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a b s t r a c t

We deal with an extremal problem concerning panchromatic colorings of hypergraphs.
A vertex r-coloring of a hypergraph H is panchromatic if every edge meets every color.
We prove that for every 2 ≤ r < 3

√

n
100 ln n

, every n-uniform hypergraph H with

|E(H)| ≤ c

r2

(

n
ln n

)
r−1
r
(

r
r−1

)n−1
has a panchromatic coloring with r colors, where c > 0

is an absolute constant.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction and related work

We study colorings of uniform hypergraphs. Let us recall some definitions.
A vertex r-coloring of a hypergraph H = (V , E) is a mapping from the vertex set V to a set of r colors. An r-coloring of

H is panchromatic if each edge has at least one vertex of each color.
The first sufficient condition on the existence of a panchromatic coloring of a hypergraph was obtained in 1975 by

Erdős and Lovász [6]. They proved that if every edge of an n-uniform hypergraph intersects at most

rn−1

4(r − 1)n
(1)

other edges then the hypergraph has a panchromatic coloring with r colors.
The next generalization of the problem was formulated in 2002 by Kostochka [9], who posed the following question:

What is the minimum possible number of edges in an n-uniform hypergraph that does not admit a panchromatic coloring with

r colors? He denoted this number by p(n, r).
Following closely behind this problem is a related one: a hypergraph H = (V , E) has property B if there is a coloring

of V by 2 colors so that no edge f ∈ E is monochromatic. Erdős and Hajnal [5] (1961) proposed to find the value m(n)
equal to the minimum possible number of edges in a n-uniform hypergraph without property B. Erdős [4] (1963–1964)
found bounds Ω (2n) ≤ m(n) = O

(

2nn2
)

and Radhakrishnan and Srinivasan [11] (2000) proved m(n) ≥ Ω
(

2n(n/ ln n)1/2
)

.
Clearly, m(n) = p(n, 2).

We return to the panchromatic coloring. Kostochka [9] has found connections between p(n, r) and minimum possible
number of vertices in a k-partite graph with list chromatic number greater than r . Using results of Erdős, Rubin and
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Taylor [7] and also Alon’s result [2] Kostochka [9] proved the existence of constants c1 and c2 that for every large n and
fixed r:

ec1
n
r

r
≤ p(n, r) ≤ rec2

n
r . (2)

In 2010, bounds (2) were considerably improved in the paper of Shabanov [14]:

p(n, r) ⩾

√
21 − 3

4r

(

n

(r − 1)2 ln n

)1/3 (
r

r − 1

)n

, for all r < n,

p(n, r) ⩽
1

r

(

r

r − 1

)n

e(ln r)
n2

2(r − 1)
ϕ1, when r = o(

√
n),

p(n, r) ⩽
1

r

(

r

r − 1

)n

e(ln r)n3/2ϕ2, when n = o
(

r2
)

,

where ϕ1, ϕ2 are some functions of n and r(n), tending to one at n → ∞.
In 2012, Rozovskaya and Shabanov [13] improved Shabanov’s lower bound by proving that for r < n/(2 ln n)

1

2r2

( n

ln n

)1/2
(

r

r − 1

)n

⩽ p(n, r) ⩽ c2n
2

(

r

r − 1

)n

ln r. (3)

Note that bounds (3) are the same as the best known bounds for r = 2. Further research was conducted by Cherkashin [3]
in 2018. In his work, Cherkashin introduced the auxiliary value p′(n, r), which is numerically equal to the minimum
number of edges in the class of n-uniform hypergraphs H = (V , E), in which any subset of vertices V ′ ⊂ Vwith

⏐

⏐V ′
⏐

⏐ ≥
[

r−1
r

|V |
]

must contain an edge. Analyzing the value p′(n, r) and using Sidorenko’s [15] estimates on the Turan numbers,
Cherkashin proved that for n ≥ 2, r ≥ 2

p(n, r) ≤ c
n2 ln r

r

(

r

r − 1

)n

.

Cherkashin also proved that for r ≤ c · n
ln n

p(n, r) ≥ c max

(

n1/4

r
√
r
,

1
√
n

)(

r

r − 1

)n

. (4)

And repeating the ideas of Gebauer [8] Cherkashin constructed an example of a hypergraph that has few edges and
does not admit a panchromatic coloring in r colors. The reader is referred to the survey [12] for the detailed history of
panchromatic colorings.

It is thus natural to consider the local case. Formally, the degree of an edge A is the number of hyperedges intersecting
A. Let d(n, r) be the minimum possible value of the maximum edge degree in an n-uniform hypergraph that does not
admit panchromatic coloring with r colors. Then, the Erdős and Lovász result (1) can be easily translated into following
form:

d(n, r) ≥
rn−1

4(r − 1)n
. (5)

However, the bound (5) appeared not to be sharp. The restriction on d(n, r) have been improved by Rozovskaya and
Shabanov [13]. In their work they achieved that

d(n, r) >

√
11 − 3

4r(r − 1)

( n

ln n

)1/2
(

r

r − 1

)n

, when r ⩽ n/(2 ln n). (6)

2. Our results

The main result of our paper improves the estimate (3) as follows.

Theorem 1. Suppose 2 ≤ r ≤ 3
√

n
100 ln n

. Then we have

p(n, r) ≥
1

20e3r2

( n

ln n

)
r−1
r

(

r

r − 1

)n

. (7)

Corollary 1. There is an absolute constant C so that for every n > 2 and ln n < r < 3
√

n
100 ln n

p(n, r) ≥
Cn

r2 ln n
· e

n
r + n

2r2 .
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Fig. 1. Partition of [0, 1] into ∆5, δ4, ∆4, δ3, . . . , ∆1 when r = 5.

We refine the bound (6) as follows.

Theorem 2. For every 2 < r < 3
√

n
100 ln n

d(n, r) ≥
1

20e3r3

( n

ln n

)
r−1
r

(

r

r − 1

)n

. (8)

2.1. Methods

In the work, we propose a new idea based on the Pluhar’s ordered chain method [10]. In the case of panchromatic
coloring, the resulting structure is no longer a real ordered chain, but rather an intricate ‘‘snake ball’’. Nevertheless, with
the help of probabilistic analysis, we managed to obtain a strong lower bound.

The rest of the paper is organized as follows. Section 3 describes a coloring algorithm. Section 4 is devoted to an
analysis of the algorithm. In Section 5 we collect some inequalities that will be subsequently useful. Sections 6 and 7
contain proofs of Theorems 1 and 2.

3. A coloring algorithm

We may and will assume that r ≥ 3, because case r = 2 corresponds to the case m(n). Let H = (V , E) be an n-uniform

hypergraph with less than 1

20e3r2

(

n
ln n

)
r−1
r
(

r
r−1

)n
edges and let r < 3

√

n
100 ln n

. We will show that H has a panchromatic
coloring with r colors.

We define a special random order on the set V of vertices of hypergraph H using a mapping σ : V → [0, 1], where
σ (v), v ∈ V — i.i.d. with the uniform distribution on [0, 1]. The value σ (v) we call the weight of vertex v. Reorder the
vertices so that σ (v1) < · · · < σ (v|V |). Put

p =
(

r − 1

r

)

(r − 1)2 ln( n
ln n

)

n
. (9)

We divide the unit intercept [0, 1] into subintervals ∆r , δr−1, ∆r−1, δr−2, . . . , ∆1 as in Fig. 1, i.e.

∆r−i+1 =
[

(i − 1)

(

1 − p

r
+

p

r − 1

)

, i ·
1 − p

r
+ (i − 1) ·

p

r − 1

)

, i = 1, . . . , r;

δr−i =
[

i ·
1 − p

r
+ (i − 1) ·

p

r − 1
, i

(

1 − p

r
+

p

r − 1

))

, i = 1, . . . , r − 1.

Since p < 1
100r

under the given assumptions on r , we can see that the intervals ∆1, . . . , ∆r are each wider than the

intervals δ1 . . . , δr−1. The length of each large subinterval ∆i is equal to 1−p

r
and every small subinterval δi has length

equal to p

r−1
. For convenience, we denote belonging σ (v) to a certain segment [c, d] by a shorthand v ∈ [c, d] and say

that v belongs to [c, d]. We also note that the similar division of the segment [0, 1] has already been used by the first
author for proving some bounds on proper colorings [1].

We color the vertices of hypergraph H according to the following algorithm, which consists of two steps.

1. First, each v ∈ ∆i is colored with color i for every i ∈ {r, . . . , 1}.
2. Then, using the vertex ordering determined by σ ′, we color a vertex v ∈ δi with color i if there is no edge e, v ∈ e

that does not meet color i + 1. Otherwise we color v with i + 1.

4. Analysis of the algorithm

4.1. Short edge

We say that an edge A is short if A ∩ (∆i ∪ δi) = ∅ or A ∩ (∆i+1 ∪ δi) = ∅ for some i ∈ {1, . . . , r − 1}. The probability

of this event for fixed edge A and fixed i is at most 2
(

1 −
(

1−p

r
+ p

r−1

))n = 2
(

r−1
r

− p

r(r−1)

)n

. Summing up this upper
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Fig. 2. Edges A and B in a snake ball.

bound over all edges and i ∈ {1, . . . , r − 1} we get

2(r − 1)|E|
(

1 −
(

1 − p

r
+

p

r − 1

))n

≤
2(r − 1)

20e3r2

( n

ln n

)
r−1
r

(

r

r − 1

)n (
r − 1

r
−

p

r(r − 1)

)n

≤
1

e

( n

ln n

)
r−1
r

(

1 −
p

(r − 1)2

)n

≤
1

e

( n

ln n

)
r−1
r

e−pn(r−1)2 =
1

e

( n

ln n

)
r−1
r

e− ln ( n
ln n

)
r−1
r ≤

1

e
.

Hence, we conclude that the expected number of short edges is less than 1/e. Applying Markov’s inequality, we get
that with probability at least 1 − 1/e there is no short edge.

4.2. Snake ball

Suppose our algorithm fails to produce a panchromatic r-coloring and there are no short edges. Let A be an edge, which
does not contain some color i. Now we have two possibilities:

• i ∈ {2, . . . , r}, in this situation edge A is disjoint from the interval ∆i ∪ δi−1, which means that A is short, a
contradiction.

• i = 1.

Edge A is not short, so A∩ (δ1 ∪ ∆1) ̸= ∅. Since A does not contain color 1 we have A∩ ∆1 = ∅. Denote vA the last vertex
of A ∩ δ1. We note that vA could receive color 2 only if at the moment of coloring vA there was an edge B without color
2 and vA was the first vertex of B ∩ δ1 (see Fig. 2). Again, edge B is not short and did not contain color 2 at the moment
of coloring vA, so B ∩ (δ2 ∪ ∆2) ̸= ∅ and B ∩ ∆2 = ∅. For vB, the last vertex of B ∩ δ2, there exists an edge C , which at the
moment of coloring vB was without color 2 and vB was the first vertex of C ∩ δ2.

Repeating the above arguments, we obtain an ordering r-tuple of edges (C1 = A, C2 = B, . . . , Cr ) that witnesses the
failure of the Algorithm 1. Note that this r-tuple has three properties:

1. (local placing): Ci ∩ ∆i = ∅ and Ci is not short edge for all i ∈ {1, . . . , r}.
2. (local order): σ (u) ≤ σ (w) for all u ∈ Ci ∩ δi, w ∈ Ci+1 ∩ δi and i ∈ {1, . . . , r − 1}.
3. (local linearity): |Ci ∩ Ci+1 ∩ δi| = 1 for all i ∈ {1, . . . , r − 1}.

Now we call any ordered edge sequence H ′ = (C1 = A, C2 = B, . . . , Cr ) with above three properties snake ball and
conclude the following claim:

Claim 1. If for injective σ : V → [0, 1] there are neither snake balls nor short edges then Algorithm 1 produces a panchromatic

r-coloring.

Lemma 1. Let H ′ = (C1, . . . , Cr ) be an ordered r-tuple of edges in H. Then

P

(

H ′ forms a snake ball
)

≤
(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

·
r−1
∏

i=1

|Ci ∩ Ci+1| · maxH ′,

where maxH ′ = max
H̃ ′⊂H ′:|H̃ ′|=|H ′|−(r−1)

∏

v∈H̃ ′:s(v)≥2

(

1−s(v)
1−p
r

)

(

1−
(

1−p
r + 2p

r−1

))s(v) and s(v) is the number of edges of H ′ that contain vertex

v.

The scheme of the proof is following:

• fix vertex vj ∈ Cj ∩ Cj+1 and its weight σ (vj) for all j ∈ {1, . . . , r − 1}. Calculate conditional probability given weights
of v1, . . . , vr−1.
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• sum up (integrate) the previous probability over all possible values of weights, using that σ (vj) ∈ δj, j ∈ {1, . . . , r−1},
as this is needed for H ′ to be a snake ball.

• Finally, sum over all choices of v1, . . . , vr−1.

Now formally. We assume that there exists only one vertex in each intersection Cj ∩ Cj+1 ∩ δj, j ∈ {1, . . . , r − 1} as this
is needed for H ′ to be a snake ball (property 3). We denote by vj such vertex in each Cj ∩ Cj+1 ∩ δj, j ∈ {1, . . . , r − 1}
and assume for a moment that its weights equal some real numbers yi ∈ δj. Just for uniform notation of intercepts, we

introduce two extra numbers: y0 = 1 and yr = 1. For convenience, we also denote by H̃ ′ and C̃j, j ∈ {1, . . . , r −1}, the set

of the remaining vertices in H ′ and in Cj, i.e. H̃ ′ = H ′ \ {v1, . . . , vr−1} and Cj \ {v1, . . . , vr−1}. Using the above notations we
are ready to upper bound the conditional probability of the event ‘‘H ′ forms a snake ball’’ given weights of v1, . . . , vr−1

are equal to y1 . . . , yr−1, respectively.

P(H ′ is a snake ball |σ (v1) = y1, . . . , σ (vr−1) = yr−1, y0 = 1, yr = 1) ≤
[

r
∏

i=1

∏

v∈C̃i:s(v)=1

P(σ (v) /∈ [yi, yi−1])
]

×
∏

v∈H̃ ′:s(v)≥2

P(σ (v) /∈ ∪j:v∈Cj∆j)
(10)

Since for every v its weight σ (v) is uniformly sampled, for v ∈ C̃i, P(σ (v) /∈ [yi, yi−1]) ≥ P(σ (v) /∈ [∆i ∪ δi ∪ δi+1]) =
(

1 − ( 1−p

r
+ 2p

r−1
)
)

. So,
∏

i:v∈C̃i P(σ (v) /∈ [yi, yi−1])
(

1 − ( 1−p

r
+ 2p

r−1
)
)s(v)

≥ 1 and

1 ≤
∏

v∈H̃ ′:s(v)≥2

∏

i:v∈C̃i P(σ (v) /∈ [yi, yi−1])
(

1 − ( 1−p

r
+ 2p

r−1
)
)s(v)

=
∏r

i=1

∏

v∈C̃i:s(v)≥2 P(σ (v) /∈ [yi, yi−1])
∏

v∈H̃ ′:s(v)≥2

(

1 − ( 1−p

r
+ 2p

r−1
)
)s(v)

. (11)

Multiplying bound (10) on right side of Eq. (11), we get a convenient bound on the conditional probability, which will
be a bit easier to analyze:

P(H ′ is a snake ball |σ (v1) = y1, . . . , σ (vr−1) = yr−1, y0 = 1, yr = 1) ≤
⎡

⎣

r
∏

i=1

∏

v∈C̃i

P(σ (v) /∈ [yi, yi−1])

⎤

⎦×
∏

v∈H̃ ′:s(v)≥2

P(σ (v) /∈ ∪j:v∈C̃j∆j)

(

1 − ( 1−p

r
+ 2p

r−1
)
)s(v)

(12)

To simplify computations, we put [αj, βj) = δj and xj = βj − σ (vj) = βj − yj for all j ∈ {1, . . . , r − 1}. Then the length

of intercept [yi, yi−1] equals exactly
(

1−p

r
+ x1

)

for i = 1, 1−p

r
+ xi + p

r−1
− xi−1 for i ∈ {2, . . . , r − 2} and 1−p

r
+ p

r−1
− xr−1

for i = r − 1. Therefore, using that for every v its weight σ (v) is uniformly sampled, (12) does not exceed

(

1 −
(1 − p

r
+ x1

))|C̃1|
·
(

1 −
(1 − p

r
+ x2 +

p

r − 1
− x1

))|C̃2|
· . . .

(

1 −
(1 − p

r
+ xr−1 +

p

r − 1
− xr−2

))|C̃r−2|
·
(

1 −
(1 − p

r
+

p

r − 1
− xr−1

))|C̃i|
·

∏

v∈H̃ ′:s(v)≥2

(

1 − s(v) 1−p

r

)

(

1 −
(

1−p

r
+ 2p

r−1

))s(v)
.

Now we lower bound the size of each C̃i = Ci\{v1, . . . , vr−1}, i ∈ {1, . . . , r} by n−r and take out factor ((r − 1)/r)(n−r)r :

( r − 1

r

)(n−r)r(

1 +
p

r − 1
−

x1r

r − 1

)n−r
(

1 +
p

r − 1
−

pr

(r − 1)2
−

(x2 − x1)r

r − 1

)n−r

· . . . ·

(

1 +
p

r − 1
−

pr

(r − 1)2
−

xr−1r

r − 1

)n−r ∏

v∈H̃ ′:s(v)≥2

(

1 − s(v) 1−p

r

)

(

1 −
(

1−p

r
+ 2p

r−1

)

)s(v)

Use estimate (1 + y)s ≤ exp{ys}:
( r − 1

r

)(n−r)r

exp
{

(n − r)
(

r
∑

i=1

p

r − 1
−

r−1
∑

i=1

pr

(r − 1)2

)}

∏

v∈H̃ ′:s(v)≥2

(

1 − s(v) 1−p

r

)

(

1 −
(

1−p

r
+ 2p

r−1

))s(v)

=
( r − 1

r

)r(n−r) ∏

v∈H̃ ′:s(v)≥2

(

1 − s(v) 1−p

r

)

(

1 −
(

1−p

r
+ 2p

r−1

))s(v)
.
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To obtain the final estimate, we have to integrate over the weights y1, y2, . . . , yr−1 (factor (p/(r − 1))r−1), sum up

over all possible choices for the v1, . . . , vr−1 (factor
∏r−1

i=1 |Ci ∩ Ci+1|) and take the maximum over all H̃ ′ ⊂ H ′ : |H̃ ′| =
|H ′| − (r − 1).

5. Auxiliary calculations

Under the assumptions of Theorem 1 we will formulate and prove three auxiliary lemmas needed to prove Theorem 1.
In particular, in Lemma 2, we replace product of pairwise intersections by their sum

∑

i<j |Ci ∩ Cj| and in Lemma 4, we

will use double-counting for estimating the sum
∑

i<j |Ci ∩ Cj|, which can be large with n, by special bounded terms.

Lemma 2. Let H ′ = (C1, . . . , Cr ) be an ordered r-tuple of edges in the hypergraph H. Then

∑

π∈Sr

|Ci1 ∩ Ci2 ∥ Ci2 ∩ Ci3 | · . . . · |Cir−1
∩ Cir | ≤

(2
∑

i<j |Ci ∩ Cj| + r

r

)r

, (13)

where Sr denotes all permutations π = (i1, . . . , ir ) of (1, 2, . . . , r).

Proof. Denote the cardinality of the edge intersection |Ci ∩ Cj| by xi,j. Then, we have to prove that

∑

π∈Sr

xi1,i2xi2,i3 · . . . · xir−1,ir ≤
(2
∑

i<j xi,j + r

r

)r

.

First, we will show that
∑

π∈Sr

xi1,i2xi2,i3 · . . . · xir−1,ir ≤ (x1,2 + · · · + x1,r + 1) · . . . · (xr,1 + · · · + xr,r−1 + 1). (14)

Let us call (xi,1 + · · · + xi,r + 1) from (14) the bracket number i. We define a mapping f between elements from the
left-hand side of (14) and ordered sets that are obtained after performing the multiplication in (14).

Let f : xi1,i2xi2,i3 . . . xir−1,ir ↦→ x1,t1x2,t2 . . . xr,tr , where x1,t1x2,t2 . . . xr,tr is the product of the following r elements: xir−1,ir

from the bracket number ir−1, xir−2,ir−1
from the bracket number ir−2 and so forth, finally we take the factor 1 from the

unused bracket. For example, x5,6x6,1x1,4x4,3x3,2 is mapped to x1,4 · 1 · x3,2 · x4,3 · x5,6 · x6,1.
We note that f is an injection. Indeed, for each x1,t1x2,t2 . . . xr,tr there exists at most one sequence xi1,i2xi2,i3 . . . xir−1,ir

with i1, . . . , ir distinct, such as f (xi1,i2xi2,i3 . . . xir−1,ir ) = x1,t1 . . . xr,tr .
So, since f does not change the product and f is an injection we get that the right-hand side of (14) is not less than

the left-hand side.
Finally, by the inequality on the arithmetic–geometric means and by xi,j = xj,i

(x1,2 + · · · + x1,r + 1) · . . . · (xr,1 + · · · + xr,r−1 + 1) ≤
(

2
∑

i<j xi,j + r

r

)r

. □

Lemma 3. For all s ∈ {2, . . . , r}
(

1 − s
1−p

r

)

(

1 −
(

1−p

r
+ 2p

r−1

))s ≤ e
− s2

20r2 . (15)

Proof. First prove the case s ≥ 3.

(

1 − s(1−p)

r

)

(

1 −
(

1−p

r
+ 2p

r−1

))s =
(

1 − s(1−p)

r

)

(

1 −
(

1−p

r

))s
(

1 − 2pr

(r−1)(r−1+p)

)s ≤

(

1 − s(1−p)

r

)

(

1 + 1−p

r−1+p

)s

(

1 − 2pr

(r−1)2

)s . (16)

Now we deal with factors in (16) separately:
(

1 +
1 − p

r − 1 + p

)s

≤
(

1 +
1 − p

r − 1

)s

= |Apply Taylor’s formula with Lagrange Remainder| =

1 +
s(1 − p)

r − 1
+

s(s − 1)(1 − p)2

2(r − 1)2
+

s(s − 1)(s − 2)(1 − p)3(1 + θ · 1−p

r−1
)s−3

6(r − 1)3
for some θ ∈ (0, 1).

Bound (s − 1)/(r − 1) by s/r , (s − 1)(s − 2)/(r − 1)2 by s2/r2, (1 + θ/(r − 1))s−3 with θ ∈ (0, 1) by e and (1 − p) factor by
1 in the second and the third terms:

≤ 1 +
s(1 − p)

r − 1
+

s2(1 − p)

2r(r − 1)
+

s3(1 − p)2e

6r2(r − 1)
.
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Hence, the numerator of (16) does not exceed
(

1 −
s(1 − p)

r

)(

1 +
s(1 − p)

r − 1
+

s2(1 − p)

2r(r − 1)
+

s3(1 − p)2

2r2(r − 1)

)

< 1 −
s2(1 − p)

r(r − 1)
(1 − p − 1/2) +

s(1 − p)

r(r − 1)
= 1 −

s2(1 − p)

r(r − 1)
(1/2 − 1/s − p) < 1 −

s2(1/6 − p)(1 − p)

r2
< 1 −

s2

7r2
≤ exp

{

−
s2

7r2

}

.

Using bounds 1/(1− x) < 1+ 2x for x < 1/2 and estimating pr < 1/100, which follows from restrictions on r , we finally

get
(

1 − s
1−p

r

)

(

1 −
(

1−p

r
+ 2pr

r−1

))s ≤ exp

{

−
s2

7r2

}(

1 −
2pr

(r − 1)2

)−s

< exp

{

−
s2

7r2

}(

1 +
4pr

(r − 1)2

)s

≤

exp

{

4prs

(r − 1)2
−

s2

7r2

}

≤ exp

{

s

25(r − 1)2
−

s2

7r2

}

< exp

{

4

25s
·
s2

r2
−

s2

7r2

}

< exp

{

−
s2

20r2

}

.

Consider the case s = 2.

1 − 2(1 − p)/r
(

1 −
(

1−p

r
+ 2p

r−1

))2
≤

1 − 2(1 − p)/r

1 − 2(1−p)

r
− 4p

(r−1)
+ 1

2r2

≤
1 − 2(1 − p)/r

1 − 2(1−p)

r
− 1

4r2
+ 1

2r2

= 1 −
1/4r2

1 − 2 1−p

r
+ 1

4r2

≤ 1 − 1/4r2 ≤ exp{−1/4r2} < exp{−1/5r2},

where we used that 4p/(r − 1) < 8p/r = 8pr/r2 < 8/100r2 < 1/4r2. □

Lemma 4.

maxH ′ ·
∑

σ∈Sr

|Ci1 ∩ Ci2 | · . . . · |Cir−1
∩ Cir | ≤

(

20r2
)r

e1/20, (17)

where maxH ′ = max
H̃ ′⊂H ′:|H̃ ′|=|H ′|−(r−1)

∏

v∈H̃ ′:s(v)≥2

(

1−s(v)
1−p
r

)

(

1−
(

1−p
r + 2p

r−1

))s(v) and s(v) is the number of edges of H ′ that contain vertex

v.

Proof. By Lemmas 2 and 3 the left hand side of (17) does not exceed

(

2
∑

i<j |Ci ∩ Cj| + r

r

)r

max
H̃ ′⊂H ′:|H̃ ′|=|H ′|−(r−1)

exp
{

∑

v∈H̃ ′:s(v)≥2

−s2(v)/20r2
}

. (18)

Using that |H̃ ′| = |H ′| − (r − 1) and s(v) ≤ r for all v ∈ H , we can upper bound the second term from (18). Namely,

∑

v∈H̃ ′:s(v)≥2

−
s2(v)

20r2
≤

∑

v∈H ′:s(v)≥2

−
s2(v)

20r2
+ r,

max
H̃ ′⊂H ′:|H̃ ′|=|H ′|−(r−1)

exp
{

∑

v∈H̃ ′:s(v)≥2

−s2(v)/20r2
}

≤ exp
{

r +
∑

v∈H ′:s(v)≥2

−s2(v)/20r2
}

.

Now we will use the following double-counting:
∑

i<j |Ci ∩ Cj| is equal to
∑

v∈H ′:s(v)≥2

(

s(v)

2

)

< 1/2
∑

v∈H ′:s(v)≥2 s
2(v). Hence,

the left hand side of (17) does not exceed

(er)r exp
{

∑

v∈H ′:s(v)≥2

−s2(v)/20r2
}

(

∑

v∈H ′:s(v)≥2 s
2(v) + r

r2

)r

≤ (er)re− t
20 (t + 1)r ≤ (20r2)re

1
20 ,

where we used t =
∑

v∈H ′:s(v)≥2 s
2(v)/r2 and observed that the expression (t+1)re−t/20 is maximized when t = 20r−1. □

6. Proof of Theorem 1

It remains to show that the if H is a hypergraph with less than 1

20e3r2

(

n
ln n

)
r−1
r
(

r
r−1

)n
edges then with positive

probability, H does not contain neither a short edge nor a snake ball.

Denote
∑unordered

the sum over all r-sets J ⊆ (1, 2, . . . , |E|),
∑ordered

the sum over all ordered r-tuples (j1, . . . , jr ),

with {j1, . . . , jr} forming such a J and
∑

π∈Sr denote the sum over all permutations π = (i1, . . . , ir ) of (1, 2, . . . , r).
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Then,
∑

π∈Sr

P

((

Ci1 , . . . , Cir

)

is a snake ball
)

≤

∑

π∈Sr

(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

· |Ci1 ∩ Ci2 | · . . . · |Cir−1
∩ Cir | · maxH ′ =

(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

maxH ′ ·
∑

π∈Sr

|Ci1 ∩ Ci2 | . . . |Cir−1
∩ Cir | ≤

(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

(20r2)re1/20, (19)

where for the first inequality we used Lemma 1 and for the second Lemma 4.
Finally, the expected number of snake balls can be upper bounded as follows:

ordered
∑

P

((

Cj1 , . . . , Cjr

)

is a snake ball
)

=
unordered
∑ ∑

π∈Sr

P

((

Ci1 , . . . , Cir

)

is a snake ball
)

≤
(

|E|
r

)(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

(20r2)re1/20 ≤
(

1

20e3r2

(

n
ln n

)
r−1
r
(

r
r−1

)n

)r

r!
·
(

r − 1

r

)(n−r)r

·
(

(r − 1)2 ln( n
ln n

)

rn

)r−1

(20r2)re
1
20 ≤

1

e3r r!

(

r

r − 1

)r2 (
(r − 1)2

r

)r−1

e
1
20 ≤

1

e2r

(

r

r − 1

)r2

e
1
20 ≤ e

−2r+ r2

r−1
+ 1

20 < e−r+2 ≤
1

e
.

Applying Markov’s inequality, we get that with probability at least 1− 1/e there are no snake balls. Combining this with
the result from Section 4.1, we get that with positive probability the algorithm creates a panchromatic coloring with r
colors, which proves Theorem 1.

Corollary 1. There is an absolute constant C so that for every n > 2 and ln n < r < 3
√

n
100 ln n

p(n, r) ≥
Cn

r2(ln n)
· e

n
r + n

2r2 .

Proof. By applying Taylor’s formula with Peano remainder, we obtain
(

1 +
1

r − 1

)

e
− 1

r − 1

2r2 = 1 +
1

3r3
+ O

(

1

r4

)

.

Thus,
(

1 + 1
r−1

)

> e
1
r + 1

2r2 . Finally, we use
(

n
ln n

)− 1
r > 1

e
when r > ln n and Theorem 1. □

7. Local variant: proof of Theorem 2

A useful parameter of H is its maximal edge degree

D := D(H) = max
e∈E(H)

⏐

⏐

{

e′ ∈ E(H) : e ∩ e′ ̸= 0 and e ̸= e′}⏐
⏐ .

We show that for 3 < r < 3
√

n
100 ln n

every n-uniform hypergraph with D ≤ 1

20e3r3

(

n
ln n

)
r−1
r
(

r
r−1

)n
has a panchromatic

coloring with r colors, which implies Theorem 2.
We recall the asymmetric version of the Lovász Local Lemma, published by Spencer [16], in which it is allowed that

different events can have different probability bounds. Spencer considered arbitrary events A1, . . . , An, and expressed their
dependencies by a dependency graph G = (V , E). In this graph, V = {1, . . . , n}, and each event Ai is assumed mutually
independent of the set of events

{

Aj | (i, j) /∈ E
}

.

Lemma 5 (Asymmetric LLL, [16]). Let A1, . . . , An be a system of events with dependency graph G = (V , E). Suppose there are
real numbers x1, . . . , xn ∈ [0, 1), such that

P (Ai) ≤ xi

∏

(i,j)∈E

(

1 − xj
)

(∀i)
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Then,

P

(

Ā1 . . . Ān

)

≥
n
∏

i=1

(1 − xi) .

In particular, P
(

Ā1 . . . Ān

)

> 0 holds.

To prove Theorem 2 we will use the following special case of Lemma 5.

Lemma 6. If all events have probability P (Ai) < 1
2
and for all i ∈ [n]

∑

(i,j)∈E
P

(

Aj

)

≤
1

4
, (20)

then there is a positive probability that no Ai holds.

For the sake of completeness, we give the proof of Lemma 6 here.

Proof. Put xi = 2P (Ai). Then, for all i ∈ [n]

xi

∏

(i,j)∈E

(

1 − xj
)

= 2P (Ai)
∏

(i,j)∈E

(

1 − 2P(Aj)
)

= 2P (Ai) e
∑

(i,j)∈E ln(1−P(Aj)) ≥ 2P (Ai) e
− 1

4 ≥ P(Ai),

where we used that ln(1 − x) ≥ −x for all x > 0. □

In our case the set of bad events has two types: short edges and snake balls. Let Q(C) be the event ‘‘edge C is short’’
and W(C1, . . . , Cr ) be the event ‘‘(C1, . . . , Cr ) forms a snake ball’’.

Note that Q(C) depends at most on D events Q(C ′), C ′ ∈ E(H) and at most on rDr events W(C1, . . . , Cr ), (C1, . . . , Cr ) ∈
[E(H)]r . The second bound follows from the fact that when we fix index i ∈ {1, . . . , r} for which C ∩ Ci ̸= ∅, we have
at most D choices for the each of label Ci, . . . , C1 and Ci+1, . . . , Cr . We also recall that, by definition, snake ball do not
contain short edges, so C ̸= Ci for all i ∈ {1, . . . , r}.

Similarly, W(C1, . . . , Cr ) depends at most on rD events Q(C ′), C ′ ∈ E(H) and at most on r2(D + 1)Dr−1 events
W(C ′

1, . . . , C
′
r ), (C

′
1, . . . , C

′
r ) ∈ [E(H)]r . In the second bound we again fixed indexes i, j ∈ {1, . . . , r} such that Ci ∩ C ′

j ̸= ∅
and then pick r edges. But in this case Ci can coincide with C ′

j so we have D+ 1 choices for the edge C ′
j and Dr−1 choices

for the rest.
Finally, using bound (19) and bound 2(r − 1)

(

1 −
(

1−p

r
+ p

r−1

))n
from Section 4.1, we have

if Ai = W(C1, . . . , Cr ) :
∑

(i,j)∈E
P(Aj) ≤ rD · 2(r − 1)

(

1 −
(

1 − p

r
+

p

r − 1

))n

+r2(D + 1)Dr−1 ·
(

r − 1

r

)(n−r)r

·
(

p

r − 1

)r−1

20r r2re1/20 ≤

r

(

1

20e3r3

( n

ln n

)
r−1
r

(

r

r − 1

)n)

· 2(r − 1)

(

r − 1

r

)n (

1 −
p

(r − 1)2

)n

+2r2
(

1

20e3r3

( n

ln n

)
r−1
r

(

r

r − 1

)n)r (
r − 1

r

)(n−r)r
(

(r − 1)2 ln( n
ln n

)

rn

)r−1

(20r2)re
1
20

≤
2r(r − 1)

20e3r3
+

2r2

e3r

(

r

r − 1

)r2

e
1
20 ≤

1

10
+

2r2

e3r
e

r2

r−1
+ 1

20 ≤
1

10
+

2r2e2

e2r
<

1

4
.

if Ai = Q(C) :
∑

(i,j)∈E
P(Aj) ≤ D · 2(r − 1)

(

1 −
(

1 − p

r
+

p

r − 1

))n

+rDr ·
(

r − 1

r

)(n−r)r (
p

r − 1

)r−1

20r r2re1/20 <
1

4
.

In both cases inequality (20) holds, completing the proof of Theorem 2.
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