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Abstract

We report a new deep learning message passing network that takes inspiration from Newton’s
equations of motion to learn interatomic potentials and forces. With the advantage of
directional information from trainable force vectors, and physics-infused operators that are
inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-
body interactions are inferred by more interpretable physical features. We test NewtonNet on
the prediction of several reactive and non-reactive high quality ab initio data sets including
single small molecules, a large set of chemically diverse molecules, and methane and hydrogen
combustion reactions, achieving state-of-the-art test performance on energies and forces with
far greater data and computational efficiency than other deep learning models.
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INTRODUCTION

The combinatorial size of chemical reaction space, which compounds under variable synthetic,
catalytic, and/or non-equilibrium conditions, is vast. This makes application of first principles
quantum mechanical and advanced statistical mechanics sampling methods to identify all reaction
pathways challenging, even when considering better physics-based models, algorithms, or future
exascale computing paradigms. If we could develop new machine learning approaches to chemical
reactivity, we would be able to better tackle many fascinating but quite difficult chemical systems
ranging from metal organic frameworks for binding CO2 from air or H2 for hydrogen storage,
mechanistic studies of enzymes that accelerate biological reactions, the reactive chemistry at the
solid-liquid interface in electrocatalysis, and developing new catalysts that are highly selective and
which exhibit stereo-, regio-, and chemo-selectivity 1–4.

The modernization of machine learning as applied to the chemical sciences can be traced to
the artificial neural network (ANN) representation by Behler and Parrinello 5 to describe the high
dimensional potential energy surfaces (PES) important to chemical reactivity. Their first realization
is that the intrinsic description of energies or forces that depend on Cartesian variables needs to be
replaced by the use of localized Gaussian symmetry functions that invoke permutation, rotational,
and translational invariance to data representations for learning potential energy surfaces. To be
more specific, the energy of an atomic configuration should be invariant to a global rotation when
presented to the ANN. In addition, these symmetry functions are made many-bodied through
their stacking, with data presentation utilizing 50 symmetry functions with different learnable
parameters of each atom’s chemical environment.

Alternatively message passing neural networks6 (MPNN) have emerged that replaces the hand-
crafted features of the distances and angles of symmetry functions with trainable operators that
only rely on the atomic Z-numbers and positions to learn the representations of the heterogeneous
chemical environment directly from the training data. 7 A major contributing MPNN method for
3D structures is SchNet7, which takes advantage of the convolution of decomposed interatomic
distances with atomic attributes, and related methods have subsequently built on this success in
incorporating additional features to describe atomic environments. For example, PhysNet 8 adds
prior knowledge about the long-range electrostatics in energy predictions, and DimeNet 9 takes
advantage of angular information and more stable basis functions based on Bessel functions.

But in the standard MPNN, the representation is usually reduced to transformationally identical
features, for example quantities that are invariant to translation and permutation such as the energy.
However, we aim to predict not only energies but force vectors, and given the fact that vectorial
features can be affected by transformation of the input structure, we need to ensure the output of
each operator also will reflect such transformation equivalently when needed. More specifically,
rotational transformations (such as through angular displacements) are one of the biggest challenges
in the modeling of 3D objects, illustrated in learning a global orientation of structures for MD
trajectories with many molecules, that is very difficult or infeasible.

Only very recently have machine learning methods been developed that are equivariant to the
transformations in Euclidean space, and are emerging as state-of-the-art ML methods in predictive
performance when evaluated on a variety of tasks that are fast superseding invariant-only models.
Furthermore, equivariant models are found to greatly reduce the need for excessively large quantities
of reference data, ushering in a new era for machine learning on the highest quality but also the
most expensive of ab initio data. For instance, a group of machine learning models have introduced
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multipole expansions such as used in NequIP10–13, or are designed to take advantage of precomputed
features and/or higher-order tensors using molecular orbitals 14,15, while PaiNN16 is a MPNN model
that satisfies equivariance. In spite of the added advantage of infusing extra physical knowledge into
machine learning models, the computational cost of spherical harmonics and availability/versatility
of pre-computed features, or lack of physical interpretability, can be limiting.

In this work we introduce a geometric MPNN17 based on Newton’s equations of motion that
achieves equivariance with respect to physically relevant rotational permutations. NewtonNet
improves the capacity of structural information in the ML model by creating latent force vectors
based on the Newton’s third law. The force direction helps to describe the influence of neighboring
atoms on the central atom based on their directional positions of atoms in the 3D space with
respect to each other. Since we now introduce vector features as one of the attributes of atoms, we
thereby enforce the model to remain equivariant to the rotations in the 3D coordinate space and
preserve this feature throughout the network. By infusing more physical priors into the network
architecture, NewtonNet realizes a computational cost that is more favorable, and enabling modeling
of reactive and non-reactive chemistry with superior performance to currently popular machine
learning methods used in chemical applications, and doing so with reductions down to only 1-10% of
the original training data set sizes needed for invariant-only ML models. The importance of a large
reduction in data requirements means that ML predictions of gold standard chemical theory such
as hybrid DFT functionals or CCSD(T) in the complete basis set limit 18 are now more accessible
for accurate PES generation needed for chemical reactivity using deep learning approaches.

NewtonNet Method
Given a molecular graph G with atomic features ai ∈ Rnf (where nf is the number of features) and
interatomic attributes eij ∈ Rb, a message passing layer can be defined as6:

mij = Ml

(
ali, a

l
j, eij

)
(1)

mi =
∑

j∈N (i)

mij (2)

at+1
i = Ul

(
ali,mi

)
(3)

where Ml is the message function and Ul is called the update function, and the sub-/super-script
l accounts for the number of times the layer operates iteratively. A combination of explicit
differentiable functions and operators with trainable parameters are the common choice for Ml and
Ul. The core idea behind the iterative message passing of the atomic environments is to update the
feature array ati that represent each atom in its immediate environment.

NewtonNet considers a molecular graph defined by atomic numbers Zi ∈ R1 and relative
position vectors # »rij =

#»rj − #»ri ∈ R3, as input and applying operations that are inspired by Newton’s
equations of motion to create features arrays ai ∈ Rnf that represent each atom in its immediate
environment with edges defined by force and displacement vectors, f and dr, respectively, (Fig. 1a).
NewtonNet takes advantage of multiple layers of message passing which are rotationally equivariant,
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described in detail below, in which each layer consists of multiple modules that include operators to
construct force and displacement feature vectors, which are contracted to the feature arrays via the
energy calculator module (Fig. 1b). We emphasize the critical role of projecting equivariant feature
vectors to invariant arrays since one goal of the model is to predict potential energies, which are
invariant to the rotations of atomic configurations. We also provide the proof of equivariance of the
NewtonNet model in the Supplementary Information as well.

Figure 1: (a) Newton’s laws for the force and displacement calculations for atom i with respect
to its neighbors. (b) Schematic view of the NewtonNet message passing layer. At each layer four
separate components are updated: atomic feature arrays ai, latent force vectors F , and force and
displacement feature vectors (f and dr).

Atomic Feature Aggregator. We initialize the atomic features based on trainable embedding
of atomic numbers Zi, i.e., a0i = g(Zi) and g : R1 → Rnf . We next use the edge function e : R3 → Rnb

to represent the interatomic distances using radial Bessel functions as introduced by Klicpera et
al.9

e( # »rij) =

√
2

rc

sin(nπ
rc
∥ # »rij∥)

∥ # »rij∥
(4)

where rc is the cutoff radius and ∥ # »rij∥ returns the interatomic distance between any atom i and
j. We follow Schutt et al.16 in using a self-interaction linear layer ϕrbf : Rnb → Rnf to combine the
output of radial basis functions with each other. This operation is followed by using an envelop
function to implement a continuous radial cutoff around each atom. For this purpose, we use the
polynomial function ecut introduced by Klicpera et al.9 with the choice of degree of polynomial
p = 7. Thus, the edge operation ϕe : R3 → Rnf is defined as a trainable transformation of relative
atom position vectors in the cutoff radius rc

ϕe(
# »rij) = ϕrbf (e(

# »rij)) ecut(rc, ∥ # »rij∥) . (5)

4



The output of ϕe is rotationally invariant as it only depends on the interatomic distances.
Following the notation of neural message passing, we define a message function to collect the
neighboring information and update atomic features. Here, we tend to pass a symmetric message
between any pair of atoms, i.e., the message that is passed between atom i and atom j are the
same in both directions. Thus, we introduce our symmetric message passing mij by element-wise
product between all feature arrays involved in any two-body interaction,

mij = ϕa(a
l
i) ϕa(a

l
j) ϕe(

# »rij) (6)

where ϕa : Rnf → Rnf indicates a trainable and differentiable network with a nonlinear activation
function SiLU19 after the first layer. Note that the ϕa is the same function applied to all atoms.
Thus, due to the weight sharing and multiplication of output features of both heads of the two-body
interaction, the mij remain symmetric at each layer of message passing. To complete the feature
array aggregator, we use the equation 2 to simply sum all messages received by central atom i from
its neighbors N (i). Finally, we update the atomic features at each layer using the sum of received
messages,

al+1
i = ali +

∑
j∈N (i)

mij. (7)

Force Calculator. So far, we have followed a standard message passing that is invariant to the
rotation. We begin to take advantage of directional information starting from the force calculator
module. The core idea behind this module is to construct latent force vectors using the Newton’s
third law. The third law states that the force that atom i exerts on atom j is equal and in opposite
direction of the force that atom j exerts on atom i. This is the reason that we intended to introduce
a symmetric message passing operator. Thus, we can estimate the symmetric force magnitude as a
function of mij , i.e., ∥ #»

F ij∥ = ϕF (mij). The product of the force magnitude by unit distance vectors
r̂ij =

#»r ij/∥ #»r ij∥ gives us antisymmetric interatomic forces that obey the Newton’s third law (note
that #»r ij = − #»r ji),

#»

F l
ij = ϕF (mij) r̂ij (8)

where ϕF : Rnf → R1 is a differentiable learned function, and
#»

F l
ij ∈ R3. The total force at each layer

#»

F l
i on atom i is the sum of all the forces from the neighboring atoms j in the atomic environment,

#»

F l
i =

∑
j∈N (i)

#»

F l
ij, (9)

and updating the latent force vectors at each layer,

F l+1
i = F l

i +
#»

F l
i. (10)

We ultimately use the latent force vector from the last layer L, FL
i ∈ R3 in the loss function to

ensure this latent space truly mimics the underlying physical rules.
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To complete the force calculator module, we borrow the idea of continuous filter from Schut et
al. to decompose and scale latent force vectors along each dimension using another learned function
ϕf : Rnf → Rnf . This way we can featurize the vector field to avoid too much of abstraction in the
structural information that they carry with themselves,

∆fi =
∑

j∈N (i)

ϕf (mij)
#»

F l
ij. (11)

As a result, the constructed latent interatomic forces are decomposed by rotationally invariant
features along each dimmension, i.e., ∆fi ∈ R3×nf . We call this type of representation feature
vectors. Following the message passing strategy, we update the force feature vectors with ∆fi after
each layer, while they are initialized with zero values, f 0

i = 0,

f l+1
i = f l

i +∆fi. (12)

Momentum Calculator. This is the step that we try to estimate a measure of atomic
displacement due to the forces that are exerted on them. We accumulate their dispalcements at
each layer without updating the position of each atom. The main idea in this module is that the
displacement must be along the updated force features in the previous step. Inspired by Newton’s
second law, we approximate the displacement factor using a learned function ϕr : Rnf → Rnf that
acts on the current state of each atom presented by its atomic features ali,

δri = ϕr(a
l+1
i )f l+1

i . (13)

We finally update the displacement feature vectors by δri and a weighted sum of all the atomic
displacements from the previous layer. The weights are estimated based on a trainable function of
messages (ϕ′

r : Rnf → Rnf) between atoms,

drl+1
i =

∑
j∈N (i)

ϕ
′

r (mij)dr
l
i + δri. (14)

The weight component in this step works like attention mechanism to concentrate on the two-body
interactions that cause maximum movement in the atoms. Since forces at l = 0 are zero, the
displacements are also initialized with zero values, i.e., dr0

i = 0.
Energy Calculator. The last module contracts the directional information to the rotationally

invariant atomic features. Since we developed the previous steps based on the Newton’s equations
of motion, one immediate idea is to approximate the potential energy change for each atom using
f l
i and δrli, resembling f l

i ≈ −δU/δrl
i in the higher dimensional space (Rnf). Thus, we find energy

change for each atom by

δU i = −ϕu(a
l+1
i )

〈
f l+1
i · drl+1

i

〉
, (15)

where δU i ∈ Rnf and ϕu : Rnf → Rnf is a differentiable learned function that operates on the atomic
features and predicts the energy coefficient for each atom. The dot product of two feature vectors
contracts the features along each dimension to a single feature array. We finally update the atomic
features once again using the contracted directional information presented as atomic potential
energy change,
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al+1
i = al+1

i + δU i. (16)

This approach is both physically and mathematically consistent with the rotational equivariance
operations and the goals of our model development. Physically, the energy change is the meaningful
addition to the atomic feature arrays as they are used to predict the atomic energies eventually.
Mathematically, the dot product of two feature vectors contracts the rotationally equivariant
features to invariant features similar to euclidean distance that we used in the atomic feature
aggregator module. Note that none of the force, displacement or energy modules are directly
mapped to the final energy and force predictions. These are intermediate steps that update atomic
features iteratively beyond the immediate neighborhood of each atom.

RESULTS

Here we show that the NewtonNet model is capable of predicting the energies and forces across
a wide range of available chemical data sets, thereby covering much of the application space for
which machine learning models are being developed and used by other research groups.

Single Small Molecules. We first evaluate the performance of NewtonNet on the data
generated from molecular dynamics trajectories using Density Functional Theory (DFT) 20 for 9
small organic molecules from the MD1721,22 and the revised MD1723 benchmarks. Despite reported
outliers in the calculated energies associated with the original version of the MD17 data, we still
show it for completeness. For training NewtonNet, we select a data size of 950 for training, 50
for validation, and remaining data for test (more than 100k per molecule); this data split is more
ambitious than that used by kernel methods such as sGDML 24 and FCHL1923, and is supported
by other emerging machine learning models that utilize equivariant operators, e.g., NequIP 13 and
PaiNN16. Table 1 and Supplementary Table 1 shows the performance of NewtonNet for both energy
and forces on the hold-out test set for both MD17 data sets, illustrating that it can outperform
invariant deep learning models (e.g., SchNet 7, PhysNet8, and DimeNet9) and even in some cases
state-of-the-art equivariant models such as NequIP (using the original rank 1 version) and PaiNN.

On a similar task we train NewtonNet on the CCSD/CCSD(T) data reported for 5 small
molecules21,22. The significance of this experiment is the gold standard of theory that is used to
obtain the data, and addressing the ultimate goal to evaluate a machine learning model at high
reference accuracy with an affordable number of training samples. In this benchmark data, the
training and test splits are fixed at that provided by the authors of the MD17 data (i.e., 1000
training and 500 test data)22. In Table 2 we compare our results with NequIP and sGDML in
which NewtonNet not only outperforms the best reported prediction performance for three of
the five molecules, but it remains competitive within the range of uncertainties for the other two
molecules, and is robustly improved compared to the opponent kernel methods. More recently
NequIP has updated their results by considering higher tensor ranks (l > 1) and addition of
translation equivariant features in the same preprint reference. We consider these additions very
promising if the computational cost of more complex operators are justified. A benefit of NewtonNet
is that it is computationally efficient and scalable relative to the newer equivariant methods that
incorporate higher order tensors in the equivariant operators 13,14, while still retaining chemical
accuracy (< 0.5 kcal/mol).
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Table 1: The performance of models in terms of mean absolute error (MAE) for the prediction of
energies (kcal/mol) and forces (kcal/mol/Å) of molecules in the MD17 data sets. We report results
by averaging over four random splits of the data to define standard deviations. Best results in the
standard deviation range are marked in bold.

SchNet PhysNet DimeNet FCHL19 sGDML NequIP PaiNN NewtonNet
(l=1)

Aspirin energy 0.370 0.230 0.204 0.182 0.19 - 0.159 0.168± 0.019
forces 1.35 0.605 0.499 0.478 0.68 0.348 0.371 0.348±0.014

Ethanol energy 0.08 0.059 0.064 0.054 0.07 - 0.063 0.078±0.010
forces 0.39 0.160 0.230 0.136 0.33 0.208 0.230 0.264±0.032

Malonaldehyde energy 0.13 0.094 0.104 0.081 0.10 - 0.091 0.096±0.013
forces 0.66 0.319 0.383 0.245 0.41 0.337 0.319 0.323±0.019

Naphthalene energy 0.16 0.142 0.122 0.117 0.12 - 0.117 0.118±0.002
forces 0.58 0.310 0.215 0.151 0.11 0.096 0.083 0.084±0.006

Salicylic Acid energy 0.20 0.126 0.134 0.114 0.12 - 0.114 0.115±0.008
forces 0.85 0.337 0.374 0.221 0.28 0.238 0.209 0.197±0.004

Toluene energy 0.12 0.100 0.102 0.098 0.10 - 0.097 0.094±0.005
forces 0.57 0.191 0.216 0.203 0.14 0.101 0.102 0.088±0.002

Uracil energy 0.14 0.108 0.115 0.104 0.11 - 0.104 0.107±0.004
forces 0.56 0.218 0.301 0.105 0.24 0.172 0.140 0.149±0.003

Azobenzene energy - 0.197 - - 0.092 - - 0.142±0.003
forces - 0.462 - - 0.409 - - 0.138±0.010

Paracetamol energy - 0.181 - - 0.153 - - 0.135±0.004
forces - 0.519 - - 0.491 - - 0.263±0.010

Small Molecules with large Chemical Variations. In a separate experiment to validate
NewtonNet we trained it using the ANI-1 dataset to predict energies for a large and diverse set of
20 million conformations sampled from ∼ 58k small molecules with up to 8 heavy atoms.25 The
challenges in regards this dataset are three-fold: first, the molecular compositions and conformations
are quite diverse, with the total number of atoms ranging from 2 to 26, and with total energies
spanning a range of near 3 × 105 kcal/mol; second, only energy information is provided, so a
well-trained network needs to extract information more efficiently from the dataset to outcompete
data-intensive invariant models; finally, a machine learning model that performs well on such a
diverse dataset is more transferable to unseen data, and will have a wider application domain.

We tested the performance of NewtonNet on the ANI-1 dataset following the protocol described
in Ref.20, using 80% of the conformations from each molecule for training, 10% for validation and
10% for testing. In Table 3 we show that by utilizing only 10% (2M) samples of the original ANI-1
data, NewtonNet yields a MAE in energies of 0.65 kcal/mol, very near the standard definitions
of chemical accuracy, and halving the error compared to ANNs using the full 20M ANI-1 dataset.
Even with only 5% of the data (1M), we achieve an MAE of 0.85 kcal/mol on energies that
exceeds the original performance of the ANN network trained with all data. Note that unlike
the data experiments above, atomic forces are not reported with the ANI-1 data set. Although
the NewtonNet model is trained without taking advantage of additional force information for
the atomic environments, it clearly confirms that the directional information are generally a
significant completion to the atomic feature representation regardless of the tensor order of the
output properties.

Reducing Required Data on Active Learning Datasets. An active learning (AL) approach
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Table 2: The performance of models in terms of mean absolute error (MAE) for the prediction
of energies (kcal/mol) and forces (kcal/mol/Å) of molecules at CCSD or CCSD(T) accuracy. We
randomly select 50 snapshots of the training data as the validation set and average the performance
of NewtonNet over four random splits to find standard deviations. Best results in the standard
deviation range are marked in bold.

sGDML NequIP (l=1) NewtonNet

Aspirin energy 0.158 - 0.100 ± 0.007
forces 0.761 0.339 0.356 ± 0.019

Benzene energy 0.003 - 0.004 ± 0.001
forces 0.039 0.018 0.011 ± 0.001

Ethanol energy 0.050 - 0.049 ± 0.007
forces 0.350 0.217 0.282 ± 0.032

Malonaldehyde energy 0.248 - 0.045 ± 0.004
forces 0.369 0.369 0.285 ± 0.038

Toluene energy 0.030 - 0.014 ± 0.001
forces 0.210 0.101 0.080 ± 0.005

has been suggested as a means to further improve ANN performance through better data sampling,
reducing data requirements to 10-25% of the original ANI data set as reported by Smith and
coworkers.26. We have tested NewtonNet on two datasets generated through an AL approach, and
in Table 3 we show that we can make improved predictions on the active learning extended ANI-1X
data set reported by Smith and co-worker26 as well as active learning data generated for linear
alkane pyrolysis27. For the ANI-1X dataset, we achieve better energy and force predictions on
the test set with as low as 10% of all training data that was created through an active learning
procedure. For the alkane pyrolysis dataset, we are able to achieve better force predictions on the
test set when compared to the mean absolute error of forces on the training set of the original work,
by utilizing as low as 30% of all training data.

The better performance of NewtonNet on these two datasets suggests that our model is capable
of utilizing information more efficiently, even from dataset with limited sizes and concentrated
information such as those created by AL. However in both cases the original AI models lack
equivariant features, and as this will propagate into the AL sampling approach, it is therefore not a
complete proof of optimality for NewtonNet. Instead training NewtonNet using an AL sampling
approach would be required to fully take advantage of the improved ML model capabilities in
addition to biasing the distribution of training date towards more difficult examples. In future
work we hope to test whether further performance enhancements beyond that reported in Table 3
is realized once NewtonNet is combined with AL training.

Methane Combustion Reaction. The methane combustion reaction data28 exerts a more
challenging task due to the complex nature of reactive species that are often high in energy, transient,
and far from equilibrium such as free radical intermediates. Such stress tests are important for
driving ab initio molecular dynamics simulations in which even relatively low-run DFT functionals
are notoriously time-consuming and limited to small system sizes. We utilized the dataset provided
by Zeng et al.28, which contains 578,731 snapshots for training. We trained NewtonNet on 100%,
10% and 1% of the data and evaluated the performance of NewtonNet on two hold-out test sets.
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Table 3: The test performance of the NewtonNet model on small fractions of the original 20 million
molecules ANI-1.25 We also consider data sets derived from active learning including the ANI-1X 26

and alkane pyrolysis27 data sets. The 3 data sets are reported in terms of mean absolute error
(MAE) for energies (kcal/mol) and forces (kcal/mol/Å). The ANI-1X energy and force errors are
reported as the performance of the NewtonNet model on the COMP6 benchmark only considering
conformations of a given molecule within 100 kcal/mol energy range to compare with those reported
by Smith et. al26. For the 10% training of the ANI-1X data, we randomly sampled 5000 frames
from the remaining and complete ANI-1X data for test set. For the alkane pyrolysis dataset, we
randomly sampled 7,100 frames from the 35,496 training frames to define the test set.

ANI NewtonNet NewtonNet
training set size 20,000,000 2,000,000 1,000,000
energies 1.30 0.65 0.85

ANI-1X NewtonNet
training set size 4,956,005 495,600
energies 1.61 1.45
forces 2.70 1.79

Alkane pyrolysisa NewtonNet NewtonNet
training set size 35,496 28,396 10,000
forces (train) 9.68 5.69 7.58
forces (test) / 6.50 8.71

a The test set performance for the alkane pyrolysis reaction was not reported in Ref. 22, so we compared our test
set performance with the training set performance in Ref. 22.

One test set is provided by the original authors, comprised of 13,315 snapshots generated using the
same procedure as the training data and we refer to it as out-of-distribution (OOD) hold-out test
set. The other set is 13,315 random samples of training data that we hold out as the final test set
and we refer to it as in-distribution (ID) hold-out test set. The main reason for considering two
test sets is the large energy and force distribution shifts that is found between the original training
and test sets.

The prediction correlation plots for both energies and forces on the ID test set and OOD test
set of NewtonNet trained with 100% data were provided in Supplementary Figure 1. Table 4 shows
that when NewtonNet is trained on all available data, it drives down the ID test error in energies
and forces significantly, even outperforming the reported training error of the original DeepMD
model.28 Even when utilizing as low as 1% of the training data, NewtonNet still has an MAE on
the ID hold-out test set that is close to chemical accuracy on energy prediction. Even though
a distribution shift was observed between the original train and test sets, NewtonNet still has
competitive energy and force prediction accuracy on the out-of-distribution test dataset. Given the
similar performance of NewtonNet on OOD test set with 100% and 10% of training data, we argue
the comparison on the OOD test set is mainly influenced by the aforementioned distribution shift.

Hydrogen Combustion Reaction. This benchmark data is newly generated for this study
and probes reactive pathways of hydrogen and oxygen atoms through the combustion reaction
mechanism reported by Li et. al.29, and analyzed with calculated intrinsic reaction coordinate
(IRC) scans of 19 biomolecular sub-reactions from Bertels et. al. 30. Excluding 3 reactions that
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Figure 2: The learning curve of NewtonNet for the hydrogen combustion data, with MAEs of
energy and forces averaged over the 16 independent reactions and with respect to the number of
training samples used for each reaction. The dashed lines show the performance of SchNet when
trained on all 5k data per sub-reaction.

Table 4: The performance of NewtonNet model compared with DeepMD on 13,315 randomly
sampled in-distribution (ID) hold-out test configurations and 13,315 out-of-distribution (OOD) test
configurations provided by the authors on the methane combustion dataset. Errors are reported in
terms of mean absolute error (MAE) for energies (kcal/mol/atom) and forces (kcal/mol/Å). We
systematically reduce the amount of training data by two orders of magnitude using NewtonNet
and compare it to the 578,731 data points used in the original paper by Zeng and co-workers 28

DeepMD NewtonNet NewtonNet NewtonNet
training set size 578,731 578,731 57,873 5,787
energies (ID) 0.945a 0.353 0.391 0.484
forces (ID) / 1.12 1.88 2.78
energies (OOD) 3.227 3.170 3.135 3.273
forces (OOD) 2.77 2.75 2.93 3.76

a The MAE on the training set reported in ref. 14 was taken as the in-distribution prediction error here.

are chemically trivial (diatomic dissociation or recombination reactions), we obtain configurations
and energies and forces for reactant, transition, and product states for 16 out of 19 reactions. The
IRC data set was further augmented with normal mode displacements and AIMD simulations
to sample configurations around the reaction path. All the calculations are conducted at the
ωB97M-V/cc-pVTZ level of theory, and the data set comprises a total of ∼280,000 potential
energies and ∼1,240,000 nuclear force vectors, and will be described in an upcoming publication.

We train NewtonNet on the complete reaction network by sampling training, validation, and
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test sets randomly formulated from the total data. The validation and test sizes are fixed to 1000
data per reaction, and the size of training data varies in a range of 100 to 5000 data points per
reaction. The resulting model accuracy on the hold-out test set for both energy and forces is
reported in Figure 2. It is seen that NewtonNet can outperform the best invariant SchNet model
with slightly more than one order of magnitude smaller training data (500 vs 5000 samples per
reaction), and is capable of achieving the chemical accuracy goal with as little as 500 data points per
reaction. We integrate this model with the ASE interface 31 to run MD. A sample run is provided in
Supplementary Figure 2 to demonstrate energy conservation. A more thorough study on this system
using NewtonNet will come in later publications. In conventional deep learning approaches for
reactive chemistry, abrupt changes in the force magnitudes can give rise to multimodal distributions
of data, which can introduce covariate shift in the training of the models. Here we posit that a
better representation of atomic environments using the latent force directions can increase the
amount of attention that one atom gives to its immediate neighbors. As a result the performance of
NewtonNet in prediction of forces for methane and hydrogen combustion reactive systems benefit
most from the directional information provided by atoms that break or form new bonds.

DISCUSSION

Ablation Study. We justify our design choices for the NewtonNet architecture with ablation
of network components on the example of the aspirin MD trajectory from the MD17 data set.
Compared to the original design, we break the symmetric message passing in equation 6 by
removing self atomic feature multiplication, and we investigate zeroing out the weight of latent force
reconstruction loss in which the latent force vectors are not guided to the atomic forces direction.
Note that in all these changes the number of model parameters remains constant.

Table 5 shows the results for various combination of these ablated components. The performance
of the model deteriorates after each ablation, with the maximum change for breaking the symmetry
and minimum change for removing the latent force reconstruction loss. The ablation of both
together is also tested to confirm that even without the latent force loss, the entire design still needs
to follow Newtonian rules (e.g., via the ablated symmetric message passing) to achieve its best
performance. Based on our hyperparameter search, we have noticed that the weight of different
loss components can significantly change the focus of the model on the energy or force optimization.
We generally recommend a higher weight for force loss (λF ) compared to other components. The
weight of latent force loss (λD) can be even removed or faded out for some chemical systems with
no or minimum change in the overall performance. However, breaking the second Newton law in
our symmetric message passing function worsens the prediction performance significantly.

Table 5: Ablation study with a focus on the Newtonian components of our model. Numbers show
the MAE of energy (kcal/mol) and force (kcal/mol/Å) predictions for aspirin molecule from MD17.

energy forces
no ablation 0.168 ± 0.019 0.348 ± 0.014
remove Sym. message passing 4.430 ± 2.020 4.290 ± 0.360
remove latent force loss 0.167 ± 0.014 0.359 ± 0.013
remove both 0.187 ± 0.022 0.427 ± 0.009

Computational Efficiency of NewtonNet. In addition to data efficiency as illustrated in
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Results, NewtonNet allows for a linear scaling in computational complexity with respect to the
number of atoms in the system. This can be mathematically proven since the value of all operators
are proportional to the size of the system with the assumption that all neighbors are in a small
cutoff radius. To give a better sense of the computational efficiency we compare the time that is
needed to train on the aspirin molecule from the MD17 data set with the same calculation using
the NequIP model. As reported by Batzner et. al., a complete training on the MD17 data to
converge to the best performance of NequIP model takes up to 8 days. 13 However, NewtonNet only
required 12 hours to give the state-of-the-art performance on a GeForce RTX 2080Ti, GPU which
is only 73% as fast as the Tesla V100 that is used for evaluating NequIP, when a straightforward
comparison of similar rank of contributed tensors used by both methods. Obviously, higher order
tensors may boost performance but will increase the computation time, and should be analyzed
from a cost-benefit perspective to find the best level of ML models for the required accuracy versus
computational resources.

Aside from training time that is important to facilitate the model development and to reduce
the testing time, the computation time per atomic environment is critical for the future application
of trained models in an MD simulation. The computation time for processing a snapshot of the
MD trajectory of a small molecule by NewtonNet is 4 milliseconds (∼ 3 ms on a Tesla V100) for a
small molecule of 20 atoms. Considering the reported average time of 16 milliseconds for NequIP
to process a molecule of 15 atoms13, NewtonNet demonstrates a significant speedup. In addition,
the PaiNN model16 is the closest to our model in terms of computational complexity, but does not
encode additional physical knowledge in the message passing operators. As a result, it includes
about 20% more number of optimized parameters (600k vs. 500k parameters in NewtonNet). This
difference likely leads to higher computational cost with an equally efficient implementation of the
code. Nevertheless, all these reported prediction times are by far smaller than ab initio calculations
even for a snapshot of a small molecule in the MD trajectory, which is on the order of minutes to
hours.

CONCLUSIONS

The ability to predict the energy and forces of a molecular dynamics trajectory with high accuracy
but at an efficient time scale is of considerable importance in the study of chemical and biochemical
systems. We have developed a new ML model based on Newton’s equation of motion that can
conduct this task more accurately (or achieve competitive performance) than other state-of-the-art
invariant and equivariant models.

Overall, the presented results are promising in at least three major respects. First, since the
NewtonNet model takes advantage of geometric message passing and a rotationally equivariant
latent space which scales linearly with the size of the system, its promising performance in accuracy
can be achieved without much computation or memory overhead. NewtonNet, like other equivariant
deep learning models, utilizes less data and can still outperform the kernel methods that are
renowned for their good performance on small size data. Given the better scalability of deep
learning models such as NewtonNet compared to kernel methods, we can expand the training data,
for example by smart sampling methods like active learning 32,33 and explore the potential energy
surface of the chemical compound space more efficiently. The study of methane combustion reaction
is a proof of evidence for this approach as the training data is a result of active learning sampling.
If this sampling was initiated with NewtonNet predictions, one could achieve the best performance
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with even less number of queries.
Second, the data efficiency is the key to achieve ML force field models at the high accuracy

levels of first principles methods such as CCSD(T)/CBS with competitive performances as state-of-
the-art kernel-based methods using significantly less training data. For the CCSD(T) data on small
single organic molecules we found that the NewtonNet performance is competitive or better than
state-of-the-art equivariant models by at least 10%. This is a very encouraging result for being able
to obtain gold standard levels of theory with affordable data set generation.

Finally, taking advantage of Newton’s laws of motion in the design of the architecture helped to
avoid unnecessary operations, and provide a more understandable and interpretable latent space
to carry out the final predictions. Inspired by other physical operations that incorporate higher
order tensors13,14, NewtonNet can also be further extended to construct more distinguishable latent
space many-body features in future work. Even so, the performance of the NewtonNet model on
the MD trajectories from combustion reactions are both excellent with good chemical accuracy
even when considering the challenge of chemical reactivity.

The idea to utilize directional information in neural networks in the form of equivariant operators
is so recent that their broader application in chemical sciences are still in their early stage. One
key feature in our experiments is the existence of atomic labels (i.e., forces) that help to propagate
directional information smoothly and robustly. When outputs are only provided in a more abstract
way (e.g, predicting molecular properties), the addition of domain knowledge in the form of
regularizers or normalization layers34 remain a challenge that domain researchers need to overcome
to achieve the state of the art performance.

Appendix A. Proof of Equivariance and Invariance

We prove that our model is rotationally equivariant on the atomic positions Ri ∈ R3 and atomic
numbers Zi for a rotation matrix T ∈ R3×3. In the equation 1, the euclidean distance is invariant
to the rotation, as it can be shown that

∥Trij∥2 =
∥TRj − TRi∥2 =

(Rj −Ri)
⊤ T⊤T (Rj −Ri) =

(Rj −Ri)
⊤ I (Rj −Ri) =

∥Rj −Ri∥2 =
∥rij∥2 ,

(17)

which means that the euclidean distance is indifferent to the rotation of the positions as it
is quite well-known for this feature. Consequently, feature arrays mij, ai, and all the linear or
non-linear functions acting on them will result in invariant outputs. The only assumptions for this
proof is that a linear combination of vectors or their product with invariant features will remain
rotationally equivariant. Base on this assumption we claim that equation 5 to 11 will remain
equivariant to the rotations. For instance, the same rotation matrix T propagates to equation 5
such that,
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ϕF (Tmij)T r̂ij = ϕF (mij)T r̂ij = T ϕF (mij) r̂ij = T
#»

F l
ij. (18)

The last operator, equation 12, will remain invariant to the rotations due to the use of dot
product. The proof for the invariant atomic energy changes is that,

−ϕu(a
l+1
i )

(
Tf l+1

i · Tdrl+1
i

)
=

−ϕu(a
l+1
i )

(
f l+1
i T⊤T drl+1

i

)
=

−ϕu(a
l+1
i )

(
f l+1
i I drl+1

i

)
=

−ϕu(a
l+1
i )

(
f l+1
i · drl+1

i

)
=

δU i.

(19)

This is how we contract equivariant features to invariant arrays. The addition of these arrays to
atomic features preserves the invariance for the final prediction of atomic contributions to the total
potential energy.

METHODS

Training Details. We follow the summation rule as described by Behler and Parrinello 5 to predict
the atomic energies. Following this rule, we use a differentiable function to map the updated atomic
features after last layer aLi to atomic potential energies Ei. Ultimately, the total potential energy is
predicted as the sum of all atomic energies.

Ei = ϕout(a
L
i ), (20)

Ẽ =
Nm∑
i

Ei, (21)

where Nm is the total number of atoms, and ϕout : Rnf → R1 is a fully connected network with
Sigmoid Linear Unit (SiLU) activation 19 after each layer except the last layer.

To accelerate training and achieve better generalizability, we applied two different data normal-
ization approaches. For the dedicated small molecule models, we normalized the total potential
energies Ẽ with fixed mean and standard deviation calculated from the training dataset. For
methane combustion reaction models, we normalized the atomic potential energies Ei using trainable
mean and standard deviation, and inverse normalize atomic energies before summing them up to
allow variability in species compositions.

We obtain forces as gradient of potential energy with respect to atomic positions. This way we
guarantee the energy conservation23 and provide atomic forces for a robust training of the atomic
environments,

F̃i = −∇iẼ. (22)
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We train the model using small batches of data with batch size M . The loss function penalizes
the model for predicted energy values, force components, and the direction of latent force vectors
from last message passing layer FL

i . These three terms of the loss function L are formulated as:

L =
λE

M
ΣM

m

(
Ẽm − Em

)2
+ (23)

λF

M
ΣM

m

1

3Nm

Nm∑
i

∥∥∥F̃mi − Fmi

∥∥∥2 +
λD

M ×Nm

M∑
m

Nm∑
i

(
1− FL

mi · Fmi∥∥FL
mi

∥∥ ∥Fmi∥

)
.

The first two terms are common choices for the energy and forces that are on the basis of
the mean squared deviations of predicted values with references data. The last term penalizes
the deviation of latent force vectors direction with the ground-truth force vectors. Here, we use
cosine similarity loss function to minimize the (1− cos(α)) ∈ [0, 2], where α is the angle between
the FL

i and Fi for each atom i of a snapshot m of a MD trajectory. The λE, λF , and λD are
hyperparameters that determine the contribution of energy, force, and latent force direction losses
in the total loss L.

Table 6: Hyperparameters for all the reported experiments in the results section.
λE λF λD learning rate (lr) lr decay cutoff radius [Å]

MD17 1 50 1 1.10−3 0.7 5
MD17/CCSD(T) 1 50 1 1.10−3 0.7 5
ANI 1 0 0 1.10−4 0.7 5
Methane combustiona 1 5 1 1.10−3 0.7 5
Methane combustionb 1 5 1 1.10−4 0.7 5
Hydrogen combustion 1 20 1 5.10−4 0.7 5

a 10% data & 1% data. b 100% data.

We use mini-batch gradient descent algorithm (with Adam optimizer 35) to minimize the loss
function with respect to the trainable parameters. The trainable parameters are built in the learned
functions noted with ϕ symbol. We use fully connected neural network with SiLU nonlinearity for
all ϕ functions through out the message passing layer. The only exception is the ϕrbf , which is a
single linear layer. We avoid using bias parameters in the ϕf and ϕ

′
r in order to propagate the radial

cutoff throughout the network. We found it important for the ANI model to use a normalization
layer36 on the atomic features at every message passing layer as it helps with the stability of
training. All NewtonNet models in this paper use L = 3 message passing layers, nf = 128 features
and nb = 20 basis sets. The number of features are set similar to previous works to emphasize on
the impact of architecture design in our comparisons. Other hyper-parameters are selected based
on the best practices for each type of system and are reported in the Table 6.

For the training of SchNet in the hydrogen combustion study we use 128 features everywhere
and 5 interaction layers as recommended by developers 7. The other hyperparameters are the same
as NewtonNet except for the force coefficient in the loss function that we found a lower λF = 10
performs better than larger coefficients.
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