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Abstract

Energy decomposition analysis (EDA) is a useful tool for obtaining chemically meaningful

insights into molecular interactions. The extended transition state method with natural

orbitals for chemical valence (ETS-NOCV) and the absolutely localized molecular orbital

based method with complementary occupied-virtual pairs (ALMO-COVP) are two successful

EDA schemes. Working within ground state generalized Kohn-Sham density functional

theory (DFT), we extend these methods to do EDA between any two electronic states that

can be connected by a unitary transformation of density matrices. A direct proof that the

NOCV eigenvalues are symmetric pairs is given, and we also prove that the charge and energy

difference defined by ALMO is invariant under certain orbital rotations, allowing us to define

COVPs. We point out that ETS is actually a 1-point quadrature to obtain the effective Fock
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matrix, and though it is reasonably accurate, it can be systematically further improved

by adding more quadrature points. We explain why the calculated amount of transferred

charge measured by ALMO-COVP is typically much smaller than that of ETS-NOCV, and

explain why the ALMO-COVP values should be preferred. While the two schemes are

independent, ETS-NOCV and ALMO-COVP in fact give a very similar chemical picture

for a variety of chemical interactions, including H – H+, the transition structure for the

Diels-Alder reaction between ethene and butadiene, and two hydrogen-bonded complexes,

H2O · · ·F−, and H2O · · ·HF.

1 Introduction

Modern quantum chemistry methods are able to predict binding energies of most intermolec-

ular interactions to a high level of accuracy;1 however, binding energy alone does not reveal

much detail about the physical origin of a given intermolecular interaction.2 In order to ob-

tain more chemical insights about intermolecular interactions, various energy decomposition

analysis (EDA)3–6 schemes were devised to further break the binding energies into physically

intuitive terms, such as electrostatics, dispersion, polarization, and charge transfer. Unfor-

tunately, due to the lack of associated observables, the resulting decompositions of energy

cannot be uniquely defined in the overlapping region, though a well-designed EDA should be

able to demonstrate the asymptotic behaviors of these terms in the long-range interaction

limit. Links to observables are also possible by differentiating intermediate energies.7,8

Mean-field theories based on self-consistent field (SCF) calculations, such as Hartree-

Fock (HF) and density functional theory (DFT), are among the most economical quantum

chemistry methods. With the development of modern density functionals, DFT calculations

are also capable of yielding accurate results for intermolecular interactions. 1 Accordingly,

many useful EDA schemes have been developed based on mean-field theories. The sem-

inal Kitaura-Morokuma EDA (KM-EDA)9–11 decomposes the HF interaction energy into
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electrostatic, Pauli repulsion, polarization and charge transfer contributions. The widely

used extended transition state method combined with natural orbitals for chemical valence

theory (ETS-NOCV)12–14 decomposes the DFT interaction energy into electrostatics, Pauli

repulsion, and orbital interaction terms.

An important improvement to the KM-EDA for HF and DFT calculation is the varia-

tional treatment of polarization, where the polarized state is obtained by minimizing energy

of the super-system without breaking the fragment block-diagonal structure of the molec-

ular orbital (MO) coefficient matrix through self-consistent field for molecular interaction

(SCF-MI) calculations.15,16 The resulting absolutely localized MOs (ALMOs)17 are used in

the block-localized wavefunction EDA (BLW-EDA)18–20 and ALMO-EDA,21–24 both of which

break the interaction energy into frozen (FRZ), polarization (POL) and charge transfer (CT)

terms. The frozen energy is the energy change from the isolated fragments with their MOs

separately optimized to the frozen state which is obtained by a direct antisymmetrization

of the fragment wavefunctions. The polarization energy is associated with the relaxation

of each fragment’s MOs in the presence of other fragments, and the charge transfer energy

is the energy decrease due to interfragment orbital mixing. However, in the large basis

limit, MOs on different fragments may have considerable overlap, and this will introduce

CT contamination into the polarized state. The second generation of ALMO-EDA fixed this

problem by keeping only the fragment electric response functions (FERFs)25 in the virtual

space during the SCF-MI calculation. Since the FERFs describe in the most compact way

the orbital response to electric field components, a useful polarized state can be obtained

even at the complete basis set limit.

The NOCV component26 27 28 of the ETS-NOCV EDA diagonalizes the difference density

matrix between the FRZ and CT states, which yields a set of orbital pairs that correspond

to the electron density removed from the initial state and rearranged in the final state, with

corresponding eigenvalues giving the numbers of electrons rearranged in each “transition”. In

favorable cases only one or two eigenvalues are significantly non-zero, and therefore an orbital
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picture can be associated with the density changes associated with the ETS-NOCV EDA.

This facilitates chemical interpretation. In a related way, the electron density rearrangement

associated with CT in the ALMO-EDA can be given an orbital interpretation using the

complementary occupied-virtual pairs (COVP) analysis.29,30 COVP analysis singular value

decomposes the generator of the unitary transformation associated with CT, leading to a

set of singular values, and one occupied orbital for each singular value. In favorable cases,

only one or two singular values are significant, which facilitates an easy-to-visualize orbital

picture of the donor and acceptor orbitals that play the most important roles in charge

transfer. Thus both NOCV-EDA and the COVP analysis in ALMO-EDA are successful in

explaining CT effects on intermolecular interactions such as dative bonding30 and transition

metal complexes,26 and even give us some insights about chemical reactions.31 Yet to date,

there has been no effort to develop connections between these two methods of analysis; that

is our purpose in this work.

Specifically, we try to elaborate the connections between the orbital interaction energy of

ETS-NOCV EDA and the polarization and charge transfer energy of ALMO-COVP EDA,

which both describes the energy decrease obtained from relaxing the super-system from the

directly antisymmetrized frozen state (FRZ) to the fully relaxed charge transfer state (CT).

We will show that the orbital interaction energy of ETS-NOCV EDA can be decomposed into

the same POL and CT terms as those in ALMO-COVP EDA by using the same intermediate

polarized state. We note that this further decomposition of the orbital interaction of ETS-

NOCV EDA has been done before by inserting the polarized state obtained from an SCFMI

calculation.32 However, inclusion of the whole virtual space during SCFMI results in a CT

contaminated polarized state as the complete basis set limit is approached.33–35 This can be

resolved by keeping only the FERFs in the virtual space to achieve a polarized state with a

useful basis set limit.25 Another issue to be discussed is the question of how well that ETS-

NOCV EDA and the COVP approach measure the amount of charge transferred – which

is an important and sometimes controversial question.35,36 ETS-NOCV EDA is well known
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to overestimate the amount of transferred charge compared with other EDA schemes. 37 We

will reveal the (significant) extent of the discrepancy in charge transfer obtained from these

two EDA schemes by working out their exact mathematical expressions separately, and then

provide an interpretation of this difference. The next part of our analysis establishes that the

NOCV and COVP orbitals themselves are actually closely related: both are valid approaches

that in fact provide very similar chemical interpretation as well as energy decomposition.

This paper is organized as follows. We first provide theories of a generalized ETS-NOCV

method and ALMO-COVP method that can do energy decomposition between any two

electronic states that can be represented as single determinants (i.e. generalized Kohn-Sham

theory), and present the energy and charge decomposition expressions respectively. Then the

simple example of H+
2 is used to explain the charge transfer discrepancies obtained from these

two EDA schemes. Finally, we present results for a Diels-Alder reaction and two hydrogen-

bonding systems to illustrate the similar chemical interpretations provided by both EDA

schemes.

2 Theory

2.1 Notation

We adopt the following notation in the subsequent derivations. Latin letters x, y, z are used

to denote fragments, letters i, j, k are used to label occupied molecular orbitals, letters a, b, c

are used to label virtual molecular orbitals, letters r, s, t are used to label general molecular

orbitals, and Greek letters α, β, γ are used to label atomic orbitals. We denote molecular

orbitals as |ψ⟩ and atomic orbitals as |ϕ⟩. o and v refer to the total number of occupied

and virtual MOs, respectively, while n refers to the total number of MOs. The AO overlap

matrix is defined as Sαβ = ⟨ϕα|ϕβ⟩, the MO overlap matrix is defined as σrs = ⟨ψr|ψs⟩, and

the occupied MO overlap matrix is defined as (σo)xi,yj = ⟨ψxi|ψyj⟩. Since the ALMOs from

one fragment are not guaranteed to be orthogonal to those from another fragment, we also
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need the biorthogonal ALMO basis functions,38 which are denoted with a superscript

|ψxr⟩ =
n∑
ys

(σ−1)ys,xr|ψys⟩; (1)

Similarly, the projector onto the occupied subspace can be written as

R̂ =
o∑
xi

|ψxi⟩⟨ψxi| =
o∑

xi,yj

|ψxi⟩(σ−1
o )yj,xi⟨ψyj|. (2)

The virtual space projector Q̂ can be constructed from projected virtual orbitals |ψ̃xa⟩ =

(1̂− R̂)|ψxa⟩:

Q̂ = 1̂− R̂ =
v∑
xa

|ψ̃xa⟩⟨ψ̃xa| =
v∑

xa,yb

|ψ̃xa⟩(σ̃−1
v )yb,xa⟨ψ̃yb| (3)

with (σ̃v)xa,yb = ⟨ψ̃xa|ψ̃yb⟩. For simplicity, we use |ψxa⟩ to denote the projected virtual

orbitals |ψ̃xa⟩ from now on. We used real orbitals in this paper, but the generalization to

complex orbitals can be similarly derived.

2.2 Construction of NOCVs and the associated ETS-NOCV EDA

The NOCV14 orbitals, |φi⟩, are defined as the eigenvectors of the difference of density oper-

ators between an initial state i and a final state f , which satisfies

∆P̂ |φi⟩ = (P̂f − P̂i)|φi⟩ = λi|φi⟩ (4)

where P̂i and P̂f are the initial and final density operators, and λi is the corresponding

eigenvalue. Since the two states have the same number of electrons, we immediately get

Tr
{
∆P̂

}
= 0, and it turns out the eigenvalues of NOCVs always come out as symmetric

pairs ±λi or 0.39 Here we present a new proof of the above property by representing ∆P̂ in

an orthonormal basis and directly working out the eigenvalue by performing Singular Value

Decomposition (SVD) to simplify the matrix form, which will also reveal a deeper connection
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between the ETS-NOCV EDA and the ALMO-COVP EDA.

We will work in an orthonormal eigen-basis of P̂i so that the matrix representation of P̂i

is

Pi =

I 0

0 0

 , (5)

where I is an identity matrix of dimension o× o and the diagonal 0 matrix is of dimension

v × v. Pf can be constructed from a unitary transformation of Pi as

Pf = exp{X}Pi exp{−X} (6)

When Pi and Pf are derived from single determinants, X can be parameterized by the o× v

rectangular generator matrix Xov

X =

 0 Xov

−XT
ov 0

 . (7)

exp{X} is then explicitly given as40,41

exp{X} =

 cosZ1/2 Z−1/2 sinZ1/2Xov

−XT
ovZ

−1/2 sinZ1/2 cosY 1/2

 , (8)

where Z = XovX
T
ov and Y = XT

ovXov. Therefore, the explicit form of ∆P is

∆P =

 cosZ1/2 cosZ1/2 − I − cosZ1/2Z−1/2 sinZ1/2Xov

−XT
ovZ

−1/2 sinZ1/2 cosZ1/2 XT
ovZ

−1/2 sinZ1/2Z−1/2 sinZ1/2Xov

 . (9)

We will focus on the analysis for o < v, which is the most common case in real applica-

tions. Using the SVD of Xov, we have Xov = UΣV T , where U and V are two orthonormal

matrices of dimensions o× o and v× v, and Σ is a rectangular diagonal matrix of dimension
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o × v. This gives us Z = UΣΣTUT = UΣ′2UT , where Σ′ = diag(σ1, σ2, ..., σo). As a result,

Z1/2 = UΣ′UT . With the help of these matrices, we can further simplify ∆P as

∆P =

U 0

0 V


 − sin2 Σ′ − cosΣ′Σ′−1 sinΣ′Σ

−ΣTΣ′−1 sinΣ′ cosΣ′ ΣTΣ′−1 sinΣ′Σ′−1 sinΣ′Σ


UT 0

0 V T

 , (10)

and since Σ = (Σ′, 0), where 0 is of dimension o× (v − o),

∆P =

U 0

0 V




− sin2 Σ′ − cosΣ′ sinΣ′ 0

− sinΣ′ cosΣ′ sin2 Σ′ 0

0 0 0


UT 0

0 V T

 . (11)

It is now clear that we get at least v−o NOCVs with eigenvalue 0, while the non-zero eigen-

values can be obtained by diagonalizing the inner matrix, which is equivalent to diagonalizing

a set of 2 by 2 matrices of the structure

 − sin2 σi − cos σi sin σi

− sin σi cos σi sin2 σi

 . (12)

Notice that if sin σi = 0, the diagonalization of this sub-matrix still gives us NOCVs with

eigenvalue 0, so we assume sin σi ̸= 0 to get nontrivial NOCVs. Solving a simple quadratic

equation in terms of the eigenvalue λi gives us λi = ± sin σi, and it is clear that there are at

most o such pairs.

For the other case where o ≥ v, we can do the thin SVD of Xov, so that Xov = UΣ′V T ,

where U is a matrix of dimension o×v with orthonormal columns, V is an orthonormal matrix

of dimension v × v, and Σ
′
is a diagonal v × v matrix. Then, all the further derivations are

the same except no 0 blocks appear as in the inner matrix of Eqn.(11), and therefore we get

at most v pairs of NOCVs.

In summary, for a system state with o occupied orbitals and v virtual orbitals, there will
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be at most min(o, v) pairs of NOCVs with non-zero eigenvalue ± sin σi, where σi are the

singular values of the generator Xov. Since we assumed nothing more than an orthonormal

basis of Pi, this conclusion should hold for any SCF calculation, as long as Pf is obtainable

from a unitary transformation of Pi.

As a result, we can decompose the difference between two density operators as

∆P̂ =
o∑
i

λi (|φi⟩⟨φi| − |φ−i⟩⟨φ−i|), (13)

where |φi⟩ and |φ−i⟩ are NOCVs with paired positive and negative eigenvalues, and in the

summation we only sum over the positive eigenvalues. Thus, the density change associated

with each NOCV pair is ∆ρ(r⃗)i = λi (|φi(r⃗)|2 − |φ−i(r⃗)|2), which can provide a visualization

of the density rearrangement. Since we already have the eigenvalues of ∆P , Eqn.(11) gives

us

|φ±i⟩ =

U 0

0 V

 |v±i⟩, (14)

where |v±i⟩ is represented by vector (0, ..., 1, ..., 0, 0, ..., (− sin σi ∓ 1)/ cos σi, ..., 0), with the

only two non-zero elements at the ith and (o+ i)th position. We can then directly calculate

the occupation number of each NOCV in the initial and final state as

n
(i)
±i =

⟨φ±i|P̂i|φ±i⟩
⟨φ±i|φ±i⟩

=
1

2
(1∓ λi), (15)

n
(f)
±i =

⟨φ±i|P̂f |φ±i⟩
⟨φ±i|φ±i⟩

=
1

2
(1± λi). (16)

The interpretation of the occupation numbers is that from the initial state to the final state,

λi electrons are transferred from the anti-bonding |φ−i⟩ to the bonding |φi⟩, as was pointed

out in reference.26 Therefore, the total amount of charge transfer can be defined as

∆Q =
o∑
i

λi =
o∑
i

sin σi. (17)
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In order to decompose the energy, we parametrize energy as E(P (λ)) = E(Pi + λ∆P ).

Clearly, E(λ = 0) = Ei, E(λ = 1) = Ef . So

∆E =

∫ 1

0

∂E

∂λ
dλ (18)

=

∫ 1

0

n∑
αβ

∂E

∂Pαβ

∂Pαβ

∂λ
dλ

=
n∑
αβ

(∫ 1

0

F (λ)αβdλ

)
∆Pαβ

= Tr
{
F eff∆P

}
= Tr

{
F̂ eff∆P̂

}
,

where F̂ eff is an effective fock operator. By insertion of the decomposition of ∆P̂ , we get

∆E =
o∑
i

λi

(
⟨φi|F̂ eff|φi⟩ − ⟨φ−i|F̂ eff|φ−i⟩

)
=

o∑
i

∆Ei, (19)

where

∆Ei = λi

(
⟨φi|F̂ eff|φi⟩ − ⟨φ−i|F̂ eff|φ−i⟩

)
= λi

n∑
αβ

(
CT

iαF
eff
αβCβi − CT

−i,αF
eff
αβCβ,−i

)
(20)

is the energy associated with the ith NOCV pair, where C is the MO coefficient matrix

of the NOCVs and F eff
αβ is the matrix representation of F̂ eff in the AO basis. The crucial

step of the NOCV EDA is then to evaluate the effective fock matrix accurately. In a naive

way, we can use one quadrature point to approximate the integral of Eq.(18), which gives

us F eff = F (λ = 1
2
) × 1 = F (1

2
Pi +

1
2
Pf ) ≈ 1

2
(F (Pi) + F (Pf )). This formula is exact for

Hartree-Fock calculation, whose fock matrix is a linear function of density matrix and is

also called the “transition state” fock matrix used in the ETS-NOCV analysis.14 Though

our calculations on some example systems show that this 1-quadrature approximation is

usually accurate up to 0.1 kJ/mol, the NOCV energy decomposition can be systematically
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improved by approximating the integral with more quadrature points if this 1-quadrature

approximation fails.

2.3 Construction of COVPs and the Associated EDA

In ALMO based EDA with COVP analysis, we define the total amount of charge transferred

from the initial state to the final state as

∆Q = Tr
{
R̂i

}
− Tr

{
R̂iR̂f

}
= Tr

{
R̂iQ̂f

}
= Tr

{
R̂fQ̂i

}
, (21)

which can be shown30 to be the same as 2Tr
{
R̂eff

voX̂ov

}
, where X̂ov is the generator of

the unitary transformation that connects the initial and final density operators, and R̂eff
vo

is an effective density operator with matrix elements (Reff
vo)ai = −

∫ 1

0
R(λX)ai dλ in the

orthonormal MO basis. By insertion of the projector into occupied and virtual space, we

can break down the transferred charge into pairwise additive terms

∆Q = 2Tr
{
R̂R̂eff

voQ̂X̂ov

}
=

Nfrgm∑
xy

ox∑
i

vy∑
a

2Tr
{
|ψya⟩⟨ψya|R̂eff

vo|ψxi⟩⟨ψxi|X̂ov

}
=

∑
xy

∆Qx→y

(22)

with ∆Qx→y = 2
∑

ia⟨ψya|R̂eff
vo|ψxi⟩⟨ψxi|X̂ov|ψya⟩ the amount of charge transferred from frag-

ment x to fragment y.

We can work out ∆Q explicitly using the same matrix representations as we used in the last

subsection, which gives

∆Q = Tr
{
I − cosZ1/2 cosZ1/2

}
= Tr

{
U (I − cosΣ′ cosΣ′)UT

}
=

o∑
i

sin2 σi, (23)

where σi are the singular values of Xov. It is apparent that the amount of charge transfer

defined in the COVP analysis will be generally smaller than that obtained in the NOCV

analysis by directly comparing the explicit forms, this result is due to different definitions of

charge transfer in the two EDA schemes, and the interpretation of this discrepancy will be
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discussed in details later.

The energy in non-perturbative ALMO-COVP EDA is parameterized as E(X
′
(λ)), with

X
′
= λX and X is that defined in Eq.(5). In this parameterization, E(λ = 0) = Ei,

E(λ = 1) = Ef . So

∆E =

∫ 1

0

∂E

∂λ
dλ (24)

=

∫ 1

0

∑
ia

(
∂E

∂X
′
ia

Xia

)
dλ

= 2Tr
{
F eff
voXov

}
= 2Tr

{
F̂ eff
vo X̂ov

}
,

where

(F eff
vo )ai =

1

2

∫ 1

0

∂E

∂X
′
ia

dλ (25)

and the explicit form for the evaluation of F eff
vo can be found in previous works.30 Using a

similar manipulation as we did to the transferred charge, we can break ∆E into pairwise

additive terms, and the energy transfer from fragment x to fragment y is

∆Ex→y = 2
∑
ia

⟨ψya|F̂ eff
vo |ψxi⟩⟨ψxi|X̂ov|ψya⟩. (26)

In order to get the COVPs, we need a property that ∆Qx→y and ∆Ex→y is unchanged under

rotation of the occupied orbitals in fragment x and virtual orbitals in fragment y, which was

stated before29 but lacks a rigorous proof. This can be proved by directly evaluating the

overlap matrix of rotated orbitals, and we will only show the proof for the occupied orbitals,

since the proof for the virtual orbitals are similar. Consider an unitary matrix that rotates
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the occupied orbitals {|ψxi⟩} of fragment x into {|ψ′
xi⟩}

|ψ′

xi⟩ =
ox∑
xj

U
(x)
xj,xi|ψxj⟩, (27)

|ψ′

zi⟩ = |ψzi⟩, (28)

where {|ψzi⟩}, which denotes the occupied orbitals of other fragments, are left unchanged.

Therefore, the overlap matrix of the rotated occupied orbitals is

σ
′

o =

U (x)T (σo)xxU
(x) U (x)T (σo)xz

(σo)zxU
(x) (σo)zz

 =

U (x)T 0

0 I


(σo)xx (σo)xz

(σo)zx (σo)zz


U (x) 0

0 I

 , (29)

and it is apparent that its inverse matrix is

(σ
′

o)
−1 =

U (x)T 0

0 I


(σ−1

o )xx (σ−1
o )xz

(σ−1
o )zx (σ−1

o )zz


U (x) 0

0 I

 =

U (x)T (σ−1
o )xxU

(x) U (x)T (σ−1
o )xz

(σ−1
o )zxU

(x) (σ−1
o )zz

 .

(30)

Therefore, the biorthogonal MOs of occupied orbitals located in fragment x is

|ψ′xi⟩ =
o∑
zj

(σ
′
)−1
zj,xi|ψ

′

zj⟩ =
ox∑
xj

[
UT (σ−1

o )xxU
]
xj,xi

|ψ′

xj⟩+
o∑

zj /∈x

[
(σ−1

o )zxU
]
zj,xi

|ψ′

zj⟩ (31)

=
ox∑

xj,xk

[
UT (σ−1

o )xxU
]
xj,xi

Uxk,xj|ψxk⟩+
o∑

zj /∈x

[
(σ−1

o )zxU
]
zj,xi

|ψzj⟩

(32)

=
ox∑
xk

[
(σ−1

o )xxU
]
xk,xi

|ψxk⟩+
o∑

zj /∈x

[
(σ−1

o )zxU
]
zj,xi

|ψzj⟩ (33)

=
ox∑
xj

Uxj,xi|ψxj⟩, (34)
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and then it is obvious that
∑ox

xi |ψ
′
xi⟩⟨ψ

′xi| =
∑ox

xi |ψxi⟩⟨ψxi|, and a similar derivation gives∑vy
ya |ψ

′
ya⟩⟨ψ

′ya| =
∑vy

ya |ψya⟩⟨ψya| for virtual orbitals of fragment y. As a result,

∆Ex→y = 2
∑
ia

⟨ψ′ya|F̂ eff
vo |ψ

′

xi⟩⟨ψ
′xi|X̂ov|ψ

′

ya⟩, (35)

∆Qx→y = 2
∑
ia

⟨ψ′ya|R̂eff
vo|ψ

′

xi⟩⟨ψ
′xi|X̂ov|ψ

′

ya⟩. (36)

If we transform the occupied space and virtual space using the left and right orthonor-

mal matrices in the singular value decomposition of ⟨ψxi|X̂ov|ψya⟩, X̂ov will be represented

by a rectangular diagonal matrix with only min{ox, vy} non-zero entries under the basis

{|ψ′xi⟩} and {|ψ′
ya⟩}. The min{ox, vy} pairs of the corresponding occupied and virtual or-

bitals {|ψ′
xi⟩} and {|ψ′

ya⟩} obtained in this way are called the complementary occupied-virtual

pairs (COVPs), and they give the most compact description of the energy and charge trans-

fer between the two fragments x and y. COVPs for other fragment pairs can be evaluated

using similar method.

3 Computational Details

We separate the relaxation process from the directly antisymmetrized frozen state (FRZ) to

the fully relaxed charge transfer state (CT) into two partial relaxations: (i) the polarization

(POL) step and (ii) the charge transfer (CT) process. This is accomplished by inserting

a polarization state (POL) into the path, which is obtained by performing self-consistent

field for molecular interactions (SCF-MI)15–17,22 calculations. The POL step is a constrained

relaxation of each fragment in the presence of other fragments by mixing its occupied orbitals

with only its own virtual orbitals.

The advantage of introducing this POL state is to better understand the response of

the electron density of each fragment when the fragment is introduced into the environ-

ment of other fragments,25 separate from permitting CT between fragments. This response
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should contain at least electrical polarization and associated relaxation of Pauli repulsions.

Introducing the POL state thus avoids “fragment self electron donation” during the charge

transfer process. One could also introduce additional intermediate states (for instance sep-

arating components of CT such as forward and back donation8) since the theory presented

above does not prevent us from doing so, although any such intermediate states should be

physically meaningful to help us understand the interaction process.

In this article, we will study the POL and CT processes; for each process, both the

ALMO-COVP EDA and ETS-NOCV EDA were performed. Only dipole and quadruple

FERFs (DQ-FERFs)23,25 were included in the virtual space of the SCF-MI calculation to

get a well-defined POL state. By contrast, the total virtual space was used in the SCF

calculation to get the fully relaxed CT state.

The calculations were performed in a development version of Q-Chem 5.4.42 The ωB97X-

D functional43 with the def2-TZVPD basis set44,45 were used for geometry optimization and

vibrational mode analysis. The ωB97X-D functional with the aug-cc-pVTZ basis set46–48

were used for the energy decomposition analysis unless otherwise specified. Geometries of

H2O − F− and HF − H2O complexes were confirmed to be local minima on the potential

energy surface by showing that the Hessian matrix has no negative eigenvalues, and the

geometry of the butadiene-ethene complex was confirmed to be a transition structure by

showing that the Hessian matrix has exactly one negative eigenvalue.

Unless otherwise specified, all the COVPs and NOCVs were plotted with an isosurface

value of ±0.07 a.u. (blue for the positive isosurface and red for the negative isosurface).

All the NOCV density difference plots were plotted with an isosurface value of ±0.0005 a.u.

(blue for the positive isosurface and red for the negative isosurface), and all the molecular

figures were plotted using IQmol, the graphical user interface for Q-Chem. The occupied

and virtual COVPs were plotted in solid and wire-frame style respectively. The NOCVs with

positive and negative eigenvalues were plotted in solid and wire-frame style respectively, and

the NOCV density differences were plotted in wire-frame style. All plots were generated
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using Matplotlib.49

4 Results and Discussion

4.1 H+
2 Molecular Ion

We first consider the simple H+
2 cation to better understand the similarities and differences

between the ALMO based COVP EDA and the ETS-NOCV EDA. The calculations were

performed at the Hartree-Fock level of theory, which is exact for this one-electron problem,

and the two fragments considered are a proton and a single hydrogen atom. Based on

this choice, we expect important energetic contributions from both polarization and charge

transfer at short range to form the 1-electron chemical bond, while at long range, both

contributions eventually decay to zero.

Fig. 1 shows the energy decrease in the polarization and the charge transfer process

obtained from ALMO-COVP EDA, ETS-NOCV EDA, and direct subtraction between final

and initial state energies as we increase the distance r between the proton and hydrogen

atom. For each point, the energy decrease calculated using these three methods agree with

each other with errors less than 10−5 kJ/mol, which demonstrates the equivalence of these

two EDA schemes. This high precision was achieved since we used 5 quadrature points

to approximate the ALMO-COVP EDA effective Fock matrix shown in Eq. 25, while the

ETS-NOCV EDA is exact for the Hartree-Fock method as pointed out before. In addition,

the POL and CT energy decreases both demonstrate the correct asymptotic behavior of

approaching zero as the distance, r between H and H+ increases.
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(a) POL ∆E (b) CT ∆E

Figure 1: (a) Energy decrease in the polarization process obtained from ALMO-COVP
EDA (red line) with Eq. 24, ETS-NOCV EDA (blue line) with Eq. 18, and direct energy
subtraction between the POL state and FRZ state as a function of distance between H and
H+. (b) Energy decrease in the charge transfer process obtained from ALMO-COVP EDA
(red line), ETS-NOCV EDA (blue line), and direct energy subtraction between the CT state
and POL state as a function of distance between H and H+.

The amount of transferred charge obtained from these two EDA schemes apparently do

not agree with each other, and the transferred charge calculated in ALMO-COVP EDA is

much less than that obtained from ETS-NOCV EDA. From the exact expressions for the

amount of transferred charge in Eqs. 17 and 23 and taking into account the fact that only

one occupied orbital exists in H+
2 , we immediately reach the conclusion that the amount

of transferred charge calculated using ETS-NOCV EDA is exactly the square root of that

obtained from ALMO-COVP EDA. This is directly confirmed from the plots shown in Fig.2.

17



(a) POL ∆Q (b) CT ∆Q

Figure 2: (a) Amount of transferred charge in the polarization process obtained from ALMO-
COVP EDA (red line) and ETS-NOCV EDA (blue line) as a function of distance between
H and H+. (b) Amount of transferred charge in the charge transfer process obtained from
ALMO-COVP EDA (red line) and ETS-NOCV EDA (blue line) as a function of distance
between H and H+.

To better understand the discrepancies of transferred charge of these two EDA schemes,

we take a further look at r = 4.5 a.u., where the proton and hydrogen atom are far enough

from each other so that the polarization process is localized at the hydrogen atom, but the

two particles are still weakly bound. The energy decrease in the polarization process is -1.18

kJ/mol, while it is -3.37 kJ/mol in the charge transfer process. The amount of transferred

charge is 1.06 me− for the polarization process and 495.89 me− for the charge transfer process

as calculated from ALMO-COVP EDA, while for ETS-NOCV EDA, it is 32.53 me− for the

polarization process and 704.19 me− for the charge transfer process. In either EDA method,

the amount of transferred charge during the polarization process is much less than that of the

charge transfer process, as a result, we may approximate the amount of transferred charge in

the charge transfer process as the amount of transferred charge from the FRZ state to the CT

state. In the FRZ state, 1 electron is located at the hydrogen atom and 0 electron is found

at the proton, while in the fully relaxed CT state, 1 electron is symmetrically distributed in

the H−H σ bond, resulting in a net amount of 0.5 electron at each hydrogen nucleus. This

simple chemistry picture tells us that one would expect 0.5 electron being transferred from
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the hydrogen to the proton, and the amount of transferred charge calculated using ALMO-

COVP EDA agrees very well with this expectation, while ETS-NOCV evidently exaggerates

the amount of transferred charge. This example suggests that the ALMO-COVP CTA is

generally to be preferred over ETS-NOCV for estimates of the amount of transferred charge.

Figure 3: (a)NOCVs of H+
2 in the charge transfer process with (a1) positive and (a2) negative

eigenvalues. (b)NOCV density difference plot (with isosurface value of ±0.005) of H+
2 in the

charge transfer process.

An inspection of Fig.3 may help us understand why the ETS-NOCV EDA greatly over-

estimates the amount of transferred charge. Since the NOCVs are obtained by simply diag-

onalizing the difference of density matrices of POL and CT states, they can be delocalized

over the whole system, which is confirmed by Fig. 3(a). However, the amount of transferred

charge in ETS-NOCV EDA is defined as the number of electron moving from the NOCV

with negative eigenvalue to the NOCV with positive eigenvalue. Because of delocalization,

it is clear from Fig. 3(a) that this includes both electron moving from the hydrogen atom to

the proton and electron moving from the hydrogen atom to itself. The latter flow of electron

should not be counted towards the amount of charge transferred. However, the difference

density shown in Fig. 3(b) nicely exhibits the net flow of electrons from the hydrogen atom

to the proton. This demonstrates that density difference plots of paired NOCVs are a useful

qualitative tool to understand the net direction of electron flow associated with a specific

NOCV pair.

By contrast, in ALMO-COVP EDA, we treat the electrons in the common space of density

matrices of initial and final states as unmoved, and the amount of transferred charge is defined
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by the net flow of electrons, which is just the difference between the total number of electrons

and the number of “immobile” electrons. For the FRZ state, we have |ψFRZ⟩ = |1sH⟩, and for

the CT state, we roughly have
√
2|ψCT⟩ = |1sH⟩+ |1sH+⟩. Taking into account the fact that

⟨1sH+ |1sH⟩ ∼ 0 in the large rH−H+ limit and doing a simple calculation using our definition

of the amount of transferred charge, we get ∆Q = 0.5 e−, which agrees with the result of

the intuitive argument.

4.2 Transition Structure for Cycloaddition of 1,3-Butadiene and

Ethene

The interaction of 1,3-butadiene and ethene at their transition structure on the Diels-Alder

cycloaddition pathway to cyclohexene serves as a good example with large energy decrease

in the charge transfer process. The transition structure was calculated using the freezing

string method50 with the B3LYP51 52 functional and the 6-31G* basis,53,54 and the resulting

geometry was confirmed to be a transition structure. We then performed EDA calculations

at the B3LYP/aug-cc-pVTZ level of theory, where the two fragments were both treated as

spin singlet state, following the reactants’ perspective approach.31 The main EDA results are

summarized below in Table 1. It is apparent from Table 1 that both non-perturbative EDA

methods give decomposed energies that agree very precisely with the total energy differences,

confirming adequate quadrature accuracy with 5 points (COVP) and only 1 point (NOCV).

Table 1: Energies (in kJ/mol) and amounts of transferred charge (in me−) calculated using
ALMO-COVP EDA and ETS-NOCV EDA for the POL and CT processes.

EPOL − EFRZ ∆EPOL ∆QPOL ECT − EPOL ∆ECT ∆QCT

ALMO-COVP EDA -30.97 -30.97 28.44 -173.75 -173.75 268.90
ETS-NOCV EDA -30.97 -30.97 609.16 -173.75 -173.77 1339.18
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Table 2: Significant COVPs of the POL and CT processes, as well as their associated energy
decrease (in kJ/mol) and amounts of transferred charge (in me−), and the percentage they
contribute to the total energy decrease and amount of transferred charge for each process.

Pair Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 C4H6 C4H6 -12.31 39.74 10.74 37.76
2 C2H4 C2H4 -7.73 24.96 7.09 24.94
3 C4H6 C4H6 -5.81 18.75 8.41 29.59

(a) Significant COVPs of POL process

Pair Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

4 C2H4 C4H6 -84.71 48.75 154.75 57.55
5 C4H6 C2H4 -79.64 45.84 142.12 52.85

(b) Significant COVPs of CT process

By contrast, the amounts of transferred charge calculated with ETS-NOCV EDA are (ex-

cessively) larger than those obtained from ALMO-COVP EDA for each process, as expected

from theory and the explanation provided for the H+
2 example. An interesting observation

is that for the POL process, the discrepancy between the amount of transferred charge ob-

tained from these two EDA schemes is more severe than the case of CT process. This is

because the CT process is compactly described by two COVPs only, while the POL process

takes at least three COVPs to cover the total energy decrease. From Eqs. 17 and 23, the

more significant COVPs we have, the greater the exaggeration in the amount of transferred

charge we get using ETS-NOCV EDA versus ALMO-COVP EDA.
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Figure 4: Plots of significant COVPs of 1,3-butadiene and ethene in the POL and CT
processes. COVPs 1-3 describe polarization, while COVPs 4,5 describe CT. The occupied
orbital of each pair is shown as a solid surface, while the virtual orbital is meshed.

Examining the significant COVPs, shown in Fig. 4, can reveal the character of inter-

molecular interactions. Electrons move from each occupied orbital to the paired virtual

orbital. Thus electron density increases in regions where the phases of occupied orbitals

and virtual orbitals match, while the electron density decreases in regions where the phases

have opposite signs. Based on this interpretation, COVP 1 shows polarization of the HOMO

electrons of 1,3-butadiene towards ethene, while COVP 2 shows polarization of HOMO

electrons of ethene towards the terminal carbon atoms of 1,3-butadiene. These changes serve

as a preparation for bond making. COVP 3 is polarization of butadiene to allow electron

accumulation in the C2−C3 region of butadiene, which indicates early partial formation

of the π bond in the final product cyclohexene. COVPs 4 and 5 demonstrate electron

donation from the HOMO of ethene to the LUMO of 1,3-butadiene and from the HOMO

of 1,3-butadiene to the LUMO of ethene, respectively, and they indicate the simultaneous

formation and breakage of two C−C bonds in the transition structure.

22



Table 3: Significant NOCV pairs for the POL and CT processes, as well as their associated
energy decreases (in kJ/mol) and amounts of transferred charge (in me−), and the percentage
they contribute to the total energy decrease and amount of transferred charge for each
process.

Pair ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 -21.47 69.30 148.16 24.32
2 -14.85 47.93 147.42 24.20
3 8.11 -26.19 95.08 15.61

(a) Significant NOCV pairs for the POL process

Pair ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

4 -83.65 48.14 533.80 39.86
5 -80.09 46.09 494.06 36.89

(b) Significant NOCV pairs for the CT process

The significant NOCV pairs also show that the CT process can be compactly described

by two pairs alone, while the POL process requires more pairs to describe. Interestingly,

one significant NOCV pair for the POL process actually increases the energy. This suggests

that the POL process is fundamentally a collective electron response, where different flows

of electrons are balanced to decrease the system energy to the maximal extent possible.
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Figure 5: Plots of NOCV density differences of significant NOCV pairs of 1,3-butadiene and
ethene in the POL and CT process. ∆ρ1 − ∆ρ3 describe polarization, while ∆ρ4 − ∆ρ5
describe CT. Increases in density are shown in blue while decreases are shown in red.

The significant NOCV pairs for the POL process are complicated and hard to interpret.

It is more meaningful to look at their associated density differences, shown in Fig. 5 which

altogether describes the polarization of electrons on the terminal carbons of 1,3-butadiene

and ethene as well as the accumulation of electrons in the C2−C3 region of 1,3-butadiene.

Therefore, the NOCVs tell the same story as the COVPs, but in a more mixed way. In the

CT process, the NOCVs with positive eigenvalues can be regarded as bonding orbitals, while

those with negative eigenvalues as anti-bonding orbitals. The density difference plots clearly

show electron flow from the HOMO of ethene to the LUMO of 1,3-butadiene and from the

HOMO of 1,3-butadiene to the LUMO of ethene. Therefore, the NOCV plots and NOCV

density difference plots give us the same detailed description as the COVPs about of the

inter-molecular interaction of 1,3-butadiene and ethene.

One major advantage of the ALMO-COVP EDA is its ability to perform fragment-wise

energy and charge decomposition, since the ALMOs are localized and can be assigned to
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different fragments. From Table 4 we can see that polarization is achieved predominantly

through electron flows within each fragment, while the charge transfer process is mainly com-

posed of inter-fragment electron flows. These data indicate that the constraints associated

with defining the POL state through SCF-MI, and the separate mathematics defining the

non-perturbative POL analysis are fundamentally consistent. Butadiene is polarized more

than ethene both in terms of energy decrease and amounts of charge rearranged in the POL

process, as expected expected since butadiene has delocalized π electrons, which makes it

easier to polarize than ethene. The CT process exhibits nearly equal energy and charge

transfer between ethene and butadiene, which can be interpreted as a simultaneous partial

formation and breakage of two bonds in the transition structure for this Diels-Alder reaction.

There are also small electron flows within each fragment during the CT process, which can

be regarded as repolarization of each fragment as charge transfer occurs.

Table 4: Fragment-wise energy decrease (in kJ/mol) and the amounts of transferred charge
(in me−), and the percentage they contribute to the total energy decrease and amount of
transferred charge for each process.

Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

C4H6 C4H6 -20.29 65.52 20.00 70.32
C4H6 C2H4 -0.01 0.03 -0.07 -0.25
C2H4 C4H6 0.19 -0.61 -0.03 -0.11
C2H4 C2H4 -10.86 35.07 8.53 29.99

(a) Fragment-wise energy and charge decomposition for the POL process.

Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

C4H6 C4H6 -0.48 0.28 -16.66 -6.20
C4H6 C2H4 -84.58 48.68 143.28 53.28
C2H4 C4H6 -88.90 51.17 155.69 57.90
C2H4 C2H4 0.20 -0.12 -13.41 -4.99

(b) Fragment-wise energy and charge decomposition for the CT process.
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4.3 The hydrogen bond between water and fluoride ion

The interaction of H2O molecule with F− anion is an example of strong hydrogen-bonding,

whose strength is more than 6 times greater than the water dimer H-bond. The main EDA

results are summarized below in Table 5. Both EDA schemes are able to produce decomposed

energies that sum almost exactly to the total energy differences for both the POL and CT

processes, confirming the precision of both approaches. However, once again, the amount

of rearranged/transferred charge calculated using ALMO-COVP EDA is much smaller than

the unrealistically large values obtained from ETS-NOCV EDA.

Table 5: Energies (in kJ/mol) and amounts of transferred charge (in me−) calculated using
ALMO-COVP EDA and ETS-NOCV EDA for the POL and CT processes.

EPOL − EFRZ ∆EPOL ∆QPOL ECT − EPOL ∆ECT ∆QCT

ALMO-COVP EDA -70.76 -70.76 39.20 -55.18 -55.18 19.75
ETS-NOCV EDA -70.76 -70.72 625.93 -55.18 -55.18 335.19

The fragment energy and charge decomposition obtained from ALMO-COVP EDA (Ta-

ble 6) tells us that the polarization energy decrease is due to electron flows within the

H2O molecule and F− anion, where H2O is more polarized than F− (because of the greater

perturbation due to charge vs due to dipole). On the other hand, the energy decrease in

the CT process is solely due to electron flow from F− to H2O. Of course electron flow in

hydrogen-bond formation is in the opposite direction of proton donation.

By performing COVP analysis and further breaking the energy decrease and amounts

of transferred charge into orbital pairs (Table 7), it is revealed that the POL process is

dominated by four significant COVPs while the CT process is compactly described by one

COVP. This shows that the POL process is essentially a collective behavior of electrons while

the CT process can often be understood in terms of electron flows associated with only a

few orbitals.
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Table 6: Fragment-wise energy decrease (in kJ/mol) and the amounts of transferred charge
(in me−), and the percentage they contribute to the total energy decrease and amount of
transferred charge for each process.

Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

H2O H2O -44.04 62.24 25.84 65.92
H2O F− 0.25 -0.35 -0.29 -0.74
F− H2O -0.97 1.37 0.14 0.36
F− F− -26.00 36.74 13.51 34.46

(a) Fragment-wise energy and charge decomposition for the POL process.

Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

H2O H2O -1.76 3.19 0.58 2.94
H2O F− -0.77 1.40 0.44 2.23
F− H2O -53.51 96.97 21.32 107.95
F− F− 0.86 -1.56 -2.59 -13.11

(b) Fragment-wise energy and charge decomposition for the CT process.

Table 7: Significant COVPs of the POL and CT processes, as well as their associated energy
decrease (in kJ/mol) and amounts of transferred charge (in me−), and the percentage they
contribute to the total energy decrease and amount of transferred charge for each process.

Pair Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 H2O H2O -33.31 47.08 19.50 49.75
2 F− F− -20.59 29.10 10.53 26.86
3 H2O H2O -5.32 7.52 3.80 9.70
4 H2O H2O -4.35 6.15 2.16 5.51

(a) Significant COVPs of POL process

Pair Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

5 F− H2O -50.94 92.31 20.76 105.12

(b) Significant COVPs of CT process
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Figure 6: Plots of significant COVPs of H2O and F− in the POL process (COVPs 1-4) and
the CT process (COVP 5).

The plots of the significant COVPs (Fig. 6) illustrate the nature of these orbitals. COVPs

1,3,4 primarily describe the polarization of H2O, with COVPs 1 and 4 describe the polar-

ization of occupied levels deriving from sp2(O) and 1s(H) AOs, while COVP 3 describes the

polarization of a 2p(O) orbital. These polarization COVPs displace electrons in H2O away

from F−, to relieve Pauli repulsions between H2O and F−. Consistent with chemical intu-

ition, COVP 1 contributes most to the polarization of H2O, since electrons in this orbital are

closest to the F− anion. By contrast, COVP 2 describes how the electrons in the 2p orbital of

F− polarize towards the partially positive hydrogen atom of H2O. COVP 5 describes charge

transfer from F− to H2O as donation from the 2p orbital of F− to the adjacent anti-bonding

σ(OH) orbital of water. This CT weakens the O−H σ bond and elongates the O−H bond

length. Using the same level of theory, the O − H bondlengths of 0.958 Å in isolated water

change to 0.957 Å and 1.053 Å in the optimized H2O− F− complex, with the longer O−H

bond associated with the hydrogen atom adjacent to the F− anion. The COVP analysis

successfully predicted and explained the elongated O − H bond.
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Table 8: Significant NOCV pairs of the POL and CT processes, as well as their associated
energy decrease (in kJ/mol) and amounts of transferred charge (in me−), and the percentage
they contribute to the total energy decrease and amount of transferred charge for each
process.

Pair ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 -54.13 76.55 215.23 34.39
2 -5.58 7.89 88.53 14.14
3 -4.44 6.28 67.02 10.71

(a) Significant NOCV pairs of POL process

Pair ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

4 -50.21 91.00 187.72 51.01

(b) Significant NOCV pairs of CT process

In the NOCV analysis, the POL process is described by 3 significant NOCV pairs while

the CT process is again described by 1 significant NOCV pair (Table 8). However, the POL

process mostly involves electron flows within a fragment without bond forming and breaking,

so it is hard to interpret NOCVs with positive and negative eigenvalues respectively as

bonding orbitals and anti-bonding orbitals. Thus NOCV density difference plots (Fig. 7)

are more useful to reveal the directions of electron flows during polarization. It is evident

that NOCV pair 1 describes the polarization of 2p electrons of F− towards the adjacent H

atom, as well as polarization of water valence electron density away from F−. This picture

of the electron flow is similar to COVP 1 and COVP 2 combined, and the energy decrease

due to NOCV pair 1 is also very close to the sum of that of COVP 1 and COVP 2. ∆ρ2

describes the polarization of the oxygen 2p orbital away from F−, which is very similar to

COVP 3, both in terms of the direction of electron flows and associated energy decrease.

∆ρ3 gives a similar picture as COVP 4. ∆ρ4 describes the density difference of the only

significant NOCV pair of the CT process, and it clearly shows an electron transfer from the

2p orbital of F− to the anti-bonding σ∗(O−H) orbital, causing an electron density decrease

in the bonding region of the O − H bond. This indicates a weakened O − H bond due to

charge transfer from F−, as was predicted by the COVP analysis.
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Figure 7: Plots of NOCV density differences of significant NOCV pairs of H2O and F− in
the POL and CT process. ∆ρ3 was plotted with isosurface value of ±0.002 a.u.

4.4 The H2O · · ·HF Hydrogen Bond

To further explore hydrogen-bonding, we next examine H2O and HF, with HF being the

proton donor and H2O being the proton acceptor. A summary of the EDA results is presented

in Table 9. Again, both EDA schemes give us the numerically exact energy decrease, while

the amount of transferred charge is greatly exaggerated by ETS-NOCV EDA. The fragment-

wise energy and charge decomposition of ALMO-COVP EDA given in Table 10 tells us that

the polarization of H2O accounts for most of the energy decrease and charge flow in the POL

process, while the donation of electrons from H2O to HF is the dominant source of energy

decrease in the CT process.

Table 9: Energies (in kJ/mol) and amounts of transferred charge (in me−) calculated using
ALMO-COVP EDA and ETS-NOCV EDA for the POL and CT process.

EPOL − EFRZ ∆EPOL ∆QPOL ECT − EPOL ∆ECT ∆QCT

ALMO-COVP EDA -13.46 -13.46 6.35 -18.32 -18.32 5.83
ETS-NOCV EDA -13.46 -13.46 235.21 -18.32 -18.32 175.04
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Table 10: Fragment-wise energy decrease (in kJ/mol) and the amounts of transferred charge
(in me−), and the percentage they contribute to the total energy decrease and amount of
transferred charge for each process.

Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

H2O H2O -11.01 81.80 4.86 76.54
H2O HF -0.14 1.04 0.02 0.31
HF H2O -0.00 0.00 -0.02 -0.31
HF HF -2.30 17.09 1.48 23.31

(a) Fragment-wise energy and charge decomposition for the POL process.

Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

H2O H2O -0.03 0.16 -2.10 -36.02
H2O HF -17.18 93.78 7.57 129.85
HF H2O -0.91 4.97 0.32 5.49
HF HF -0.19 1.04 0.04 0.69

(b) Fragment-wise energy and charge decomposition for the CT process.

Table 11: Significant COVPs of the POL and CT processes, as well as their associated energy
decrease (in kJ/mol) and amounts of transferred charge (in me−), and the percentage they
contribute to the total energy decrease and amount of transferred charge for each process.

Pair Donor Acceptor ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 H2O H2O -8.97 66.64 4.02 63.25
2 HF HF -1.60 11.86 1.10 17.39
3 H2O H2O -1.17 8.69 0.53 8.28

(a) Significant COVPs of POL process

Pair Donor Acceptor ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

4 H2O HF -16.70 91.16 7.48 128.30

(b) Significant COVPs of CT process

We then performed COVP analysis (summarized in Table 11) to decompose the energy

decrease and the amounts of transferred charge and assign them to the most important

occupied-virtual pairs of the interaction. Three COVPs make significant contributions to

the energy decrease and charge transfer of the POL process, while the CT process can

be compactly described by one COVP. This again confirms our interpretation of the POL
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process as a collective electronic behavior.

Figure 8: Plots of significant COVPs of H2O and HF in the POL and CT process.

Referring to Fig. 8, COVPs 1 and 3 describe polarization of O lone pair and valence

electrons towards the partially positively charged H atom of HF. By contrast, COVP 2

describes polarization of HF bonding and lone pair electrons away from water to relieve

Pauli repulsion with O lone pair electrons. Finally, COVP 4 clearly shows the donation of

oxygen lone pair electrons into the anti-bonding σ∗(H−F) orbital, which weakens the H−F

bond and elongates its bond length. Calculations using the same level of theory results in

optimized H−F bond lengths of 0.919 Å in isolated HF versus 0.940 Å in H2O · · ·HF. COVP

analysis again successfully predicts the elongation of the H − F bond in hydrogen-bonding,

and provides useful insight.
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Table 12: Significant NOCV pairs of the POL and CT processes, as well as their associated
energy decrease (in kJ/mol) and amounts of transferred charge (in me−), and the percentage
they contribute to the total energy decrease and amount of transferred charge for each
process.

Pair ∆E ∆E/∆EPOL(%) ∆Q ∆Q/∆QPOL(%)

1 -11.00 81.76 96.51 41.03

(a) Significant NOCV pair of POL process

Pair ∆E ∆E/∆ECT(%) ∆Q ∆Q/∆QCT(%)

2 -16.69 91.11 103.27 59.00

(b) Significant NOCV pair of CT process

Figure 9: Plots of significant NOCV pairs and associated density differences of H2O and HF
in the POL and CT process.

The significant NOCV pairs (Table 12) of the POL process shows no bonding character,

while that of the CT process shows formation of a partial O · · ·H bond. The density difference

plot of NOCV pair 1 (Fig. 9) shows polarization of the O lone pair towards HF, as well as

polarization of the bonding electrons of HF away from the oxygen atom, to give the same

picture as COVPs 1 and 3 combined. ∆ρ2 shows electron donation from H2O’s oxygen lone

pair to the σ∗(HF) orbital during the CT process, causing an electron density decrease in
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the H − F bond. This results in the same prediction of a weakened and elongated H − F

bond as the COVP analysis.

5 Conclusion

ALMO-COVP EDA and ETS-NOCV EDA are energy decompositions of the DFT energy

change between two states of a system (at a given geometry). For an intermolecular complex,

there are three states that one can distinguish: a “frozen” state built with the orbitals of

isolated monomers, a “polarized” state built with relaxed monomer orbitals that prohibit

charge transfer, and an unconstrained (fully relaxed) state. ALMO-COVP EDA and ETS-

NOCV EDA use different parameterizations of the energy change. ALMO-COVP EDA uses

the generator of the unitary transformation that connects the density matrices of these two

states, while ETS-NOCV EDA uses the difference of the two density matrices.

Our analysis reveals several interesting results.

1. We demonstrated that the transition state Fock matrix in ETS-NOCV EDA is an

approximation to an effective Fock matrix using only one quadrature point. While the

transition state approximation provides accurate energy differences in most cases, it

can be systematically improved by using additional quadrature points.

2. We derived exact expressions for the amount of transferred/rearranged charge (in e−)

for both EDA schemes, which mathematically explains why ALMO-COVP EDA pro-

vides much smaller amounts of charge transfer than ETS-NOCV EDA. Using a model

example (H2
+), we demonstrate that the ETS-NOCV values are unphysically large,

which is due to the delocalized nature of the NOCVs.

3. Since we generalized the EDA theories to any initial and final state, it is possible to

break the relaxation process from the frozen state to the fully relaxed state into several

sub-processes by inserting intermediate states. Via a set of examples, we showed that
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the polarized state obtained from an SCF-MI calculation is a meaningful intermediate

state that correctly separates the polarization and charge transfer processes.

4. We demonstrated that orbital plots of the most important COVPs and the density

difference plots of the most important NOCVs are useful tools that provide similar

pictures of electron flows in the polarization and charge transfer for several molecular

complexes. These include the transition structure for the Diels-Alder cycloaddition of

ethene and butadiene, and the hydrogen bonding between water and fluoride anion,

and also between water and hydrogen fluoride.
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