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r—+1. The main tool behind our proof is counting the solutions
of a constraint satisfaction problem.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction
1.1. History

For an r-uniform hypergraph (r-graph) F, let ex(n, F') denote the maximum number
of edges in an F-free r-graph on n vertices. One of the central questions in extremal
combinatorics is to determine the extremal number ex(n, F'). For r = 2, the extremal
number is well-understood for all non-bipartite graphs, see [15] and [38]. However, deter-
mining the extremal number for general r-graphs is a well-known and hard problem. The
simplest and still not answered question posed by Turan asks to determine the extremal
number of K3, the complete 3-graph on 4 vertices. It is widely believed that

ex(n, K3) = (g + 0(1)) <;‘>

In a series of papers, different K3-free 3-graphs on n vertices and g(g) +0(n?) edges were
constructed by Brown [11], Kostochka [23] and Fon-der-Flaass [17] and Razborov [34].
In 2008, Frohmader [19] showed that there are (6™/3) non-isomorphic r-graphs which
are conjectured to be extremal. This is believed to be one of the reasons of the difficulty
of this problem. For other related papers, see [3,30,34].

The problem of determining the extremal number can also be extended to families
of induced r-graphs. For a family of r-graphs F, let ex;(n,F) denote the maximum
number of edges in an induced F-free r-graph on n vertices. In 2010, Razborov [34] used
the method of flag algebras to determine ex;(n, { K3, F1}), where E; denotes the 3-graph
with 4 vertices and 1 edge. In his paper, he showed that

ex;(n, {K3,E1}) = <g +0(1)> (;‘)

Later, this result was extended by Pikhurko [30], who obtained the corresponding stabil-
ity result and proved that there is only one extremal induced {K3, E;}-free 3-graph on
n vertices, up to isomorphism. Sometimes referred to as Turdn’s construction and here
denoted by C,,, the extremal induced { K3, E }-free 3-graph on [n] is obtained as follows.
Let Vi U V3 U V3 be a partition of [n] with ||V;| — [V;]| <1 for all i,j € [3]. An edge is
placed in C, if it intersects each of the classes Vi, V5 and Vs, or if for some ¢ € [3] it
contains two elements of V; and one of V; 1, where the indices are understood modulo
3. See Fig. 1 for an illustration of C,,.
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Fig. 1. Illustration of C,,.

In this paper, we first consider the problem of counting induced { K3, E }-free 3-graphs
on n vertices, which is the counting problem related to the results of Razborov [34] and
Pikhurko [30]. Recently, Balogh and Mubayi [7] observed that a standard application of
the hypergraph container method [4,35] shows that the number of induced { K3, F; }-free
graphs on n vertices is 20**) From the other side, we can construct a family Q(n)
with 2(n” logn) subgraphs of C,, which are induced {K3, E; }-free. A 3-graph is in Q(n)
if it is obtained from a complete tripartite 3-graph with classes V7, Vo, V5 by removing a
linear® 3-graph with the additional property that every edge contains one element from
each of the classes Vi, V5 and V3. It is not hard to show that every 3-graph in Q(n) is in
fact induced {K3, Ey }-free and that |Q(n)| = 29(n* logn) (see the proof of Theorem 1.2
in Section 4). Balogh and Mubayi [7] conjectured that almost all induced {K3, E1 }-free
3-graphs are in this family, up to isomorphism.

Conjecture 1.1 (Balogh and Mubayi [7]). Almost all induced {K3, E1}-free 3-graphs on
[n] are in Q(n), up to isomorphism.

The motivation behind this conjecture comes from similar results. In particular, Per-
son and Schacht [29] proved that almost all Fano-plane free 3-graphs are bipartite, and
Balogh and Mubayi [6] proved that almost all Fs-free triple systems are tripartite, where
Fj is the 5-vertex 3-graph with edge set {123,124, 345}. See also [5] for results along the
same line.

The problem of counting r-graphs which are free of forbidden structures dates back
to the work of Erdés, Kleitman and Rothschild [14] in the context of graphs. They
showed that the number of K,-free graphs on n vertices is 2(1t0(1)ex(n.Ks) - Their work
was later extended to all non-bipartite graphs by Erdds, Frankl and Rédl [13] using
the Szemerédi regularity lemma. For other related results, see [8,9,13,16,21,28,36]. In
a sequence of papers [31-33], Promel and Steger studied the corresponding problem
for induced graphs. Their results were stated in terms of a different notion of extremal
number, which was latter generalized by Dotson and Nagle [12] as follows. Given a family

4 A 3-graph H is linear if every pair of distinct edges e1, ex € E(H) satisfies |e; Nea| < 1.
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of r-graphs F, let M and N be r-sets” in [n] := {1,...,n} with the following properties:
(i) M NN = (; and (ii) for G C ([Z]) \ (M UN), the r-graph G U M is induced F-free.
The notation ([Z]) stands for {S C [n] : |S| = r}. The *-extremal number ex*(n,F) is
defined as

* n .
ex*(n, F) := <r> — min (|M| + |N|),

where the minimum is over all r-sets M, N C [n] satisfying (i) and (ii). In 1992, Prémel
and Steger [32] showed that the number of induced F-free graphs on n vertices is
2ex" (n,F)+o(n) This result was later extended by Alekseev [1] and Bollobas and Thoma-
son [10] for families of graphs, and by Kohayakawa, Nagle and Rodl [22] for 3-graphs.
In 2009, Dotson and Nagle [12] generalized these results, showing that for all families of
r-graphs F the number of induced F-free r-graphs is 2¢% (m:F)+o(n")

For a family F of r-graphs such that ex*(n, F) = o(n"), the counting results mentioned
above are not precise. In the case of graphs, Alon, Balogh, Bollobds and Morris [2]
obtained a more refined result. They showed that the number of induced F-free graphs

on n vertices is 2¢% (m.F)+0(n

™), where £ > 0 depends only on the family F. Terry [37]
generalized this result to finite relational languages which in particular covers r-graphs.
For a family of r-graphs F, her result says that the number of induced F-free 3-graphs
is either 29("") or there exists e > 0 such that for all large enough n, the number of

€

induced F-free 3-graphs is at most 2" .
1.2. Our results

Our first theorem determines the number of induced {Kj3, E;}-free graphs up to a
constant factor on the exponent, making progress towards Conjecture 1.1.

Theorem 1.2. The number of induced { K3, E1 }-free 3-graphs on n vertices is 26(n*logn)

More generally, we also determine the number of induced F-free 3-graphs on n vertices
for all families F of 3-graphs on 4 vertices. Since every 3-graph on 4 vertices is determined
by its number of edges, our result is stated in terms of forbidden number of edges. For
aset L C {0,1,2,3,4}, let f(n,3,4,L) be the number of 3-graphs on n vertices which
do not induce i € L edges on any set of 4 vertices. Our result can be stated as follows,
where we do not attempt to optimize the constants in the exponent.

Theorem 1.3. Let L C {0,1,2,3,4} be a set. Then, the following holds for n > 13.

(a) If{0,4} C L or {1,2,3} C L, then f(n,3,4,L) € {0,1,2};
(b) If L=1{0,2,3} or L ={1,2,4}, then f(n,3,4,L) =n+1;

5 An r-set or r-subset is a set with exactly r elements.



220 J. Balogh et al. / Journal of Combinatorial Theory, Series B 157 (2022) 216-234

¢) If L=1{0,1,3} or L = {1,3,4}, then f(n,3,4, L) = 20(rlogn).

d) If L = {1,3}, then f(n,3,4,L) = 2("2");

6) IfL € {Q)’ {O}’ {1}5 {S}a {4}7 {07 1}7 {3a 4}}; then f(n, 3, 4, L) = 29(77‘3)7‘
2@(77,2 logn)'

o~ o~~~

f) For all the remaining cases, we have f(n,3,4,L) =

Note that some of the statements in Theorem 1.3 are trivial and others are known.
We included those for the sake of completeness. For a list L C {0,1,2,3,4}, define
L¢={4—1i:i€ L}. It is not hard to check that if a list L belongs to item (f), then some
T € {L,L} satisfies T = {1,4} or {2} C T C {0,1,2}. See Table 1 for a detailed list with
the bounds on f(n, 3,4, L) and the references of statements which proves each of them.

Before we state our next theorem, we need some notation. Let k,7 € N and L C
{0, 1,..., (]:)} be a set, which we refer to as a list. We say that an r-graph G is (L, k)-
free if for all ¢ € L there is no set of k vertices in G inducing exactly i edges. By
generalizing our previous notation, we denote by f(n,r, k, L) the number of (L, k)-free
r-graphs on n vertices. Our next theorem extends Theorem 1.2 to r-graphs and 3-good
lists. We say that a list L is 3-good if {i,i+1,i+2}NL # () forall i € {0,1,..., (:f) -2},
That is, the complement of L does not contain three consecutive integers. Throughout
this paper, all logarithms are in base 2.

Theorem 1.4. Let n > k > r > 2 be integers and L C {O, 1,...,(1:)} be a list. If L is
3-good, then

Fnr, b, L) < 22k TnT Hesn,

The main tool behind the proof of Theorem 1.4 is a lemma which counts the solutions
of a certain constraint satisfaction problem, see Lemma 3.1. For L = {2,3,...,r + 1},
we observe that f(n,r,r+ 1, L) is equal to the number of r-graphs such that, for every
pair of edges, the size of their intersection is not » — 1. This is related to the problem of
counting designs, a heavily studied object in combinatorics, see [20,24,25].

The rest of this paper is organized as follows. In Section 2 we discuss the sharpness
of Theorem 1.4; in Section 3 we present the proof of Theorem 1.4; in Section 4 we prove
Theorems 1.2 and 1.3.

2. Sharpness discussion of Theorem 1.4

In this section, we provide three examples which show that Theorem 1.4 is sharp for
k = r + 1. Our first lemma shows that there is a 3-good list that achieves the upper
bound given by Theorem 1.4.

Lemma 2.1. For r > 2 we have

Flnorr+1,{2,3,...,r+1}) = 200" "logn)
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Proof. Thelist L :={2,3,...,7+1} is 3-good and therefore Theorem 1.4 can be applied,
which gives the upper bound. Now, let M (n,r) be the set of r-graphs on [n] such that
every (r — 1)-subset of [n] is contained in at most one edge. Note that the number of
(L, 7+ 1)-free r-graphs on [n] is equal to |M(n,r)|. Thus, to lower bound f(n,r,r+1,L)
it suffices to show that [M(n,r)| = 22" "logn),

One way to lower bound M (n, ) is to use a result of Keevash (Theorem 6.1 in [20]) on
designs. An r-graph G on [n] is an (n,r,t, \)-design if every t-subset of [n] is contained
in exactly A elements of E(G). If certain divisibility conditions involving n and r are

n—i
r—1l—z
that the number of (n,r,r — 1,1)-designs is 26(n""logn) In fact, let n’ be the largest
integer smaller than n such that n’ = r — 2 mod (r!)2. For each 0 < i < r — 2, there
exists an integer A; such that (Tri:z) = A;- % By the choice of n/, it follows

that 7! | (rz/l__‘z) and hence all divisibility conditions are satisfied. In particular, we have
|M(n,r)| > |M(n,r)| > 22(n"""logn) For the sake of self-completeness, we present here

another simple way to derive this inequality. To do so, we build a subfamily of r-graphs

satisfied, namely (r — i) | ( ) for each 0 < i < r — 2, then Keevash’s result implies

in M (n,r) via the following greedy procedure. Let e; be an r-subset in [n]. For i > 1, let
e; be an r-subset in [n] such that |e; Ne;| # r —1 for all j € [i — 1]. The procedure stops
when an edge e; with this property cannot be found. As there are at most rni sets of
size r which intersect some element of {ey,...,e;_1} in exactly r — 1 vertices, we have at
least (Z) — nri choices for e;. It follows that the procedure lasts for at least 2”;;—111 steps.
As we have (:L) —nri > %(Z) for all i < 2”;,—111, it follows that the number of r-graphs in
M(n,r) is at least

nr—1

n'r‘—l -
M (n,r)| > (%(?))ZMH > <TT+1(Z)> o > n%f _ 90(n" " logn)

nr—1 | nT'—l
27771 )

The factorial term above takes the double counting into consideration. Combining

this bound with the upper bound from Theorem 1.4, we obtain f(n,r,r + 1,L) =
2®(n"'7110gn). O

Our next example shows that there is a list L which is not 3-good such that the bound
presented in Theorem 1.4 does not hold.

Lemma 2.2. For r > 2 we have
Flnorr+1,{3,4,...,r +1}) = 290",

Proof. Fix an r-partition (V;);e},) of the vertex set [n] such that ||V;| — [V;|| <1 for all
1,7 € [r]. Let G be the r-graph whose set of edges is given by the r-sets with one vertex
in each class V;. This r-graph has ©(n") edges and every subgraph of it is (L, r + 1)-free,
where L := {3,4,...,r + 1}. We conclude that f(n,r,r 4+ 1,L) =2°""). 0
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When k = n, there is a 3-good list L C {0, 1,2,..., (:f)} such that the bound on
f(n,r,n, L) given by Theorem 1.4 is sharp.

Claim 2.3. Let r > 2 and L be the set of all odd integers in {07 1,2,..., (f)} Then, we
have

f(n,r,n, L) =200,

Proof. The number of (L, n)-free r-graphs on [n] is equal to the number of r-graphs on
[n] with an even number of edges. Clearly, there are 29(*") of those. O

3. Proof of Theorem 1.4

We will start by proving a combinatorial lemma. To state it we use the language of
constraint satisfaction problems (CSP). Let P be the family of all subsets of {0,1} x {0, 1}.
We refer to the elements of P as constraints. A CSP on [m] is a pair ([m], f), where
f: ([7;]) — P is a function assigning a constraint for each pair of vertices. An assignment
on [m] is a function g : [m] — {0, 1} which assigns for every vertex v € [m] an integer (or
color) from {0,1}. We say that an assignment g : [m] — {0,1} is satisfying for ([m], f)
if we have (g(a), g(b)) ¢ f({a,b}) for any pair a,b € [m] such that a < b.

For a CSP G = ([m], f), let A(G) be the set of satisfying assignments for G. Now,
define

C = {{(1,0),(0, 1)}, {(0,0)}, {(1,1)}}.

Observe that C is a subset of P. Our next lemma shows that for f : ([7;]) — C the CSP
G = ([m], f) satisfies | A(G)| < m + 1. This bound is best possible, as we can see by the
following example. Let f : ([Tg]) — C be the function given by f({i,j}) = {(1,1)} for
all i < j and let G = ([m], f) be the corresponding CSP. A function g : [m] — {0,1}
is a satisfying assignment for G if and only if |[g7!(1)| < 1. As there are exactly m + 1
choices of g71(1) for which |¢g71(1)| < 1, we have |A(G)| =m + 1.

Lemma 3.1. Let m € N, f : ([7;]) — C and G = ([m], f) be a CSP. The size of the set
A(G) of satisfying assignments for G is bounded by

|A(G)] < m+ 1.

Proof. We proceed by induction on m. The base case is m = 1. For a CSP G on one
vertex we have |A(G)| < 2, as there is only one vertex to be assigned with a color from
{0,1}. Now, let m > 2 and assume that for every i < m and every CSP G on i vertices
we have |A(G)| <i+ 1.
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Fix a function f : ([?]) — C and the CSP given by G = ([m], f). We partition the set
of satisfying assignments into A(G) = Ay U A4;, where

Ao :={g € A(G) : g(m) =0} and Ay :={g € A(G) : g(m) = 1}.

We gain extra information about the satisfying assignments in each of these sets based on
the constraints given by f. Note that if f({j,m}) = {(1,0),(0,1)}, then we automatically
have g(j) =i for all g € A; and i € {0,1}. If f({j,m}) = {(4,7)}, then we must have
g(j) =1—ifor all g € A; and i € {0,1}. This motivates us to consider the following
subsets of [m]:

Fo={j<m:f({j;m}) ={L,D}} and  Fr:={j<m:f{jm}) ={(0,0)}}.

For each i € {0,1}, the set F; corresponds to the values of j < m which are free, that
is, the values of j for which g(j) might not be the same for all functions g € F;. More
precisely, our analysis shows that for g1,g2 € A; and j ¢ F; we have ¢1(j) = g2(j), for
ie€{0,1}.

Let G[Fy] := (Fo,f|(,;0)) and G[F)] := (Fl, f\@)) be the induced CSP of G on Fy
and F1, respectively. It follows that

[A(G)| < |A(G[FO])| + [A(GIF])I- (1)

As Fy and F; are subsets of [m — 1], by the induction hypothesis we have
|A(GFo])| < |[Fol+1 and |A(G[F])| < |Fi|+ 1. (2)
As Fy and Fj are disjoint, we have |Fy|+ |F| < m—1. Combining (1) and (2), we obtain

JA(G)| < |Fol + 1+ |Fi|+1<m+ 1.
This completes our proof of Lemma 3.1. O

Lemma 3.1 will be used in the proof of Lemma 3.3 below. For the rest of this section,
we fix natural numbers k > r and a 3-good list L C {0, 1,..., (f) } For simplicity, denote
f(n) :== f(n,r,k,L) and let F(n) be the family of (L, k)-free r-graphs on [n]. In order

to bound f(n), we introduce other related quantities. For a set A C [n] and an r-graph
H € F(n), define

D(A, H,n) = {G €F(n):ACe Vee E(G)AE(H)},

where A denotes the symmetric difference. In words, D(A, H,n) is the set of (L, k)-
free graphs on [n] for which the edges and non-edges agree with H on the r-sets not
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containing A. When |A| = 1, D(A, H,n) is the set of r-graphs which extend H|[n]\A to
an (L, k)-free r-graph on [n]. It is also convenient to define

d(a,n) :=max {|D(A, H,n)| : H € F(n)},

where A is an arbitrary set of size a. As the maximum is taken over all H € F(n) and
the set F(n) is closed for permuting the vertices of the graphs, it does not depend on
the set A. When a = 1, we can think of d(1,n) as the maximum number of extensions
that an r-graph may have. We can easily see that

f(n) <d(1,n)- f(n—1) (3)

for all n € N. Therefore, to bound f(n) we will bound d(1,n) for all n € N.
In order to upper bound d(1,n), we first provide an upper bound on d(a,n) which
depends on d(a + 1,v), for v € {r,...,n}.

Lemma 3.2. Let n,r, k and a be natural numbers such that k > r andn >r —1 > a.
Then, we have

d(a,n) < ﬁ d(a+1,v).

V=T

Proof. Let H be an (L, k)-free r-graph on [n] and let A C [n — 1] be a set of size a.
For an r-graph G on [n], denote by G,,_; the r-graph on [n — 1] induced by G. Observe
that if G € D(A, H,n), then G,,_1 € D(A,H,—_1,n — 1). We then partition the set
D(A, H,n) according to the r-graph induced on the vertex set [n — 1]. For each r-graph
JeD(A H,_1,n—1), let Ty (A, J,n) be the set of r-graphs G in D(A, H,n) for which
Gn—l =J. Then,

D(A, H,n) = Tu(A, J,n), (4)
J

where the union is over J € D(A, H,_1,n — 1).

We claim that T (A,J,n) € D({n} U A,G,n) for all G € Ty (A, J,n). To prove
this, let G and G’ be r-graphs in Ty (A, J,n). As G,1 = J = G!,_;, we have n € e
for all e € E(G')AE(G). Moreover, as G, G' € D(A,H,n), we have A C e for all
e € E(G)AE(G"). This implies that {n} U A C e for all e € E(G)AE(G"), which proves
our claim. As |[AU{n}| = a+ 1, we obtain

T (A, J,n)| <d(a+1,n) (5)
for all H and J € D(A, H,,—1,n — 1). Combining (4) and (5), we get

|D(A,H,n)| < |D(A,Hyp—1,n—1)|-d(a+1,n) <d(a,n—1)-d(a+1,n). (6)
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As (6) holds for every (L, k)-free r-graph H on n vertices, (6) implies that

d(a,n)
—7 7 < 1,n).
d(a,n—1) — (a+1mn)
Let m > r be an integer. Performing the telescopic product with n going from r to m,
we have
d(a,m) .
— < d 1,v).
d(a,r—1) — UEIT (a+1v)

As d(a,r — 1) = 1, this completes our proof. O

Recall that we need to bound d(1,n) in order to bound f(n). To do so, we use ‘back-
ward’ induction. If we bound d(a+1,n) for every n > k, then Lemma 3.2 yields a simple
bound on d(a,n) in terms of d(a + 1,n). As d(r,n) < 2, if we apply the recursion in
Lemma 3.2 using this bound then we obtain d(1,n) = 20(n"™")  However, this only im-
plies that f(n) = 20(n") We overcome this problem in our next lemma, where we obtain
a polynomial bound for d(r — 1,n) instead.

Lemma 3.3. Let n,r and k be natural numbers such that n > r > 2 and k > r. If
LC {0, 1,..., (ﬁ)} is a 3-good list, then

d(r —1,n) < 2*n.

Proof. Let H be an (L, k)-free r-graph. Recall that D([r — 1], H,n) is the set of (L, k)-
free r-graphs G on [n] for which the following holds. If e € E(H)AE(G), then [r—1] C e.
We associate the problem of counting the r-graphs in D([r —1],H, n) to the problem
of counting the 2-colorings of the vertices in [n] \ [r — 1] under certain restrictions. The
first step is to define for each G € D([r — 1], H,n) a coloring Cg : [n] \ [r — 1] — {0,1}
as follows:

{C’(;(i) =1, if [r—1]U{i} € BE(G),

Cg(i) =0, otherwise.

Observe that the number of r-graphs in D ([7“—1}, H, n) is equal to the number of colorings
c:[n]\[r—1] = {0,1} for which

(Hu{iulr—1]:iec " (M)} \{ivfr—1]:iec'(0)}

forms an (L, k)-free r-graph. As |D([r - 1], H, n)| < 2% when n < k, from now on we
assume that n > k. We partition the set D([r - 1], H, n) according to a partial coloring
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on the set S := [k — 2]\ [r — 1]. For each coloring ¢ : S — {0,1}, let D(c) be the set of
r-graphs G € D([r — 1], H, n) for which Cg|5 = c¢. Now,

D([r—1],H,n) = U D(c).

c:S—{0,1}

We may think that all the edges and non-edges corresponding to r-sets of the form
[r — 1] U {i}, for ¢ € S, are fixed inside D(c). Our objective now is to bound the size
of D(c) via a constraint satisfaction problem on [n] \ [k — 2]. To do so, we need to
introduce some notation. For each pair of distinct vertices {i,5} C [n] \ [k — 2], let R;;
be the collection of all r-sets in [k — 2] U {4,j} which are different from [r — 1] U {3}
and [r — 1] U {j}. Observe that all r-graphs in D(c) coincide on the r-sets in R; ;. More
precisely, for G1,G2 € D(c) and e € R; j, we have e € E(G,) if and only if e € E(G>).
Let ||R; || be the number of edges in R; ; which are in common for every r-graph in
D(c). Note that we cannot have r-graphs G1, G2 and G3 in D(c) which induce || R; |,
|Ri jllc+1 and || R; ;|| +2 edges in [k —2] U {1, j}, respectively, as this would contradict
the assumption that LN {a — 1,a,a+ 1} # 0 for all a € {(f) - 1].

For each {i,j} C [n] \ [k — 2], let 5, € {0,1,2} be such that ||R; ;| +t; € L.
Then, for every G € D(c) we must have Cg(i) + Cg(j) # t5;, otherwise G' would
have a forbidden structure on [k — 2] U {i,j}. If 7, = 0 or 2, this is equivalent to
the constraint (Cg(i),Cq(j)) # (t5 /2.t ;/2); and if ¢ ; = 1, it is equivalent to the
constraint (Ce (i), Ca(j)) ¢ {(0,1), (1,0)}. We can then define the following constraint
function f, : ([n]\gk_z]) —C:

{(070)}7 if tg,j =0,
fHi g1 = 4{(1,0),(0,1)}, ift5; =1,
{(1,1)}, if £5 ;= 2.

Let G. = ([n]\[k—2], fc) be a CSP. It follows that |D(c)| < |A(G.)|, where A(G.) is the
set of satisfying assignments of the CSP G.. By Lemma 3.1, we have |[A(G.)| <n—k+3
and hence

ID(r—1],Hn)[ < > |D(c)) <n-2
c: S—{0,1}

As |S| <k, this proves our lemma. O
Combining Lemmas 3.2 and 3.3, we obtain the following corollary.

Corollary 3.4. Let n, k and r be natural numbers such that n,k > r > 2 and let L C
{O, 1,..., (f)} be a 3-good list. Then, for all i € [r — 1] we have
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d(r—i,n) < gkn'~!4n'"!logn,

Proof. We proceed by induction on i. By Lemma 3.3, the statement holds for i = 1.
Now, assume that the lemma holds for some i € [r — 2]. By Lemma 3.2, we obtain

i—1 i—1 i i
d(’l“— ’L+1 <HdT—ZU <H2kv +v' "t logv 2kn+nlogn)

as required. O

We are now ready to complete the proof of Theorem 1.4. Let n > k > r > 2 be integers
and L C {0,1,..., (i)} be a 3-good list. By (3), we have f(n) <d(1,n)- f(n—1) and
hence

n

fn)y < fk)- I dtv).

v=k+1

As d(v) = d(1,v), by Corollary 3.4 we have d(v) < 2¥" “+v"*1o8v_Fyom this together
with the trivial bound f(k) < 2¥", we obtain

n
r r—2, r—2 r r—1, r—1
f(n) S 2k I I 2kv +v log v S 21@ +kn “+n logn
v=k+1

)

as required.
4. Proof of Theorems 1.2 and 1.3

In this section we prove Theorem 1.3, that is, we determine f(n, 3,4, L) asymptotically
for all possible L. In particular, we prove Theorem 1.2. For simplicity, we denote f(n, L) =
f(n,3,4, L) and assume that n > 4 throughout this section.

For a list L C {0,1,2,3,4}, recall that L¢ = {4 — i : ¢ € L}. Observe that f(n,L) =
f(n, L), as a 3-graph G does not induce i edges on 4 vertices if and only if its complement
G€ does not induce 4 — i edges on 4 vertices. In light of this, to prove Theorem 1.3 it
is sufficient to bound f(n, L) for only one set L in each row of Table 1 below. When
{0,4} C L, our proof trivially follows from Ramsey’s theorem, see Claim 4.1. When
{2} € L C {0,1,2}, L is 3-good and hence the upper bound on f(n,L) follows from
Theorem 1.4. The lower bound is obtained via the same greedy procedure used in the
proof of Lemma 2.1, see Claim 4.2 for more details. These and the trivial cases already
fill a good proportion of the table. The remaining cases are more delicate and we need
to deal with each of them separately. We start with the proof of Theorem 1.2.

Proof of Theorem 1.2. The upper bound follows immediately from Theorem 1.4. For the
lower bound, we consider the family of 3-graphs Q(n) presented in the introduction. Let
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Table 1
This table shows the values for f(n, 3,4, L) for all possible L.
L f(n,3,4,L) Proof
0 2(%) trivial
{0}, {4} 20" Claim 4.6
{1}, {3} 20(n?) follows from {3,4}
{0,1}, {3,4} 20(n%) Claim 4.6
{2} 26(n?logn) Claim 4.2
{0,2}, {2,4} 20 (n?logn) Claim 4.2
{0,3}, {1,4} 20 (n* logn) Theorem 1.2
{1,2}, {2,3} 20 (n*logn) Claim 4.2
{0,1,2}, {2,3,4} 20(n”logn) Claim 4.2
{1,3} 2("2") Lemma 4.5
{0,1,3}, {1,3,4} 20(nlogn) Lemma 4.4
{0, 2,3}, {1, 2,4} n+1forn>5 Claim 4.8
1,2,3 2 Claim 4.7
§1 2,3,4}, {0,1,2,3} 1 trivial
{0,4} 0 for n > 13 Claim 4.1
{0,1,4}, {0,3,4} 0 for n > 13 Claim 4.1
0,2,4 0 for n > 13 Claim 4.1
EO, 2, 3?4} {0,1,2,4} 0 for n > 13 Claim 4.1
{0,1,3,4} 0 for n > 13 Claim 4.1
{0,1,2,3, 4} 0 trivial

[n] = V1 UV2U V3 be a partition of [n] with |[V;| = |V;|| <1 for all i, j € [3], which is the
same partition as the one used in the definition of C,,. Recall that a 3-graph is in Q(n)
if it is obtained from C,, by removing a linear 3-graph with the additional property that
every edge contains one vertex from each of the classes V;, V5 and V3. Note that every
4-set in C,, has either 0, 2 or 3 edges. Moreover, 4-sets containing at least one vertex of
each of the classes have 3 edges. This implies that for a 3-graph H € Q(n) every 4-set
has either 0, 2 or 3 edges. As Q(n) is a family of ({1,4},4)-free 3-graphs on n vertices,
to lower bound f(n,{1,4}) it suffices to lower bound |Q(n)].

Let L(n) be the family of linear 3-graphs on [n] with the additional property that
every edge intersects each of the classes Vi, V5 and Vs. Clearly, we have |Q(n)| = |L(n)|.
Now, we lower bound |L(n)| via the following greedy procedure, which is similar to the
one in the proof of Lemma 2.3. Let e; be a 3-set in [n] such that |e; N V;| =1 for all
j € [3]. For i > 1, let e; be a 3-set in [n] such that |e; N V;| = 1 for all j € [3] and
such that |e; Neg| < 1 for all k& € [i — 1]. When an edge e; with this property cannot
be found, the procedure stops and outputs {ey,...,e;—1}. Observe that every 3-graph
obtained from this procedure belongs to L(n). As there are at most ni sets of size 3

which intersect some element of {ej,...,e;_1} in 2 vertices or more, we have at least
[V1||V2||V3| — ni choices for e;. This implies that the procedure lasts for at least 5= lggn
steps. Moreover, as we have |V1|[Va[|[V3| = ni > 53— for all i < 5 2—7 - m, the number
of 3-graphs in L(n) and hence in Q(n) is at least
’712 ’712
( n3 >27710gn n2 _ n2
Q)] > ~TEr > (D)7 gl re)nTiosn, (7)
- — \logn
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The factorial term above takes the double counting into consideration. Combining this
bound with the upper bound from Theorem 1.4, we obtain f(n,{1,4}) = 20(nlogn)

Claim 4.1. If n > 13 and {0,4} C L, then f(n,L) =0.

Proof. Let R3(4,4) be the smallest integer n such that every red and blue edge-coloring of
the complete 3-graph K3 contains a red copy of K3 or a blue copy of Kj. The hypergraph
Ramsey number R3(4,4) was determined by McKay and Radziszowski in [27], where they
showed that R3(4,4) = 13. We conclude that for all sets L such that {0,4} C L there is
no (L, 4)-free 3-graph on at least 13 vertices. O

Claim 4.2. Let L be a list such that {2} C L C {0,1,2}. Then, f(n, L) = 20" lgn),

Proof. Let L be a list such that {2} C L C {0,1,2}. Then, for every i € [3] we have
Ln{i—1,i,5+ 1} # 0 and hence L is 3-good. By Theorem 1.4, it follows that f(n, L) <
90(n” logn)

To show a lower bound of the same order, we define the set M (n, 3) of 3-graphs on [n]
such that every pair of vertices is contained in at most one edge. That is, M (n, 3) is the set
of all linear 3-graphs on [n]. For a graph H € M(n,3), we have that the graph K2 — H
is (L,4)-free and hence f(n,L) > |M(n,3)|. A lower bound on |M(n,3)| was already
obtained in the proof of Lemma 2.1, where we showed that |M(n,3)| > 20" logn)

To bound f(n,L) for L ={0,1,3} and L = {1, 3}, it is convenient to define the link
graph of a vertex. For a 3-graph H and a vertex v of H, we define S (v) to be the graph
with vertex set V(H) \ {v} and edge set

E(Su(v)) :={e\{v}:veeeec E(H)}.

We refer to Sy (v) as the link graph of v in H. For a list L, let F(n, L) be the family of
(L, 4)-free 3-graphs on [n] and S, := {Sc(n) : G € F(n,L)} be a family of link graphs
of n associated to F(n, L). The following claim establishes a bijection between F(n, L)
and Sy, when L ={0,1,3} or L = {1, 3}.

Claim 4.3. If L = {0,1,3} or L = {1,3}, then for every A € Si there is an unique
G € F(n, L) such that Sg(n) = A. Moreover, for every 3-set {a1,as,as} in [n — 1], the
following holds:

(1) If A has 1 or 3 edges in {a1,az2,as}, then ajasas € E(G);

(2) If A has 2 edges in {a1,a2,a3}, then arazas ¢ E(G);

(3) If L ={0,1,3}, then A has at least one edge in {a1,az,as};

(4) If L ={1,3} and A has no edge in {a1, a2, a3}, then arazas ¢ E(QG).
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Fig. 2. All non-isomorphic graphs on 4 vertices satisfying (#i%).

Proof. If some item of this claim is not satisfied, then we create a forbidden structure.
Moreover, from items (1)—(4) it follows that for L = {0,1,3} or L = {1, 3} and for each
A € S there is unique G € F(n, L) such that Sg(n) = A. O

Let L ={0,1,3} or L ={1,3} and A € Si.. From now on, we denote by G4 an unique
graph such that Sg,(n) = A, which was given by Claim 4.3.

Lemma 4.4. If L = {0,1,3}, then f(n,L) = 29(logn),

Proof. By Claim 4.3, there is a bijection between F(n,L) and Sy, and hence to bound
|F(n,L)| it suffices to determine all graphs which belong to Si. Fix some A € S,
and let A° be its complement, that is, the graph with vertex set [n — 1] and edge set
([”51}) \ E(A). By Claim 4.3(3), we already know that A° must be triangle-free. To see
which other conditions A must satisfy, we analyze the graph induced by A in each 4-set
n [n—1]. We first observe that graphs on 4 vertices can be divided into 3 categories: ()
the complement contains a triangle; (iz) the graph induces a Cjy; (ii4) the assumptions
in items (i) and (i4) do not hold.

Let {a,b,c,d} be a set of size 4 in [n—1]. As A° is triangle-free, we already know that
{a,b,¢,d} does not satisfy item (¢) in A. Now, we claim that A does not induce a Cy in
{a,b,c,d}, hence item (i) does not hold. Indeed, if A induces a Cy in {a,b,c,d}, then it
follows from Claim 4.3(2) that G4 has no edge in {a,b,c,d}, which is a contradiction.
We conclude that every set of 4 vertices in A satisfies item (4i7). This is equivalent to
saying that A€ is free of triangles and free of induced matchings of size 2.

For m € N, let Fa p(m) be the family of graphs on [m] which are free of triangles and
induced matchings of size 2. We have seen that if A € S, then A° € Fa ap(n —1). Now,
we claim that the converse also holds. Let H be a graph such that H® € Fa yp(n —1)
and denote by G¥ the 3-graph on [n] which satisfies items (1)-(3), with A replaced by
H and G replaced by GH. By the definition of G| all 4-sets in [n] containing n do not
induce a forbidden structure in G¥. Now, let {a,b,c,d} be an arbitrary 4-set in [n — 1].
As H¢ € Fa p(n — 1), the graph induced by H in {a,b,c,d} satisfies item (4ii). We
represent in Fig. 2 all non-isomorphic graphs that H can induce on {a,b,c,d}. Using
Claim 4.3(1) and (2), a careful analysis on the number of edges in {a, b, ¢, d} shows that
GH does not induce any forbidden structure. Therefore, we have G € F(n, L), which
implies that H € S. In particular, G¥ = Gy.

Now it remains to bound the size of Fa as(m). To do so, we first claim that a graph
G € Fa ym(m) has chromatic number at most 3. Indeed, fix G € Fa a(m) and let uv
be any edge of G. Let N(u) and N(v) be the neighborhoods of u and v, respectively.
These neighborhoods cannot intersect, otherwise we create a triangle. Moreover, the set
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Fig. 3. All possible non-isomorphic link graphs and 3-graphs induced by G on {a,b, ¢, d}.
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[m]\ ({w, v}UN (u)UN (v)) cannot have an edge, otherwise we create an induced matching
of size 2 with wv. It follows that we can divide the graph into three disjoint independent
sets: A; = {u} UN(v), A2 = {v} UN(u) and A3 := [m] \ ({u,v} U N(u) UN(v)). This
proves our claim.

Let b(m) be the number of bipartite graphs with m vertices in each class and with no
induced matching of size 2. As every graph in Fa p(m) has chromatic number at most
3 and does not induce a matching of size 2, we have

b([m/2]) < |Fapr(m)| <3™ - (b(m))°. (8)

The factor of 3" in the upper bound accounts for the number of ways to partition the set
[m] into 3 parts. To bound b(m), we use an argument which appears in [26]. In [26], the
authors observed that a bipartite graph with parts A and B has no induced matching
if and only if for every aj,as € A we have N(a1) C N(az) or N(az) C N(ap). That is,
the set {N(a) : a € A} forms a chain. Observe that the number of chains of length m
is equal to the number of ways to distribute the elements of [m] into m disjoint labeled
sets S1, ..., Sm. On one hand, this number is at least m! = m®(™) which is the number
of ways to place exactly one element in each S;. On the other hand, we have the trivial
upper bound m™, hence the number of chains of length m is of order m®™). By (8), we
obtain |Fa a(m )\ = m®™) and therefore

|f(n7334’L)|:|fAM(nf1)|:n@(n) O
Lemma 4.5. If L = {1,3}, then f(n,L) = o("31).

Proof. By Claim 4.3, there is a bijection between F(n, L) and Sy, and hence to bound
|F(n,L)| it suffices to determine all graphs which belong to Sp. We claim that Si,
contains all graphs on [n—1]. Let H be a graph on [n— 1] and denote by G the 3-graph
on [n] which satisfies items (1), (2) and (4) in Claim 4.3, with A replaced by H and G
replaced by G, By the definition of G, every 4-set in [n] containing n does not induce
a forbidden structure in G¥. Now, let {a, b, ¢, d} be an arbitrary 4-set in [n—1]. In Fig. 3,
we show all possible non-isomorphic graphs on {a,b, ¢, d} and their associated 3-graphs
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satisfying items (1), (2) and (4) in Claim 4.3. We can see that for any graph induced by
H on {a,b,c,d}, the 3-graph G does not induce any forbidden structure on {a, b, ¢, d}.
As the number of graphs on [n — 1] is 2(n51)7 we have |F(n,L)| = 22", o

Claim 4.6. If L = {4} or L = {3,4}, then f(n,L) = 29("),

Proof. Denote K the 3-graph on 4 vertices with 3 edges. For L = {3,4}, f(n,L)
counts the K3 -free n-vertex 3-graphs and f(n,{4}) counts the Kj-free n-vertex 3-
graphs. Observe that

2

2(5) o) < extn 1) < exto ) < ()
where the lower bound comes from a construction by Frankl and Fiiredi [18]. It follows
that

28 ()04 < f(n, {3,4}) < f(n. {4} <20). o
Claim 4.7. Let n > 4 and L = {1,2,3}. Then, f(n,L) = 2.

Proof. Let G be an (L, 4)-free 3-graph on [n] with at least one edge. Let C' be a maximal
clique in G and suppose for contradiction that there is a vertex v ¢ C. Note that
because G contains an edge, |C| > 3. For any 3 distinct vertices 4,j and k in C, we
have that {i,j, k, v} induces a complete 3-graph. Thus, C' U{v} is a clique as well, which
contradicts the maximality of C. It follows that all the vertices in [n] are in C, and hence
G is complete. We conclude that the only (L, 4)-free 3-graphs on [n] are the complete
3-graph and the 3-graph with no edges. O

Claim 4.8. Let n > 5 and L = {0,2,3}. Then, f(n,L) =n+ 1.

Proof. Let G be an (L,4)-free 3-graph on [n]. As 0 € L, the 3-graph G has at least
one edge, hence we can fix a maximal clique C in G. We claim that there is no edge
containing exactly 2 vertices of C. Suppose for contradiction that there is v ¢ C and
{i,7} C C such that vij € E(G). Then, for every k € C'\ {i,j} the set {v,1,j, k} spans
at least 2 edges. As 2,3 € L, we have no other choice but to have a complete 3-graph on
{v,i,7,k} for all k € C'\ {i,7}. As vik is an edge for all k € C'\ {i,j}, we can repeat the
same argument and show that {v, i, k, ¢} induces a complete graph for all k,¢ € C'\ {i}.
We conclude that vkl € E(G) for all k,¢ € C, and hence C' U{v} must be a clique. This
contradicts the maximality of C.

We now claim that |V(G)\ C| < 1. Suppose for contradiction that there exists distinct
vertices 4, j ¢ C. Let ¢; and ¢o be distinct vertices in C. As c¢1coi and ¢caj are not edges
of G and 0,2 € L, we have that either ijc; or ijco is an edge of G, otherwise we create a
forbidden structure in {i, j, ¢1, ca }. Without loss of generality, suppose that ijc; € E(G).
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We can now take another vertex ¢z € C'\ {¢1,c2} and repeat the same argument. By
analyzing the 3-graph induced by G on {i, j, c2, c3}, we conclude that either ijey or ijes
is an edge of G. As we assumed that ijcy ¢ E(G), we have ijcs € E(G) and hence the
set {4, 7, c1,c3} induces exactly 2 edges in G. Since 2 € L, this is a contradiction.

If |C|] = n, then G is the complete 3-graph. If |C| = n — 1, then G is the union of
a clique of size n — 1 and an isolated vertex. There are n such 3-graphs depending on
which vertex the isolated vertex is. We conclude that the number of (L, 4)-free 3-graphs
on[n]isn+1, foralln>5 0O

5. Concluding remarks

When analyzing the proof of Theorem 1.4 in the case where L = {1,4}, k = 4 and
r = 3, it can be observed that it actually gives

n—1
7,'2
Fn,3,4,{1,4}) < [[ m! = G(n +1) = 2% losn(tte),
m=1

where G is the Barnes G function. On the other hand, we have seen in the proof of
Theorem 1.2 that

n

£(n,3,4,{1,4})) > |Q(n)| = 2% legn(1+o(1),

Towards solving Conjecture 1.1, it would be interesting to first determine the constant
in front of the main term of the exponent.
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