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a b s t r a c t

Magnetic superconductors define a broad class of strongly cor-
related materials in which superconductivity may coexist with
either localized or itinerant long-range magnetic order. In this
work we consider a multiband model of a disordered magnetic
superconductor which realizes coexistence of unconventional
superconductivity and a spin-density-wave. We derive an exact
T -matrix and compute a single particle density of states in
this system. In a purely superconducting state the interband
scattering potential leads to an appearance of the localized Yu–
Shiba–Rusinov bound states. Our main finding is that in the fairly
broad swath of the coexistence region superconductivity remains
fully gapped despite the presence of the impurity bands. We also
discuss the effects of spatial inhomogeneities on the density of
states in strongly contaminated superconductors.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The magnetic disorder in conventional s-wave superconductors induces Cooper pair-breaking
ffects through the scattering with spin flips and leads to the gapless state in accordance with the
brikosov–Gor’kov (AG) mechanism [1]. In their theory AG assumed weak short-range impurity
otential that can be described within the self-consistent Born approximation (SCBA). This model
esults in the prediction of the gradual suppression of the superconducting transition temperature
nd global gap closing in the density of states at the critical concentration of magnetic impurities.
n contrast, strong impurity centers were shown to result in the appearance of subgap energy
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tates that are localized in the vicinity of the individual impurity atoms. To capture this effect one
ust go beyond the Born approximation and employ full T -matrix analysis as demonstrated in the
riginal works of Yu [2], Shiba [3], and Rusniov [4]. In this picture the corresponding gap suppression
ccurs only locally. The connection between these two extreme limiting cases can be understood
y considering finite impurity concentration. When the magnetic impurities are brought close to
ne another, the individual localized Yu–Shiba–Rusinov (YSR) states hybridize and can form energy
ands with hard gaps in the averaged density of states. In turn, the formation of an intragap bound
tate and impurity bands due to magnetic impurities leads to filling of the superconducting gap
nd therefore connects to the AG theory. Further complications to these scenarios may arise in the
ore realistic models of disorder potential. For example, Larkin and Ovchinnikov [5] had shown

hat system inhomogeneities with large correlation radius, longer than superconducting coherence
ength, may result in the Lifshitz subgap tail states [6] in the spectrum of a superconductor even
or nonmagnetic disorder. In particular, this result manifestly violates Anderson theorem [7] that
uggests spectral rigidity towards inclusion of the quenched nonmagnetic disorder.
In addition to the spectral modification and gap suppression, localized magnetic moments may

hange the nature of superconductivity itself. The most striking recent example can be found
n the system of a thin-film superconductor decorated by a linear chain of magnetic adatoms
eposited on its surface [8–11]. In this case the superconducting electrons mediate Ruderman–
ittel–Kasuya–Yoshida (RKKY) interactions between the localized magnetic moments of the chain.
y virtue of this interaction, the impurity spins may form periodic helical texture, which in general
s incommensurate with the underlying impurity chain, and as the consequence the YSR bands
ay effectively realize a topological superconducting phase, akin to one-dimensional spinless p-
ave superconductor [12]. The signature feature of this state is that it supports Majorana bound
tates localized at the ends of the chain which can be tested by scanning tunneling and Josephson
pectroscopy probes [13,14]. This example illustrates highly nontrivial effect of the spin ordering in
he presence of superconductivity on its spectral properties.

Recent experimental advances in a synthesis of novel materials, which exhibit strong correlations
etween the constituent particles have shown, in particular, that at low temperatures supercon-
uctivity often finds itself in competition with either itinerant or local-moment magnetism. For the
resent study the earlier theoretical works on superconductivity in iron-based superconductors are
f special interest (for a recent reviews see e.g. [15,16] and references therein). For these systems
t has been demonstrated that in the multiband models with the interband and intraband disorder
cattering, there will be a region of coexistence between extended unconventional s±-wave super-
onductivity (SC) and spin-density-wave (SDW) orders [17,18]. The same effect can be achieved
n a clean system by varying the anisotropy of the electron- and hole-like Fermi pockets [19,20].
hus, these models provide a valuable framework for studying the physical consequences of the
oexistence between these two canonical and mutually antagonistic long-range orders. The question
f whether the phenomenon of gapless superconductivity persists in the coexistence region is one
hat motivated this study. We note that the observation of gapless superconductivity would in
rinciple allow one unambiguously trace the origin of the coexistence as being driven by disorder
s opposed to be driven by the Fermi pockets anisotropy.
To place our work in the context of existing studies we remind that the effect of impurities on

he pairing state of unconventional superconductors in general [21], and in pnictides in particular,
as been widely investigated theoretically (see, e.g., Refs. [22–31]). Experimentally it was revealed
hat doping as a source of disorder leads to a nonmonotonic evolution of superconducting gaps and
lectronic densities of states [32], and may result in superconductivity with broken time-reversal
ymmetry occupying finite domain of the phase diagram inside the dome of global SC state [33]. Fur-
hermore, increasing the impurity scattering may induce topological change of the superconducting
ap structure [34,35]. An impact of disorder is particularly nontrivial in the coexistence region as it
ay boost superconducting critical temperature [18]. This is so as for s± state it is only the interband
cattering that acts as a pair-breaking source, whereas both intra and interband scattering influence
DW order parameter. As a result, SDW suppression has a stronger effect on SC enhancement
han the tendency of disorder to suppress it. On top of that pairing-potential disorder leads to a
roadening of the coexistence region [36]. Thus far these features in disordered pnictide systems
2
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ere investigated in the corresponding band models within the self-consistent Born approximation.
n light of recent experimental findings [37–40], this approach was successful in capturing several
nteresting results concerning the phase diagram and thermodynamic properties [41–48]. However,
t is clear, that this approximation, being perturbative by construction, is not sufficient when one
s concerned with the effects – such as formation of the bound states – whose description requires
ne to go beyond perturbation theory. Therefore it is of great interest from both experimental and
heoretical points of view to investigate the functional form of the single-particle density of states
n the presence of strong disorder in the coexistence region.

The rest of the paper is organized as follows. In Section 2 we introduce the two-band disorder
odel that captures SC-SDW coexistence. We formulate mean-field equations that describe the
hase diagram and introduce single-particle propagator that contains properties of the energy
pectrum. In Section 3 we introduce an exact T -matrix and solve corresponding integral equation in
he model of strong short-range impurities. We benchmark the obtained solution against analogous
nown cases for single and multiple impurities. In Section 4 we promote this treatment to include
agnetic SDW order and focus on studying the density of states. We show that superconductivity

n the coexistence phase remains fully gapped, i.e. the threshold energy to break the Cooper pairs is
lways finite throughout the region. Finally, in Section 5 we briefly discuss expected modifications
f obtained results going beyond the mean-field analysis due to optimal disorder fluctuations. In
articular, we highlight how random spatially varying parameters of the model, namely coupling
onstants in the SC and SDW pairing channels, are expected to round off sharp gap features of the
mpurity band.

. Disorder model of SC-SDW coexistence

In this work we adapt the two-band disorder model introduced earlier in Refs. [17,18] for the
nterplay between itinerant SDW and s± SC. In brief, in this model one considers a circular hole
ocket at the center of the Fe-only Brillouin zone, and an elliptical electron pocket displaced from
he center by Q = (π, 0) (or (0, π )). This model accounts for interactions between the low-energy
ermions in the SDW (particle–hole) and SC (particle–particle) channels, as well as their interaction
ith nonmagnetic impurities. In each interaction channel, the four-fermion term is decoupled via
he Hubbard–Stratonovich transformation by introducing SC-∆ and SDW-M order parameters. This
eads to a mean-field theory description.

The starting point of our analysis is an expression for the single-particle fermionic propagator
hose analytical properties contain the information about the energy spectrum

Ĝ(r1, τ1; r2, τ2) = −

⟨
T̂τ {Ψ̂ (r1, τ1)Ψ̂ †(r2, τ2)}

⟩
. (2.1)

ere we introduced the eight-component spinor Ψ̂ (r, τ ) in the Balian–Werthammer representa-
ion [49], which contains spin- 12 (c, f )-fermionic fields at point r and describe two (one electron-like
nd one hole-like) bands respectively. In a clean limit and in the Fourier momentum and frequency
epresentation the single-particle propagator is of the following form

Ĝ0(p, ωn) =
−iωnτ̂0ρ̂0σ̂0 + ξpτ̂3ρ̂3σ̂0

ω2
n + ξ 2

p +∆2 +M2 +
∆τ̂3ρ̂1σ̂0 −M τ̂1ρ̂0σ̂3

ω2
n + ξ 2

p +∆2 +M2 . (2.2)

Here ωn = πT (2n + 1) are Matsubara frequencies, T is the temperature, ξp = p2/2m − µ is a
single particle dispersion, µ is a chemical potential. We note that unlike in the corresponding band-
model [19,20], ellipticity of the Fermi surfaces is not essential for the SC-SDW coexistence in the
disorder-model, which is implicit in the simplified form of ξp in Eq. (2.2). The pairing amplitudes
∆ and M are accompanied by products of the Pauli matrices τ̂aρ̂bσ̂c with the subscript 0 referring
to the unit matrix. Each Pauli matrix in this product acts in the band, isospin (i.e. Nambu) and
spin subspaces, correspondingly. The order parameters entering into Eq. (2.2) must be determined
self-consistently via coupled nonlinear integral equations

M
λm

= −
T
8

ωΛ∑ ∫
d2p
(2π )2

Tr
[
(τ̂1 + iτ̂2)(ρ̂0 + ρ̂3)σ̂3Ĝ(p, ωn)

]
, (2.3)
ωn>0

3
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ωΛ∑
ωn>0

∫
d2p
(2π )2

Tr
[
(τ̂0 + τ̂3)(ρ̂1 + iρ̂2)(σ̂0 + σ̂3)Ĝ(p, ωn)

]
. (2.4)

ere ωΛ is an ultraviolet cutoff, λm and λsc are the bare interaction constants in the magnetic and
uperconducting channels, and matrix trace was denoted as Tr[. . .]. In the clean limit when Ĝ = Ĝ0
these equations have only two trivial solutions: (M = 0, ∆ = ∆0) for λsc > λm and (M = M0,
∆ = 0) for λsc < λm.

As the next step, we introduce time-reversal invariant disorder potential:

Û(r) =
∑

i

[
u0τ̂0ρ̂3σ̂0 + uπ τ̂1ρ̂3σ̂0

]
δ(r− Ri). (2.5)

The first term here accounts for the intraband scattering, while the second term produces the
interband transitions. The sum goes over random locations of impurities labeled by Ri. Then, if we
were to ignore the correlations between the impurities, the single-particle propagator averaged over
the distribution of disorder with concentration of impurities nimp is

Ĝ = Ĝ0 + nimpĜ0T̂ Ĝ. (2.6)

In this equation the scattering T̂ -matrix needs to be computed self-consistently.

3. Scattering matrix

The equation for the scattering matrix contains the full propagator

T̂ (iωn) = Û + πνF Û Ĝωn T̂ (iωn), (3.1)

where we introduced the quasiclassical Eilenberger function [50], defined by Ĝωn =
∫
Ĝ(p, ωn)dξp/π .

In Eq. (3.1) νF is the normal state quasiparticle density of states at the Fermi energy.

3.1. Single impurity

In the case of a single impurity, we can easily compute the scattering matrix by solving Eq. (3.1)
with the propagator taken from Eq. (2.2). We find that the scattering matrix has two pairs of poles
(bound states) at energies ε(nm)

b = (−1)nc1 + (−1)mc2, (n,m = 1, 2) with parameters c1,2 given by

c1 =
1+ γ 2

0 − γ 2
π

(1+ γ 2
0 − γ 2

π )2 + 4γ 2
π

√
(M2 +∆2)(1− γ 2

0 + γ 2
π )2 + 4γ 2

0 ∆
2,

c2 =
4γ0γπM

(1+ γ 2
0 − γ 2

π )2 + 4γ 2
π

,

(3.2)

where γ0,π = πνFu0,π . The parameter c2 ∝ u0uπ in the expression for the bound state energy
ccounts for the interference effects between the intraband and interband scattering processes in a
tate with nonzero magnetization. A systematic account for such interband coherence goes beyond
he scope of this analysis. In fact, the appearance of this term is actually an artifact of the model and,
herefore, it will be neglected in what follows. We further note that in a purely superconducting
tate, the bound state energy is given by the well-known expression [3,4]

εb|M=0≈ ±

(
1− J2s
1+ J2s

)
∆, Js =

γπ

(1+ γ 2
0 )1/2

. (3.3)

Indeed, we see that the pair breaking rate is determined by the interband scattering. In the purely
SDW state, the bound state energy is

εb|∆=0≈ ±

(
1− γ 2

0
2

)
M. (3.4)
1+ γ0

4
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ote that the energy of the bound states in the purely SDW state is much lower than the one in
he purely superconducting state, |εb|∆=0 ≪ |εb|M=0.

By solving Eq. (3.1) we can in principle compute the full T̂ -matrix. The general expression,
however, is too cumbersome to present here. Instead, we employ the approximation adopted by
Rusinov [4], which consists of keeping in T̂ -matrix only those terms that have the same matrix
structure as the single particle propagator in Eq. (2.2). This assumption is certainly valid when
γ0,π ≪ 1. We thus find

πνF T̂ (iωn) ≈
√
ω2

n +∆2 +M2
(
ω2

n + c21
)

×
[
−iωn(γ 2

0 + γ 2
π )τ̂0ρ̂0σ̂0 −∆(γ 2

0 − γ 2
π )τ̂3ρ̂1σ̂0 −M(γ 2

0 + γ 2
π )τ̂1ρ̂0σ̂3

]
. (3.5)

We must reemphasize here that Eq. (3.5) represents an approximate expression for the scattering
matrix: although it takes a full account of the formation of the bound states. We have omitted terms
which describe higher order interband scattering coherence effects that are proportional to γ n

0 γ
m
π

with n,m > 2.

3.2. Multiple impurities

At this point it will be instructive to briefly consider purely superconducting case first. The
purpose is to highlight close analogy between the two-band model of s± SC with potential disorder,
and an ordinary single band s-wave SC with magnetic impurities. Since for M = 0 the structure of
the T̂ -matrix matches the one of the single-particle propagator, from Eq. (2.6) it follows that we
can write

Ĝ(p, ωn) =
−iΩωn τ̂0ρ̂0σ̂0 + ξpτ̂3ρ̂3σ̂0 +∆ωn τ̂3ρ̂1σ̂0

Ω2
ωn

+ ξ 2
p +∆2

ωn

, (3.6)

where the renormalized Matsubara frequency Ωωn and the order parameter ∆ωn must be deter-
mined self-consistently from

Ωωn = ωn + ΓtΩωn

√
Ω2

ωn
+∆2

ωn

Ω2
ωn

+ ϵ20∆
2
ωn

, ∆ωn = ∆+ Γm∆ωn

√
Ω2

ωn
+∆2

ωn

Ω2
ωn

+ ϵ20∆
2
ωn

. (3.7)

ere ϵ20 ≡ (1 − J2s )/(1 + J2s ), Γt,m = Γ0 ± Γπ and Γ0,π = πνFnimp|u0,π |
2 are the intraband and

nterband scattering rates. In what follows, we will assume, for simplicity, that the ratio Γπ/Γ0 is
ixed. Curiously, impurity scattering makes an effective pairing field ∆ωn to be dynamic, namely
ependent on Matsubara frequencies, as it happens in the strong coupling approach of Eliashberg
quations [51]. The analysis of the equation for the pair-potential ∆ can be significantly simplified
y introducing parameter ηωn = Ωωn/∆ωn . In the limit of zero temperature, T → 0, it attains the
losed form

∆ ln
(

∆

∆0

)
=

∫
∞

0
dωn

⎛⎝ 1√
η2
ωn

+ 1
−

∆√
ω2

n +∆2

⎞⎠ , ηωn =
ωn

∆
+

(
1

τb∆

) ηωn

√
η2
ωn

+ 1

η2
ωn

+ ϵ20
,

(3.8)

here ∆0 is the superconducting gap for a clean system, which can be expressed in terms of the
oupling constant and cutoff energy via the relation (πνFλsc)−1

= ln(ωΛ/∆0), and τ−1
b = 2Γπ .

hese equations match almost verbatim the corresponding equations obtained by Rusinov for the
uperconductor contaminated with paramagnetic impurities [4].
5
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Fig. 1. Single-particle density of states as a function of energy computed in the superconducting state, Eq. (4.1). We
ave used the following parameters: γ0 = 0.95, γπ = 0.175γ0 , Γπ = 0.175Γ0 , ϵ0 = 0.97. When Γ0 = Γ0,cr ≈ 1.43∆0
uperconductivity becomes fully suppressed. The gapless superconductivity appears first for Γ0 ≈ 0.87Γ0,cr .

. Density of states

.1. DoS in the superconducting state

The density of states (DOS) in the case of M = 0 can be computed using

ν(ω)|M=0= νF Im

[
ηω√

1− η2
ω

]
, (4.1)

together with the first expression from Eq. (3.7) and second expression from Eq. (3.8), and by
performing analytical continuation from the set of discrete frequencies to the real axis of energies
iωn → ω and ηωn → −iηω . From Eq. (3.8) it is clear that the calculation of the DOS reduces to the
problem of finding zeros of the polynomial of sixth degree. Out of six roots, the physically relevant
roots are a pair of complex conjugated ones. The results of the calculation of the DOS are shown in
Fig. 1. In agreement with the earlier studies [17,18,36,44], we find that gapless superconductivity
appears when the intraband scattering rate satisfies 0.87Γ0,cr ≤ Γ0 < Γ0,cr.

4.2. DoS in the SC-SDW coexistence region

We now turn our attention to the most interesting situation of the coexistence when both order
parameters are simultaneously nonzero. For simplicity, we restrict our considerations to the limit of
T → 0 and solve the self-consistency equations for the order parameters as a function of scattering
rate Γ0. By reabsorbing the cutoff and coupling constant into the order parameter of the clean
system, (πνFλm)−1

= ln(ωΛ/M0), Eqs. (2.3) and (2.4) can be brought to the form

∆ ln
(

∆

∆0

)
=

∫
∞

0
dωn

⎛⎝ ∆ωn√
Ω2

ωn
+∆2

ωn
+M2

ωn

−
∆√

ω2
n +∆2

⎞⎠ , (4.2)

M ln
(

M
M0

)
=

∫
∞

0
dωn

⎛⎝ Mωn√
Ω2

ωn
+∆2

ωn
+M2

ωn

−
M√

ω2
n +M2

⎞⎠ . (4.3)

In these equations, and in analogy to the previous case of impure superconductivity, we introduced
following modified notations

Ωωn = ωn + ΓtΦωn , ∆ωn = ∆+ Γm∆ωn

Φωn , Mωn = M − ΓtMωn

Φωn , (4.4)

Ωωn Ωωn

6
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Fig. 2. Solution of the self-consistency Eqs. (4.2) and (4.3) at T = 0 with the single-particle propagator determined from
Eq. (2.6). Superconductivity and spin-density-wave orders coexist in the narrow region of disorder concentration due to
violation of the Anderson theorem. On the plots we took parameters that correspond to the critical temperature for the
SDW order transition in a clean system to be higher than the corresponding critical temperature of the superconducting
transition, so that we chose M0 = 1.3∆0 . On the left panel γ0 = 0.12, while on the right panel γ0 = 0.75. The plots in
both panels were done for γπ = 0.175γ0 and Γπ = 0.175Γ0 .

that are expressed though the additional function

Φωn = Ωωn

√
Ω2

ωn
+∆2

ωn
+M2

ωn

Ω2
ωn

+ C2
ωn

, (4.5)

where Cωn was obtained from the coefficient c1 in Eq. (3.2) by replacing ∆ → ∆ωn and M → Mωn .
Note that the minus sign in the expression for Mωn implies the absence of the Anderson theorem for
the SDW order. The results of the numerical calculation for the phase diagram are shown in Fig. 2.

After an analytical continuation, the dependence of the density of states on energy is given by

ν(ω) = νF Im

[
Ω√

∆2
ω +M2

ω −Ω2

]
. (4.6)

ere we have Ω = ω + ΓtΦω and

Φω =

η∆ηM

√
η2
∆ + η2

M − η2
∆η

2
M

ϵ20η
2
M + ϵ2mη

2
∆ − η2

∆η
2
M

, η∆ =
ω

∆
+

2Γπ

∆
Φω, ηM =

ω

M
+

2Γt

M
Φω, (4.7)

ith ϵ2m ≈ (1 − γ 2
0 )/(1 + γ 2

0 ). It is easy to see that, for example, in the limit M → 0 (ηM → ∞)
e immediately recover the corresponding expression [second equation in (3.8)] for the purely
uperconducting state.
We now need to solve these equations to find Φω . Since we are interested in elucidating the

contribution to the density of states from the impurity band, we have to find the complex roots of
Eq. (4.7). To do that, this equation must be recast into the polynomial form and solved numerically.
Elementary power counting shows that finding all the roots of (4.7) is equivalent to solving

10∑
n=0

anΦn
ω = 0. (4.8)

Here the expansion coefficients are a10 = (4ΓπΓt)4, a9 = 8ω(4ΓπΓt)3(Γπ + Γt), . . . , a0 = ω6(ω2
−

∆2
−M2).
Although the full analysis of the roots of (4.8) can only be performed numerically, we can
certainly obtain the analytical results for some combination of values of ω, M and ∆. The simplest

7
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ω

Fig. 3. Evolution of the single-particle density of states across the coexistence region (see Fig. 2). In the region where
M ≫ ∆, there is a wide impurity band with somewhat shallow structure. When M ∼ ∆ the width of the impurity band
remains approximately the same while the value of the impurity DOS increases. Lastly, as ∆ ≫ M , the impurity band
merges with the DOS at ω ∼ ∆. The model parameters are the same as in Fig. 2.

case to analyze is the region of the disorder concentrations for ∆ ≈ M and for small frequencies
≪ min{∆,M}. The latter condition is important for it would allow us to check whether there

exists the single particle excitation threshold. In this limit the polynomial reduces to the one of
degree four. In this case we find that all four roots are real and their corresponding contribution to
the density of states is zero. This means that in the coexistence region superconductivity remains
fully gapped. Our results for the density of states in the coexistence region found from the numerical
solution of (4.8) are shown in Fig. 3. As we have expected in the region of the phase diagram (Fig. 3)
where M ≫ ∆, there is an impurity band at small ω. As Γ0 increases, the center of the impurity
band moves to higher frequencies.

5. Discussion

Thus far we have discussed how the single-particle DOS changes if one goes beyond the SCBA. In
this section we briefly touch on another interesting aspect of the problem relevant for disordered
superconductors, namely the impact of spatial inhomogeneities with large correlation radius rc that
exceeds both coherence length for the magnetic and superconducting orderings rc ≫ {ξ∆, ξM}.
The easiest way to model such system is to assume that coupling constants λsc(r) and λm(r) are
now random in space and described by a certain correlation function ⟨λ(r)λ(r′)⟩ = F (|r− r′|/rc).
The exact form of this function is not important, it can be taken as a Gaussian, as long as spatial
extend of this function gives the largest scale in the problem. Furthermore, this function may differ
for λsc(r) and λm(r) correlations. In Ref. [36], building on the original considerations of Larkin and
Ovchinnikov [5] introduced for the conventional BCS superconductors, it was shown that in a model
of two-band s±-wave superconductor the spatial inhomogeneities lead to the broadening of the
coexistence region between SDW order and superconductivity. In the conventional superconductor
contaminated with long-range disorder, which produces potential (i.e. time-reversal-invariant)
scattering only, inhomogeneities may lead to the smearing of the square-root anomaly near the
threshold frequency of the coherence peak [5]. The smearing results in the shift of the peak and tail
states going into the sub-gap region. We expect similar features to appear in the smearing of DOS
near hard gaps of the impurity band. This picture is schematically illustrated in Fig. 4.

The qualitative physical picture that explains these features is most simply understood in the
single component system (e.g. SC without SDW) but the same reasoning applies to the general
situation. If the disorder correlation radius exceeds the length scale of superconductivity, this means
that the system adjusts to the local (random) value of the order parameter ∆(r). Therefore, locally it
is given by BCS expression in the clean limit. The global spectrum then may be found by averaging
local DOS over the disorder realization of random ∆

ν(ω) =
∫

ν(ω,∆)P(∆)d∆ (5.1)
8
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Fig. 4. Schematic plot for the density of states described beyond the mean field analysis of strong impurities. An account
for the long-range spatial inhomogeneities leads to appearance of the Lifshitz-type tail states [52–57] extending from the
sharp gaps of the spectral edge ∆ and impurity band edges marked by Eg1,2 . Inset shows the tail states extending from
the BCS coherence peak calculated for the assumed spatial disorder with the Gaussian probability density of the order
parameter as defined by Eq. (5.3) per Ref. [5].

For instance, for the Gaussian probability density

P(∆) =
1√

2π⟨δ∆2⟩
exp[−δ∆2/4⟨δ∆2

⟩], δ∆ = ∆− ⟨∆⟩, (5.2)

which is characterized by the strength of gap fluctuations with the average square of ⟨δ∆2
⟩, the

average in Eq. (5.1) gives a universal curve near the spectral edge

ν(ω)
νF

=
1

2
√
δ
D−1/2

(
1−ϖ

δ

)
exp

[
−

(1−ϖ )2

4δ2

]
, ϖ = ω/⟨∆⟩, (5.3)

parametrized by a single dimensional quantity δ =

√
⟨δ∆2⟩/⟨∆⟩. Here Dn(z) is the parabolic-

cylinder function, and the exact shape of DOS near the spectral edge is plotted as inset to Fig. 4
for different values of δ. In the extension of this picture to the coexistence scenario, the key thing
to notice, is that if not for point-like disorder, it is only the combination of ∆2

+M2 that enters DOS
expression. Therefore, one could invoke the same argument for the joint probability of spectral gap√
∆2 +M2. Treating short-range and long-range disorder on equal footing is a challenging task,

however we expect the general picture with smeared gap edges to apply. Indirectly, this can be
justified by an independent instanton calculus of tail states in SC with magnetic disorder [52–57]
leading to the DOS structure consistent with that depicted in Fig. 4. We only note that the precise
energy dependence of the tails from each side of the impurity band needs to be reexamined in
our model as it was shown earlier that the details are sensitive to the specifics of the model and
the mechanism responsible for the fluctuations (e.g. fluctuations of the concentration of magnetic
impurities and/or mesoscopic fluctuations of potential disorder). We close this section by pointing
out that impurity bands may have significant effect on the thermodynamic properties, such as
temperature dependence of the London penetration depth [58,59], as well as kinetic coefficients,
such frequency dependent impedance [60,61]. Experimentally these bands can be probed by the

scanning tunneling techniques.

9
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