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Two-dimensional diffusiophoretic colloidal
banding: optimizing the spatial and temporal
design of solute sinks and sources

Ritu R. Raj, a C. Wyatt Shields IV ab and Ankur Gupta *a

Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute

concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily

focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this

work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of

colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated

by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we

study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and molar

rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion

timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion

from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and

sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the

timescale of interdipole diffusion, an optimal separation distance is obtained such that particle

enrichment is maximized. We find that the partition coefficient of solute at the interface between the

source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of

solute in the source and bulk has a much weaker impact on the optimal dipole separation distance.

We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and

demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the

circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an

alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources

and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally

designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens

up new avenues in a field that has primarily focused on one-dimensional solute gradients.

1 Introduction

Diffusiophoresis is the phenomenon where colloidal particles

move in response to solute concentration gradients. The under-

standing of this key physical principle and its applications is

enabling innovation in paint film deposition,1 laundry,2

membrane separation,3,4 and hidden target searching.5 Solute

concentration gradients in diffusiophoresis can be generated

by a number of mechanisms:6 chemical reactions,7 mineral

dissolution,8 and chemokine secretion,9 amongst others. The

movement of colloidal particles due to concentration gradients

can be divided into two broad categories: active and passive

diffusiophoresis. In active diffusiophoresis,10–13 colloidal par-

ticles generate their own concentration gradients, while in

passive diffusiophoresis,14–18 particles respond to an externally

generated gradient.

Recently, there have been numerous experimental and the-

oretical reports exploring the motion of active diffusiophoretic

particles. These include the effects of finite Peclet numbers,19,20

asymmetry in the form of Janus particles and bent rods,21–23

changes in the local fluid environment,10,13,24,25 and the use of

active droplets instead of particles.26–28 Such systems have been

proposed for uses in applications29 such as environmental

remediation,30 drug delivery,31 and cellular transport.32

In contrast to active diffusiophoresis, there are several

decades of literature on passive diffusiophoresis. One of the

first series of studies to quantify the distribution of colloidal

particles under diffusiophoresis was conducted by Staffeld

et al.33,34 They showed, in electrolytic and non-electrolytic
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solutes, that the particle distribution exhibits a local maximum,

resembling a band that moves with the diffusing solute

front.33,34 This laid the groundwork for studies of diffusio-

phoretic banding in other systems, including the well-studied

dead-end pore geometry.35–38 Experimental studies have been

conducted on these dead-end pore systems to optimize nano-

particle transport in collagen hydrogels,39 show the size depen-

dence of particle transport into pores,40 determine design

criteria for particle capture by a pore,41 and develop a low cost

zeta-potentiometer.42 In addition to dead-end pore geometries,

similar studies have been conducted in other microfluidic

systems. Cross-channel pores have been used to study surface-

solute interactions17 and the aggregration of colloidal particles

near flow junctions.43 CO2-induced concentration gradients across

microfluidic channels have been used to predict exclusion zone

formation in channel flows,44 remove bacteria from surfaces,45

provide crossflow migration of colloids,46 and enable membrane-

less water filtration.47 In a similar way, salt gradients have been

used to induce colloidal banding in microfluidic channels.16,48

In addition to the breadth of experimental studies, analy-

tical and numerical techniques have been used to study the

phenomena observed in the aforementioned experimental sys-

tems. Anderson et al. showed that the diffusiophoretic velocity

of a particle is dictated by surface interactions between the

solute and particle.49–51 For ionic solutes, the diffusiophoretic

velocity is given as uDP = Me=ln c, where Me is the mobility of

the particle and c is the electrolyte concentration.50 For a

particle moving in non-ionic solutes, the diffusiophoretic velocity

is given as uDP =M=c, whereM is also amobility parameter and c is

the solute concentration.51 Thesemobility relationships can also be

extended to include the effect of multiple ionic species,52–54

arbitrary double layer thicknesses,55 and ion sizes,56,57 amongst

others. Numerical studies have been conducted on the spreading of

diffusiophoretic particles in response to applied solute gradients

with hydrodynamic background flows,58 in one-dimensional tran-

sient gradients,59,60 in concentrated electrolyte solutions,61 in

solutes that exhibit Taylor dispersion due to a background/diffu-

sioosmotic flow,14,62 and in the presence of multiple electrolytes.52

Despite the expansive literature on passive diffusiophoresis,

most studies focus on the effects of one-dimensional transient

or steady solute concentration profiles on particle motion. The

number of studies that expand particle motion to two or three

dimensions are limited,14,17,41,44,52,62–64 with most focusing on

diffusiophoretic motion in two- and three-dimensional channel

flows with one-dimensional driving solute gradients.

Recently, Bannerjee et al.65 developed ‘‘soluto-inertial’’ bea-

cons that enable them to enact spatio-temporal control over

solute gradients surrounding their beacons. This allows them

to control and study diffusiophoretic particles moving in

response to two- and three-dimensional gradients. They initi-

ally designed cylindrical hydrogel posts loaded with sodium

dodecyl sulfate that attracted decane droplets and repelled

polystyrene particles by releasing solute over a timescale of

tens of minutes.65 By determining the appropriate diffusio-

phoretic velocity scale analytically in 3D and numerically in 2D,

they were able to collapse the radial dependence of particle

velocity.65 This proof-of-concept study showed that diffusio-

phoresis can be used as a mechanism to move colloidal

particles deterministically over a length scale of hundreds

of microns.65 The authors expanded this study to design

temperature-triggered beacons, source and sink dipoles,

dipoles with distinct solutes, and dipoles with reacting

solutes.66 In follow-up studies, they developed design

principles,67 which enabled them to manipulate colloidal

distributions in suspension by a sedimenting beacon68 and

deliver particles to hidden targets.5

Inspired by the work from Banerjee et al.66 on source and

sink dipoles, we envisioned that multiple solute sources and

sinks can be spatially and temporally designed to optimize

diffusiophoretic banding in two dimensions. To this end, we

outline a numerical procedure for simulating diffusiophoretic

colloidal transport in response to a non-electrolytic solute

gradient generated by an arbitrary number of point sources

and sinks. We determine an appropriate time-dependent molar

rate by semi-analytically solving for the flux from a finite-sized

solute source. Using our numerical scheme, we determine

the timescales governing particle separation in a dipole and

octupole source/sink system. For the dipole system, we show

that there exists an optimum separation distance between the

source and sink that maximizes particle enrichment in a

specific region. This optimal distance is set by a balance

between interdipole diffusion and molar rate decay timescales.

We find that the optimal separation distance depends primarily

on the partition coefficient, K, of the source/sink and is weakly

dependent on the diffusivity ratio, D̂. Lastly, we show how these

principles change the optimal geometric arrangement of

sources and sinks in an octupole configuration. Interestingly,

we find that the optimal design of an octupole configuration

depends on both the spatial arrangement of sources and sinks

and the temporal decay of the solute molar rate. These results

underscore the rich dynamics observed by expanding diffusio-

phoretic driving forces to two dimensions. Our results also

broaden the potential design space of colloidal banding using

diffusiophoresis and provide a numerical framework to study

the banding of diffusiophoretic particles in response to an

arbitrary arrangement of solute sources and sinks.

2 Problem setup

To investigate the response of colloidal particles in two-

dimensional solute gradients, described here as =c, we focus

on the gradients generated by an arbitrary number of solute

sources and sinks. As shown in Fig. 1, we denote the locations

of the sources and sinks by ri, where the subscript i refers to the

ith source or sink. The distance between the ith and jth source or

sink is denoted as Dij. For simplicity, we consider that the

sources emit solute at a molar rate J(t) and that the sinks absorb

solute at a molar rate of �J(t). At time t = 0, we have a uniform

concentration of particles and solute in our system. At t = 0+,

the sinks and sources begin emitting and absorbing the solute,

creating a time-dependent and spatially varying concentration
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gradient. The solute gradient generated by sources and sinks

induces a diffusiophoretic velocity on particles, uDP = M=c.

If M 4 0, particles are attracted to the sources and repelled

from the sinks. In contrast, if M o 0, the particles are repelled

from the sources and attracted to the sinks. At early times, the

sources and sinks interact minimally, resulting in attraction/

repulsion which transports particles towards the source and

away from the sink (for M 4 0). This creates local extrema of

particle concentration, resulting in a banded distribution.

As time progresses, the sources and sinks screen each other,

much like electrostatic charges. At this timescale, the diffusio-

phoretic movement is diminished. In the following analysis,

we seek to optimize particle enrichment by tuning the arrange-

ment of sources and sinks, given a time-dependent molar

rate, J(t).

We acknowledge that in practical experimental setups, the

emission and absorption rates are unlikely to be equal and

opposite over time. However, while our numerical framework

can handle arbitrary molar rates, we make this assumption to

reduce the number of parameters in our system. In addition, we

note that uDP as described above uses the non-electrolyte

mobility relationship. The rationale to use this relationship is

two-fold. First, the non-electrolytic mobility expression does

not possess the singularity found in the electrolytic mobility

expression. We acknowledge that the singularity can be

addressed by considering a concentration dependent electro-

lytic mobility.61,69 For computational convenience, we refrain

from incorporating a concentration dependent mobility rela-

tion. Second, if the concentration difference is relatively small,

the two mobility relationships are equivalent; see Appendix A.

Therefore, we choose the non-electrolytic mobility relationship.

We acknowledge that there might be quantitative differences

if a different mobility relationship is employed, and comment

on this difference in Appendix A. Additionally, we acknowledge

the limitation in using point sources and sinks, as spatial

effects due to the presence of a finite-sized source/sink will

yield differences. However, we observe that the qualitative

features remain the same as reported in prior experiments;66

see Appendix B.

2.1 Solute and particle transport equations

The species conservation equation for solute concentration,

c(r,t), is

@c

@t
¼ Dsr2cþ

X

i

JiðtÞd r� rið Þ; (1)

where t is time, Ds is the solute diffusivity, = is the gradient

operator, Ji represents the strength of the ith source/sink, r is

the position vector pointing from the origin, ri is the position of

the ith source/sink and d is the Dirac delta function. As is

evident from eqn (1), we treat solute sources and sinks as point

sources. If the ith solute patch is a source, Ji = J(t), and if the ith

solute patch is a sink, Ji = �J(t). As we show later, we account for

the finite-size effect of the patch by deriving the emitted flux

from an isolated source. We note that eqn (1) neglects any

advection terms in solute transport, which is typical for studies

on diffusiophoresis without background flows.61,70

We calculate particle motion using two different

approaches. First, we use Lagrangian particle tracking to deter-

mine the position of particles in time. The center of mass of the

ith particle, xi, can be determined by solving the following

differential equation

dxi

dt
¼ uDP ¼ M=cj

xi
: (2)

We note that eqn (2) neglects Brownian fluctuations. This is a

typical assumption for diffusiophoretic particles as particle

radii are typically Oð10�6Þm.62,63

Second, we calculate the concentration of colloidal particles,

n(r,t). The conservation equation for particle concentration is

@n

@t
¼ Dnr2n� = � nðM=cÞð Þ; (3)

where Dn is the diffusivity of the colloidal particles. The

response of the particles to the generated solute field is

included as an advective term. We retain Dn for numerical

stability and assume
Dn

Ds

� 1. The retention of Dn helps smooth

the sharp gradients near the moving particle band. Eqn (1) and

(2) or eqn (1) and (3) are solved simultaneously to determine

c(r,t), xi(r,t) and n(r,t).

Before numerically solving, we non-dimensionalize eqn (1)–

(3) as

@~c

@t
¼ ~r2~cþ

X

i

J iðtÞ~d ~r� ~rið Þ; (4)

Fig. 1 Schematic illustration of problem setup. Solute sources and sinks

are denoted by red and blue circles, respectively. The ith source/sink is

located at a position ri � (xi,yi). The separation between the ith and jth

source/sink is denoted as Dij. The sources emit solute at a molar rate J(t),
whereas sinks absorb solute at a molar rate �J(t). The emission and

absorption of solute creates a concentration field, c(r,t), which induces a

diffusiophoretic velocity uDP = M=c on the particles, denoted by orange

circles, where M is the diffusiophoretic mobility.
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d~xi

dt
¼ ~M ~=~cj

~xi
; (5)

@~n

@t
¼ ~D~=

2~n� ~= � ~nð ~M ~=~cÞ
� �

; (6)

where J i ¼
Ji

Dscref
; ~d = dL2, ~n ¼ n

nref
; ~c ¼ c

cref
; t ¼ t

L2=Ds

;

~M ¼ Mcref

Ds

; ~D ¼ Dn

Ds

; ~= ¼ L=, ~r ¼ r

L
; ~x ¼ x

L
; and L is a reference

length scale. We do not employ a (i.e., the source/sink radius)

or D as the reference length scale since a only enters through

our molar rate calculations and D is the variable that we seek

to vary. We emphasize that L is a reference length scale

and does not influence our calculations. We solve these

equations in a two-dimensional Cartesian domain with

x̃,ỹ A [�10,10]. We impose no-flux boundary conditions for

both c̃ and ñ on the domain boundaries. We set initial

conditions ñ(r̃,0) = ñ0 = 1 and c̃(r̃,0) = c̃0 = 0. For simplicity,

we take D̃ = 10�4.52,61 Additionally, we note that M̃ r 1

for most colloids61 and use M̃ = 0.5 for all simulations.

To solve eqn (4)–(6), we need an input of J ðtÞ; which we

discuss next.

To elucidate the effects of molar rate decay, we use

three different scenarios for J ðtÞ. First, constant molar

rates, J ðtÞ ¼ J 0HðtÞ; where J 0 is the strength of the step

molar rate and HðtÞ is the heaviside function. In this

scenario, there is no timescale associated with molar rate

decay and the timescale for colloidal banding is dictated

by the interaction between sources and sinks. The second

choice of J ðtÞ is a boxcar function profile given by

J ðtÞ ¼ J 0HðtÞH t0 � tð Þ; where t0 introduces an additional

timescale.

Lastly, we derive J ðtÞ by calculating the flux emitting from

an isolated, finite-sized source of radius a. This allows us to

incorporate experimentally relevant parameters, i.e., the parti-

tion coefficient of the solute into the source K, and the

diffusivity ratio of solute between the source and the bulk D̂.

To evaluate J ðtÞ; we briefly restore dimensions. We assume the

origin to be the center of the source. The inner region refers to

the concentration field inside of the source, i.e., r r a and the

outer region corresponds to the concentration field outside of

the source, i.e., r 4 a. We assume that the concentration in the

outer region is initially uniform such that cout = cref, and the

source is saturated with solute such that the concentration in

the inner region is cin = Kcref. At t = 0
+, the concentration outside

is switched to cout = 0, which leads the source to start emitting

solute. The conservation equations for solute inside and out-

side the source are

@cin
@t

¼ Din

r

@

@r
r
@cin
@r

� �

r � a; (7)

@cout
@t

¼ Ds

r

@

@r
r
@cout
@r

� �

r4 a: (8)

The initial and boundary conditions are

cinðr; t ¼ 0Þ ¼ Kcref

coutðr; t ¼ 0Þ ¼ 0

@cin
@r

�

�

�

�

r¼0

¼ 0

coutðr ! 1; tÞ ¼ 0

cinðr ¼ a; tÞ ¼ Kcoutðr ¼ a; tÞ

Din

@cin
@r

�

�

�

�

r¼a

¼ Ds

@cout
@r

�

�

�

�

r¼a

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(9)

We set the diffusivity of solute in the outer region to be the

same as that of eqn (1) and the diffusivity of the inner region to

be Din. In order to determine the appropriate time dependence

of flux from the source, we first non-dimensionalize the

equations as follows:

@~cin
@T

¼ D̂
1

~r

@

@~r
~r
@~cin
@~r

� �

; ~ro 1 (10)

@~cout
@T

¼ 1

~r

@

@~r
~r
@~cout
@~r

� �

; ~r4 1 (11)

where ~cin ¼ cin

cref
; ~cout ¼

cout

cref
; D̂ ¼ Din

Ds

; ~r ¼ r

a
and T ¼ tL2

a2
. We

note that T ¼ tL2

a2
¼ Dst

a2
and is not influenced by L. By Laplace

transforming the set of equations from T-space to s-space, we

find a solution for the interfacial flux F̂(s); see Appendix C

F̂ðsÞ ¼ K
ffiffiffiffi

D̂
p

ffiffi

s
p

K1;b
ffiffi

s
pð ÞI1;b

ffiffiffiffi

s

D̂

r
� �

I0;b

ffiffiffiffi

s

D̂

r
� �

K1;b
ffiffi

s
pð Þ þ K

ffiffiffiffi

D̂
p

I1;b

ffiffiffiffi

s

D̂

r
� �

K0;b
ffiffi

s
pð Þ

;

(12)

where In,b and Kn,b are modified Bessel functions of the first

and second kind, nth order. We numerically invert the flux from

s-space to T-space, i.e. FðTÞ ¼ L�1 F̂ðsÞ
� 	

, calculate the molar

release rate, and appropriately scale the flux to get

J ðtÞ ¼ 2pF
L2

a2
t

� �

:

J ðtÞ is dependent on the partition coefficient K and diffusivity

ratio D̂, which we discuss later.

2.2 Numerical schemes

Finite-volume method. To solve the coupled partial differ-

ential eqn (4) and (6), we discretize both equations in space

onto a square Cartesian grid with a grid size of 0.05 and

write the resulting equations as coupled ordinary differential

equations in time. We use a first-order upwinding scheme to

resolve the convective term. We implement the point source/

sink as a source term in the finite-volume cell, which contains

the coordinates for the source/sink. For eqn (4) and (5), we

discretize eqn (4) in space and solve the resulting equations
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with eqn (5) as coupled ordinary differential equations in time.

We interpolate the solute gradient at the position of the ith

particle during each time step in order to determine the particle

velocity. The coupled differential equations are then integrated

using an eighth-order Runge–Kutta integration scheme

(DOP853) as implemented in Scipy. To gain confidence in our

simulations, we compare our results qualitatively to the experi-

mental results of Banerjee et al.66 and obtain a good agreement;

see Appendix B.

Optimization.We define an objective function, which inputs

the locations of sources and sinks for a given arrangement, solves

eqn (4) and (6) with a grid size of 0.1 and outputs a calculated

fraction F(t). The fraction is defined as

FðtÞ ¼
Ð

O1
~ndV

Ð

O
~n0dV

: (13)

F(t) represents the fractions of particles within a sub-region O1

of our domain O. We employ the objective function into an

optimization scheme to determine a source/sink arrangement

that maximizes F(t). The optimization scheme uses a Nelder–

Mead simplex algorithm implemented through the Scipy

Optimization package.

3 Results and discussion

We begin our analysis with a dipole system, i.e., one source and

one sink separated by a distance d ¼ D

L
; see Fig. 2(a). The

evolution of 3000 particle trajectories, as determined by

eqn (4) and (5), for sources and sinks with constant strength

J ðtÞ ¼ HðtÞ and M̃ = 0.5 is provided in Fig. 2(b–d) (some

representative contours for c̃(r,t) are provided in Appendix E).

Fig. 2 Dipole simulations for a constant molar rate. (a) Schematic illustration of dipole setup where a source and a sink are separated by a distance d.
The shaded region shows the O1 used in calculating F(t) via eqn (13) (b–d) x̃i(t = 0, 50, 100) for 3000 particles as calculated by solving eqn (4) and (5) for

d = 3 and M̃ = 0.5. (e–g) ñ(r̃,t = 0, 50, 100), as determined by solving eqn (4) and (6) for d = 3 and M̃ = 0.5. The color bar ranges from 0 to 1.

All concentration values larger than 1 are truncated to 1. (h) F(t) for a monopole and dipoles with d = 1–6. Continuum results are represented with a solid

line while particle tracking results are shown by open circles. Results for a source monopole are plotted in black. (h inset) F(t = 1) for a monopole and

dipoles with d = 1–6 in the form of a bar chart. (i) tc, i.e., the crossover time at which F(t) for the monopole overtakes a dipole with separation distance d,
plotted versus d2. The dotted line represents the line of best fit with zero intercept. J ðtÞ ¼ HðtÞ for all panels.
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The evolution of particle concentration ñ(r̃,t) for identical

parameters as determined by eqn (4) and (6) is displayed in

Fig. 2(e–g). In both the particle and continuum simulations,

since M̃ 4 0, particles are repelled from the sink and

are attracted to the source, forming a depletion zone around

the sink and enrichment zone around the source. As time

increases, particles enrich around the source and the depletion

zone increases in size. To quantify enrichment, F(t) is calcu-

lated using eqn (13). We used a volume-averaged approach for

quantifying enrichment as it is related to the enrichment

phenomena observed experimentally.66 Fig. 2(h) shows that

the fraction increases monotonically in time as particles enrich

near the source. F(t) calculated with discrete and continuum

simulations are in quantitative agreement. Since the results of

continuum simulations and particle tracking simulations are

equivalent, for the remaining analysis, results from continuum

simulations will be used. While the particle tracking simula-

tions provide a descriptive picture of particle trajectories, they

are computationally more expensive than continuum simula-

tions since they require a large number of particles (B3000 in

our analysis) to compute statistically significant volume

averages.

Fig. 2(h) (inset) reveals that smaller d values possess a higher

F(t) for early times. In contrast, larger d values display a higher

F(t) at later times. We also compare these values with the

enrichment from a single source, referred here as a monopole.

At early times, the monopole provides the least enrichment,

Fig. 2(h) (inset). However, at long times, the monopole enrich-

ment surpasses all dipoles. The time at which F(t) of the

monopole overtakes F(t) of the dipoles is denoted as the

crossover time, tc. Fig. 2(i) shows a linear trend between d2

and tc. To explain the trends outlined above, we examine

eqn (6) more carefully. First, we ignore diffusion as D̃ = 10�4.

Next, we integrate eqn (6) over O1 (defined by the shaded region

shown in Fig. 2a), and write
ð

O1

@~n

@t
dV ¼ �

ð

O1

~= � ~nð ~M ~=~cÞ
� �

dV : (14)

By employing eqn (13) and divergence theorem, we obtain

dF

dt
¼ �

~M

N0

ð

S1

~n~=~c
� �

� êndS; (15)

where N0 ¼
Ð

O
~n0dV; S1 defines the outer perimeter of region

O1, and ên is the unit normal vector pointing outwards from S1.

Essentially, eqn (15) states that
dF

dt
is affected by the convective

flux entering through S1. The convective flux has two para-

meters, i.e., ~=~c and ñ.

At early times, dipoles have not had sufficient time to

interact with each other. Therefore, we argue that to a first

Fig. 3 Effect of time-dependent molar rate on colloidal banding. (a) Time-dependent source/sink molar rate profile described by the equation J ðtÞ ¼
J 0HðtÞH t0 � tð Þ; where H is the heaviside function. J 0 is the strength of the molar rate and t0 represents the time at which the source/sink molar rate

vanishes. (b) F(t) for d = 1–6, J0 = 1 and t0 = 18.2. The vertical dotted line is placed at t = t0. (c) d
2
opt versus t0 for J 0 ¼ 1; where dopt is the optimal

separation distances, as estimated by our optimization scheme. (d) dopt versus J 0 for t0 = 18.2.
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approximation, ~=~c are similar for both a monopole and the

source in dipoles. If so, to explain the trend in Fig. 2(h) (inset),

eqn (14) implies that at early times, ñ is higher for smaller d

values. This appears surprising at first since the ~=~c from

sources and sinks do not interact at this timescale. However,

the depletion of particles around the sink increases the concen-

tration of particles at S1, which consequently increases
dF

dt
(see Appendix D), leading to a larger F.

We argue that dipoles start to interact with each other at tB

d2, or the interdipole diffusion time. For t \ d2, the dipoles

screen each other, causing a rapid decline in ~=~c. After the

interdipole diffusion time, ~=~c becomes localized between the

source and sink and diminishes elsewhere. This results in a

smaller
dF

dt
; see eqn (15). Since screening occurs later for larger

d, the decay in
dF

dt
starts later and F(t) is higher; see Appendix

D. Finally, for the monopole, screening never occurs, and

concentration gradients do not diminish due to interactions

with a sink. This is why the monopole overtakes dipoles around

the interdipole diffusion time, which results in tc B d2; see

Fig. 2(i).

The aforementioned discussion highlights the time-

dependent nature of enrichment. Therefore, we seek to study

the effects of a time-dependent molar rate. To this end, we

employ a molar rate profile given by J ðtÞ ¼ J 0HðtÞH t0 � tð Þ;
whereH is the Heaviside function; see Fig. 3(a). This molar rate

provides us with two parameters: the strength of the molar rate

J 0 and the time for the molar rate to decay to zero t0. Fig. 3(b)

shows F(t) for J 0 ¼ 1; t0 = 18.2 and d = 1–6. The choice for t0
corresponds to the crossover time observed in Fig. 2 for d = 3.

For t 4 t0 (represented by the dashed line in Fig. 3(b)), F(t)

increases slightly before leveling. At t = t0, we also observe that

F(t) increases with separation distance until d = 3 and then

slightly decreases. Thus, there is an optimal separation dis-

tance. Using the described optimization scheme, we deter-

mined the optimal separation distance, dopt as a function of

t0 and J 0. In Fig. 3(c), we observe that a plot of d2opt versus t0
results in a linear trend. Additionally, from Fig. 3(d), we see that

dopt is weakly dependent on J 0.

The dopt is set by a balance between the interdipole diffusion

and molar rate decay timescales. This is seen by the linear trend

between d2opt and t0 observed in Fig. 3(c). When do
ffiffiffiffiffi

t0
p

; the

source and sink screen each other before the molar rate is

turned off, leading to small F(t). When d � ffiffiffiffiffi

t0
p

; the enrich-

ment around the source is boosted due to depletion around the

sink, however, the source and sink do not screen each other as

the molar rate vanishes at the interdipole diffusion time.

Finally, when d\
ffiffiffiffiffi

t0
p

; the enrichment around the source is

Fig. 4 Optimal separation distance for experimentally realizable J ðsÞ. (a) J ðtÞ; as calculated by inverting eqn (12), for a finite-sized source of radius
a

L
¼ 0:4. K = 10, 1000 and D̂ = 10�1, 10�3. (b) F(t) for K = 100 and D̂ = 10�2, d = 1–8. (c) dopt vs. D̂ for K = 500. (d) dopt vs. K for D̂ = 10�2.
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less impacted by the depletion around the sink. In effect,

d � ffiffiffiffiffi

t0
p

becomes the optimal distance. In summary, the time-

scale of molar rate decay can be used as a parameter to

optimize particle enrichment.

J ðtÞ ¼ HðtÞ and J ðtÞ ¼ J 0HðtÞH t0 � tð Þ are not easy to

realize experimentally. Instead, as shown by Banerjee et al.,65–67

solute fluxes arise due to solute partitioning between source

and the bulk, described by a partition coefficient, denoted here

as K. We also define the diffusivity ratio, D̂, as the ratio of solute

diffusivity in the source and in the bulk. As such, we incorpo-

rate the effects of these parameters by determining J ðtÞ ¼
f ðK ; D̂Þ using eqn (12). Fig. 4(a) shows J ðtÞ for different values
of K and D̂. As expected, the molar rate has a higher strength for

a larger K value, and the decay is slower for a smaller value of D̂.

We conduct dipole simulations by solving eqn (6) with J ðtÞ
determined by inverting eqn (12). We evaluate F(t) for different

values for K and D̂. Fig. 4(b) shows F(t) with J ðtÞ ¼ f ðK ¼
100; D̂ ¼ 10�2Þ and for different d values. Much like Fig. 3, we

observe an optimal separation distance, doptE 5. This demonstrates

that dopt is a generic feature of a time-dependent molar rate.

We investigate the dependence of dopt on K and D̂ using the

optimization scheme described earlier. Fig. 4(c) shows the

variation of dopt with D̂ for K = 500, where we observe that dopt
is weakly dependent on D̂. However, Fig. 4(d) shows that dopt is

strongly dependent on K.

The result of dopt showing a weak dependence on D̂ is

surprising, as one would expect D̂ to impact the timescale of

solute molar rate decay, which would ultimately impact the

optimal separation distance. Therefore, we investigate this

effect further. We note that there are two timescales for J ðtÞ ¼
f ðK ; D̂Þ a short timescale, during which solute transport occurs

over a small boundary layer within the source, and a longer

timescale where concentration gradients inside of the source

are fully developed. An expansion of eqn (12) around large s

(small t) shows that

J ðtÞ � K
ffiffiffiffi

D̂
p

ð1þ K
ffiffiffiffi

D̂
p

Þ ffiffiffi

t
p : (16)

Fig. 5 Geometric and spatial effects on banding for an octupole. (a) Four arrangements studied in an octupole system with the shaded regions

showing the O1 used in calculating F(t) via eqn (13). The sources and sinks are placed around a circle of radiusR. (b and c) Simulation snapshots at t = 100

with J ðtÞ ¼ HðtÞHð18:2� tÞ for R ¼ 3 and R ¼ 5. (d) Z ¼ Fðt ¼ 100Þ � Fðt ¼ 0Þ
Fðt ¼ 0Þ for Cases 1–4 with R varying from 1–5.
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Clearly, if the short timescale of molar rate decay balanced the

interdipole diffusion timescale, then a dependence of dopt on D̂

would be observed. Interestingly, an expansion of eqn (12)

around small s yields

F̂ðsÞ � K

2þ Ks ln 2� K

2
s ln s

: (17)

Eqn (17) is not analytically inverted, but we emphasize that it is

only dependent on K. While an expansion for small s cannot be

directly related to large t, Fig. 4(d) shows that dopt only depends

on K. To this end, we argue that dopt is determined by a balance

between interdipole diffusion and long time scaling for J ðtÞ;
which primarily depends on K.

Given our understanding of timescales and their impact on

optimal banding in dipole systems, we seek to expand our work

to probe how the geometric arrangement of four sources and

four sinks around a circle of radius R, termed here as an

octupole system, affects banding. Fig. 5(a) shows the four

octupole arrangements we study. Case 1 refers to the arrange-

ment where each source is nearest to two sinks and vice versa,

i.e., a relatively symmetric arrangement. Case 4 refers to the

most asymmetric scenario where four sources are arranged

consecutively, followed by four sinks. Case 2 and Case 3 are

in between, with Case 2 being more symmetric than Case 3. The

shaded areas outlined by dashed lines represent the integration

region that F(t) is calculated over. Fig. 5(b and c) show

simulation snapshots at t = 100 for J ðtÞ ¼ HðtÞHðt0 � tÞ with
R ¼ 3 (panel b) and R ¼ 5 (panel c). t0 = 18.2 is used for all

simulations.

We quantify Z ¼ Fðt ¼ 100Þ � Fðt ¼ 0Þ
Fðt ¼ 0Þ ; i.e., the relative

increase in F. Fig. 5(d) shows Z for all four octupole arrange-

ments, with R varying from 1 to 5. For R ¼ 1; Case 1 experi-

ences the smallest increase in F(t), while Case 4 experiences

the largest increase. As R increases from 1 to 5, this trend

reverses and Case 1 experiences the largest increase in F(t)

while Case 4 experiences the smallest increase. To understand

this trend, we invoke our understanding from the dipole

arrangement. The octupole has multiple interpole diffusion

timescales. The smallest timescale is associated with dij ¼
Dij

L
¼

2R sin
p

8
and the longest timescale is associated with dij ¼ 2R.

WhenR ¼ 1; the maximum dijt
ffiffiffiffiffi

t0
p

. Therefore, all sources and

sinks interact before the molar rate decays. In this scenario, the

arrangement with the most geometric asymmetry, i.e., Case 4,

has the largest Z. Intuitively, in this case the source/sink

screening is minimized, as the sources and sinks are collec-

tively the furthest apart. When R ¼ 5; the smallest dij\
ffiffiffiffiffi

t0
p

;

implying that none of the sources and sinks interact. Case 1

performs best in this regime, as sources are able to benefit from

a local increase in ñ(r̃,t) due to depletion from multiple nearby

sinks. This effect is similar to the increase in performance for

dipoles compared to a monopole observed earlier, see Fig. 2(h).

Lastly, we note that Z, for all four cases, increases with R
because dij also increases with R. As R increases, the sinks and

sources enrich particles for longer before interacting. We

underscore that such complex banding patterns are unlikely

to occur in one-dimensional diffusiophoretic systems as the

motion of colloidal particles is restricted to one direction.

4 Conclusion

In summary, we present a numerical framework for studying

the banding of colloidal particles in response to two-

dimensional concentration gradients. By studying the enrich-

ment of particles in a dipole system, we find that both the

interdipole diffusion and molar rate decay timescales impact

the optimal banding of colloidal particles. Interestingly, a

balance between these two characteristic timescales yields an

optimal dipole separation distance, one which balances enrich-

ment before the source and sink screen each other. By deter-

mining the flux from a finite-sized partitioning source, we

include the effects of a partition coefficient K and diffusivity

ratio D̂ into our molar rate profiles. We find that the optimal

separation distance in this scenario depends primarily on K,

with D̂ only showing a weak effect. More importantly, we used

the optimization of separation distance to elucidate that

there are two timescales that impact the banding process. This

discovery can be used to engineer complex systems with multi-

ple sources and sinks. For instance, for an octupole arrange-

ment of sources and sinks, we find that banding is also affected

by geometric asymmetry. In fact, the optimal arrangement

of sources and sinks is due to the interplay between multiple

interpole diffusion timescales and the molar rate decay

timescale.

Looking forward, our results provide design principles for

engineering microfluidic devices5,65–67 that utilize diffusiophor-

esis to move colloidal particles and create banded patterns.

By utilizing partition coefficients and spatial arrangement,

one can impart temporal and spatial control over the banded

structure of colloidal particles. From a fundamental

perspective, our results can also be expanded to include flow

effects such as dispersion due to diffusiophoresis or

diffusioosmosis.14,37,52,58,62,71,72 Additionally, there is the

potential to use such a system for applications that require

precise control over colloid localization, such as biosensing,73

colloids separation,74 and two-dimensional micropatterning.75

Dipole and octupole systems, as envisioned, could be created

using lithography similar to ref. 66. Our work also invites future

studies that move away from point sinks and sources, include

higher-order effects and investigate asymmetric fluxes between

sources and sinks. The results, as outlined in this article,

motivate future experimental and theoretical studies to inves-

tigate two- and three-dimensional diffusiophoretic banding.
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Appendices

A Electrolytic and non-electrolytic
mobilities for small concentration
differences

The diffusiophoretic velocity for a particle moving in an

electrolyte gradient can be written as

uDP ¼ Me

c
=c: (18)

If we consider a small concentration difference of the form

c(r,t) = c0 + c1(r,t), where c0 is a constant concentration field and

c1(r,t) is a small perturbation to that field such that
c1

c0
� 1; we

can write eqn (18) as

uDP ¼ Me

c0 þ c1
=c1 �

Me

c0
=c1 ¼ M0

e=c1: (19)

For small concentration differences, the electrolytic and non-

electrolytic diffusiophoretic velocities have the same form.

We note that M and Me
0 will have different values.

If the concentration difference is significant compared

to the background concentration, the electrolytic and non-

electrolytic expressions will yield a different response. Specifi-

cally, for an electrolytic mobility expression, the additional

1

c
dependence will yield a higher uDP around the sink. In

contrast, uDP will decrease around a source. We anticipate the

qualitative features will remain the same. We invite interested

readers to explore this effect quantiatively in future studies.

B Qualitative comparison with
experimental results

We observe qualitative agreement with the work by Banerjee

et al.66 If M̃ = �0.5, we see that particles move from the source

towards the sink, Fig. 6(b), similar to that observed in Fig. 6(a).

Additionally, as shown by the streaklines, we observe particles

moving towards the side of the sink farthest from the source,

similar to that observed in Fig. 6(a). The observed qualitative

agreement with experimental observations highlights the

potential for our system to be used as a design tool in two-

dimensional banding systems.

C Derivation of flux in the auxiliary
problem

We Laplace transform eqn (10) and (11) from T to s-space as

L @~cin
@T

� D̂
1

~r

@

@~r
~r
@~cin
@~r

� �� �

¼ sĉin � K ¼ D̂
1

~r

@

@~r
~r
@~cin
@~r

� �

(20)

L @~cout
@T

� 1

~r

@

@~r
~r
@~cout
@~r

� �� �

¼ sĉout � 0 ¼ 1

~r

@

@~r
~r
@~cout
@~r

� �

: (21)

We drop the tildes for convenience. We now have a set of two

ordinary differential equations. We substitute H ¼ ĉin �
K

s
in

eqn (20) and obtain

H ¼ D̂

s

1

r

@

@r
r
@H

@r

� �

: (22)

Applying the product rule, we obtain the modified Bessel’s

equation

r2
@2H

@r2
þ r

@H

@r
� r2

s

D̂
H ¼ 0; (23)

which has a solution of the form

H ¼ AðsÞI0;b
ffiffiffiffi

s

D̂

r

r

� �

þ BðsÞK0;b

ffiffiffiffi

s

D̂

r

r

� �

; (24)

where I0,b and K0,b are the zeroth-order modified Bessel func-

tions of the first and second kind, respectively. Writing in terms

of ĉin, we get

ĉin ¼ AðsÞI0;b
ffiffiffiffi

s

D̂

r

r

� �

þ BðsÞK0;b

ffiffiffiffi

s

D̂

r

r

� �

þ K

s
: (25)

Applying the symmetry boundary condition at r = 0, we obtain

that B(s) = 0 as K0,b -N when r- 0. Thus, our solution for the

inner problem in Laplace space reads

ĉin ¼ AðsÞI0;b
ffiffiffiffi

s

D̂

r

r

� �

þ K

s
: (26)

A(s) will be determined when applying the partition and

flux-matching boundary conditions. Returning to the outer

problem, we write eqn (21) in terms of a modified Bessel’s

equation

r2
@2ĉout

@r2
þ r

ĉout

@r
� r2sĉout ¼ 0; (27)

which has a solution of the form

ĉout ¼ MðsÞI0;b
ffiffi

s
p

r
� 	

þ GðsÞK0;b

ffiffi

s
p

r
� 	

: (28)

Applying the far field decay condition, M(s) must be zero

because I0,b - N as r - N. Our solution to the outer

Fig. 6 Comparison with experimental work by Banerjee et al.66

(a) Example of particles moving in response to gradients generated from

a source and sink, reproduced and adapted from ref. 66 with permission

under a Creative Commons Attribution NonCommercial License 4.0

(CC BY-NC). (b) Particle streaklines showing time-coded trajectories for

particles with M̃ = �0.5. d = 3 and J ðtÞ ¼ HðtÞ. Simulation results are for

x̃,ỹ A [�10,10], but are zoomed in to x̃,ỹ A [�3,3].
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problem is

ĉout ¼ GðsÞK0;b

ffiffi

s
p

r
� 	

: (29)

To determine our unknown coefficients, we apply the partition

and flux matching boundary conditions. Starting with the

partition boundary condition,

AðsÞI0;b
ffiffiffiffi

s

D̂

r� �

þ K

s
¼ KGðsÞK0;b

ffiffi

s
p� 	

: (30)

We solve for G(s) and obtain

GðsÞ ¼ AðsÞ
K

I0;b

ffiffiffiffi

s

D̂

r
� �

K0;b
ffiffi

s
pð Þ þ 1

sK0;b
ffiffi

s
pð Þ: (31)

By applying the flux-matching condition, we write

D̂AðsÞ
ffiffiffiffi

s

D̂

r

I1;b

ffiffiffiffi

s

D̂

r� �

¼ �GðsÞ
ffiffi

s
p

K1;b

ffiffi

s
p� 	

; (32)

we solve for A(s) by substituting eqn (31) into (32) to obtain

AðsÞ ¼ �KK1;bð
ffiffi

s
p Þ

sI0;b

ffiffiffiffi

s

D̂

r
� �

K1;b
ffiffi

s
pð Þ þ sK

ffiffiffiffi

D̂
p

I1;b

ffiffiffiffi

s

D̂

r
� �

K0;b
ffiffi

s
pð Þ

:

(33)

G(s) is thus given by

GðsÞ ¼
K

ffiffiffiffi

D̂
p

I1;b

ffiffiffiffi

s

D̂

r
� �

sI0;b

ffiffiffiffi

s

D̂

r
� �

K1;b
ffiffi

s
pð Þ þ sK

ffiffiffiffi

D̂
p

I1;b

ffiffiffiffi

s

D̂

r
� �

K0;bð
ffiffi

s
p Þ

:

(34)

We write our expression for ĉin and ĉout as

ĉin ¼ K

s
1�

K1;b
ffiffi

s
pð ÞI0;b

ffiffiffiffi

s

D̂

r

r

� �

K1;b
ffiffi

s
pð ÞI0;b

ffiffiffiffi

s

D̂

r
� �

þ K
ffiffiffiffi

D̂
p

K0;b
ffiffi

s
pð ÞI1;b

ffiffiffiffi

s

D̂

r
� �

0

B

B

B

@

1

C

C

C

A

;

(35)

ĉout ¼
K

ffiffiffiffi

D
p

K0;b
ffiffi

s
p

rð ÞI1;b
ffiffiffiffi

s

D̂

r
� �

sK1;b
ffiffi

s
pð ÞI0;b

ffiffiffiffi

s

D̂

r
� �

þ sK
ffiffiffiffi

D̂
p

K0;b
ffiffi

s
pð ÞI1;b

ffiffiffiffi

s

D̂

r
� �: (36)

Lastly, we find an analytical expression for the flux

F̂ðsÞ ¼ �@ĉout
@r

�

�

�

�

r¼1

� �

at the interface between the inner and

outer region as

F̂ðsÞ ¼ K
ffiffiffiffi

D̂
p

ffiffi

s
p

K1;b
ffiffi

s
pð ÞI1;b

ffiffiffiffi

s

D̂

r
� �

I0;b

ffiffiffiffi

s

D̂

r
� �

K1;b
ffiffi

s
pð Þ þ K

ffiffiffiffi

D
p

I1;b

ffiffiffiffi

s

D̂

r
� �

K0;b
ffiffi

s
pð Þ

:

(37)

D
dF

dt
for dipole simulations with a

constant molar rate

We also calculate
dF

dt
for the dipole simulations with a constant

molar rate; see Fig. 7. Initially the dipoles have larger
dF

dt
;

however, eventually
dF

dt
starts to decay. We argue that the initial

increase in
dF

dt
is caused by enrichment at S1 due to depletion

from the sink. We observe that
dF

dt
decays later for larger d.

As the decay at longer times is caused by interactions between

the sources and sinks, dipoles separated farther apart screen

each other later.

E Solute concentration field for a
dipole with d = 3

Fig. 8 shows the concentration field generated by a point source

and sink dipole. The mobility approximation is less applicable

near the source and the sink since the magnitude of c̃

approaches unity. However, the magnitudes of c̃ are signifi-

cantly smaller away from the source and sink, and our mobility

approximation remains valid in most of the region. We note the

negative concentration values as the initial concentration was

Fig. 7
dU

ds
for M̃ = 0.5, J ðsÞ¼HðsÞ. dF

dt
for a monopole (black line) and

dipoles with d = 1 � 6 for a constant molar rate J ðtÞ ¼ HðtÞ.

Fig. 8 Concentration field generated by a point source and sink dipole.

(a–c) c̃(r̃,t = 0, 10, 100) for a dipole with d = 3 and a molar rate

J ðtÞ ¼ HðtÞ. The color bar ranges between �1 and 1 and represents the

value of c̃(r̃,t). The point source and sink are visualized as a red and blue

circle and are not representative of solute concentration at the location of

the source and sink.

Soft Matter Paper

P
u
b
li

sh
ed

 o
n
 0

4
 J

an
u
ar

y
 2

0
2
3
. 
D

o
w

n
lo

ad
ed

 o
n
 4

/1
/2

0
2
3
 1

0
:3

9
:0

6
 P

M
. 

View Article Online



This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 892–904 |  903

taken to be zero. The values can be offset simply by choosing a

different initial condition. The results will remain unaffected

since the particle velocities only rely on the difference of

concentrations and are not influenced by the absolute value.
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