded part of the bosonic
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propagator DX(w, q), which satisfies the Dyson equation (23).
Using the relation between the polarization operators and the
fermionic correlators (24) one finds the following expression
for DR(w, q) in terms of the functions considered above:

y, — 1
DR, )~ —v;' —L C9
O T e (C9)

This result has been written in the unitary limit, DR (w, q) ~
-1/ ¥ (w, q), which corresponds to taking into account the
contributions from the large distances, i.e., small momenta
[see, e.g., Ref. [43] for a related discussion on the limits
of validity of this expression]. Using these expressions the
integral over momentum yields the following result for the
function Rl[}] (w):

8;i [ (6+ w12
mey_ % |7
Rij (@) = AEp { 2 <4 + w2r2>sgn(wr)
2 + w?t? an(wr) + T 2
— ) arctan(wt) + ——— In
4+ w?t? 4+ o?’1?

(C10)

T In |oT|
b+ "\ Trwe) |

2. Kernel function R,[?](w)

We proceed with the calculation of the kernel function
RE?](a)) = Imﬁ,[-i] (w), Eq. (60). In the expressions for the an-
gular averages below we will keep only terms which will
give nonzero result upon integration over the directions of the

momentum q:

i 0
I'n,Tng) = — Ing),
(CnaTng) = - ()
i 1/7Y,—1
(mTny) = 2204 —(—’ ¢ )(nxmz,
Y, T tY,
cos ¢, 1/tY,—1 2
() = =5 0 ;<:_K])<nyr) . (@I
Collecting all these terms, we find
8ij qdq
[0] _ i R
Y, -1 +iw Y, — 1 +iw)
x{q — (2‘1 - 1)2 . (C12)
Y, (Y — 1) vig (Y — 1)
From this result we conclude that
Rl[?] (w) = —R,[]l»](w) = §;jR(w). (C13)

Hence, we use this expression along with Eq. (C10) to write
Eq. (101).

Finally, we turn our attention to the expression for 7{5](@),
Eq. (79). We find

8ii [[6+ w?t? vpg*
RP(w) = —L ]
7@ = 25 G )) " U

n 2 + w’t? Vrq*T
S —— n —_—
4 + w?t? 271 + w?t?
et + tan(wt) . (C14)
— arctan(wt) ¢ .
2(4 4+ w?t?) 4+ 0?12 @

Here we introduced the momentum cutoff ¢* =~ pr.
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