
PHYSICAL REVIEW A 106, 053105 (2022)

Influence of initial tunneling step on the return energy of high-order harmonic generation

Xu-Zhen Gao ,1,2,3 Alexandra S. Landsman ,4,* Huabao Cao ,1,3 Yanpeng Zhang,2 Yishan Wang,1,3

Yuxi Fu ,1,3,† and Liang-Wen Pi 1,3,‡

1State Key Laboratory of Transient Optics and Photonics,

Xi’an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, Xi’an 710119, China
2Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique,

Xi’an JiaoTong University, Xi’an 710049, China
3University of Chinese Academy of Science, Beijing 100049, China

4Department of Physics, the Ohio State University, Columbus, Ohio 43210, USA

(Received 19 March 2022; revised 19 September 2022; accepted 17 October 2022; published 3 November 2022)

To investigate high-order harmonic generation in a monochromatic laser field, we derive an analytical

expression for the return energy of an electron as a function of the time interval between ionization and return.

We then expand the expression for kinetic energy to second order with respect to the Keldysh parameter γ . In

this expansion, the zero-order term is the return energy in the simple man model and the second-order term

corresponds to corrections to this model. The origin of this additional kinetic energy is frequently attributed to

the nonzero exit of the initial tunneling step. Here, we show that this commonly used picture is incomplete. We

present a framework to fully understand the additional kinetic energy as resulting from additive contributions

of zero-order and second-order velocities. Our results show that the nonzero velocity of the initial tunneling

step has a quantifiable effect on the cutoff energy measured in high harmonic generation (HHG). This opens the

door to experimentally addressing the question of the initial electron velocity at the tunnel exit, with important

implications for the correct calibration of the attoclock, as well as our interpretation of the strong field-ionization

process more broadly.
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I. INTRODUCTION

Ultrafast science uses experimental observables to answer

fundamental questions such as the tunneling time delay, which

has been debated since the birth of quantum mechanics [1,2].

Generally, experiments map the initial dynamics of elec-

tron motion to observable quantities. Hence, the attoclock

measurement maps the tunneling time of the electron to its

final momentum distribution [3,4]. Similarly, high harmonic

emission maps the dynamics at ionization time to energy at

recombination time via the energy of the emitted photons

[5–7]. The higher the energy structure observed in the final

energy distribution of emitted electrons provides information

on electron emission in nanotip-enhanced fields [8–10].

Recently, there have been heated discussions on the im-

portance of nonadiabatic effects near the tunnel exit [11–13]

and what it means for the proper description of the electron

wavepacket [14]. This also has implications for the tunneling

time delay, although a proposal exists [15] to unify both the in-

stantaneous tunneling picture and the Wigner time delay [16]

interpretation under the strong field approximation (SFA).

Here, we focus on high-order harmonic radiation, which

is produced when a low-frequency strong field interacts with

atoms or molecules. The process, known as high harmonic
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generation (HHG), can produce photon frequencies which

are hundreds of times higher than that of incident radiation

[17–19]. HHG is typically explained using the simple man

three-step model, with the first step corresponding to tunnel

ionization [20,21]. In the second step, the electron dynamics

are dominated by the strong laser field and can be treated

classically. The recombination step of this highly nonlinear

process links the tunneling exit and return time by the emitted

photon energy, enabling attosecond timescale and nanometer

spatial scale resolution in experiments [22,23].

Although the simple man model has proven very fruitful

in interpreting HHG, it was previously shown that there is

a distinct deviation of ionization time between this model

and the experimentally reconstructed ionization time [5]. To

explain this, we use perturbation methods to analyze the elec-

tron dynamics involved in HHG to quantize the additional

kinetic energy gained by the recombining electron beyond the

predictions of the simple man model. The harmonic dipole

under SFA is calculated using the saddle-point approximation

(SPA), where the integral is changed into a series of discrete

distributions from the saddle points of the integrand [24–27].

This quantum orbit theory, based on the Lewenstein model,

plays an important role in understanding the underlying elec-

tron dynamics [28–35]. In particular, the ionization time of

saddle points agrees well with the reconstructed ionization

time [5]. At the same time, the quantum trajectory method

connects to the simple man model via the classical action in

the exponent, corresponding to propagation in the laser field

[5,33].
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Note that our analysis focuses on the return electron en-

ergy, which will determine the frequency of the emitted

radiation. However, the conversion efficiency and coherence

properties of the emitted harmonics will depend on the phase

of the induced atomic dipole moment. This phase is related

to the action acquired by the electron during its motion in

the laser field, with its value affected by the quantum effects

of tunneling, diffusion, and interference [36]. A discussion of

this, as well as a detailed investigation of the transition dipole

moment and its impact on recollision trajectories can be found

in a recent publication [37].

From saddle-point equations, it is known that the times

(including ionization time and return time) and dynamics

are all complex valued. Using the Keldysh parameter γ =
√

Ip/(2Up) as a perturbation term, we expand the return

energy to second order. We then show that the difference

between the return energy in the Lewenstein model and the

classical energy in the simple man model corresponds to the

additional kinetic energy contained in the second order of this

expansion.

The cutoff law, corresponding to the highest possible

emitted harmonic frequency, is Ec = 3.17Up + Ip [20] in the

simple man model and Ec = 3.17Up + 1.32Ip [24] in the

quantum Lewenstein model. Previously, the 0.32Ip difference

between these two models was explained by the initial posi-

tion of the tunneled electron [5]. In particular, it is typically

believed that this additional kinetic energy is acquired as the

electron moves from the initial tunneled position to the origin

during the recombination process [24,38,39]. In this paper,

we provide insight into the origin of the energy upshift in

emitted harmonics, showing that the nonzero position of the

tunneled electron only partially explains this additional energy

of 0.32Ip, and that a nonzero initial velocity is also necessary

to more accurately account for the difference between the

simple man and Lewenstein models.

To this end, we use perturbation methods to calculate the

higher-order velocities both in the tunneling and propagation

steps, showing that the additional kinetic energy can be ex-

plained as resulting from additive contributions of tunneling

and classical velocities. We also show how nonadiabatic ef-

fects during tunneling affect both the tunneling velocity and

the electron velocity in the continuum. Hence including veloc-

ity at the tunnel exit is necessary to fully explain the dynamics

underlying HHG.

The rest of the paper is organized as follows. In Sec. II,

we briefly describe the saddle-point equations, which are then

used to derive the return energy to the first two orders. We

then show that the second-order expansion corresponds to

the additional kinetic energy of returning electrons. We also

expand the electron tunneling velocity and the return velocity

up to second order. We demonstrate how the additional kinetic

energy results from the interference of zero- and second-order

velocities. We summarize our results and present conclusions

in Sec. III.

II. THEORY AND DISCUSSION

A. Analytical expression of return energy in HHG

The saddle-point method, which allows the analytical eval-

uation of highly oscillating functions, is used to calculate the

HHG dipole under the strong field approximation. The saddle

points are located at positions where the phase of integrand

having zero derivative with respect to all integral variables,

i.e., tunneling time ti, return time tr , and canonical momentum

pst. The saddle-point equations are given by

∇pst
S(pst, tr, τ ) = x(tr ) − x(tr − τ ) = 0, (1)

∂S(pst, tr, τ )

∂τ
=

[pst − A(tr − τ )]2

2
+ Ip = 0, (2)

∂S(pst, tr, τ )

∂tr
=

[pst − A(tr )]2

2
−

[pst − A(tr − τ )]2

2
= h̄ωq,

(3)

where

S =

∫ tr

tr−τ

(

[pst − A(t ′′)]
2

2
+ Ip

)

dt ′′ (4)

is the semi-classical action and it represents the phase factor

acquired during the propagation process. tr is the electron re-

turn time and τ = tr − ti represents the time interval between

ionization and return

x(t ) =

∫ t

−∞

(

[pst − A(t ′′)]

2

)

dt ′′ (5)

is the displacement during the propagation process, and ωq

is the frequency of the qth-order harmonic radiation. Note

that the time is normalized to be periodic in 2π , thereby

corresponding to the phase of the laser field.

Throughout the paper a monochromatic laser field is used,

given by A(t ) ≡ −A0 sin(t ), where A0 is the amplitude of the

vector potential. Equation (1) can be written in the form of

∫ tr

tr−τ

(

[pst − A(t ′′)]

2

)

dt ′′ = 0. (6)

The canonical momentum is then given by

pst =
A0[cos (tr ) − cos (tr − τ )]

τ
. (7)

Inserting this expression into Eq. (2) and using trigonometric

functions, we obtain

sin
(

tr −
τ

2

)

a(τ ) − cos
(

tr −
τ

2

)

s(τ ) = iγ , (8)

where

a(τ ) = cos
(τ

2

)

−
2 sin

(

τ
2

)

τ
, (9)

s(τ ) = sin
(τ

2

)

, (10)

where γ ≡
√

Ip/2Up is the Keldysh parameter and Up ≡ A2
0/4

represents the ponderomotive energy in the laser field.

Using trigonometric identities, sin(tr − τ/2) and cos(tr −

τ/2) can be expressed in the form of a(τ ) and s(τ ),

see Eqs. (A1) and (A2) in the Appendix. Similarly, the

electron kinetic energy at return time, which is a func-

tion of tr and τ , can be expressed as a function of a(τ )
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and s(τ )

Ere =
[pst − A(tr )]2

2

=
A2

0

2

[

a
iaγ + (s

√

a2 + s2 + γ 2)

a2 + s2

]2

+
A2

0

2

[

s
−isγ + (a

√

a2 + s2 + γ 2)

a2 + s2

]2

, (11)

where we set a ≡ a(τ ) and s ≡ s(τ ). This expression cor-

responds to Eq. (37) in Ref. [24]. However, the ionization

equation, or Eq. (2), requires that the times and canonical mo-

mentum in the saddle-point equations are all complex valued,

which has important implications for our key findings.

Following the authors of Ref. [24], τ can be expressed

as a sum of real and imaginary parts. The real part of the

time interval τ0 has the meaning of propagation time, while

the imaginary part can be viewed as higher-order perturbation

terms. One can express the time interval as τ = τ0 + iγ τ1 +

iγ 2τ2, in which the Keldysh parameter γ is small. Note that

the static field limit γ → 0 corresponds to fully adiabatic

tunneling.

We are now in a position to obtain the Taylor expansion,

with respect to γ , for the electron return energy. We find that

the first-order expansion is an imaginary value and takes the

form

E (1)
re = iγ

8a0s0

(

a2
0 − s2

0

)

τ0

(

a2
0 + s2

0

)2

×
[

2a0s0τ1 + τ0

(

√

a2
0 + s2

0 + a2
0τ1 + s2

0τ1

)]

, (12)

where we set a0 ≡ a(τ0) and s0 ≡ s(τ0). However, the imagi-

nary part should be zero considering that the return energy is

an observable quantity. The expression for τ1 can be obtained

from this constraint

τ1 = −
τ0

√

a2
0 + s2

0

2a0s0 + τ0

(

a2
0 + s2

0

) . (13)

The second-order expression has both imaginary and real

parts. For the same reason, the imaginary part is required to

be zero, leading to

Im
(

E (2)
re

)

=
8a0s0

(

a2
0 − s2

0

)(

2a0s0 + a2
0τ0 + s2

0τ0

)

τ0

(

a2
0 + s2

0

)2
τ2

= 0. (14)

It is obvious that the terms in the numerator only equal to

zero at particular values of τ0. Therefore, τ2 = 0 is obtained

from this constraint. Plugging τ1 and τ2 in Ere and simplifying

the expression further, we obtain a more physically relevant

expression for the return energy

Ere =
A2

0

4

8a2
0s2

0

a2
0 + s2

0

−
A2

0

4

16
[

a2
0s3

0(s0 + a0τ0)
]

γ 2

(

a2
0 + s2

0

)(

2a0s0 + a2
0τ0 + s2

0τ0

)2

+ O(γ 3). (15)
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FIG. 1. The comparison of zero-order return energy, given in

Eq. (16) (red solid line), and the return energy predicted within

the simple man model (green dashed line). The two lines coincide

exactly. The blue solid line shows the sum of the first two orders

of return energy as a function of τ0, given by Eq. (15). The orange

line is the numerical solution of saddle-point equations. Note that

γ = 0.7 is used in the calculation. The cutoff energy of the first

two returns are marked by the two black dots: the first dot shows

larger than classical return energy while the second shows smaller

than classical kinetic energy. The difference between the blue line

and the red line is the second-order return energy in the Lewenstein

model. The propagation time is in units of optical cycle and the return

energy is expressed in units of Up.

Let us denote

f (τ0) =
8a2

0s2
0

a2
0 + s2

0

, (16)

g(τ0) = −
8
[

a2
0s3

0(s0 + a0τ0)
]

(

a2
0 + s2

0

)(

2a0s0 + a2
0τ0 + s2

0τ0

)2
, (17)

then Eq. (15) can be divided into two parts: the zero-order and

second-order expansions

E (0)
re = f (τ0)Up, (18)

E (2)
re = 2g(τ0)γ 2Up = g(τ0)Ip. (19)

The zero-order expression E (0)
re , shown in Fig. 1, represents

the energy gained in the laser field. We prove that it is exactly

the same expression as the return energy in the simple man

model (see Appendix B)

E (0)
re = 2Up[sin (tr ) − sin (tr − τ0)]2 = Ec. (20)

The same expression of the return energy is shown in

Eq. (6.198) of Ref. [40]. This can also be observed in Fig. 1,

where the curves E (0)
re and Ec coincide exactly.

The numerical solution of the saddle-point equations is

shown in Fig. 1 as an orange line. There are spikes near the

cutoff energy at each return, which are singularities due to

the second-order expansion used in the saddle-point method

and can be fixed by the uniform approximation [41]. It is

clearly shown that our second-order analytical expression of
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FIG. 2. The second-order return energy expressed in units of Ip

(green solid line). The cutoff energy of first two returns are marked

by dashed horizontal lines. The black dashed curves show the asymp-

totic behavior of the second-order energy. The upper envelope curve

corresponds to first set of extreme curve E
up
en = 1/(τ0 − 1), and it

represents the cutoff energy of odd returns. The lower envelope curve

corresponds to second set of extreme curve E low
en = 1/(−τ0 − 1), and

represents even returns. The red line is the additional kinetic energy,

given by Eq. (24), which assumes zero initial velocity, but nonzero

initial displacement due to tunneling. This comparison shows that the

zero initial velocity assumption might not accurately account for the

return energy.

the return energy (blue line) has excellent agreement with

the numerical solution, which confirms the validity of our

derivation. There remains a difference between the final ex-

pression of return energy and return energy in the simple man

model. The difference is the second-order return energy we

derived, which is the key result of this paper. This closed-form

analytical expression for return energy, which can be divided

into zero-order and second-order expressions with respect to

γ , allows for a systematic study of the nonadiabatic effects.

The second-order term E (2)
re is shown in Fig. 2, in units of

Ip. The curve oscillates around 0 and shows positive values in

odd returns and negative values in even returns. The amplitude

decays with propagation time τ0, eventually decaying to zero.

This suggests that the additional kinetic energy is caused

by the quantum nature of the ionization process and can be

omitted for very long trajectories, as the quantum effects fade

away and only the electron’s classical motion remains.

The cutoff energy is the maximum possible energy of the

returning electron and corresponds to the maximum of E (0)
re .

This can be obtained by solving the following equation:

dE (0)
re

dτ0

=
16a0s0

(

a2
0 + s2

0

)2
Up

×

[

(a0 − s0)(a0 + s0)

(

1

2
a2

0 +
1

2
s2

0 +
1

τ0

a0s0

)]

.

(21)

There exist two sets of solutions: one is a0 = −s0 and the

other is a0 = s0. Plugging these two sets of solutions into

Eq. (19), one can obtain two types of envelope curves (black

dashed lines in Fig. 2).

The first set of second-order return energy corresponds to

Eup
en =

1

τ0 − 1
. (22)

The odd return cutoff energy situates on this curve. The sec-

ond set of second-order return energy corresponds to

E low
en =

1

−τ0 − 1
. (23)

The cutoff energy of the even returns situate on this curve.

In the past, the origin of additional kinetic energy was

commonly attributed to the nonzero initial position of the

tunneled electron. In particular, the tunneled electron has an

approximate initial position x0 = −Ip/E0, where E0 is the

amplitude of the electric field. Hence the electron returns

to the origin when x(t f ) − x(ti ) + x0 = 0 is satisfied. This

equation is solved numerically, with additional kinetic energy

given by

Ep
re = 1

2
v

2
f − Ec, (24)

which is shown in the red solid line in Fig. 2. The expression

of the return energy second-order expansion E (2)
re is shown in

the green solid line. Although the two curves have intersection

points at each return, the intersection points are not the cutoff

energy except for the first return. In the following section, we

will explore the physical explanation for the additional kinetic

energy by solving the electron velocity up to second-order

using perturbative expansion. The above-described result will

also be compared to our findings.

B. Higher-order expression for velocities of tunneling

and classical propagation steps

In the preceding discussion, a common assumption was

made of zero electron velocity at the tunnel exit. This as-

sumption neglected the influence of nonadiabatic effects.

Under nonadiabatic conditions, it is more accurate to take

into account the initial electron velocity. To calculate the fi-

nal velocity, we need to solve the tunneling time and return

time of the saddle points. The return time is expressed as

tr = t (0)
r + iγ t (1)

r + γ 2t (2)
r . In Appendix A, we derive each

term of this expression by the expansion of sin(tr − τ/2) and

cos(tr − τ/2) expressed by Eqs. (A1) and (A2)

t (0)
r = arctan

( s0

a0

)

+
τ0

2
+ T

⌊[

τ0

2 ∗ 2π
+

1

2

]⌋

, (25)

t (1)
r = 0, (26)

t (2)
r =

τ0 cos (τ0) − sin (τ0)

2[τ0 − sin (τ0)]2
. (27)

The bracket �	 of the last term in Eq. (25) means round down

to an integer. Therefore, the return time can be expressed as

tr = t (0)
r + γ 2t (2)

r . Also the initial time, which is expressed by

ti = t
(0)
i + iγ t

(1)
i + γ 2t

(2)
i , can be obtained

t
(0)
i = t (0)

r − τ0, (28)

t
(1)
i = t (1)

r − τ1 = −τ1, (29)

t
(2)
i = t (2)

r − τ2 = t (2).
r (30)

053105-4



INFLUENCE OF INITIAL TUNNELING STEP ON THE … PHYSICAL REVIEW A 106, 053105 (2022)

The motion of the electron can be described as follows:

first, it proceeds in imaginary time with an imaginary velocity

in the tunneling process, then it propagates in real time with

real velocity, corresponding to propagation time, and finally it

recombines with the parent ion.

In the following derivation, we solve for the velocity at

tunneling exit and return time. The canonical and vector po-

tentials are expressed in units of A0. One can express the

expansion as pst = p
(0)
st + iγ p

(1)
st + γ 2 p

(2)
st , then each order of

this expression can be derived from Eq. (7). Plugging τ and

tr into Eq. (7) and expanding the left-hand side to second

order, then simplifying the expansion further by trigonometric

functions one can obtain each-order of canonical momentum

as follows (Appendix C explains why p
(1)
st = 0):

p
(0)
st = − sin

(

t
(0),
i

)

(31)

p
(1)
st = 0, (32)

p
(2)
st = −

√

a2
0 + s2

0

2
[

2a2
0s2

0 + τ0

(

a2
0 + s2

0

)] . (33)

The electron velocity at the tunnel exit is

vi = pst − A[Re(ti )] = pst − A
(

t
(0)
i + γ 2t

(2)
i

)

. (34)

Plugging t
(0)
i and t

(2)
i in this expression and expanding it to

second order, while using v
(0)
i = 0, the electron velocity at the

tunneling exit is given by

vi 
 v
(2)
i γ 2 =

[

p
(2)
st + t

(2)
i cos

(

t
(0)
i

)]

γ 2. (35)

The electron velocity at return time is

vre = pst − A[Re(tr )] = pst − A
(

t (0)
r + γ 2t (2)

r

)

. (36)

Plugging t (0)
r and t (2)

r in this expression and expanding it to

second order, vre can be expressed as

vre 

[

− sin
(

t
(0)
i

)

+ sin
(

t (0)
r

)]

+
[

p
(2)
st + t (2)

r cos
(

t (0)
r

)]

γ 2. (37)

The classical velocity, which we define as the velocity gained

in the second step, is the difference value of the tunnel-

ing velocity and return velocity. It contains zero-order and

second-order terms vc 
 v
(0)
c + γ 2

v
(2)
c , taking the form

v
(0)
c = − sin

(

t
(0)
i

)

+ sin
(

t (0)
r

)

, (38)

v
(2)
c = t (2)

r

[

cos
(

t (0)
r

)

− cos
(

t
(0)
1

)]

. (39)

Now, the return velocity is the sum of the zero-order and

second-order perturbation terms

vre = v
(0)
c + γ 2

v
(2)
i + γ 2

v
(2)
c . (40)

The zero order and second order of vre are shown in Fig. 3.

The zero-order return velocity v
(0)
c is exactly the same as

the classical velocity Eq. (20) in the simple man model.

The second-order velocity v
(2)
i reflects the quantum effect

of tunneling and is consistent with the energy gained dur-

ing nonadiabatic tunneling. The quantum tunneling process

not only affects the velocity at the tunneling exit, but also

the velocity of the following classical propagation. The two
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FIG. 3. Upper: Electron return velocity to zero order, corre-

sponding to classical return velocity in the simple man model.

Bottom: The second-order correction to return velocity. The red

line shows the velocity at the tunneling exit and the green shows

the second-order classical velocity. The lines diverge to infinity as

τ0 → 0 due to the breakdown of perturbation theory.

second-order velocities, v2
i and v

(2)
c , are therefore both respon-

sible for the additional kinetic energy. In the bottom panel

of Fig. 3, one can see that the two curves are not convergent

when τ0 tends to zero due to the breakdown of the condition

τ0 > γτ1, used for the perturbative expansion.

C. Decomposition of additional kinetic energy

and velocity at tunnel exit

Figure 4 illustrates the difference between neglecting the

initial velocity and only taking account of position and taking

account of both the initial velocity and position, labeled as

“Position scenario” and “Velocity scenario,” respectively. In

the left panel of Fig. 4, the electron appears at the tunnel

exit with zero velocity, then it gains classical velocity vc

when returning to the tunneling exit, and finally it acquires

additional kinetic energy when returning back to the origin.

In this scenario, the nonadiabaticity of the tunneling process

is neglected. The right panel of Fig. 4 shows the “Velocity

scenario.” First, the electron has the second-order veloc-

ity γ 2
v

(2)
i at the tunneling exit, then it gains classical velocity
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Position scenario Velocity scenario

FIG. 4. A sketch of two kinds of scenarios. The vertical axis on

the right in the subgraphs shows the velocity at each stage of the

three-step model. The left panel describes the position scenario: the

electron appears at the tunneling exit with zero velocity, acquires

classical energy when returning to the tunneling exit, and acquires

additional kinetic energy when returning to the origin. The right

panel describes the velocity scenario: The electron has initial velocity

γ 2
v

(2)
i when the propagation process begins and acquires classical

velocity v
(0)
c + γ 2

v
(2)
c after returning to the origin.

v
(0)
c + γ 2

v
(2)
c when returning to the origin. In this scenario, the

nonadiabatic tunneling process affects both the tunneling exit

velocity and classical velocity.

The “Position scenario” is often used to explain the origin

of additional kinetic energy. However, it is not consistent

with the saddle-point equation, Eq. (1), in which the electron

returns to the origin at recombination time. This scenario also

leaves out the consideration of nonadiabatic affects during

tunneling. What’s more, the result cannot suit the second-

order analytical expression well. In contrast, the “Velocity

scenario” is a rigorous derivation under the second-order

perturbation of the saddle-point equations and includes nona-

diabatic contributions. The additional kinetic energy obtained

in this scenario is calculated and compared with the analytical

expression and position result in the following context.

From the calculated return velocity, one can easily obtain

the kinetic energy at return time

Ere = 1
2
v

2
re = 1

2
A2

0

(

v
(0)
c

)2
+ 2v

(0)
c

(

v
(2)
i + v

(2)
c

)

Ip. (41)

The zero-order kinetic energy is the same as in the simple

man model, corresponding to Eq. (20). The second order

of kinetic energy is the additional kinetic energy obtained

by considering nonadiabatic contributions to velocity, which

are not included in the simple man model. The upper panel

of Fig. 5 compares the additional kinetic energy obtained

when the nonadiabatic contributions to velocity are included

(described as the “Velocity scenario” in Fig. 4) with the ana-

lytical expression in Eq. (19). The two results show excellent

agreement, suggesting that the second-order additional kinetic

energy is caused by additive contributions of zero-order and

second-order velocities. The two second-order velocities are

all induced by the nonadiabatic tunneling process, showing

how the tunneling step impacts the return energy. In addition,

this can also explain why the additional kinetic energy is in

units of Ip.

Note that the second-order kinetic energy is made up of

two components: (i) the term resulting from the addition of
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FIG. 5. Upper: The second-order return energy (black solid line)

and the additional kinetic energy obtained by using nonzero initial

velocity (red dashed line). This scenario shows an excellent agree-

ment with Eq. (19). Bottom: The interference term of second-order

tunneling velocity and zero-order classical velocity (green solid line).

The additional kinetic energy obtained by assuming zero initial ve-

locity, but nonzero position, corresponding to tunnel exit (red solid

line). The good agreement between red and green curves later in

the optical cycle means that nonzero initial displacement partially

explain the origin of additional kinetic energy.

the zero-order and the second-order tunneling exit velocities

and (ii) the second-order classical velocity. Figure 5 compares

these two components separately with the adiabatic tunnel-

ing prediction, shown in the left panel of Fig. 4. The later

figure shows good agreement with the first component, cor-

responding to (i) above, indicating why the zero velocity at

tunnel exit assumption can partly account for the additional

kinetic energy. Considering this good agreement, we further

investigate the displacement at the tunneling exit using a per-

turbative expansion, which can be calculated as

xi =

∫ Re(ti )

ti

(

[pst − A(t ′′)]

2

)

dt ′′, (42)

where ti and pst are the saddle points of ionization time and the

canonical momentum, respectively. Within the saddle-point

method, the ionized electron tunnels through the barrier on
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FIG. 6. The comparison of displacement at the tunneling exit

in the velocity scenario (green solid line) and the position scenario

(red solid line), where the two scenarios are depicted in Fig. 4. The

displacement is in units of Ip/E0, where E0 is the amplitude of laser

field. The two lines only shows very small difference at the cutoff of

first and second returns. xi shows nonconvergence for very small τ0

due to the breakdown of perturbation theory.

the complex time plane, moving from origin at time ti to

the tunneling exit at time Re(ti). Plugging the expressions

for ti [Eqs. (28) to (30)] and pst [Eqs. (31) and (32)] to the

equation above, one can find the zero-order x
(0)
i and first-order

x
(1)
i terms to be zero and the second-order term x

(2)
i takes the

form

xi = γ 2x
(2)
i = 1

2
γ 2

(

t
(1)
i

)2
cos

(

t
(0)
i

)

. (43)

The result is shown as a green solid line in Fig. 6, where the

displacement is in units of Ip/E0. It is clear that the second-

order displacement is irrelevant to the second-order expansion

of time and velocity. The second-order displacement also has

only a minor influence on the cutoff of the first return, as well

as the second return cutoff. This helps explain the agreement

between the green and red curves, shown in the bottom panel

of Fig. 6. Note that the second-order displacement diverges at

small τ0 due to the breakdown of perturbation theory.

The initial conditions after tunneling were extensively de-

bated in recent years. The tunneling process occurs in a

time-dependent field, introducing ambiguities in the choice

of tunneling coordinates. The perturbative approach pre-

sented here gives consistent tunneling exit characteristics

with nonadiabatic effects fully included [11–13]. Here, we

demonstrated that a second-order expansion in velocity gives

a fuller description of the ionization dynamics, more accu-

rately accounting for the additional kinetic energy observed at

recombination.

III. CONCLUSION

In conclusion, we investigate the return energy involved

in high harmonic generation under strong field approximation

using perturbation theory. An analytical expression of return

energy, a function of time interval τ , is derived from the

saddle-point approximation equations. The saddle-point equa-

tion represents the energy conservation law and requires that

the time interval is a complex value, with a small γ -dependant

imaginary part. The analytical expression is expanded to

second-order with respect to γ . The zero-order term of the

expansion corresponds to the classical energy gained in a

simple man model and the second-order term corresponds to

additional kinetic energy.

Although the additional kinetic energy beyond the sim-

ple man model is typically explained by the initial electron

displacement following tunneling, we show with a more de-

tailed analytical treatment that the tunneling step introduces a

nonzero additional velocity both at the tunnel exit and during

propagation in the continuum. In particular, we expand the

return velocity to several orders within perturbation theory,

using the Keldysh parameter γ . The zero-order velocity cor-

responds to the classical velocity in the simple man model,

while the second-order velocities contain the tunneling exit

velocity and the correction to the classical velocity. Both

second-order contributions are due to the nonadiabatic effects

during quantum tunneling. These additional second-order ve-

locities correspond to additional terms in our perturbative

expansion, whereas the zero-order velocity corresponds to the

classical velocity in the simple man model.

Finally, we calculate a correction to the return energy using

a perturbative expansion in velocity. While, as mentioned

above, the zero-order return energy is the classical energy

in the simple man model, the second order involves the ad-

dition of zero-order and second-order velocities (including

second-order tunneling exit velocity and second-order clas-

sical velocity). We analyze the relative contributions of the

different second-order terms, finding that one of them can be

accounted for by the initial electron displacement during tun-

neling (a typical explanation of the additional kinetic energy

at return relative to the simple man model). However, the other

term in the second-order expansion, resulting from the addi-

tion of the zero-order and second-order classical velocities,

relies on the nonzero velocity at the tunnel exit and therefore

cannot be explained by the initial electron displacement from

the parent atom. This establishes a way to experimentally

verify the existence of nonzero velocity at the tunnel exit (in

the direction of tunneling) by measuring the HHG cutoffs.

The definitive experimental answer to this question promises

to have profound implications to how we interpret attoclock

measurements of tunneling time, which rely on having accu-

rate initial conditions at the tunnel exit.
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APPENDIX A: DERIVATION OF RETURN TIME

We use the quadratic sum of trigonometric function in

Eq. (8), where sin(tr − τ/2) and cos(tr − τ/2) can be ex-

pressed as

sin
(

tr −
τ

2

)

=
i
√

Ip

2Up
a(τ ) + s(τ )

√

a2(τ ) + s2(τ ) +
Ip

2Up

a2(τ ) + s2(τ )
,

(A1)

cos
(

tr −
τ

2

)

=
−i

√

Ip

2Up
s(τ ) + a(τ )

√

s2(τ ) + a2(τ ) +
Ip

2Up

s2(τ ) + a2(τ )
,

(A2)

consider that the zero order of the return time has nothing to

do with the parameter γ . We can set γ = 0 to simplify this set

of relations. Then we have

sin
(

t (0)
r −

τ

2

)

=
s0(τ )

√

a2
0(τ ) + s2

0(τ )

, (A3)

cos
(

t (0)
r −

τ

2

)

=
a0(τ )

√

a2
0(τ ) + s2

0(τ )

. (A4)

From the above equation set, it is easy to derive that

t (0)
r = arctan

( s0

a0

)

+
τ0

2
+ T

⌊[

τ0

2 ∗ 2π
+

1

2

]⌋

, (A5)

where the last term is added to eliminate the periodicity effect

of of the arctan function. We plug the expression of a and s in

Eqs. (A1) and (A2). tan(tr − τ/2), the division of the two, is

easily obtained. Expanding tan(tr − τ/2) to the second order,

then we have

t (1)
r = 0, (A6)

t (2)
r =

τ0 cos(τ0) − sin(τ0)

2[τ0 − sin(τ0)]2
. (A7)

APPENDIX B: EQUIVALENCE ZERO-ORDER RETURN

ENERGY AND CLASSICAL ENERGY

IN SIMPLE MAN MODEL

The zero-order return energy is

E (0)
re = 8

a2
0(τ0)s2

0(τ0)

a2
0(τ0) + s2

0(τ0)
Up. (B1)

Let’s multiply the numerator and the denominator a2
0(τ0) +

s2
0(τ0); the expression can be expressed in the form of cos(tr −

τ0/2) and sin(τ0/2).

8
a2

0(τ0)
[

a2
0(τ0) + s2

0(τ0)
]

s2
0(τ0)

[

a2
0(τ0) + s2

0(τ0)
]2

Up

= 2Up

[

2 cos
(

tr −
τ0

2

)

sin
(τ0

2

)]2

= 2Up[sin(tr ) − sin(tr − τ0)]2

= Ec. (B2)

APPENDIX C: DERIVATION OF FIRST-ORDER

CANONICAL MOMENTUM

We plug τ and tr in pst and expand the expression to second

order, then the first-order canonical momentum takes the form

p
(1)
st = −

τ1

τ 2
0

[

cos
(

t (0)
r

)

− cos
(

t (0)
r − τ0

)

+ τ0 sin
(

t (0)
r − τ0

)]

.

(C1)

We dismantle the function of t (0)
r and t (0)

r − τ0 into the form of

t (0)
r − τ0/2 and τ0/2, then the expression can be expressed as

p
(1)
st = −2 sin

(τ0

2

)

sin
(

t (0)
r −

τ0

2

)

+ τ0

(

cos
(τ0

2

)

sin
(

t (0)
r −

τ0

2

)

− sin
(τ0

2

)

cos
(

t (0)
r −

τ0

2

))

= −
2s2

0
√

a2
0 + s2

0

+ τ0

⎡

⎣

s0
√

a2
0 + s2

0

(

a0 +
2s0

τ0

)

−
a0s0

√

a2
0 + s2

0

⎤

⎦

= 0.

[1] C. Hofmann, A. Bray, W. Koch, H. Ni, and N. I. Shvetsov-

Shilovski, Quantum battles in attoscience: Tunnelling, Eur.

Phys. J. D 75, 208 (2021).

[2] A. S. Landsman and U. Keller, Attosecond science and the

tunnelling time problem, Phys. Rep. 547, 1 (2015).

[3] A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig,

S. Heuser, C. Cirelli, L. Gallmann, and U. Keller, Ul-

trafast resolution of tunneling delay time, Optica 1, 343

(2014).

[4] U. S. Sainadh, H. Xu, X. Wang, A. Atia-Tul-Noor, W. C.

Wallace, N. Douguet, A. Bray, I. Ivanov, K. Bartschat, A.

Kheifets, R. T. Sang, and I. V. Litvinyuk, Attosecond angu-

lar streaking and tunnelling time in atomic hydrogen, Nature

(London) 568, 75 (2019).

[5] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S.

Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich,

Resolving the time when an electron exits a tunnelling barrier,

Nature (London) 485, 343 (2012).

053105-8



INFLUENCE OF INITIAL TUNNELING STEP ON THE … PHYSICAL REVIEW A 106, 053105 (2022)

[6] L. Torlina and O. Smirnova, Coulomb time delays in high

harmonic generation, New J. Phys. 19, 023012 (2017).

[7] M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman,

T. Zimmermann, M. Lewenstein, L. Roso, and F. Krausz,

Carrier-Wave Rabi-Flopping Signatures in High-Order Har-

monic Generation for Alkali Atoms, Phys. Rev. Lett. 114,

143902 (2015).

[8] L. Ortmann, J. A. Perez-Hernandez, M. F. Ciappina, J. Schotz,

A. Chacon, G. Zeraouli, M. F. Kling, L. Roso, M. Lewenstein,

and A. S. Landsman, Emergence of a Higher Energy Structure

in Strong Field Ionization with Inhomogeneous Electric Fields,

Phys. Rev. Lett. 119, 053204 (2017).

[9] L. Ortmann and A. S. Landsman, Analysis of the higher-energy

structure in strong-field ionization with inhomogeneous electric

fields, Phys. Rev. A 97, 023420 (2018).

[10] X.-Z. Gao, A. S. Landsman, H. Wang, P. Huang, Y. Zhang, B.

Wang, Y. Wang, H. Cao, Y. Fu, and L.-W. Pi, Analysis of a

higher-energy structure in nanotip enhanced fields, New J. Phys.

23, 113017 (2021).

[11] H. Ni, U. Saalmann, and J.-M. Rost, Tunneling Ionization Time

Resolved By Backpropagation, Phys. Rev. Lett. 117, 023002

(2016).

[12] H. Ni, N. Eicke, C. Ruiz, J. Cai, F. Oppermann, N. I. Shvetsov-

Shilovski, and L.-W. Pi, Tunneling criteria and a nonadiabatic

term for strong-field ionization, Phys. Rev. A 98, 013411

(2018).

[13] H. Ni, U. Saalmann, and J.-M. Rost, Tunneling exit characteris-

tics from classical backpropagation of an ionized electron wave

packet, Phys. Rev. A 97, 013426 (2018).

[14] A. N. Pfeiffer, C. Cirelli, A. S. Landsman, M. Smolarski, D.

Dimitrovski, L. B. Madsen, and U. Keller, Probing the Longi-

tudinal Momentum Spread of the Electron Wave Packet at the

Tunnel Exit, Phys. Rev. Lett. 109, 083002 (2012).

[15] M. Han, P. Ge, Y. Fang, X. Yu, Z. Guo, X. Ma, Y. Deng, Q.

Gong, and Y. Liu, Unifying Tunneling Pictures of Strong-Field

Ionization with an Improved Attoclock, Phys. Rev. Lett. 123,

073201 (2019).

[16] L.-W. Pi and A. Landsman, Attosecond time delay in pho-

toionization of noble-gas and halogen atoms, Appl. Sci. 8, 322

(2018).

[17] J. Li, J. Lu, A. Chew, S. Han, J. Li, Y. Wu, H. Wang, S. Ghimire,

and Z. Chang, Attosecond science based on high harmonic

generation from gases and solids, Nat. Commun. 11, 2748

(2020).

[18] X. Ren, J. Li, Y. Yin, K. Zhao, A. Chew, Y. Wang, S. Hu, Y.

Cheng, E. Cunningham, Y. Wu, M. Chini, and Z. Chang, At-

tosecond light sources in the water window, J. Opt. 20, 023001

(2018).

[19] F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli,

Advances in attosecond science, J. Phys. B: At., Mol. Opt. Phys.

49, 062001 (2016).

[20] P. B. Corkum, Plasma Perspective on Strong Field Multiphoton

Ionization, Phys. Rev. Lett. 71, 1994 (1993).

[21] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander,

Above Threshold Ionization Beyond the High Harmonic Cutoff,

Phys. Rev. Lett. 70, 1599 (1993).

[22] R. L. Sandberg, C. Song, P. W. Wachulak, D. A. Raymondson,

A. Paul, B. Amirbekian, E. Lee, A. E. Sakdinawat, C. La-O-

Vorakiat, M. C. Marconi, C. S. Menoni, M. M. Murnane, J. J.

Rocca, H. C. Kapteyn, and J. Miao, High numerical aperture

tabletop soft x-ray diffraction microscopy with 70-nm resolu-

tion, Proc. Natl. Acad. Sci. 105, 24 (2008).

[23] A. Ravasio, D. Gauthier, F. R. N. C. Maia, M. Billon, J.-P.

Caumes, D. Garzella, M. Géléoc, O. Gobert, J.-F. Hergott,

A.-M. Pena, H. Perez, B. Carré, E. Bourhis, J. Gierak, A.

Madouri, D. Mailly, B. Schiedt, M. Fajardo, J. Gautier, P.

Zeitoun, P. H. Bucksbaum, J. Hajdu, and H. Merdji, Single-Shot

Diffractive Imaging with a Table-Top Femtosecond Soft X-Ray

Laser-Harmonics Source, Phys. Rev. Lett. 103, 028104 (2009).

[24] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and

P. B. Corkum, Theory of high-harmonic generation by low-

frequency laser fields, Phys. Rev. A 49, 2117 (1994).

[25] M. Ivanov, Ionization in strong low-frequency fields, in Attosec-

ond and XUV Physics: Ultrafast Dynamics and Spectroscopy,

edited by T. Schultz and M. Vrakking (Wiley-VCH, Weinham,

Germany, 2014), pp. 179–200.

[26] A.-T. Le, H. Wei, C. Jin, and C. D. Lin, Strong-field approxima-

tion and its extension for high-order harmonic generation with

mid-infrared lasers, J. Phys. B: At. Mol. Opt. Phys. 49, 053001

(2016).

[27] K. Amini, J. Biegert, F. Calegari, A. Chacón, M. F. Ciappina,

A. Dauphin, D. K. Efimov, C. Figueira de Morisson Faria,

K. Giergiel, P. Gniewek, A. S. Landsman, M. Lesiuk, M.

Mandrysz, A. S. Maxwell, R. Moszyński, L. Ortmann, J.
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