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ABSTRACT

Homomorphic Encryption (HE) enables secure cloud offload pro-

cessing on encrypted data. HE schemes are limited in the complexity

and type of operations they can perform, motivating client-aided

implementations that distribute computation between client (unen-

crypted) and server (encrypted). Prior client-aided systems optimize

server performance, ignoring client costs: client-aided models put

encryption and decryption on the critical path and require com-

municating large ciphertexts. We introduce Client-aided HE for

Opaque Compute Offloading (CHOCO), a client-optimized system

for encrypted offload processing. CHOCO reduces ciphertext size,

reducing communication and computing costs through HE parame-

ter minimization and through łrotational redundancyž, a new HE al-

gorithm optimization.We present Client-aided HE for Opaque Com-

pute Offloading Through Accelerated Cryptographic Operations

(CHOCO-TACO), an accelerator for HE encryption and decryp-

tion, making client-aided HE feasible for even resource-constrained

clients. CHOCO supports two popular HE schemes (BFV and CKKS)

and several applications, including DNNs, PageRank, KNN, and K-

Means. CHOCO reduces communication by up to 2948× over prior

work. With CHOCO-TACO client enc-/decryption is up to 1094×

faster and uses up to 648× less energy.
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1 INTRODUCTION

Data-producing client devices have a long history of decreasing in

size, energy storage, and processing capability [10, 16, 25, 35, 43, 49].

The sophistication of computations on sensor data is simultaneously

scaling up, often using complex machine learning (ML). Compute

offloading, e.g., łinference as a servicež, is a way to overcome device

limitations and meet rising computation demands. Clients send

data to be processed by a robust server that may house aggregated

datasets or a collection of MLmodels. Centralization makes systems

easy to evolve, requiring server updates only, and avoiding the need

to re-distribute large applications (such as Deep Neural Network

models) to many fielded clients. Data privacy is the main barrier to

realizing these benefits of offload computing: offloading exposes

sensitive user data to a shared, potentially untrusted offload server.

Recent work offers several options for privacy-preserving compu-

tation, including trusted execution environments (TEEs)[34, 51, 68],

differential privacy (DP), multi-party computation (MPC)[2, 11, 60],

and homomorphic encryption (HE) [6, 8, 20, 22]. Of these, HE pro-

vides the strongest client security guarantees [8]. Unfortunately,

complete HE programs are inefficient and highly limited in the type

of computation that can be performed[8, 20, 22, 29, 31]. Instead,

client-aided, hybrid HE-MPC protocols have seen recent success,

mostly for DNN inference offloading [36, 41, 47, 55], by only using

HE to apply linear operations to encrypted user data (e.g. convolu-

tion). Obfuscated intermediate results are then sent to the client,

which applies non-linear operations (e.g. activation) using MPC.

HybridHE-MPC is promising, but currently infeasible for resource-

constrained clients. Existing solutions optimize HE-MPC to benefit

the offload server in both performance and privacy. These systems

use large ciphertexts (MBs) and require large amounts of client-

server comunication; e.g., GBs for a DNN inference. Prior work

neglects to optimize HE-MPC’s high compute and communication

cost at the client.

This work proposes Client-aided HE for Opaque Compute Of-

floading (CHOCO), a new approach to client-privacy-preserving

computation that minimizes client costs. CHOCO is an alterna-

tive to local compute, with its resource limitations and inability

to use centralized ML models and data. CHOCO is also an alter-

native to the extreme client compute and communication costs of

server-optimized HE-MPC. CHOCO reduces client costs by orders of

magnitude over existing HE-MPC protocols, availing even resource-

constrained client devices of the benefits of privacy-preserving

compute offload.

CHOCO starts with client-aided HE, performing encrypted lin-

ear operations on the server and plaintext non-linear operations on

the client. CHOCO minimizes HE parameters to minimize cipher-

text communication costs, and introduces rotational redundancy, a
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implementation of windowed rotation using a standard HE per-

mutation that requires both masking multiplies and full ciphertext

rotations. In comparison, Figure 4 (B) shows the same windowed

rotation performed using rotational redundancy.

Rotational redundancy is a novel way of packing input vectors

before encryption such that values set to wrap around during a

windowed rotation are appended on either side of the window of

interest. Appending these redundant values avoids expensive mask-

ing multiplications and instead requires a single, relatively low-cost

encrypted rotation to achieve a complete windowed rotation. This

novel technique packs vectors with the unique goal of reducing

the number of encrypted operations required to run a computation.

This goal is particularly relevant to client-aided HE because the

client decrypts, unpacks, and repacks ciphertexts after each set of

encrypted, linear operations. Any values outside the window of in-

terest can simply be discarded from the plaintexts by the client and

new values can be explicitly packed for the next operation. The goal

of rotational redundancy is a contrast to LoLa[8] and other prior

work that pack vectors for multi-operation compatibility on the

server. Without client interaction, the output of one encrypted vec-

tor operation must be packed appropriately for the next encrypted

operation to receive as input.

Table 4: Noise Budget: The initial noise budget of a cipher-

text varies with different parameter selections. The noise

budget remaining after a single rotation versus an arbitrary

permutationwithmasking is also contrasted. Rotational Re-

dundancy eliminates masking multiplies and therefore has

noise behavior synonymous with just a single rotation.

Parameters Noise

𝑁 , log2 𝑡 , {𝑘} Initial Post-Rotate Post-Permute

8192, 20, {58,58,59} 68 66 42

8192, 23, {58,58,59} 62 59 33

8192, 28, {58,58,59} 52 50 18

4096, 16, {36,36,37} 33 31 12

4096, 18, {36,36,37} 29 26 5

4096, 20, {36,36,37} 25 22 0

Although the optimization reduces the density of useful input

values in a ciphertext, the amount of redundancy required depends

on the amount of rotation required, which is typically a small

fraction of the total vector size. Rotational redundancy trades the

use of more space in an encrypted vector for a slower depletion of

ciphertext noise. The optimization thus enables the use of better

HE parameter selections that permit smaller ciphertexts; Table 4

quantifies these benefits. Even within the same ciphertext size,

dictated by 𝑁 and 𝑘 , the use of rotational redundancy allows for

a larger BFV plaintext modulus 𝑡 . This increased capacity enables

larger quantization bitwidths and more encrypted accumulation.

Recall that the same security guarantees can be achieved with

different parameter selections (Table 3) and vectors are packed

before encryption. Therefore, rotational redundancy has no impact

on the security guarantee of the ciphertext. Ultimately, the benefit

of rotational redundancy in reducing ciphertext size is witnessed

by the client as greatly reduced computation and communication.

ApplyingRotational Redundancy inCHOCO.We applied rota-

tional redundancy in all of our applications that required windowed

rotations, and it provided substantial benefits. We implemented sev-

eral DNN image classifiers (Section 5) in which a ciphertext vector

is the concatenation of a vector per channel. Convolution requires

windowed rotation within each channel. Based on the amount of

rotation, CHOCO packs each channel of an image with sufficient

redundancy to keep values aligned throughout the encrypted con-

volution. CHOCO then stacks the redundant channel vectors into

evenly-spaced, power-of-two-sized slots in the final ciphertext vec-

tor. With this redundant, stacked packing of channels, all elements

can be properly aligned for convolution without any arbitrary per-

mutations or masking multiplies. Alignment requires only simple

encrypted rotations. Using rotational redundancy, convolution is

achieved with optimal multiplication efficiency - a single multipli-

cation of the weights with the inputs.

Algorithmic optimization, including rotational redundancy, and

CHOCO’s client-focused HE parameter selection provide a substan-

tial reduction in costs to the client. For encrypted DNN computa-

tions, CHOCO computes on ciphertexts with only 2 prime residues,

which is a 50% reduction in ciphertext size compared to SEAL’s

default with 𝑁 = 8192. Half of this improvement Ð eliminating

an entire RNS residue Ð comes from rotational redundancy alone.

As Section 5 shows, ciphertext size reduction results in substantial

client benefits.

4 HARDWARE ACCELERATION

CHOCO-TACO is a hardware accelerator for homomorphic encryp-

tion and decryption operations, designed for client-aided HE. Recall

from Figure 2 that accelerating NTT/INTT and polynomial multi-

plication alone insufficiently reduces the dominant client costs of

encryption and decryption. CHOCO-TACO, instead, accelerates all

of the component sub-operations of HE encryption and decryption,

virtually eliminating these client costs.

4.1 HE Encryption

𝐸𝑛𝑐 ( [𝑃0, 𝑃1],𝑚) = ( [Δ𝑚 + 𝑃0𝑢 + 𝑒1]𝑞, [𝑃1𝑢 + 𝑒2]𝑞)

𝑤ℎ𝑒𝑟𝑒 𝑢
$
← 𝑅2 𝑎𝑛𝑑 𝑒1, 𝑒2← 𝜒

(2)

CHOCO-TACO targets asymmetric encryption and decryption in

BFV and CKKS. Equation 2 [39] is BFV’s encryption kernel, where

𝑚 is a message to encrypt, Δ𝑚 is the encoded message, 𝑃0, 𝑃1 are

public keys, 𝑢, 𝑒1, 𝑒2 are vectors of randomly sampled numbers,

and []𝑞 denotes modulation by the coefficient modulus 𝑞. Figure 5

diagrams the RNS implementation of equation 2 from SEAL [58].

The algorithm first encrypts the value zero by combining randomly

sampled vectors with the public encryption keys via polynomial

multiplication and addition. The algorithm then encrypts Δ𝑚 by

adding it to the encrypted zero to produce the final ciphertext.

4.2 Accelerator Architecture

CHOCO-TACO is a straightforward, parallel, pipelined hardware

mapping of the sub-computations used in BFV and CKKS encryp-

tion and decryption. Figure 6 shows the full encryption and de-

cryption accelerator, including datapath arcs concretely illustrating

the BFV functions. The design’s main modules are Pseudo-Random
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come from parallelism in the accelerator architecture: Replicated

modules process 𝑘 independent RNS residues in parallel.

Overall, CHOCO-TACO provides up to 1094× and 648× savings

in time and energy, respectively, with consistent gains across all

HE parameter settings.

4.6 Decryption Support

BFV decryption is operationally very similar to encryption. Equa-

tion 3 shows decryption mathematically.

𝐷𝑒𝑐 (𝑠𝑘, [𝑐0, 𝑐1]) =

[ ⌊

𝑡

𝑞
[𝑐0 + 𝑐1𝑠𝑘]𝑞

⌉]

𝑡

(3)

Figure 6 shows the flow of control and data for decryption with

black lines. Decryption requires a few additional hardware com-

ponents, but reuses the existing polynomial multiplication and

addition modules to process 𝑐1, the secret key 𝑠𝑘 , and 𝑐0. After addi-

tion, these intermediate results undergo base conversion and error

correction. At that point the message need only be decoded. Decod-

ing uses the message encodingmodule to performNTT and take the

plaintext modulus 𝑡 of each coefficient. The result is the decrypted

message, which the hardware conveys to the CPU’s memory.

Again, we compare hardware acceleration to our IMX6 SEAL

baseline. Decryption sees less benefit from hardware acceleration

than encryption, with only a 125× speedup over software, taking

.65 ms for the (8192,3) CHOCO parameter selection. This decrease

in speedup is contributed to limited parallelism because decryption

operates on only a single polynomial at this parameter selection.

4.7 CKKS Support

Leveraging the underlying similarities in both encryption schemes,

most importantly the RNS polynomial representation of cipher-

texts, the BFV hardware presented in Figure 6 can be modified to

support CKKS encryption and decryption as well. Namely, the same

hardware modules are utilized in both schemes, but for CKKS an

additional datapath has to be added to route intermediate results

through the modules in a different order.

Software profiling of the CKKS functions reveals that 59% of

CKKS encoding and 46% of decoding are NTT and INTT operations,

respectively. These portions can also be accelerated via the existing

hardware. The remaining portions of CKKS encoding and decoding

require processing of complex conjugates. We leave these parts

un-accelerated in software.

Overall, 95% (56%) of CKKS encrypt & encode (decrypt & decode)

execution time is supported by the previously presented hardware

with an additional datapath. For these portions we assume speedups

proportional to those witnessed for BFV. Using this methodology,

we find that hardware support for CKKS reduces encrypt & encode

time by 18× from 310 ms to 18 ms and decrypt & decode by 2.3×

from 37 ms to 16 ms over our IMX6 client baseline. Additional

speedup could be expected if additional modules were incorporated

to cover the CKKS operations in their entirety.

5 EVALUATION

We evaluate CHOCO, comparing directly to priorwork and showing

substantial benefits from architectural acceleration and algorithmic

improvements. The main result is that CHOCO reduces communi-

cation costs by up to three orders of magnitude over state-of-the-art

privacy-preserving computation solutions. CHOCO-TACOprovides

an additional 28.6× speedup for client compute over limited client-

side support in existing FPGA solutions [46, 59]. The benefits apply

to both BFV and CKKS and a variety of applications. We ultimately

show that CHOCO’s client-focused optimizations, largely neglected

by prior work, provide significant end-to-end benefits.

5.1 Applications

We fully developed several client-aided encrypted computing appli-

cations. We built four neural networks in BFV that are comparable

to or larger than encrypted DNNs from prior work [8, 20, 22, 36]. Us-

ing CKKS, we implemented distance-based algorithms Ð K-Nearest

Neighbors (KNN) and K-Means clustering Ð and PageRank. We are

aware of no prior implementation of the latter applications, and we

developed several algorithmic variants to study their efficiency.

Deep Neural Networks. We implemented four image classifica-

tion DNN inference models in BFV, which we list in Table 5. Consis-

tent with existing literature , the LeNet variants operate on MNIST

data [40], and the other, larger networks classify CIFAR-10 im-

ages [38]. We trained the DNNs on unencrypted data using standard

quantization-aware training in Tensorflow 2.2.0 [1]. Each experi-

ment utilizes client-aided HE to run inference on a single image. All

linear layers are performed over encrypted data on the server using

HE, while the client computes all non-linear operations locally on

plaintext data. Encrypted intermediate results are communicated

at layer boundaries. As mentioned in Section 2.1, this client-aided

implementation allows for unmodified networks with unbounded

depth that would normally be prohibited in a server-only encrypted

inference implementation.

Table 5: Neural Networks used for system evaluation

Network # Layers MACs % Acc. Mod. Sz. (MB) Comm.

Cnv FC Act Pl (×106) Float 8b 4b Float 4b (MB)

LeNetSm[24] 2 1 2 2 0.24 99.0 94.9 93.8 0.02 0.01 0.66

LeNetLg [69] 2 2 3 2 12.27 98.7 97.2 96.4 8.22 2.07 2.6

SqzNet [17] 10 0 10 3 32.60 76.5 74.0 15.0 0.57 0.16 13.8

VGG16 [42] 13 2 14 5 313.26 70.0 66.0 21.0 56.40 14.13 22.2

PageRank. We implemented encrypted PageRank algorithms in

both BFV and CKKS. Exploiting similarities in ciphertext construc-

tion, this demonstrates the generality of encrypted algorithms to

both schemes. The PageRank algorithm relies completely on linear

algebra operations that can run entirely in encrypted space. For

continuous encrypted operation, we use alternating sparse and

dense dot-product representations from LoLa [8]. In addition to

continuous encrypted execution, we also consider a client-aided

version of the algorithm in which the client periodically decrypts

and re-encrypts ciphertexts to refresh their noise budget.

Distance-based Algorithms. We implemented K-Nearest Neigh-

bors (KNN) and K-Means clustering, both using encrypted distance

calculations in CKKS. We modify their Euclidean distance kernel

to use a simple summation of squared differences, eliminating the

square root and enabling offloaded calculation on an HE server.

The client handles only classification data and newly collected (e.g.
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These data provide two main benefits in interpreting CHOCO.

First, the data show that a quick analytical comparison of com-

putation (MACs) versus communication (MBs) per layer helps an

application designer decide if their DNN application will see an

energy benefit in the CHOCO client-aided model. Second, the data

point to an opportunity for future work, optimizing DNN structure

to maximize compute per communication for the CHOCO model.

6 RELATED WORK

Several classes of work relate to CHOCO: low-power ML, HE hard-

ware, hardware security, and privacy-preserving ML.

Privacy Preserving DNN Inference.ML offloading requires data

privacy. Recent work optimized server-centric metrics, including

usability [20, 22], training [48], throughput (via batching) [6, 22, 32],

latency (via packing) [8, 20, 36, 61], network complexity [6, 36, 41],

performance [59, 63, 70], and model privacy [2, 11, 36, 41, 47, 55, 60].

Unlike prior work that focused on the server, to the best of our

knowledge, CHOCO is the first work optimizing for resource-

constrained client devices in client-aided HE. Client-aided HE is

quickly favorable over complete HE offload because it can circum-

vent fundamental depth and operation limitations of HE without

employing expensive bootstrapping operations. Furthermore, as

shown in Sections 5.3 and 5.6, frequent communication of smaller ci-

phertexts results in substantially less communication overall while

gaining the crucial ability to pack and repack ciphertext vectors for

efficient encrypted computation.

HE Hardware Support. Some prior work used hardware to accel-

erate kernels for lattice-based cryptography schemes [21, 44, 57, 62],

including current state-of-art HE schemes [7, 13, 23, 26]. Others

accelerate HE directly [37, 46, 55, 59, 64, 70], focusing primarily

on hardware NTT and server-side operations. As we show in Fig-

ure 2, NTT acceleration helps but is insufficient. Our work is the

first to comprehensively optimize client-side HE cryptographic prim-

itives, which is crucial in client-aided HE. Furthermore, unlike

prior work targeting large, high-power GPUs [3, 18, 54] and FPGAs

[46, 59, 63, 70], CHOCO-TACO empirically optimizes for a small

ASIC implementation, directly addressing the need for low-power,

energy-efficient operation at the client device.

Hardware Security. Recent architectures offer privacy-preserving

offloaded computation. Data privacy techniques include Trusted

Execution Environments (TEEs) [34, 51, 68], as well as memory

access control and obfuscation [33, 56, 65, 67]. While these prior

techniques are vulnerable to side channel attacks, HE is not. Data

remain provably hidden while offloaded. HE is favorable thanks

to its strong, proven privacy guarantee. Moreover, client-aided HE

welcomes interactions between the client and server, e.g. to provide

proprietary services, that are not allowed by TEEs.

Low-PowerMLAcceleration.Client DNN inference performance

is improving through software [1, 52] and hardware optimiza-

tion [12, 30]. One alternative to HE for private inference is to sim-

ply outfit IoT devices with ML acceleration and compute locally.

However, as we argue in Section 2, local compute imposes tight

resource limits and requires maintaining (i.e., updating) models

on a potentially very large number of client devices, rather than

an offload server’s centralized model. In contrast, CHOCO targets

encrypted offload of ML (and other) computations, imposing few
restrictions on centrally managed models. Furthermore, CHOCO’s

support straightforwardly generalizes beyond ML: outfitting a de-

vice with a HE cryptographic acclerator, rather than specialized

DNN hardware, enables participating in any client-aided, encrypted

computation, not only ML. Encrypted applications research is an

emerging area [5, 9, 29, 31, 48, 71, 72]; CHOCO-TACO benefits

existing and future applications.

7 CONCLUSION AND FUTUREWORK

CHOCO is a client-optimized system for collaborative encrypted

compute offloading. We showed that minimizing client costs re-

quires newHE algorithms (rotational redundancy) and client-friendly

selection of HE parameters. Owing to the ability to use smaller ci-

phertexts, CHOCO reduces communication costs Ð a dominant

end-to-end cost Ð by three orders of magnitude over existing client-

aided privacy-preserving schemes. The pivot to client-focus puts

encryption and decryption on the critical path, necessitating our

CHOCO-TACO hardware accelerator for HE encryption primitives

beyond the partial hardware support of prior work. Compared to

software, CHOCO-TACO’s hardware yields 417× speedup and a

603× energy savings for encryption. CHOCO enabled development

of several full-scale, real-world DNN inference applications, as well

as several new HE applications Ð KNN, KMeans, and PageRank Ð

that have not been explored in the literature previously. CHOCO’s

support for client-aided HE thus makes possible efficient new appli-

cations of encrypted offload computing and enables participation

from IoT clients.

Future Work. The future is bright for encrypted computing as

system support matures. While FHE was once many orders of

magnitude too slow to be practical [26], the performance gap has

narrowed to the point of practicality with new work on hardware

acceleration, such as F1 [64] (which was concurrent with our work).

Moving forward, our community is likely to see improvements on

many fronts. Client-aided HE, as CHOCO enables, evades many

downfalls of complete vector HE offload (e.g. expensive bootstrap-

ping, operation limitations, and fragmented vector packing) and

makes possible the participation of edge devices in encrypted com-

puting. Partitioning encrypted workloads between client and server

andmanaging communication of encrypted data remains a key com-

pilers, software, architecture, and networks challenge for future

systems. New schemes lead to new applications by eliminating the

cost of bootstrapping [14, 73] and enabling more complex oper-

ations [15, 27], but new schemes require new hardware support

and a restructuring of applications to fit these schemes. Hardware

for existing operations is likely to continue to improve in energy,

performance, and scale. Together, these changes mark an exciting

shift toward the practical utility of encrypted computing.
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