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Abstract

Hadwiger and Hajós conjectured that for every positive integer t, Kt+1-minor free
graphs and Kt+1-topological minor free graphs are properly t-colorable, respectively.
Clustered coloring version of these two conjectures which only require monochromatic
components to have bounded size has been extensively studied. In this paper we
consider the clustered coloring version of the immersion-variant of Hadwiger’s and
Hajós’ conjecture proposed by Lescure and Meyniel and independently by Abu-Khzam
and Langston. We determine the minimum number of required colors for H-immersion
free graphs, for any fixed graph H, up to a small additive absolute constant. Our result
is tight for infinitely many graphs H.

A key machinery developed in this paper is a lemma that reduces a clustering
coloring problem on graphs to the one on the torsos of their tree-cut decomposition
or tree-decomposition. A byproduct of this machinery is a unified proof of a result
of Alon, Ding, Oporowski and Vertigan and a result of the author and Oum about
clustered coloring graphs of bounded maximum degree in minor-closed families.

Keywords: Graph immersion, Clustered coloring

1 Introduction

All graphs in this paper are finite and allowed to have loops and parallel edges. Graph
coloring is one central research direction in graph theory. For a positive integer t, a graph is
properly t-colorable if it can be (vertex-)partitioned into t edgeless induced subgraphs. Every
properly t-colorable graph does not contain Kt+1 as a subgraph. But the converse statement
is not true: for every graph H that contains a cycle, there exists no integer C such that
every graph with no H subgraph is properly C-colorable [15].

A line of research focuses on coloring graphs that forbid a fixed graph H as a more general
structure than subgraphs. One of the most famous problems in this direction is a conjecture
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of Hadwiger [18] stating that for every positive integer t, every graph with no Kt+1-minor1

is properly t-colorable. Hadwiger’s conjecture is very difficult, and the case t = 4 implies the
celebrated Four Color Theorem [3, 4, 33]. Hadwiger’s conjecture is true for t ≤ 5 [18, 34, 36]
and open for t ≥ 6. Norin and Song [32] recently improved an old general upper bound
given independently by Kostochka [22, 23] and Thomason [35]; more recently, Postle [32]
joined the project to further improve the result. Even more recently, Delcourt and Postle
[6] further improved the result by proving that every graph with no Kt-minor is properly
O(t log log t)-colorable.

A similar conjecture was proposed by Hajós in 1940s stating that for every positive integer
t, every graph with no Kt+1-topological minor2 is properly t-colorable. Hajós’ conjecture is
stronger than Hadwiger’s conjecture and is true for t ≤ 3 [9]. But it is too strong to be true
in general: Catlin [5] disproved the cases for t ≥ 6, and Erdős and Fajtlowicz [16] proved
that Ω(t2/ log t) colors are required. The cases for t ∈ {4, 5} remain open.

Due to the difficulty of Hadwiger’s conjecture and the incorrectness of Hajós’ conjecture,
relaxations of those two conjectures have been extensively considered. One relaxation is to
consider clustered coloring.

For positive integers t and N , we say that a graph G is t-colorable with clustering N if
G can be (vertex)-partitioned into t induced subgraphs with no component on more than N
vertices.

For every positive integer t, define f(t) (and g(t), respectively) to be the minimum k
such that there exists an integer N such that every graph with no Kt+1-minor (and Kt+1-
topological minor, respectively) is k-colorable with clustering N . Clearly, g(t) ≥ f(t). Ed-
wards, Kang, Kim, Oum and Seymour [14] showed that f(t) ≥ t by using essentially the
same method of Linial, Matoušek, Sheffet and Tardos [25] who proved f(t) ≥ t − 1, so the
number of required colors for the clustered coloring version of Hadwiger’s conjecture and
Hajós’ conjecture are the same as their original version. The clustered coloring version of
Hadwiger’s conjecture has been extensively studied [12, 14, 20, 21, 27, 28, 30, 37]. In par-
ticular, the author and Wood [30] proved that for every integer t and every graph H, there
exists an integer N such that every graph with no Kt+1-topological minor and H-minor is
(t + 1)-colorable with clustering N . This implies f(t) ≤ t + 1 which is the currently best
known upper bound in the literature3. For the clustered coloring version of Hajós’ conjec-
ture, the author and Wood [30] proved that g(t) ≤ max{4t− 5, 1} which is the only known
linear upper bound in the literature.

Another well-known coloring problem about forbidding a complete graph as a more gen-
eral structure is stated in terms of immersions. For two distinct edges e1, e2 of a graph G
with a common end v, splitting off e1 and e2 along v is the operation that deletes e1 and e2
and adds an edge (e1 − {v}) ∪ (e2 − {v}). For a graph H, we say that a graph G contains

an H-immersion if H is isomorphic to a graph that can be obtained from a subgraph of G

1A graph G contains an H-minor for some graph H if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges.

2A graph G contains an H-topological minor for some graph H if some subgraph of G is isomorphic to a
subdivision of H.

3Dvořák and Norin [12] announced that a forthcoming paper will prove f(t) = t. This result will solve the
clustered coloring version of Hadwiger’s conjecture. But it is incomparable with the aforementioned result
in [30].
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by repeatedly splitting off edges and deleting isolated vertices. Clearly, if G contains an H-
topological minor, then G contains an H-immersion and an H-minor. But the minor relation
is incomparable with the immersion relation. Lescure and Meyniel [24] and Abu-Khzam and
Langston [1] independently proposed an immersion version of Hadwiger’s conjecture.

Conjecture 1.1 ([1, 24]). For every positive integer t, every graph with no Kt+1-immersion

is properly t-colorable.

The cases for t ≤ 3 of Conjecture 1.1 follow from the correctness of Hajós’ conjecture
for t ≤ 3. DeVos, Kawarabayashi, Mohar and Okamura [8] proved the cases 4 ≤ t ≤ 6. It
is open for t ≥ 7. The general upper bound for Conjecture 1.1 has been steadily improved
[7, 13, 17], and the currently best upper bound is 3.54t+7.54 due to Gauthier, Le and Wollan
[17].

Unlike the clustered coloring version of Hadwiger’s and Hajos’ conjectures, it was un-
known whether it requires t colors to color graphs with no Kt+1-immersion with bounded
clustering. The main result of this paper shows that t colors are indeed much more than
needed. Our main result is actually more general and is about graphs with no H-immersion
for any fixed graph H.

Let H be a graph with maximum degree d. As graphs with maximum degree at most d−1
cannot contain an H-immersion, the number of required colors for graphs with maximum
degree at most d− 1 gives a lower bound for the number of required colors for graphs with
no H-immersion. Our main result shows that this lower bound is very close to the correct
value.

Define χ∗ : N ∪ {0} → N to be the function such that for every x ∈ N ∪ {0}, χ∗(x) is
the minimum k such that there exists Nx ∈ N such that every graph of maximum degree at
most x is k-colorable with clustering Nx. Note that χ∗ exists and χ∗(x) ≤ x + 1 for every
x ∈ N ∪ {0}, since every graph of maximum degree at most x is properly (x + 1)-colorable.
Haxell, Szabó and Tardos [19] proved that χ∗(x) ≤ ⌈x+1

3
⌉ for every x ∈ N ∪ {0}, and there

exist ϵ > 0 and D such that χ∗(x) ≤ (1
3
− ϵ)x for every x ≥ D. On the other hand, it is

known that χ∗(x) ≥ ⌊x+6
4
⌋ for every x ∈ N [2, 19]. However, even the asymptotic behavior

of χ∗(x)
x

remains unknown.
For a graph H, define χ∗(H) to be the minimum k such that there exists N ∈ N such

that every graph with no H-immersion is k-colorable with clustering N . The following is
the main theorem of this paper.

Theorem 1.2. Let d be a positive integer, and let H be a graph of maximum degree d.

1. If d = 1, then χ∗(H) = 1.

2. If d ≥ 2 and H has exactly one vertex of degree d, then χ∗(d−1) ≤ χ∗(H) ≤ max{χ∗(d−
2) + 1, 4}.

3. If d ≥ 2 and H has at least two vertices of degree d, then χ∗(d − 2) + 1 ≤ χ∗(H) ≤
max{χ∗(d− 1) + 1, 4}.

Note that for every x ∈ N, every graph with maximum degree at most x can be partitioned
into a stable set and an induced subgraph with maximum degree at most x− 1, so χ∗(x) ≤
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χ∗(x− 1) + 1. Since ⌊x+6
4
⌋ ≤ χ∗(x) ≤ ⌈x+1

3
⌉ for every positive integer x, there are infinitely

many positive integers d such that χ∗(d− 1) = χ∗(d− 2) + 1, and there are infinitely many
positive integers d such that χ∗(d− 2) = χ∗(d− 1). Hence each statement of Theorem 1.2 is
tight for infinitely many positive integers d.

We remark that some readers might get an impression at first glance that Theorem 1.2
is not surprising because other work of the author [26] has shown that H-immersion free
graphs can be “decomposed” into graphs that are more or less close to graphs of maximum
degree less than the maximum degree of H. (See Theorem 4.1 for a precise description.)
However, this impression is not correct in general. One example is that there exists no integer
k such that graphs of tree-width at most w are k-colorable with bounded clustering for all
integers w, even though graphs of tree-width at most w can be “decomposed” in a similar
flavor into graphs on at most w+ 1 vertices, which are 1-colorable with bounded clustering.
Other examples include the known results about finding nearly tight bounds for clustered
chromatic number. Those results4 are on graphs that are known to be “decomposable” into
graphs whose clustered chromatic number are known, but they are still very difficult.

One contribution of this paper is to show that the decomposition used in [26] is nicely
compatible with clustered coloring so that the generally false impression for decomposition is
correct for this setting. The following theorem is a key lemma for proving Theorem 1.2 and
shows how to construct a clustered coloring for a graph with a given tree-cut decomposition
of bounded bag size and bounded adhesion, where the number of colors is the required
number of colors for coloring its torsos. (Notions related to tree-cut decomposition will be
defined in Section 2.)

Theorem 1.3. For any positive integers N, η and α, there exists a positive integer N∗ such

that the following holds. Let G be a graph that admits a tree-cut decomposition (T,X =
(Xt : t ∈ V (T ))) of adhesion at most η such that every bag contains at most α vertices.

For every t ∈ V (T ), let kt be a positive integer with kt + |Xt| ≥ 2 such that the graph

obtained from the torso at t by deleting Xt is kt-colorable with clustering N . Then G is

maxt∈V (T ){kt +min{|Xt|, 1}}-colorable with clustering N∗.

Theorem 1.3 leads to the following corollary showing that one can reduce clustered col-
oring problems on graphs of bounded maximum degree to the ones on the torsos of its
tree-decomposition with bounded adhesion. (Notions related to tree-decomposition will be
defined in Section 5.)

Corollary 1.4. For any positive integers η, d and N , there exists a positive integer N∗ such

that the following holds. For every integer k and graph G with maximum degree at most d
admitting a tree-decomposition (T,X ) of adhesion at most η,

1. if k ≥ 2 and for every t ∈ V (T ), the torso at t in (T,X ) is k-colorable with clustering

N , then G is k-colorable with clustering N∗, and

2. if for every t ∈ V (T ), the subgraph of G induced by the bag at t is k-colorable with

clustering N , then G is (k + 1)-colorable with clustering N∗.

4Such as in [28] or the work of Dvořák and Norin about clustered coloring version of Hadwiger’s conjecture.
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Statement 1 in Corollary 1.4 leads to a simple unified proof of a result of Alon, Ding,
Oporowski and Vertigan [2] and a result of the author and Oum [27]. The former states that
graphs of bounded maximum degree and bounded tree-width are 2-colorable with bounded
clustering and immediately follows from Corollary 1.4. The latter states that for every
graph H, H-minor free graphs with bounded maximum degree are 3-colorable of bounded
clustering. Such graphs have tree-decompositions of bounded adhesion such that each torso
can be made a graph of bounded layered tree-width by deleting a bounded number of vertices
[11]. So the torsos are 3-colorable with bounded clustering [29], and hence so are the entire
graphs by Statement 1 in Corollary 1.4.

We remark that tree-cut decomposition and tree-decomposition of graphs are equivalent
to expressions of graphs as edge-sums and clique-sums of their torsos, respectively. So
Theorem 1.3 and Corollary 1.4 reduce clustered coloring problems on graphs to the ones
on the summands of edge-sums and clique-sums and hence are expected to have further
applications. Note that the bounded maximum degree condition for the clique-sum case
is required, as there exists no k such that for every w, graphs of tree-width at most w is
k-colorable with bounded clustering.

This paper is organized as follows. In Section 2, we include some necessary definitions.
We prove Theorem 1.3 in Section 3. In Section 4, we show how to combine Theorem 1.3 and
work in [26] to prove Theorem 1.2. We deduce Corollary 1.4 from Theorem 1.3 in Section 5.
We include some concluding remarks in Section 6.

2 Notations

Let G be a graph. A tree-cut decomposition of G is a pair (T,X ) such that T is a tree,
and X is a collection (Xt : t ∈ V (T )) of pairwise disjoint (not necessarily non-empty) subsets
of V (G) such that

∪
t∈V (T ) Xt = V (G). In addition,

• for every t ∈ V (T ), the set Xt is called the bag at t;

• for every subset S of V (T ), we define XS to be
∪

t∈S Xt; for every subgraph S of T , we
define XS to be

∪
t∈V (S) Xt;

• for any edge t1t2 of T , the adhesion set of t1t2 in (T,X ), denoted by adh(T,X )(t1t2), is
the set of edges of G with one end in XT1 and one end in XT2 , where T1 and T2 are the
components of T − t1t2;

• the adhesion of (T,X ) is maxe∈E(T )|adh(T,X )(e)|;

• the torso at t in (T,X ) is the graph obtained from G by, for each edge e of T incident
with t, identifying XTt,t′

into a vertex and deleting all loops incident with this new
vertex, where t′ is the end of e other than t, and Tt,t′ is the component of T − t
containing t′;

• each vertex in the torso at t but not in Xt is called a peripheral vertex.
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Note that for every t ∈ V (T ) and every edge e of the torso at t, e corresponds to an edge e′

of G such that there exists no component T ′ of T − t such that XT ′ contains all ends of e′.
Let G be a graph. An edge-cut [A,B] of a graph G is a pair of disjoint subsets of V (G)

such that A ∪B = V (G). The order of an edge-cut [A,B] of G is the number of edges of G
with one end in A and one end in B.

Let (T,X ) be a tree-cut decomposition of a graph G. Let t be a node of T or a connected
subgraph of T . Let e be an edge of T with at most one end in t. We define [Ae,t, Be,t] to be
the edge-cut of G with Be,t =

∪
t′′ Xt′′ , where the union is over all nodes t′′ contained in the

component of T − e containing t.
Let G be a graph and let S be a subset of V (G). We define G[S] to be the subgraph of

G induced by S. For each vertex v of G, the degree of v is the number of edges of G incident
with v, where each loop is counted twice. The maximum degree of G is the maximum of a
degree of a vertex of G.

We say that a subgraph H of a graph G is incident with an edge e of G if V (H) contains
at least one end of e.

3 From torsos to the whole graph

The objective of this section is proving Theorem 1.3. The main challenge of the proof
lies in the special case that every bag in the tree-cut decomposition has at most 1 vertex.
Theorem 1.3 follows from this special case easily, as shown in the proof of Lemma 3.2. This
special case will be proved in Lemma 3.1, and we provide a sketch the proof of this special
case before we formally prove it.

Let (T,X ) be a tree-cut decomposition of a graph G with |Xt| ≤ 1 for every t ∈ V (T ),
where X = (Xt : t ∈ V (T )). We find a depth-first-search ordering t1, t2, ..., t|V (T )| of nodes
of T . Then starting from i = 1 until i = |V (T )|, we greedily color every uncolored vertex
that is either in Xti or incident with an edge of G corresponding to an edge of the torso
at ti by a certain rule. Note that at any time during the process, we can order the current
monochromatic components by saying that a monochromatic component C1 is older than
another monochromatic component C2 if the earliest colored vertex in C1 is colored earlier
than the earliest colored vertex in C2. In the formal proof, we will define the ordering of
monochromatic components more carefully and describe it formally by using the notation
σ(C).

Now we explain the rule for assigning colors at the time i in the greedy algorithm. When
Xti is nonempty and the vertex in Xti is uncolored, we color this vertex with a color that
is different from the color of the oldest monochromatic component adjacent to it to stop
the growth of the oldest monochromatic component. (If no such monochromatic component
exists, then color the vertex arbitrarily.) By the assumption, there exists a coloring c′i of
the graph obtained from the torso at ti by deleting Xti with bounded clustering by using kt
colors in [kt + |Xti |] without using the color that was just used for coloring Xti . Note that
each uncolored vertex v incident with an edge of G corresponding to an edge of the torso
at ti is contained in the union of bags of nodes in a component of T − ti corresponding to
a peripheral vertex in the torso at ti, and we call the color in c′i of this peripheral vertex
the “default color” for v. If v is adjacent to some current monochromatic component, then
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we color v by using a color different from the color of the oldest monochromatic component
adjacent to v; otherwise, we color v by using its default color. This essentially completes the
description of our greedy algorithm, except that we will also color some “special vertices”
during the algorithm due to some technical reasons that will not be described in the proof
sketch.

The main challenge is to bound the size of each final monochromatic component C. The
size of C is determined by two factors: “breadth” and “depth”. The breadth of C counts
the number of components in T − ti whose bags intersect C, where i is the first time in
the algorithm such that some vertex in C is colored. The depth of C counts the number of
vertices in C contained in the union of the bags contained in a single component of T − ti.
The size of C is bounded if both the breadth and the depth of C are bounded. We will
prove that the breadth of C is essentially bounded by the clustering of c′i and the size of
the monochromatic components older than C adjacent to C; and the depth is essentially
bounded by the size of the monochromatic components older than C adjacent to C. We will
also show that the number of those older components can be bounded by the adhesion of
(T,X ). So the size of C is bounded and the proof sketch is completed.

Claims 1-3 in the proof of Lemma 3.1 are dedicated to showing the consistency of the
ordering of monochromatic components during the algorithm. Claims 4-7 are dedicated
to bounding the depth of a monochromatic component. Claims 8 and 9 are dedicated to
bounding the breadth of a monochromatic component.

Now we introduce some terminologies that will be used in our proofs. Let k and N be
positive integers. A k-coloring of a graph G is a function f : V (G) → [k]. For a k-coloring c
of G, a c-monochromatic component (or a monochromatic component in c) is a component
of G[c−1({i})] for some i ∈ [k]. For a graph G and a function f whose domain is a subset S
of V (G), we say a vertex v of G is f -colored if v ∈ S, and we say v is f -uncolored if v ̸∈ S.

Lemma 3.1. For any positive integers N and ξ, there exists a positive integer N∗ = N∗(N, ξ)
such that the following holds. Let G be a graph that admits a tree-cut decomposition (T,X =
(Xt : t ∈ V (T ))) of adhesion at most ξ such that every bag contains at most 1 vertex.

For every t ∈ V (T ), let kt be a positive integer such that kt + |Xt| ≥ 2 and the graph

obtained from the torso at t by deleting Xt is kt-colorable with clustering N . Then G is

maxt∈V (T ){kt + |Xt|}-colorable with clustering N∗.

Proof. Let N and ξ be positive integers. Define the following.

• Let N0 = ξ2 + ξ.

• Let N1 = 2N0ξ.

• Let N2 = (1 + 2ξ2(ξ + 1)N)N2
1 +N0.

• Let f be the function with domain N such that

– f(1) = N0,

– for every x ∈ N, f(x+ 1) = (ξ + 1)N2 ·
∑x

i=1 f(i).

• Define N∗ = 1 + (1 +Nξ)(ξ + 1)N0 · f(ξ).
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Let G be a graph that admits a tree-cut decomposition (T,X ) of adhesion at most ξ such
that every bag has size at most 1. We denote X = (Xt : t ∈ V (T )), and denote the torso
at t by Gt for each t ∈ V (T ). For every node t of T , let kt be a positive integer such that
kt + |Xt| ≥ 2 and Gt −Xt is kt-colorable with clustering N .

We shall prove that G is maxt∈V (T ){kt + |Xt|}-colorable with clustering at most N∗. Let
t1 be a node of T . We treat T as a rooted tree rooted at t1. We order the nodes of T as
t1, t2, ..., t|V (T )| by a depth-first-search order starting at t1.

For every node t of T , let ↓ t be the maximal subtree of T rooted at t. For each
i ∈ [|V (T )|] − {1}, let ei be the edge of T incident with ti and its parent. For every
i ∈ [|V (T )|]−{1}, we say that a subgraph C ofG crosses ei if V (C)∩Aei,ti ̸= ∅ ̸= V (C)∩Bei,ti .
Note that e1 is undefined, but for convenience, we assume that no subgraph of G crosses e1.

For every induced connected subgraph C of G, we define

• γ(C) to be the minimum index j such that either V (C) ∩ Xtj ̸= ∅, or C contains an
edge of G corresponding to an edge of Gtj ,

• τ(C) = min{ℓ ∈ [|V (T )|] : V (C) ∩Xtℓ ̸= ∅}, and

• σ(C) = (γ(C), τ(C)).

Intuitively, γ(C) can be considered as the “root of C” in the sense that it indicates when C
“first appears”. We compare σ(C) by the lexicographic order. That is, we say that σ(C1) is
smaller than σ(C2), denoted by σ(C1) ⪯ σ(C2), if either γ(C1) < γ(C2), or γ(C1) = γ(C2)
and τ(C1) < τ(C2). Since |Xt| ≤ 1 for every t ∈ V (T ), σ is a total order for any set of
pairwise disjoint induced subgraphs of G.

A vertex v of G is special if v is not adjacent to any vertex in V (G)−X↓t, where t is the
node of T with v ∈ Xt. For a node t of T and a vertex or subgraph A of G, we say that A
is Gt-relevant if A is incident with an edge of G corresponding to an edge of Gt.

We shall define maxt∈V (T ){kt + |Xt|}-colorings c0, c
1
1, c1, c

1
2, c2, ..., c

1
|V (T )|, c|V (T )| of sub-

graphs of G by a greedy algorithm such that for each i ∈ [|V (T )|],

• c1i is obtained from ci−1 by further coloring the vertex in Xti (if Xti ̸= ∅ and this vertex
was uncolored) and all uncolored Gti-relevant vertices, and

• ci is obtained from c1i by further coloring all uncolored special vertices contained in
X↓ti −Xti adjacent to some Gti-relevant c

1
i -monochromatic component.

Note that for each t ∈ V (T ), no special vertex in X↓t −Xt is incident with an edge of Gt.
Now we formally define those colorings. Define c0 to be the coloring with empty domain.

For each i ≥ 1, define the following.

• Define ℓ as follows.

– If Xti = ∅, then let ℓ = 0.

– If Xti ̸= ∅ and the vertex in Xti is ci−1-colored, then let ℓ be the color of this
vertex.
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– If Xti ̸= ∅, the vertex in Xti is ci−1-uncolored, and no edge of Gti − Xti corre-
sponds to an edge of G between a ci−1-uncolored vertex and a ci−1-monochromatic
component crossing ei, then let ℓ = 1.

– Otherwise,

∗ let C be the ci−1-monochromatic component with minimum σ(C) among all
ci−1-monochromatic components with the following property: C crosses ei
and is incident with an edge e of G corresponding to an edge of Gti − Xti

such that the other end of e is ci−1-uncolored;

∗ let ℓ be the color of C.

• If Xti ̸= ∅, then define c1i (v) = ℓ, where v is the vertex in Xti .

• Let c′i be a coloring of Gti −Xti by using colors in [kti + |Xti |]−{ℓ} with clustering N .
(Note that such a coloring c′i exists since |[kti + |Xti |]− {ℓ}| ≥ kti by the definition of
ℓ.)

• For each Gti-relevant ci−1-uncolored vertex v of G−Xti ,

– let c′i(v) be the color in c′i of the peripheral vertex of Gti corresponding to the
component of T − ti containing v,

– if v is not adjacent to any ci−1-monochromatic component, then define c1i (v) =
c′i(v),

– otherwise,

∗ let Cv be the ci−1-monochromatic component adjacent to v such that σ(Cv)
is as small as possible, and

∗ define c1i (v) to be a color in [kti + |Xti |] such that

· if the color of Cv is not equal to c′i(v), then c1i (v) = c′i(v),

· otherwise, c1i (v) is an arbitrary color in [kti+|Xti |] different from the color
of Cv.

(Note that c1i (v) is different from the color of Cv in either case.)

• For each c1i -uncolored special vertex v ∈ X↓ti − Xti adjacent to some Gti-relevant
c1i -monochromatic component,

– let Cv be the Gti-relevant c
1
i -monochromatic component adjacent to v such that

σ(Cv) is as small as possible, and

– define ci(v) to be a color in [kti + |Xti |] different from the color of Cv.

Define c to be c|V (T )|. Note that c is a maxt∈V (T ){kt + |Xt|}-coloring of G.
For every i, j ∈ [|V (T )|], we define the (ei, j)-rank of a cj-monochromatic component C

crossing ei to be α if σ(C) is the α-th smallest among all cj-monochromatic components
crossing ei.

For every i ∈ [|V (T )|], let i be the largest integer in [|V (T )|] such that ti is a descendant
of ti.
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Claim 1: Let i, j ∈ [|V (T )|] with 1 ≤ i− 1 ≤ j. Let C be a cj-monochromatic component
crossing ei. Let j′ ∈ [j, i]. Let C ′ be the cj′-monochromatic component containing C. Let
M ′ be a cj′-monochromatic component crossing ei. If the (ei, j

′)-rank of M ′ is smaller than
the (ei, j

′)-rank of C ′, then M ′ contains a cj-monochromatic component M crossing ei such
that the (ei, j)-rank of M is smaller than the (ei, j)-rank of C.

Proof of Claim 1: When j′ = j, the claim obviously holds. So we may assume that j′ > j.
Since j′ > j ≥ i − 1, j′ ≥ i. Since i ≤ j′ ≤ i, by the depth-search-ordering, tj′ is a

descendant of ti. Note that every vertex that is cj′-colored but not ci−1-colored is either
Gtj′′

-related for some i ≤ j′′ ≤ j′ but not Gtj′′′
-related for any j′′′ ∈ [i − 1], or a special

vertex contained in X↓tj′′
for some i ≤ j′′ ≤ j′. So every vertex that is cj′-colored but not

ci−1-colored is contained in X↓ti and is not incident with any edge in adh(T,X )(ei).
Since M ′ and C cross ei, and the (ei, j

′)-rank of M ′ smaller than the (ei, j
′)-rank of C ′,

we know that γ(M ′) ≤ γ(C ′) ≤ γ(C) ≤ i − 1, and there exists a cj′-monochromatic path
P contained in M ′ containing an edge e in adh(T,X )(ei) such that either one end of P is in
Xtγ(M′)

, or P contains an edge of G corresponding to an edge of Gtγ(M′)
and contains Xtτ(M′)

.
We choose e such that P can be chosen to be as short as possible. So P is contained in
G[e ∪ (V (G) − X↓ti)]. Since e ∈ adh(T,X )(ei), e is an edge of the torso at the parent of
ti, so both ends of e are ci−1-colored and hence are cj-colored. Since every vertex that is
cj′-colored but cj-uncolored is contained in X↓ti , P is a cj-monochromatic path. Then e is
contained in some cj-monochromatic component M crossing ei. Hence M contains P . So
σ(M) ⪯ σ(M ′). Since the (ei, j

′)-rank of M ′ is smaller than the (ei, j
′)-rank of C ′, we know

σ(M) ⪯ σ(M ′) ≺ σ(C ′) ⪯ σ(C). So the (ei, j)-rank of M is smaller than the (ei, j)-rank of
C. Since both M and M ′ contain P , M ′ contains M . This proves the claim. □

Claim 2: For every i, j ∈ [|V (T )|] with i ̸= 1, if C1 and C2 are cj-monochromatic components
crossing ei such that the (ei, j)-rank of C1 is smaller than the (ei, j)-rank of C2, then for every
i′ ≥ i for which C1 and C2 cross ei′ , the (ei′ , j)-rank of C1 is smaller than the (ei′ , j)-rank of
C2.

Proof of Claim 2: Let i, j, C1, C2, i
′ be the ones stated in the statement of this claim.

Since the (ei, j)-rank of C1 is smaller than the (ei, j)-rank of C2, σ(C1) ≺ σ(C2). Since C1

and C2 cross ei′ , the (ei′ , j)-rank of C1 and C2 are well-defined. Since σ(C1) ≺ σ(C2), the
(ei′ , j)-rank of C1 is smaller than the (ei′ , j)-rank of C2. □

Claim 3: For every i ∈ [|V (T )|]− {1}, if C is a ci−1-monochromatic component crossing ei
with (ei, i− 1)-rank 1, then the ci-monochromatic component containing C equals C.

Proof of Claim 3: For every α ∈ [i − 1, i], let Cα be the cα-monochromatic component
containing C. Suppose to the contrary that Ci ̸= C. So there exists i∗ ∈ [i, i] such that
Ci∗ ̸= Ci∗−1 = C. Hence there exists a vertex v ∈ V (Ci∗) − V (Ci∗−1) adjacent to a vertex
u ∈ V (Ci∗−1). So v is ci∗−1-uncolored but ci∗-colored. Hence v ∈ X↓ti∗ . We choose such v
such that v is c1i∗-colored if possible. Since v is ci∗−1-uncolored, v is not incident with an
edge in adh(T,X )(ei∗), so u ∈ X↓ti∗ . Hence if Ci∗−1 does not cross ei∗ , then V (Ci∗−1) ⊆ X↓ti∗ ,
so Ci∗−1 = C does not cross ei, a contradiction. So Ci∗−1 crosses ei∗ .

By Claim 1, since the (ei, i − 1)-rank of C is 1, the (ei, i
∗ − 1)-rank of Ci∗−1 is 1. By

Claim 2, the (ei∗ , i
∗ − 1)-rank of Ci∗−1 is 1.
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Suppose v ∈ Xti∗ . Since v is ci∗−1-uncolored, v is not incident with any edge in
adh(T,X )(ei∗), so v is special. Since i∗ ≥ i ≥ 2, there exists the parent p of ti∗ . Let ip
be the integer such that p = tip . So v ∈ X↓p −Xp is a cip−1-uncolored special vertex. Since
Ci∗−1 crosses e

∗
i , Ci∗−1 contains an edge of G corresponding to an edge of Gp. Since u ∈ X↓ti∗

and uv ∈ E(G), u is not special. Since u is ci∗−1-colored, u is incident with some edge of
G corresponding to an edge of Gz for some z = tiz with iz ≤ i∗ − 1. Since u ∈ X↓p − Xp,
u is incident with some edge of G corresponding to an edge of Gp. So u is c1ip-colored.

Since v ∈ X↓p −Xp is a c1ip-uncolored special vertex adjacent to u, and u is c1ip-colored and
Gp-relevant, v is cip-colored so is ci∗−1-colored, a contradiction.

Hence v ̸∈ Xti∗ . By the definition of ci∗ , since Ci∗−1 has (ei∗ , i
∗ − 1)-rank 1, if v is

Gti∗ -relevant, then ci∗(v) ̸= ci∗(u), a contradiction. So v is ci∗-colored but not Gti∗ -relevant.
Hence v is a special vertex in X↓ti∗ −Xti∗ and is c1i∗-uncolored. Since we choose v such that
v is c1i∗-colored if possible, Ci∗−1 is a c1i∗-monochromatic component.

Note that Ci∗−1 is the c1i∗-monochromatic component incident with some edge of Gti∗

crossing ei∗ such that σ(Ci∗−1) is minimum. Note that for every c1i∗-monochromatic compo-
nent C adjacent to v but not crossing ei∗ , γ(C) ≥ i∗ > γ(Ci∗−1), so σ(Ci∗−1) ≺ γ(C). Hence
ci∗(v) ̸= ci∗(u) by the definition of ci∗ , a contradiction. This proves the claim. □

For every i ∈ [|V (T )|], let Wi be the set of ci−1-colored vertices in X↓ti .

Claim 4: For every i ∈ [|V (T )|], |Wi| ≤ N0.

Proof of Claim 4: When i = 1, Wi = ∅. So we may assume i ≥ 2. By the definition of
ci−1, every vertex in Wi is either a special vertex or incident with an edge in adh(T,X )(ei).

Let Z be the set of vertices in Wi incident with some edge in adh(T,X )(ei). So |Z| ≤
|adh(T,X )(ei)| ≤ ξ.

Note that every vertex in Wi − Z is special. Let v ∈ Wi − Z. Since v ∈ Wi, there exists
iv ∈ [i− 1] such that v is civ -colored but not civ−1-colored. Since v is not incident with any
edge in adh(T,X )(ei), v is adjacent to a c1iv -monochromatic component C. Let u be a vertex
of C adjacent to v. Since v is special, every neighbor of v is not special and is contained in
X↓ti . So u is not special and is contained in X↓ti . Since iv ≤ i− 1, u ∈ Wi. Hence u ∈ Z.

Therefore, every vertex in Wi − Z is adjacent to a vertex in Z. For every z ∈ Z, if z′

is a special vertex adjacent to z, then the edge zz′ belongs to adh(T,X )(eiz), where iz is the
integer such that z ∈ Xtiz

. So there are at most ξ · |Z| special vertices adjacent to Z. Hence
|Wi| ≤ |Z|+ ξ|Z| ≤ ξ(ξ + 1) = N0. □

Claim 5: For every i ∈ [|V (T )|], there are at most N1 vertices v in X↓ti such that v is
ci-colored, ci−1-uncolored, and adjacent to Wi −Xti .

Proof of Claim 5: Let Q = {Q : Q is a component of T − ti with XQ∩Wi ̸= ∅}. By Claim
4, |Q| ≤ |Wi| ≤ N0. For each Q ∈ Q, let iQ be the index such that tiQ is the root of Q.

Let Z = {v ∈ X↓ti : v is ci-colored, ci−1-uncolored, and adjacent to Wi − Xti}. For
any v ∈ Z −

∪
Q∈Q XQ, since v is adjacent to Wi − Xti , v is incident with an edge in∪

Q∈Q adh(T,X )(eiQ).
Let Z ′ = {v ∈ Z ∩

∪
Q∈Q XQ : v is Gti-relevant}. Let Z

′′ = {v ∈ Z ∩
∪

Q∈Q XQ : v is not
Gti-relevant}. Then for every v ∈ Z ′, v is incident with an edge in

∪
Q∈Q adh(T,X )(eiQ). So

|Z − Z ′′| ≤ |
∪

Q∈Q adh(T,X )(eiQ)| ≤ |Q| · ξ ≤ N0ξ.
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Note that for every v ∈ Z ′′, v is ci-colored, ci−1-uncolored and is not Gti-relevant, so v is
special. Since v ∈ Z, v is adjacent to X↓tiv

∩Wi, where iv is the index such that v ∈ Xtiv
.

For every u ∈ Wi, u is adjacent to at most |adh(T,X )(eiu)| ≤ ξ vertices u′ with tiu ∈ V (↓ tiu′ ),
where iu and iu′ are the indices such that u ∈ Xtiu

and u′ ∈ Xti
u′
, respectively. Hence

|Z ′′| ≤ ξ · |Wi| ≤ ξN0 by Claim 4. Therefore, |Z| ≤ |Z − Z ′′|+ |Z ′′| ≤ 2N0ξ = N1. □

Claim 6: For every i ∈ [|V (T )|], if Ci−1 is a ci−1-monochromatic component crossing ei,
and Ci is the ci-monochromatic component containing Ci−1, then |V (Ci)− V (Ci−1)| ≤ N2.

Proof of Claim 6: Let Z = V (Ci)− (V (Ci−1)∪Wi). Recall that V (Ci)− V (Ci−1) ⊆ X↓ti .
So |V (Ci)− V (Ci−1)| ≤ |Z|+ |Wi| ≤ |Z|+N0 by Claim 4. To prove this claim, it suffices to
prove that |Z| ≤ N2 −N0.

Since V (Ci)−V (Ci−1) ⊆ X↓ti and Z ∩Wi = ∅, if v is in Z, then v is ci−1-uncolored, so all
neighbors of v are contained in X↓ti . So for every vertex v ∈ Z, one of the following holds.

(i) v ∈ Xti .

(ii) v ̸∈ Xti is adjacent to some vertex in Wi −Xti .

(iii) v ̸∈ Xti is not adjacent to any vertex in Wi −Xti , and v is Gti-relevant.

(iv) v ̸∈ Xti is not adjacent to any vertex in Wi and v is a special vertex.

Let S = {v ∈ X↓ti : v is ci-colored, ci−1-uncolored, and adjacent to Wi − Xti}. Hence
every vertex in Z satisfying (ii) is contained in S. So the number of vertices in Z satisfying
(i) or (ii) is at most 1 + |S| ≤ 1 +N1 by Claim 5.

For simplicity of notations, for every v ∈ X↓ti −Xti , we define c′i(v) to be c′i(x), where x
is the vertex in Gti −Xti corresponding to the component Q of T − ti with v ∈ XQ.

Suppose that there exists v ∈ X↓ti ∩Z −Wi satisfying (iii) such that ci(v) ̸= c′i(v). Then
v is adjacent to some ci−1-monochromatic component by the definition of c1i and ci. Since
all neighbors of v are contained in X↓ti , v is adjacent to some vertex in Wi. Since v satisfies
(iii), ∅ ̸= Xti ⊆ Wi, and the ci−1-monochromatic component containing Xti is the only ci−1-
monochromatic component adjacent to v. Since the color of Xti is not in the image of c′i,
ci(v) = c1i (v) = c′i(v), a contradiction.

This shows that

(a) for every v ∈ X↓ti ∩ Z − Wi satisfying (iii), ci(v) = c′i(v), so either Xti = ∅, or
ci(v) = c′i(v) is different from the color of the vertex in Xti .

We first assume that Xti ̸= ∅ and the color of the vertex in Xti equals the color of
Ci. So no vertex in Z satisfies (iii) by (a). Let z be a vertex in Z satisfying (iv). Since
z ∈ V (Ci) − V (Ci−1) and z is ci−1-uncolored, z is adjacent to a vertex uz in V (Ci) with
ci(z) = ci(uz). Since z satisfies (iv), uz ̸∈ Wi, so uz ∈ Z. Since z is special, uz satisfies (ii) or
(iii). Since uz ∈ Z and no vertex in Z satisfies (iii), uz satisfies (ii), so uz ∈ S. Note that uz

is adjacent to at most ξ special vertices. Hence the number of vertices in Z satisfying (iv) is
at most |S| · ξ ≤ N1ξ by Claim 5. Therefore |Z| ≤ 1 +N1 + 0 +N1ξ ≤ N2 −N0 and we are
done.

Hence we may assume that either Xti = ∅, or Xti ̸= ∅ and the color of the vertex in Xti

is different from the color of Ci. So V (Ci−1) ∩X↓ti ⊆ Wi −Xti and V (Ci) ∩Xti = ∅.
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We define a Z-component to be a component of Ci − (V (Ci−1) ∪ Wi). That is, every
Z-component is a component of G[Z]. Let Z2 = {v ∈ Z : v satisfies (ii)}.

Note that every vertex in X↓ti incident with some edge in adh(T,X )(ei) is ci−1-colored.
Since V (Ci−1)∩X↓ti ⊆ Wi−Xti and Ci is connected, for every vertex v in V (Ci)−V (Ci−1),
there exists a path in Ci from v to Wi − Xti internally disjoint from Wi − Xti . So every
Z-component contains a vertex in Z2.

Hence

(b) there are at most |Z2| ≤ |S| ≤ N1 Z-components.

Let Z3,4 = {v ∈ Z : v satisfies (iii) or (iv)}. We define a Z3,4-component to be a
component of G[Z3,4].

Let v ∈ Z2. Let iv be the index such that v ∈ Xtiv
. Then v is adjacent to at most

ξ vertices in V (G) − X↓tiv
. Let u be a neighbor of v contained in Z3,4 ∩ X↓tiv

. Then u is
not special. So u satisfies (iii). Hence u is Gti-relevant, so u is incident with an edge in
adh(T,X )(eiv).

Therefore, every vertex in Z2 is adjacent to at most 2ξ vertices in Z3,4. So

(c) every Z-component consists of at most |Z2| vertices in Z2 and at most |Z2| · 2ξ Z3,4-
components.

Let Z3 = {z ∈ Z : z satisfies (iii)}. We define a Z3-component to be a component of
G[Z3]. Let Z4 = {z ∈ Z : z satisfies (iv)}. Let Z ′

4 = {z ∈ Z4 : z is adjacent to a Z3-
component}. Since every vertex in Z4 is special, vertices in Z4 are pairwise nonadjacent. So
every Z3,4-component intersecting Z4 − Z ′

4 consists of one vertex in Z4 − Z ′
4. We say that a

Z3,4-component is a Z ′
3,4-component if it is disjoint from Z4 − Z ′

4.
If v is a vertex in Z4−Z ′

4, then since v is special and not adjacent to any vertex in Wi, v
is adjacent to Z2, for otherwise the Z-component containing v consists of v and hence does
not contain a vertex satisfying (ii), a contradiction. Since every vertex in Z4 −Z ′

4 is special,
|Z4 − Z ′

4| ≤ |Z2|ξ.
For any Z3-component Q, we define a Q-branch to be a component Q′ of ↓ ti − ti such

that XQ′ ∩ V (Q) ̸= ∅. Since every vertex in Z ′
4 is adjacent to a Z3-component and every

vertex in Z4 is special, every component Q′ of ↓ ti − ti with XQ′ ∩ Z ′
4 ̸= ∅ is a Q-branch for

some Z3-component Q. Since every vertex in Z3 is Gti-relevant, for every component Q′ of
↓ ti − ti, XQ′ contains at most ξ vertices in Z3. Since every vertex in Z ′

4 is special, every
vertex is adjacent to at most ξ vertices in Z ′

4.
Similarly, for any Z ′

3,4-component Q, we define a Q-branch to be a component Q′ of
↓ ti − ti such that XQ′ ∩ V (Q) ̸= ∅. For every Z ′

3,4-component Q and every Q-branch Q′,
Q′ is also a Q3-branch for some Z3-component Q3 by the definition of Z ′

4, since every vertex
in Z4 is special. Hence, for every Q-branch Q′ for some Z ′

3,4-component Q, as shown in
the previous paragraph, XQ′ ∩ (Z3 ∪ Z ′

4) consists of at most ξ vertices in Z3 and at most
|XQ′ ∩ Z3| · ξ ≤ ξ2 vertices in Z ′

4. So

(d) for every Z ′
3,4-component Q, |V (Q)| is at most ξ2 + ξ times the number of Q-branches.

Let Q be a Z ′
3,4-component. Note that V (Q) ∩ Xti = ∅ as they have different colors.

Let Q′ be the subgraph of Gti − Xti induced by the vertices of Gti − Xti corresponding to
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the Q-branches. Note that Q′ can be obtained from Q by identifying vertices. Since Q is
connected, Q′ is connected. By (a), every vertex in Z satisfying (iii) satisfies ci(v) = c′i(v),
so Q′ is contained in a c′i-monochromatic component in Gti − Xti . Hence Q′ contains at
most N vertices by the definition of c′i. So there are at most N Q-branches. By (d),
|V (Q)| ≤ (ξ2 + ξ) ·N .

Since every Z3,4-component either consists of one vertex in Z4−Z ′
4 or is a Z

′
3,4-component,

every Z3,4-component contains at most (ξ2 + ξ)N vertices. So by (c), every Z-component
contains at most |Z2|+ |Z2| · 2ξ · (ξ

2 + ξ)N ≤ |S| · (1+ 2ξ2(ξ+1)N) ≤ N1 · (1+ 2ξ2(ξ+1)N)
vertices. By (b), |Z| ≤ N1 · (1 + 2ξ2(ξ + 1)N) ·N1 = (1 + 2ξ2(ξ + 1)N)N2

1 ≤ N2 −N0. This
proves the claim. □

Claim 7: For every i ∈ [|V (T )|]− {1} and k ∈ N, if C is a ci−1-monochromatic component
crossing ei and with (ei, i − 1)-rank k, then |V (M) ∩ X↓ti | ≤ f(k), where M is the c-
monochromatic component containing C.

Proof of Claim 7: Let i, k, C,M be the ones as stated in the claim. We shall prove this
claim by induction on k. For every α ∈ [i−1, i], let Cα be the cα-monochromatic component
containing C. Note that C = Ci−1 and |V (M) ∩X↓ti | = |V (Ci) ∩X↓ti |.

If k = 1, then by Claims 3 and 4, |V (M) ∩ X↓ti | = |V (Ci) ∩ X↓ti | = |V (C) ∩ X↓ti | ≤
|Wi| ≤ N0 = f(1).

So we may assume that k ≥ 2, and the claim holds if k is smaller. For every α ∈ [k],
let Mα be the c-monochromatic component containing the ci−1-monochromatic component
crossing ei with (ei, i− 1)-rank α. Let J = {j ∈ [i, i] : Cj ̸= Cj−1}.

Let j ∈ J . Let Sj = {v ∈ V (Cj)∩X↓ti −V (Cj−1) : v is adjacent to some vertex in Cj−1}.
Let v ∈ Sj. So there exists u ∈ V (Cj−1) such that uv ∈ E(G). Note that v is cj-colored

but not cj−1-colored. So either v ∈ Xtj and v is special, or v ∈ X↓tj −Xtj .
Suppose that v is special. Then u is not special and u ∈ X↓tv , where tv is the node

of T with v ∈ Xtv . Let iu be the index such that u is ciu-colored but ciu−1-uncolored. So
iu ≤ j − 1. Since u is not special, u is Gtiu

-relevant and c1iu-colored. Since u is ciu-colored
but ciu−1-uncolored, u ∈ X↓tiu

. Since iu ≤ j − 1, v ∈ X↓tiu
−Xtiu

. So v is ciu-colored by the
definition of ciu . Hence v is cj−1-colored, a contradiction.

So v is not special and v ∈ X↓tj −Xtj . Since v is cj−1-uncolored, all neighbors of v are
contained in X↓tj , so u ∈ X↓tj . Since Cj−1 contains u and C, and C crosses ei, we know
that Cj−1 crosses ej. Since v is not special and is cj-colored, v is c1j -colored. Since u is
adjacent to v and is contained in Cj−1, and cj(u) = cj(v), we know that v is adjacent to a
vertex x of G contained in a cj−1-monochromatic component Cx such that σ(Cx) ≺ σ(Cj−1),
by the definition of c1j(v). Since C crosses ei, Cj−1 crosses ei. Since σ(Cx) ≺ σ(Cj−1) and
x ∈ X↓tj , Cx crosses ei and the (ei, j − 1)-rank of Cx is smaller than the (ei, j − 1)-rank of
Cj−1. By Claim 1, Cx contains a ci−1-monochromatic component C ′

x crossing ei such that
the (ei, i− 1)-rank of C ′

x is smaller than the (ei, i− 1)-rank of C. So there exists αx ∈ [k− 1]
such that Mαx

contains C ′
x. Since Cx contains x and C ′

x, and Mαx
is monochromatic, Mαx

contains Cx and x.
Let ix be the index such that x ∈ Xtix

. Since all neighbors of v are contained in X↓tj ,
tix ∈ V (↓ tj).

Suppose ix ̸= j and v is not incident with an edge in adh(T,X )(eix). So x ∈ X↓tj −Xtj and
v ∈ X↓tix

−Xtix
, where tv is the node of T with v ∈ Xtv . Since v is cj-colored but not special,
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and since v ∈ X↓tj −Xtj , v is Gtj -relevant. Since tix ∈ V (↓ tj)− {tj} and v ∈ X↓tix
−Xtix

,
v is incident with an edge in adh(T,X )(eix), a contradiction.

Hence either ix = j or v is incident with an edge in adh(T,X )(eix). Note that x ∈ X↓tj ⊆
X↓ti .

This shows that for every α ∈ J , there exists xα ∈
∪k−1

β=1(V (Mβ) ∩X↓ti) such that either
α = ixα

or there exists an edge of G in adh(T,X )(eixα ) incident with a vertex in V (Cα) −

V (Cα−1), where ixα
is the index such that xα ∈ Xtixα

. Therefore, |J | ≤ |
∪k−1

β=1(V (Mβ) ∩

X↓ti)| · (ξ + 1) ≤ (ξ + 1) ·
∑k−1

β=1 f(β) by the induction hypothesis.
Note that for every α ∈ J , since C crosses ei and Cα ̸= Cα−1, we know that Cα−1 crosses

eα. By Claim 6, for every α ∈ J , |V (Cα) − V (Cα−1)| ≤ N2. Therefore, |V (Ci) − V (C)| =
|V (Ci)− V (Ci−1)| =

∑
α∈J |V (Cα)− V (Cα−1)| ≤ |J | ·N2 ≤ (ξ +1)N2 ·

∑k−1
β=1 f(β) = f(k). □

Let M be a c-monochromatic component. To prove this lemma, it suffices to show that
|V (M)| ≤ N∗.

Let I be the minimal set of nodes of T such that for every t ∈ I, Xt ∩ V (M) ̸= ∅, and
for every t′ ∈ V (T ) with V (M)∩Xt′ ̸= ∅, t′ is a descendant of some node in I. Let c(M) be
the color of M in c.

Claim 8: If |I| = 1, then |V (M)| ≤ N∗.

Proof of Claim 8: Let t be the node in I, and let i be the index such that t = ti. Let
Q = {Q : Q is a component of ↓ ti− ti with XQ∩V (M) ̸= ∅}. We may assume V (M) ̸= Xti ,
for otherwise |V (M)| = |Xti | = 1 ≤ N∗ and we are done. So Q ̸= ∅. For each Q ∈ Q, let iQ
be the index such that Q =↓ tiQ . Note that |V (M)| = |Xti |+

∑
Q∈Q|V (M) ∩X↓tiQ

|.

For every Q ∈ Q, there exists a path in M from Xti to XQ∩V (M), so some vertex vQ in
V (M) ∩XQ is Gti-relevant. So for each Q ∈ Q, there exists a ciQ−1-monochromatic compo-
nent CQ crossing eiQ contained in M . Note that for each Q ∈ Q, M is the c-monochromatic
component containing CQ, and the (eiQ , iQ− 1)-rank of cQ is at most ξ, so |V (M)∩X↓tiQ

| ≤

f(ξ) by Claim 7. Hence |V (M)| = |Xti |+
∑

Q∈Q|V (M) ∩X↓tiQ
| ≤ 1 + |Q| · f(ξ).

Let W = {W : W is a component of ↓ ti − ti with XW ∩Wi ̸= ∅}. For each W ∈ W , let
eW be the edge of T between W and ti.

Let Q ∈ Q − W . Since vQ is Gti-relevant, vQ is c1i -colored. Since Q ̸∈ W , vQ is ci−1-
uncolored. Since V (M) ∩Xti ̸= ∅ and c(M) = c(vQ), ci(vQ) ̸= c′i(vQ). So vQ is adjacent to
a vertex uQ in a ci−1-monochromatic component whose color is different from c(M). Since
vQ is ci−1-uncolored, uQ ∈ X↓ti . Since c(uQ) ̸= c(M), uQ ∈ X↓ti −Xti . So uQ ∈

∪
W∈W XW .

Since Q ∈ Q−W , vQ is incident with an edge in
∪

W∈W adh(T,X )(eW ).
Therefore, |Q−W| ≤ |

∪
W∈W adh(T,X )(eW )| ≤ ξ|W|. So |Q| ≤ |W|+ξ|W| ≤ (ξ+1)|Wi| ≤

(ξ + 1)N0 by Claim 4. Hence |V (M)| ≤ 1 + |Q| · f(ξ) ≤ 1 + (ξ + 1)N0 · f(ξ) ≤ N∗. □

Claim 9: If |I| ≥ 2, then |V (M)| ≤ N∗.

Proof of Claim 9: Let i be the largest integer such that ti is an ancestor of all nodes
in I. Note that such i exists since 1 is a candidate. Let Q = {Q : Q is a component of
↓ ti − ti with XQ ∩ V (M) ̸= ∅}. Since |I| ≥ 2, V (M) ∩ Xti = ∅ and Q ̸= ∅. By the
maximality of i, |Q| ≥ 2. For each Q ∈ Q, let iQ be the index such that Q =↓ tiQ . Note
that |V (M)| =

∑
Q∈Q|V (M) ∩X↓tiQ

|.
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Let Q∗ ∈ Q. For every Q ∈ Q − {Q∗}, there exists a path in M from XQ∗ ∩ V (M)
to XQ ∩ V (M), so some vertex vQ in V (M) ∩ XQ is incident with an edge of G corre-
sponding to an edge of Gti . Similarly, some vertex vQ∗ in XQ∗ ∩ V (M) is incident with
an edge of G corresponding to an edge of Gti . So for each Q ∈ Q, there exists a ciQ−1-
monochromatic component CQ crossing eiQ contained in M . Note that for each Q ∈ Q, M
is the c-monochromatic component containing CQ, so |V (M) ∩ X↓tiQ

| ≤ f(ξ) by Claim 7.

Hence |V (M)| =
∑

Q∈Q|V (M) ∩X↓tiQ
| ≤ |Q| · f(ξ).

For each Q ∈ Q, let c′i(Q) = c′i(xQ), where xQ is the peripheral vertex in Gti − Xti

corresponding to Q. Let Q1 = {Q ∈ Q : c′i(Q) ̸= c(M)}. Let Q2 = Q − Q1. Let
W = {W : W is a component of ↓ ti − ti with XW ∩Wi ̸= ∅}. For each W ∈ W ∪Q, let eW
be the edge of T between W and ti.

Let Q ∈ Q1 − W . Since vQ is incident with an edge of G corresponding to an edge of
Gti , vQ is Gti-relevant and hence is c1i -colored. Since Q ̸∈ W , vQ is ci−1-uncolored. Since
Q ∈ Q1, ci(vQ) = c(M) ̸= c′i(Q). So vQ is adjacent to a vertex uQ in a ci−1-monochromatic
component whose color is c′i(Q). Since vQ is ci−1-uncolored, uQ ∈ X↓ti . Since c(uQ) = c′i(Q),
uQ ∈ X↓ti −Xti by the definition of c′i. So uQ ∈

∪
W∈W XW . Since vQ is Gti-relevant, vQ is

incident with an edge in
∪

W∈W adh(T,X )(eW ).
Therefore, |Q1 − W| ≤ |

∪
W∈W adh(T,X )(eW )| ≤ ξ|W|. So |Q1| ≤ (ξ + 1)|W| ≤ (ξ +

1)|Wi| ≤ (ξ + 1)N0 by Claim 4.
For C ∈ {Q,Q1,Q2}, let MC be the graph obtained from M [V (M) ∩

∪
Q∈C XQ] by for

each Q ∈ C, identifying Q into a single vertex. Note that MQ, MQ1 and MQ2 are subgraphs
of Gti − Xti . Since M is connected, MQ is connected. Note that |V (MQ2)| = |Q2| and
MQ2 = MQ − V (MQ1). In addition, MQ2 is contained in a (not necessarily connected)
c′i-monochromatic subgraph of Gti −Xti .

We claim that |V (MQ2)| ≤ ξ(2ξ + 1)N0N . If Q1 = ∅, then MQ2 = MQ is a c′i-
monochromatic component of Gti −Xti , so |V (MQ2)| ≤ N by the definition of c′i. So we may
assume that Q1 ̸= ∅. For every component R of MQ2 , let QR be the subset of Q2 consisting
of the members of Q2 corresponding to vertices of R. Since for every component R of MQ2 ,
there exists a path in MQ from R to MQ1 internally disjoint from V (MQ1), so there exists an
edge eR of G between

∪
QR∈QR

XQR
and

∪
Q1∈Q1

XQ1 . Note that eR ∈
∪

Q1∈Q1
adh(T,X )(eQ1).

So the number of components ofMQ2 is at most |
∪

Q1∈Q1
adh(T,X )(eQ1)| ≤ |Q1|ξ ≤ ξ(ξ+1)N0.

Since each component of MQ2 is contained in a c′i-monochromatic component of Gti −Xti ,
it contains at most N vertices by the definition of c′i. Therefore, |V (MQ2)| ≤ N · ξ(ξ+1)N0.

Hence |Q2| = |V (MQ2)| ≤ ξ(ξ+1)N0N . So |Q| = |Q1|+|Q2| ≤ (ξ+1)N0+ξ(ξ+1)N0N =
(1 +Nξ)(ξ + 1)N0. Therefore, |V (M)| ≤ |Q| · f(ξ) ≤ (1 +Nξ)(ξ + 1)N0 · f(ξ) ≤ N∗. □

By Claims 8 and 9, |V (M)| ≤ N∗. This proves the lemma.

Now we are ready to prove Theorem 1.3. The following is a restatement.

Lemma 3.2. For any positive integers N, ξ and α, there exists a positive integer N∗ =
N∗(N, ξ, α) such that the following holds. Let G be a graph that admits a tree-cut decompo-

sition (T,X = (Xt : t ∈ V (T ))) of adhesion at most ξ such that every bag contains at most

α vertices. For every t ∈ V (T ), let kt be a positive integer with kt + |Xt| ≥ 2 such that the

graph obtained from the torso at t by deleting Xt is kt-colorable with clustering N . Then G
is maxt∈V (T ){kt +min{|Xt|, 1}}-colorable with clustering N∗.
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Proof. Let N, ξ and α be positive integers. Let β = N3.1(N, ξ), where N3.1 is the number
N∗ mentioned in Lemma 3.1. Define N∗ = αβ.

Let G be a graph that admits a tree-cut decomposition (T,X ) of adhesion at most ξ
such that every bag contains at most α vertices. Denote X by (Xt : t ∈ V (T )). For every
t ∈ V (T ), let Gt be the torso at t in (T,X ). Let kt be a positive integer with kt + |Xt| ≥ 2
such that Gt −Xt is kt-colorable with clustering N .

Let G′ be the graph obtained from G by for each t ∈ V (T ) with Xt ̸= ∅, identifying
all vertices in Xt into a vertex vt. For every t ∈ V (T ) with Xt ̸= ∅, let X ′

t = {vt}; for
every t ∈ V (T ) with Xt = ∅, let X ′

t = ∅. Let X ′ = (X ′
t : t ∈ V (T )). Then (T,X ′) is a

tree-cut decomposition of G′ of adhesion at most ξ such that every bag contains at most
1 vertex. For every t ∈ V (T ), let G′

t be the torso at t in (T,X ′). Note that for every
t ∈ V (T ), Gt −Xt = G′

t −X ′
t, so G′

t −X ′
t is kt-colorable with clustering N . If there exists

t ∈ V (T ) with kt + |X ′
t| ≤ 1, then since kt is a positive integer, X ′

t = ∅, so Xt = ∅ and hence
kt + |Xt| = kt + |X ′

t| ≤ 1, a contradiction. Hence for every t ∈ V (T ), kt + |X ′
t| ≥ 2. Then by

Lemma 3.1, there exists a maxt∈V (T ){kt + |X ′
t|}-coloring c′ of G′ with clustering β.

Define c to be a coloring of G such that for every u ∈ V (G), define c(u) = c′(vtu), where
tu is the node of T with u ∈ Xtu . So c is a maxt∈V (T ){kt + |X ′

t|}-coloring of G. Note that for
each t ∈ V (T ), |X ′

t| ∈ {0, 1}, so kt + |X ′
t| = kt +min{|X ′

t|, 1} = kt +min{|Xt|, 1}. Hence c
is a maxt∈V (T ){kt +min{|Xt|, 1}}-coloring of G.

Let C be a c-monochromatic component. Let C ′ be the graph obtained from C by for
each t ∈ V (T ) with Xt ̸= ∅, identifying Xt ∩ V (C) into a vertex. Then C ′ is contained in a
c′-monochromatic component in G′. So |V (C ′)| ≤ β. Hence |V (C)| ≤ β · maxt∈V (T )|Xt| ≤
βα = N∗. So c is a maxt∈V (T ){kt +min{|Xt|, 1}}-coloring of G with clustering N∗.

4 Proof of Theorem 1.2

In this section we will prove the main theorem for clustered coloring immersion-free
graphs. We need the following structure theorem proved in [26]. A graph is exceptional if it
contains exactly one vertex of degree at least two, and this vertex is incident with a loop.

Theorem 4.1 ([26, Theorem 4.6]). For any positive integers d, h, there exist integers η =
η(d, h) and ξ = ξ(d, h) such that the following holds. Let H be a graph on h vertices with

maximum degree d. Let G be a graph with no edge-cut of order exactly 3 such that G does not

contain an H-immersion. Define H ′ = H if H is non-exceptional; otherwise, define H ′ to be

a graph obtained from H by subdividing one edge. Then there exists a tree-cut decomposition

(T,X ) of G of adhesion at most η such that for every t ∈ V (T ), there exists Zt ⊆ E(G) with
|Zt| ≤ ξ such that if Gt is the torso at t, then there exists a nonnegative integer dt ≤ d such

that

1. the number of vertices of degree at least dt in Gt−Zt is less than the number of vertices

of degree at least dt in H ′,

2. every vertex of Gt of degree at least dt in Gt − Zt is a non-peripheral vertex of Gt,

3. if |V (T )| = 1 or t is not a leaf, then every vertex in Xt has degree at least dt in Gt−Zt,

and
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4. if t is a leaf and |V (T )| ≥ 2, then |Xt| ≤ 1.

Before proving the main theorem, we need the following easy lemma.

Lemma 4.2. Let G be a graph. Let ξ, k,N be positive integers. Let G′ be a graph that can

be obtained from G by deleting at most ξ edges. If G′ is k-colorable with clustering N , then

G is k-colorable with clustering (ξ + 1)N .

Proof. Let c be a k-coloring of G′ of clustering N . Let Z ⊆ E(G) with |Z| ≤ ξ such
that G′ = G − Z. Since V (G) = V (G′), c is a k-coloring of G. If M is a c-monochromatic
component in G, then M − Z intersects at most ξ + 1 c-monochromatic components of G′,
so |V (M)| ≤ (ξ + 1)N .

Recall that χ∗ : N ∪ {0} → N is the function such that for every x ∈ N ∪ {0}, χ∗(x) is
the minimum k such that there exists Nx ∈ N such that every graph of maximum degree at
most x is k-colorable with clustering Nx.

Lemma 4.3. For any positive integers d ≥ 3, h, there exists a positive integer N = N(d, h)
such that the following holds. Let H be a graph on h vertices of maximum degree d. Let G
be a 4-edge-connected graph with no H-immersion. Then G is (χ∗(d− 1) + 1)-colorable with

clustering N . Furthermore, if there exists exactly one vertex of H having degree d, then G
is (χ∗(d− 2) + 1)-colorable with clustering N .

Proof. Let d ≥ 3, h be positive integers. We define the following.

• For every x ∈ N, let Nx be a positive integer such that every graph of maximum degree
at most x is χ∗(x)-colorable with clustering Nx.

• Let η = η4.1(d, h) and ξ = ξ4.1(d, h), where η4.1 and ξ4.1 are the integers η and ξ
mentioned in Theorem 4.1.

• Define N = N3.2((Nd−1 + Nd−2)(ξ + 1), η, h), where N3.2 is the integer N∗ mentioned
in Lemma 3.2.

Let H be a graph on h vertices of maximum degree d. If H has exactly one vertex of
degree d, then let χ = χ∗(d− 2); otherwise, let χ = χ∗(d− 1). Let G be a 4-edge-connected
graph with no H-immersion. We shall prove that G is (χ + 1)-colorable with clustering N .
Suppose to the contrary that G is not (χ+ 1)-colorable with clustering N .

Since N ≥ h, |V (G)| > |V (H)|, for otherwise G is 1-colorable with clustering N . If H is
non-exceptional, then let H ′ = H; if H is exceptional, then let H ′ be a graph obtained from
H by subdividing an edge. Note that the maximum degree of H ′ is d. Since d ≥ 3, if H has
exactly one vertex of degree d, then H ′ has exactly one vertex of degree d.

Since G does not contain an H-immersion, by Theorem 4.1, there exists a tree-cut de-
composition (T,X ) of G of adhesion at most η such that for every t ∈ V (T ), there exists
Zt ⊆ E(G) with |Zt| ≤ ξ such that if Gt is the torso at t, then there exists a nonnegative
integer dt ≤ d such that

(i) the number of vertices of degree at least dt in Gt−Zt is less than the number of vertices
of degree at least dt in H ′,
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(ii) every vertex of Gt−Zt of degree at least dt in Gt−Zt is a non-peripheral vertex of Gt,

(iii) if |V (T )| = 1 or t is not a leaf of T , then every vertex in Xt has degree at least dt in
Gt − Zt, and

(iv) if t is a leaf and |V (T )| ≥ 2, then |Xt| ≤ 1.

If |V (T )| = 1, then by (i) and (iii), G contains at most |V (H ′)| − 1 ≤ h vertices, so G
is 1-colorable with clustering h ≤ N , a contradiction. So |V (T )| ≥ 2. By (iv), |Xt| ≤ 1 for
every leaf t of T .

For every t ∈ V (T ), since dt ≤ d, (Gt−Zt)−Xt has maximum degree at most dt−1 ≤ d−1
by (ii), so (Gt − Zt) − Xt is χ∗(d − 1)-colorable with clustering Nd−1. By Lemma 4.2, for
every t ∈ V (T ), Gt −Xt is χ∗(d− 1)-colorable with clustering (|Zt|+1)Nd−1 ≤ (ξ +1)Nd−1.
In addition, (i), (iii) and (iv) imply that |Xt| ≤ max{|V (H ′)| − 1, 1} ≤ h for every node
t ∈ V (T ). Since d ≥ 3, χ∗(d− 1) ≥ 2. Hence by Lemma 3.2, G is (χ∗(d− 1) + 1)-colorable
with clustering N3.2((ξ + 1)Nd−1, η, h) ≤ N .

So χ = χ∗(d − 2). Hence H has exactly one vertex of degree d. So H ′ has exactly one
vertex of degree d. Hence for every non-leaf t of T , if dt = d, then by (i) and (iii), Xt = ∅
and Gt − Zt has maximum degree at most d − 1; if dt < d, then the maximum degree of
(Gt − Zt) − Xt is at most dt − 1 ≤ d − 2. For every non-leaf t of T , if dt = d, then let
kt = χ∗(d − 1); if dt < d, then let kt = max{χ∗(d − 2), 2 − |Xt|}. Then for every non-leaf t
of T , (Gt − Zt) −Xt is kt-colorable with clustering Nd−1 + Nd−2. By Lemma 4.2, for every
non-leaf t of T , Gt −Xt is kt-colorable with clustering (ξ +1) · (Nd−1 +Nd−2). Note that for
every non-leaf t of T , kt + min{|Xt|, 1} is at most either χ∗(d − 1) or χ∗(d − 2) + 1. Since
every graph with maximum degree at most d− 1 can be partitioned into a stable set and a
induced subgraph of maximum degree at most d− 2, we have χ∗(d− 1) ≤ χ∗(d− 2) + 1. So
maxt{kt+min{|Xt|, 1}} ≤ χ∗(d−2)+1, where the maximum is over all non-leaves t of T . For
every leaf t of T , let kt = 2−|Xt|. For every leaf t of T , |Xt| ≤ 1 by (iv), so Gt is kt-colorable
with clustering 2 ≤ N . Hence maxt∈V (T ){kt + min{|Xt|, 1}} ≤ χ∗(d − 2) + 1. By Lemma
3.2, G is (χ∗(d− 2)+1)-colorable with clustering N3.2((Nd−1+Nd−2)(ξ+1), η, h) = N . This
proves the lemma.

The following lemma is a simple variant of a result of Dirac [10]. For every graph G and
subset S of V (G), we define NG(S) = {v ∈ V (G)− S : v is adjacent to some vertex in S}.

Lemma 4.4. Let G be a graph. Let k and N be positive integers. Let [A,B] be an edge-cut

of G of order at most k − 1. If both G[A] and G[B] are k-colorable with clustering N , then

G is k-colorable with clustering N .

Proof. Let cA and cB be k-colorings of G[A] and G[B] with clustering N , respectively.
Define H to be a simple bipartite graph H with V (H) = {ai, bi : i ∈ [k]} and with bipartition
({ai : i ∈ [k]}, {bi : i ∈ [k]}) such that two vertices ai and bj are adjacent in H if and only if
there exists an edge incident with a vertex v ∈ A with cA(v) = i and a vertex u ∈ B with
cB(u) = j. Note that |E(H)| ≤ |[A,B]| ≤ k − 1. Let H ′ be the bipartite complement of H.
That is, V (H ′) = V (H) and E(H ′) = {aibj : i, j ∈ [k]} − E(H).

Suppose that H ′ does not contain a perfect matching. Then by Hall’s theorem, there
exists S ⊆ {ai : i ∈ [k]} such that |NH′(S)| < |S|. Note that every vertex in S is adjacent in
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H to every vertex in {bj : j ∈ [k]}−NH′(S). Hence H contains at least |S| · (k−|NH′(S)|) ≥
|S|(k − |S| + 1) edges. Since |NH′(S)| < |S|, S ̸= ∅. Hence 1 ≤ |S| ≤ k. So H contains at
least |S|(k − |S|+ 1) ≥ k edges, a contradiction.

Hence H ′ has a perfect matching {aibσ(i) : i ∈ [k]} for some bijection σ : [k] → [k]. So for
each i ∈ [k], ai is not adjacent to bσ(i) in H. Let c′A be the k-coloring of G[A] such that for
every i ∈ [k] and v ∈ A with cA(v) = i, c′A(v) = σ(i). Note that c′A is a k-coloring of G[A]
with clustering N . Define c to be the k-coloring such that for every v ∈ A, c(v) = c′A(v), and
for every v ∈ B, c(v) = cB(v). Then each c-monochromatic component of G is contained in
G[A] or G[B]. So c is a k-coloring of G with clustering N .

Recall that for every graph H, χ∗(H) is the minimum k such that there exists N ∈ N

such that every graph with no H-immersion is k-colorable with clustering N .

Lemma 4.5. If H is a graph of maximum degree 1, then χ∗(H) = 1.

Proof. Let N = (|V (H)| − 1)|V (H)|.
Let G be a graph with no H-immersion. Since H has maximum degree 1, H is a disjoint

union of copies of K2 and isolated vertices. Note that K1,|V (H)| and the path on |V (H)|
vertices contain an H-immersion. Hence the maximum degree of G is at most |V (H)| − 1,
and every path in G contains at most |V (H)|−1 vertices. So every component of G contains
at most (|V (H)| − 1)|V (H)| = N vertices. Therefore, G is 1-colorable with clustering N .

Now we are ready to prove Theorem 1.2. The following is a restatement of Theorem 1.2.

Theorem 4.6. Let d be a positive integer, and let H be a graph of maximum degree d.

1. If d = 1, then χ∗(H) = 1.

2. If d ≥ 2 and H has exactly one vertex of degree d, then χ∗(d−1) ≤ χ∗(H) ≤ max{χ∗(d−
2) + 1, 4}.

3. If d ≥ 2 and H has at least two vertices of degree d, then χ∗(d − 2) + 1 ≤ χ∗(H) ≤
max{χ∗(d− 1) + 1, 4}.

Proof. Statement 1 immediate follows from Lemma 4.5. So we may assume d ≥ 2.
Let χ = max{χ∗(d − 2) + 1, 4} if H has exactly one vertex of degree d; otherwise, let

χ = max{χ∗(d−1)+1, 4}. Let N = N4.3(d, |V (H)|), where N4.3 is the number N mentioned
in Lemma 4.3.

We first prove the upper bounds.
Suppose that d ≥ 3 and there exists a graph G with no H-immersion such that G is not

χ-colorable with clustering N . We further assume that |V (G)| is as small as possible. By
Lemma 4.3, G is not 4-edge-connected. So there exists an edge-cut [A,B] of G of order at
most 3 with A ̸= ∅ ̸= B. Note that both G[A] and G[B] are subgraphs of G, so they do
not contain an H-immersion. By the minimality of G, G[A] and G[B] are χ-colorable with
clustering N . Since χ ≥ 4 > |[A,B]|, by Lemma 4.4, G is χ-colorable with clustering N , a
contradiction.

Therefore, if d ≥ 3, then every graph with no H-immersion is χ-colorable with clustering
N . If d ≤ 2, then let H ′ be the graph obtained from H by adding a loop incident with
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a vertex of degree d, so H ′ has maximum degree d + 2 with 3 ≤ d + 2 ≤ 4, and hence
χ∗(H) ≤ χ∗(H

′) ≤ max{χ∗(3)+ 1, 4} = 4 ≤ χ. This proves the upper bound for Statements
2 and 3 of this theorem.

Now we prove the lower bounds.
Every graph of maximum degree at most d − 1 does not contain an H-immersion. So

χ∗(H) ≥ χ∗(d− 1). This proves Statement 2. To prove Statement 3, it suffices to show that
χ∗(d− 2) + 1 ≤ χ∗(H) when H has at least two vertices of degree d.

Now we assume that H has at least two vertices of degree d. Suppose to the contrary
that χ∗(H) ≤ χ∗(d−2). So there exists a positive integer η such that every graph with no H-
immersion is χ∗(d−2)-colorable with clustering η. By the definition of χ∗(d−2), there exists
a graph L of maximum degree at most d−2 such that there exists no (χ∗(d−2)−1)-coloring
of L with clustering η.

Define Q to be the graph obtained from a union of η disjoint copies L1, L2, ..., Lη of L
by adding a vertex v∗ adjacent to all other vertices. Since L is of maximum degree at most
d−2, Q has at most one vertex of degree at least d. Since H contains at least two vertices of
degree d, Q does not contain an H-immersion. So there exists a χ∗(d−2)-coloring c of Q with
clustering η. By symmetry, we may assume that c(v∗) = χ∗(d − 2). Since c is of clustering
η, there exists i ∈ [η] such that c(v) ̸= c(v∗) for every v ∈ V (Li). So the restriction of c on
Li is a (χ∗(d− 2)− 1)-coloring of clustering η. However, it is impossible by the definition of
L. This proves the theorem.

5 Application to tree-decompositions

Let G be a graph. A tree-decomposition of G is a pair (T,X ) such that T is a tree and
X is a collection (Xt : t ∈ V (T )) of subsets of V (G) such that

•

∪
t∈V (T ) Xt = V (G),

• for every e ∈ E(G), there exists t ∈ V (T ) such that Xt contains all ends of e, and

• for every v ∈ V (G), the set {t ∈ V (T ) : v ∈ Xt} induces a connected subgraph of T .

The adhesion of (T,X ) is maxtt′∈E(T )|Xt ∩Xt′ |. For every t ∈ V (T ), the torso at t in (T,X )
is the graph obtained from G[Xt] by for each neighbor t′ of t, adding edges such that Xt∩Xt′

is a clique.

Lemma 5.1. Let d and η be positive integers. Let G be a graph with maximum degree at

most d. Let (T,X ) be a tree-decomposition of G of adhesion at most η. Then there exists a

tree-decomposition (T,X ′ = (X ′
t : t ∈ V (T ))) of G such that

1. the adhesion of (T,X ′) is at most the adhesion of (T,X ).

2. for every t ∈ V (T ), X ′
t ⊆ Xt, and the torso at t in (T,X ′) is a subgraph of the torso

at t in (T,X ),

3. for every t ∈ V (T ) and v ∈ X ′
t, there exist at most d + 1 neighbors t′ of t such that

v ∈ X ′
t′, and
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4. for every t ∈ V (T ), the torso at t in (T,X ′) has maximum degree at most ηd+ η − 1.

Proof. Let r be a node of T . We assume that T is a rooted tree rooted at r. For each
t ∈ V (T ), let Tt be the maximal subtree of T rooted at t. For every t ∈ V (T ) and every
vertex v ∈ Xt, define Ct,v to be the set of children c of t such that (

∪
t′∈V (Tc)

Xt′) − Xt

contains a neighbor of v. Since the maximum degree of G is at most d, |Ct,v| ≤ d. For every
v ∈ V (G), let rv be the node of T with v ∈ Xrv closest to r.

Denote X by (Xt : t ∈ V (T )). For every t ∈ V (T ), define X ′
t = {v ∈ Xt : either t = rv,

or t ∈ Cp,v, where p is the parent of t}. Then (T,X ′) is a tree-decomposition satisfying
Statements 1-3. By Statement 3, for every t ∈ V (T ), the torso at t in (T,X ′) has maximum
degree at most d+ (η − 1)(d+ 1) = ηd+ η − 1. So Statement 4 holds.

Lemma 5.2. Let d and η be positive integers. Let G be a graph with maximum degree

at most d. Let (T,X ) be a tree-decomposition of G of adhesion at most η. Denote X by

(Xt : t ∈ V (T )). Then there exists a tree-cut decomposition (T ′,X ′ = (X ′
t : t ∈ V (T ′))) of G

of adhesion at most (d+ 1)2η + d such that the following hold.

1. T ′ is obtained from T by attaching leaves.

2. For every t ∈ V (T ′), |X ′
t| ≤ 1, and if |X ′

t| = 1, then t is a leaf of T ′.

3. For every t ∈ V (T ), the torso at t in (T ′,X ′) is a subgraph of a graph Rt obtained from

a subgraph of the torso at t in (T,X ) by identifying a set of at most η vertices in Xt

into a vertex, adding a set I of vertices and adding edges incident with I such that I
is a stable set and the neighborhood of every vertex in I is a clique of size at most η.

4. For every t ∈ V (T ), the maximum degree of Rt is at most (d+ 1)η2 + d.

Proof. By Lemma 5.1, there exists a tree-decomposition (T,X 1 = (X1
t : t ∈ V (T ))) of G

of adhesion at most η such that for every t ∈ V (T ), the torso at t in (T,X 1) is a subgraph
of the torso at t in (T,X ), and for every v ∈ X1

t , there exist at most d + 1 neighbors t′ of t
such that v ∈ X1

t′ . For every t ∈ V (T ), let Qt be the torso at t in (T,X 1).
Let r be a node of T . We assume that T is a rooted tree rooted at r. For every

t ∈ V (T ) − {r}, let pt be the parent of t. For every vertex v of G, let rv be the node of
T with v ∈ X1

rv
closest to r. For every t ∈ V (T ), define X2

t = {v ∈ X1
t : t = rv}. Let

X 2 = (X2
t : t ∈ V (T )). Then (T,X 2) is a tree-cut decomposition of G.

For every tt′ ∈ E(T ), if uv is an edge of G contained in adh(T,X 2)(tt
′), then {u, v} ∩X1

t ∩
X1

t′ ̸= ∅. Since the maximum degree of G is at most d, the adhesion of (T,X 2) is at most dη.
Note that for every t ∈ V (T ), if there exists v ∈ X1

t −X2
t , then t ̸= r and v ∈ X1

t ∩X1
pt
.

Let Sr = ∅, and for every t ∈ V (T )− {r}, let St = X1
t ∩X1

pt
. So for every t ∈ V (T )− {r},

the peripheral vertex of the torso at t in (T,X 2) corresponding to the component of T − t
containing r is obtained from Qt by identifying St into a vertex vt and deleting the resulting
loops. Note that |St| ≤ η, since the adhesion of (T,X 1) is at most η.

Suppose that there exist t ∈ V (T ), a non-loop edge uv of G, and two distinct components
T1, T2 of T − t not containing r such that u ∈ X2

T1
and v ∈ X2

T2
. Then ru ∈ V (T1) and

rv ∈ V (T2). So there exists no t′ ∈ V (T ) such that X1
t′ ⊇ {u, v}, contradicting that (T,X 1)

is a tree-decomposition.

22



Hence for every t ∈ V (T ), the peripheral vertices of the torso at t in (T,X 2) corresponding
to the components of T − t disjoint from r form a stable set, denoted by It. In addition, since
(T,X 1) is a tree-decomposition of G, for every t ∈ V (T ), if q ∈ It, then the neighborhood of
q in the torso at t in (T,X 2) is contained in (X1

t ∩
∪

t′∈V (Wq)
X1

t′ −St)∪{vt}, where Wq is the

component of T−t corresponding to q; and if q is adjacent to vt, then St∩X
1
t ∩

∪
t′∈V (Wq)

X1
t′ ̸=

∅.
For every t ∈ V (T ), let R2

t be the graph obtained from Qt by identifying St into a vertex
vt and adding It and edges such that for every q ∈ It, the neighborhood of q in R2

t is the
same as the neighborhood of q in the torso at t in (T,X 2). Since the adhesion of (T,X 1) is
at most η, the neighborhood in R2

t of each vertex in It is a clique of size at most η. Note
that the torso at t in (T,X 2) is a subgraph of R2

t .
Since for every t ∈ V (T ) and v ∈ X1

t , there exist at most d+1 neighbors t′ of t such that
v ∈ X1

t′ , the maximum degree of R2
t is at most (d+ (d+ 1)η)η ≤ (d+ 1)η2 + d.

Define T ′ to be the tree obtained from T by for each t ∈ V (T ), attaching |X2
t | leaves

adjacent to t. So for every t ∈ V (T ), there exists a bijection σt from the set Lt of leaves
attached on t to X2

t . For each t ∈ V (T ), define X ′
t = ∅; for each t ∈ V (T ′) − V (T ),

there uniquely exists t′ ∈ V (T ) such that t ∈ Lt′ , and we define X ′
t = {σt′(t)}. Define

X ′ = (X ′
t : t ∈ V (T ′)). Then (T ′,X ′) is a tree-cut decomposition of G such that Statements

1 and 2 of this lemma hold.
For every t ∈ V (T ), define Rt to be a graph obtained from R2

t by deleting all loops. For
every t ∈ V (T ), since the torso at t in (T ′,X ′) is obtained from the torso at t in (T,X 2) by
deleting all loops, the torso at t in (T ′,X ′) is a subgraph of Rt. Furthermore, the maximum
degree of Rt is at most the maximum degree of R2

t . Hence Statements 3 and 4 hold.
Since the adhesion of (T ′,X ′) is at most the maximum degree of the torsos in (T ′,X ′),

the adhesion of (T ′,X ′) is at most (d+ 1)η2 + d. This proves the lemma.

Lemma 5.3. For any positive integers d, η,N, d′, there exists an integer N∗ = N∗(d, η,N, d′)
such that the following hold. Let k be a positive integer, and let G be a graph with maximum

degree at most d such that G is k-colorable with clustering N . Let G′ be a graph with

maximum degree at most d′ obtained from G by identifying a set of at most η vertices into

a vertex, adding a set I of vertices and adding edges incident with I such that I is a stable

set in G′, and the neighborhood of each vertex in I is a clique of size at most η. Then G′ is

k-colorable with clustering N∗.

Proof. Let d, η,N, d′ be positive integers. Let N0 = dηN + 1. Define N∗ = (d′ + 1)N0.
Let k be a positive integer. Let G be a graph with maximum degree at most d such that

G is k-colorable with clustering N . Let G0 be a graph with maximum degree at most d′

obtained from G by identifying a set S of at most η vertices into a vertex vS. Let G′ be
a graph with maximum degree at most d′ obtained from G0 by adding a set I of vertices
and adding edges incident with I such that I is a stable set in G′, and the neighborhood of
each vertex in I is a clique of size at most η. It suffices to prove that G′ is k-colorable with
clustering N∗.

Let f be a k-coloring of G with clustering N . Let f0(vS) = 1. For every v ∈ V (G0)−{vS},
let f0(v) = f(v). Since the maximum degree of G is at most d, f0 is a k-coloring of G0 with
clustering d|S| ·N + 1 ≤ dηN + 1 = N0.
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For every v ∈ V (G0), let f ′(v) = f0(v); for every v ∈ I, let f ′(v) = 1. Then f ′ is a
k-coloring of G′. Let M be an f ′-monochromatic component of G′. It suffices to show that
|V (M)| ≤ N∗.

If V (M) ⊆ I, then since I is a stable set in G′, |V (M)| = 1. So we may assume that
V (M − I) ̸= ∅. Since I is a stable set in G′, and the neighborhood of each vertex in I is a
clique in G′, M − I is connected. So M − I is a f0-monochromatic component of G0. Hence
|V (M − I)| ≤ N0. Since the maximum degree of G′ is at most d′, and I is a stable set in G′,
|V (M) ∩ I| ≤ d′|V (M − I)| ≤ d′N0. So |V (M)| ≤ |V (M) ∩ I| + |V (M − I)| ≤ (d′ + 1)N0.
This proves the lemma.

The following is a restatement of Statement 1 in Corollary 1.4.

Theorem 5.4. For any positive integers η, d and N , there exists a positive integer N∗ such

that for every positive integer k ≥ 2, if G is a graph with maximum degree at most d and G
admits a tree-decomposition (T,X ) of adhesion at most η such that for every t ∈ V (T ), the
torso at t in (T,X ) is k-colorable with clustering N , then G is k-colorable with clustering

N∗.

Proof. Let η, d,N be positive integers. Let N1 = N5.3(ηd+ η− 1, η, N, (d+1)η2+ d), where
N5.3 is the integer N∗ mentioned in Lemma 5.3. Define N∗ = N3.2(N1, (d + 1)2η + d, 1),
where N3.2 is the integer N∗ mentioned in Lemma 3.2.

Let k be an integer with k ≥ 2. Let G be a graph with maximum degree at most d
such that G admits a tree-decomposition (T,X ) of adhesion at most η such that for every
t ∈ V (T ), the torso at t in (T,X ) is k-colorable with clustering N .

Let C0 be the collection consisting of the graphs that are subgraphs of a torso at t in
(T,X ) for some t ∈ V (T ). By assumption, every graph in C0 is k-colorable with clustering
N . By Lemma 5.1, there exists a tree-decomposition (T,X 0 = (X0

t : t ∈ V (T ))) of G of
adhesion at most η such that for every t ∈ V (T ), the torso at t in (T,X 0) belongs to C0 and
has maximum degree at most ηd+ η − 1.

Let C ′
0 be the set of graphs in C0 with maximum degree at most ηd + η − 1. Let C1 be

the collection consisting of the graphs of maximum degree at most (d + 1)η2 + d that can
be obtained from some graph in C ′

0 by identifying a set of at most η vertices into a vertex,
adding a set I of vertices and adding edges incident with I such that I is a stable set and the
neighborhood of each vertex in I is a clique of size at most η. By Lemma 5.3, every graph
in C1 is k-colorable with clustering N1,

By Lemma 5.2, there exists a tree-cut decomposition (T ′,X ′ = (X ′
t : t ∈ V (T ′))) of G of

adhesion at most (d+ 1)η2 + d such that the following hold.

• T ′ is obtained from T by adding leaves.

• For every t ∈ V (T ′), |X ′
t′ | ≤ 1, and if |X ′

t′ | = 1, then t is a leaf of T ′.

• For every t ∈ V (T ), the torso at t in (T ′,X ′) has maximum degree at most (d+1)η2+d
and is a subgraph of a graph in C1.

• For every t ∈ V (T ′)− V (T ), the torso at t in (T ′,X ′) has at most 2 vertices.
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For every t ∈ V (T ′), if X ′
t ̸= ∅, then let kt = 1; otherwise let kt = k. So if X ′

t ̸= ∅, then t is a
leaf of T ′, kt+|X ′

t| = 2, and the torso at t in (T ′,X ′) is (kt+|X ′
t|)-colorable with clustering 1 ≤

N1; if X
′
t = ∅, then since the torso at t in (T ′,X ′) either is in C1 or has at most two vertices, it

is kt-colorable with clustering N1. Hence by Lemma 3.2, G is maxt∈V (T ′){kt+min{|X ′
t|, 1}}-

colorable with clustering N∗. Note that maxt∈V (T ′){kt + min{|X ′
t|, 1}} ≤ max{k, 2} = k.

This proves the theorem.

A similar and simpler argument proves the following theorem which is a restatement of
Statement 2 in Corollary 1.4.

Theorem 5.5. For any positive integers η, d and N , there exists a positive integer N∗ such

that for every integer k, if G is a graph with maximum degree at most d and G admits a

tree-decomposition (T,X = (Xt : t ∈ V (G))) of adhesion at most η such that for every

t ∈ V (T ), G[Xt] is k-colorable with clustering N , then G is (k + 1)-colorable with clustering

N∗.

Proof. Let η, d,N be positive integers. Let N1 = N5.3(ηd+ η− 1, η, N, (d+1)η2+ d), where
N5.3 is the integer N∗ mentioned in Lemma 5.3. Define N∗ = N3.2(N1, (d + 1)2η + d, 1),
where N3.2 is the integer N∗ mentioned in Lemma 3.2.

Let k be an integer and G a graph as stated in this theorem. Since G[Xt] is k-colorable
for every t ∈ V (T ), k ≥ 1.

By Lemma 5.1, there exist a set C0 of graphs that are k-colorable with clustering N and
a tree-decomposition (T,X 0 = (X0

t : t ∈ V (T ))) of G of adhesion at most η such that for
every t ∈ V (T ), G[X0

t ] ∈ C0 and has maximum degree at most ηd + η − 1. Let C1 be the
collection consisting of the graphs of maximum degree at most (d + 1)η2 + d that can be
obtained from some graph in C0 by identifying a set of at most η vertices into a vertex. By
Lemma 5.3, every graph in C1 is k-colorable with clustering N1,

Let C2 be the collection consisting of the graphs of maximum degree at most (d+1)2η+d
that can be obtained from some graph in C1 by adding a set I of vertices and edges incident
with I such that I is a stable set. Then every graph in C2 is (k+1)-colorable with clustering
N1 since we can use a new color to color I.

By Lemma 5.2, there exists a tree-cut decomposition (T ′,X ′ = (X ′
t : t ∈ V (T ′))) of G of

adhesion at most (d+ 1)η2 + d such that

• for every t ∈ V (T ′), |X ′
t| ≤ 1, and if |X ′

t| = 1, then t is a leaf in T ′,

• for every t ∈ V (T ), the torso at t in (T ′,X ′) is in C2, and

• for every t ∈ V (T ′)− V (T ), the torso at t has at most 2 vertices.

For every t ∈ V (T ′), let kt = (1 − |X ′
t|)k + 1, so kt + |X ′

t| ≥ 2. For t ∈ V (T ′), if |X ′
t| = 0,

then kt = k + 1, so the torso at t in (T ′,X ′) is kt-colorable with clustering N1; if |X
′
t| > 0,

then t is a leaf in T ′, so the torso at t in (T ′,X ′) has at most 2 vertices and is kt-colorable
with clustering 2 ≤ N1. By Lemma 3.2, G is maxt∈V (T ′){kt + min{|X ′

t|, 1}}-colorable with
clustering N∗. Since maxt∈V (T ′){kt +min{|X ′

t|, 1}} ≤ k + 1, this proves the theorem.
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6 Concluding remarks

In this paper we prove that χ∗(H) is very close to χ∗(∆(H)− 1) for every graph H. But
it remains unclear what χ∗(x) is, even for its asymptotic behavior. It can be shown that

limx→∞
χ∗(x)

x
exists by a result of Lovász [31]. And 1

4
≤ limx→∞

χ∗(x)
x

≤ 1
3
by [2, 19].

Question 6.1. Determine limx→∞
χ∗(x)

x
.

Another natural question is about strong immersion. The immersion containment can be
equivalently defined as follows. For graphs G and H, we say that G contains an H-immersion

if there exist functions πV and πE such that

• πV is an injection from V (H) to V (G),

• πE maps each edge of H to a subgraph of G such that for each e ∈ E(H), if e has
distinct ends x, y, then πE(e) is a path in G with ends πV (x) and πV (y), and if e is a
loop with end v, then πE(e) is a cycle containing πV (v), and

• if e1, e2 are distinct edges of H, then πE(e1) and πE(e2) are edge-disjoint.

We say that a graph G contains another graph H as a strong immersion if G contains an
H-immersion such that the witness functions πV and πE satisfy the extra property that for
every v ∈ V (H) and e ∈ E(H), if e is not incident with v, then πE(e) does not contain
πV (v).

Strong immersion was introduced by Nash-Williams, and numerous problems that were
proposed for minors, topological minors and immersions have been proposed for strong im-
mersion as well. So it is natural to consider the clustered chromatic number of the class of
graphs with no H-strong immersion for any fixed graph H. It turns out that the answer is
different from the one for immersion for some graph H, but possibly not too much.

The clustered chromatic number of a class C of graphs is the minimum k such that there
exists a positive integer N such that every graph in C is k-colorable with clustering N .

Proposition 6.2. Let d be a positive integer. Let H be a graph with maximum degree d such

that there exists a cycle in H containing at least 3 vertices of degree d. Then the clustered

chromatic number of the class of graphs that do not contain H as a strong immersion is at

least χ∗(d− 3) + 2.

Proof. Suppose to the contrary that there exists a positive integer N such that every graph
that does not contain H as a strong immersion is (χ∗(d−3)+1)-colorable with clustering N .
Let L be a graph with maximum degree at most d− 3 such that no (χ∗(d− 3)− 1)-coloring
of L with clustering N exists. Let L∗ be the simple graph obtained from a path v1v2...vN+1

on N + 1 vertices by for each i ∈ [N ], adding 2N − 1 disjoint copies Li,1, Li,2, ..., Li,2N−1 of

L and adding edges such that vi and vi+1 are adjacent to all vertices in
∪2N−1

j=1 Li,j.
Since L has maximum degree at most d − 3, v1, v2, ..., vN+1 are the only vertices in L∗

with degree at least d. Suppose that L∗ contains H as a strong immersion. Since there exists
a cycle in H containing 3 vertices of degree d, there exist distinct elements α < β < γ in
[N +1] and edge-disjoint paths P1, P2, P3 in L∗ such that each Pi contains exactly 2 vertices
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in {vα, vβ, vγ}. But there exists no path in L∗− vβ from vα to vγ, contradicting the existence
of P1, P2, P3.

Hence L∗ does not contain H as a strong immersion. So by assumption, there exists a
(χ∗(d−3)+1)-coloring c of L∗ with clustering N . So the path v1v2, , , vN+1 on N +1 vertices
is not c-monochromatic. Hence there exists i ∈ [N ] such that c(vi) ̸= c(vi+1). By symmetry,
we may assume that c(vi) = χ∗(d− 3) and c(vi+1) = χ∗(d− 3)+ 1. Since c has clustering N ,
there are most N − 1 indices j such that Li,j contains a vertex with color χ∗(d− 3) and at
most N − 1 indices j′ such that Li,j′ contains a vertex with color χ∗(d− 3) + 1. Hence there
exists an index j∗ ∈ [2N−1] such that the restriction of c on Li,j∗ is a (χ∗(d−3)−1)-coloring
with clustering N , contradicting the definition of L.

Note that there are infinitely many positive integers d such that χ∗(d− 3) + 2 > χ∗(d−

1) + 1, for otherwise limx→∞
χ∗(x)

x
≥ 1

2
, contradicting limx→∞

χ∗(x)
x

≤ 1
3
. Hence Proposition

6.2 and Theorem 4.6 show that the clustered chromatic number of H-immersion free graphs
and H-strong immersion free graphs are different for infinitely many graphs H. However, it
is unknown whether the gap can be arbitrarily large. We conjecture that it is not the case.

Conjecture 6.3. There exists a positive integer C such that for every graph H, the clustered

chromatic number of the class of graphs that do not contain H as a strong immersion is at

most χ∗(H) + C.
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[25] N. Linial, J. Matoušek, O. Sheffet and G. Tardos, Graph colouring with no large

monochromatic components, Combin. Probab. Comput. 17 (2008), 577–589.

28



[26] C.-H. Liu, A global decomposition theorem for excluding immersions in graphs with no

edge-cut of order three, arXiv:2006.15694.

[27] C.-H. Liu and S. Oum, Partitioning H-minor free graphs into three subgraphs with no

large components, J. Combin. Theory Ser. B 128 (2018), 114–133.

[28] C.-H. Liu and D. R. Wood, Clustered coloring of graphs excluding a subgraph and a

minor, arXiv:1905.09495.

[29] C.-H. Liu and D. R. Wood, Clustered graph coloring and layered treewidth,
arXiv:1905.08969.

[30] C.-H. Liu and D. R. Wood, Clustered variants of Hajós’ conjecture, J. Combin. Theory
Ser. B 152 (2022), 27–54.

[31] L. Lovász, On decomposition of graphs, Stud. Sci. Math. Hung. 1 (1966), 237–238.

[32] S. Norin, L. Postle and Z.-X Song, Breaking the degeneracy barrier for coloring graphs

with no Kt minor, arXiv:1910.09378.

[33] N. Robertson, D. P. Sanders, P. Seymour and R. Thomas, The four-colour theorem, J.
Combin. Theory Ser. B 70 (1997), 2–44.

[34] N. Robertson, P. Seymour and R. Thomas, Hadwiger’s conjecture for K6-free graphs,
Combinatorica 13 (1993), 279–361.

[35] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge
Philos. Soc. 95 (1984), 261–265.
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