ELSEVIER

Contents lists available at ScienceDirect

## **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam



# Chain method for panchromatic colorings of hypergraphs



Margarita Akhmejanova <sup>a,\*</sup>, József Balogh <sup>b</sup>, Dmitrii Shabanov <sup>a,c</sup>

- <sup>a</sup> Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures, Laboratory of Advanced Combinatorics and Network Applications, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
- b Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- <sup>c</sup> National Research University Higher School of Economics (HSE), Faculty of Computer Science, 101000, Myasnitskaya Str. 20, Moscow, Russia

#### ARTICLE INFO

Article history:
Received 20 February 2021
Received in revised form 28 May 2022
Accepted 3 June 2022
Available online 2 July 2022

Keywords: Panchromatic coloring Property B Proper coloring Uniform hypergraph

#### ABSTRACT

We deal with an extremal problem concerning panchromatic colorings of hypergraphs. A vertex r-coloring of a hypergraph H is panchromatic if every edge meets every color. We prove that for every  $2 \le r < \sqrt[3]{\frac{n}{100\ln n}}$ , every n-uniform hypergraph H with  $|E(H)| \le \frac{c}{r^2} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^{n-1}$  has a panchromatic coloring with r colors, where c > 0 is an absolute constant.

© 2022 Elsevier B.V. All rights reserved.

### 1. Introduction and related work

We study colorings of uniform hypergraphs. Let us recall some definitions.

A vertex r-coloring of a hypergraph H = (V, E) is a mapping from the vertex set V to a set of r colors. An r-coloring of H is panchromatic if each edge has at least one vertex of each color.

The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was obtained in 1975 by Erdős and Lovász [6]. They proved that if every edge of an *n*-uniform hypergraph intersects at most

$$\frac{r^{n-1}}{4(r-1)^n} \tag{1}$$

other edges then the hypergraph has a panchromatic coloring with r colors.

The next generalization of the problem was formulated in 2002 by Kostochka [9], who posed the following question: What is the minimum possible number of edges in an n-uniform hypergraph that does not admit a panchromatic coloring with r colors? He denoted this number by p(n, r).

Following closely behind this problem is a related one: a hypergraph H = (V, E) has property B if there is a coloring of V by 2 colors so that no edge  $f \in E$  is monochromatic. Erdős and Hajnal [5] (1961) proposed to find the value m(n) equal to the minimum possible number of edges in a n-uniform hypergraph without property B. Erdős [4] (1963–1964) found bounds  $\Omega$  ( $2^n$ )  $\leq m(n) = O\left(2^n n^2\right)$  and Radhakrishnan and Srinivasan [11] (2000) proved  $m(n) \geq \Omega\left(2^n (n/\ln n)^{1/2}\right)$ . Clearly, m(n) = p(n, 2).

We return to the panchromatic coloring. Kostochka [9] has found connections between p(n, r) and minimum possible number of vertices in a k-partite graph with list chromatic number greater than r. Using results of Erdős, Rubin and

E-mail addresses: mechmathrita@gmail.com (M. Akhmejanova), jobal@illinois.edu (J. Balogh), dmitry.shabanov@phystech.edu (D. Shabanov).

<sup>\*</sup> Corresponding author.

Taylor [7] and also Alon's result [2] Kostochka [9] proved the existence of constants  $c_1$  and  $c_2$  that for every large n and fixed r:

$$\frac{e^{c_1\frac{n}{r}}}{r} \le p(n,r) \le re^{c_2\frac{n}{r}}. \tag{2}$$

In 2010, bounds (2) were considerably improved in the paper of Shabanov [14]:

$$\begin{split} p(n,r) &\geqslant \frac{\sqrt{21}-3}{4r} \left(\frac{n}{(r-1)^2 \ln n}\right)^{1/3} \left(\frac{r}{r-1}\right)^n, \quad \text{for all } r < n, \\ p(n,r) &\leqslant \frac{1}{r} \left(\frac{r}{r-1}\right)^n e(\ln r) \frac{n^2}{2(r-1)} \varphi_1, \quad \text{when } r = o(\sqrt{n}), \\ p(n,r) &\leqslant \frac{1}{r} \left(\frac{r}{r-1}\right)^n e(\ln r) n^{3/2} \varphi_2, \quad \text{when } n = o\left(r^2\right), \end{split}$$

where  $\varphi_1, \varphi_2$  are some functions of n and r(n), tending to one at  $n \to \infty$ .

In 2012, Rozovskaya and Shabanov [13] improved Shabanov's lower bound by proving that for  $r < n/(2 \ln n)$ 

$$\frac{1}{2r^2} \left(\frac{n}{\ln n}\right)^{1/2} \left(\frac{r}{r-1}\right)^n \leqslant p(n,r) \leqslant c_2 n^2 \left(\frac{r}{r-1}\right)^n \ln r. \tag{3}$$

Note that bounds (3) are the same as the best known bounds for r=2. Further research was conducted by Cherkashin [3] in 2018. In his work, Cherkashin introduced the auxiliary value p'(n,r), which is numerically equal to the minimum number of edges in the class of n-uniform hypergraphs H=(V,E), in which any subset of vertices  $V'\subset V$  with  $\left|V'\right|\geq \left[\frac{r-1}{r}|V|\right]$  must contain an edge. Analyzing the value p'(n,r) and using Sidorenko's [15] estimates on the Turan numbers, Cherkashin proved that for  $n\geq 2$ ,  $r\geq 2$ 

$$p(n,r) \le c \frac{n^2 \ln r}{r} \left(\frac{r}{r-1}\right)^n.$$

Cherkashin also proved that for  $r \leq c \cdot \frac{n}{\ln n}$ 

$$p(n,r) \ge c \max\left(\frac{n^{1/4}}{r \sqrt{r}}, \frac{1}{\sqrt{n}}\right) \left(\frac{r}{r-1}\right)^n. \tag{4}$$

And repeating the ideas of Gebauer [8] Cherkashin constructed an example of a hypergraph that has few edges and does not admit a panchromatic coloring in r colors. The reader is referred to the survey [12] for the detailed history of panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number of hyperedges intersecting A. Let d(n,r) be the minimum possible value of the maximum edge degree in an n-uniform hypergraph that does not admit panchromatic coloring with r colors. Then, the Erdős and Lovász result (1) can be easily translated into following form:

$$d(n,r) \ge \frac{r^{n-1}}{4(r-1)^n}. (5)$$

However, the bound (5) appeared not to be sharp. The restriction on d(n, r) have been improved by Rozovskaya and Shabanov [13]. In their work they achieved that

$$d(n,r) > \frac{\sqrt{11} - 3}{4r(r-1)} \left(\frac{n}{\ln n}\right)^{1/2} \left(\frac{r}{r-1}\right)^n, \quad \text{when } r \leqslant n/(2\ln n).$$
 (6)

### 2. Our results

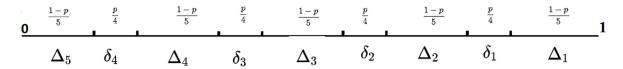
The main result of our paper improves the estimate (3) as follows.

**Theorem 1.** Suppose  $2 \le r \le \sqrt[3]{\frac{n}{100 \ln n}}$ . Then we have

$$p(n,r) \ge \frac{1}{20e^3r^2} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n. \tag{7}$$

**Corollary 1.** There is an absolute constant C so that for every n > 2 and  $\ln n < r < \sqrt[3]{\frac{n}{100 \ln n}}$ 

$$p(n,r) \geq \frac{Cn}{r^2 \ln n} \cdot e^{\frac{n}{r} + \frac{n}{2r^2}}.$$



**Fig. 1.** Partition of [0, 1] into  $\Delta_5, \delta_4, \Delta_4, \delta_3, \ldots, \Delta_1$  when r = 5.

We refine the bound (6) as follows.

**Theorem 2.** For every  $2 < r < \sqrt[3]{\frac{n}{100 \ln n}}$ 

$$d(n,r) \ge \frac{1}{20e^3r^3} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n.$$
 (8)

### 2.1. Methods

In the work, we propose a new idea based on the Pluhar's ordered chain method [10]. In the case of panchromatic coloring, the resulting structure is no longer a real ordered chain, but rather an intricate "snake ball". Nevertheless, with the help of probabilistic analysis, we managed to obtain a strong lower bound.

The rest of the paper is organized as follows. Section 3 describes a coloring algorithm. Section 4 is devoted to an analysis of the algorithm. In Section 5 we collect some inequalities that will be subsequently useful. Sections 6 and 7 contain proofs of Theorems 1 and 2.

### 3. A coloring algorithm

We may and will assume that  $r \ge 3$ , because case r = 2 corresponds to the case m(n). Let H = (V, E) be an n-uniform hypergraph with less than  $\frac{1}{20e^3r^2}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^n$  edges and let  $r < \sqrt[3]{\frac{n}{100\ln n}}$ . We will show that H has a panchromatic coloring with r colors.

We define a special random order on the set V of vertices of hypergraph H using a mapping  $\sigma: V \to [0, 1]$ , where  $\sigma(v), v \in V$  — i.i.d. with the uniform distribution on [0, 1]. The value  $\sigma(v)$  we call the *weight* of vertex v. Reorder the vertices so that  $\sigma(v_1) < \cdots < \sigma(v_{|V|})$ . Put

$$p = \left(\frac{r-1}{r}\right) \frac{(r-1)^2 \ln(\frac{n}{\ln n})}{n}.$$
(9)

We divide the unit intercept [0, 1] into subintervals  $\Delta_r$ ,  $\delta_{r-1}$ ,  $\Delta_{r-1}$ ,  $\delta_{r-2}$ , ...,  $\Delta_1$  as in Fig. 1, i.e.

$$\Delta_{r-i+1} = \left[ (i-1) \left( \frac{1-p}{r} + \frac{p}{r-1} \right), i \cdot \frac{1-p}{r} + (i-1) \cdot \frac{p}{r-1} \right), i = 1, \dots, r;$$

$$\delta_{r-i} = \left[ i \cdot \frac{1-p}{r} + (i-1) \cdot \frac{p}{r-1}, i \left( \frac{1-p}{r} + \frac{p}{r-1} \right) \right), i = 1, \dots, r-1.$$

Since  $p < \frac{1}{100r}$  under the given assumptions on r, we can see that the intervals  $\Delta_1, \ldots, \Delta_r$  are each wider than the intervals  $\delta_1, \ldots, \delta_{r-1}$ . The length of each large subinterval  $\Delta_i$  is equal to  $\frac{1-p}{r}$  and every small subinterval  $\delta_i$  has length equal to  $\frac{p}{r-1}$ . For convenience, we denote belonging  $\sigma(v)$  to a certain segment [c,d] by a shorthand  $v \in [c,d]$  and say that v belongs to [c,d]. We also note that the similar division of the segment [0,1] has already been used by the first author for proving some bounds on proper colorings [1].

We color the vertices of hypergraph H according to the following algorithm, which consists of two steps.

- 1. First, each  $v \in \Delta_i$  is colored with color *i* for every  $i \in \{r, \ldots, 1\}$ .
- 2. Then, using the vertex ordering determined by  $\sigma'$ , we color a vertex  $v \in \delta_i$  with color i if there is no edge  $e, v \in e$  that does not meet color i + 1. Otherwise we color v with i + 1.

### 4. Analysis of the algorithm

### 4.1. Short edge

We say that an edge A is short if  $A \cap (\Delta_i \cup \delta_i) = \emptyset$  or  $A \cap (\Delta_{i+1} \cup \delta_i) = \emptyset$  for some  $i \in \{1, \dots, r-1\}$ . The probability of this event for fixed edge A and fixed i is at most  $2\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^n=2\left(\frac{r-1}{r}-\frac{p}{r(r-1)}\right)^n$ . Summing up this upper

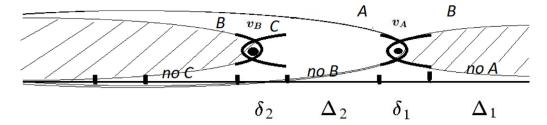


Fig. 2. Edges A and B in a snake ball.

bound over all edges and  $i \in \{1, \dots, r-1\}$  we get

$$2(r-1)|E|\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^{n} \leq \frac{2(r-1)}{20e^{3}r^{2}}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^{n}\left(\frac{r-1}{r}-\frac{p}{r(r-1)}\right)^{n} \leq \frac{1}{e}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(1-\frac{p}{(r-1)^{2}}\right)^{n} \leq \frac{1}{e}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}e^{-pn(r-1)^{2}} = \frac{1}{e}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}e^{-\ln\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}} \leq \frac{1}{e}.$$

Hence, we conclude that the expected number of short edges is less than 1/e. Applying Markov's inequality, we get that with probability at least 1 - 1/e there is no short edge.

#### 4.2. Snake ball

Suppose our algorithm fails to produce a panchromatic *r*-coloring and there are no short edges. Let *A* be an edge, which does not contain some color *i*. Now we have two possibilities:

- $i \in \{2, ..., r\}$ , in this situation edge A is disjoint from the interval  $\Delta_i \cup \delta_{i-1}$ , which means that A is short, a contradiction.
- i = 1.

Edge A is not short, so  $A \cap (\delta_1 \cup \Delta_1) \neq \emptyset$ . Since A does not contain color 1 we have  $A \cap \Delta_1 = \emptyset$ . Denote  $v_A$  the last vertex of  $A \cap \delta_1$ . We note that  $v_A$  could receive color 2 only if at the moment of coloring  $v_A$  there was an edge B without color 2 and  $v_A$  was the first vertex of  $B \cap \delta_1$  (see Fig. 2). Again, edge B is not short and did not contain color 2 at the moment of coloring  $v_A$ , so  $B \cap (\delta_2 \cup \Delta_2) \neq \emptyset$  and  $B \cap \Delta_2 = \emptyset$ . For  $v_B$ , the last vertex of  $B \cap \delta_2$ , there exists an edge C, which at the moment of coloring  $v_B$  was without color 2 and  $v_B$  was the first vertex of  $C \cap \delta_2$ .

Repeating the above arguments, we obtain an ordering r-tuple of edges ( $C_1 = A, C_2 = B, ..., C_r$ ) that witnesses the failure of the Algorithm 1. Note that this r-tuple has three properties:

- 1. (local placing):  $C_i \cap \Delta_i = \emptyset$  and  $C_i$  is not short edge for all  $i \in \{1, \ldots, r\}$ .
- 2. (local order):  $\sigma(u) \leq \sigma(w)$  for all  $u \in C_i \cap \delta_i$ ,  $w \in C_{i+1} \cap \delta_i$  and  $i \in \{1, ..., r-1\}$ .
- 3. (local linearity):  $|C_i \cap C_{i+1} \cap \delta_i| = 1$  for all  $i \in \{1, \dots, r-1\}$ .

Now we call any ordered edge sequence  $H' = (C_1 = A, C_2 = B, ..., C_r)$  with above three properties *snake ball* and conclude the following claim:

**Claim 1.** If for injective  $\sigma: V \to [0, 1]$  there are neither snake balls nor short edges then Algorithm 1 produces a panchromatic r-coloring.

**Lemma 1.** Let  $H' = (C_1, ..., C_r)$  be an ordered r-tuple of edges in H. Then

$$\mathbb{P}\left(H' \text{ forms a snake ball}\right) \leq \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} \cdot \prod_{i=1}^{r-1} |C_i \cap C_{i+1}| \cdot \max H',$$

where  $\max H' = \max_{\tilde{H'} \subset H': |\tilde{H'}| = |H'| - (r-1)} \prod_{v \in \tilde{H'}: s(v) \ge 2} \frac{\left(1 - s(v) \frac{1-p}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}}$  and s(v) is the number of edges of H' that contain vertex

The scheme of the proof is following:

• fix vertex  $v_j \in C_j \cap C_{j+1}$  and its weight  $\sigma(v_j)$  for all  $j \in \{1, ..., r-1\}$ . Calculate conditional probability given weights of  $v_1, ..., v_{r-1}$ .

- sum up (integrate) the previous probability over all possible values of weights, using that  $\sigma(v_j) \in \delta_j, j \in \{1, \dots, r-1\}$ , as this is needed for H' to be a snake ball.
- Finally, sum over all choices of  $v_1, \ldots, v_{r-1}$ .

Now formally. We assume that there exists only one vertex in each intersection  $C_j \cap C_{j+1} \cap \delta_j, j \in \{1, \dots, r-1\}$  as this is needed for H' to be a snake ball (property 3). We denote by  $v_j$  such vertex in each  $C_j \cap C_{j+1} \cap \delta_j, j \in \{1, \dots, r-1\}$  and assume for a moment that its weights equal some real numbers  $y_i \in \delta_j$ . Just for uniform notation of intercepts, we introduce two extra numbers:  $y_0 = 1$  and  $y_r = 1$ . For convenience, we also denote by  $\tilde{H}'$  and  $\tilde{C}_j, j \in \{1, \dots, r-1\}$ , the set of the remaining vertices in H' and in  $C_j$ , i.e.  $\tilde{H}' = H' \setminus \{v_1, \dots, v_{r-1}\}$  and  $C_j \setminus \{v_1, \dots, v_{r-1}\}$ . Using the above notations we are ready to upper bound the conditional probability of the event "H' forms a snake ball" given weights of  $v_1, \dots, v_{r-1}$  are equal to  $y_1, \dots, y_{r-1}$ , respectively.

 $\mathbb{P}(H' \text{ is a snake ball } | \sigma(v_1) = y_1, \dots, \sigma(v_{r-1}) = y_{r-1}, y_0 = 1, y_r = 1) \le 1$ 

$$\left[\prod_{i=1}^{r}\prod_{v\in\tilde{C}_{i}:s(v)=1}\mathbb{P}(\sigma(v)\notin[y_{i},y_{i-1}])\right]\times\prod_{v\in\tilde{H}':s(v)\geq2}\mathbb{P}(\sigma(v)\notin\cup_{j:v\in C_{j}}\Delta_{j})$$
(10)

Since for every v its weight  $\sigma(v)$  is uniformly sampled, for  $v \in \tilde{C}_i$ ,  $\mathbb{P}(\sigma(v) \notin [y_i, y_{i-1}]) \ge \mathbb{P}(\sigma(v) \notin [\Delta_i \cup \delta_i \cup \delta_{i+1}]) = (1 - (\frac{1-p}{r} + \frac{2p}{r-1}))$ . So,

$$\frac{\prod_{i:v\in\tilde{C}_i}\mathbb{P}(\sigma(v)\notin[y_i,y_{i-1}])}{\left(1-\left(\frac{1-p}{r}+\frac{2p}{r-1}\right)\right)^{s(v)}}\geq 1\quad\text{and}\quad$$

$$1 \leq \prod_{v \in \tilde{H}': s(v) > 2} \frac{\prod_{i: v \in \tilde{C}_i} \mathbb{P}(\sigma(v) \notin [y_i, y_{i-1}])}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}} = \frac{\prod_{i=1}^r \prod_{v \in \tilde{C}_i: s(v) \geq 2} \mathbb{P}(\sigma(v) \notin [y_i, y_{i-1}])}{\prod_{v \in \tilde{H}': s(v) \geq 2} \left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}}.$$
 (11)

Multiplying bound (10) on right side of Eq. (11), we get a convenient bound on the conditional probability, which will be a bit easier to analyze:

 $\mathbb{P}(H' \text{ is a snake ball } | \sigma(v_1) = y_1, \dots, \sigma(v_{r-1}) = y_{r-1}, y_0 = 1, y_r = 1) \le$ 

$$\left[\prod_{i=1}^{r}\prod_{v\in\tilde{C}_{i}}\mathbb{P}(\sigma(v)\notin[y_{i},y_{i-1}])\right]\times\prod_{v\in\tilde{H}':s(v)\geq2}\frac{\mathbb{P}(\sigma(v)\notin\cup_{j:v\in\tilde{C}_{j}}\Delta_{j})}{\left(1-\left(\frac{1-p}{r}+\frac{2p}{r-1}\right)\right)^{s(v)}}$$
(12)

To simplify computations, we put  $[\alpha_j,\beta_j)=\delta_j$  and  $x_j=\beta_j-\sigma(v_j)=\beta_j-y_j$  for all  $j\in\{1,\ldots,r-1\}$ . Then the length of intercept  $[y_i,y_{i-1}]$  equals exactly  $\left(\frac{1-p}{r}+x_1\right)$  for  $i=1,\frac{1-p}{r}+x_i+\frac{p}{r-1}-x_{i-1}$  for  $i\in\{2,\ldots,r-2\}$  and  $\frac{1-p}{r}+\frac{p}{r-1}-x_{r-1}$  for i=r-1. Therefore, using that for every v its weight  $\sigma(v)$  is uniformly sampled, (12) does not exceed

$$\left(1 - \left(\frac{1-p}{r} + x_1\right)\right)^{|\tilde{C_1}|} \cdot \left(1 - \left(\frac{1-p}{r} + x_2 + \frac{p}{r-1} - x_1\right)\right)^{|\tilde{C_2}|} \cdot \dots$$

$$\left(1 - \left(\frac{1-p}{r} + x_{r-1} + \frac{p}{r-1} - x_{r-2}\right)\right)^{|\tilde{C_r}|} \cdot \left(1 - \left(\frac{1-p}{r} + \frac{p}{r-1} - x_{r-1}\right)\right)^{|\tilde{C_i}|} \cdot \dots$$

$$\prod_{v \in \tilde{H}': S(v) \ge 2} \frac{\left(1 - S(v)\frac{1-p}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{S(v)}} \cdot \dots$$

Now we lower bound the size of each  $\tilde{C}_i = C_i \setminus \{v_1, \dots, v_{r-1}\}, i \in \{1, \dots, r\}$  by n-r and take out factor  $((r-1)/r)^{(n-r)r}$ :

$$\left(\frac{r-1}{r}\right)^{(n-r)r} \left(1 + \frac{p}{r-1} - \frac{x_1 r}{r-1}\right)^{n-r} \left(1 + \frac{p}{r-1} - \frac{pr}{(r-1)^2} - \frac{(x_2 - x_1)r}{r-1}\right)^{n-r} \cdot \dots \cdot \left(1 + \frac{p}{r-1} - \frac{pr}{(r-1)^2} - \frac{x_{r-1} r}{r-1}\right)^{n-r} \prod_{v \in \tilde{H}': s(v) \ge 2} \frac{\left(1 - s(v)\frac{1-p}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}}\right)$$

Use estimate  $(1+y)^s \le \exp\{ys\}$ :

$$\left(\frac{r-1}{r}\right)^{(n-r)r} \exp\left\{(n-r)\left(\sum_{i=1}^{r} \frac{p}{r-1} - \sum_{i=1}^{r-1} \frac{pr}{(r-1)^{2}}\right)\right\} \prod_{v \in \tilde{H}': s(v) \ge 2} \frac{\left(1 - s(v)\frac{1-p}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}} \\
= \left(\frac{r-1}{r}\right)^{r(n-r)} \prod_{v \in \tilde{H}': s(v) > 2} \frac{\left(1 - s(v)\frac{1-p}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^{s(v)}}.$$

To obtain the final estimate, we have to integrate over the weights  $y_1, y_2, \ldots, y_{r-1}$  (factor  $(p/(r-1))^{r-1}$ ), sum up over all possible choices for the  $v_1, \ldots, v_{r-1}$  (factor  $\prod_{i=1}^{r-1} |C_i \cap C_{i+1}|$ ) and take the maximum over all  $\tilde{H}' \subset H' : |\tilde{H}'| = |H'| - (r-1)$ .

### 5. Auxiliary calculations

Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed to prove Theorem 1. In particular, in Lemma 2, we replace product of pairwise intersections by their sum  $\sum_{i < j} |C_i \cap C_j|$  and in Lemma 4, we will use double-counting for estimating the sum  $\sum_{i < j} |C_i \cap C_j|$ , which can be large with n, by special bounded terms.

**Lemma 2.** Let  $H' = (C_1, \ldots, C_r)$  be an ordered r-tuple of edges in the hypergraph H. Then

$$\sum_{\pi \in S_r} |C_{i_1} \cap C_{i_2} \parallel C_{i_2} \cap C_{i_3}| \cdot \ldots \cdot |C_{i_{r-1}} \cap C_{i_r}| \le \left(\frac{2\sum_{i < j} |C_i \cap C_j| + r}{r}\right)^r,\tag{13}$$

where  $S_r$  denotes all permutations  $\pi = (i_1, \ldots, i_r)$  of  $(1, 2, \ldots, r)$ .

**Proof.** Denote the cardinality of the edge intersection  $|C_i \cap C_j|$  by  $x_{i,j}$ . Then, we have to prove that

$$\sum_{\pi \in S_r} x_{i_1, i_2} x_{i_2, i_3} \cdot \ldots \cdot x_{i_{r-1}, i_r} \le \left(\frac{2 \sum_{i < j} x_{i, j} + r}{r}\right)^r.$$

First, we will show that

$$\sum_{\pi \in S_r} x_{i1,i2} x_{i_2,i_3} \cdot \ldots \cdot x_{i_{r-1},i_r} \le (x_{1,2} + \cdots + x_{1,r} + 1) \cdot \ldots \cdot (x_{r,1} + \cdots + x_{r,r-1} + 1). \tag{14}$$

Let us call  $(x_{i,1} + \cdots + x_{i,r} + 1)$  from (14) the *bracket number i*. We define a mapping f between elements from the left-hand side of (14) and ordered sets that are obtained after performing the multiplication in (14).

Let  $f: x_{i_1,i_2}x_{i_2,i_3} \dots x_{i_{r-1},i_r} \mapsto x_{1,t_1}x_{2,t_2} \dots x_{r,t_r}$ , where  $x_{1,t_1}x_{2,t_2} \dots x_{r,t_r}$  is the product of the following r elements:  $x_{i_{r-1},i_r}$  from the bracket number  $i_{r-1}$ ,  $x_{i_{r-2},i_{r-1}}$  from the bracket number  $i_{r-2}$  and so forth, finally we take the factor 1 from the unused bracket. For example,  $x_{5,6}x_{6,1}x_{1,4}x_{4,3}x_{3,2}$  is mapped to  $x_{1,4} \cdot 1 \cdot x_{3,2} \cdot x_{4,3} \cdot x_{5,6} \cdot x_{6,1}$ .

unused bracket. For example,  $x_{5,6}x_{6,1}x_{1,4}x_{4,3}x_{3,2}$  is mapped to  $x_{1,4} \cdot 1 \cdot x_{3,2} \cdot x_{4,3} \cdot x_{5,6} \cdot x_{6,1}$ . We note that f is an injection. Indeed, for each  $x_{1,t_1}x_{2,t_2} \dots x_{r,t_r}$  there exists at most one sequence  $x_{i_1,i_2}x_{i_2,i_3} \dots x_{i_{r-1},i_r}$  with  $i1,\ldots,ir$  distinct, such as  $f(x_{i_1,i_2}x_{i_2,i_3} \dots x_{i_{r-1},i_r}) = x_{1,t_1} \dots x_{r,t_r}$ .

with  $i1, \ldots, ir$  distinct, such as  $f(x_{i_1, i_2} x_{i_2, i_3} \ldots x_{i_{r-1}, i_r}) = x_{1, t_1} \ldots x_{r, t_r}$ . So, since f does not change the product and f is an injection we get that the right-hand side of (14) is not less than the left-hand side.

Finally, by the inequality on the arithmetic–geometric means and by  $x_{i,j} = x_{j,i}$ 

$$(x_{1,2} + \cdots + x_{1,r} + 1) \cdot \cdots \cdot (x_{r,1} + \cdots + x_{r,r-1} + 1) \le \left(\frac{2\sum_{i < j} x_{i,j} + r}{r}\right)^r$$
.  $\Box$ 

**Lemma 3.** *For all*  $s \in \{2, ..., r\}$ 

$$\frac{\left(1-s\frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2p}{r}\right)\right)^s} \le e^{-\frac{s^2}{20r^2}}.$$
 (15)

**Proof.** First prove the case s > 3.

$$\frac{\left(1 - \frac{s(1-p)}{r}\right)}{\left(1 - \left(\frac{1-p}{r} + \frac{2p}{r-1}\right)\right)^s} = \frac{\left(1 - \frac{s(1-p)}{r}\right)}{\left(1 - \left(\frac{1-p}{r}\right)\right)^s \left(1 - \frac{2pr}{(r-1)(r-1+p)}\right)^s} \le \frac{\left(1 - \frac{s(1-p)}{r}\right)\left(1 + \frac{1-p}{r-1+p}\right)^s}{\left(1 - \frac{2pr}{(r-1)^2}\right)^s}.$$
(16)

Now we deal with factors in (16) separately:

$$\left(1 + \frac{1-p}{r-1+p}\right)^s \le \left(1 + \frac{1-p}{r-1}\right)^s = |\text{Apply Taylor's formula with Lagrange Remainder}| = 1 + \frac{s(1-p)}{r-1} + \frac{s(s-1)(1-p)^2}{2(r-1)^2} + \frac{s(s-1)(s-2)(1-p)^3(1+\theta\cdot\frac{1-p}{r-1})^{s-3}}{6(r-1)^3} \quad \text{for some } \theta \in (0,1).$$

Bound (s-1)/(r-1) by s/r,  $(s-1)(s-2)/(r-1)^2$  by  $s^2/r^2$ ,  $(1+\theta/(r-1))^{s-3}$  with  $\theta \in (0,1)$  by e and (1-p) factor by 1 in the second and the third terms:

$$\leq 1 + \frac{s(1-p)}{r-1} + \frac{s^2(1-p)}{2r(r-1)} + \frac{s^3(1-p)^2e}{6r^2(r-1)}.$$

Hence, the numerator of (16) does not exceed

$$\left(1 - \frac{s(1-p)}{r}\right) \left(1 + \frac{s(1-p)}{r-1} + \frac{s^2(1-p)}{2r(r-1)} + \frac{s^3(1-p)^2}{2r^2(r-1)}\right) < 1 - \frac{s^2(1-p)}{r(r-1)} \left(1 - p - 1/2\right) + \frac{s(1-p)}{r(r-1)} = 1 - \frac{s^2(1-p)}{r(r-1)} \left(1/2 - 1/s - p\right) < 1 - \frac{s^2(1/6-p)(1-p)}{r^2} < 1 - \frac{s^2}{7r^2} \le \exp\left\{-\frac{s^2}{7r^2}\right\}.$$

Using bounds 1/(1-x) < 1+2x for x < 1/2 and estimating pr < 1/100, which follows from restrictions on r, we finally get

$$\begin{split} &\frac{\left(1-s\frac{1-p}{r}\right)}{\left(1-\left(\frac{1-p}{r}+\frac{2pr}{r-1}\right)\right)^s} \leq \exp\left\{-\frac{s^2}{7r^2}\right\} \left(1-\frac{2pr}{(r-1)^2}\right)^{-s} < \exp\left\{-\frac{s^2}{7r^2}\right\} \left(1+\frac{4pr}{(r-1)^2}\right)^s \leq \\ &\exp\left\{\frac{4prs}{(r-1)^2}-\frac{s^2}{7r^2}\right\} \leq \exp\left\{\frac{s}{25(r-1)^2}-\frac{s^2}{7r^2}\right\} < \exp\left\{\frac{4}{25s}\cdot\frac{s^2}{r^2}-\frac{s^2}{7r^2}\right\} < \exp\left\{-\frac{s^2}{20r^2}\right\}. \end{split}$$

Consider the case s = 2.

$$\frac{1 - 2(1 - p)/r}{\left(1 - \left(\frac{1 - p}{r} + \frac{2p}{r - 1}\right)\right)^2} \le \frac{1 - 2(1 - p)/r}{1 - \frac{2(1 - p)}{r} - \frac{4p}{(r - 1)} + \frac{1}{2r^2}} \le \frac{1 - 2(1 - p)/r}{1 - \frac{2(1 - p)}{r} - \frac{1}{4r^2} + \frac{1}{2r^2}} = 1 - \frac{1/4r^2}{1 - 2\frac{1 - p}{r} + \frac{1}{4r^2}} \le 1 - \frac{1}{4r^2} \le 1 - \frac{1}{4r^2}$$

where we used that  $4p/(r-1) < 8p/r = 8pr/r^2 < 8/100r^2 < 1/4r^2$ .  $\Box$ 

### Lemma 4.

$$\max H' \cdot \sum_{r \in S} |C_{i_1} \cap C_{i_2}| \cdot \ldots \cdot |C_{i_{r-1}} \cap C_{i_r}| \le \left(20r^2\right)^r e^{1/20},\tag{17}$$

where  $\max H' = \max_{\tilde{H'} \subset H': |\tilde{H'}| = |H'| - (r-1)} \prod_{v \in \tilde{H'}: s(v) \geq 2} \frac{\left(1 - s(v) \frac{1 - p}{r}\right)}{\left(1 - \left(\frac{1 - p}{r} + \frac{2p}{r^{-1}}\right)\right)^{s(v)}}$  and s(v) is the number of edges of H' that contain vertex

**Proof.** By Lemmas 2 and 3 the left hand side of (17) does not exceed

$$\left(\frac{2\sum_{i< j}|C_i\cap C_j|+r}{r}\right)^r \max_{\tilde{H}'\subset H':|\tilde{H}'|=|H'|-(r-1)} \exp\left\{\sum_{v\in \tilde{H}':s(v)\geq 2} -s^2(v)/20r^2\right\}. \tag{18}$$

Using that  $|\tilde{H}'| = |H'| - (r-1)$  and  $s(v) \le r$  for all  $v \in H$ , we can upper bound the second term from (18). Namely,

$$\sum_{v \in \tilde{H}': s(v) \geq 2} -\frac{s^2(v)}{20r^2} \leq \sum_{v \in H': s(v) \geq 2} -\frac{s^2(v)}{20r^2} + r,$$

$$\max_{\tilde{H'} \subset H': |\tilde{H'}| = |H'| - (r-1)} \exp \Big\{ \sum_{v \in \tilde{H}': s(v) \geq 2} - s^2(v)/20r^2 \Big\} \leq \exp \Big\{ r + \sum_{v \in H': s(v) \geq 2} - s^2(v)/20r^2 \Big\}.$$

Now we will use the following double-counting:  $\sum_{i < j} |C_i \cap C_j|$  is equal to  $\sum_{v \in H': s(v) \ge 2} {s(v) \choose 2} < 1/2 \sum_{v \in H': s(v) \ge 2} s^2(v)$ . Hence, the left hand side of (17) does not exceed

$$(er)^{r} \exp \left\{ \sum_{v \in H': s(v) > 2} -s^{2}(v)/20r^{2} \right\} \left( \frac{\sum_{v \in H': s(v) \geq 2} s^{2}(v) + r}{r^{2}} \right)^{r} \leq (er)^{r} e^{-\frac{t}{20}} (t+1)^{r} \leq (20r^{2})^{r} e^{\frac{1}{20}},$$

where we used  $t = \sum_{v \in H': s(v) \ge 2} s^2(v)/r^2$  and observed that the expression  $(t+1)^r e^{-t/20}$  is maximized when t = 20r - 1.

### 6. Proof of Theorem 1

It remains to show that the if H is a hypergraph with less than  $\frac{1}{20e^3r^2}\left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}}\left(\frac{r}{r-1}\right)^n$  edges then with positive probability, H does not contain neither a short edge nor a snake ball. Denote  $\sum^{unordered}$  the sum over all r-sets  $J\subseteq (1,2,\ldots,|E|)$ ,  $\sum^{ordered}$  the sum over all ordered r-tuples  $(j_1,\ldots,j_r)$ , with  $\{j_1,\ldots,j_r\}$  forming such a J and  $\sum_{\pi\in S_r}$  denote the sum over all permutations  $\pi=(i_1,\ldots,i_r)$  of  $(1,2,\ldots,r)$ .

Then.

$$\sum_{\pi \in S_{r}} \mathbb{P}\left(\left(C_{i_{1}}, \dots, C_{i_{r}}\right) \text{ is a snake ball }\right) \leq \sum_{\pi \in S_{r}} \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} \cdot |C_{i_{1}} \cap C_{i_{2}}| \cdot \dots \cdot |C_{i_{r-1}} \cap C_{i_{r}}| \cdot \max H' = \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} \max H' \cdot \sum_{\pi \in S_{r}} |C_{i_{1}} \cap C_{i_{2}}| \dots |C_{i_{r-1}} \cap C_{i_{r}}| \leq \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} (20r^{2})^{r} e^{1/20},$$
(19)

where for the first inequality we used Lemma 1 and for the second Lemma 4.

Finally, the expected number of snake balls can be upper bounded as follows:

$$\begin{split} &\sum_{r \in S_r} \mathbb{P}\left(\left(C_{j_1}, \dots, C_{j_r}\right) \text{ is a snake ball}\right) = \sum_{r \in S_r} \mathbb{P}\left(\left(C_{i_1}, \dots, C_{i_r}\right) \text{ is a snake ball}\right) \\ &\leq \binom{|E|}{r} \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} (20r^2)^r e^{1/20} \leq \\ &\frac{\left(\frac{1}{20e^3r^2} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n\right)^r}{r!} \cdot \left(\frac{r-1}{r}\right)^{(n-r)r} \cdot \left(\frac{(r-1)^2 \ln(\frac{n}{\ln n})}{rn}\right)^{r-1} (20r^2)^r e^{\frac{1}{20}} \leq \\ &\frac{1}{e^{3r}r!} \left(\frac{r}{r-1}\right)^{r^2} \left(\frac{(r-1)^2}{r}\right)^{r-1} e^{\frac{1}{20}} \leq \frac{1}{e^{2r}} \left(\frac{r}{r-1}\right)^{r^2} e^{\frac{1}{20}} \leq e^{-2r + \frac{r^2}{r-1} + \frac{1}{20}} < e^{-r+2} \leq \frac{1}{e}. \end{split}$$

Applying Markov's inequality, we get that with probability at least 1 - 1/e there are no snake balls. Combining this with the result from Section 4.1, we get that with positive probability the algorithm creates a panchromatic coloring with r colors, which proves Theorem 1.

**Corollary 1.** There is an absolute constant C so that for every n > 2 and  $\ln n < r < \sqrt[3]{\frac{n}{100 \ln n}}$ 

$$p(n,r) \geq \frac{Cn}{r^2(\ln n)} \cdot e^{\frac{n}{r} + \frac{n}{2r^2}}.$$

**Proof.** By applying Taylor's formula with Peano remainder, we obtain

$$\left(1 + \frac{1}{r-1}\right)e^{-\frac{1}{r} - \frac{1}{2r^2}} = 1 + \frac{1}{3r^3} + O\left(\frac{1}{r^4}\right).$$

Thus,  $\left(1+\frac{1}{r-1}\right) > e^{\frac{1}{r}+\frac{1}{2r^2}}$ . Finally, we use  $\left(\frac{n}{\ln n}\right)^{-\frac{1}{r}} > \frac{1}{e}$  when  $r > \ln n$  and Theorem 1.  $\square$ 

### 7. Local variant: proof of Theorem 2

A useful parameter of H is its maximal edge degree

$$D := D(H) = \max_{e \in F(H)} \left| \left\{ e' \in E(H) : e \cap e' \neq 0 \text{ and } e \neq e' \right\} \right|.$$

We show that for  $3 < r < \sqrt[3]{\frac{n}{100 \ln n}}$  every n-uniform hypergraph with  $D \le \frac{1}{20e^3r^3} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n$  has a panchromatic coloring with r colors, which implies Theorem 2.

We recall the asymmetric version of the Lovász Local Lemma, published by Spencer [16], in which it is allowed that different events can have different probability bounds. Spencer considered arbitrary events  $A_1, \ldots, A_n$ , and expressed their dependencies by a dependency graph G = (V, E). In this graph,  $V = \{1, \ldots, n\}$ , and each event  $A_i$  is assumed mutually independent of the set of events  $\{A_j \mid (i, j) \notin E\}$ .

**Lemma 5** (Asymmetric LLL, [16]). Let  $A_1, \ldots, A_n$  be a system of events with dependency graph G = (V, E). Suppose there are real numbers  $x_1, \ldots, x_n \in [0, 1)$ , such that

$$\mathbb{P}(A_i) \leq x_i \prod_{(i,j) \in E} (1 - x_j) \quad (\forall i)$$

Then,

$$\mathbb{P}\left(\bar{A}_1...\bar{A}_n\right) \geq \prod_{i=1}^n \left(1-x_i\right).$$

In particular,  $\mathbb{P}(\bar{A}_1 \dots \bar{A}_n) > 0$  holds.

To prove Theorem 2 we will use the following special case of Lemma 5.

**Lemma 6.** If all events have probability  $\mathbb{P}(A_i) < \frac{1}{2}$  and for all  $i \in [n]$ 

$$\sum_{(i,i)\in E} \mathbb{P}\left(A_j\right) \le \frac{1}{4},\tag{20}$$

then there is a positive probability that no  $A_i$  holds.

For the sake of completeness, we give the proof of Lemma 6 here.

**Proof.** Put  $x_i = 2\mathbb{P}(A_i)$ . Then, for all  $i \in [n]$ 

$$x_i \prod_{(i,j) \in E} \left(1 - x_j\right) = 2\mathbb{P}\left(A_i\right) \prod_{(i,j) \in E} \left(1 - 2\mathbb{P}(A_j)\right) = 2\mathbb{P}\left(A_i\right) e^{\sum_{(i,j) \in E} \ln\left(1 - \mathbb{P}(A_j)\right)} \ge 2\mathbb{P}\left(A_i\right) e^{-\frac{1}{4}} \ge \mathbb{P}(A_i),$$

where we used that  $\ln(1-x) > -x$  for all x > 0.  $\square$ 

In our case the set of bad events has two types: short edges and snake balls. Let  $\mathcal{Q}(C)$  be the event "edge C is short" and  $\mathcal{W}(C_1,\ldots,C_r)$  be the event " $(C_1,\ldots,C_r)$  forms a snake ball".

Note that  $\mathcal{Q}(C)$  depends at most on D events  $\mathcal{Q}(C')$ ,  $C' \in E(H)$  and at most on  $rD^r$  events  $\mathcal{W}(C_1, \ldots, C_r)$ ,  $(C_1, \ldots, C_r) \in [E(H)]^r$ . The second bound follows from the fact that when we fix index  $i \in \{1, \ldots, r\}$  for which  $C \cap C_i \neq \emptyset$ , we have at most D choices for the each of label  $C_i, \ldots, C_1$  and  $C_{i+1}, \ldots, C_r$ . We also recall that, by definition, snake ball do not contain short edges, so  $C \neq C_i$  for all  $i \in \{1, \ldots, r\}$ .

Similarly,  $W(C_1, ..., C_r)$  depends at most on rD events  $Q(C'), C' \in E(H)$  and at most on  $r^2(D+1)D^{r-1}$  events  $W(C'_1, ..., C'_r), (C'_1, ..., C'_r) \in [E(H)]^r$ . In the second bound we again fixed indexes  $i, j \in \{1, ..., r\}$  such that  $C_i \cap C'_j \neq \emptyset$  and then pick r edges. But in this case  $C_i$  can coincide with  $C'_j$  so we have D+1 choices for the edge  $C'_j$  and  $D^{r-1}$  choices for the rest.

Finally, using bound (19) and bound  $2(r-1)\left(1-\left(\frac{1-p}{r}+\frac{p}{r-1}\right)\right)^n$  from Section 4.1, we have **if**  $A_i=\mathcal{W}(C_1,\ldots,C_r)$ :

$$\begin{split} &\sum_{(i,j)\in E} \mathbb{P}(A_j) \leq rD \cdot 2(r-1) \left(1 - \left(\frac{1-p}{r} + \frac{p}{r-1}\right)\right)^n \\ &+ r^2(D+1)D^{r-1} \cdot \left(\frac{r-1}{r}\right)^{(n-r)r} \cdot \left(\frac{p}{r-1}\right)^{r-1} 20^r r^{2r} e^{1/20} \leq \\ &r \left(\frac{1}{20e^3r^3} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n\right) \cdot 2(r-1) \left(\frac{r-1}{r}\right)^n \left(1 - \frac{p}{(r-1)^2}\right)^n \\ &+ 2r^2 \left(\frac{1}{20e^3r^3} \left(\frac{n}{\ln n}\right)^{\frac{r-1}{r}} \left(\frac{r}{r-1}\right)^n\right)^r \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{(r-1)^2 \ln(\frac{n}{\ln n})}{rn}\right)^{r-1} (20r^2)^r e^{\frac{1}{20}} \\ &\leq \frac{2r(r-1)}{20e^3r^3} + \frac{2r^2}{e^{3r}} \left(\frac{r}{r-1}\right)^{r^2} e^{\frac{1}{20}} \leq \frac{1}{10} + \frac{2r^2}{e^{3r}} e^{\frac{r^2}{r-1} + \frac{1}{20}} \leq \frac{1}{10} + \frac{2r^2e^2}{e^{2r}} < \frac{1}{4}. \end{split}$$

if  $A_i = \mathcal{Q}(C)$ :

$$\sum_{(i,j)\in E} \mathbb{P}(A_j) \le D \cdot 2(r-1) \left(1 - \left(\frac{1-p}{r} + \frac{p}{r-1}\right)\right)^n + rD^r \cdot \left(\frac{r-1}{r}\right)^{(n-r)r} \left(\frac{p}{r-1}\right)^{r-1} 20^r r^{2r} e^{1/20} < \frac{1}{4}.$$

In both cases inequality (20) holds, completing the proof of Theorem 2.

### Acknowledgments

The work of the first and the third authors was funded by Russian Foundation for Basic Research No. 20-31-70039 and No. 20-31-90029 and the Council for the Support of Leading Scientific Schools of the President of the Russian Federation

No. N.Sh.-775.2022.1.1. The first author is a Young Russian Mathematics award winner and would like to thank its sponsors and jury.

### References

- [1] M. Akhmejanova, D.A. Shabanov, Equitable colorings of hypergraphs with few edges, Discrete Appl. Math. 276 (2020) 2-12.
- [2] N. Alon, Choice number of graphs: a probabilistic approach, Combin. Probab. Comput. 1 (2) (1992) 107-114.
- [3] D. Cherkashin, A note on panchromatic colorings, Discrete Math. 341 (3) (2018) 652-657.
- [4] P. Erdős, On a combinatorial problem II, in: In J. Spencer (Ed.), Paul Erdős The Art of Counting, MIT Press, 1973, pp. 445-447.
- [5] P. Erdős, A. Hajnal, On a property of families of sets, Acta Math. Hungar. 12 (1) (1961) 87-123.
- [6] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, Vol. 10, Colloquia Mathematica Societatis János Bolyai, 1975, pp. 609–627.
- [7] P. Erdős, A. Rubin, H. Taylor, Choosability in graphs, proceedings of the West Coast conference on combinatorics, in: Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congr. Numer., Vol. 26, Utilitas Math. Publ., Winnipeg, Man, 1980, pp. 125–157.
- [8] H. Gebauer, On the construction of 3-chromatic hypergraphs with few edges, J. Combin. Theory Ser. A 120 (7) (2013) 1483–1490.
- [9] A. Kostochka, On a theorem of erdős, Rubin, and taylor on choosability of complete bipartite graphs, Electron. J. Combin. 9 (1) (2002) 1-4.
- [10] A. Pluhár, Greedy colorings for uniform hypergraphs, Random Struct. Algorithms 35 (2) (2009) 216–221.
- [11] J. Radhakrishnan, A. Srinivasan, Improved bounds and algorithms for hypergraph two-coloring, Random Struct. Algorithms 16 (1) (2000) 4-32.
- [12] A. Raigorodskii, D. Cherkashin, Extremal problems in hypergraph colourings, Russian Math. Surveys 75 (1) (2020) 89-146.
- [13] A. Rozovskaya, D. Shabanov, Extremal problems for panchromatic colourings of uniform hypergraphs, Discrete Math. Appl. 22 (2) (2012) 185–206.
- [14] D. Shabanov, On a generalization of Rubin's theorem, J. Graph Theory 67 (3) (2011) 226-234.
- [15] A. Sidorenko, What we know and what we do not know about Turan numbers, Graphs Combin. 11 (2) (1995) 179-199.
- [16] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1997) 69-76.