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Abstract. We consider electrostatic interactions in two classes of nanostructures embedded in a three dimensional space: (1) helical nanotubes,

and (2) thin films with uniform bending (i.e., constant mean curvature). Starting from the atomic scale with a discrete distribution of dipoles, we
obtain the continuum limit of the electrostatic energy; the continuum energy depends on the geometric parameters that define the nanostructure,
such as the pitch and twist of the helical nanotubes and the curvature of the thin film. We find that the limiting energy is local in nature. This can
be rationalized by noticing that the decay of the dipole kernel is sufficiently fast when the lattice sums run over one and two dimensions, and is
also consistent with prior work on dimension reduction of continuum micromagnetic bodies to the thin film limit. However, an interesting contrast
between the discrete-to-continuum approach and the continuum dimension reduction approaches is that the limit energy in the latter depends only
on the normal component of the dipole field, whereas in the discrete-to-continuum approach, both tangential and normal components of the dipole
field contribute to the limit energy.

1. Introduction. Electrical and magnetic interactions are long-range; that is, a charge or dipole interacts with all
the other charges and dipoles in the system, and the interactions cannot be truncated because the decay with distance
is slow [Tou56, Bro63, JM94, MD14]. We consider such electrostatic interactions in nanostructures, specifically
helical geometries and thin films with uniform bending, in a three-dimensional ambient space. These geometries are
ubiquitous in nanotechnology; while not periodic, their structure has significant symmetry that we exploit in this paper,
using the framework of Objective Structures [Jam06]. We exploit this symmetry to adapt periodic calculations of the
continuum energy to the setting of these nanostructures. Specifically, starting from a discrete atomic-scale description
of the electrostatic energy, we find the limit energy when the discrete lengthscale of the nanostructures goes to zero.

For simplicity and clarity, we assume in this paper that the charge density can be approximated as composed of
discrete dipoles. The electrostatic energy of such a system is the sum of all pairwise dipole-dipole interactions. Unlike
short-range bonded atomic interactions that typically scale as r−6 with distance r, the dipole-dipole interactions decay
slowly with distance as r−3. Consequently, we cannot simply truncate after a few neighbors, and naive truncation can
lead to qualitatively incorrect results in numerical calculations [MD14, GD20a, GD20b]. While we use the setting
of discrete electrical dipoles, the setting of magnetic dipoles has an identical mathematical structure and physical
interpretation [Bro63, JM94, MS02, SS09], and we borrow key ideas from that literature. A key physical distinction
between the electrical and magnetic situations is the possibility of electrical monopoles that does not exist for magnetic
case, but we examine this elsewhere [SWB+21] and assume here that there are no free charges. Further, we highlight
that the assumption of discrete dipoles is not very restrictive. Following the approach of [JM94], we use a background
field in our calculations, and this field enables a straightforward generalization to the more realistic setting of a general
charge density field; such an approach was used by [Xia05] to study charge density fields in periodic crystals.

We turn to the question of dealing with the non-periodic geometry of the nanostructures. While neither helices
nor thin films with curvature are periodic, the framework of Objective Structures (OS) introduced in [Jam06] provides
a powerful approach to deal with such geometries. In brief, OS provides a group-theoretic description of these
nanostructures that enables a parallel to be made with periodic lattices. This parallel to periodic lattices has enabled
the adaptation of various methods developed for lattices to the setting of helices and thin-films, e.g. [DJ07, HTJ12,
ADE13a, ADE13b]. Our strategy in this work is to use the OS framework to adapt continuum limit calculations from
the setting of periodic lattices to the setting of nanostructures.

Our work is focused on obtaining discrete-to-continuum limits of the energy. This multiscale approach has
proven very powerful in enabling the systematic reduction of the very large number of degrees of freedom associated
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with the discrete problem to a much more tractable continuum problem. This overall idea has played an important
role in developing models, often in conjunction with variational tools such as Γ -convergence, both for bulk crystals
[BLBL02, BLBL07, Sch09, ACG08, ACG11, BBC20] as well as for thin films and rods [Sch06, ALP18]. Further, these
ideas have played a role in the development of numerical multiscale atomistic methods such as the quasicontinuum
method [TOP96, MT02, TM11, KO01, LLO12, DLO10]. There is also a significant literature on simultaneous
dimension reduction and discrete-to-continuum limits, e.g. [ABC08, ALP18, FJ00, LPS15, LPS17, Sch08], but these
consider interactions that decay much faster than electrostatic interactions.

All the work in the previous paragraph is restricted to the setting of short-range bonded atomic interactions. In
the context of electrical and magnetic interactions, the calculation of continuum limit energies based on discrete-
to-continuum approaches have been examined both formally and rigorously using discrete dipoles on a periodic 3-d
lattice [Tou56, Bro63, JM94, MS02, SS09, Sch05]. Further, this has been examined formally for periodic charge
distributions, also in 3-d, [MD14]. All of these works show that the continuum limit energy consists of a local part
and a nonlocal part. In contrast, in this work, we consider topologically low-dimensional structures embedded in a
3-d space: a 1-d helical nanotube and a 2-d thin film with constant bending curvature. In the limit that the discrete
lengthscale characterizing the nanotube and thin film goes to 0, we find that the limit continuum energy is entirely
local. In [CDZ09], they obtain the discrete-to-continuum limit of an energy that includes dipole-dipole interactions in
2-d materials using Γ−convergence, but they use a dipole kernel that goes as 1/r2. In contrast, in this work, while the
structures are low dimensional, they are embedded in 3-d, and, therefore, the dipole field kernel has a 1/r3 singularity.

The absence of nonlocality in the limit can be rationalized by observing that the decay of the interactions as r−3 is
sufficiently fast to enable us to obtain a local limit if summed over a (topologically) 1-d or 2-d object. We highlight a
complementary body of work that applies dimension reduction techniques to go from a 3-d continuum to a 2-d or 1-d
continuum. In the context of electrical and magnetic interactions, [GJ97] and subsequent works [Car01, KS05, KSZ15]
(for thin films) and [GH15, CH15] (for thin wires) find, as we do, that the limit energy is not nonlocal.

The techniques employed in this work are broadly based on the rigorous results provided in [JM94] on the
continuum limit of magnetic dipole interactions on a 3-d lattice, with appropriate generalizations and modifications for
our setting. The overall strategy of [JM94] is as follows. First, the operator that associates the discrete dipole lattice to
the generated electric field is shown to be bounded for smooth test functions; next, the pointwise limit of the action of
the operator on smooth test functions is obtained; and, finally, using the boundedness of the operator and the density of
the test functions, the limit of the energy density is obtained. For the helical and thin film nanostructures considered in
this work, we adapt this strategy to account for the fact that the lattice sites and dipoles are not related by a translation
transformation, but by a more general isometric transformation.

The key results of this work are as follows. First, the limit energy is rigorously derived and found to be local.
Second, the limiting energy density depends on the macroscopic geometric parameters, such as the pitch, radius and
so on for the helical nanotube, and on the stretch and curvature for the thin film. These parameters can be related to
macroscopic measures of deformation, and link the macroscopic deformation to the small-scale structure. Third, while
the limiting energy is local, there are energetic contributions from both the normal and the tangential components of
the dipole field. This is in contrast to the result obtained by dimension reduction from a 3-d continuum: in these
approaches, there are no energetic contributions from the tangential component of the dipole field. Those approaches
have 3-d continuum theory as their starting point, and are valid for situations in which the limiting thin object has
all dimensions much larger than the atomic lengthscale. In contrast, the discrete-to-continuum approach used here is
appropriate for nanostructures in which the thin dimensions are comparable to the atomic lengthscale.

Organization. In section 2, we discuss prior work, primarily on dimension reduction from a 3-d continuum to
a 2-d continuum, and highlight the local nature of the limiting energy. We then discuss heuristically the scaling of
electrostatic interactions that lead to this locality generically for topologically low-dimensional nanostructures. In
section 3, we present the main results for helical nanotubes and thin films with constant bending curvature. We prove
various claims in section 4. In section 5, we summarize the results.

Notation. We denote the real line and set of integers by R and Z, respectively; Rd,Zd denote these in dimension
d = 1, 2, 3. For any c, c1, c2 ∈ R, cZd denotes the set {cz; z ∈ Zd} and c1Z×c2Z denotes the set {(c1z1, c2z2); z1, z2 ∈
Z}. The symbols L and U denote the set of lattice sites and the lattice unit cell, respectively; Lλ and Uλ denote these
in the lattice scaled by λ, with L1, U1 denoting Lλ, Uλ for λ = 1. We use x = (x1, x2, x3) ∈ R3 to denote the point
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in space with components xi in the orthonormal basis {e1, e2, e3} for R3. We follow the standard notation wherein
scalars are denoted by lowercase letters, vectors by bold lowercase letters, and second order tensors by bold uppercase

letters. |x| =

√√√√ n∑
i=1

x2
i denotes the Euclidean norm of the vector x ∈ Rn; |A| =

√
A : A denotes the norm of the

tensor A; and A : B = AijBij denotes the inner product of the tensors A and B. For any vector a ∈ Rn and tensor
A, we have |Aa| ≤ |A||a|. We use |Ω| to denote the Lebesgue measure of the set Ω ⊂ Rn. For a set A ⊂ Rd,
χA = χA(x) denotes the indicator function. We use L2(A,B) to denote the space of Lebesgue square-integrable
functions u : A ⊂ Rn → B ⊂ Rm; (u, v)L2(A,B) for the inner product of functions u, v ∈ L2(A,B); and ||u||L2(A,B)

the L2 norm of u ∈ L2(A,B). When there is no ambiguity, we will suppress L2(A,B) and write (u, v) and ||u||.
C∞0 (Rn,Rm) denotes the space of infinitely differentiable test functions u : Rn → Rm with compact support in Rn.
For Hilbert spaces V and W , L(V,W ) is the space of bounded linear maps T : V → W . The norm of the map
T ∈ L(V,W ) is denoted by ||T ||L(V,W ), and is given by the expression:

(1.1) ||T ||L(V,W ) = sup
||f ||V 6=0

||Tf ||W
||f ||V

.

We use uλ −−−→
λ→0

u to denote the strong convergence of uλ ∈ V to u ∈ V as λ→ 0, i.e., ||uλ − u||V → 0 as λ→ 0.

2. Energy Scalings and Prior Results on Dimension Reduction. We briefly revisit the results of [GJ97] and
[CH15]. Respectively, they performed dimension reduction from the 3-d continuum to the 2-d thin film and 1-d thin
wire to find the limiting magnetostatic energy.

Fig. 2.1: The geometry of the thin film (left) and the thin wire (right).

Consider a material domainΩh = S× [0, h], where S ⊂ R2 is a 2-d domain in the plane spanned by (e1, e2), and
h > 0 is the material thickness in the normal direction e3 (Fig. 2.1). Suppose d : Ωh → R3, with d = 0 on R3\Ωh,
is the dipole field in the material. The electrostatic energy density is given by

eh(d) =
1

|Ωh|

∫
Ωh

1

2
∇φ(x) · d dx,

where |Ωh| is the volume of Ωh, and φ is the electric potential that satisfies the electrostatic equation

div(−∇φ+ d) = 0 on R3

together with the constraint |d| = d and the decay property

|∇φ(x)| → 0 as |x| → ∞.

Let Ω1 = S × [0, 1], and y(x) = (x1, x2, x3/h) ∈ Ω1 for x ∈ Ωh be the map from Ωh to Ω1. For fixed h > 0,
consider the dipole field dh : Ωh → R3 and d̃h : Ω1 → R3 such that

d̃h(y(x)) = dh(x), ∀x ∈ Ωh.
3



Let dh be the sequence of dipole field for h > 0, and d̃h is defined as above. Assume that dipole field d̃h is such that,
first, d̃h = 0 on R3\Ω1, and, second, it converges to d̃0 in L2(R3); then the limit of the energy density eh = eh(dh)
is [GJ97]:

eh(dh)→ e0(d̃0) =
1

2|Ω1|

∫
Ω1

|d̃03
|2 dx.

That is, the limiting energy e0 is local, and only the normal component of the dipole moment appears in the expression.
Next, consider a thin straight wire with axis along e1, denoted byΩh = (−1, 1)×B2(0, h), whereB2(0, h) is the

ball of radius h centered at 0 in the plane spanned by (e2, e3) (Fig. 2.1). Analogous to the thin film, let dh : Ωh → R3,
dh = 0 on R3/Ωh, be the dipole field in the material; Ω1 = (−1, 1) × B2(0, 1) be the rescaled domain of Ωh;
y(x) = (x1, x2/h, x3/h) ∈ Ω1 for x ∈ Ωh be the map from Ωh to Ω1; and d̃h : Ω1 → R3 be the rescaled dipole
field defined as

(2.1) d̃h(y(x)) = dh(x), ∀x ∈ Ωh.

The limiting energy density in the case of the thin wire is [CH15]:

1

2|Ω1|

∫
Ω1

(
|d̃02
|2 + |d̃03

|2
)

dx,

where d̃0 := lim
h→0

d̃h is the limiting dipole field. We notice that the limiting energy is again local, and only the
components of the dipole moment perpendicular to the axis of the wire contribute.

(a) (b)

(c) (d)

Fig. 2.2: A schematic of the unit cell with a dipole (a), and generic 1-d, 2-d, 3-d periodic lattices (b, c, d).

The absence of nonlocality in the limiting energy in the results above, as well as in our results in section 3 below,
can be physically understood through the fact that these structures are 1-d or 2-d topologically. To see this, we consider
a system of discrete dipoles associated with the uniform 1-d, 2-d, and 3-d periodic lattices with the unit cell of size 1
(Figure 2.2). The energy of a lattice of dipoles is given by [Bro63, JM94]:

(2.2) E = −1

2

∑
i

∑
j,j 6=i

d(i) ·K(xj − xi)d(j) =
∑
i

|U(i)|

− 1

|U(i)|
1

2

∑
j,j 6=i

d(i) ·K(xj − xi)d(j)

 ,
where the sum is over the cells in the lattice, and the term inside square bracket denotes the energy density of a cell i.
Here, U(i) denotes the ith unit cell; |U(i)| the measure (volume) of the unit cell U(i); d(i) the dipole in cell i; and, xi
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the coordinate of lattice site i. The dipole field kernel, K = K(x), is defined as:

(2.3) K(x) = − 1

4π|x|3

(
I − 3

x

|x|
⊗ x

|x|

)
, x 6= 0.

We use these expressions to heuristically understand the scaling of the energy for systems with different topological
dimensions. For simplicity, we assume below that the volume of the unit cell and the magnitude of the dipole are both
1, i.e., |U(i)| = 1 and |d(i)| = 1 for each i, and some constant factors are neglected. For the next set of bounds,
assume that c1 and c2 are generic positive constants.

Remark 2.1 (1-d lattice).We can estimate an upper bound on the energy density e of a typical unit cell as follows:

|e| ≤ c1
∞∑
r=1

1

r3
× |d| × (number of dipoles at r) ≤ c2

∞∑
r=1

1

r3
× 1× 1 = c2

∞∑
r=1

1

r3
.

We use that the total dipole moment at a distance r from a given unit cell is, at most, that of another dipole in the unit
cell at a distance r. This sum is well-behaved and bounded.

Remark 2.2 (2-d lattice). As in the 1-d setting, we first bound the net dipole at a distance r from a given unit cell.
Since the structure is a 2-d lattice, the number of unit cells at a distance r is of order 2πr. Therefore, an upper bound
on the energy density is:

|e| ≤ c1
∞∑
r=1

1

r3
× |d| × (number of dipoles at r) ≤ c2

∞∑
r=1

1

r3
× 1× 2πr = c22π

∞∑
r=1

1

r2
.

This sum is also well-behaved and bounded.
Remark 2.3 (3-d lattice). Following the argument of the 2-d lattice, we now have that the net dipole at a distance

r from a given unit cell is, at most, of the order 4πr2. Therefore, an upper bound on the energy density is:

|e| ≤ c1
∞∑
r=1

1

r3
× |d| × (number of dipoles at r) ≤ c2

∞∑
r=1

1

r3
× 1× 4πr2 = c24π

∞∑
r=1

1

r
.

This sum is divergent. However, through a more careful analysis that accounts for the signs – not just the magnitudes
– of the dipole interactions, the energy density can be shown to be conditionally convergent1 [Tou56, JM94].

When the lattice sum is bounded and converges unconditionally, it is possible to truncate after a finite distance and
obtain sufficient numerical accuracy. When the lattice sum is conditionally convergent, that can be physically related to
nonlocality; specifically, the slow convergence does not allow for truncation, and the far-field values play an important
role. [MD14] discusses this from a physical perspective.

3. Results on Continuum Limits of the Electrostatic Energy. We consider two classes of nanostructures:
helical nanotubes and thin films, the latter allowing for a constant bending curvature (i.e., nonzero constant mean
curvature and zero Gauss curvature), and obtain the corresponding continuum limit electrostatic energy. In both cases,
we start with discrete dipoles, where the discreteness is parametrized by the scale λ > 0, and examine the limit λ→ 0.
We show that the dipole-dipole interaction energy density – per unit cross-sectional area in the case of nanotubes, and
per unit thickness in the case of films – converges to a local energy density in the limit.

3.1. Helical Nanotube. We consider a discrete helix with axis e3 characterized by the angle θ and lengthscale δ;
the pitch of the helix is 2πδ/θ. Suppose x0 ∈ R3 is a point on the helix. Then, the other points on the helix are related
by an isometric transformation of x0. Let s ∈ R be the parametric coordinate of a point on the helix. Then, the map
x̄ : R→ R3 that takes a point in the parametric space to a unique point on the helix can be expressed as

(3.1) x̄(s) = Q(sθ)x0 + sδe3.

1That is, it is convergent, while the sums of only the positive terms and only the negative terms diverge, respectively, to ±∞.
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HereQ = Q(α) is the rotational tensor represented by the matrix in the orthonormal basis {e1, e2, e3} as:

Q(α) :=

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 .(3.2)

Note that the definition of map x̄ imply that the helix makes a full turn in s = 2π/θ from s = 0, and, therefore, the
pitch of the helix is (x̄(2π/θ)− x̄(0)) · e3 = 2πδ/θ.

Without loss of generality, we assume x0 = e1. The tangent vector to the helix at s is given by

(3.3) t(s) =
dx̄(s)

ds
= θQ′(sθ)e1 + δe3.

Let t̂(s) = t(s)/
√
θ2 + δ2 denote the unit tangent vector. We define the second order projection tensors P || = P ||(s)

and P⊥ = P⊥(s), for s ∈ R, as follows

(3.4) P ||(s) = t̂(s)⊗t̂(s), P⊥(s) = I − P ||(s).

For any vector a and any s ∈ R, we have

(3.5) a = P ||(s)a + P⊥(s)a, with P ||(s)a · P⊥(s)a = 0.

3.1.1. Lattice Geometry and Dipole Moment. Let L = Z denote the set of parametric coordinates of the points
on the helix. We consider a discrete system of dipole moments d : L → R3 associated to the points on the helix given
by L (Figure 3.1). The magnitudes of the dipoles at the lattice sites are equal, but they are oriented differently; in
particular, the orientations of dipoles at lattice sites follow the relation:

(3.6) d(s+ 1) = Q(θ)d(s), s ∈ L.

We associate a unit cell to each lattice site. Let U(s) = [s, s + 1) denote the unit cell in the parametric space at the
site s, for s ∈ L. Let S(r), r ∈ R, be given by

S(r) =
{
x; (x− x̄(r)) · t(r) = 0, |x− x̄(r)|2 < R2

}
,

for some R > 0. Note that |S(r)| = |S(0)| = πR2. The unit cell in real space is defined by Ū(s) =

{x ∈ S(r); r ∈ U(s)}. We take, without loss of generality, R2 = 1/(π
√
θ2 + δ2) so that |Ū(s)| = area(S) ×

length({x̄(r); r ∈ U(s)}) = πR2
√
θ2 + δ2 = 1.

We now consider the setting in which the cells are of size λ > 0, so that as λ → 0 the density of cells in the
helix increases. For λ > 0, suppose Lλ = λZ denotes the parametric coordinates of the sites in a scaled lattice, and
dλ : Lλ → R3 denotes the corresponding system of dipole moments. Associated to s ∈ Lλ, let Uλ(s) = [s, s + λ)
denote the cell in the parametric space. The 3-d cell is given by Ūλ(s) = {x ∈ Sλ(r); r ∈ Uλ(s)}, where
Sλ(r) = {x; (x−x̄(r)) ·t(r) = 0, |x−x̄(r)|2 < λ2R2} is the scaled cross-section. Note that area(Sλ(r)) = πλ2R2

and |Ūλ(s)| = πλ2R2 × λ
√
θ2 + δ2 = λ3. Let d̃λ : R→ R3 be the piecewise constant extension of dλ given by

(3.7) d̃λ(s) =
dλ(i)

|Ūλ(s)|
=

dλ(i)

λ3
, ∀s ∈ Uλ(i), ∀i ∈ Lλ.

To compute the limit of the dipole-dipole interaction energy as λ → 0, we assume that dipole moment density field
d̃λ converges to some field f ∈ L2(R,R3) in the L2 norm. As in [JM94], instead of working with d̃λ, as defined
above, we could assume that the dipole moment dλ(i), for i ∈ Lλ, is due to the background dipole moment density
field fλ ∈ L2(R,R3) such that

(3.8) dλ(i) =
√
θ2 + δ2

∫
Uλ(i)

∫
Sλ(r)

fλ(r) dSλ(r) dr = λ2

∫
Uλ(i)

fλ(r) dr,
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where dSλ(r) is the area measure for surface Sλ. In the equation above, we assumed that the background field is
uniform in Sλ(r) for all r ∈ R and used R2 = 1/(π

√
θ2 + δ2). The existence of one such background field fλ

is evident: we can define fλ = d̃λ. The physical dimension of fλ is dipole moment per unit volume. We have
the following lemma that relates the convergence of the background dipole moment field and the piecewise constant
extension.

Lemma 3.1. Let fλ, λ > 0, be the sequence of L2(R,R3) functions, and let f ∈ L2(R,R3) be such that fλ → f
in L2(R,R3). Let dλ : Lλ → R3 be given by (3.8), and d̃λ be a piecewise constant L2 extension of dλ given by (3.7).
Then, d̃λ → f in L2(R,R3).

On the other hand, if dλ : Lλ → R3 is such that d̃λ → f in L2(R,R3), then there exists a background field
fλ ∈ L2(R,R3) such that dλ is given by (3.8).

The proof is similar to the proof of Theorem 4.1 from [JM94].

Remark 3.1. Since the discrete dipole field dλ has helical symmetry, from (3.8) we can see that fλ will also have
helical symmetry. However, we highlight that the background field needs to have helical symmetry only in the sense
that the effective dipole has the helical symmetry, allowing for some fluctuations from site to site.

Remark 3.2. The physical setting that we wish to examine is when dipole moments play a significant role in the
limit. Therefore, we consider an appropriate scaling that corresponds to obtaining a finite limit for the dipole density
field d̃λ (or, equivalently, the background field, fλ). Further, we assume convergence in L2 to ensure finite energies.

(a) (b)

Fig. 3.1: Discrete dipole moments (red arrows) lying on the helix. (a) and (b) show the view in the (e1, e3) and
(e1, e2) planes respectively. The dipole moments corresponding to different sites are related by (3.6). For the
parametric coordinate s, x̄(s) gives the coordinate of the point on the helix.
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3.1.2. Electrostatic Energy. For λ > 0, the energy associated to the system of dipole moments dλ can be
expressed as [Bro63, JM94]:

Eλ = −1

2

∑
s,s′∈Lλ,
s6=s′

dλ(s) ·K(x̄(s′)− x̄(s))dλ(s′) = |Sλ|eλ,

where eλ is the energy per unit area given by

(3.9) eλ = − 1

2|Sλ|
∑

s,s′∈Lλ,
s6=s′

dλ(s) ·K(x̄(s′)− x̄(s))dλ(s′).

Substituting (3.8) into the expression above, and proceeding similar to Section 6 of [JM94], eλ can be written as

(3.10) eλ = (fλ, Tλfλ)L2(R,R3) ,

where Tλ : L2(R,R3)→ L2(R,R3) is the map given by

(3.11) (Tλf)(s) = λ2

∫
R
Kλ(s′, s)f(s′) ds′

andKλ(s′, s), for s, s′ ∈ R, is the discrete dipole field kernel given by

(3.12) Kλ(s′, s) =
∑

u,v∈Lλ,
u6=v

χUλ(v)(s
′)K(x̄(v)− x̄(u))χUλ(u)(s).

Scaling ofKλ. For any a, b ∈ R, we have, using (3.1),

x̄(λa)− x̄(λb) = Q(λaθ)e1 + δλae3 −Q(λbθ)e1 − δλbe3

= λ

x̄(a)− x̄(b) +

[
Q(λaθ)−Q(λbθ)− (λQ(aθ)− λQ(bθ))

λ

]
︸ ︷︷ ︸

=:Aλ(a,b)

e1

 .
(3.13)

Using the relation above, it is easy to show that

Kλ(s′, s) =
1

λ3

∑
u,v∈L1,
u 6=v

χU1(v)(s
′/λ)K(x̄(v)− x̄(u) + Aλ(v, u)e1)χU1(u)(s/λ),

where we recall that U1(u) = [u, u + 1), u ∈ L1, is the lattice cell in the parametric space for λ = 1. Based on the
equation above, we define a discrete kernelK1,λ(s, s′), for s, s′ ∈ R, as follows

(3.14) K1,λ(s′, s) =
∑

u,v∈L1,
u6=v

χU1(v)(s
′)K(x̄(v)− x̄(u) + Aλ(v, u)e1)χU1(u)(s).

We then have

Kλ(s′, s) =
1

λ3
K1,λ(s′/λ, s/λ).
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3.1.3. Limit of the Electrostatic Energy. In this section, we obtain the limit of the energy per unit surface area
eλ as λ → 0 assuming that the background dipole field density fλ (or equivalently the dipole moment density d̃λ)
converges to some density field f in L2. The idea is to first show that the map Tλ in (3.11) is bounded and obtain its
limit. With that, the limit of eλ follows.

Limit of the Discrete Electric Field. Let T1,λ be the map with kernel K1,λ. For any function f ∈ L2(R,R3), we
have

(3.15) (T1,λf)(s) =

∫
R
K1,λ(s′, s)f(s′) ds′.

We have the following main result on the map Tλ.

Proposition 3.2. The maps T1,λ and Tλ are bounded in L2(R,R3) for all λ > 0 and satisfy

(3.16) ‖Tλ‖L(L2,L2) = ‖T1,λ‖L(L2,L2) .

Further, for f ∈ C∞0 (R,R3),

(Tλf)(s) −−−→
λ→0

−h0(I − 3P ||(s))f(s) = −h0(P⊥(s)− 2P ||(s))f(s)

pointwise, where P⊥(s) and P ||(s) are projection tensors that project onto the normal plane and the tangent line to
the helix respectively (see (3.4)). Further, h0 is a constant given by

(3.17) h0 =
∑
v∈Z,
v 6=0

1

4π|v|3(θ2 + δ2)3/2
.

We provide the proof of Proposition 3.2 in subsection 4.1.
Limit of the Energy.

Theorem 3.3. Let fλ ∈ L2(R,R3) be a sequence of functions forλ > 0with f ∈ L2(R,R3) such that fλ −−−→
λ→0

f

in L2. Let the system of dipole moments dλ : Lλ → R3 be given by (3.8). Then

eλ −−−→
λ→0

1

2
h0

[
||P⊥f ||2L2(R,R3) − 2||P ||f ||2L2(R,R3)

]
,

where h0 is the constant defined in (3.17).

Proof. Since Tλ is bounded and fλ → f , we have

lim
λ→0

(Tλfλ) = lim
λ→0

(Tλf) + lim
λ→0

(Tλ(fλ − f)) = lim
λ→0

(Tλf),

where the decomposition of the limit into the sum of individual limits is true if the two limits, lim
λ→0

(Tλf) and

lim
λ→0

(Tλ(fλ − f)), individually exist. This is indeed true: because Tλ is bounded and fλ → f in L2, we have that

lim
λ→0

(Tλ(fλ − f)) = 0. Then, to show that lim
λ→0

(Tλf) exist for f ∈ L2(R,R3), we proceed as follows.

Let fk ∈ C∞0 (R,R3) be a sequence of functions such that fk → f . Using Proposition 3.2, we have

lim
λ→0

(Tλf) = lim
k→∞

lim
λ→0

(Tλf
k) + lim

k→∞
lim
λ→0

(Tλ(f − fk)) = lim
k→∞

lim
λ→0

(Tλf
k)

= lim
k→∞

(
H0f

k
)

= H0f ,
(3.18)

whereH0 = H0(s) = −h0(P⊥(s)− 2P ||(s)) (see Proposition 3.2).
9



Using the expression in (3.10) for eλ, we have

eλ = −1

2
(fλ, Tλfλ)L2(R,R3) = −1

2

[
(fλ − f , Tλfλ)L2(R,R3) + (f , Tλfλ)L2(R,R3)

]
= −1

2

[
(fλ − f , Tλfλ)L2(R,R3) + (f , Tλf)L2(R,R3) + (f , Tλ(fλ − f))L2(R,R3)

]
.

(3.19)

The first and third terms are zero in the limit. Taking the limit of the remaining term and using (3.18), we have

lim
λ→0

eλ = lim
λ→0
−1

2
(fλ, Tλfλ)L2(R,R3) =

1

2
h0

[
||P⊥f ||2L2(R,R3) − 2||P ||f ||2L2(R,R3)

]
.

This completes the proof.

Remark 3.3. The limiting energy only comprises of a local self-field energy. In the limit, any point on the helix
sees a uniform 1-d system of dipole moments along the tangent line. Further, we see that both the normal components
and the tangential component of the dipole moment contribute to the energy and electric field. This is in contrast to
[CH15], where the thin wire limit of the magnetostatic energy, obtained from dimensional reduction starting from a
3-d continuum, has contributions only from the normal component. Heuristically, the dimension reduction starting
from a 3-d continuum contains minimal information about the detailed atomic arrangements within the nanostructure,
and hence does not capture the consequences of the helical geometry. Because of its starting point in a 3-d continuum
model, it is appropriate for thin objects that have all dimensions being much larger than the atomic lengthscale. On
the other hand, the discrete-to-continuum approach is appropriate for nanostructures wherein the thin dimension is
comparable to the atomic lengthscale.

3.2. Nanofilm with Constant Bending Curvature. Let S = (−θ̄, θ̄)× R be the parametric space for a surface
with a constant bending curvature κ. The map that takes a point in the parametric space to a unique point on the film
is given by

(3.20) x̄(s1, s2) = RQ(s1)e1 + s2δe3,

where R = 1/κ is the inverse of curvature, θ̄ > 0 is the angular size of the film, and δ is the spacing in the flat
direction. Here, κ, δ, θ̄ are fixed parameters for a given film. Here,Q = Q(θ) is the rotational tensor with the axis e3,
see definition (3.2). The tangent vectors at s := (s1, s2) ∈ S are

(3.21) t1(s) =
dx̄

ds1
= RQ′(s1)e1, t2(s) =

dx̄

ds2
= δe3

and the normal vector is

(3.22) n(s) = Q(s1)e1.

3.2.1. Lattice Geometry and Dipole Moment. We consider a lattice embedded on the film x̄. We assume that
the film is one lattice cell thick in the directionn normal to the film. SupposeL ⊂ S is the set of parametric coordinates
of the discrete lattice sites. Let L and the lattice cell U (in the parametric space S) be given by

L = {s = (s1, s2) ∈ S; s1 = iθl, s2 = j, i, j ∈ Z} =
(
(−θ̄, θ̄) ∩ θlZ

)
× Z

U(s) = [s1, s1 + θl)× [s2, s2 + 1), ∀s ∈ L.
(3.23)

Here, θl is the angular width of the lattice cell. We assume that θl is such that the set of sites in the angular direction,
(−θ̄, θ̄) ∩ θlZ, is not empty, and in fact is sufficiently large so that the continuum limit approximation of the energy
density is justified. We assume that the lattice has unit thickness in the normal direction, and suppose that the film
given by x̄ passes through the center of the lattice in the normal direction. Then, the unit cell for a given site s ∈ L
is Ū(s) = {x; x = x̄(s′) + tn(s′), s′ ∈ U(s), t ∈ (−1/2, 1/2)} (see Figure 3.2). On the lattice L, we define a
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discrete system of dipole moments d : L → R3. As in the case of the helical nanotube, the lattice cells in real space
are related by an isometric transformation, so the magnitudes of the dipoles at the lattice sites are equal, but they are
oriented differently. In particular, we have

(3.24) d(s + r) = Q(r1)d(s), s ∈ L,

where r = (r1, r2) ∈ L such that r + s ∈ L (i.e. all the translations within L). We see that the dipole orientation
depends only on the angular (first) parameter and is invariant with respect to the second parameter.

(a) (b)

Fig. 3.2: Depiction of lattice sites in (a) parametric and (b) real space where the orange region marks a lattice cell in
the parametric and real space.

We next consider the scaling of the lattice by λ > 0. The scaled lattice Lλ and the associated lattice cell Uλ are
defined by the natural scaling of L and U as follows

Lλ = {s ∈ S; s1 = iθlλ, s2 = jλ, i, j ∈ Z} =
(
(−θ̄, θ̄) ∩ λθlZ

)
× λZ

Uλ(s) = [s1, s1 + λθl)× [s2, s2 + λ), ∀s ∈ Lλ.
(3.25)

After scaling, the thickness of the lattice cell in the normal direction is λ and the unit cell for s ∈ Lλ is Ūλ(s) =
{x; x = x̄(s′) + tn(s′), s′ ∈ Uλ(s), t ∈ (−λ/2, λ/2)}. We can show that the unit cell in the scaled lattice has
volume λ3Rθl. Let dλ : Lλ → R3 denote the discrete system of dipole moments associated with the scaled lattice,
Lλ, and d̃λ : S → R3 denote the piecewise constant extension of dλ given by

(3.26) d̃λ(s) =
dλ(a)

λ3Rθl
, ∀s ∈ Uλ(a), ∀a ∈ Lλ.

We are interested in the limit of the energy when d̃λ converges to f in L2(S,R3). As in the case of the helix and
following [JM94], we suppose that there exists a background dipole moment density field fλ ∈ L2(S,R3) such that
the dipole moment at site s ∈ Lλ is given by

(3.27) dλ(s) =

∫ λ/2

−λ/2

[∫
Uλ(s)

fλ(t)R dt1 dt2

]
dt3 = Rλ

∫
Uλ(s)

fλ(t) dt,

where dt = dt1 dt2 is the area measure (note that dt does not includeR). The existence of one such background field
fλ is evident: we can define fλ = d̃λ. Similar to the case of the helix, we have the following lemma that relates the
convergence of the background dipole moment field and the piecewise constant extension.
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Lemma 3.4. Let fλ, λ > 0, be a sequence of L2(S,R3) functions and let f ∈ L2(S,R3) be such that fλ → f
in L2(S,R3). Let dλ : Lλ → R3 be given by (3.27) and let d̃λ be a piecewise constant L2 extension of dλ given by
(3.26). Then, d̃λ → f in L2(S,R3).

On the other hand, if dλ : Lλ → R3 is such that d̃λ → f in L2(S,R3), then there exists a background field
fλ ∈ L2(S,R3) such that dλ is given by (3.27).

The proof follows directly from the proof of Theorem 4.1 of [JM94].

Remark 3.4. As different unit cells are related by isometric transformations, the dipole moments in different unit
cells are related by the rotational part of the isometric transformation.

(a) (b)

Fig. 3.3: Discrete dipole moments on a nanofilm with uniform bending curvature. (a) and (b) show the view from
different perspectives.

3.2.2. Electrostatic Energy. As before, the energy associated to the system of dipole moments dλ, for λ > 0, is
given by

Eλ = −1

2

∑
s,s′∈Lλ,

s6=s′

dλ(s) ·K(x̄(s′)− x̄(s))dλ(s′) = |(−λ/2, λ/2)|êλ,

where |(−λ/2, λ/2)| = λ is the thickness of the lattice in normal direction, and êλ is the energy per unit length given
by

(3.28) êλ = − 1

2λ

∑
s,s′∈Lλ,

s6=s′

dλ(s) ·K(x̄(s′)− x̄(s))dλ(s′).

For convenience, we normalize êλ by Rθl, where Rθl is independent of λ and gives the size of the original lattice in
the angular direction. We let

(3.29) eλ =
êλ
Rθl

⇒ Eλ = λ(Rθl)eλ.

Substituting (3.27) and proceeding similar to the case of the helix, we can express eλ as

(3.30) eλ = (fλ, Tλfλ)L2(S,R3) ,

12



where Tλ : L2(S,R3)→ L2(S,R3) is the map defined as

(3.31) (Tλf)(s) =
R
θl
λ

∫
S
Kλ(s′, s)f(s′) ds′

andKλ(s′, s), for s, s′ ∈ S , is the discrete dipole field kernel given by

(3.32) Kλ(s′, s) =
∑

u,v∈Lλ,
u6=v

χUλ(v)(s
′)K(x̄(v)− x̄(u))χUλ(u)(s).

Scaling of Kλ. As in the case of the helix, it is convenient to first rescale the lattice Lλ such that the lattice cell
size is independent of λ after rescaling, and define a new map on the rescaled lattice. This is considered next.

Let S1,λ = (−θ̄/λ, θ̄/λ) × R so that s ∈ S implies s/λ ∈ S1,λ. We define a rescaled lattice L1,λ such that
s ∈ Lλ implies s/λ ∈ L1,λ. It is given by

(3.33) L1,λ = {s ∈ S1,λ; s1 = iθl, s2 = j, i, j ∈ Z} =
(
(−θ̄/λ, θ̄/λ) ∩ θlZ

)
× Z.

The lattice cell for s ∈ L1,λ is given by U1(s), where U1(s) is defined in (3.23) (using λ = 1 in Uλ). For a, b ∈ S1,λ,
we have

(3.34) x̄(λa)− x̄(λb) = λ (x̄(a)− x̄(b) + Aλ(a, b)e1) ,

where

(3.35) Aλ(a, b) =
R
λ

[Q(λa1)−Q(λb1)− λQ(a1) + λQ(b1)] .

Keeping in mind these definitions, for u ∈ L1,λ, we also note

χUλ(λu)(s) =

{
1 if s ∈ Uλ(λu),

0 otherwise
=

{
1 if s/λ ∈ U1(u),

0 otherwise
= χU1(u)(s/λ).(3.36)

Using the above relation and (3.34), we can show, for any s, s′ ∈ S ,

Kλ(s′, s) =
1

λ3

∑
u,v∈L1,λ,

u6=v

χU1(v)(s
′/λ)K(x̄(v)− x̄(u) + Aλ(v,u)e1)χU1(u)(s/λ).

If we introduce the discrete dipole field kernelK1,λ(s′, s), for s, s′ ∈ S1,λ, defined on L1,λ as:

(3.37) K1,λ(s′, s) =
∑

u,v∈L1,λ,
u6=v

χU1(v)(s
′)K(x̄(v)− x̄(u) + Aλ(v,u)e1)χU1(u)(s),

we have shown that:

Kλ(s′, s) =
1

λ3
K1,λ(s′/λ, s/λ), ∀s, s′ ∈ S.

3.2.3. Limit of the Electrostatic Energy. In this section, we obtain the limit of the energy per unit length eλ.
The broad strategy is similar to the helical nanotube. We first show that the map Tλ is bounded and obtain its limit.
The continuum limit of the energy density eλ then follows easily.

13



Limit of the Discrete Electric Field. Let T1,λ : L2(S1,λ,R3) → L2(S1,λ,R3) be the map with kernel K1,λ. For
any function f ∈ L2(S1,λ,R3), we have

(3.38) (T1,λf)(s) =
R
θl

∫
S1,λ

K1,λ(s′, s)f(s′) ds′, ∀s ∈ S1,λ.

LetHλ = Hλ(s) be the zeroth order moment (with respect to the first argument) of kernelKλ given by

(3.39) Hλ(s) =
Rλ
θl

∫
s′∈S

Kλ(s′, s) ds′, ∀s ∈ S.

We now state the limit result of Tλ.
Proposition 3.5. Suppose 0 < θ < π/4. The maps T1,λ and Tλ are bounded in L2 for all λ > 0 and satisfy

‖Tλ‖L(L2(S,R3),L2(S,R3)) = ‖T1,λ‖L(L2(S1,λ,R3),L2(S1,λ,R3)) .

Further, for f ∈ C∞0 (R,R3),

(Tλf)(s) −−−→
λ→0

H0(s)f(s),

pointwise, whereH0(s), for s ∈ S , is given by

(3.40) H0(s) = lim
λ→0

Hλ(s) = R
∑

u=(u1,u2)∈θlZ×Z,
u6=0

K (u1t1(s) + u2t2(s))

and ti(s) =
dx̄(s)

dsi
, i = 1, 2, are the tangent vectors to the film.

We provide the proof of Proposition 3.5 in subsection 4.2. Based on the proposition above, we state the main
result for the thin film.

Limit of the Energy.
Theorem 3.6. Let fλ ∈ L2(S,R3) be a sequence of functions for λ > 0 with f ∈ L2(S,R3) such that fλ → f

in L2(S,R3). Let the system of dipole moments dλ : Lλ → R3 be given by (3.27). Let eλ, given by (3.30), be the
energy per unit length normalized byRθl. Then

eλ −−−→
λ→0

−1

2
(f ,H0f)L2(S,R3) ,

whereH0 = H0(s) is defined in Proposition 3.5, see (3.40).
The proof of Theorem 3.6 follows from the proof of Theorem 3.3 and using Proposition 3.5.
Remark 3.5. Note that, for s ∈ S ,

(3.41) H0(s) = Q(s1)H0(0)Q(−s1).

Thus, if the limiting dipole moment field f is uniform in the e3 direction, the electric field H0(s)f(s) will be
independent of the e3-coordinate. It is easy to see from the expression ofH0 that both the normal component and the
tangential components of the dipole field contribute to the electric field and energy. This is in contrast to [GJ97], where
the thin film limit of the magnetostatic energy, obtained from dimensional reduction starting from a 3-d continuum, has
contributions only from the normal component. However, it is consistent with the result for the helical nanostructure
studied in this paper, in that the components of the dipole field aligned with the thin direction contribute to the limit
energy. As we argued there, the dimensional reduction from a 3-d continuum model is appropriate for thin films
that have thickness that is much larger than the atomic lengthscale, whereas the discrete-to-continuum approach is
appropriate for nanostructures that have thickness that is comparable to the atomic lengthscale.
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4. Proof of Assertions.

4.1. Helical Nanotube. In this section, we prove Proposition 3.2. First, we collect some important results, and
then show that Tλ is bounded and extends from f ∈ C∞0 (R,R3) to L2(R,R3). We then obtain the limit of the map
Tλ.

Lemma 4.1. 1. For any a, b ∈ R,

(4.1) x̄(b)− x̄(a) = Q(aθ)[(Q((b− a)θ)− I)e1 + δ(b− a)e3],

where x̄ is the map (3.1),Q is the rotational tensor (3.2), θ and δ define the helix.
2. For any θ ∈ (0, π),

(4.2) δ ≤ min
a,b∈L1,a 6=b

|x̄(b)− x̄(a)|,

where L1 is Lλ = λZ for λ = 1.
3. For any a, b ∈ L1 and λ > 0,

(4.3) δ|a− b| ≤ |x̄(a)− x̄(b) + Aλ(a, b)e1|,

whereAλ(a, b) is given by

Aλ(a, b) =
Q(λaθ)−Q(λbθ)− (λQ(aθ)− λQ(bθ))

λ
.

4. For any s, s′ ∈ R such that |s− s′| ≥ 1, suppose a, b ∈ L1 are such that s ∈ [a, a+ 1), s′ ∈ [b, b+ 1), then

(4.4)
|s− s′|
|a− b|

< 3.

Proof. 1. For any α, β ∈ R, we have the identities

(4.5) QT (α) = Q(−α), Q(α)Q(β) = Q(α+ β), Q(α)e3 = e3,

where the last relation shows that e3 is the axis of Q. By noting the definition of x̄ in (3.1) and using the
identities above, (4.1) follows.

2. To show (4.2), we use (4.1) to get

|x̄(b)− x̄(a)|2 = |(Q((b− a)θ)− I)e1|2 + δ2|b− a|2 ≥ δ2|b− a|2 ≥ δ2,

where we used the fact that |b− a| ≥ 1 for a, b ∈ L1, a 6= b.
3. To show (4.3), we substitute the definition ofAλ to get

(4.6) x̄(a)− x̄(b) + Aλ(a, b)e1 =
Q(λaθ)−Q(λbθ)

λ
e1 + (a− b)δe3.

SinceQ(α)e1 is orthogonal to e3 for any α, we have

|x̄(a)− x̄(b) + Aλ(a, b)e1| ≥ δ|a− b|.

4. To show (4.4), we note that for s, s′ ∈ R such that |s−s′| ≥ 1with a, b ∈ L1 and s ∈ [a, a+1), s′ ∈ [b, b+1),
we can write s = a+∆s and s′ = b+∆s′ with 0 ≤ ∆s,∆s′ < 1. Thus

|s− s′|
|a− b|

=
|a− b+ (∆s−∆s′)|

|a− b|
≤ |a− b|+ |∆s−∆s

′|
|a− b|

< 1 +
2

|a− b|
≤ 3,

where in the last step we used the fact that |a−b| ≥ 1 for a, b ∈ L1, a 6= b (which is ensured when |s−s′| ≥ 1).
This completes the proof.
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4.1.1. Boundedness. We next show that Tλ is a bounded map. Let Sλ : L2(R,R3)→ L2(R,R3) be an isometry
defined as

(Sλf)(s) := λ1/2f(λs).

It is easy to see that ||Sλf ||L2(R,R3) = ||f ||L2(R,R3). The inverse of Sλ is given by

(4.7) (S−1
λ f)(s) = λ−1/2f(s/λ).

Using Sλ, we can show – noting the definition of Tλ in (3.11) – for f ∈ L2(R,R3),

(Tλf)(s) = λ2

∫
R
Kλ(s′, s)f(s′) ds′ = λ2

∫
R

1

λ3
K1,λ(s′/λ, s/λ)

(
λ−1/2(Sλf)(s′/λ)

)
ds′

= λ−3/2

∫
R
K1,λ(s′, s/λ)(Sλf)(s′)λ ds′ = λ−1/2(T1,λ(Sλf))(s/λ)

= (S−1
λ T1,λSλf)(s),

(4.8)

where we used a change of variables and (4.7). It follows from the above equation that

‖Tλ‖L(L2,L2) = sup
‖f‖6=0

‖Tλf‖L2(R,R3)

‖f‖L2(R,R3)

= sup
‖f‖6=0

∥∥S−1
λ (T1,λSλf)

∥∥
L2(R,R3)

‖f‖L2(R,R3)

= sup
‖f‖6=0

‖T1,λ(Sλf)‖L2(R,R3)

‖f‖L2(R,R3)

= sup
‖Sλf‖6=0

‖T1,λ(Sλf)‖L2(R,R3)

‖Sλf‖L2(R,R3)

= ‖T1,λ‖L(L2,L2) ,

(4.9)

where we have used that ||f ||L2(R,R3) = ||Sλf ||L2(R,R3). This completes the proof of (3.16) in Proposition 3.2. Next,
we show that T1,λ is a bounded map to prove the boundedness of Tλ. We first analyze the discrete dipole field kernel
K1,λ, which is defined as

(4.10) K1,λ(s′, s) =
∑

u,v∈L1,
u6=v

χU1(v)(s
′)K(x̄(v)− x̄(u) + Aλ(v, u)e1)χU1(u)(s),

where Uλ(s) = [s, s+ λ) for s ∈ Lλ, andAλ(a, b) is given by (3.13).
Consider some typical s, s′ ∈ R and the corresponding a, b ∈ L1 such that s ∈ [a, a + 1), s′ ∈ [b, b + 1). From

(4.10), we have, for all s, s′ ∈ R such that |s− s′| < 1,
• If a = b, then K1,λ(s, s′) = 0.
• If a 6= b, then from (4.2), we have

|K1,λ(s, s′)| ≤
√

6/(4πδ3)

using |Aa| ≤ |A| |a| and |I − 3(x/|x|)⊗(x/|x|)| ≤
√

6, ∀x 6= 0 .
Combining the two cases above, |K1,λ(s, s′)| ≤

√
6/(4πδ3).

We now consider the case when |s− s′| ≥ 1. Noting that for this case, a 6= b. We proceed as follows

|K1,λ(s, s′)| ≤
√

6

4π|s− s′|3
|s− s′|3

|a− b|3
|a− b|3

|x̄(a)− x̄(b) + Aλ(a, b)e1|3

≤
√

6

4π|s− s′|3
33 |a− b|3

δ3|a− b|3
=

33
√

6

4πδ3

1

|s− s′|3
,

(4.11)

where we used the bounds (4.3) and (4.4). Combining the above bound for |s− s′| ≥ 1 with the bound for |s− s′| < 1,
and renaming the constants, we can write

(4.12) |K1,λ(s, s′)| ≤ C1

C2 + |s− s′|3
.
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Next, note that, since the kernelK1,λ satisfies (4.12), we have

(4.13)
∫
R
|K1,λ(s′, s)| ds′ ≤ C3,

∫
R
|K1,λ(s′, s)| ds ≤ C3,

for some fixed C3 <∞ independent of λ. Using the above bound, we can show that, for all f ∈ C∞0 (R,R3),

(4.14) ||T1,λf ||L2(R,R3) ≤ C3||f ||L2(R,R3),

which establishes that T1,λ is a bounded linear map onC∞0 (R,R3). SinceC∞0 (R,R3) is dense inL2(R,R3), it follows
that T1,λ is also bounded in L2(R,R3), and extends as a bounded linear map from C∞0 (R,R3) to L2(R,R3). This
argument together with (4.9) completes the proof of boundedness of maps Tλ and T1,λ. Now, it remains to show (4.14)
for f ∈ C∞0 (R,R3). Let f ∈ C∞0 (R,R3) and proceed as follows:

||T1,λf ||2L2(R,R3) =

∫
R
|(T1,λf)(s)|2 ds =

∫
R

(∫
R
K1,λ(s′, s)f(s′) ds′

)2

ds

=

∫
R

[∫
R

∫
R
|K1,λ(s′, s)| |K1,λ(t′, s)| |f(s′)| |f(t′)| ds′ dt′

]
ds

≤
∫
R

[∫
R

∫
R
|K1,λ(s′, s)| |K1,λ(t′, s)|

(
|f(s′)|2

2
+
|f(t′)|2

2

)
ds′ dt′

]
ds

=

∫
R

[
1

2
2

(∫
R
|K1,λ(s′, s)| ds′

)(∫
R
|K1,λ(t′, s)| |f(t′)|2 dt′

)]
ds

≤ C3

∫
R

[∫
R
|K1,λ(t′, s)| |f(t′)|2 dt′

]
ds︸ ︷︷ ︸

=:I

,

(4.15)

where, in the third line we have used that |f(s′)| |f(t′)| ≤ |f(s′)|2/2 + |f(t′)|2/2; in the fourth line, we have used
symmetry to extract a factor of 2; in the last line, we have used the bound (4.13). Since f ∈ C∞0 (R,R3), there exist
R > 0 such that the support of f is a subset of (−R,R). So, for any ρ > 0, we have

Iρ :=

∫ ρ

−ρ

[∫
R
|K1,λ(t′, s)| |f(t′)|2 dt′

]
ds =

∫ ρ

−ρ

[∫ R

−R
|K1,λ(t′, s)| |f(t′)|2 dt′

]
ds

=

∫ R

−R
|f(t′)|2

(∫ ρ

−ρ
|K1,λ(t′, s)| ds

)
dt′ ≤ C3||f ||2L2(R,R3),

(4.16)

where we have applied Fubini’s theorem to switch the order of integration – this is allowed because |K1,λ(t′, s)| |f(t′)|2
is integrable in (s, t′) ∈ (−ρ, ρ)× (−R,R) – and then used (4.13). Thus, we have shown that Iρ is bounded, with the
bound independent of ρ. This, together with the fact that Iρ is monotonically increasing with ρ, shows that lim

ρ→∞
Iρ

exists and is equal to I , where I is defined in (4.15). The limit I is also bounded, i.e., I ≤ C3||f ||2L2(R,R3). Combining
this observation with (4.15) completes the proof of (4.14).

4.1.2. Limit of the Map Tλ. Let f ∈ C∞0 (R,R3). Write Tλf as:

(4.17) Tλ(f)(s) = λ2

∫
R
Kλ(s′, s)f(s′) ds′ =

[
λ2

∫
R
Kλ(s′, s) ds′

]
︸ ︷︷ ︸

=:Hλ(s)

f(s) + λ2

∫
R
Kλ(s′, s)(f(s′)− f(s)) ds′.

The second term above is zero in the limit λ→ 0. To see this, we first obtain two useful inequalities. For any R > 0,
we have, using the bound on |K1,λ| from (4.12),∫

|s−s′|≤Rλ
|K1,λ(s′/λ, s/λ)| ds′ ≤

∫
|s−s′|≤Rλ

C1

C2 + |s− s′|3/λ3
ds′ ≤ C1

C2

∫
|s−s′|≤Rλ

ds′ =
C1

C2
Rλ(4.18)

17



and

1

λ

∫
|s−s′|≥Rλ

|K1,λ(s′/λ, s/λ)| ds′ ≤ 1

λ

∫
|s−s′|≥Rλ

C1

C2 + |s/λ− s′/λ|3
ds′ =

∫
|t|≥R

C1

C2 + |t|3
dt,(4.19)

where the last equality in the equation above follows from the change of variables t = (s′ − s)/λ. Next, noting that

λ2Kλ(s′, s) =
1

λ
K1,λ(s′/λ, s/λ), we obtain the following bound on the second term of (4.17):

∣∣∣∣λ2

∫
R
Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣
=

∣∣∣∣ 1λ
∫
R
K1,λ(s′/λ, s/λ)(f(s′)− f(s)) ds′

∣∣∣∣
=

∣∣∣∣∣ 1λ
∫
|s−s′|≥Rλ

K1,λ(s′/λ, s/λ)f(s′) ds′ − 1

λ

∫
|s−s′|≥Rλ

K1,λ(s′/λ, s/λ) ds′f(s)

+
1

λ

∫
|s−s′|≤Rλ

K1,λ(s′/λ, s/λ)(f(s′)− f(s)) ds′

∣∣∣∣∣
≤

∣∣∣∣∣ 1λ
∫
|s−s′|≥Rλ

K1,λ(s′/λ, s/λ)f(s′) ds′

∣∣∣∣∣+

∣∣∣∣∣ 1λ
∫
|s−s′|≥Rλ

K1,λ(s′/λ, s/λ) ds′f(s)

∣∣∣∣∣
+

∣∣∣∣∣ 1λ
∫
|s−s′|≤Rλ

K1,λ(s′/λ, s/λ)(f(s′)− f(s)) ds′

∣∣∣∣∣
≤ sup

t
|f ′(t)|Rλ

λ

∫
|s−s′|≤Rλ

|K1,λ(s′/λ, s/λ)| ds′ + 2 sup
t
|f(t)| 1

λ

∫
|s−s′|≥Rλ

|K1,λ(s′/λ, s/λ)| ds′

≤ sup
t
|f ′(t)|C1R

2

C2
λ+ 2 sup

t
|f(t)|

∫
|t|≥R

C1

C2 + |t|3
dt,

(4.20)

where we have used the fact that f ∈ C∞0 (R,R3), and therefore, |f(s′)| ≤ sup
t
|f(t)|, and |f(s′) − f(s)| ≤

Rλ sup
t
|f ′(t)| for s′ ∈ {t : |s− t| ≤ Rλ}. We have also used the inequalities (4.18) and (4.19) in the last step.

We note that the final inequality in (4.20) is true for any R > 0. Further, the two terms on the right side have a
limit as λ → 0 – the second term clearly is independent of λ – for any R > 0. Therefore, the limit λ → 0 of the two
terms individually is equal to the limit of the sum, keeping R fixed. Thus, taking the limit λ→ 0 in (4.20), we have

lim
λ→0

∣∣∣∣λ2

∫
R
Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣
≤ lim
λ→0

[
sup
t
|f ′(t)|C1

C2
Rλ

]
+ lim
λ→0

[
2 sup

t
|f(t)|

∫
|t|≥R

C1

C2 + |t|3
dt

]

= 2 sup
t
|f(t)|

∫
|t|≥R

C1

C2 + |t|3
dt,

(4.21)

for any R > 0. Since the bound above is true for any R > 0, and the left side is independent of R, we can take the
limit R→∞, where the limit exists and is 0 for the right side, to get

lim
λ→0

∣∣∣∣λ2

∫
R
Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣ ≤ lim
R→∞

2 sup
t
|f(t)|

∫
|t|≥R

C1

C2 + |t|3
dt = 0.(4.22)
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Thus, we have from (4.17) that

(4.23) lim
λ→0

Tλ(f)(s) =

[
lim
λ→0

Hλ(s)

]
f(s).

We next compute the limit of Hλ(s). Fix s ∈ R and suppose a ∈ Lλ such that s ∈ Uλ(a). Using the definition
of Kλ(s′, s), we have

(4.24) Hλ(s) = λ2

∫
R
K(s′, s) ds′ = λ2

∑
u∈L1,
u 6=a

K(x̄(u)− x̄(a))

∫
Uλ(u)

dt = λ3
∑
u∈λZ,
u6=a

K(x̄(u)− x̄(a)).

From (4.5), we have x̄(u) − x̄(a) = Q(aθ)((Q((u − a)θ) − I)e1 + (u − a)δe3). Using the identity K(Qx) =
QK(x)QT andK(λx) = K(x)/λ3, we get

Hλ(s) = Q(aθ)

 ∑
u∈λZ,u 6=a

K((Q((u− a)θ)− I)/λe1 + (u− a)δ/λe3)

Q(−aθ)

= Q(aθ)

 ∑
i∈Z,i 6=0

K((Q(iλθ)− I)/λe1 + iδe3)

Q(−aθ),

(4.25)

where we have changed variables i = (u− a)/λ. Note that a ∈ λZ, and, therefore, (u− a) ∈ λZ for u ∈ λZ, which
implies i ∈ Z. Since s is related to a by s ∈ Uλ(a), we have a→ s in the limit λ→ 0. Therefore, we get

H0(s) := lim
λ→0

Hλ(s) = Q(sθ)

 lim
λ→0

∑
i∈Z−{0}

K((Q(iλθ)− I)/λe1 + iδe3)

Q(−sθ).

To take the limit inside the summation, we show that the sum is absolutely convergent for all λ > 0 as follows:

aλ :=
∑

i∈Z−{0}

|K ((Q(iλθ)− I)/λe1 + iδe3)| ≤
∑

i∈Z−{0}

c

|(Q(iλθ)− I)/λe1 + iδe3)|3

=
∑

i∈Z−{0}

c

(4 sin2(iλθ/2)/λ2 + i2δ2)3/2
≤

∑
i∈Z−{0}

c

|i|3
<∞, ∀λ > 0.

(4.26)

Now, we can write

H0(s) = Q(sθ)

 ∑
i∈Z−{0}

lim
λ→0

K

(
Q(iλθ)− I

iλθ
(iθe1) + iδe3

)Q(−sθ).

Note that for a fixed i ∈ Z

lim
λ→0

(Q(iλθ)− I)

iλθ
iθe1 + iδe3 = lim

h=iλθ→0

(Q(h)− I)

h
iθe1 + iδe3 = iθQ′(0)e1 + iδe3,

where Q′(0) = d/dxQ(x)|x=0. Now, using the equation above, and the fact that K(x) is smooth away from x = 0
(which is ensured in the summation), we get

H0(s) = Q(sθ)

 ∑
i∈Z−{0}

K
(
iθQ′(0)e1 + iδe3

)Q(−sθ) = Q(sθ)H0(0)Q(−sθ).
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Combining this with (4.23), we get

lim
λ→0

Tλ(f)(s) = H0(s)f(s) = Q(sθ)H0(0)Q(−sθ)f(s).

Next, we simplifyH0(s). UsingQK(x)QT = K(Qx) andQ(sθ)Q′(0) = Q′(sθ), we can show

(4.27) H0(s) =
∑

i∈Z−{0}

K(iθQ′(sθ)e1 + iδe3) =
∑

i∈Z−{0}

K
(
i |t(s)| t̂(s)

)
,

where t(s) = θQ′(sθ)e1 + δe3 is the tangent vector, and t̂(s) = t(s)/|t(s)| with |t(s)| =
√
θ2 + δ2. In (4.27), by

noting the definition of the dipole field kernelK, it is easy to show that

H0(s) = −h0

[
I − 3t̂(s)⊗t̂(s)

]
= −h0

[
P⊥f(s)− 2P ||(s)

]
,

with h0 defined as

(4.28) h0 =
∑

i∈Z−{0}

1

4π|i|3(θ2 + δ2)3/2

and projection tensors P ||(s) = t̂(s)⊗t̂(s) and P⊥(s) = I − P ||(s). This finishes the proof of Proposition 3.2.

4.2. Nanofilm with Uniform Bending. In this section, we prove Proposition 3.5. The outline of the proof is
similar to the case of the helix in subsection 4.1.

Lemma 4.2. 1. Suppose s, s′ ∈ S1,λ = (−θ̄/λ, θ̄/λ)×R such that a, b ∈ L1,λ = (−θ̄/λ, θ̄/λ)∩ θlZ×Z
with s ∈ U1(a) = [a1, a1 + θl)× [a2, a2 + 1), s′ ∈ U1(b). When |s− s′| ≥ min{θl, 1}, we have a 6= b and

(4.29)
|s− s′|
|a− b|

< 1 +
θl + 1

min{θl, 1}
=: cL.

2. For any a, b ∈ L1,λ, we have

(4.30) cA|a− b| ≤ |x̄(a)− x̄(b) + Aλ(a, b)e1|,

where x̄ is given by (3.20) andAλ(a, b) is defined as

Aλ(a, b) =
R
λ

[Q(λa1)−Q(λb1)− λQ(a1) + λQ(b1)] .

Here cA = min{δ,R
√

1− θ̄2/3} is the constant independent of λ; recall that δ is the parameter in the map
x̄, see (3.20). Note that cA > 0 for 0 < θ̄ < π/2.

Proof. To show (4.29), we proceed as follows. For s, s′ ∈ S1,λ and corresponding a, b ∈ L1,λ, there exists
∆s, ∆s′ such that s = a +∆s, s′ = b +∆b with 0 ≤ ∆s1, ∆s

′
1 < θl, 0 ≤ ∆s2, ∆s

′
2 < 1. We have the bound

(4.31)
|s− s′|
|a− b|

≤ 1 +
|∆s1 −∆s′1|+ |∆s2 −∆s′2|

|a− b|
< 1 +

θl + 1

|a− b|
≤ 1 +

θl + 1

min{θl, 1}
,

where in the last step we used the fact that any a, b ∈ L1,λ, satisfying a 6= b, are at least min{θl, 1} distance apart.
We next show (4.30). Using

x̄(a)− x̄(b) + Aλ(a, b)e1 =
R
λ

(Q(λa1)−Q(λb1))e1 + δ(a2 − b2)e3
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and

|(Q(θ1)−Q(θ2))e1|2 = (cos θ1 − cos θ2)2 + (sin θ1 − sin θ2)2 = 2(1− cos(θ1 − θ2)),

we have that

(4.32) |x̄(a)− x̄(b) + Aλ(a, b)e1|2 = δ2|a2 − b2|2 +
2R2

λ2
(1− cos(λa1 − λb1)).

Let r = a1 − b1. Then, using a Taylor expansion and the mean value theorem, there exists ξ such that

1− cos(λr) =
1

2
λ2r2 − 1

24
λ4r4 cos(ξ).

Since −1 ≤ cos(ξ) ≤ 1, it follows

1− cos(λr) ≥ 1

2
λ2r2 − 1

24
λ4r4.

Substituting the relation above in (4.32), we get

|x̄(a)− x̄(b) + Aλ(a, b)e1|2 ≥ δ2|a2 − b2|2 +R2r2

(
1− 1

12
λ2r2

)
.

Since a, b ∈ L1,λ, we have −2θ̄ < λr < 2θ̄, and

1− 1

12
λ2r2 ≥ 1− 1

12
θ̄24 = 1− θ̄2

3
.

Using the two equations above and defining the constant cA as in Lemma 4.2(2), (4.30) can be easily shown.

4.2.1. Boundedness. Let Sλ : L2(S,R3)→ L2(S1,λ,R3) be a map such that, for any f ∈ L2(S,R3),

(Sλf)(s) = λf(λs), ∀s ∈ S1,λ.

It is easy to see that Sλ is an isometry. The inverse of Sλ is given by

(S−1
λ f)(s) = λ−1f(s/λ), ∀s ∈ S.

Following the similar steps in subsubsection 4.1.1, we can show that

||Tλ||L(L2,L2) = ||T1,λ||L(L2,L2).

Thus, to show that Tλ is a bounded map, it is sufficient to show that T1,λ is bounded. Towards that goal, we first
establish that

(4.33) |K1,λ(s, s′)| ≤ C1

C2 + |s− s′|3
, ∀s′, s ∈ S1,λ,

where C1, C2 are constants that may depend on the parametersR, θ, δ defining the surface S , but are independent of λ.
To show (4.33), we recall that θ̄ is the fixed angular extent of the film and satisfies the bound 0 < θ̄ < π/2 (in fact

we restrict it such that 0 < θ̄ < π/4). Let s, s′ ∈ S1,λ be any two generic points, and let a, b ∈ L1,λ be such that
s ∈ U1(a) and s′ ∈ U1(b). We refer to subsubsection 3.2.1 and subsubsection 3.2.2 for the notation appearing in this
section.
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First, consider s, s′ such that |s − s′| ≥ min{θl, 1}. For this case, we have a 6= b. Noting that |I −
3(x/|x|)⊗(x/|x|)| =

√
6, ∀x 6= 0, we have

|K1,λ(s, s′)| ≤
√

6

4π|x̄(a)− x̄(b) + Aλ(a, b)e1|3

=

√
6

4π|s− s′|3
|s− s′|3

|a− b|3
|a− b|3

|x̄(a)− x̄(b) + Aλ(a, b)e1|3

≤
√

6

4π|s− s′|3
c3L

1

c3A
,

(4.34)

where we have used the bounds (4.29) and (4.30).
Next, we consider the case when |s− s′| < min{θl, 1}. This can be further divided in two cases:
• Case 1: a = b which implies |K1,λ(s′, s)| = 0.
• Case 2: a 6= b. For this case, we have

(4.35) |K1,λ(s, s′)| ≤
√

6

4π|x̄(a)− x̄(b) + Aλ(a, b)e1|3
≤

√
6

4πc3A|a− b|3
.

Note that when a 6= b, we can have either a1 = b1, a2 = b2 ± 1; or a1 = b1 ± θl, a2 = b2; or a1 =
b1 ± θl, a2 = b2 ± 1. For all of these cases, the denominator in (4.35) is bounded from below because
|a− b| ≥ min{θl, 1}. Thus, we have

(4.36) |K1,λ(s, s′)| ≤
√

6

4πc3A(min{θl, 1})3
.

In summary (4.36) holds for any s, s′ such that |s− s′| < min{θl, 1}.
Combining the bound for the case |s − s′| < min{θl, 1} with the bound for the case |s − s′| ≥ min{θl, 1}, we

can write

(4.37) |K1,λ(s, s′)| ≤ C1

C2 + |s− s′|3
,

where we have renamed the constants for convenience. This completes the proof of (4.33).
Next, we show T1,λ is a bounded map on L2(S1,λ,R3). SinceK1,λ satisfies (4.33), it can be shown that

(4.38)
R
θl

∫
S1,λ
|K1,λ(s′, s)| ds′ ≤ C3,

R
θl

∫
S1,λ
|K1,λ(s′, s)| ds ≤ C3,

for some fixed C3 < ∞ independent of λ. Following the steps in obtaining inequality (4.15), it is easy to obtain, for
f ∈ C∞0 (S1,λ,R3),

(4.39) ||T1,λf ||2L2(S1,λ,R3) ≤ C3

∫
S1,λ

[
R
θl

∫
S1,λ
|K1,λ(t′, s)| |f(t′)|2 dt′

]
ds︸ ︷︷ ︸

=:I

.

Let ρ > 0, and let Iρ is defined as

(4.40) Iρ :=

∫
B2(0,ρ)∩S1,λ

[
R
θl

∫
S1,λ
|K1,λ(t′, s)| |f(t′)|2 dt′

]
ds,

where B2(0, ρ) = {(s1, s2) ∈ R2 :
√
s2

1 + s2
2 ≤ ρ} is the two-dimensional ball of radius ρ centered at 0. Based on

the arguments in the last paragraph of subsubsection 4.1.1, we find that lim
ρ→∞

Iρ exist and it is given by lim
ρ→∞

Iρ = I ,
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where I is defined in (4.39), and that the limit I satisfies the bound I ≤ C3||f ||2L2(S1,λ,R3). Combining this with
(4.39), we have shown that, for f ∈ C∞0 (S1,λ,R3),

||T1,λf ||L2(S1,λ,R3) ≤ C3||f ||L2(S1,λ,R3).

Arguing as in the case of the helix, the map T1,λ is a bounded linear map on L2(S1,λ,R3).

4.2.2. Limit of the Map Tλ. Let f ∈ C∞0 (S,R3). We write Tλf as follows

(Tλf)(s) =
Rλ
θl

∫
S
Kλ(s′, s)f(s′) ds′

=

[
Rλ
θl

∫
S
Kλ(s′, s) ds′

]
︸ ︷︷ ︸

=:Hλ(s)

f(s) +
Rλ
θl

∫
S
Kλ(s′, s)(f(s′)− f(s)) ds′.(4.41)

We next show that the second term in (4.41) is zero in the limit λ→ 0. Fix R̄ > 0, then we have

I :=

∣∣∣∣λ ∫
S
Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣
≤
∣∣∣∣λ ∫

S
χ|s−s′|≥R̄λ(s′)Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣
+

∣∣∣∣λ ∫
S
χ|s−s′|≤R̄λ(s′)Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣
≤ λ

∫
S
χ|s−s′|≥R̄λ(s′)|Kλ(s′, s)| |f(s′)− f(s)| ds′

+ λ

∫
S
χ|s−s′|≤R̄λ(s′)|Kλ(s′, s)| |f(s′)− f(s)| ds′

≤
(

2 sup
s′
|f(s′)|

)
λ

∫
S
χ|s−s′|≥R̄λ(s′)|Kλ(s′, s)| ds′︸ ︷︷ ︸

=:I1

+

(
R̄ sup

s′
|∇f(s′)|

)
λ2

∫
S
χ|s−s′|≤R̄λ(s′)|Kλ(s′, s)| ds′︸ ︷︷ ︸

=:I2

,

(4.42)

where, in the last step, we have used that |f(s′) − f(s)| ≤ 2 sup
t
|f(t)|, and, for s′ ∈ {t : |t − s| ≤ R̄λ}, we have

|f(s′) − f(s)| ≤ R̄λ sup
t
|∇f(t)|. To bound I1 and I2, first observe that, due to Kλ(s′, s) = K1,λ(s′/λ, s/λ)/λ3

and the bound onK1,λ in (4.37), there holds

(4.43) |Kλ(s′, s)| = 1

λ3
|K1,λ(s′/λ, s/λ)| ≤ 1

λ3

C1

C2 + |s′ − s|3/λ3
,

and as a direct consequence, we have

I1 ≤ λ
1

λ3

∫
S
χ|s−s′|≥R̄λ(s′)

C1

C2 + |s′ − s|3/λ3
ds′

≤ 1

λ2

∫
|s−s′|≥R̄λ

C1

C2 + |s′ − s|3/λ3
ds′

=

∫
|t|≥R̄

C1

C2 + |t|3
dt,

(4.44)
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where, in the second step, the domain of integration was enlarged; and, in the final step, the change of variables
t = (s′ − s)/λ (so that λ2 dt = ds′) was introduced. Next, using the definition of I2 in (4.42) and (4.43), we get

I2 ≤ λ2 1

λ3

∫
S
χ|s−s′|≤R̄λ(s′)

C1

C2 + |s′ − s|3/λ3
ds′

≤ 1

λ

∫
|s−s′|≤R̄λ

C1

C2 + |s′ − s|3/λ3
ds′

≤ λ
∫
|t|≤R̄

C1

C2 + |t|3
dt

≤
[
C1

C2
πR̄2

]
λ,

(4.45)

where, in the second step, the domain of integrationwas enlarged; in the third step, the change of variables t = (s′−s)/λ
was introduced; and, finally, in the last step, C1/(C2 + |t|3) ≤ C1/C2 was used. Combining the results of (4.44) and
(4.45) with (4.42), we have shown that

I ≤
(

2 sup
s′
|f(s′)|

)
I1 +

(
R̄ sup

s′
|∇f(s′)|

)
I2

≤
(

2 sup
s′
|f(s′)|

) ∫
|t|≥R̄

C1

C2 + |t|3
dt +

(
R̄ sup

s′
|∇f(s′)|

) [
C1

C2
πR̄2

]
λ,

(4.46)

for any R̄ > 0. Arguing as in the case of helix – see the discussion associated with (4.22) – we have

lim
λ→0

I ≤
(

2 sup
s′
|f(s′)|

) ∫
|t|≥R̄

C1

C2 + |t|3
dt,

for any R̄ > 0. We can take the limit R̄ → ∞ of both sides above since the inequality is valid for any R̄ > 0, and
the left side is independent of R̄ and the limit of R̄ → ∞ of the right side is well-defined and equal to 0. We have
therefore shown

lim
λ→0

I = lim
λ→0

∣∣∣∣λ ∫
S
Kλ(s′, s)(f(s′)− f(s)) ds′

∣∣∣∣ ≤ lim
R̄→∞

[(
2 sup

s′
|f(s′)|

) ∫
|t|≥R̄

C1

C2 + |t|3
dt

]
= 0.

Thus, from (4.41), we have

(4.47) lim
λ→0

(Tλf)(s) =

[
lim
λ→0

Hλ(s)

]
f(s).

Limit ofHλ. Consider a typical s ∈ S such that s ∈ Uλ(a) where a ∈ Lλ. Recall that Lλ is the lattice for λ > 0
and Uλ(a) = [a1, a1 + θlλ)× [a2, a2 + λ) is the lattice cell. In the definition ofHλ, we substituteKλ, to get

(4.48) Hλ(s) =
Rλ
θl

∑
u∈Lλ,u6=a

K(x̄(u)− x̄(a))

∫
Uλ(u)

ds′ = Rλ3
∑

u∈Lλ,u6=a

K(x̄(u)− x̄(a)).

Substituting the definition of transformation x̄ in (3.20), we can show for a,u ∈ Lλ that

x̄(u)− x̄(a) = Q(a1θ) [R(Q(u1 − a1)− I)e1 + (u2 − a2)δe3] .

Using the identitiesK(Q(t)x) = Q(t)K(x)QT (t) andK(λx) = K(x)/λ3, from (4.48), we have

(4.49) Hλ(s) = RQ(a1)

 ∑
u∈Lλ,u6=a

K (R(Q(u1 − a1)− I)/λe1 + (u2 − a2)δ/λe3)


︸ ︷︷ ︸

=:H̄λ(s)

Q(−a1).
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We analyze H̄λ as follows. First, we expand the sum u ∈ Lλ

H̄λ(s) =
∑
u2∈λZ

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,u2)6=a

K

(
RQ(u1 − a1)− I

λ
e1 + δ

u2 − a2

λ
e3

)

=
∑
t′2∈Z

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,t
′
2)6=(a1,0)

K

(
RQ(u1 − a1)− I

λ
e1 + δt′2e3

) ,
(4.50)

where we introduced the new variable t′2 = (u2 − a2)/λ. Since u2, a2 ∈ λZ, we have t′2 ∈ Z. Using a Taylor
expansion and the mean value theorem, we have the identity

(4.51) Q(u1 − a1)− I = Q′(ξ)(u1 − a1),

where ξ = ξ(u1 − a1) ∈ (−θ̄, θ̄) depends on u1 − a1. Formula (4.51) suggests that we decompose (4.50) as:

H̄λ(s) =
∑
t′2∈Z

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,t
′
2) 6=(a1,0)

K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)
︸ ︷︷ ︸

=:H̄
(1)
λ (s)

+
∑
t′2∈Z

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,t
′
2) 6=(a1,0)

{
K

(
RQ(u1 − a1)− I

λ
e1 + δt′2e3

)
−K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)}
︸ ︷︷ ︸

=:H̄
(2)
λ (s)

.

(4.52)

Step 1: We show H̄
(2)
λ goes to zero in the limit λ→ 0. Let

(4.53) x1 = RQ(u1 − a1)− I

λ
e1, x2 = RQ′(0)

u1 − a1

λ
e1, z = δt′2e3.

Consider a function y : [0, 1]→ R3 defined as

(4.54) y(r) = x1 + r(x2 − x1).

Note that, since (u1, t
′
2) 6= (a1, 0) and t′2 ∈ Z, we have

(4.55) |y(r) + z| ≥ min{δ, min
r∈[0,1],u1∈(λθlZ−{a1})∩(−θ̄,θ̄)

|y(r)|}.

We show that min
r∈[0,1],u1∈(λθlZ−{a1})∩(−θ̄,θ̄)

|y(r)| > 0 and the lower bound is independent of λ. For convenience, let

t = u1 − a1. Since u1, a1 ∈ λθlZ ∩ (−θ̄, θ̄), and u1 6= a1, we have t ∈ (λθlZ− {0}) ∩ (−2θ̄, 2θ̄). The hypothesis of
Proposition 3.5 restricts θ̄ such that

(4.56) 0 < θ̄ < π/4 ⇒ 0 < cos(2θ̄) < 1.
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With t = u1 − a1, writing out the action ofQ(t) andQ′(0) on e1, we get

x1 = RQ(t)− I

λ
e1 =

R
λ

[(cos(t)− 1)e1 + sin(t)e2],

x2 = RQ′(0)
t

λ
e1 =

Rt
λ

[− sin(t)e1 + cos(t)e2].

(4.57)

Through elementary calculations, we can show

(4.58) |y(r)|2 = |x1 + r(x2 − x1)|2 =
R2

λ2

[
2(1− r)2(1− cos(t)) + r2t2 + 2r(1− r)t sin(t)

]
.

Using a Taylor expansion and noting that t ∈ (λθlZ − {0}) ∩ (−2θ̄, 2θ̄), there exists ξ1, ξ2 ∈ (−2θ̄, 2θ̄) with
ξ1 = ξ1(t), ξ2 = ξ2(t) such that

(4.59) 1− cos(t) = cos(ξ1)t2/2, sin(t) = t cos(ξ2).

Thus

|y(r)|2 =
R2

λ2

[
2(1− r)2 cos(ξ1)t2/2 + r2t2 + 2r(1− r)t cos(ξ2)t

]
=
R2t2

λ2

[
(1− r)2 cos(ξ1) + r2 + 2r(1− r) cos(ξ2)

]
≥ R

2t2

λ2

[
(1− r)2 min

ξ∈(−2θ̄,2θ̄)
cos(ξ) + r2 + 2r(1− r) min

ξ∈(−2θ̄,2θ̄)
cos(ξ)

]
=
R2t2

λ2

[
(1− r)2 cos(2θ̄) + r2 + 2r(1− r) cos(2θ̄)

]
≥ R

2t2

λ2
min
r∈[0,1]

[
(1− r)2 cos(2θ̄) + r2 + 2r(1− r) cos(2θ̄)

]
=
R2t2

λ2
cos(2θ̄),

(4.60)

where we used the fact that min
ξ∈(−2θ̄,2θ̄)

cos(ξ) = cos(2θ̄) in the fourth line, and cos(2θ̄) is the minimum with respect to

r ∈ [0, 1] of the function in the square bracket in the fifth line. Further, since t ∈ (λθlZ− {0}) ∩ (−2θ̄, 2θ̄), we have

(4.61) 0 < Cy :=
R2λ2θ2

l

λ2
cos(2θ̄) = (Rθl)2 cos(2θ̄) ≤ |y(r)|2,

for any t ∈ (λθlZ − {0}) ∩ (−2θ̄, 2θ̄) and r ∈ [0, 1]. The lower bound on |y(r)| is independent of λ and r. Finally,
combining (4.61) with (4.55), we get

(4.62) 0 < Cyz := min{δ,Rθl
√

cos(2θ̄)} ≤ |y(r) + z|.

Proceeding further, we have, from the fundamental theorem of calculus,

K(x1 + z)−K(x2 + z) =

∫ 1

0

d

dr
K(y(r) + z) dr =

∫ 1

0

∇K(y(r) + z)
d

dr
y(r) dr

=

∫ 1

0

∇K(y(r) + z)(x2 − x1) dr.

(4.63)

26



Note that because of (4.62),∇K(y(r) + z) exists and is bounded. From the definition of H̄(2)
λ in (4.52), a change of

variable t = u1 − a1, the definition of x1,x2, z in (4.53) and (4.57), and noting the identity (4.63), we have

|H̄(2)
λ (s)| ≤

∑
t′2∈Z

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,t
′
2)6=(a1,0)

∣∣∣∣K (
RQ(u1 − a1)− I

λ
e1 + δt′2e3

)
−K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)∣∣∣∣


≤
∑
t′2∈Z

 ∑
t∈λθlZ−{0}∩(−2θ̄,2θ̄)

|K (x1 + z)−K (x2 + z)|


≤
∑
t′2∈Z

 ∑
t∈λθlZ−{0}∩(−2θ̄,2θ̄)

∫ 1

0

|∇K(y(r) + z)| |x2 − x1| dr


≤
∑
t′2∈Z

 ∑
t∈λθlZ−{0}∩(−2θ̄,2θ̄)

∫ 1

0

C

|y(r) + z|4
|x2 − x1| dr


=
∑
t′2∈Z

 ∑
t∈λθlZ−{0}∩(−2θ̄,2θ̄)

∫ 1

0

C

(|y(r)|2 + |z|2)2
|x2 − x1| dr

 ,

(4.64)

where we used the bound on the gradient ofK with constant C > 0 fixed.
Next, we get an upper bound on |x1 − x2| in terms of t. From (4.57), we have

x2 − x1 =
R
λ

[
tQ′(0)−Q(t) + I

]
e1.

By a Taylor expansion and the mean value theorem, we have Q(t) = I + tQ′(0) + (t2/2)Q′′(ξ) where ξ = ξ(t) ∈
(−2θ̄, 2θ̄) depends on t. Substituting this and using the bound |Q′′ij(ξ)| ≤ 1, we obtain

(4.65) |x2 − x1| =
R
λ

|t|2

2
|Q′′(ξ)| ≤ R

λ

|t|2

2
.

Combining the equation above with (4.64), we get

|H̄(2)
λ (s)| ≤

∑
t′2∈Z

 ∑
t∈λθlZ−{0}∩(−2θ̄,2θ̄)

∫ 1

0

C

(|y(r)|2 + |z|2)2

R
λ

|t|2

2
dr


=
∑
t′2∈Z

 ∑
t′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(|y(r)|2 + |z|2)2

R
λ

λ2|t′|2

2
dr


≤ λ

∑
t′2∈Z

 ∑
t′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(|y(r)|2 + |z|2)2

R|t′|2

2
dr

 ,

(4.66)

where in the third line we introduced the variable t′ = t/λ. We only have to show that the term inside the braces is
bounded as λ→ 0 to conclude that |H̄(2)

λ (s)| → 0 as λ→ 0. First, note from (4.60), we have

(4.67) |y(r)|2 ≥ R
2

λ2
|t|2 cos(2θ̄) = R2|t′|2 cos(2θ̄).
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Therefore,

(4.68)
C

(|y(r)|2 + |z|2)2
≤ C

(R2|t′|2 cos(2θ̄) + |z|2)2
.

Thus

(4.69) |H̄(2)
λ (s)| ≤ λ

∑
t′2∈Z

 ∑
t′∈θlZ−{0}∩(−2θ̄/λ,2θ̄/λ)

∫ 1

0

C

(R2|t′|2 cos(2θ̄) + |z|2)2

R|t′|2

2
dr

 .

Note that the integrand is independent of r. Further, the numerator has |t′|2 whereas the denominator has (|t′|2c+|z|2)2,
therefore, the sum inside the braces is absolutely convergent and finite. Hence, due to the factor λ, we have shown
lim
λ→0
|H̄(2)

λ (s)| = 0.

This completes Step 1. We next study H̄(1)
λ .

Step 2: We have from (4.52)

H̄
(1)
λ (s) =

∑
t′2∈Z

 ∑
u1∈λθlZ∩(−θ̄,θ̄),

(u1,t
′
2)6=(a1,0)

K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)

=
∑
t′2∈Z

 ∑
u1∈λθlZ,

(u1,t
′
2)6=(a1,0)

K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)
︸ ︷︷ ︸

=:I1

−
∑
t′2∈Z

 ∑
u1∈[λθlZ]−[λθlZ∩(−θ̄,θ̄)],

(u1,t
′
2)6=(a1,0)

K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)
︸ ︷︷ ︸

=:I2

,

(4.70)

where we have used the notation [λθlZ]− [λθlZ ∩ (−θ̄, θ̄)] to denote the set {t ∈ λθlZ; t /∈ λθlZ ∩ (−θ̄, θ̄)}. Using
the decay property of the dipole field kernelK, we can show that |I2| → 0 in the limit λ→ 0. Therefore, we have

lim
λ→0

H̄
(1)
λ (s) = lim

λ→0

∑
t′2∈Z

 ∑
u1∈λθlZ,

(u1,t
′
2)6=(a1,0)

K

(
RQ′(0)

u1 − a1

λ
e1 + δt′2e3

)

=
∑
t′2∈Z

 ∑
t′1∈θlZ,

(t′1,t
′
2)6=(0,0)

K
(
RQ′(0)t′1e1 + δt′2e3

)
 ,

(4.71)

where we introduced the new variable t′1 = (u1−a1)/λ. Since u1 ∈ λθ1Z and a1 ∈ λθlZ∩(−θ̄, θ̄), we have t′1 ∈ θlZ.
This completes Step 2. Note that lim

λ→0
H̄λ(s) is independent of s ∈ S .
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Upon substituting the limit of H̄(1)
λ and H̄(2)

λ in (4.52), we have shown

(4.72) lim
λ→0

H̄λ(s) = lim
λ→0

H̄λ(0) =
∑

u=(u1,u2)∈θlZ×Z,
u6=0

K
(
RQ′(0)u1e1 + δu2e3

)
.

Recall that s ∈ S was fixed such that s ∈ Uλ(a), which implies that a → s as λ → 0. With this observation and
(4.72), we have from (4.49),

(4.73) H0(s) = lim
λ→0

Hλ(s) = RQ(s1)

 ∑
u=(u1,u2)∈θlZ×Z,

u6=0

K
(
RQ′(0)u1e1 + δu2e3

)Q(−s1).

Next we simplifyH0(s). Given the parametric map x̄ = x̄(s), the two tangent vectors at s = (s1, s2) are

(4.74) t1(s) =
dx̄

ds1
= RQ′(s1)e1, t2(s) =

dx̄

ds2
= δe3.

UsingQK(x)QT = K(Qx) andQ(r)Q′(0) = Q′(r), we write,

H0(s) =
∑

u=(u1,u2)∈θlZ×Z,
u6=0

K (u1t1(s) + u2t2(s)) .

This completes the proof of Proposition 3.5.

5. Summary of Results. We have shown rigorously that certain low-dimensional nanostructures do not have
long-range dipole-dipole interaction in the continuum limit. The energy density in the limit is entirely because of the
Maxwell self-field. In 1-d and 2-d lattices (in a 3-d ambient space), the dipole field kernel decay is sufficiently fast that
long-range interactions do not contribute to the limit energy.

While our calculations show that the energy is local in the continuum limit for 1-d and 2-d discrete systems,
in agreement with dimension reduction approaches that reduce a 3-d continuum to a 1-d or 2-d continuum (e.g.,
[GJ97, CH15] and others), we note an interesting difference. As shown in [GJ97] and other work following it, the
component of the dipole moment along the normal direction to the film is the only contributor to the continuum
electrostatic energy in the thin film limit. Similarly, [CH15] show that the component of the dipole moment in the
plane normal to the wire is the only contributor to the continuum electrostatic energy in the thin wire limit.

This is different from the limit energy in the discrete-to-continuum limit obtained in this work: for the case of a
helical nanotube, the limiting energy density is given by (see Theorem 3.3)

h0

∫
R

[
|P⊥f |2 − 2|P ||f |2

]
ds,

where h0 is a constant, and P ||f and P⊥f are, respectively, the projections of the dipole moment field f along the
axis of the helix and in the plane normal to the axis of the helix. Therefore, unlike the thin wire limit using dimension
reduction, the discrete-to-continuum energy has contributions from both the normal and tangential components of the
dipole moment field. For the case of a thin filmwith curvature, the limiting energy density is given by (see Theorem 3.6)

−1

2

∫
S
f(s) ·H0(s)f(s) ds,

where

H0(s) = R
∑

u=(u1,u2)∈θlZ×Z,
u6=0

K (u1t1(s) + u2t2(s)) .
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Here, S is the parametric domain of the film, R is the inverse of the curvature, θl is the angular width of the unit cell,
and ti(s), i = 1, 2, are the tangent vectors at coordinate s ∈ S . For simplicity, we fix s ∈ S and assume t1 = e1 and
t2 = e2; then the lattice sum above is over a 2-d lattice in (e1, e2) plane. By substituting the form ofK and computing
H0(s)f(s), we can show that both the normal and the tangential components of f are present in the final expression
for the energy above.

We can understand these differences physically, by first noticing that the dimension reduction starting from the 3-d
continuum contains minimal information about the detailed geometry of the underlying lattice within the nanostructure;
these approaches have 3-d continuum theory as their starting point, and are valid for situations in which the limiting
thin object has all dimensions much larger than the atomic lengthscale. In contrast, the discrete-to-continuum approach
presented here is appropriate for nanostructures in which the thin dimensions are comparable to the atomic lengthscale.
For this reason, the thin-film model obtained in this work may capture better the electromechanics of lipid bilayers, as
these are composed of only 1-2 unit cells in the thickness direction [LS13, ADLS13, TMLS22, Ste18].
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