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Batteryless image sensors present an opportunity for long-life, long-range sensor deployments that require
zero maintenance, and have low cost. Such deployments are critical for enabling remote sensing applications,
e.g., instrumenting national highways, where individual devices are deployed far (kms away) from supporting
infrastructure. In this work, we develop and characterize Camaroptera, the first batteryless image-sensing
platform to combine energy-harvesting with active, long-range (LoRa) communication. We also equip Ca-
maroptera with a Machine Learning-based processing pipeline to mitigate costly, long-distance communica-
tion of image data. This processing pipeline filters out uninteresting images and only transmits the images
interesting to the application. We show that compared to running a traditional Sense-and-Send workload, Ca-
maroptera’s Local Inference pipeline captures and sends upto 12X more images of interest to an application.
By performing Local Inference, Camaroptera also sends upto 6.5x fewer uninteresting images, instead using
that energy to capture upto 14.7X more new images, increasing its sensing effectiveness and availability. We
fully prototype the Camaroptera hardware platform in a compact, 2 cm X 3 cm X 5 cm volume. Our evaluation
demonstrates the viability of a batteryless, remote, visual-sensing platform in a small package that collects
and usefully processes acquired data and transmits it over long distances (kms), while being deployed for
multiple decades with zero maintenance.
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1 INTRODUCTION

Sustained by the recent advances in low-power sensing and computing technology, Internet of
Things (IoT) devices are increasingly capable of interacting with the physical world. Systems that
sense, compute, and communicate are now frequently deployed into human environments to sense
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Fig. 1. (a) Camaroptera prototype. (b) Example remote sensing application (national highways), where each
device is located far (kms) away from the nearest supporting infrastructure (base station).

and process important signals for a breadth of applications, including security, environmental
science, urban planning [1] and optimization, precision agriculture, and even space exploration
[11, 15, 78].

A challenging class of sensing applications are remote sensing applications, where the sensing
devices are deployed far away from supporting infrastructure. Examples of remote sensing ap-
plications include deploying sensors deep into a rainforest or instrumenting national highways
that are kilometers away from the closest towns [12] (one such scenario is shown in Figure 1(b)).
Each sensor node deployed for such applications must be able to transmit data over long distances,
potentially over multiple kilometers. The radios commonly used in sensor nodes, such as Blue-
tooth Low-Energy (BLE) or WiFi, cannot service these long-range requirements. Recently, chirp
spread-spectrum technology has enabled radios like LoRa to achieve kilometer-scale data trans-
mission [40] by sacrificing data-rate (vs. WiFi) and power-consumption (vs. BLE). LoRa presents a
promising way to design sensor nodes for such remote deployments.

Remote sensing applications also require sensor deployments to have long lifetimes with zero
maintenance. Such deployments are geographically distributed over large distances, making regu-
lar device maintenance an expensive operation in terms of cost as well as human effort. Over the
past few years, improvements in energy-harvesting systems have led to the emergence of wireless
IoT systems that are entirely energy neutral. These systems extract (e.g., Radio waves, solar) energy
from their environment, buffering the energy in a battery [34] or capacitor [11]. After collecting
sufficient energy, the system activates and performs some sensing, computing, or communication
for its application. While energy-harvesting extends the lifetime of remote sensing systems, bat-
teries still need to be periodically replaced.

Swapping these batteries for small capacitors or supercapacitors (batteryless operation) allows
sensor deployments to achieve long lifetimes with zero maintenance. Such batteryless devices
present several key benefits and have attracted growing interest in recent years [11, 15, 26]. Along
with enabling maintenance-free, long lifetimes, batteryless devices avoid creating battery waste,
allow the design of more compact and cheaper devices, and therefore, enable the development of
the “next trillion” IoT devices [60], especially in remote sensing applications.

Future remote sensing systems must also support gathering visual sensor data to directly, rather
than indirectly, observe complex environmental phenomena. However, high-data-rate visual data
requires larger on-device storage and more energy for long-distance transmission than sensors
with low-data-rates such as accelerometers or temperature sensors. Kilometer-scale transmission
of visual data is even more challenging on batteryless systems, as energy-expensive transmission
keeps the batteryless device busy with recharging energy, preventing it from sensing new, po-
tentially important events. Consequently, deploying visual sensors in long-life, maintenance-free,
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remote sensing applications demands solutions that mitigate this high-energy cost of long-range
radio transmissions.

Our Contributions: In this article, we enable remote sensing applications with long lifetimes
by developing the Camaroptera batteryless remote visual sensing system. Camaroptera senses vi-
sual spectrum data using an ultra-low-power image sensor. Camaroptera is also equipped with a
LoRa [65] radio, enabling it to communicate over long distances, even in the presence of urban
signal occlusion [16]. Camaroptera is batteryless and harvests its operating energy using small
solar cells, storing energy in a small supercapacitor. Finally, Camaroptera employs on-device pro-
cessing of data to reduce the use of its costly radio, using the radio only when it identifies data to
be interesting to the application. Our main contributions with Camaroptera are:

e Camaroptera presents the first batteryless, energy-harvesting platform to support active,
long-range communication (LoRa), enabling long-life, maintenance-free deployments of
sensor nodes in remote sensing applications.

e Camaroptera mitigates the high energy cost of kilometer-scale communication, with a Local
Inference-based processing pipeline that identifies and transmits only the images that are
interesting to the application.

e We develop a fully functional prototype of Camaroptera, with a compact 3cm X 5cm X 2cm
footprint. The prototype works within these tight volume constraints, which limit solar cell
output (to a few mW) and energy storage volume (e.g., 33mF at 3V).

Our evaluation shows that Local Inference allows Camaroptera to reduce the transmission of
uninteresting images by upto 6.5X when compared against Sense-and-Send, a popular design for
sensor nodes. Camaroptera uses the extra energy to capture upto 14.7x more new images, report-
ing upto 12X more interesting events than Sense-and-Send.

2 BACKGROUND

Kilometer-range, batteryless image-sensors are critical to enabling future remote sensing appli-
cations. Unmodified, existing long-range wireless technologies (2.1) and batteryless systems (2.2)
are key enablers, although this work is distinct in its goals and mechanism from existing battery-
less image sensors. Camaroptera brings these ideas together, addressing the unique challenges of
long-range communication for remote image sensing by using local computation.

2.1 Long-range Wireless Communication

Remote sensing devices are increasingly able to include a long-range radio, such as a LoRa chirp
spread-spectrum radio [16, 18, 40]. LoRa integrated circuits (ICs) are commercially available,
inexpensive, and offer long range (i.e., kilometers) at relatively low power (i.e., hundreds of mW).
Extensible receiver infrastructure, like OpenChirp [16], affords simple, publish/subscribe data man-
agement (e.g., MQTT) with simple endpoints. The ability to communicate kilometers at low power
creates the opportunity for more devices to be deployed in remote environments than is possi-
ble using other radio technologies. 4G/LTE incurs per-byte subscription costs [52], Bluetooth has
limited range [8, 20], and WiFi requires many access points for wide-area coverage. Backscat-
ter [37, 38, 69, 73, 76] is appealing, although limited by the need for large, powered transmitter
infrastructure that provides wireless power and a communication carrier signal. LoRa provides a
critical balance between long range and low-power operation, making it suitable for remote IoT
deployments. While LoRa consumes relatively low power (hundreds of mW), this power draw can
still be expensive for energy-constrained remote sensors, who must judiciously use their radio link
or risk exceeding their constrained energy budget.
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2.2 Batteryless Systems

Batteryless, energy-harvesting devices are emerging to support sensing, communication, and
computation with no batteries for energy storage [11, 25, 27, 63, 66]. These devices harvest
energy from light [11, 34], radio waves (RF) [63], user interaction [36], or other sources, storing
the energy in a capacitor or super-capacitor and using it when sufficient energy accumulates
to do useful work. Some batteryless devices operate only intermittently, as energy accumu-
lates [10, 28, 44, 45, 48, 62, 77]. A key advantage to batteryless operation is eliminating the need for
per-device maintenance to replace batteries, which effectively extends deployed device lifetimes to
the lifetime of the ICs on the board. Eliminating batteries also has secondary benefits: reducing size,
weight, and environmental footprint (battery waste). In contrast, battery-powered systems have a
number of disadvantages. Batteries require maintenance, because they need to be replaced over a
long lifetime: Fixed batteries deplete, and rechargable batteries have a limited number of recharge
cycles. Some recent work combines rechargable and fixed battery storage [34] using LTO batteries.
These batteries bring more recharge cycles, but smaller capacity (40 mAh) than Lithium-Ion
batteries, impeding their use in multi-decade deployments with energy-hungry radios.

Batteryless devices are becoming useful in image sensing platforms [57, 58]. Existing devices
are limited, however, in their reliance on an instrumented environment with installed wireless
power and a backscatter communication medium precludes their application in wide-spread, long-
range (i.e., kilometer-scale) deployments. Avoiding complex wireless power infrastructure, which
increases cost, is a key problem that we address in this work.

Communication is energy-hungry. Communicating large image data over multiple kilome-
ters has a high energy cost, making it challenging to deploy on batteryless devices typically de-
signed for ultra-low-power operation. Camaroptera’s main goal is to use local computation to
address this challenge. Computing to process a QQVGA image using an image-classifying neural
network consumes around 65mJ and transmitting an image consumes 288mJ (Section 5 describes
our platform in detail, and Section 8 describes these data in more detail). High energy costs trans-
late to high time costs in a batteryless system, because a batteryless system must spend its time
collecting the energy that it uses to operate. Figure 2 shows the collection time at different power
levels for the quantity of energy required to transmit an image: At 10-20 kLux (a typical cloudy
day outdoors), recharging takes 45 seconds to two minutes. A batteryless device is unavailable to
sense new data during this recharging period, and a long recharging latency could cause it to miss
important events.

Many existing sensor designs commonly employ a Sense-and-Send approach, transmitting data
as they are collected [57, 58]. Sense-and-Send is, however, a poor match for batteryless, remote-
sensing, because transmitting all data leads to a high aggregate recharge time, which may miss
important events. Moreover, all data are not equally interesting and sending these data at high
cost is not useful to an application.

Camaroptera reduces unnecessary communication (and recharging) by computing locally on
sensed data to find interesting data that should be transmitted, rather than indiscriminantly trans-
mitting data in the Sense-and-Send model. While the computational capability of low-power mi-
crocontrollers is limited, prior work shows promise for sophisticated sensor data processing on
batteryless, energy-harvesting devices [23]. With architectural support for yet more efficient com-
puting in ultra-low-power MCUs [14, 24], the computational capabilities available to batteryless,
energy-harvesting sensor nodes will further increase. The increase in computational capability of
batteryless systems motivates Camaroptera, as it allows the use of local computing for reducing
costly long-range communication, consequently enabling maintenance-free, multi-decade deploy-
ments of batteryless, long-range sensing systems.
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Fig. 2. Energy collection times at different light levels for sending a JPEG-compressed image over the LoRa
radio on Camaroptera. An energy-harvesting system cannot capture new data during these energy collection
periods, which can go upto two minutes at lower light levels, causing it to miss potentially important events.
Camaroptera uses on-device processing to avoid using the radio for transmitting uninteresting events, saving
the associated time and energy for capturing and processing more new events.

3 CAMAROPTERA DESIGN REQUIREMENTS

Camaroptera’s design is motivated by the unique challenges of deploying a batteryless device that
is capable of high-data-rate image sensing and expensive, long-range communication. We identify
four key requirements for designing an effective remote sensing system and present how existing
works fail to meet them. These requirements are (R1) kilometer-range, (R2) multi-decade lifetime,
(R3) minimal environmental impact, and (R4) low cost.

(R1) Kilometer-range. A remotely deployed, image-sensing system must cover a large geo-
graphic area while respecting cost and maintenance requirements. Communication cannot rely
on large numbers of high-cost base stations that require continuous power (i.e., imposing an in-
frastructure cost) or large batteries (i.e., imposing a maintenance cost). Each device must, there-
fore, support transmission over a multiple kilometers independently to enable large-scale, geo-
distributed remote sensing applications.

(R2) Multi-decade Lifetime. A remotely deployed, image-sensing system must operate for a
long period of time (decades) with zero maintenance, given the high maintenance costs of geo-
distributed systems. These systems should require no component or battery replacements over its
lifetime, and should operate without costly centralized power or communications infrastructure;
fully autonomous and wireless operation is ideal.

(R3) Minimal Environmental Impact. A remotely deployed image-sensor must have minimal
negative impact on its environment. It must minimize its short-term environmental impact by
being small, unobtrusive, and by not interfering with existing (e.g., radio) infrastructure. It must
minimize its long-term environmental impact by minimizing the amount of hazardous chemical
waste due to batteries and other toxic components.

(R4) Low Cost. A remotely deployed image-sensing system must have a low cost. Devices must
be manufactured at large scale (i.e., millions) requiring each device’s cost to be low to minimize
total cost. These devices must also avoid relying on costly centralized power or communications
infrastructure. Minimizing cost minimizes operator liability, as deployed devices are at risk of
damage or loss due to vandalism, animal interactions [43], and weather.

3.1 Existing Systems Fall Short

Existing systems meet some, but not all, of the requirements for designing effective remote-sensing
systems, as we show in Table 1. Prior attempts at batteryless image sensing [57, 58] rely on short-
range, RF-energy-transmission infrastructures, violating requirements R1, R3, and R4. While
prior work on batteryless communication often relies on short-range RF-backscatter [19, 37, 38, 76],
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Table 1. Comparing Camaroptera with Prior Work

Requirement CBatteryless Backscatter LoRa Magno Permamote Camaroptera
ams [57, 58] [19, 37, 38, 76] Backscatter [69] et al. [22] [34]

R1: km-range X X X v X v

R2: Multi-decade v v v X X v

R3: Low Env. Impact X X 4 X v v

R4: Low Cost X X 4 X 4 4

a prior work has proposed using LoRa signals for energy-harvesting and backscatter communica-
tion [69], eliminating costly RF-energy-transmission infrastructures. However, LoRa backscatter
supports a maximum separation of 475 m between the source and receiver, failing R1 and pre-
cluding its use for remote-sensing applications. In contrast, we equip Camaroptera with an active,
long-range LoRa radio, enabling kilometer-range communication (R1) and a decrease in environ-
mental impact and infrastructure requirements (low-power receivers only—R3).

A recent system (Magno et al. [22]) presents a batteryless image-sensing platform, designed
for face recognition. While it employs a LoRa radio to achieve a long deployment range, it uses
an ARM Cortex-M4 core with FLASH memory, whose limited write endurance precludes long-
lifetimes and fails (R2). In contrast, Camaroptera uses an MSP430 microcontroller with embedded
Ferroelectric RAM (FRAM) for long-lifetime non-volatile storage. Magno et al. also is designed
for indoor operation, resulting in a power system with ~ 6X larger solar panels and a larger cost
and environmental impact (R3, R4).

Permamote [34] presents a battery-powered solution for long-term, low-cost sensing. How-
ever, it achieves a long lifetime by restricting operation to low-data-rate sensors (accelerometers
and temperature sensors) combined with short-range, low-power communication, making it un-
suitable for image-sensing applications with high-power, kilometer-range radios. Camaroptera
achieves a maintenance-free, multi-decade lifetime (R2) by relying on batteryless operation, which
also lowers per-device cost (R4) compared to equivalent, battery-powered systems.

4 CAMAROPTERA DESIGN OVERVIEW

Camaroptera is a batteryless sensing, computing, and communication system composed of a cus-
tom hardware platform, application-level software components, and software control components.
As outlined in Section 3, we have designed Camaroptera according to the design requirements for
multi-decade deployments in remote sensing applications. The hardware and software compo-
nents of Camaroptera are outlined in Figure 3(a). Each Camaroptera device is built on CamHW, a
custom hardware platform. The hardware includes a small, low-power image sensor to collect im-
ages, a microcontroller with embedded memory to process images, a long-range radio chip for com-
munication, and a solar energy-harvesting power system for collecting and storing energy from
the environment. CamHW is composed of several printed circuit boards (PCBs) that assemble
into a three-dimensional device. Section 5 describes CamHW in detail and Figure 1(a) shows the
assembled device hardware. The software of each Camaroptera device is built around CamSW, a
simple operating system and device driver layer. CamSW manages sensor data collection and oper-
ates an at-sensor processing pipeline to process collected images. The at-sensor processing pipeline
can support arbitrary application-specific operations (e.g., CNN/DNN-based image classifiers [23])
and built-in operations, which include image-difference detection and image compression. Our
implementation performs DNN-based image classification, followed by JPEG compression for the
images to be transmitted. CamSW also controls the radio hardware and segments and packetizes
data for transmission.
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Fig. 3. (a) System overview of Camaroptera. (b) Camaroptera prototype PCBs.

Meeting Design Requirements. Together, Camaroptera’s hardware and software meet the de-
sign requirements for a pervasive, long-term image sensing device. CamHW includes a LoRa IC,
enabling communication over kilometer ranges (R1). Kilometer-scale communication is a key
requirement for widespread deployment without excessive base station infrastructure costs. Ca-
maroptera’s batteryless energy-harvesting power system is simple to deploy and requires no main-
tenance once deployed (R2). Deployment requires simply installing a device with its solar panels
exposed to sunlight, not requiring any direct connection to infrastructure. Batteryless operation
requires no battery replacements and produces no battery waste (R3). Camaroptera’s design min-
imizes its cost (R4). CamHW is a low-cost two-layer custom PCB populated entirely with COTS
components and ICs. Each fully assembled device costs around USD$50 in low volume; high-
volume pricing will further reduce the device cost. Low cost enables large-scale deployments.

CamSW is designed for immediate, at-sensor processing of collected sensor data. Application-
specific at-sensor processing allows Camaroptera to identify uninteresting data and to discard
them immediately and avoid consuming the energy, time, and bandwidth required to send them
to a base station. Camaroptera then uses this saved energy and time to capture and process new
images, improving its sensing effectiveness and availability. By identifying the images of interest to
an application and sending only these images, Camaroptera efficiently uses the scarce bandwidth
available to remotely deployed devices.

5 HARDWARE DESIGN

CamHW is a hardware platform designed for batteryless sensing and computing and long-range
communication. CamHW is composed entirely of COTS components, limiting the per-device cost.
The platform mounts these COTS components on three small two-layer PCBs mounted to one an-
other in a three-dimensional package. CamHW’s three boards are the sensor board, the power board,
and the solar board. The sensor board includes sensing, computing, and communication compo-
nents. The power system board includes energy storage and power conditioning components. The
solar board includes the device’s solar cells and provides structural support for the manufactured
device. Figure 3(b) shows a photograph of the populated sides of the three boards.

5.1 Sensor Board

The sensor board incorporates the main active components of Camaroptera’s remote sensor sys-
tem, including a microcontroller (MCU), a low-power image sensor, and a LoRa transceiver with
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a ceramic patch antenna. The sensor board hardware is agnostic to its power system and can be
powered by Camaroptera’s power board or by a standard 3V supply.

MCU. Camaroptera’s MCU is a Texas Instruments Ultra Low-Power MCU MSP430FR5994 [71]
running at 16 MHz with 8 kB of SRAM and 256 kB of embedded non-volatile Ferroelectric RAM
(FRAM). We select this MCU specifically for the embedded FRAM memory, as its non-volatility
allows Camaroptera to save image data across power failures, and the higher write endurance
of FRAM (compared to FLASH) allows Camaroptera to be deployed for multiple years without
memory corruption. The limited memory, low clock frequency, and simple architecture of the
MSP430FR5994 are key challenges to supporting sophisticated computations, as observed in prior
work [23], and require device-specific software optimizations (described in Section 6.2).

Image Sensor. Camaroptera uses a Himax HM01B0 [30] image sensor, which is an ultra-low-
power CMOS image sensor. Its sensor has an active area of 320 X 320 pixels each of which with
a side dimension of 3.6pym. Camaroptera configures the camera to operate in QQVGA (160 X 120)
mode, capturing 8-bit grayscale images. We use this image sensor for its ultra-low-power operation
(£1.1mA for a QQVGA image).

Transceiver. Camaroptera uses a Semtech REM95W LoRa chirp spread spectrum [64] modula-
tion transceiver IC [31]. The chip incorporates an ultra-low-power 20 dBm power amplifier with
a sensitivity over —148 dBm. Camaroptera connects this LoRa IC to a ceramic chip antenna with
a maximum gain of 3.42 dBi. Using a LoRa transceiver allows Camaroptera to communicate the
captured images to remote base stations located multiple kilometers away.

5.2 Power Board

The power board implements Camaroptera’s energy harvesting power system. The power sys-
tem uses a two-stage voltage boosting circuit with hardware voltage comparators to keep sys-
tem voltage in the most efficient operating range for the boosters. The power board also houses
Camaroptera’s supercapacitor-based energy storage.

Boosting. The first voltage boosting stage connects the solar cells to the supercapacitor using
an LTC3105 [42]. The booster is a high-efficiency step-up DC/DC converter that operates down to
225 mV input and supports maximum power point control (MPPC). Both of these features are
important for operating on variable solar energy.

The second boosting stage connects the energy storage capacitor to the sensor board using
a TPS61070 [70] synchronous voltage boost converter. This boost IC provides efficiency over 85%
with input as low as 1.2V for a regulated output of 3V. Camaroptera controls the booster operation,
keeping it powered off when the supercapacitor voltage is outside its maximum efficiency region.

Voltage Thresholding. Camaroptera uses two MIC841 [53] voltage comparators with an ex-
ternally adjustable hysteresis to drive the enable input of Camaroptera’s second booster and the
reset line of the MCU. The first comparator ensures that the second boosting stage is enabled only
when the energy storage capacitor is charged between a lower threshold of 1.24 V and its rated
maximum of 3 V. Camaroptera’s second comparator holds the MCU in reset while the V¢ output
of the second boosting stage stabilizes. We empirically determined that the system stabilizes at
2.2 'V, which is the the minimum voltage to operate the LoRa modem. The second comparator is
set to a low threshold of 2.2 V and a high threshold of 3 V.

Energy Storage. Camaroptera stores energy in a high-density supercapacitor. Camaroptera’s
supercapacitor must store sufficient energy to ensure that its longest energy-atomic task com-
pletes without exhausting the device’s stored energy. Camaroptera’s largest energy-atomic task is
sending a single 255-byte LoRa packet. Under this constraint, we equipped Camaroptera with a
BestCap [4] 33 mF high-density supercapacitor. This supercapacitor also has a low Equivalent Se-
ries Resistance (ESR) enabling it to provide the high radio current with a smaller drop in voltage.
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Fig. 4. Camaroptera software flow chart.

5.3 Solar Board

Camaroptera’s solar board is covered by four solar cells connected in parallel and mounts perpen-
dicularly to the sensor and power boards. The solar cells are an array of IXYS [33] high-efficiency
monocrystalline cells, measuring 22 mm X 7 mm each. The solar board provides structure and
power for the assembled device with mechanical and electrical connections to the other boards.

6 SOFTWARE DESIGN

Camaroptera’s software subsystem, CamSW, is centered around locally processing captured im-
ages to avoid transmitting images that are not interesting to an application.

6.1 Local Processing

CamSW locally processes every image after its capture. The goal of processing is to find images of
interest to the application that should be transmitted, otherwise discarding uninteresting images.
Avoiding transmission of uninteresting images enables Camaroptera to judiciously use its time
and energy. CamSW supports arbitrary image processing pipelines that can vary by application.
A pipeline may use general filtering operations, such as differencing, or application-specific ones,
such as a deep neural network trained for a specific task.

We built a representative, prototype processing pipeline designed to identify and transmit
images containing people. This representative person-detection pipeline has both general and
application-specific stages. The person-detection pipeline includes four stages. Figure 4 shows the
software flow of this person-detection pipeline.

Image Differencing. After capturing an image, Camaroptera compares it to the most recently
captured image to determine if the new image differs. If the image differs, then it may be of interest
to the application and should continue through the pipeline. If not, then Camaroptera can safely
discard the image. After comparison to a previous frame, Camaroptera takes the new frame and
saves it as a reference for future differences. Difference computation is generally applicable.

DNN Inference. If a new image differed from a previous one, then Camaroptera runs an
application-specific inference routine on that image to identify whether it is interesting to the ap-
plication. For our person-detection application, Camaroptera runs a deep neural network trained
to detect images containing people. Inference using statistical methods or learned inference models
are inherently application-specific and each application requires its own model. For person detec-
tion, we run a single model, but Camaroptera supports cascading models, as MCU resources permit.
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Fig. 5. The DNN architecture used by Camaroptera to perform person detection.

Pre-transmission Transformation. If an image is deemed interesting by inference, then Ca-
maroptera transforms the image to prepare it for transmission. This transformation could include
a variety of encoding and encryption, depending on application requirements. In our person-
detection prototype, we compress each interesting image before transmission.

Transmission. Once transformed for transmission, Camaroptera packetizes the image and
transmits each of an image’s packets in sequence using its LoRa radio.

6.2 Software Implementation Details

We implemented Camaroptera’s processing pipeline, including differencing, inference, and
compression.

Differencing. The goal of this processing stage is to act as a fast filter for images of static
or slowly changing scenes. We implemented a simple image differencing algorithm that explic-
itly compares corresponding pixel values between images. We chose this approach for its simple
and fast operation, where a more sophisticated approach (e.g., SSIM-based) would be considerably
slower on the MSP430 MCU, which lacks a floating-point unit and must rely on software emulation
of floating-point operations.

In our simple approach, we deem images different from one another if the number of different
pixels exceeds a heuristically defined threshold. We set the threshold empirically to 400 pixels by
observing that human figures in our images tend to be around 20 X 20 pixels in size.

Inference. Our Camaroptera prototype uses a Deep Neural Network (DNN) for image clas-
sification. The DNN’s structure is derived from the LeNet [39] digit classification convolutional
neural network. The architecture of the network we used is shown in Figure 5. We trained the
LeNet-structured DNN using a set of images collected using our Camaroptera prototype. We col-
lected 4,000 images around our university campus in five different locations in a wide variety of
lighting conditions. We used Amazon Mechanical Turk [2] workers to label them as containing
a person, not containing a person, or not being a valid image. The dataset included 60% negative
images and 40% positive images. After labeling the dataset, we trained the network using a subset
of 3,600 of the images, holding 10% aside for testing and validation.

We optimized the network to decrease its size because the model, as trained, does not fit in the
250 kB of available memory on our MSP430 MCU. First, we stored the network weights in a sparse
format, using 16-bit fixed-point integers to save space and increase compute speed. The MSP430
MCU does not natively support floating point operations and software emulation is extremely slow.
All computations for the network were therefore performed in fixed-point arithmetic, with ker-
nels written for sparse matrices. Second, we reduced the size of the network by passing the 160 X
120 input image through a 4 X 4 average pooling layer, before the network’s first convolutional
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Fig. 6. Comparing an uncompressed and JPEG compressed images captured by Camaroptera. (a) Original
image. (b) Floating point JPEG. (c) Fixed point JPEG.

layer. The pooling layer effectively reduces the input to 30 X 40 pixels. We then use the Gene-
sis [23] network minimization tool to perform hyperparameter (i.e., structural) optimization on
our trained, modified network. Genesis applies aggressive near-zero pruning and layer separation
to reduce a network’s weight storage requirements, the size of its intermediate activiations, and
the expected inference latency and energy. Camaroptera encodes the optimized network from Gen-
esis as Compressed Sparse Row (CSR) for space efficiency. After optimization, the network’s
weights consume 20 kB of memory, which is a substantial reduction compared to its initial 3.6 MB
of network weights. The final network additionally requires around 80 kB for intermediate activa-
tions and yields 78% accuracy on a test set, with 40% False Positives (FP) and 1% False Negatives
(FN). Section 8 evaluates Camaroptera with different false positive and false negative ratios.

Compression. Camaroptera implements JPEG compression, based on an existing implementa-
tion [56]. As with inference, we modified the JPEG implementation to use fixed point arithmetic
instead of floating point, given the lack of floating point support in the MSP430 MCU. Shifting
to fixed point reduced the latency to compress a 160 X 120 image from 25 seconds to 7 seconds.
Fixed point JPEG degrades image quality, but not excessively. Figure 6 compares an uncompressed
image and ones compressed using floating and fixed point.

We additionally optimized the transmission of JPEG headers. The first 500 bytes of the com-
pressed bit stream is always the same, using the same quality factor and frame resolution. We
store the header on the receiver and avoid sending the 500 bytes of header data, which amounts
to the transmission of two LoRa packets and seconds or minutes of device operation.

Transmission. We operate the LoRa radio with the following parameters: Frequency =
915 MHz, Bandwidth = 500 kHz, Spreading Factor = 7, Coding Rate = %, Preamble Length =
8 symbols, Output TX Power = 17 dBm, Packet Size = 255 bytes.

Energy Management. We manage the energy usage of different tasks on Camaroptera in soft-
ware by charging the capacitor to 3 V before the start of each task. A task can be either image
capture, any single stage of the processing pipeline, or transmission of a single LoRa packet. Once
the execution of a task is complete, if the capacitor voltage is below 3 V, Camaroptera goes into
deep-sleep and charges the capacitor before resuming operation from the next task. We have sized
the capacitor to atomically support the largest energy task (transmission of single LoRa packet),
avoiding mid-task power failures.

7 EVALUATION METHODOLOGY

We evaluated Camaroptera using a fully built hardware and software prototype (Figure 1(a)) to
show that local inference effectively enables Camaroptera to find and transmit interesting im-
ages, to avoid transmitting uninteresting images and to capture and process more images overall
compared to several baselines. We also characterize Camaroptera across a range of software con-
figurations and environments. Running experiments on a real Camaroptera device in real lighting
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conditions allowed capturing real system timing behaviors, including energy-harvesting inefficien-
cies, processing latency, and energy variability.

7.1 Application

Our prototype implements a representative person-detection application using a deep neural net-
work and sends images containing people to the base station, which we refer to as operating in the
Local Inference mode. We demonstrate the effectiveness of this Local Inference mode by comparing
it with two alternate modes: Sense-and-Send and Basic Thresholding. The software flowcharts for
these three modes are shown in Figure 4. Sense-and-Send indiscriminately transmits all the im-
ages it captures, only running JPEG compression for each image. Basic Thresholding sends JPEG
compressed images that signficiantly differ from the device’s previous image, with 2% or greater
number of pixels differing by 15% or greater. Local Inference uses local DNN inference to detect im-
ages of people. Local Inference first runs Basic Thresholding and for significantly different images,
invokes the trained DNN person detector from Section 6. Local Inference sends images classified
as containing people only and discards other images.

7.2 Methodology

We ran three multi-week, in-lab experiments, with Camaroptera handling images in one of Sense-
and-Send, Basic Thresholding, and Local Inference modes (Section 7.1) for the respective experiment.
We evaluated how Camaroptera operates at three different, realistic outdoor light conditions rang-
ing from overcast to bright sun (15, 30, and 45 kLux), setting these light levels using a dimmable
incandescent bulb and a URCERI MT-912 light meter. Each trial had 5,000 image events emulated
via an MSP430 experimental control board connected to Camaroptera. We emulated image deliv-
ery to ensure repeatable experiments. To emulate an event (i.e., a significantly different image), the
control board raises the event GPIO pin, connected to Camaroptera. To emulate an interesting event
(i.e., an image containing a person), the control board raises the interesting GPIO pin, connected
to Camaroptera. The control board generates events and interesting events with Gaussian (u = 3s,
o = 1s) durations and Poisson (A = 10s) inter-arrival times, based on our informal profiling of
real, pre-COVID19 human activity on a college campus during daytime. We use the same event
sequences across trials with different system configurations to ensure fair comparison.

As outlined in Section 7.1, we studied Camaroptera in three operating modes. In the Sense-and-
Send mode, Camaroptera captures and transmits images continuously. In the Basic Thresholding
and Local Inference modes, Camaroptera first captures an image. If Camaroptera captures an image
with the event GPIO raised, then the image is treated as an event. Basic Thresholding transmits an
image if it is an event, assuming perfect discrimination of events using differencing. For the Local
Inference mode, an image captured with both the event and interesting event GPIO pins raised indi-
cates the presence of a person, and not otherwise. The number of event images that are interesting
is dictated by the True Positive (TP) rate: TP% of all event images will be marked as interest-
ing. For every event image, Camaroptera runs its classifier and makes a classification judgment
uniformly randomly based on its false positive (FP) and false negative (FN) ratio: An uninter-
esting image has FP% chance of being transmitted, and an interesting image has FN% chance of
begin discarded. We ran the multi-week experiment with a FP:FN = 10:10 classifier that emulated
a reasonable operating point and a 1% TP rate.

8 EVALUATION RESULTS

Our evaluation shows that compared to the Sense-and-Send and Basic Thresholding modes, Ca-
maroptera’s Local Inference mode enables it to capture and transmit more interesting images,
transmit fewer uninteresting images, and capture more total images. We evaluated Camaroptera’s
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sensitivity to variation in several evaluation parameters, including the rate of interesting events
in the environment (True Positive Rate) and the FP:FN rate of the classifier.

8.1 Local Inference Yields Better Data

We present the results of the multi-week experiment described in Section 7.2, showing that the
Local Inference mode yields better data than Sense-and-Send and Basic Thresholding, providing more
interesting images, fewer uninteresting images, and processing more images overall.

Local Inference sends more interesting images: Figure 7(a) shows the number of interesting
images—images containing people—that Camaroptera captures in the Local Inference mode,
compared to the Sense-and-Send and Basic Thresholding modes. Across all three light levels,
Camaroptera with Local Inference captures and sends a larger number of interesting images.
This difference is greatest at low input power (15klx), with the Local Inference mode enabling
Camaroptera to send around 12X more interesting images than the commonly used Sense-and-
Send mode, and around 3Xx more than the Basic Thresholding mode. The Local Inference mode
outperforms the other two modes as it uses energy judiciously, avoiding the costly transmission
of uninteresting images.

The data show that in Local Inference mode, Camaroptera transmits as many as 50% of all in-
teresting images, which is 12x more interesting images than Sense-and-Send transmits. There are
two main reasons that Camaroptera does not capture 100% of interesting images in Local Infer-
ence mode. First, Camaroptera spends time processing each image, creating a risk of not capturing
an interesting image while processing an uninteresting one. Section 9 discusses strategies to fur-
ther reduce this risk and capture more interesting events. Second, even in Local Inference mode,
Camaroptera spends time recharging energy spent transmitting interesting events, which blocks
capturing new data.

Local Inference sends fewer uninteresting images: Camaroptera’s local inference avoids
transmitting uninteresting images more effectively than other modes. Figure 7(b) shows how the
number of uninteresting images sent varies with input power across the three operating modes.
Local Inference mode sends up to 6.5 fewer uninteresting images than Sense-and-Send mode. Addi-
tionally, while Local Inference mode transmits a roughly constant number of uninteresting images
across input power levels, Sense-and-Send and Basic Thresholding send more uninteresting images
as input power increases. Local Inference avoids the problem of eager transmission faced by Sense-
and-Send and Basic Thresholding: As power increases, recharging becomes faster, enabling sending
more images. However, without the ability to discriminate interesting from uninteresting, Sense-
and-Send and Basic Thresholding more quickly send more uninteresting images.

Local Inference captures more total images: Operating in the Local Inference mode allows
Camaroptera to avoid costly transmission of uninteresting images and use that energy to capture
and process newer images. Figure 7(c) shows the total number of images that Camaroptera pro-
cesses in all the operating modes across the whole trial. Local Inference mode enables Camaroptera
to capture upto 14.7X more total images than the Sense-and-Send mode, and upto 2.8x more than
the Basic Thresholding mode. Processing more raw images by using local inference decreases the
chance that Camaroptera misses a critical, interesting event.

Transmitting images is energy-expensive, and collecting that energy takes significant time.
Avoiding unnecessary image transmission allows the Local Inference mode to significantly reduce
the energy collection time, resulting in less time spent on each image than the other two modes.
Figures 7(d) to 7(f) show the distribution of total time spent on an image frame, across three light
levels for each mode. The total time includes the time to capture, process and, if applicable, transmit
the frame, as well as the time to collect the energy required for these tasks. As radio transmissions
are energy-expensive, the frames that are transmitted incur a large latency, dominated by energy
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Fig. 7. (a) to (c) show the results of a multi-week experiment demonstrating that the Local Inference mode
outperforms the Sense-and-Send and Basic Thresholding modes on Camaroptera, in terms of Interesting im-
ages sent, Uninteresting images sent, and Total images captured, respectively. (d) to (f) show the per-frame
latency distribution across the three operating modes, for three different light levels.

collection. This can be observed in Figure 7(d), which shows the Sense-and-Send mode transmitting
every image, and thus incurring large frame latencies (60s to 90s at 15 klx) on all the frames it cap-
tures. Further, the frame latencies are higher when input power is low (>60s at 15 klx), due to slower
energy collection, and lower at higher input power (30s to 40s at 45 klx), where energy collection is
faster. The Basic Thresholding mode (Figure 7(e)) avoids transmitting unchanged images, which is
reflected in the large number of frames with latency <10s, as these frames avoid large energy col-
lection delays. However, the uninteresting images that the Basic Thresholding mode transmits still
incurs this large delay, as represented by the frames having large total times (between 50s and 90s
at 15 klx). In contrast, the Local Inference mode (Figure 7(f)) minimizes the total per-frame latency
by using the high-energy radio only for transmitting the images it classifies as interesting for the
application. This results in very few frames incurring the high energy collection cost of radio trans-
missions (frames with latency between 60s to 90s at 15 klx). Majority of the frames in the Local
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Fig. 8. Figures (a) to (d) show the performance of Camaroptera under different True Positive (TP) rates at
different light levels. Here, Camaroptera operates in the Local Inference mode with a classifer that has a 10:10
False Positive:False Negative ratio. Changing the TP rate represents different amount of interesting events
in the environment.

Inference mode either take <10s when eliminated by Image Differencing or take 10s to 20s when
eliminated by the Inference module. Faster frame latencies allow the Local Inference mode to cap-
ture more total images, increasing the effectiveness of Camaroptera in detecting interesting events.

8.2 Effect of Varying Event Composition

We studied Camaroptera’s sensitivity to varying the True Positive (TP) rate of images encoun-
tered across Figures 8(a) and 8(d). We restrict this study to Camaroptera’s Local Inference mode
with a DNN having a ratio of False Positives to False Negatives of 10:10. The trials for this sensitiv-
ity study had 100 image events, and the results were averaged across three repetitions of each trial.
We varied the TP rate from 20% (few people) to 80% (crowded area), representing different amounts
of interesting event traffic. The data shows that higher interesting event traffic (TP rate) degrades
Camaroptera’s ability to detect interesting events only when input power is low. We expected that
a higher TP rate would be detrimental in the Local Inference mode, since it would require more
energy-expensive image transmissions. This expectation holds true for total images captured, as
seen in Figure 8(a), where the most images are captured for the lowest TP rate (20%). Figure 8(d)
shows that as the TP rate increases, Camaroptera spends more time on image transmission and
less on image capturing, resulting in fewer total images.

Figures 8(b) and 8(c) provide additional insights into how Camaroptera operates at different TP
rates. As we expect, Camaroptera reports more total interesting events when there is a higher
amount of interesting event traffic; however, the fraction of interesting events it reports varies. At
10 klx, energy efficiency matters most, and a low TP rate helps Camaroptera avoid activating the
expensive radio. Camaroptera reports the largest fraction of interesting events for the 20% TP rate
at 10 klx. At higher input power, a TP rate of 50% presents a higher fraction of interesting events.
Camaroptera reporting a larger fraction of interesting events at 50% TP than 80% TP is expected;
more interesting events use the radio more frequently, missing the capture of newer interesting
events. When comparing against a 20% TP rate, Camaroptera misses consecutive interesting events
due to its long processing latency. While Camaroptera misses consecutive event for all TP rates,
this degrades performance the most at 20% TP rate (since there are few interesting events to begin
with). Figure 8 shows that Camaroptera’s ability to report interesting events is robust across a
reasonable amount of event traffic (especially at 50%) and can be deployed across a variety of
environments.
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Fig. 9. Figures (a) to (c) show the performance of Camaroptera with different classifiers at different light
levels, operating in the Local Inference mode. The different classifiers are represented by their False Posi-
tive:False Negative (FP:FN) ratio. Here, the True Positive rate for the environment is set to be 20%. Different
classifier FP:FN ratios represent different design points for Camaroptera.

8.3 Effect of Varying DNN Parameters

We measured Camaroptera’s sensitivity to variations in the False Positive and False Negative
rate of its DNN classifier, evaluating its effectiveness with different learned inference models
(Figures 9(a) to 9(c)). We evaluted three classifiers, representing differently tuned versions of the
DNN in Section 6 with the same memory footprint. We identify a classifier by the ratio of its False
Positives to its False Negatives, e.g., FP:FN = 10:10. Similar to Section 8.2, this sensitivity study was
also conducted with trials comprising 100 image events, averaged across three repetitions.
Figures 9(a) and 9(b) show that a 10:10 classifier captures the most total images. However, the
classifier that reports the largest fraction of interesting events depends on the input power. At
low input power (10 — 20klx), a low FP rate (10%, 20%) leads to fewer uninteresting images trans-
mitted (Figure 9(c)) than a 40% FP rate, preserving the limited available energy. Camaroptera uses
this energy to capture and report a higher fraction of interesting events. At higher input power
(>30klx), energy is more abundant, and lowering the FN rate takes precedence; a 40:1 classifier
reports the largest fraction of interesting events, even when its high FP rate leads to transmitting
the most uninteresting events. Figure 9 shows that designers using Camaroptera must tune the
classifier to match their application requirements (e.g., suffering higher FP for achieving lower
FN), and also the deployment environment (e.g., prioritizing a lower FP when input power is low).

8.4 Device Characterization

We characterized and compared the lifetime of our energy-harvesting, batteryless Camaroptera
system with different battery-powered Camaroptera systems, as well as the Permamote [34] sys-
tem, in Table 2. Non-rechargeable batteries are a poor choice for a long-range, visual-sensing sys-
tem like Camaroptera given their limited lifetimes of a few weeks. Rechargeable batteries allow
Camaroptera to achieve longer lifetimes, but still require expensive battery replacements every
4-5 years. Permamote combines a rechargeable LTO battery with a non-rechargeable backup
CR2477 battery for powering operation during periods of no input power (e.g., night time). While
this does extend the operation to night time, we argue that this fits our Camaroptera system poorly
for two reasons. First, the 5-year lifetime even with a rechargeable LTO battery requires expen-
sive battery replacements, failing our requirement for a multi-decade lifetime. Second, a visual-
sensing-based system like Camaroptera can capture useful images only when the scene is well-lit,
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Table 2. Lifetime of Camaroptera with Different Power Systems

System Capacity Lifetime Trans;l;itt;el(:;rame
CR2477 1,000 mAh 17.6 days 20.676 s
Non-rechargeable AA only 3,000 mAh 52.7 days 20.676 s
Rechargeable AA only 2,650 mAh 4-5 years® 20.676 s
Rechargeable LTO only 10 mAh 4.8 years” 20.676 s
Permamote [34] (CR2477 + LTO) - | 4.8 years + 17.6 days 20.676 s
CamHW - 00¢| 36-114 s (45-15 klx)

“Shelf-life limitations.
b Assuming 10,000 recharge cycles at half-depth discharge.
“Theoretically infinite, practical device lifetimes dictated by IC degradation.
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Fig. 10. Cost breakdown for performing different tasks on Camaroptera.

rendering night-time operation unnecessary, especially in remote areas where artificial lighting
will be rare.

We also characterized Camaroptera’s latency and energy for its main operations, with data in
Figure 10. The data show that while inference takes the most time to complete, transmitting using
LoRa consumes the most energy, because the radio system has much higher power consumption.
With low input power, the high energy cost of transmitting requires a long recharging latency
(Figure 2) despite the low transmission latency. With high input power, recharge times drop and
the time spent computing exceeds the time spent transmitting and recharging.

9 FUTURE WORK

The less time Camaroptera spends between two subsequent image captures, the more images Ca-
maroptera can capture and process, resulting in higher sensing effectiveness. We discuss a few
ways to run Camaroptera processing pipeline faster, so that it captures and processes images more
frequently.

More compute: Camaroptera performs computations on each image it captures, and running
these computations faster will enable Camaroptera to capture a new image sooner. The most
latency-intensive computations on Camaroptera are Inference and JPEG Compression, as shown
in Figure 10(b). Optimizing the speed of these two computations will in turn reduce the time be-
tween two subsequent image captures. This can be achieved by employing special architectures,
from DNN accelerators to dedicated DSP co-processors.
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Fig. 11. Figures (a) to (c) show the performance of Camaroptera with our MSP-based design and using
an ARM Cortex-M4 board to run the DNN. While using an ARM core to replace the MSP430 enables Ca-
maroptera to perform better, the lack of FRAM support in commercial ARM cores justifies our choice of
building Camaroptera around an MSP430 MCU.

We quantitatively show the benefits of faster compute by running the DNN in Camaroptera on
an ARM Cortex-M4 core (NUCLEO-G474RE [67]). We ran experiments with the FP:FN = 10:10 clas-
sifier, with event emulation using the 20% True Positive rate, at four different light levels. For each
experiment, Camaroptera ran everything but the DNN on the MSP430, and invoked the ARM core
for running the DNN. Figure 11 shows that using the ARM core to accelerate the DNN computa-
tions enables Camaroptera to capture more interesting and total images. The ARM core provides
higher energy efficiency than the MSP430, consuming 16.5m] (~ 93mW for 178ms) for running
the DNN; the ARM core outperforms the MSP430 in terms of both energy and latency. However,
commercial ARM cores lack support for byte-addressible, non-volatile memory like FRAM, justi-
fying our MSP430-centric design of Camaroptera. We envision future revisions of Camaroptera to
have new computational accelerators specific to the nature of deployed applications, which will
enable Camaroptera to become a more effective sensor.

More power: Camaroptera has to spend time recharging the energy used for performing
tasks, and improving energy-harvesting efficiency will reduce this recharging delay. The energy-
harvesting efficiency depends on the size and efficiency of the solar cells and the efficiency of
Camaroptera’s power board. As solar cell technology matures and more efficient boosters become
available, future revisions of Camaroptera can employ them to reduce their energy recharging
latency, processing each image faster.

Adaptation: At high input power levels, Camaroptera processes each image faster in the Ba-
sic Thresholding mode, as compared to the Local Inference mode. Figures 12(a) and 12(b) show a
breakdown of the per-image latency for Camaroptera operating in the Basic Thresholding and Lo-
cal Inference modes, harvesting 30 klx and the maximum rated power of Camaroptera’s solar cells,
respectively. Each bar shows the time spent performing a different task for an image (from capture
to transmission), including the time to recharge the energy required by the task; the shaded region
shows the recharging latency. The breakdown for transmitting an interesting image (INFER-TP)
and for discarding an uninteresting image (INFER-TN) in the Local Inference mode are shown sepa-
rately. At 30 klx, it is faster to discard an uninteresting image using machine inference (INFER-TN)
than transmitting it indiscriminately in the Basic Thresholding mode, since it is slow to recharge
the energy required for image transmission. While INFER-TP (transmitting an interesting image)
takes the longest total time, it is infrequent enough that Camaroptera operates faster in the Local
Inference mode as compared to the Basic Thresholding mode (as shown by results in Section 8).
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Fig. 12. Latency breakdown for processing events in the Local Inference mode for an interesting event (INFER-
TP), for an uninteresting event (INFER-TN), and in the Basic Thresholding mode, at (a) 30 kix and (b) the
maximum rated power of Camaroptera’s solar cells. The shaded regions show the portion of time spent
recharging energy; a task is shaded entirely if recharging takes longer than execution. At common levels
of input power (30 kix), the Local Inference mode outperforms the Basic Thresholding mode, as processing
uninteresting images (INFER-TN) is faster in the Local Inference mode. In contrast, at the maximum rated
input power, sending an image after Basic Thresholding is faster than running Local Inference, even for un-
interesting images. However, this increased device speed comes at the cost of flooding the network with
uninteresting images, representing an important design tradeoff.

Conversely, when harvesting the maximum rated power, operating in the Local Inference is always
slower than the Basic Thresholding mode. At this high input power, recharging is quick and trans-
mitting an entire image is faster than running inference. This presents another way to improve
the overall speed of Camaroptera—by switching to the Basic Thresholding mode at very high input
power levels.

However, this faster operation comes at the cost of a sharp increase in network traffic. At this
input power level, with a 20% TP rate, the Basic Thresholding mode sends an image every ~13 sec-
onds, while the Local Inference mode sends one every ~74 seconds. The Local Inference mode dis-
cards a majority of the uninteresting images, transmitting less frequently. Assuming an airtime of
0.33 ms per JPEG-compressed image, a time-multiplexed base station should be able to receive
packets from close to 40 devices operating in Basic Thresholding. However, the same base station
will be able to service more than 200 devices operating in the Local Inference mode. This translates
to a 5% increase in the number of required base stations. Every base station will have to further
expend resources to filter out the uninteresting images sent by the Basic Thresholding mode. Input-
power-based switching presents a design tradeoff in terms of local device speed vs. network con-
gestion, and the decision whether to employ this will depend on the specific deployment scenario.

10 RELATED WORK

There are several categories of work related to Camaroptera: batteryless remote sensing and
communication systems, intermittent computing systems, and work on edge and near-sensor
computing.

10.1 Batteryless Sensing and Communication

Prior work developed batteryless devices to sense their environment and transmit acquired
data. The most related of these devices are batteryless image sensing systems [57, 58] described
in Section 3.1. These systems rely on backscatter communication, requiring heavy RF infrastruc-
ture and are not appropriate for pervasive, wide-spread deployment, which is the motivation
of Camaroptera. A recent system [22] presents a batteryless image sensing system for face
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recognition. While using a similar camera and radio to Camaroptera, its architecture and
deployment targets are entirely different. It targets indoor face detection, resulting in a different
power system design with significantly (roughly 6x) larger solar panels and uses a time-of-flight
sensor to trigger image captures. More importantly, its computing subsystem is designed around
an ARM Cortex-M4 core, which does not support byte-addressable non-volatile memory, making
this system unsuitable for long-lifetime, energy-harvesting applications. Other batteryless
systems [9, 11, 25, 27, 36, 63, 79, 80] are designed to collect low-data-rate time series data and do
not support image collection. Additionally, by relying on backscatter, Bluetooth Low Energy
(BLE), or other short range communciation media, these devices do not communicate over long
distances, making them inapplicable to Camaroptera.

Other prior work on batteryless communication relates to Camaroptera. Some work uses ac-
tive radios [8, 11, 20] focusing primarily on BLE. We are unaware at the time of writing of any
batteryless device supporting active LoRa communication, making Camaroptera the first device
with this capability. NeoFOG [46] relies on high-powered radios and focuses on optimizing sensor-
to-sensor communication, not long-range backhaul. Other work uses passive communication, pri-
marily based on RF backscattering. Some work aims at short-range backscattering of directed or
ambient RF energy [37, 38, 63, 73, 76], which are inapplicable to the demands of wide-spread sen-
sor deployment. Longer-range passive systems [59, 69, 75] extend the range of passive networking,
but to insufficient range (tens of meters) [75] and with dependence on large, powered RF transmit-
ters. Camaroptera has the full range of LoRa (hundreds of meters to kilometers) and requires only
inexpensive receivers, not complex, high-power RF power transmitters.

10.2 Intermittent Computing and DNNs

Recent work improved the computational capability of batteryless devices with software and hard-
ware models for intermittent computing. Most relevant is recent work on bringing deep learn-
ing to energy-harvesting devices [23]; Camaroptera directly leverages this work for its DNN
hyper-parameter optimization. Binary networks [13, 41] and bit-serial [17] approaches are an ap-
pealing alternative option for DNNs on intermittent devices. Other work on intermittent com-
puting focused on correctness using software support for tasks [10, 28, 48, 62, 77] and check-
points [5, 6, 35, 49, 50, 61, 72], some with support for approximation [21, 47]. Other systems
provide hardware support for designing intermittent architectures [29, 54], circuits [55], and plat-
forms [11, 35]. Some work on intermittent computing targets the safety of I/O operations [3, 7]
and concurrency [62, 77].

Camaroptera is largely orthogonal to this prior work on intermittent computing because, while
batteryless, Camaroptera avoids intermittent operation by provisioning its capacitive energy stor-
age for communication, which is an order of magnitude larger than what computing requires.
Consequently, Camaroptera avoids unpredictable intermittent operation, instead Camaroptera is
designed to have sufficient stored energy before attempting any computation.

10.3 Edge Computing

Prior work on edge computing has studied early image discard for constrained image sensing
systems, similar to Camaroptera’s processing pipelines. Systems like WULoRa [51] use a sec-
ondary wake-up receiver to trigger a sensing task on the LoRa-based sensing device, whereas
Camaroptera triggers its LoRa radio upon detecting interesting events in its environment. Edge
systems process image and video data [32, 68, 74] efficiently on inelastic deployed resources.
Camaroptera differs in scale from most prior edge systems (with at-sensor computing being
“beyond the edge,” according to prior work [23]). Edge computing on larger, yet inelastic systems
represens an important future research topic. We assume Camaroptera’s base stations are cheap
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receivers, but in the future Camaroptera base stations could include sophisticated edge computing
resources. Managing the division of labor between Camaroptera-scale sensor nodes, larger,
base-station-scale edge computing resources, and clouds is an open problem.

11 CONCLUSION

We presented Camaroptera, the first batteryless image sensor with the ability to communicate over
extremely long distances using an active LoRa radio. Camaroptera is designed to reduce the high
cost of long-range communication by processing data locally, using at-sensor processing pipelines.
Our fully built hardware and software prototype supports all of Camaroptera’s capabilities in a
compact form factor. Our evaluation showed that employing Local Inference on Camaroptera al-
lows it to send upto 12X more interesting images, while reducing the uninteresting images sent
by upto 6.5%, as compared to a traditional Sense-and-Send approach. This also allows Camaroptera
to capture upto 14.7X more total images, increasing Camaroptera’s effectiveness as a sensor. Fu-
ture Camaroptera iterations can employ novel architectures to reduce computational costs, further
improving its availability in real-world deployments.
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