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One of the major problems in combinatorics is to determine 
the number of r-uniform hypergraphs (r-graphs) on n vertices 
which are free of certain forbidden structures. This problem 
dates back to the work of Erdős, Kleitman and Rothschild, 
who showed that the number of Kr-free graphs on n vertices 
is 2ex(n,Kr)+o(n2). Their work was later extended to forbidding 
graphs as induced subgraphs by Prömel and Steger.
Here, we consider one of the most basic counting problems 
for 3-graphs. Let E1 be the 3-graph with 4 vertices and 1
edge. What is the number of induced {K3

4 , E1}-free 3-graphs 
on n vertices? We show that the number of such 3-graphs is 
of order nΘ(n2). More generally, we determine asymptotically 
the number of induced F-free 3-graphs on n vertices for all 
families F of 3-graphs on 4 vertices. We also provide upper 
bounds on the number of r-graphs on n vertices which do 
not induce i ∈ L edges on any set of k vertices, where L ⊆
{

0, 1, . . . , 
(

k

r

)}

is a list which does not contain 3 consecutive 
integers in its complement. Our bounds are best possible up 
to a constant multiplicative factor in the exponent when k =
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r+1. The main tool behind our proof is counting the solutions 
of a constraint satisfaction problem.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

1.1. History

For an r-uniform hypergraph (r-graph) F , let ex(n, F ) denote the maximum number 

of edges in an F -free r-graph on n vertices. One of the central questions in extremal 

combinatorics is to determine the extremal number ex(n, F ). For r = 2, the extremal 

number is well-understood for all non-bipartite graphs, see [15] and [38]. However, deter-

mining the extremal number for general r-graphs is a well-known and hard problem. The 

simplest and still not answered question posed by Turán asks to determine the extremal 

number of K3
4 , the complete 3-graph on 4 vertices. It is widely believed that

ex(n, K3
4 ) =

(

5

9
+ o(1)

) (

n

3

)

.

In a series of papers, different K3
4 -free 3-graphs on n vertices and 5

9

(

n
3

)

+o(n3) edges were 

constructed by Brown [11], Kostochka [23] and Fon-der-Flaass [17] and Razborov [34]. 

In 2008, Frohmader [19] showed that there are Ω(6n/3) non-isomorphic r-graphs which 

are conjectured to be extremal. This is believed to be one of the reasons of the difficulty 

of this problem. For other related papers, see [3,30,34].

The problem of determining the extremal number can also be extended to families 

of induced r-graphs. For a family of r-graphs F , let exI(n, F) denote the maximum 

number of edges in an induced F-free r-graph on n vertices. In 2010, Razborov [34] used 

the method of flag algebras to determine exI(n, {K3
4 , E1}), where E1 denotes the 3-graph 

with 4 vertices and 1 edge. In his paper, he showed that

exI(n, {K3
4 , E1}) =

(

5

9
+ o(1)

) (

n

3

)

.

Later, this result was extended by Pikhurko [30], who obtained the corresponding stabil-

ity result and proved that there is only one extremal induced {K3
4 , E1}-free 3-graph on 

n vertices, up to isomorphism. Sometimes referred to as Turán’s construction and here 

denoted by Cn, the extremal induced {K3
4 , E1}-free 3-graph on [n] is obtained as follows. 

Let V1 ∪ V2 ∪ V3 be a partition of [n] with 
∣

∣|Vi| − |Vj |
∣

∣ ≤ 1 for all i, j ∈ [3]. An edge is 

placed in Cn if it intersects each of the classes V1, V2 and V3, or if for some i ∈ [3] it 

contains two elements of Vi and one of Vi+1, where the indices are understood modulo 

3. See Fig. 1 for an illustration of Cn.
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Fig. 1. Illustration of Cn.

In this paper, we first consider the problem of counting induced {K3
4 , E1}-free 3-graphs 

on n vertices, which is the counting problem related to the results of Razborov [34] and 

Pikhurko [30]. Recently, Balogh and Mubayi [7] observed that a standard application of 

the hypergraph container method [4,35] shows that the number of induced {K3
4 , E1}-free 

graphs on n vertices is 2O(n8/3). From the other side, we can construct a family Q(n)

with 2Ω(n2 log n) subgraphs of Cn which are induced {K3
4 , E1}-free. A 3-graph is in Q(n)

if it is obtained from a complete tripartite 3-graph with classes V1, V2, V3 by removing a 

linear4 3-graph with the additional property that every edge contains one element from 

each of the classes V1, V2 and V3. It is not hard to show that every 3-graph in Q(n) is in 

fact induced {K3
4 , E1}-free and that |Q(n)| = 2Ω(n2 log n) (see the proof of Theorem 1.2

in Section 4). Balogh and Mubayi [7] conjectured that almost all induced {K3
4 , E1}-free 

3-graphs are in this family, up to isomorphism.

Conjecture 1.1 (Balogh and Mubayi [7]). Almost all induced {K3
4 , E1}-free 3-graphs on 

[n] are in Q(n), up to isomorphism.

The motivation behind this conjecture comes from similar results. In particular, Per-

son and Schacht [29] proved that almost all Fano-plane free 3-graphs are bipartite, and 

Balogh and Mubayi [6] proved that almost all F5-free triple systems are tripartite, where 

F5 is the 5-vertex 3-graph with edge set {123, 124, 345}. See also [5] for results along the 

same line.

The problem of counting r-graphs which are free of forbidden structures dates back 

to the work of Erdős, Kleitman and Rothschild [14] in the context of graphs. They 

showed that the number of Ks-free graphs on n vertices is 2(1+o(1))ex(n,Ks). Their work 

was later extended to all non-bipartite graphs by Erdős, Frankl and Rödl [13] using 

the Szemerédi regularity lemma. For other related results, see [8,9,13,16,21,28,36]. In 

a sequence of papers [31–33], Prömel and Steger studied the corresponding problem 

for induced graphs. Their results were stated in terms of a different notion of extremal 

number, which was latter generalized by Dotson and Nagle [12] as follows. Given a family 

4 A 3-graph H is linear if every pair of distinct edges e1, e2 ∈ E(H) satisfies |e1 ∩ e2| ≤ 1.
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of r-graphs F , let M and N be r-sets5 in [n] := {1, . . . , n} with the following properties: 

(i) M ∩ N = ∅; and (ii) for G ⊆
(

[n]
r

)

\ (M ∪ N), the r-graph G ∪ M is induced F-free. 

The notation 
(

[n]
r

)

stands for {S ⊆ [n] : |S| = r}. The ∗-extremal number ex∗(n, F) is 

defined as

ex∗(n, F) :=

(

n

r

)

− min
M,N

(

|M | + |N |
)

,

where the minimum is over all r-sets M, N ⊆ [n] satisfying (i) and (ii). In 1992, Prömel 

and Steger [32] showed that the number of induced F -free graphs on n vertices is 

2ex∗(n,F)+o(n2). This result was later extended by Alekseev [1] and Bollobás and Thoma-

son [10] for families of graphs, and by Kohayakawa, Nagle and Rödl [22] for 3-graphs. 

In 2009, Dotson and Nagle [12] generalized these results, showing that for all families of 

r-graphs F the number of induced F-free r-graphs is 2ex∗(n,F)+o(nr).

For a family F of r-graphs such that ex∗(n, F) = o(nr), the counting results mentioned 

above are not precise. In the case of graphs, Alon, Balogh, Bollobás and Morris [2]

obtained a more refined result. They showed that the number of induced F-free graphs 

on n vertices is 2ex∗(n,F)+O(n2−ε), where ε > 0 depends only on the family F . Terry [37]

generalized this result to finite relational languages which in particular covers r-graphs. 

For a family of r-graphs F , her result says that the number of induced F-free 3-graphs 

is either 2Θ(nr) or there exists ε > 0 such that for all large enough n, the number of 

induced F-free 3-graphs is at most 2nr−ε

.

1.2. Our results

Our first theorem determines the number of induced {K3
4 , E1}-free graphs up to a 

constant factor on the exponent, making progress towards Conjecture 1.1.

Theorem 1.2. The number of induced {K3
4 , E1}-free 3-graphs on n vertices is 2Θ(n2 log n).

More generally, we also determine the number of induced F-free 3-graphs on n vertices 

for all families F of 3-graphs on 4 vertices. Since every 3-graph on 4 vertices is determined 

by its number of edges, our result is stated in terms of forbidden number of edges. For 

a set L ⊆ {0, 1, 2, 3, 4}, let f(n, 3, 4, L) be the number of 3-graphs on n vertices which 

do not induce i ∈ L edges on any set of 4 vertices. Our result can be stated as follows, 

where we do not attempt to optimize the constants in the exponent.

Theorem 1.3. Let L ⊆ {0, 1, 2, 3, 4} be a set. Then, the following holds for n ≥ 13.

(a) If {0, 4} ⊆ L or {1, 2, 3} ⊆ L, then f(n, 3, 4, L) ∈ {0, 1, 2};

(b) If L = {0, 2, 3} or L = {1, 2, 4}, then f(n, 3, 4, L) = n + 1;

5 An r-set or r-subset is a set with exactly r elements.
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(c) If L = {0, 1, 3} or L = {1, 3, 4}, then f(n, 3, 4, L) = 2Θ(n log n);

(d) If L = {1, 3}, then f(n, 3, 4, L) = 2(n−1
2 );

(e) If L ∈
{

∅, {0}, {1}, {3}, {4}, {0, 1}, {3, 4}
}

, then f(n, 3, 4, L) = 2Θ(n3);

(f) For all the remaining cases, we have f(n, 3, 4, L) = 2Θ(n2 log n).

Note that some of the statements in Theorem 1.3 are trivial and others are known. 

We included those for the sake of completeness. For a list L ⊆ {0, 1, 2, 3, 4}, define 

Lc = {4 − i : i ∈ L}. It is not hard to check that if a list L belongs to item (f), then some 

T ∈ {L, Lc} satisfies T = {1, 4} or {2} ⊆ T ⊆ {0, 1, 2}. See Table 1 for a detailed list with 

the bounds on f(n, 3, 4, L) and the references of statements which proves each of them.

Before we state our next theorem, we need some notation. Let k, r ∈ N and L ⊆
{

0, 1, . . . , 
(

k
r

)}

be a set, which we refer to as a list. We say that an r-graph G is (L, k)-

free if for all i ∈ L there is no set of k vertices in G inducing exactly i edges. By 

generalizing our previous notation, we denote by f(n, r, k, L) the number of (L, k)-free 

r-graphs on n vertices. Our next theorem extends Theorem 1.2 to r-graphs and 3-good 

lists. We say that a list L is 3-good if {i, i +1, i +2} ∩L 
= ∅ for all i ∈
{

0, 1, . . . , 
(

k
r

)

−2
}

. 

That is, the complement of L does not contain three consecutive integers. Throughout 

this paper, all logarithms are in base 2.

Theorem 1.4. Let n ≥ k > r ≥ 2 be integers and L ⊆
{

0, 1, . . . , 
(

k
r

)}

be a list. If L is 

3-good, then

f(n, r, k, L) ≤ 22knr−1+nr−1 log n.

The main tool behind the proof of Theorem 1.4 is a lemma which counts the solutions 

of a certain constraint satisfaction problem, see Lemma 3.1. For L = {2, 3, . . . , r + 1}, 

we observe that f(n, r, r + 1, L) is equal to the number of r-graphs such that, for every 

pair of edges, the size of their intersection is not r − 1. This is related to the problem of 

counting designs, a heavily studied object in combinatorics, see [20,24,25].

The rest of this paper is organized as follows. In Section 2 we discuss the sharpness 

of Theorem 1.4; in Section 3 we present the proof of Theorem 1.4; in Section 4 we prove 

Theorems 1.2 and 1.3.

2. Sharpness discussion of Theorem 1.4

In this section, we provide three examples which show that Theorem 1.4 is sharp for 

k = r + 1. Our first lemma shows that there is a 3-good list that achieves the upper 

bound given by Theorem 1.4.

Lemma 2.1. For r ≥ 2 we have

f(n, r, r + 1, {2, 3, . . . , r + 1}) = 2Θ(nr−1 log n).
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Proof. The list L := {2, 3, . . . , r+1} is 3-good and therefore Theorem 1.4 can be applied, 

which gives the upper bound. Now, let M(n, r) be the set of r-graphs on [n] such that 

every (r − 1)-subset of [n] is contained in at most one edge. Note that the number of 

(L, r + 1)-free r-graphs on [n] is equal to |M(n, r)|. Thus, to lower bound f(n, r, r + 1, L)

it suffices to show that |M(n, r)| = 2Ω(nr−1 log n).

One way to lower bound M(n, r) is to use a result of Keevash (Theorem 6.1 in [20]) on 

designs. An r-graph G on [n] is an (n, r, t, λ)-design if every t-subset of [n] is contained 

in exactly λ elements of E(G). If certain divisibility conditions involving n and r are 

satisfied, namely (r − i) |
(

n−i
r−1−i

)

for each 0 ≤ i ≤ r − 2, then Keevash’s result implies 

that the number of (n, r, r − 1, 1)-designs is 2Θ(nr−1 log n). In fact, let n′ be the largest 

integer smaller than n such that n′ ≡ r − 2 mod (r!)2. For each 0 ≤ i ≤ r − 2, there 

exists an integer Ai such that 
(

n′−i
r−1−i

)

= Ai · n′−r+2
r! . By the choice of n′, it follows 

that r! |
(

n′−i
r−1−i

)

and hence all divisibility conditions are satisfied. In particular, we have 

|M(n, r)| ≥ |M(n′, r)| ≥ 2Ω(nr−1 log n). For the sake of self-completeness, we present here 

another simple way to derive this inequality. To do so, we build a subfamily of r-graphs 

in M(n, r) via the following greedy procedure. Let e1 be an r-subset in [n]. For i > 1, let 

ei be an r-subset in [n] such that |ei ∩ ej | 
= r − 1 for all j ∈ [i − 1]. The procedure stops 

when an edge ei with this property cannot be found. As there are at most rni sets of 

size r which intersect some element of {e1, . . . , ei−1} in exactly r − 1 vertices, we have at 

least 
(

n
r

)

− nri choices for ei. It follows that the procedure lasts for at least nr−1

2rr+1 steps. 

As we have 
(

n
r

)

− nri ≥ 1
2

(

n
r

)

for all i ≤ nr−1

2rr+1 , it follows that the number of r-graphs in 

M(n, r) is at least

|M(n, r)| ≥

(

1
2

(

n
r

))
nr−1

2rr+1

(

nr−1

2rr+1

)

!
≥

(

rr+1
(

n
r

)

nr−1

)
nr−1

2rr+1

≥ n
nr−1

2rr+1 = 2Θ(nr−1 log n).

The factorial term above takes the double counting into consideration. Combining 

this bound with the upper bound from Theorem 1.4, we obtain f(n, r, r + 1, L) =

2Θ(nr−1 log n). �

Our next example shows that there is a list L which is not 3-good such that the bound 

presented in Theorem 1.4 does not hold.

Lemma 2.2. For r ≥ 2 we have

f(n, r, r + 1, {3, 4, . . . , r + 1}) = 2Θ(nr).

Proof. Fix an r-partition (Vi)i∈[r] of the vertex set [n] such that 
∣

∣|Vi| − |Vj |
∣

∣ ≤ 1 for all 

i, j ∈ [r]. Let G be the r-graph whose set of edges is given by the r-sets with one vertex 

in each class Vi. This r-graph has Θ(nr) edges and every subgraph of it is (L, r + 1)-free, 

where L := {3, 4, . . . , r + 1}. We conclude that f(n, r, r + 1, L) = 2Θ(nr). �
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When k = n, there is a 3-good list L ⊆
{

0, 1, 2, . . . ,
(

n
r

)}

such that the bound on 

f(n, r, n, L) given by Theorem 1.4 is sharp.

Claim 2.3. Let r ≥ 2 and L be the set of all odd integers in 
{

0, 1, 2, . . . ,
(

n
r

)}

. Then, we 

have

f(n, r, n, L) = 2Θ(nr).

Proof. The number of (L, n)-free r-graphs on [n] is equal to the number of r-graphs on 

[n] with an even number of edges. Clearly, there are 2Θ(nr) of those. �

3. Proof of Theorem 1.4

We will start by proving a combinatorial lemma. To state it we use the language of 

constraint satisfaction problems (CSP). Let P be the family of all subsets of {0, 1} ×{0, 1}. 

We refer to the elements of P as constraints. A CSP on [m] is a pair ([m], f), where 

f :
(

[m]
2

)

→ P is a function assigning a constraint for each pair of vertices. An assignment

on [m] is a function g : [m] → {0, 1} which assigns for every vertex v ∈ [m] an integer (or 

color) from {0, 1}. We say that an assignment g : [m] → {0, 1} is satisfying for ([m], f)

if we have (g(a), g(b)) /∈ f({a, b}) for any pair a, b ∈ [m] such that a < b.

For a CSP G = ([m], f), let A(G) be the set of satisfying assignments for G. Now, 

define

C :=

{

{

(1, 0), (0, 1)
}

,
{

(0, 0)
}

,
{

(1, 1)
}

}

.

Observe that C is a subset of P. Our next lemma shows that for f :
(

[m]
2

)

→ C the CSP 

G = ([m], f) satisfies |A(G)| ≤ m + 1. This bound is best possible, as we can see by the 

following example. Let f :
(

[m]
2

)

→ C be the function given by f({i, j}) = {(1, 1)} for 

all i < j and let G = ([m], f) be the corresponding CSP. A function g : [m] → {0, 1}

is a satisfying assignment for G if and only if |g−1(1)| ≤ 1. As there are exactly m + 1

choices of g−1(1) for which |g−1(1)| ≤ 1, we have |A(G)| = m + 1.

Lemma 3.1. Let m ∈ N, f :
(

[m]
2

)

→ C and G = ([m], f) be a CSP. The size of the set 

A(G) of satisfying assignments for G is bounded by

|A(G)| ≤ m + 1.

Proof. We proceed by induction on m. The base case is m = 1. For a CSP G on one 

vertex we have |A(G)| ≤ 2, as there is only one vertex to be assigned with a color from 

{0, 1}. Now, let m ≥ 2 and assume that for every i < m and every CSP G on i vertices 

we have |A(G)| ≤ i + 1.
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Fix a function f :
(

[m]
2

)

→ C and the CSP given by G = ([m], f). We partition the set 

of satisfying assignments into A(G) = A0 ∪ A1, where

A0 := {g ∈ A(G) : g(m) = 0} and A1 := {g ∈ A(G) : g(m) = 1}.

We gain extra information about the satisfying assignments in each of these sets based on 

the constraints given by f . Note that if f({j, m}) = {(1, 0), (0, 1)}, then we automatically 

have g(j) = i for all g ∈ Ai and i ∈ {0, 1}. If f({j, m}) = {(i, i)}, then we must have 

g(j) = 1 − i for all g ∈ Ai and i ∈ {0, 1}. This motivates us to consider the following 

subsets of [m]:

F0 :=
{

j < m : f({j, m}) = {(1, 1)}
}

and F1 :=
{

j < m : f({j, m}) = {(0, 0)}
}

.

For each i ∈ {0, 1}, the set Fi corresponds to the values of j < m which are free, that 

is, the values of j for which g(j) might not be the same for all functions g ∈ Fi. More 

precisely, our analysis shows that for g1, g2 ∈ Ai and j /∈ Fi we have g1(j) = g2(j), for 

i ∈ {0, 1}.

Let G[F0] :=
(

F0, f
∣

∣

(F0
2 )

)

and G[F1] :=
(

F1, f
∣

∣

(F1
2 )

)

be the induced CSP of G on F0

and F1, respectively. It follows that

|A(G)| ≤ |A(G[F0])| + |A(G[F1])|. (1)

As F0 and F1 are subsets of [m − 1], by the induction hypothesis we have

∣

∣A
(

G[F0]
)∣

∣ ≤ |F0| + 1 and
∣

∣A
(

G[F1]
)∣

∣ ≤ |F1| + 1. (2)

As F0 and F1 are disjoint, we have |F0| + |F1| ≤ m −1. Combining (1) and (2), we obtain

|A(G)| ≤ |F0| + 1 + |F1| + 1 ≤ m + 1.

This completes our proof of Lemma 3.1. �

Lemma 3.1 will be used in the proof of Lemma 3.3 below. For the rest of this section, 

we fix natural numbers k > r and a 3-good list L ⊆
{

0, 1, . . . , 
(

k
r

)}

. For simplicity, denote 

f(n) := f(n, r, k, L) and let F(n) be the family of (L, k)-free r-graphs on [n]. In order 

to bound f(n), we introduce other related quantities. For a set A ⊆ [n] and an r-graph 

H ∈ F(n), define

D(A, H, n) :=
{

G ∈ F(n) : A ⊆ e ∀ e ∈ E(G)∆E(H)
}

,

where � denotes the symmetric difference. In words, D(A, H, n) is the set of (L, k)-

free graphs on [n] for which the edges and non-edges agree with H on the r-sets not 
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containing A. When |A| = 1, D(A, H, n) is the set of r-graphs which extend H
∣

∣

[n]\A
to 

an (L, k)-free r-graph on [n]. It is also convenient to define

d(a, n) := max
{

|D(A, H, n)| : H ∈ F(n)
}

,

where A is an arbitrary set of size a. As the maximum is taken over all H ∈ F(n) and 

the set F(n) is closed for permuting the vertices of the graphs, it does not depend on 

the set A. When a = 1, we can think of d(1, n) as the maximum number of extensions 

that an r-graph may have. We can easily see that

f(n) ≤ d(1, n) · f(n − 1) (3)

for all n ∈ N. Therefore, to bound f(n) we will bound d(1, n) for all n ∈ N.

In order to upper bound d(1, n), we first provide an upper bound on d(a, n) which 

depends on d(a + 1, v), for v ∈ {r, . . . , n}.

Lemma 3.2. Let n, r, k and a be natural numbers such that k > r and n > r − 1 ≥ a. 

Then, we have

d(a, n) ≤
n

∏

v=r

d(a + 1, v).

Proof. Let H be an (L, k)-free r-graph on [n] and let A ⊆ [n − 1] be a set of size a. 

For an r-graph G on [n], denote by Gn−1 the r-graph on [n − 1] induced by G. Observe 

that if G ∈ D(A, H, n), then Gn−1 ∈ D(A, Hn−1, n − 1). We then partition the set 

D(A, H, n) according to the r-graph induced on the vertex set [n − 1]. For each r-graph 

J ∈ D(A, Hn−1, n − 1), let TH(A, J, n) be the set of r-graphs G in D(A, H, n) for which 

Gn−1 = J . Then,

D(A, H, n) =
⋃

J

TH(A, J, n), (4)

where the union is over J ∈ D(A, Hn−1, n − 1).

We claim that TH(A, J, n) ⊆ D
(

{n} ∪ A, G, n
)

for all G ∈ TH(A, J, n). To prove 

this, let G and G′ be r-graphs in TH(A, J, n). As Gn−1 = J = G′
n−1, we have n ∈ e

for all e ∈ E(G′)∆E(G). Moreover, as G, G′ ∈ D(A, H, n), we have A ⊆ e for all 

e ∈ E(G)∆E(G′). This implies that {n} ∪ A ⊆ e for all e ∈ E(G)∆E(G′), which proves 

our claim. As |A ∪ {n}| = a + 1, we obtain

|TH(A, J, n)| ≤ d(a + 1, n) (5)

for all H and J ∈ D(A, Hn−1, n − 1). Combining (4) and (5), we get

|D(A, H, n)| ≤ |D(A, Hn−1, n − 1)| · d(a + 1, n) ≤ d(a, n − 1) · d(a + 1, n). (6)
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As (6) holds for every (L, k)-free r-graph H on n vertices, (6) implies that

d(a, n)

d(a, n − 1)
≤ d(a + 1, n).

Let m ≥ r be an integer. Performing the telescopic product with n going from r to m, 

we have

d(a, m)

d(a, r − 1)
≤

m
∏

v=r

d(a + 1, v).

As d(a, r − 1) = 1, this completes our proof. �

Recall that we need to bound d(1, n) in order to bound f(n). To do so, we use ‘back-

ward’ induction. If we bound d(a +1, n) for every n ≥ k, then Lemma 3.2 yields a simple 

bound on d(a, n) in terms of d(a + 1, n). As d(r, n) ≤ 2, if we apply the recursion in 

Lemma 3.2 using this bound then we obtain d(1, n) = 2O(nr−1). However, this only im-

plies that f(n) = 2O(nr). We overcome this problem in our next lemma, where we obtain 

a polynomial bound for d(r − 1, n) instead.

Lemma 3.3. Let n, r and k be natural numbers such that n ≥ r ≥ 2 and k > r. If 

L ⊆
{

0, 1, . . . ,
(

k
r

)

}

is a 3-good list, then

d(r − 1, n) ≤ 2kn.

Proof. Let H be an (L, k)-free r-graph. Recall that D
(

[r − 1], H, n
)

is the set of (L, k)-

free r-graphs G on [n] for which the following holds. If e ∈ E(H)�E(G), then [r−1] ⊆ e. 

We associate the problem of counting the r-graphs in D
(

[r − 1], H, n
)

to the problem 

of counting the 2-colorings of the vertices in [n] \ [r − 1] under certain restrictions. The 

first step is to define for each G ∈ D
(

[r − 1], H, n
)

a coloring CG : [n] \ [r − 1] → {0, 1}

as follows:

{

CG(i) = 1, if [r − 1] ∪ {i} ∈ E(G),

CG(i) = 0, otherwise.

Observe that the number of r-graphs in D
(

[r−1], H, n
)

is equal to the number of colorings 

c : [n] \ [r − 1] → {0, 1} for which

(

H ∪
{

i ∪ [r − 1] : i ∈ c−1(1)
})

\
{

i ∪ [r − 1] : i ∈ c−1(0)
}

forms an (L, k)-free r-graph. As |D
(

[r − 1], H, n
)

| ≤ 2k when n ≤ k, from now on we 

assume that n > k. We partition the set D
(

[r − 1], H, n
)

according to a partial coloring 
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on the set S := [k − 2] \ [r − 1]. For each coloring c : S → {0, 1}, let D(c) be the set of 

r-graphs G ∈ D
(

[r − 1], H, n
)

for which CG

∣

∣

S
= c. Now,

D
(

[r − 1], H, n
)

=
⋃

c:S→{0,1}

D(c).

We may think that all the edges and non-edges corresponding to r-sets of the form 

[r − 1] ∪ {i}, for i ∈ S, are fixed inside D(c). Our objective now is to bound the size 

of D(c) via a constraint satisfaction problem on [n] \ [k − 2]. To do so, we need to 

introduce some notation. For each pair of distinct vertices {i, j} ⊆ [n] \ [k − 2], let Ri,j

be the collection of all r-sets in [k − 2] ∪ {i, j} which are different from [r − 1] ∪ {i}

and [r − 1] ∪ {j}. Observe that all r-graphs in D(c) coincide on the r-sets in Ri,j . More 

precisely, for G1, G2 ∈ D(c) and e ∈ Ri,j , we have e ∈ E(G1) if and only if e ∈ E(G2). 

Let ‖Ri,j‖c be the number of edges in Ri,j which are in common for every r-graph in 

D(c). Note that we cannot have r-graphs G1, G2 and G3 in D(c) which induce ‖Ri,j‖c, 

‖Ri,j‖c + 1 and ‖Ri,j‖c + 2 edges in [k − 2] ∪ {i, j}, respectively, as this would contradict 

the assumption that L ∩ {a − 1, a, a + 1} 
= ∅ for all a ∈
[

(

k
r

)

− 1
]

.

For each {i, j} ⊆ [n] \ [k − 2], let tc
i,j ∈ {0, 1, 2} be such that ‖Ri,j‖c + tc

i,j ∈ L. 

Then, for every G ∈ D(c) we must have CG(i) + CG(j) 
= tc
i,j , otherwise G would 

have a forbidden structure on [k − 2] ∪ {i, j}. If tc
i,j = 0 or 2, this is equivalent to 

the constraint 
(

CG(i), CG(j)
)


= (tc
i,j/2, tc

i,j/2); and if tc
i,j = 1, it is equivalent to the 

constraint 
(

CG(i), CG(j)
)

/∈ {(0, 1), (1, 0)}. We can then define the following constraint 

function fc :
(

[n]\[k−2]
2

)

→ C:

f({i, j}) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(0, 0)}, if tc
i,j = 0,

{(1, 0), (0, 1)}, if tc
i,j = 1,

{(1, 1)}, if tc
i,j = 2.

Let Gc =
(

[n] \ [k −2], fc

)

be a CSP. It follows that |D(c)| ≤ |A(Gc)|, where A(Gc) is the 

set of satisfying assignments of the CSP Gc. By Lemma 3.1, we have |A(Gc)| ≤ n −k +3

and hence

|D
(

[r − 1], H, n
)

| ≤
∑

c: S→{0,1}

|D(c)| ≤ n · 2|S|.

As |S| ≤ k, this proves our lemma. �

Combining Lemmas 3.2 and 3.3, we obtain the following corollary.

Corollary 3.4. Let n, k and r be natural numbers such that n, k ≥ r ≥ 2 and let L ⊆
{

0, 1, . . . ,
(

k
r

)

}

be a 3-good list. Then, for all i ∈ [r − 1] we have
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d(r − i, n) ≤ 2kni−1+ni−1 log n.

Proof. We proceed by induction on i. By Lemma 3.3, the statement holds for i = 1. 

Now, assume that the lemma holds for some i ∈ [r − 2]. By Lemma 3.2, we obtain

d(r − (i + 1), n) ≤
n

∏

v=r

d(r − i, v) ≤
n

∏

v=r

2kvi−1+vi−1 log v ≤ 2kni+ni log n,

as required. �

We are now ready to complete the proof of Theorem 1.4. Let n ≥ k > r ≥ 2 be integers 

and L ⊆
{

0, 1, . . . , 
(

k
r

)}

be a 3-good list. By (3), we have f(n) ≤ d(1, n) · f(n − 1) and 

hence

f(n) ≤ f(k) ·
n

∏

v=k+1

d(1, v).

As d(v) = d(1, v), by Corollary 3.4 we have d(v) ≤ 2kvr−2+vr−2 log v. From this together 

with the trivial bound f(k) ≤ 2kr

, we obtain

f(n) ≤ 2kr
n

∏

v=k+1

2kvr−2+vr−2 log v ≤ 2kr+knr−1+nr−1 log n,

as required.

4. Proof of Theorems 1.2 and 1.3

In this section we prove Theorem 1.3, that is, we determine f(n, 3, 4, L) asymptotically 

for all possible L. In particular, we prove Theorem 1.2. For simplicity, we denote f(n, L) =

f(n, 3, 4, L) and assume that n ≥ 4 throughout this section.

For a list L ⊆ {0, 1, 2, 3, 4}, recall that Lc = {4 − i : i ∈ L}. Observe that f(n, L) =

f(n, Lc), as a 3-graph G does not induce i edges on 4 vertices if and only if its complement 

Gc does not induce 4 − i edges on 4 vertices. In light of this, to prove Theorem 1.3 it 

is sufficient to bound f(n, L) for only one set L in each row of Table 1 below. When 

{0, 4} ⊆ L, our proof trivially follows from Ramsey’s theorem, see Claim 4.1. When 

{2} ⊆ L ⊆ {0, 1, 2}, L is 3-good and hence the upper bound on f(n, L) follows from 

Theorem 1.4. The lower bound is obtained via the same greedy procedure used in the 

proof of Lemma 2.1, see Claim 4.2 for more details. These and the trivial cases already 

fill a good proportion of the table. The remaining cases are more delicate and we need 

to deal with each of them separately. We start with the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound follows immediately from Theorem 1.4. For the 

lower bound, we consider the family of 3-graphs Q(n) presented in the introduction. Let 
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Table 1

This table shows the values for f(n, 3, 4, L) for all possible L.

L f(n, 3, 4, L) Proof

∅ 2(n

3
) trivial

{0}, {4} 2Θ(n3) Claim 4.6

{1}, {3} 2Θ(n3) follows from {3, 4}

{0, 1}, {3, 4} 2Θ(n3) Claim 4.6

{2} 2Θ(n2 log n) Claim 4.2

{0, 2}, {2, 4} 2Θ(n2 log n) Claim 4.2

{0, 3}, {1, 4} 2Θ(n2 log n) Theorem 1.2

{1, 2}, {2, 3} 2Θ(n2 log n) Claim 4.2

{0, 1, 2}, {2, 3, 4} 2Θ(n2 log n) Claim 4.2

{1, 3} 2(n−1

2
) Lemma 4.5

{0, 1, 3}, {1, 3, 4} 2Θ(n log n) Lemma 4.4
{0, 2, 3}, {1, 2, 4} n + 1 for n ≥ 5 Claim 4.8
{1, 2, 3} 2 Claim 4.7
{1, 2, 3, 4}, {0, 1, 2, 3} 1 trivial
{0, 4} 0 for n ≥ 13 Claim 4.1
{0, 1, 4}, {0, 3, 4} 0 for n ≥ 13 Claim 4.1
{0, 2, 4} 0 for n ≥ 13 Claim 4.1
{0, 2, 3, 4}, {0, 1, 2, 4} 0 for n ≥ 13 Claim 4.1
{0, 1, 3, 4} 0 for n ≥ 13 Claim 4.1
{0, 1, 2, 3, 4} 0 trivial

[n] = V1 ∪ V2 ∪ V3 be a partition of [n] with 
∣

∣|Vi| − |Vj |
∣

∣ ≤ 1 for all i, j ∈ [3], which is the 

same partition as the one used in the definition of Cn. Recall that a 3-graph is in Q(n)

if it is obtained from Cn by removing a linear 3-graph with the additional property that 

every edge contains one vertex from each of the classes V1, V2 and V3. Note that every 

4-set in Cn has either 0, 2 or 3 edges. Moreover, 4-sets containing at least one vertex of 

each of the classes have 3 edges. This implies that for a 3-graph H ∈ Q(n) every 4-set 

has either 0, 2 or 3 edges. As Q(n) is a family of ({1, 4}, 4)-free 3-graphs on n vertices, 

to lower bound f(n, {1, 4}) it suffices to lower bound |Q(n)|.

Let L(n) be the family of linear 3-graphs on [n] with the additional property that 

every edge intersects each of the classes V1, V2 and V3. Clearly, we have |Q(n)| = |L(n)|. 

Now, we lower bound |L(n)| via the following greedy procedure, which is similar to the 

one in the proof of Lemma 2.3. Let e1 be a 3-set in [n] such that |e1 ∩ Vj | = 1 for all 

j ∈ [3]. For i > 1, let ei be a 3-set in [n] such that |ei ∩ Vj | = 1 for all j ∈ [3] and 

such that |ei ∩ ek| ≤ 1 for all k ∈ [i − 1]. When an edge ei with this property cannot 

be found, the procedure stops and outputs {e1, . . . , ei−1}. Observe that every 3-graph 

obtained from this procedure belongs to L(n). As there are at most ni sets of size 3

which intersect some element of {e1, . . . , ei−1} in 2 vertices or more, we have at least 

|V1||V2||V3| −ni choices for ei. This implies that the procedure lasts for at least n2

27 − n2

log n

steps. Moreover, as we have |V1||V2||V3| − ni ≥ n3

2 log n for all i ≤ n2

27 − n2

log n , the number 

of 3-graphs in L(n) and hence in Q(n) is at least

|Q(n)| ≥

(

n3

2 log n

)
n2

27 − n2

log n

(⌊

n2

27 − n2

log n

⌋)

!
≥

(

n

log n

)
n2

27 − n2

log n

= 2
(

1
27 +o(1)

)

n2 log n. (7)
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The factorial term above takes the double counting into consideration. Combining this 

bound with the upper bound from Theorem 1.4, we obtain f(n, {1, 4}) = 2Θ(n2 log n). �

Claim 4.1. If n ≥ 13 and {0, 4} ⊆ L, then f(n, L) = 0.

Proof. Let R3(4, 4) be the smallest integer n such that every red and blue edge-coloring of 

the complete 3-graph K3
n contains a red copy of K3

4 or a blue copy of K3
4 . The hypergraph 

Ramsey number R3(4, 4) was determined by McKay and Radziszowski in [27], where they 

showed that R3(4, 4) = 13. We conclude that for all sets L such that {0, 4} ⊆ L there is 

no (L, 4)-free 3-graph on at least 13 vertices. �

Claim 4.2. Let L be a list such that {2} ⊆ L ⊆ {0, 1, 2}. Then, f(n, L) = 2Θ(n2 log n).

Proof. Let L be a list such that {2} ⊆ L ⊆ {0, 1, 2}. Then, for every i ∈ [3] we have 

L ∩ {i − 1, i, i + 1} 
= ∅ and hence L is 3-good. By Theorem 1.4, it follows that f(n, L) ≤

2Θ(n2 log n).

To show a lower bound of the same order, we define the set M(n, 3) of 3-graphs on [n]

such that every pair of vertices is contained in at most one edge. That is, M(n, 3) is the set 

of all linear 3-graphs on [n]. For a graph H ∈ M(n, 3), we have that the graph K3
n − H

is (L, 4)-free and hence f(n, L) ≥ |M(n, 3)|. A lower bound on |M(n, 3)| was already 

obtained in the proof of Lemma 2.1, where we showed that |M(n, 3)| ≥ 2Θ(n2 log n). �

To bound f(n, L) for L = {0, 1, 3} and L = {1, 3}, it is convenient to define the link 

graph of a vertex. For a 3-graph H and a vertex v of H, we define SH(v) to be the graph 

with vertex set V (H) \ {v} and edge set

E
(

SH(v)
)

:= {e \ {v} : v ∈ e, e ∈ E(H)}.

We refer to SH(v) as the link graph of v in H. For a list L, let F(n, L) be the family of 

(L, 4)-free 3-graphs on [n] and SL := {SG(n) : G ∈ F(n, L)
}

be a family of link graphs 

of n associated to F(n, L). The following claim establishes a bijection between F(n, L)

and SL when L = {0, 1, 3} or L = {1, 3}.

Claim 4.3. If L = {0, 1, 3} or L = {1, 3}, then for every A ∈ SL there is an unique 

G ∈ F(n, L) such that SG(n) = A. Moreover, for every 3-set {a1, a2, a3} in [n − 1], the 

following holds:

(1) If A has 1 or 3 edges in {a1, a2, a3}, then a1a2a3 ∈ E(G);

(2) If A has 2 edges in {a1, a2, a3}, then a1a2a3 /∈ E(G);

(3) If L = {0, 1, 3}, then A has at least one edge in {a1, a2, a3};

(4) If L = {1, 3} and A has no edge in {a1, a2, a3}, then a1a2a3 /∈ E(G).
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Fig. 2. All non-isomorphic graphs on 4 vertices satisfying (iii).

Proof. If some item of this claim is not satisfied, then we create a forbidden structure. 

Moreover, from items (1)–(4) it follows that for L = {0, 1, 3} or L = {1, 3} and for each 

A ∈ S there is unique G ∈ F(n, L) such that SG(n) = A. �

Let L = {0, 1, 3} or L = {1, 3} and A ∈ SL. From now on, we denote by GA an unique 

graph such that SGA
(n) = A, which was given by Claim 4.3.

Lemma 4.4. If L = {0, 1, 3}, then f(n, L) = 2Θ(n log n).

Proof. By Claim 4.3, there is a bijection between F(n, L) and SL, and hence to bound 

|F(n, L)| it suffices to determine all graphs which belong to SL. Fix some A ∈ SL

and let Ac be its complement, that is, the graph with vertex set [n − 1] and edge set 
(

[n−1]
2

)

\ E(A). By Claim 4.3(3), we already know that Ac must be triangle-free. To see 

which other conditions A must satisfy, we analyze the graph induced by A in each 4-set 

in [n − 1]. We first observe that graphs on 4 vertices can be divided into 3 categories: (i) 

the complement contains a triangle; (ii) the graph induces a C4; (iii) the assumptions 

in items (i) and (ii) do not hold.

Let {a, b, c, d} be a set of size 4 in [n −1]. As Ac is triangle-free, we already know that 

{a, b, c, d} does not satisfy item (i) in A. Now, we claim that A does not induce a C4 in 

{a, b, c, d}, hence item (ii) does not hold. Indeed, if A induces a C4 in {a, b, c, d}, then it 

follows from Claim 4.3(2) that GA has no edge in {a, b, c, d}, which is a contradiction. 

We conclude that every set of 4 vertices in A satisfies item (iii). This is equivalent to 

saying that Ac is free of triangles and free of induced matchings of size 2.

For m ∈ N, let F
,M (m) be the family of graphs on [m] which are free of triangles and 

induced matchings of size 2. We have seen that if A ∈ S, then Ac ∈ F
,M (n − 1). Now, 

we claim that the converse also holds. Let H be a graph such that Hc ∈ F
,M (n − 1)

and denote by GH the 3-graph on [n] which satisfies items (1)–(3), with A replaced by 

H and G replaced by GH . By the definition of GH , all 4-sets in [n] containing n do not 

induce a forbidden structure in GH . Now, let {a, b, c, d} be an arbitrary 4-set in [n − 1]. 

As Hc ∈ F
,M (n − 1), the graph induced by H in {a, b, c, d} satisfies item (iii). We 

represent in Fig. 2 all non-isomorphic graphs that H can induce on {a, b, c, d}. Using 

Claim 4.3(1) and (2), a careful analysis on the number of edges in {a, b, c, d} shows that 

GH does not induce any forbidden structure. Therefore, we have GH ∈ F(n, L), which 

implies that H ∈ S. In particular, GH = GH .

Now it remains to bound the size of F
,M(m). To do so, we first claim that a graph 

G ∈ F
,M (m) has chromatic number at most 3. Indeed, fix G ∈ F
,M (m) and let uv

be any edge of G. Let N(u) and N(v) be the neighborhoods of u and v, respectively. 

These neighborhoods cannot intersect, otherwise we create a triangle. Moreover, the set 
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Fig. 3. All possible non-isomorphic link graphs and 3-graphs induced by GH on {a, b, c, d}.

[m] \
(

{u, v} ∪N(u) ∪N(v)
)

cannot have an edge, otherwise we create an induced matching 

of size 2 with uv. It follows that we can divide the graph into three disjoint independent 

sets: A1 = {u} ∪ N(v), A2 = {v} ∪ N(u) and A3 := [m] \
(

{u, v} ∪ N(u) ∪ N(v)
)

. This 

proves our claim.

Let b(m) be the number of bipartite graphs with m vertices in each class and with no 

induced matching of size 2. As every graph in F
,M(m) has chromatic number at most 

3 and does not induce a matching of size 2, we have

b(�m/2�) ≤ |F
,M (m)| ≤ 3m · (b(m))3. (8)

The factor of 3m in the upper bound accounts for the number of ways to partition the set 

[m] into 3 parts. To bound b(m), we use an argument which appears in [26]. In [26], the 

authors observed that a bipartite graph with parts A and B has no induced matching 

if and only if for every a1, a2 ∈ A we have N(a1) ⊆ N(a2) or N(a2) ⊆ N(a1). That is, 

the set {N(a) : a ∈ A} forms a chain. Observe that the number of chains of length m

is equal to the number of ways to distribute the elements of [m] into m disjoint labeled 

sets S1, . . . , Sm. On one hand, this number is at least m! = mΘ(m), which is the number 

of ways to place exactly one element in each Si. On the other hand, we have the trivial 

upper bound mm, hence the number of chains of length m is of order mΘ(m). By (8), we 

obtain |F
,M (m)| = mΘ(m) and therefore

|F(n, 3, 4, L)| = |F
,M (n − 1)| = nΘ(n). �

Lemma 4.5. If L = {1, 3}, then f(n, L) = 2(n−1
2 ).

Proof. By Claim 4.3, there is a bijection between F(n, L) and SL, and hence to bound 

|F(n, L)| it suffices to determine all graphs which belong to SL. We claim that SL

contains all graphs on [n −1]. Let H be a graph on [n −1] and denote by GH the 3-graph 

on [n] which satisfies items (1), (2) and (4) in Claim 4.3, with A replaced by H and G

replaced by GH . By the definition of GH , every 4-set in [n] containing n does not induce 

a forbidden structure in GH . Now, let {a, b, c, d} be an arbitrary 4-set in [n −1]. In Fig. 3, 

we show all possible non-isomorphic graphs on {a, b, c, d} and their associated 3-graphs 
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satisfying items (1), (2) and (4) in Claim 4.3. We can see that for any graph induced by 

H on {a, b, c, d}, the 3-graph GH does not induce any forbidden structure on {a, b, c, d}. 

As the number of graphs on [n − 1] is 2(n−1
2 ), we have |F(n, L)| = 2(n−1

2 ). �

Claim 4.6. If L = {4} or L = {3, 4}, then f(n, L) = 2Θ(n3).

Proof. Denote K3−
4 the 3-graph on 4 vertices with 3 edges. For L = {3, 4}, f(n, L)

counts the K3−
4 -free n-vertex 3-graphs and f(n, {4}) counts the K3

4 -free n-vertex 3-

graphs. Observe that

2

7

(

n

3

)

(1 + o(1)) ≤ ex(n, K3−
4 ) ≤ ex(n, K3

4 ) ≤

(

n

3

)

,

where the lower bound comes from a construction by Frankl and Füredi [18]. It follows 

that

2
2
7 (n

3)(1+o(1)) ≤ f(n, {3, 4}) ≤ f(n, {4}) ≤ 2(n
3). �

Claim 4.7. Let n ≥ 4 and L = {1, 2, 3}. Then, f(n, L) = 2.

Proof. Let G be an (L, 4)-free 3-graph on [n] with at least one edge. Let C be a maximal 

clique in G and suppose for contradiction that there is a vertex v /∈ C. Note that 

because G contains an edge, |C| ≥ 3. For any 3 distinct vertices i, j and k in C, we 

have that {i, j, k, v} induces a complete 3-graph. Thus, C ∪ {v} is a clique as well, which 

contradicts the maximality of C. It follows that all the vertices in [n] are in C, and hence 

G is complete. We conclude that the only (L, 4)-free 3-graphs on [n] are the complete 

3-graph and the 3-graph with no edges. �

Claim 4.8. Let n ≥ 5 and L = {0, 2, 3}. Then, f(n, L) = n + 1.

Proof. Let G be an (L, 4)-free 3-graph on [n]. As 0 ∈ L, the 3-graph G has at least 

one edge, hence we can fix a maximal clique C in G. We claim that there is no edge 

containing exactly 2 vertices of C. Suppose for contradiction that there is v /∈ C and 

{i, j} ⊆ C such that vij ∈ E(G). Then, for every k ∈ C \ {i, j} the set {v, i, j, k} spans 

at least 2 edges. As 2, 3 ∈ L, we have no other choice but to have a complete 3-graph on 

{v, i, j, k} for all k ∈ C \ {i, j}. As vik is an edge for all k ∈ C \ {i, j}, we can repeat the 

same argument and show that {v, i, k, �} induces a complete graph for all k, � ∈ C \ {i}. 

We conclude that vk� ∈ E(G) for all k, � ∈ C, and hence C ∪ {v} must be a clique. This 

contradicts the maximality of C.

We now claim that |V (G) \C| ≤ 1. Suppose for contradiction that there exists distinct 

vertices i, j /∈ C. Let c1 and c2 be distinct vertices in C. As c1c2i and c1c2j are not edges 

of G and 0, 2 ∈ L, we have that either ijc1 or ijc2 is an edge of G, otherwise we create a 

forbidden structure in {i, j, c1, c2}. Without loss of generality, suppose that ijc1 ∈ E(G). 
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We can now take another vertex c3 ∈ C \ {c1, c2} and repeat the same argument. By 

analyzing the 3-graph induced by G on {i, j, c2, c3}, we conclude that either ijc2 or ijc3

is an edge of G. As we assumed that ijc2 /∈ E(G), we have ijc3 ∈ E(G) and hence the 

set {i, j, c1, c3} induces exactly 2 edges in G. Since 2 ∈ L, this is a contradiction.

If |C| = n, then G is the complete 3-graph. If |C| = n − 1, then G is the union of 

a clique of size n − 1 and an isolated vertex. There are n such 3-graphs depending on 

which vertex the isolated vertex is. We conclude that the number of (L, 4)-free 3-graphs 

on [n] is n + 1, for all n ≥ 5. �

5. Concluding remarks

When analyzing the proof of Theorem 1.4 in the case where L = {1, 4}, k = 4 and 

r = 3, it can be observed that it actually gives

f(n, 3, 4, {1, 4}) ≤
n−1
∏

m=1

m! = G(n + 1) = 2
n2

2 log n(1+o(1)),

where G is the Barnes G function. On the other hand, we have seen in the proof of 

Theorem 1.2 that

f(n, 3, 4, {1, 4}) ≥ |Q(n)| = 2
n2

27 log n(1+o(1)).

Towards solving Conjecture 1.1, it would be interesting to first determine the constant 

in front of the main term of the exponent.
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