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Abstract

Hadwiger and Hajés conjectured that for every positive integer t, K;yi-minor free
graphs and K;4i-topological minor free graphs are properly t-colorable, respectively.
Clustered coloring version of these two conjectures which only require monochromatic
components to have bounded size has been extensively studied. In this paper we
consider the clustered coloring version of the immersion-variant of Hadwiger’s and
Hajés’ conjecture proposed by Lescure and Meyniel and independently by Abu-Khzam
and Langston. We determine the minimum number of required colors for H-immersion
free graphs, for any fixed graph H, up to a small additive absolute constant. Our result
is tight for infinitely many graphs H.

A key machinery developed in this paper is a lemma that reduces a clustering
coloring problem on graphs to the one on the torsos of their tree-cut decomposition
or tree-decomposition. A byproduct of this machinery is a unified proof of a result
of Alon, Ding, Oporowski and Vertigan and a result of the author and Oum about
clustered coloring graphs of bounded maximum degree in minor-closed families.

Keywords: Graph immersion, Clustered coloring

1 Introduction

All graphs in this paper are finite and allowed to have loops and parallel edges. Graph
coloring is one central research direction in graph theory. For a positive integer t, a graph is
properly t-colorable if it can be (vertex-)partitioned into ¢ edgeless induced subgraphs. Every
properly t-colorable graph does not contain K., as a subgraph. But the converse statement
is not true: for every graph H that contains a cycle, there exists no integer C' such that
every graph with no H subgraph is properly C-colorable [15].

A line of research focuses on coloring graphs that forbid a fixed graph H as a more general
structure than subgraphs. One of the most famous problems in this direction is a conjecture
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of Hadwiger [18] stating that for every positive integer ¢, every graph with no Kj,;-minor!

is properly t-colorable. Hadwiger’s conjecture is very difficult, and the case t = 4 implies the
celebrated Four Color Theorem [3, 4, 33]. Hadwiger’s conjecture is true for ¢ <5 [18, 34, 36]
and open for ¢ > 6. Norin and Song [32] recently improved an old general upper bound
given independently by Kostochka [22, 23] and Thomason [35]; more recently, Postle [32]
joined the project to further improve the result. Even more recently, Delcourt and Postle
[6] further improved the result by proving that every graph with no K;-minor is properly
O(tloglogt)-colorable.

A similar conjecture was proposed by Hajds in 1940s stating that for every positive integer
t, every graph with no K, -topological minor? is properly t-colorable. Hajés’ conjecture is
stronger than Hadwiger’s conjecture and is true for ¢ < 3 [9]. But it is too strong to be true
in general: Catlin [5] disproved the cases for ¢ > 6, and Erdds and Fajtlowicz [16] proved
that Q(t?/logt) colors are required. The cases for t € {4,5} remain open.

Due to the difficulty of Hadwiger’s conjecture and the incorrectness of Hajés’ conjecture,
relaxations of those two conjectures have been extensively considered. One relaxation is to
consider clustered coloring.

For positive integers ¢ and N, we say that a graph G is t-colorable with clustering N if
G can be (vertex)-partitioned into ¢ induced subgraphs with no component on more than N
vertices.

For every positive integer ¢, define f(¢) (and g¢(t), respectively) to be the minimum k
such that there exists an integer N such that every graph with no K, ;-minor (and K; ;-
topological minor, respectively) is k-colorable with clustering N. Clearly, g(t) > f(t). Ed-
wards, Kang, Kim, Oum and Seymour [14] showed that f(t) > t by using essentially the
same method of Linial, Matousek, Sheffet and Tardos [25] who proved f(¢) >t — 1, so the
number of required colors for the clustered coloring version of Hadwiger’s conjecture and
Hajés’ conjecture are the same as their original version. The clustered coloring version of
Hadwiger’s conjecture has been extensively studied [12, 14, 20, 21, 27, 28, 30, 37]. In par-
ticular, the author and Wood [30] proved that for every integer ¢ and every graph H, there
exists an integer N such that every graph with no K i-topological minor and H-minor is
(t + 1)-colorable with clustering N. This implies f(¢) < ¢ + 1 which is the currently best
known upper bound in the literature3. For the clustered coloring version of Hajés’ conjec-
ture, the author and Wood [30] proved that ¢(t) < max{4t — 5,1} which is the only known
linear upper bound in the literature.

Another well-known coloring problem about forbidding a complete graph as a more gen-
eral structure is stated in terms of immersions. For two distinct edges ej, es of a graph G
with a common end v, splitting off e; and es along v is the operation that deletes e; and eq
and adds an edge (e; — {v}) U (e2 — {v}). For a graph H, we say that a graph G contains
an H-immersion if H is isomorphic to a graph that can be obtained from a subgraph of GG

LA graph G contains an H-minor for some graph H if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges.

2A graph G contains an H -topological minor for some graph H if some subgraph of G is isomorphic to a
subdivision of H.

3Dvorék and Norin [12] announced that a forthcoming paper will prove f(t) = ¢. This result will solve the
clustered coloring version of Hadwiger’s conjecture. But it is incomparable with the aforementioned result
in [30].



by repeatedly splitting off edges and deleting isolated vertices. Clearly, if G contains an H-
topological minor, then G contains an H-immersion and an H-minor. But the minor relation
is incomparable with the immersion relation. Lescure and Meyniel [24] and Abu-Khzam and
Langston [1] independently proposed an immersion version of Hadwiger’s conjecture.

Conjecture 1.1 ([1, 24]). For every positive integer t, every graph with no K;.i-immersion
18 properly t-colorable.

The cases for t < 3 of Conjecture 1.1 follow from the correctness of Hajos’ conjecture
for t < 3. DeVos, Kawarabayashi, Mohar and Okamura [8] proved the cases 4 <t < 6. It
is open for t > 7. The general upper bound for Conjecture 1.1 has been steadily improved
[7, 13, 17], and the currently best upper bound is 3.54t+7.54 due to Gauthier, Le and Wollan
[17].

Unlike the clustered coloring version of Hadwiger’s and Hajos’ conjectures, it was un-
known whether it requires ¢ colors to color graphs with no K; ;-immersion with bounded
clustering. The main result of this paper shows that ¢ colors are indeed much more than
needed. Our main result is actually more general and is about graphs with no H-immersion
for any fixed graph H.

Let H be a graph with maximum degree d. As graphs with maximum degree at most d—1
cannot contain an H-immersion, the number of required colors for graphs with maximum
degree at most d — 1 gives a lower bound for the number of required colors for graphs with
no H-immersion. Our main result shows that this lower bound is very close to the correct
value.

Define x, : NU {0} — N to be the function such that for every x € NU {0}, x.(z) is
the minimum £ such that there exists N, € N such that every graph of maximum degree at
most x is k-colorable with clustering N,. Note that x. exists and x*(z) < x + 1 for every
x € NU {0}, since every graph of maximum degree at most x is properly (z + 1)-colorable.
Haxell, Szab6 and Tardos [19] proved that x,(z) < [%+] for every 2 € NU {0}, and there
exist € > 0 and D such that x.(z) < (3 — €)z for every 2 > D. On the other hand, it is
known that y.(z) > [#¢] for every z € N [2, 19]. However, even the asymptotic behavior

of XT(”“") remains unknown.

For a graph H, define x.(H) to be the minimum k such that there exists N € N such
that every graph with no H-immersion is k-colorable with clustering N. The following is
the main theorem of this paper.

Theorem 1.2. Let d be a positive integer, and let H be a graph of mazimum degree d.
1. Ifd=1, then x.(H) = 1.

2. Ifd > 2 and H has exactly one vertex of degree d, then x,(d—1) < x.(H) < max{x.(d—
2) +1,4}.

3. If d > 2 and H has at least two vertices of degree d, then x.(d —2) +1 < x.(H) <
max{x.(d — 1) + 1,4}.

Note that for every x € N, every graph with maximum degree at most x can be partitioned
into a stable set and an induced subgraph with maximum degree at most = — 1, so y.«(z) <
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X«(x — 1) + 1. Since [ =] < x. () < [Z1] for every positive integer z, there are infinitely
many positive integers d such that x.(d — 1) = x.(d — 2) + 1, and there are infinitely many
positive integers d such that x.(d —2) = x.(d — 1). Hence each statement of Theorem 1.2 is
tight for infinitely many positive integers d.

We remark that some readers might get an impression at first glance that Theorem 1.2
is not surprising because other work of the author [26] has shown that H-immersion free
graphs can be “decomposed” into graphs that are more or less close to graphs of maximum
degree less than the maximum degree of H. (See Theorem 4.1 for a precise description.)
However, this impression is not correct in general. One example is that there exists no integer
k such that graphs of tree-width at most w are k-colorable with bounded clustering for all
integers w, even though graphs of tree-width at most w can be “decomposed” in a similar
flavor into graphs on at most w + 1 vertices, which are 1-colorable with bounded clustering.
Other examples include the known results about finding nearly tight bounds for clustered
chromatic number. Those results are on graphs that are known to be “decomposable” into
graphs whose clustered chromatic number are known, but they are still very difficult.

One contribution of this paper is to show that the decomposition used in [26] is nicely
compatible with clustered coloring so that the generally false impression for decomposition is
correct for this setting. The following theorem is a key lemma for proving Theorem 1.2 and
shows how to construct a clustered coloring for a graph with a given tree-cut decomposition
of bounded bag size and bounded adhesion, where the number of colors is the required
number of colors for coloring its torsos. (Notions related to tree-cut decomposition will be
defined in Section 2.)

Theorem 1.3. For any positive integers N,n and o, there exists a positive integer N* such
that the following holds. Let G be a graph that admits a tree-cut decomposition (T, X =
(X: : t € V(T))) of adhesion at most n such that every bag contains at most « vertices.
For every t € V(T), let k; be a positive integer with k; + | X¢| > 2 such that the graph
obtained from the torso at t by deleting X; is ki-colorable with clustering N. Then G is
maxey(r){ ke + min{|Xy|, 1} }-colorable with clustering N*.

Theorem 1.3 leads to the following corollary showing that one can reduce clustered col-
oring problems on graphs of bounded maximum degree to the ones on the torsos of its
tree-decomposition with bounded adhesion. (Notions related to tree-decomposition will be
defined in Section 5.)

Corollary 1.4. For any positive integers n,d and N, there exists a positive integer N* such
that the following holds. For every integer k and graph G with mazimum degree at most d
admitting a tree-decomposition (T, X') of adhesion at most 1,

1. if k> 2 and for every t € V(T'), the torso at t in (T, X) is k-colorable with clustering
N, then G s k-colorable with clustering N*, and

2. if for every t € V(T), the subgraph of G induced by the bag at t is k-colorable with
clustering N, then G is (k + 1)-colorable with clustering N*.

4Such as in [28] or the work of Dvoidk and Norin about clustered coloring version of Hadwiger’s conjecture.



Statement 1 in Corollary 1.4 leads to a simple unified proof of a result of Alon, Ding,
Oporowski and Vertigan [2] and a result of the author and Oum [27]. The former states that
graphs of bounded maximum degree and bounded tree-width are 2-colorable with bounded
clustering and immediately follows from Corollary 1.4. The latter states that for every
graph H, H-minor free graphs with bounded maximum degree are 3-colorable of bounded
clustering. Such graphs have tree-decompositions of bounded adhesion such that each torso
can be made a graph of bounded layered tree-width by deleting a bounded number of vertices
[11]. So the torsos are 3-colorable with bounded clustering [29], and hence so are the entire
graphs by Statement 1 in Corollary 1.4.

We remark that tree-cut decomposition and tree-decomposition of graphs are equivalent
to expressions of graphs as edge-sums and clique-sums of their torsos, respectively. So
Theorem 1.3 and Corollary 1.4 reduce clustered coloring problems on graphs to the ones
on the summands of edge-sums and clique-sums and hence are expected to have further
applications. Note that the bounded maximum degree condition for the clique-sum case
is required, as there exists no k£ such that for every w, graphs of tree-width at most w is
k-colorable with bounded clustering.

This paper is organized as follows. In Section 2, we include some necessary definitions.
We prove Theorem 1.3 in Section 3. In Section 4, we show how to combine Theorem 1.3 and
work in [26] to prove Theorem 1.2. We deduce Corollary 1.4 from Theorem 1.3 in Section 5.
We include some concluding remarks in Section 6.

2 Notations

Let G be a graph. A tree-cut decomposition of G is a pair (T, X') such that T is a tree,
and X is a collection (X; : t € V(7)) of pairwise disjoint (not necessarily non-empty) subsets
of V(G) such that ey ) X = V(G). In addition,

e for every t € V(T'), the set X; is called the bag at t;

o for every subset S of V(T'), we define Xg to be | J,. g Xy; for every subgraph S of T', we
define Xs to be ey (g) Xi;

e for any edge tity of T, the adhesion set of tit; in (T, X), denoted by adhz x)(t1t2), is
the set of edges of G with one end in X7, and one end in Xy, where T} and 75 are the
components of 1" — t1ty;

e the adhesion of (T, X) is max.cg(r)|adhr x)(e);

e the torso at t in (T, X) is the graph obtained from G by, for each edge e of T incident
with ¢, identifying X7, , into a vertex and deleting all loops incident with this new
vertex, where ¢’ is the end of e other than ¢, and 7,y is the component of T' — ¢
containing t';

e cach vertex in the torso at ¢ but not in X; is called a peripheral vertex.



Note that for every t € V(T') and every edge e of the torso at ¢, e corresponds to an edge €’
of GG such that there exists no component 7" of T' — ¢ such that X7 contains all ends of €.

Let G be a graph. An edge-cut [A, B] of a graph G is a pair of disjoint subsets of V(G)
such that AU B = V(G). The order of an edge-cut [A, B] of G is the number of edges of G
with one end in A and one end in B.

Let (T, X) be a tree-cut decomposition of a graph G. Let t be a node of T or a connected
subgraph of T'. Let e be an edge of T" with at most one end in ¢t. We define [A.;, B, to be
the edge-cut of G with B.; = J,, Xy», where the union is over all nodes ¢” contained in the
component of T'— e containing .

Let G be a graph and let S be a subset of V(G). We define G[S] to be the subgraph of
G induced by S. For each vertex v of GG, the degree of v is the number of edges of GG incident
with v, where each loop is counted twice. The maximum degree of G is the maximum of a
degree of a vertex of G.

We say that a subgraph H of a graph G is incident with an edge e of G if V(H) contains
at least one end of e.

3 From torsos to the whole graph

The objective of this section is proving Theorem 1.3. The main challenge of the proof
lies in the special case that every bag in the tree-cut decomposition has at most 1 vertex.
Theorem 1.3 follows from this special case easily, as shown in the proof of Lemma 3.2. This
special case will be proved in Lemma 3.1, and we provide a sketch the proof of this special
case before we formally prove it.

Let (T, X) be a tree-cut decomposition of a graph G with |X;| < 1 for every t € V(T),
where X = (X, : t € V(T')). We find a depth-first-search ordering ¢, 15, ..., {jy (1) of nodes
of T. Then starting from ¢ = 1 until ¢ = |V (T")], we greedily color every uncolored vertex
that is either in X, or incident with an edge of G corresponding to an edge of the torso
at t; by a certain rule. Note that at any time during the process, we can order the current
monochromatic components by saying that a monochromatic component C} is older than
another monochromatic component Cs if the earliest colored vertex in C is colored earlier
than the earliest colored vertex in C5. In the formal proof, we will define the ordering of
monochromatic components more carefully and describe it formally by using the notation
o(C).

Now we explain the rule for assigning colors at the time 7 in the greedy algorithm. When
X, is nonempty and the vertex in X, is uncolored, we color this vertex with a color that
is different from the color of the oldest monochromatic component adjacent to it to stop
the growth of the oldest monochromatic component. (If no such monochromatic component
exists, then color the vertex arbitrarily.) By the assumption, there exists a coloring ¢ of
the graph obtained from the torso at ¢; by deleting X;, with bounded clustering by using k;
colors in [k; + | X4, |] without using the color that was just used for coloring X;,. Note that
each uncolored vertex v incident with an edge of G' corresponding to an edge of the torso
at t; is contained in the union of bags of nodes in a component of T" — ¢; corresponding to
a peripheral vertex in the torso at t;, and we call the color in ¢ of this peripheral vertex
the “default color” for v. If v is adjacent to some current monochromatic component, then




we color v by using a color different from the color of the oldest monochromatic component
adjacent to v; otherwise, we color v by using its default color. This essentially completes the
description of our greedy algorithm, except that we will also color some “special vertices”
during the algorithm due to some technical reasons that will not be described in the proof
sketch.

The main challenge is to bound the size of each final monochromatic component C'. The
size of C is determined by two factors: “breadth” and “depth”. The breadth of C' counts
the number of components in T" — t; whose bags intersect C, where 7 is the first time in
the algorithm such that some vertex in C' is colored. The depth of C' counts the number of
vertices in C' contained in the union of the bags contained in a single component of 7" — t;.
The size of C' is bounded if both the breadth and the depth of C' are bounded. We will
prove that the breadth of C is essentially bounded by the clustering of ¢, and the size of
the monochromatic components older than C' adjacent to C'; and the depth is essentially
bounded by the size of the monochromatic components older than C' adjacent to C. We will
also show that the number of those older components can be bounded by the adhesion of
(T, X). So the size of C' is bounded and the proof sketch is completed.

Claims 1-3 in the proof of Lemma 3.1 are dedicated to showing the consistency of the
ordering of monochromatic components during the algorithm. Claims 4-7 are dedicated
to bounding the depth of a monochromatic component. Claims 8 and 9 are dedicated to
bounding the breadth of a monochromatic component.

Now we introduce some terminologies that will be used in our proofs. Let k and N be
positive integers. A k-coloring of a graph G is a function f : V(G) — [k]. For a k-coloring ¢
of G, a c-monochromatic component (or a monochromatic component in c) is a component
of G[c™*({i})] for some i € [k]. For a graph G and a function f whose domain is a subset S
of V(G), we say a vertex v of G is f-colored if v € S, and we say v is f-uncolored if v & S.

Lemma 3.1. For any positive integers N and &, there exists a positive integer N* = N*(N, §)
such that the following holds. Let G be a graph that admits a tree-cut decomposition (T, X =
(X¢ = t € V(1)) of adhesion at most & such that every bag contains at most 1 vertex.
For every t € V(T), let ky be a positive integer such that k, + |X;| > 2 and the graph
obtained from the torso at t by deleting X; s ki-colorable with clustering N. Then G is
maxcy(r){ ke + | X¢|}-colorable with clustering N*.

Proof. Let N and £ be positive integers. Define the following.
o Let Ny = &2 +¢.

Let Nl = 2Ng§

Let Ny = (1 +282(£ +1)N)NZ + Ny.

Let f be the function with domain N such that

o f(1> :N07
— forevery z €N, f(z+1)=(§+1)No- >0, f(0).

Define N* =1+ (1 4+ N&(E+ 1)No - f(§).



Let G be a graph that admits a tree-cut decomposition (7, X') of adhesion at most £ such
that every bag has size at most 1. We denote X = (X; : t € V(T')), and denote the torso
at t by Gy for each t € V(T'). For every node ¢ of T', let k; be a positive integer such that
ki + | Xi| > 2 and Gy — X, is ki-colorable with clustering N.

We shall prove that G is maxcy (1) {k: + | X¢|}-colorable with clustering at most N*. Let
t; be a node of T. We treat T' as a rooted tree rooted at t;. We order the nodes of T' as
t1,to, ..., tjy(ry by a depth-first-search order starting at #;.

For every node t of T, let | t be the maximal subtree of T" rooted at t. For each
i € [[V(T)]] — {1}, let e; be the edge of T incident with ¢; and its parent. For every
i € [[V(T)]]—{1}, we say that a subgraph C of G crossese; if V(C)NAg, 1, # 0 # V(C)NBe, 4,
Note that e; is undefined, but for convenience, we assume that no subgraph of G crosses e;.

For every induced connected subgraph C of G, we define

¢ 7(C) to be the minimum index j such that either V(C) N X, # 0, or C contains an
edge of G corresponding to an edge of Gy,

e 7(C)=min{l € |V(T)]] : V(C)N X;, # 0}, and

e 0(C) = (7v(C),7(C)).

Intuitively, v(C) can be considered as the “root of C” in the sense that it indicates when C
“first appears”. We compare o(C') by the lexicographic order. That is, we say that o(C}) is
smaller than o(Cy), denoted by o(Cy) = o(Cy), if either y(C}) < y(Cy), or ¥(Cy) = 7(Cs)
and 7(Cy) < 7(Cy). Since |Xi| < 1 for every t € V(T), o is a total order for any set of
pairwise disjoint induced subgraphs of G.

A vertex v of G is special if v is not adjacent to any vertex in V(G) — X;, where ¢ is the
node of T" with v € X;. For a node t of T" and a vertex or subgraph A of GG, we say that A
is G-relevant if A is incident with an edge of G corresponding to an edge of G;.

We shall define maxsey(r{k: + |X:|}-colorings co,c%,cl,cé,cg,...,cﬂV(T)l,cW(T” of sub-
graphs of G by a greedy algorithm such that for each i € [|V(T)|],

e ¢, is obtained from ¢;_; by further coloring the vertex in X, (if X;, # () and this vertex
was uncolored) and all uncolored Gy, -relevant vertices, and

e ¢; is obtained from ¢, by further coloring all uncolored special vertices contained in
X1, — Xy, adjacent to some Gy,-relevant ¢j-monochromatic component.

Note that for each ¢ € V(T'), no special vertex in X|; — X; is incident with an edge of G;.
Now we formally define those colorings. Define ¢ to be the coloring with empty domain.
For each i > 1, define the following.

e Define ¢ as follows.

— If X;, =0, then let £ = 0.

— If X;, # 0 and the vertex in X, is ¢;_j-colored, then let ¢ be the color of this
vertex.



— If X;, # 0, the vertex in X, is ¢;_j-uncolored, and no edge of G, — X;, corre-
sponds to an edge of G between a ¢;_;-uncolored vertex and a ¢;_;-monochromatic
component crossing e;, then let ¢ = 1.

— Otherwise,

 let C' be the ¢;_;-monochromatic component with minimum o(C') among all
¢i—1-monochromatic components with the following property: C' crosses e;
and is incident with an edge e of G corresponding to an edge of Gy, — X,
such that the other end of e is ¢;_;-uncolored;

* let £ be the color of C.
o If X, # (0, then define ¢} (v) = ¢, where v is the vertex in Xj,.

e Let ¢ be a coloring of Gy, — X3, by using colors in [k, + | Xy, |] — {¢} with clustering V.
(Note that such a coloring ¢ exists since |[k:, + | X,|] — {¢}| > ki, by the definition of
0.)

e For each Gy -relevant ¢;_;-uncolored vertex v of G — X4,
— let ¢;(v) be the color in ¢ of the peripheral vertex of Gy, corresponding to the
component of 7" — t; containing v,
— if v is not adjacent to any c¢;_;-monochromatic component, then define c}(v) =
¢i(v),
— otherwise,

x let C, be the ¢;_j-monochromatic component adjacent to v such that o(C,)
is as small as possible, and
* define c}(v) to be a color in [k;, + | X;,|] such that
- if the color of C, is not equal to c;(v), then c}(v) = c(v),

- otherwise, ¢} (v) is an arbitrary color in [k, +| X}, |] different from the color

of C,.
(Note that ¢ (v) is different from the color of C, in either case.)

e For each c}-uncolored special vertex v € X;, — X;, adjacent to some Gy-relevant
c}—monochromatic component,

— let C, be the Gy,-relevant ¢;-monochromatic component adjacent to v such that
o(C,) is as small as possible, and

— define ¢;(v) to be a color in [k, + | X,|] different from the color of C,.

Define ¢ to be ¢y (). Note that ¢ is a maxcy (1) {k: + | X;|}-coloring of G.

For every ¢,7 € [|[V(T)]], we define the (e;, j)-rank of a ¢;-monochromatic component C
crossing e; to be «a if o(C') is the a-th smallest among all ¢;-monochromatic components
crossing e;.

For every i € [|V(T)]], let i be the largest integer in [|V(T)|] such that t; is a descendant
of tz



Claim 1: Let 4,5 € [|[V(T)]] with 1 <7 —1 < j. Let C be a ¢;-monochromatic component
crossing e;. Let j’ € [j,1]. Let C’ be the cj~-monochromatic component containing C. Let
M’ be a c¢j-monochromatic component crossing e;. If the (e;, j')-rank of M’ is smaller than
the (e;, j')-rank of C’, then M’ contains a ¢;-monochromatic component M crossing e; such
that the (e;, j)-rank of M is smaller than the (e;, j)-rank of C.

Proof of Claim 1: When j' = j, the claim obviously holds. So we may assume that j" > j.
Since j' > j > i —1, j/ > 4. Since i < j' < i, by the depth-search-ordering, ¢ is a
descendant of ¢;. Note that every vertex that is cj-colored but not ¢;_;-colored is either
Gy ,,-related for some ¢ < 3" < 4" but not Gy, -related for any j" € [i — 1], or a special
vertex contained in X, , for some i < j" < j'. So every vertex that is c¢;-colored but not
ci—1-colored is contained in X;, and is not incident with any edge in adhr, X)(ei).

Since M’ and C' cross e;, and the (e;, j')-rank of M’ smaller than the (e;, j')-rank of C",
we know that v(M') < v(C') < 4(C) < i —1, and there exists a ¢j-monochromatic path
P contained in M’ containing an edge e in adh(r x)(e;) such that either one end of P is in
XWM/)’ or P contains an edge of G corresponding to an edge of Gtv(M/) and contains X, .
We choose e such that P can be chosen to be as short as possible. So P is contained in
Gle U (V(G) — Xy,)]. Since e € adhirx(e;), e is an edge of the torso at the parent of
ti, so both ends of e are ¢;_;-colored and hence are cj-colored. Since every vertex that is
c;ji-colored but cj-uncolored is contained in X;,, P is a ¢;-monochromatic path. Then e is
contained in some cj-monochromatic component M crossing e;. Hence M contains P. So
o(M) < o(M'). Since the (e;, j')-rank of M’ is smaller than the (e;, j')-rank of C’, we know
o(M) <a(M') <o(C") < a(C). So the (e;, j)-rank of M is smaller than the (e;, j)-rank of
C'. Since both M and M’ contain P, M’ contains M. This proves the claim. [J

Claim 2: Foreveryi,j € [|[V(T)|] with ¢ # 1, if Cy and Cy are ¢;-monochromatic components
crossing e; such that the (e;, j)-rank of C is smaller than the (e;, j)-rank of Cy, then for every
i’ >4 for which C; and Cy cross ey, the (ey, j)-rank of Cy is smaller than the (e, j)-rank of
Cy.

Proof of Claim 2: Let i,j,C1,Cy, 7 be the ones stated in the statement of this claim.
Since the (e;, j)-rank of C; is smaller than the (e;, j)-rank of Cs, o(C4) < o(Cy). Since C4
and Cy cross ey, the (ey,j)-rank of C} and Cy are well-defined. Since o(C}) < o(Cy), the
(e, j)-rank of C is smaller than the (e;, j)-rank of Cy. O

Claim 3: For every i € [|V(T)|] — {1}, if C is a ¢;_j-monochromatic component crossing e;
with (e;,i — 1)-rank 1, then the ¢;-monochromatic component containing C' equals C.

Proof of Claim 3: For every a € [i — 1,1, let C, be the c,-monochromatic component
containing C. Suppose to the contrary that C; # C. So there exists i* € [i,4] such that
Cy # Ci_1 = C. Hence there exists a vertex v € V(Cy+) — V(Ci+_1) adjacent to a vertex
u € V(Ci=_1). So v is ¢;=_j-uncolored but ¢;--colored. Hence v € X ;... We choose such v
such that v is c}*—colored if possible. Since v is ¢;+_j-uncolored, v is not incident with an
edge in adhr x(€;+), so u € Xy,.. Hence if Cj«_y does not cross e;-, then V(Ci_1) C Xy,
so Cy+_1 = C does not cross e;, a contradiction. So Cj«_; crosses e;«.

By Claim 1, since the (e;,7 — 1)-rank of C is 1, the (e;,¢* — 1)-rank of Cj=_; is 1. By
Claim 2, the (e;+,i* — 1)-rank of Cj_; is 1.
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Suppose v € X;.. Since v is c¢p_j-uncolored, v is not incident with any edge in
adh(r,xy(e;+), so v is special. Since ¢* > 7 > 2, there exists the parent p of . Let i,
be the integer such that p =t; . So v € X}, — X, is a ¢;,_1-uncolored special vertex. Since
Cj«_1 crosses e, Cy«_1 contains an edge of G corresponding to an edge of G,. Since u € X,
and uwv € F(G), u is not special. Since u is ¢;_j-colored, u is incident with some edge of
G corresponding to an edge of G, for some z = ¢;, with 7, <" — 1. Since v € X, — X,
u is incident with some edge of G corresponding to an edge of G). So w is c}p—colored.
Since v € X, — X, is a cz-lp—uncolored special vertex adjacent to u, and wu is czlp-colored and
Gp-relevant, v is ¢; -colored so is ¢;«_j-colored, a contradiction.

Hence v ¢ X,.. By the definition of ¢;-, since Cj«_y has (e;,7* — 1)-rank 1, if v is
G\,.-relevant, then ¢;-(v) # ¢;+(u), a contradiction. So v is ¢;+-colored but not GY,.-relevant.
Hence v is a special vertex in X, , — X, and is cil*—uncolored. Since we choose v such that
v is ¢}.-colored if possible, Cj«_; is a ¢}.-monochromatic component.

Note that Cj-_; is the cj.-monochromatic component incident with some edge of Gy..
crossing e;+ such that o(Cj_1) is minimum. Note that for every cl.-monochromatic compo-
nent C' adjacent to v but not crossing e, v(C) > i* > v(Ci+_1), so 0(Cy_1) < y(C). Hence
¢ (V) # ¢+ (u) by the definition of ¢;«, a contradiction. This proves the claim. [J

For every i € [|[V(T)|], let W; be the set of ¢;_1-colored vertices in X4,.
Claim 4: For every i € [|V(T)]], [W;| < No.

Proof of Claim 4: When i = 1, W; = (). So we may assume ¢ > 2. By the definition of
ci—1, every vertex in W; is either a special vertex or incident with an edge in adh(p x)(e;).

Let Z be the set of vertices in W; incident with some edge in adh( x)(e;). So |Z] <
Jadhyr, (e:)] < &

Note that every vertex in W; — Z is special. Let v € W; — Z. Since v € W, there exists
iy € [i — 1] such that v is ¢;,-colored but not ¢;,_;-colored. Since v is not incident with any
edge in adhr x)(e;), v is adjacent to a c}v—monochromatic component C'. Let u be a vertex
of C' adjacent to v. Since v is special, every neighbor of v is not special and is contained in
Xt,- So u is not special and is contained in X;,. Since i, <¢— 1, u € W;. Hence u € Z.

Therefore, every vertex in W; — Z is adjacent to a vertex in Z. For every z € Z, if 2/
is a special vertex adjacent to z, then the edge zz' belongs to adh(r xy(e;, ), where i, is the
integer such that z € X;,_. So there are at most { - | Z| special vertices adjacent to Z. Hence
Wil < 12| +€17) < €+ 1) = Np. O

Claim 5: For every i € [|V(T)|], there are at most N; vertices v in X|;, such that v is
c;-colored, ¢;_j-uncolored, and adjacent to W; — X;,.

Proof of Claim 5: Let Q = {Q : @ is a component of T'—t; with XoNW; # (}. By Claim
4, |Q| < [W;| £ Ny. For each Q € Q, let ig be the index such that ¢;, is the root of Q.

Let Z = {v € X;, : v is ¢-colored, ¢;_j-uncolored, and adjacent to W; — X3, }. For
any v € Z — Ugeg Xq, since v is adjacent to W; — Xy, v is incident with an edge in
Ugeo adhrx)(eiq)-

Let Z' = {v € ZNUgeg Xq : v is Gy-relevant}. Let Z” = {v € ZNJgyeo Xq : v is not
Gy,-relevant}. Then for every v € Z', v is incident with an edge in Jgco adh(rx)(eig). So
17— 2" < [Ugeo adbir.v(ei0)] < Q1€ < Nk,
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Note that for every v € Z”, v is ¢;-colored, ¢;_1-uncolored and is not Gy,-relevant, so v is
special. Since v € Z, v is adjacent to X;, N W;, where i, is the index such that v € X, .
For every u € W, u is adjacent to at most |adh(p x)(e;, )| < § vertices o’ with ¢;, € V(L t; ,),
where 4, and i, are the indices such that v € X;, and u e Xy ,» respectively. Hence
|1Z"| < & |W;| < ENy by Claim 4. Therefore, |Z| < |Z — Z"| 4+ |Z"| < 2Noé = N;. O

Claim 6: For every i € [|[V/(T)]], if C;_1 is a ¢;_;-monochromatic component crossing e;,
and C; is the ¢;-monochromatic component containing C;_1, then |V (C;) — V(C;_1)| < No.

Proof of Claim 6: Let Z = V(C;) — (V(C;—1) UW;). Recall that V(C;) — V(Ci_1) C Xyy,.
So |[V(C;) =V (Cio)| < |Z]+ W] < |Z]+ Np by Claim 4. To prove this claim, it suffices to
prove that |Z]| < Ny — Nj.

Since V(C;) =V (Ci—1) € Xy, and ZNW; = (), if v is in Z, then v is ¢;_j-uncolored, so all
neighbors of v are contained in X;,. So for every vertex v € Z, one of the following holds.

(i) ve X,.

(ii) v & X3, is adjacent to some vertex in W; — X;,.
(iii) v ¢ X, is not adjacent to any vertex in W; — X;,, and v is Gy,-relevant.
(iv) v € X, is not adjacent to any vertex in W; and v is a special vertex.

Let S = {v € X4, : v is ¢-colored, ¢;_;-uncolored, and adjacent to W; — X;,}. Hence
every vertex in Z satisfying (ii) is contained in S. So the number of vertices in Z satisfying
(i) or (ii) is at most 1 + |S| <1+ N; by Claim 5.

For simplicity of notations, for every v € X}, — Xy,, we define ¢;(v) to be ¢(z), where x
is the vertex in Gy, — X, corresponding to the component ) of T —¢; with v € Xj.

Suppose that there exists v € X, N Z — W, satistying (iii) such that ¢;(v) # ¢/(v). Then
v is adjacent to some ¢;_j-monochromatic component by the definition of ¢} and ¢;. Since
all neighbors of v are contained in X;,, v is adjacent to some vertex in W;. Since v satisfies
(i), @ # X;, € W;, and the ¢;_;-monochromatic component containing X, is the only ¢; -
monochromatic component adjacent to v. Since the color of Xy, is not in the image of ¢,
ci(v) = ¢} (v) = ci(v), a contradiction.

This shows that

(a) for every v € X, N Z — W; satisfying (iii), ¢;(v) = c;(v), so either X;, = 0, or
¢;(v) = ci(v) is different from the color of the vertex in X,.

We first assume that X;, # 0 and the color of the vertex in X;, equals the color of
C;. So no vertex in Z satisfies (iii) by (a). Let z be a vertex in Z satisfying (iv). Since
z € V(C;) = V(C;_1) and z is ¢;_j-uncolored, z is adjacent to a vertex u, in V(C;) with
¢i(z) = ¢;(u,). Since z satisfies (iv), u, € W;, so u, € Z. Since z is special, u, satisfies (ii) or
(iii). Since u, € Z and no vertex in Z satisfies (iii), u, satisfies (ii), so u, € S. Note that u,
is adjacent to at most £ special vertices. Hence the number of vertices in Z satisfying (iv) is
at most |S| - £ < Ni§ by Claim 5. Therefore |Z| <1+ Ny + 0+ N1& < Ny — Ny and we are
done.

Hence we may assume that either X,, = ), or X;, # () and the color of the vertex in Xj,

is different from the color of C;. So V(Ci—1) N X, CW; — Xy, and V(C;) N Xy, = 0.
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We define a Z-component to be a component of C; — (V(C;_1) UW;). That is, every
Z-component is a component of G[Z]. Let Zy = {v € Z : v satisfies (ii)}.

Note that every vertex in X;, incident with some edge in adhr, X)(ei) is ¢;_1-colored.
Since V(C;—1) N X}y, € W; — X3, and C; is connected, for every vertex v in V/(C;) — V (C;-1),
there exists a path in C; from v to W; — X;, internally disjoint from W; — X;.. So every
Z-component contains a vertex in Zs.

Hence

(b) there are at most |Z;| < |S| < N; Z-components.

Let Z34 = {v € Z : v satisfies (iii) or (iv)}. We define a Zs34-component to be a
component of G[Z3 4].

Let v € Z,. Let i, be the index such that v € X;, . Then v is adjacent to at most
§ vertices in V(G) — Xy, . Let u be a neighbor of v contained in Z34 N Xy, . Then u is
not special. So w satisfies (iii). Hence u is Gy,-relevant, so u is incident with an edge in
adh(zj) (eiv ) .

Therefore, every vertex in Z, is adjacent to at most 2§ vertices in Z3 4. So

(c) every Z-component consists of at most |Z,| vertices in Zy and at most |Zy| - 26 Z34-
components.

Let Z3 = {z € Z : z satisfies (iii)}. We define a Zs-component to be a component of
G[Zs]. Let Zy, = {z € Z : z satisfies (iv)}. Let Z, = {z € Z, : z is adjacent to a Z3-
component }. Since every vertex in Z, is special, vertices in Z4 are pairwise nonadjacent. So
every Zs4-component intersecting Z, — Z) consists of one vertex in Z; — Z). We say that a
Z3 4-component is a Zy 4-component if it is disjoint from Z; — Zj.

If v is a vertex in Z4 — Z}, then since v is special and not adjacent to any vertex in W;, v
is adjacent to Zy, for otherwise the Z-component containing v consists of v and hence does
not contain a vertex satisfying (ii), a contradiction. Since every vertex in Z, — Z} is special,
|Zs — Z4| < | Zsf€.

For any Zs-component @), we define a QQ-branch to be a component Q" of | t; — t; such
that Xo N V(Q) # 0. Since every vertex in Z} is adjacent to a Zs-component and every
vertex in Z, is special, every component Q' of | t; — ¢; with X¢ N Z} # 0 is a @Q-branch for
some Zs-component (). Since every vertex in Zs is Gy,-relevant, for every component @’ of
1 ti —t;, X¢ contains at most £ vertices in Z3. Since every vertex in Zj is special, every
vertex is adjacent to at most & vertices in Zj.

Similarly, for any Z3,-component @, we define a QQ-branch to be a component Q" of
b t; — t; such that Xo NV(Q) # 0. For every Zj,-component () and every @Q-branch @,
@' is also a Q3-branch for some Z3-component ()3 by the definition of Z}, since every vertex
in Zj is special. Hence, for every Q-branch @’ for some Z3 ,-component @, as shown in
the previous paragraph, X¢ N (Z3 U Z}) consists of at most & vertices in Z3 and at most
| Xq N Zs| - € < &% vertices in Z). So

(d) for every Zj ,-component @, [V(Q)| is at most €% + ¢ times the number of Q-branches.

Let @ be a Z; ;-component. Note that V(Q) N X;, = 0 as they have different colors.
Let @' be the subgraph of G;, — X;, induced by the vertices of G;, — X, corresponding to

13



the @-branches. Note that )’ can be obtained from @ by identifying vertices. Since @) is
connected, @' is connected. By (a), every vertex in Z satisfying (iii) satisfies ¢;(v) = c}(v),
so (' is contained in a ¢,-monochromatic component in Gy, — X;,. Hence @)’ contains at
most N vertices by the definition of ¢,. So there are at most N @Q-branches. By (d),
V(Q) < (€ +6)-N.

Since every Z3 4-component either consists of one vertex in Z,— 7} or is a Z:’,,, 4-component,
every Zs4-component contains at most (% + £)N vertices. So by (c), every Z-component
contains at most | Za| +|Z2| - 26 - (2 4+ &N < |S|- (1+283(E+1)N) < Ny - (1+28%(E+1)N)
vertices. By (b), |Z| < Ny - (1 +28%(£+1)N) - Ny = (1 +2€3(£ + 1)N)N2 < Ny — Ny. This
proves the claim. [J

Claim 7: For every i € [|V(T)|] — {1} and k € N, if C' is a ¢;_;-monochromatic component
crossing e; and with (e;,i — 1)-rank k, then |V(M) N X ;| < f(k), where M is the c-
monochromatic component containing C'.

Proof of Claim 7: Let i, k,C; M be the ones as stated in the claim. We shall prove this
claim by induction on k. For every a € [i —1,1], let C,, be the c,-monochromatic component
containing C'. Note that C' = C;_; and |V(M) N X, | = |[V(C;) N Xy,

If £ =1, then by Claims 3 and 4, [V(M) N X.,| = |V(C;) N X| = [V(C) N Xy,
(Wil < No = f(1).

So we may assume that £ > 2, and the claim holds if k is smaller. For every a € [k,
let M, be the c-monochromatic component containing the ¢;_;-monochromatic component
crossing e; with (e;,i — 1)-rank . Let J = {j € [i,4] : C; # C;_1}.

Let j € J. Let S; = {v € V(C;)N Xy, —V(Cj_1) : v is adjacent to some vertex in Cj_1}.

Let v € S;. So there exists u € V(Cj_1) such that uv € E(G). Note that v is ¢j-colored
but not ¢;_j-colored. So either v € X;; and v is special, or v € X, — X .

Suppose that v is special. Then wu is not special and v € X, , where ¢, is the node
of T' with v € X;,. Let 7, be the index such that u is ¢;,-colored but ¢;, ,-uncolored. So
iy < j — 1. Since u is not special, u is Gy, -relevant and c}u—colored. Since u is ¢;,-colored
but ¢;, _i-uncolored, u € X4, . Since i, < j—1,ve€ Xy, — Xy, . So v is ¢,-colored by the
definition of ¢;,. Hence v is ¢;_;-colored, a contradiction.

So v is not special and v € X|;; — Xy,. Since v is ¢;_j-uncolored, all neighbors of v are
contained in X, so u € X};,. Since Cj_; contains u and C', and C' crosses ¢;, we know
that C;_; crosses e;. Since v is not special and is c;-colored, v is c}—colored. Since w is
adjacent to v and is contained in C;_, and ¢;(u) = ¢;(v), we know that v is adjacent to a
vertex x of G contained in a ¢;_;-monochromatic component C, such that o(C;) < a(Cj_1),
by the definition of ¢j(v). Since C' crosses e;, Cj_; crosses e;. Since 0(C;) < o(C;_;) and
v € Xy, Cp crosses e; and the (e;, j — 1)-rank of C, is smaller than the (e;, j — 1)-rank of
Cj_1. By Claim 1, C, contains a ¢;_j-monochromatic component C’ crossing e; such that
the (e;,7 — 1)-rank of C!, is smaller than the (e;,7 — 1)-rank of C'. So there exists a, € [k — 1]
such that M, contains C’. Since C, contains z and C’, and M, is monochromatic, M,,
contains C, and =x.

Let i, be the index such that x € X;, . Since all neighbors of v are contained in X It
ti, € V(I t).

Suppose i, # j and v is not incident with an edge in adh(z x)(e;,). So z € X4, — X, and
v € Xy, — Xy, , where £, is the node of T' with v € X,. Since v is ¢;j-colored but not special,

<
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and since v € X}, — Xy, v is Gy,-relevant. Since t;, € V(I t;) — {¢;} and v € X3, — X, ,
v is incident with an edge in adh(p x)(e;, ), a contradiction.
Hence either i, = j or v is incident with an edge in adhr, X)(el-z). Note that z € X;, C
XU/i .
This shows that for every a € J, there exists z,, € U/’;;(V(Mg) N X|¢,) such that either
a = i, or there exists an edge of G in adh(rx(e;,, ) incident with a vertex in V(C,) —
V(Co-1), where i, is the index such that x, € X, . Therefore, |J| < ’UZ;(V(M,B) N

X)) - (€+1) < (E+1)- Zg;ll f(5) by the induction hypothesis.

Note that for every o € J, since C crosses ¢; and C, # C,_1, we know that C,_; crosses
o By Claim 6, for every o € J, |[V(C,) — V(Cq-1)| < Ny. Therefore, |V(C;) — V(C)| =
V(CH) = V(Cima)l = e sIV(Ca) = V(Cact)| 1T+ N < (€4 1)No- 3571 f(B) = (k). O

Let M be a c-monochromatic component. To prove this lemma, it suffices to show that
V(M) < N*.

Let I be the minimal set of nodes of T such that for every t € I, X, N V(M) # (), and
for every t' € V(T) with V(M) N Xy # 0, t' is a descendant of some node in I. Let ¢(M) be
the color of M in c.

Claim 8: If |I| =1, then |V(M)| < N*.

Proof of Claim 8: Let ¢t be the node in I, and let ¢ be the index such that t = ¢;. Let
Q ={Q : Qis a component of || t; —t; with Xo NV(M) # 0}. We may assume V(M) # X,
for otherwise |V(M)| = | X;,| = 1 < N* and we are done. So Q # (0. For each Q € Q, let ig
be the index such that @ =| t;,. Note that [V (M)| = | X[ + > geolV(M) N Xy,

For every ) € Q, there exists a path in M from X;, to Xo NV (M), so some vertex vg in
V(M) N Xq is Gy-relevant. So for each QQ € Q, there exists a ¢;,_1-monochromatic compo-
nent Cg crossing e;, contained in M. Note that for each @ € Q, M is the c-monochromatic
component containing Cg, and the (e;,,iq — 1)-rank of cq is at most £, so [V (M) N XmQ| <
f(&) by Claim 7. Hence |V(M)| = |X,,| + ZQEQH/(M) mXthiQ <1+4+19|- f(&).

Let W= {W : W is a component of | t; — t; with Xy, N W, # (0}. For each W € W, let
ew be the edge of T" between W and t;.

Let Q@ € Q —W. Since vg is Gy,-relevant, vg is ¢j-colored. Since Q@ € W, vg is ¢;_1-
uncolored. Since V(M) N X;, # 0 and ¢(M) = c(vg), ci(vg) # ci(vg). So vg is adjacent to
a vertex ug in a ¢;_;-monochromatic component whose color is different from ¢(M). Since
vgq is ¢;—1-uncolored, ug € Xy,. Since c(ug) # c(M), ug € Xy, — X¢,. So ug € Uy Xw-
Since @ € Q — W, vg is incident with an edge in (Jy )y adhir x)(ew).

Therefore, |- W] < [Uy ey adbira (ew)| < €V So|Q] < [WI+EW| < (€4 1) <
(€ +1)Np by Claim 4. Hence [V(M)| <14 |Q|- f(§) <1+ (E+1)Ny- f(§) < N*. O

Claim 9: If |I| > 2, then |V(M)| < N*.

Proof of Claim 9: Let ¢ be the largest integer such that ¢; is an ancestor of all nodes
in /. Note that such i exists since 1 is a candidate. Let Q@ = {Q : @ is a component of
L ti —t; with Xo N V(M) # 0}. Since |I| > 2, V(M)N X;, = 0 and Q # 0. By the
maximality of i, |Q] > 2. For each Q) € Q, let ig be the index such that @ =| t;,. Note
that [V(M)] = > geolV(M) N XitiQ

15



Let Q* € Q. For every Q € Q — {Q*}, there exists a path in M from Xg- N V(M)
to Xo N V(M), so some vertex vg in V(M) N Xg is incident with an edge of G corre-
sponding to an edge of Gy,. Similarly, some vertex vg« in Xg« N V(M) is incident with
an edge of G corresponding to an edge of Gy,. So for each ) € Q, there exists a ¢;, -
monochromatic component Cg crossing e;, contained in M. Note that for each Q € Q, M
is the c-monochromatic component containing Cg, so |V (M) N X¢t¢Q| < f(&) by Claim 7.
Hence |V(M)| = YoealV(M) N Xy, | < 1Q] - F(E).

For each Q € Q, let ¢(Q) = ci(xg), where xg is the peripheral vertex in Gy, — X,
corresponding to Q. Let Q; = {Q € Q : &(Q) # c¢(M)}. Let Qo = Q — Q;. Let
W = {W : W is a component of | t; —t; with Xy N W; # 0}. For each W € WU Q, let ey
be the edge of T' between W and t;.

Let Q € Q; — W. Since vg is incident with an edge of G' corresponding to an edge of
G,, vg is Gy-relevant and hence is c}-colored. Since Q ¢ W, vg is ¢;_j-uncolored. Since
Q € 9Q1, ci(vg) = c(M) # c(Q). So vg is adjacent to a vertex ug in a ¢;_;-monochromatic

(2
component whose color is ¢;(Q). Since vq is ¢;_j-uncolored, ug € X;,. Since c(ug) = ¢;(Q),

ug € Xy, — Xy, by the definition of ¢j. So ug € Uy ey Xw. Since vg is Gy,-relevant, vg is
incident with an edge in Jy; ¢y, adhrxy (ew).

Therefore, [Q; — W| < [Uyey adbiry(ew)| < €W, So Q] < (€ + W] < (€ +
D)W < (€4 1)Ny by Claim 4.

For C € {Q, Q1, Qa}, let Mc be the graph obtained from M[V (M) N Ugee Xq] by for
each ) € C, identifying () into a single vertex. Note that Mg, Mg, and Mg, are subgraphs
of Gy, — X;,. Since M is connected, Mg is connected. Note that [V (Mg,)| = |Qs| and
Mg, = Mg — V(Mg,). In addition, Mg, is contained in a (not necessarily connected)
ci-monochromatic subgraph of Gy, — X;,.

We claim that |V(Mg,)| < &(26 + 1)NgN. If Q; = 0, then Mg, = Mg is a c-
monochromatic component of Gy, — Xy,, so |V (Mg,)| < N by the definition of ¢;. So we may
assume that Q1 # (). For every component R of Mg,, let Qg be the subset of Q, consisting
of the members of Q corresponding to vertices of R. Since for every component R of Mo,,
there exists a path in Mg from R to Mg, internally disjoint from V (Mg, ), so there exists an
edge eg of G between g, . Xon and Ug,co, X+ Note that er € Uy, <o, adhr,x)(eq,)-
So the number of components of Mg, is at most |y, co, adh(r.x)(eq,)| < [Q11§ < £(E+1)No.
Since each component of Mg, is contained in a ¢j-monochromatic component of Gy, — X,
it contains at most IV vertices by the definition of ¢,. Therefore, |V (Mg,)| < N -&(€+ 1)Np.

Hence |Qz| — |V/(Mo,)| < £(E+1)NoN. S0]Q| = [Q1]+]Qa] < (6+1)No+E(E+ 1) NN
(14 NE)(E + 1)No. Therefore, [V(M)| < [Q] - f(§) < (1+ NE(E+1)No - f(§) < N*. T

By Claims 8 and 9, |V(M)| < N*. This proves the lemma. m

Now we are ready to prove Theorem 1.3. The following is a restatement.

Lemma 3.2. For any positive integers N, and «, there exists a positive integer N* =
N*(N, &, «) such that the following holds. Let G be a graph that admits a tree-cut decompo-
sition (T, X = (X, : t € V(T))) of adhesion at most  such that every bag contains at most
a vertices. For every t € V(T), let ki be a positive integer with ki + | X¢| > 2 such that the
graph obtained from the torso at t by deleting X; is ki-colorable with clustering N. Then G
is maxsey(r){ky + min{| Xy |, 1} }-colorable with clustering N*.
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Proof. Let N, ¢ and «a be positive integers. Let § = N3 (N, &), where N3 is the number
N* mentioned in Lemma 3.1. Define N* = af.

Let G be a graph that admits a tree-cut decomposition (7', X) of adhesion at most &
such that every bag contains at most « vertices. Denote X by (X; : t € V(T')). For every
t € V(T), let G; be the torso at t in (T, X'). Let k; be a positive integer with k; + | X;| > 2
such that G; — X; is k;-colorable with clustering N.

Let G’ be the graph obtained from G by for each ¢t € V(T) with X; # (), identifying
all vertices in X, into a vertex v;. For every t € V(T) with X; # 0, let X; = {v;}; for
every t € V(T) with X; = 0, let X; = 0. Let X’ = (X] : t € V(T)). Then (T,X") is a
tree-cut decomposition of G’ of adhesion at most & such that every bag contains at most
1 vertex. For every t € V(T), let G} be the torso at ¢ in (T, X”). Note that for every
teV(T), G — X, = G, — X}, so G} — X] is k-colorable with clustering N. If there exists
t € V(T) with k; 4+ | X]| < 1, then since k; is a positive integer, X; = ), so X; = () and hence
ki + | Xi| = ki + | X]| <1, a contradiction. Hence for every t € V(T), k; + | X,| > 2. Then by
Lemma 3.1, there exists a max;cy () {k: + | X{|}-coloring ¢’ of G’ with clustering .

Define ¢ to be a coloring of G such that for every u € V(G), define c(u) = (v, ), where
t, is the node of T' with v € X;,. So ¢ is a max,ev (1) { k¢ + | X{|}-coloring of G. Note that for
each t € V(T), | X{| € {0,1}, so k; + | X{| = k; + min{|X]|,1} = k; + min{|X;|, 1}. Hence ¢
is a maxyecy (r){k: + min{|X;|, 1} }-coloring of G.

Let C be a c-monochromatic component. Let C’ be the graph obtained from C' by for
each t € V(T') with X; # 0, identifying X, N V(C) into a vertex. Then C” is contained in a
¢-monochromatic component in G'. So |V(C")| < 5. Hence |V(C)| < B - maxiey (1| X:| <
fa = N*. So cis a maxsey(r){ ks + min{|Xy|, 1}}-coloring of G with clustering N*. m

4 Proof of Theorem 1.2

In this section we will prove the main theorem for clustered coloring immersion-free
graphs. We need the following structure theorem proved in [26]. A graph is exceptional if it
contains exactly one vertex of degree at least two, and this vertex is incident with a loop.

Theorem 4.1 (|26, Theorem 4.6]). For any positive integers d, h, there exist integers n =
n(d,h) and & = &(d, h) such that the following holds. Let H be a graph on h vertices with
mazximum degree d. Let G be a graph with no edge-cut of order exactly 3 such that G does not
contain an H-immersion. Define H' = H if H is non-exceptional; otherwise, define H' to be
a graph obtained from H by subdividing one edge. Then there exists a tree-cut decomposition
(T, X) of G of adhesion at most n such that for everyt € V(T), there exists Z; C E(G) with
| Z4| < & such that if Gy is the torso at t, then there exists a nonnegative integer d; < d such
that

1. the number of vertices of degree at least d; in Gy — Z; is less than the number of vertices
of degree at least d; in H',

2. every verter of Gy of degree at least d; in Gy — Z; is a non-peripheral vertex of Gy,

3. if [V(T)| =1 ort is not a leaf, then every vertez in X; has degree at least dy in Gy — Z,
and

17



4. if t is a leaf and |V(T)| > 2, then | X;| < 1.
Before proving the main theorem, we need the following easy lemma.

Lemma 4.2. Let G be a graph. Let £, k, N be positive integers. Let G’ be a graph that can
be obtained from G by deleting at most £ edges. If G’ is k-colorable with clustering N, then
G is k-colorable with clustering (€ + 1)N.

Proof. Let ¢ be a k-coloring of G’ of clustering N. Let Z C E(G) with |Z| < & such
that G' = G — Z. Since V(G) = V(G'), ¢ is a k-coloring of G. If M is a c-monochromatic
component in G, then M — Z intersects at most £ + 1 c-monochromatic components of G’,
so V(M) <(E+1)N. =

Recall that x, : NU {0} — N is the function such that for every z € NU {0}, x.(z) is
the minimum k& such that there exists N, € N such that every graph of maximum degree at
most z is k-colorable with clustering N,.

Lemma 4.3. For any positive integers d > 3, h, there exists a positive integer N = N(d, h)
such that the following holds. Let H be a graph on h wvertices of maximum degree d. Let G
be a 4-edge-connected graph with no H-immersion. Then G is (x.(d — 1) + 1)-colorable with
clustering N. Furthermore, if there exists exactly one vertex of H having degree d, then G
is (x«(d — 2) + 1)-colorable with clustering N.

Proof. Let d > 3, h be positive integers. We define the following.

e For every z € N, let IV, be a positive integer such that every graph of maximum degree
at most x is x.(z)-colorable with clustering N,.

e Let n = ny1(d,h) and & = &1(d, h), where 1,1 and &1 are the integers n and &
mentioned in Theorem 4.1.

e Define N = N3o((Ng—1 + Ng2)(§ +1),n,h), where N3, is the integer N* mentioned
in Lemma 3.2.

Let H be a graph on h vertices of maximum degree d. If H has exactly one vertex of
degree d, then let x = x.(d — 2); otherwise, let x = x.(d —1). Let G be a 4-edge-connected
graph with no H-immersion. We shall prove that G is (y + 1)-colorable with clustering N.
Suppose to the contrary that G is not (y + 1)-colorable with clustering N.

Since N > h, |V(G)| > |V (H)|, for otherwise G is 1-colorable with clustering N. If H is
non-exceptional, then let H' = H; if H is exceptional, then let H' be a graph obtained from
H by subdividing an edge. Note that the maximum degree of H' is d. Since d > 3, if H has
exactly one vertex of degree d, then H' has exactly one vertex of degree d.

Since G does not contain an H-immersion, by Theorem 4.1, there exists a tree-cut de-
composition (7, X) of G of adhesion at most 1 such that for every ¢ € V(T'), there exists
Z; C E(G) with |Z;] < € such that if G; is the torso at ¢, then there exists a nonnegative
integer d; < d such that

(i) the number of vertices of degree at least d; in Gy — Z; is less than the number of vertices
of degree at least d; in H’,
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(ii) every vertex of Gy — Z; of degree at least d; in G; — Z; is a non-peripheral vertex of Gy,

(iii) if |V(T)| = 1 or t is not a leaf of T', then every vertex in X, has degree at least d; in
Gt - Zt, and

(iv) if ¢ is a leaf and |V(T')| > 2, then | X;| < 1.

If |V(T)| = 1, then by (i) and (iii), G' contains at most |V (H')| — 1 < h vertices, so G
is 1-colorable with clustering h < N, a contradiction. So |V(T')| > 2. By (iv), | Xt < 1 for
every leaf ¢t of T

For every t € V(T'), since d; < d, (G;—Z;)— X, has maximum degree at most d;—1 < d—1
by (ii), so (Gy — Z;) — X is x«(d — 1)-colorable with clustering Ny_;. By Lemma 4.2, for
every t € V(T), Gy — X; is x«(d — 1)-colorable with clustering (|Z;| + 1) Ng—1 < (§+1)Ng—;.
In addition, (i), (iii) and (iv) imply that |X;| < max{|V(H')| — 1,1} < h for every node
t € V(T). Since d > 3, x*(d — 1) > 2. Hence by Lemma 3.2, G is (x«(d — 1) + 1)-colorable
with clustering N3o((§ +1)Ng_1,m,h) < N.

So x = x«(d —2). Hence H has exactly one vertex of degree d. So H' has exactly one
vertex of degree d. Hence for every non-leaf t of T, if d; = d, then by (i) and (iii), X; = 0
and G; — Z; has maximum degree at most d — 1; if d; < d, then the maximum degree of
(Gy — Z) — Xy is at most d; — 1 < d — 2. For every non-leaf ¢ of T, if d;, = d, then let
ki = x«(d — 1); if d; < d, then let ky = max{x.(d — 2),2 — | X;|}. Then for every non-leaf ¢
of T, (Gy — Z;) — Xy is ki-colorable with clustering Ny_; + Ny_o. By Lemma 4.2, for every
non-leaf ¢t of T', Gy — X; is ki-colorable with clustering (£ + 1) - (N4—1 + Ny_2). Note that for
every non-leaf ¢ of T', ky + min{| X[, 1} is at most either x.(d — 1) or x.(d — 2) + 1. Since
every graph with maximum degree at most d — 1 can be partitioned into a stable set and a
induced subgraph of maximum degree at most d — 2, we have y.(d — 1) < x.(d—2)+ 1. So
max;{ ks +min{| X[, 1}} < x.(d—2)+1, where the maximum is over all non-leaves ¢t of T'. For
every leaf t of T, let ky = 2—|X;|. For every leaf t of T', | X;| < 1 by (iv), so Gy is ki-colorable
with clustering 2 < N. Hence max;cy () {k: + min{|X,|,1}} < x.(d —2) + 1. By Lemma
3.2, G is (x+(d —2) + 1)-colorable with clustering N3 o((Ng—1+ Ng_2)(§+1),n,h) = N. This
proves the lemma. m

The following lemma is a simple variant of a result of Dirac [10]. For every graph G and
subset S of V(G), we define Ng(S) = {v € V(G) — S : v is adjacent to some vertex in S}.

Lemma 4.4. Let G be a graph. Let k and N be positive integers. Let [A, B] be an edge-cut
of G of order at most k — 1. If both G[A] and G|B] are k-colorable with clustering N, then
G is k-colorable with clustering N.

Proof. Let ¢4 and cp be k-colorings of G[A] and G[B] with clustering N, respectively.
Define H to be a simple bipartite graph H with V(H) = {a;, b; : ¢ € [k]} and with bipartition
({a; - i € [k]}, {b; : i € [k]}) such that two vertices a; and b; are adjacent in H if and only if
there exists an edge incident with a vertex v € A with ca(v) =4 and a vertex u € B with
cp(u) = j. Note that |E(H)| < |[A, B]| <k — 1. Let H' be the bipartite complement of H.
That is, V(H') = V(H) and E(H') = {a;b; : i, 5 € [K]} — E(H).

Suppose that H' does not contain a perfect matching. Then by Hall’s theorem, there
exists S C {a; : i € [k]} such that |[Ng/(S)| < |S]. Note that every vertex in S is adjacent in
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H to every vertex in {b; : j € [k]} — Ng(S). Hence H contains at least |S|- (k—|Ng/(5)]) >
|S|(k — | S| + 1) edges. Since |[Ny/(S)| < |S|, S # (. Hence 1 < |S| < k. So H contains at
least |S|(k — |S| + 1) > k edges, a contradiction.

Hence H' has a perfect matching {a;b,(;) : ¢ € [k]} for some bijection o : [k] — [k]. So for
each 7 € [k], a; is not adjacent to by,(;) in H. Let ¢4 be the k-coloring of G[A] such that for
every i € [k] and v € A with c4(v) =i, ¢4(v) = o(i). Note that ¢, is a k-coloring of G[A]
with clustering N. Define ¢ to be the k-coloring such that for every v € A, ¢(v) = ¢4(v), and
for every v € B, ¢(v) = cg(v). Then each c-monochromatic component of G is contained in
G[A] or G[B]. So c is a k-coloring of G with clustering N. =

Recall that for every graph H, y.(H) is the minimum k such that there exists N € N
such that every graph with no H-immersion is k-colorable with clustering V.

Lemma 4.5. If H is a graph of mazimum degree 1, then x.(H) = 1.

Proof. Let N = (|[V(H)| — 1)V#I,

Let GG be a graph with no H-immersion. Since H has maximum degree 1, H is a disjoint
union of copies of K, and isolated vertices. Note that Ky (m) and the path on |V(H)|
vertices contain an H-immersion. Hence the maximum degree of G is at most |V (H)| — 1,
and every path in G contains at most |V (H)|— 1 vertices. So every component of G contains
at most (|V(H)| — 1)V = N vertices. Therefore, G is 1-colorable with clustering N. m

Now we are ready to prove Theorem 1.2. The following is a restatement of Theorem 1.2.
Theorem 4.6. Let d be a positive integer, and let H be a graph of mazimum degree d.
1. If d =1, then x.(H) = 1.

2. Ifd > 2 and H has exactly one vertex of degree d, then x.(d—1) < x«(H) < max{x.(d—
2) + 1,4},

3. If d > 2 and H has at least two vertices of degree d, then x.(d —2) +1 < x.(H) <
max{x.(d — 1) + 1,4}.

Proof. Statement 1 immediate follows from Lemma 4.5. So we may assume d > 2.

Let x = max{x.(d — 2) + 1,4} if H has exactly one vertex of degree d; otherwise, let
X = max{x«(d—1)+1,4}. Let N = Ny3(d, |V (H)|), where N, 3 is the number N mentioned
in Lemma 4.3.

We first prove the upper bounds.

Suppose that d > 3 and there exists a graph G with no H-immersion such that G is not
x-colorable with clustering N. We further assume that |V(G)| is as small as possible. By
Lemma 4.3, G is not 4-edge-connected. So there exists an edge-cut [A, B] of G of order at
most 3 with A # () # B. Note that both G[A] and G[B] are subgraphs of G, so they do
not contain an H-immersion. By the minimality of G, G[A]| and G[B] are x-colorable with
clustering N. Since y > 4 > |[A, B]|, by Lemma 4.4, G is x-colorable with clustering N, a
contradiction.

Therefore, if d > 3, then every graph with no H-immersion is y-colorable with clustering
N. If d < 2, then let H' be the graph obtained from H by adding a loop incident with
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a vertex of degree d, so H' has maximum degree d + 2 with 3 < d 4+ 2 < 4, and hence
X«(H) < x«(H") < max{x.(3)+ 1,4} =4 < x. This proves the upper bound for Statements
2 and 3 of this theorem.

Now we prove the lower bounds.

Every graph of maximum degree at most d — 1 does not contain an H-immersion. So
X«(H) > x.(d—1). This proves Statement 2. To prove Statement 3, it suffices to show that
X«(d—2)4+1 < x.(H) when H has at least two vertices of degree d.

Now we assume that H has at least two vertices of degree d. Suppose to the contrary
that x.(H) < x«(d—2). So there exists a positive integer n such that every graph with no H-
immersion is y.(d— 2)-colorable with clustering 1. By the definition of x.(d —2), there exists
a graph L of maximum degree at most d — 2 such that there exists no (x.(d—2) —1)-coloring
of L with clustering 7.

Define @) to be the graph obtained from a union of n disjoint copies L1, Lo, ..., L, of L
by adding a vertex v* adjacent to all other vertices. Since L is of maximum degree at most
d— 2, () has at most one vertex of degree at least d. Since H contains at least two vertices of
degree d, () does not contain an H-immersion. So there exists a x,(d—2)-coloring ¢ of ) with
clustering 7. By symmetry, we may assume that c(v*) = y.(d — 2). Since c is of clustering
7, there exists i € [n] such that c(v) # c¢(v*) for every v € V(L;). So the restriction of ¢ on
L; is a (x«(d — 2) — 1)-coloring of clustering . However, it is impossible by the definition of
L. This proves the theorem. =

5 Application to tree-decompositions

Let G be a graph. A tree-decomposition of G is a pair (T, X') such that T is a tree and
X is a collection (X; : t € V(7)) of subsets of V(G) such that

* UteV(T) X =V(G),
e for every e € E(G), there exists t € V(T) such that X; contains all ends of e, and
e for every v € V(G), the set {t € V(T') : v € X;} induces a connected subgraph of 7.

The adhesion of (T, X) is maxyyepry|X: N Xy|. For every t € V(T'), the torso at t in (T, X)
is the graph obtained from G|[X;] by for each neighbor t’ of ¢, adding edges such that X, N X}
is a clique.

Lemma 5.1. Let d and n be positive integers. Let G be a graph with maximum degree at
most d. Let (T, X) be a tree-decomposition of G of adhesion at most n. Then there ezists a
tree-decomposition (T, X' = (X[ :t € V(T))) of G such that

1. the adhesion of (T, X’) is at most the adhesion of (T, X).

2. for every t € V(T), X] C X;, and the torso at t in (T, X’) is a subgraph of the torso
at t in (T, %),

3. for every t € V(T) and v € X}, there exist at most d + 1 neighbors t' of t such that
ve X, and
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4. for every t € V(T), the torso at t in (T, X') has mazimum degree at most nd +n — 1.

Proof. Let r be a node of T. We assume that T is a rooted tree rooted at r. For each
t € V(T), let T; be the maximal subtree of T rooted at t. For every t € V(T) and every
vertex v € X, define Cy, to be the set of children ¢ of ¢ such that (Ut,GV(TC) Xy) — X
contains a neighbor of v. Since the maximum degree of G is at most d, |Cy,| < d. For every
v € V(G), let r, be the node of T with v € X, closest to 7.

Denote X by (X; : t € V(T)). For every t € V(T), define X| = {v € X, : either t = r,,
or t € Cp,, where p is the parent of t}. Then (T, X”) is a tree-decomposition satisfying
Statements 1-3. By Statement 3, for every ¢t € V(T'), the torso at t in (T, X”) has maximum
degree at most d + (n — 1)(d+ 1) = nd +mn — 1. So Statement 4 holds. =

Lemma 5.2. Let d and n be positive integers. Let G be a graph with maximum degree
at most d. Let (T, X) be a tree-decomposition of G of adhesion at most n. Denote X by
(X;:t € V(T)). Then there exists a tree-cut decomposition (T, X' = (X :t € V(T"))) of G
of adhesion at most (d + 1)*n + d such that the following hold.

1. T" is obtained from T by attaching leaves.
2. For everyt € V(T"), | X;| <1, and if | X}| = 1, then t is a leaf of T".

3. For everyt € V(T), the torso at t in (T', X’) is a subgraph of a graph R, obtained from
a subgraph of the torso at t in (T, X) by identifying a set of at most n vertices in X
into a vertex, adding a set I of vertices and adding edges incident with I such that I
1s a stable set and the neighborhood of every vertex in I is a clique of size at most 1.

4. For every t € V(T), the mazimum degree of R; is at most (d + 1)n? + d.

Proof. By Lemma 5.1, there exists a tree-decomposition (T, X' = (X! : t € V(T))) of G
of adhesion at most 7 such that for every ¢ € V(T'), the torso at ¢ in (T, X*') is a subgraph
of the torso at ¢ in (T, X), and for every v € X/, there exist at most d + 1 neighbors ¢’ of ¢
such that v € X},. For every t € V(T), let Q, be the torso at ¢ in (T, X1).

Let r be a node of T. We assume that T is a rooted tree rooted at r. For every
t € V(T) — {r}, let p; be the parent of t. For every vertex v of G, let r, be the node of
T with v € X closest to r. For every t € V(T), define X7 = {v € X/ : t = r,}. Let
X?=(X?:teV(T)). Then (T, X?) is a tree-cut decomposition of G.

For every tt' € E(T), if uv is an edge of G contained in adhz, x2)(tt'), then {u,v} N X} N
X} # 0. Since the maximum degree of G is at most d, the adhesion of (T, X'?) is at most dn.

Note that for every t € V(T'), if there exists v € X} — X7, then t # r and v € X/ N X .
Let S, = 0, and for every t € V(T) — {r}, let S, = X/ N X}},. So for every t € V(T) — {r},
the peripheral vertex of the torso at t in (T, X?) corresponding to the component of T — ¢
containing r is obtained from @); by identifying .S; into a vertex v; and deleting the resulting
loops. Note that |S;] <1, since the adhesion of (T, X') is at most 7.

Suppose that there exist ¢ € V(T'), a non-loop edge uv of G, and two distinct components
Ty, T, of T —t not containing r such that v € X7 and v € X7,. Then r, € V(T}) and
Ty € V(Ty). So there exists no t' € V(T) such that X} D {u,v}, contradicting that (7, X*")
is a tree-decomposition.
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Hence for every t € V(T), the peripheral vertices of the torso at ¢ in (T, X?) corresponding
to the components of T'—t disjoint from 7 form a stable set, denoted by I;. In addition, since
(T, X1) is a tree-decomposition of G, for every ¢t € V(T), if ¢ € I;, then the neighborhood of
g in the torso at ¢ in (7', X?) is contained in (X; NUyey ) Xo — Si) U{v.}, where W, is the
component of T'—t corresponding to ¢; and if ¢ is adjacent to vy, then StﬂthﬂUt’eV(Wq) X} #
0.

For every t € V(T), let RZ be the graph obtained from Q; by identifying S; into a vertex
v; and adding I; and edges such that for every ¢ € I;, the neighborhood of ¢ in R? is the
same as the neighborhood of ¢ in the torso at ¢ in (7, X?). Since the adhesion of (T, X*) is
at most 7, the neighborhood in R? of each vertex in I; is a clique of size at most 7. Note
that the torso at ¢ in (T, X?) is a subgraph of RZ.

Since for every t € V(T') and v € X/, there exist at most d+ 1 neighbors ¢’ of ¢ such that
v € X}, the maximum degree of R? is at most (d + (d + 1)n)n < (d + 1)n* + d.

Define 7" to be the tree obtained from T by for each ¢ € V(T), attaching |X?| leaves
adjacent to t. So for every t € V(T'), there exists a bijection o, from the set L, of leaves
attached on ¢t to X2. For each t € V(T), define X, = 0; for each t € V(T") — V(T),
there uniquely exists ¢ € V(T') such that ¢ € Ly, and we define X] = {oy(t)}. Define
X' = (X]:teV(I"). Then (T, X') is a tree-cut decomposition of G such that Statements
1 and 2 of this lemma hold.

For every t € V(T), define R; to be a graph obtained from R? by deleting all loops. For
every t € V(T), since the torso at ¢ in (7", X”) is obtained from the torso at ¢ in (T, X?) by
deleting all loops, the torso at ¢ in (7", X’) is a subgraph of R;. Furthermore, the maximum
degree of R; is at most the maximum degree of R?. Hence Statements 3 and 4 hold.

Since the adhesion of (77, X”) is at most the maximum degree of the torsos in (77, X”),
the adhesion of (77, X”) is at most (d + 1)n* + d. This proves the lemma. m

Lemma 5.3. For any positive integers d,n, N, d', there exists an integer N* = N*(d,n, N, d’)
such that the following hold. Let k be a positive integer, and let G be a graph with maximum
degree at most d such that G is k-colorable with clustering N. Let G' be a graph with
mazimum degree at most d' obtained from G by identifying a set of at most n vertices into
a vertex, adding a set I of vertices and adding edges incident with I such that I is a stable
set in G, and the neighborhood of each vertex in I is a clique of size at most n. Then G’ is
k-colorable with clustering N*.

Proof. Let d,n, N,d be positive integers. Let Ng = dnN + 1. Define N* = (d’ 4+ 1)Np.

Let k be a positive integer. Let G be a graph with maximum degree at most d such that
G is k-colorable with clustering N. Let Go be a graph with maximum degree at most d’
obtained from G by identifying a set S of at most n vertices into a vertex vg. Let G’ be
a graph with maximum degree at most d obtained from Gy by adding a set I of vertices
and adding edges incident with I such that I is a stable set in G’, and the neighborhood of
each vertex in [ is a clique of size at most 7. It suffices to prove that G’ is k-colorable with
clustering N*.

Let f be a k-coloring of G with clustering N. Let fo(vg) = 1. For every v € V(Go)—{vs},
let fo(v) = f(v). Since the maximum degree of G is at most d, fy is a k-coloring of Gy with
clustering d|S|- N +1 < dnN +1 = N,.
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For every v € V(Gy), let f'(v) = fo(v); for every v € I, let f'(v) = 1. Then f’ is a
k-coloring of G'. Let M be an f’-monochromatic component of G'. It suffices to show that
V(M) < N*.

If V(M) C I, then since [ is a stable set in G', |[V(M)| = 1. So we may assume that
V(M — 1) # (). Since I is a stable set in G’, and the neighborhood of each vertex in I is a
clique in G', M — I is connected. So M — I is a fo-monochromatic component of Gy. Hence
V(M —1I)| < Ny. Since the maximum degree of G’ is at most d’, and I is a stable set in G,
V(M)YNI| < d|V(M—=1)| <dNy. So|V(M)| < |V(M)nI|+|V(M—1)| < (d+1)Np.
This proves the lemma. =

The following is a restatement of Statement 1 in Corollary 1.4.

Theorem 5.4. For any positive integers n,d and N, there exists a positive integer N* such
that for every positive integer k > 2, if G is a graph with mazimum degree at most d and G
admits a tree-decomposition (T, X) of adhesion at most n such that for every t € V(T'), the
torso at t in (T, X) is k-colorable with clustering N, then G is k-colorable with clustering
N*.

Proof. Let n,d, N be positive integers. Let Ny = N53(nd+n— 1,1, N, (d+ 1)n*+d), where
N5 3 is the integer N* mentioned in Lemma 5.3. Define N* = N3o(Ny, (d + 1)?n + d, 1),
where N3 o is the integer N* mentioned in Lemma 3.2.

Let k& be an integer with £ > 2. Let G be a graph with maximum degree at most d
such that G admits a tree-decomposition (7', X') of adhesion at most 1 such that for every
t € V(T), the torso at ¢ in (T, X') is k-colorable with clustering N.

Let Cy be the collection consisting of the graphs that are subgraphs of a torso at ¢ in
(T, &) for some t € V(T'). By assumption, every graph in Cy is k-colorable with clustering
N. By Lemma 5.1, there exists a tree-decomposition (7, X% = (X? : t € V(T))) of G of
adhesion at most 7 such that for every ¢ € V(T'), the torso at ¢ in (T, X°) belongs to Cy and
has maximum degree at most nd +n — 1.

Let C{ be the set of graphs in Cy with maximum degree at most nd +n — 1. Let C; be
the collection consisting of the graphs of maximum degree at most (d + 1)n? + d that can
be obtained from some graph in Cj) by identifying a set of at most 1 vertices into a vertex,
adding a set I of vertices and adding edges incident with I such that I is a stable set and the
neighborhood of each vertex in [ is a clique of size at most 7. By Lemma 5.3, every graph
in C; is k-colorable with clustering Ny,

By Lemma 5.2, there exists a tree-cut decomposition (77, X' = (X, : t € V(T"))) of G of
adhesion at most (d + 1)n? + d such that the following hold.

e 7" is obtained from T by adding leaves.
e For every t € V(T"), | X]/| <1, and if | X],| = 1, then ¢ is a leaf of T".

For every t € V(T), the torso at ¢ in (7", X’) has maximum degree at most (d+1)n*+d
and is a subgraph of a graph in C;.

For every t € V(T") — V(T), the torso at t in (7", X’) has at most 2 vertices.
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For every t € V(T"), if X] # 0, then let k; = 1; otherwise let k, = k. So if X, # (), then ¢ is a
leaf of 7", k;+| X}| = 2, and the torso at ¢ in (77, X”) is (k;+|X[|)-colorable with clustering 1 <
Ny; if X} = (), then since the torso at ¢t in (7", X’) either is in C; or has at most two vertices, it
is k¢-colorable with clustering /NVy. Hence by Lemma 3.2, G is maxcy (1 {k: +min{| X]|, 1}}-
colorable with clustering N*. Note that max;cv(7){k + min{|X/|,1}} < max{k,2} = k.
This proves the theorem. m

A similar and simpler argument proves the following theorem which is a restatement of
Statement 2 in Corollary 1.4.

Theorem 5.5. For any positive integers n,d and N, there exists a positive integer N* such
that for every integer k, if G is a graph with maximum degree at most d and G admits a
tree-decomposition (T, X = (X, : t € V(Q))) of adhesion at most n such that for every
t € V(T), G[Xy] is k-colorable with clustering N, then G is (k + 1)-colorable with clustering
N*.

Proof. Let n,d, N be positive integers. Let Ny = N53(nd+n— 1,1, N, (d+ 1)n*+d), where
Ns3 is the integer N* mentioned in Lemma 5.3. Define N* = N3o(Ny, (d + 1)%*n + d, 1),
where N34 is the integer N* mentioned in Lemma 3.2.

Let k be an integer and G a graph as stated in this theorem. Since G[X;] is k-colorable
for every t € V(T), k > 1.

By Lemma 5.1, there exist a set Cy of graphs that are k-colorable with clustering N and
a tree-decomposition (T, X% = (X? : t € V(T))) of G of adhesion at most 7 such that for
every t € V(T), G[X?] € Cy and has maximum degree at most nd +n — 1. Let C; be the
collection consisting of the graphs of maximum degree at most (d + 1)n? + d that can be
obtained from some graph in Cy by identifying a set of at most 7 vertices into a vertex. By
Lemma 5.3, every graph in C; is k-colorable with clustering Ny,

Let Cy be the collection consisting of the graphs of maximum degree at most (d+1)*n+d
that can be obtained from some graph in C; by adding a set I of vertices and edges incident
with I such that I is a stable set. Then every graph in Cy is (k + 1)-colorable with clustering
N; since we can use a new color to color I.

By Lemma 5.2, there exists a tree-cut decomposition (77, X' = (X, : t € V(T1"))) of G of
adhesion at most (d + 1)n* + d such that

o for every t € V(T"), | X;| <1, and if | X[| = 1, then ¢ is a leaf in 7",
e for every t € V(T), the torso at t in (7", X’) is in Cy, and
e for every t € V(1) — V(T'), the torso at t has at most 2 vertices.

For every t € V(T7), let ky = (1 — | X[|)k + 1, so k¢ + | X{| > 2. For t € V(T"), if | X]| =0,
then k; = k + 1, so the torso at t in (77, X”) is k;-colorable with clustering Ny; if | X]| > 0,
then ¢ is a leaf in 77, so the torso at ¢ in (7", X’) has at most 2 vertices and is k;-colorable
with clustering 2 < N;. By Lemma 3.2, G is maxcy 1y {k: + min{|X/|, 1} }-colorable with
clustering N*. Since maxycy (r{k: + min{|Xj|,1}} <k + 1, this proves the theorem. =
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6 Concluding remarks

In this paper we prove that x.(H) is very close to x«(A(H) — 1) for every graph H. But
it remains unclear what x.(z) is, even for its asymptotic behavior. It can be shown that

lim, oo X*T(x) exists by a result of Lovész [31]. And 411 < limg 0o X*:iw) < % by [2, 19].

Question 6.1. Determine lim,_, x:(@)

Another natural question is about strong immersion. The immersion containment can be
equivalently defined as follows. For graphs G and H, we say that GG contains an H-immersion
if there exist functions my and 7g such that

e 7y is an injection from V(H) to V(G),

e mp maps each edge of H to a subgraph of G such that for each e € E(H), if e has
distinct ends z,y, then mg(e) is a path in G with ends 7y (z) and 7y (y), and if e is a
loop with end v, then mg(e) is a cycle containing 7y (v), and

o if e1, ey are distinct edges of H, then mg(e;) and 7g(eq) are edge-disjoint.

We say that a graph G contains another graph H as a strong immersion if G contains an
H-immersion such that the witness functions 7y and g satisfy the extra property that for
every v € V(H) and e € E(H), if e is not incident with v, then mg(e) does not contain
Ty (U)

Strong immersion was introduced by Nash-Williams, and numerous problems that were
proposed for minors, topological minors and immersions have been proposed for strong im-
mersion as well. So it is natural to consider the clustered chromatic number of the class of
graphs with no H-strong immersion for any fixed graph H. It turns out that the answer is
different from the one for immersion for some graph H, but possibly not too much.

The clustered chromatic number of a class C of graphs is the minimum k such that there
exists a positive integer N such that every graph in C is k-colorable with clustering N.

Proposition 6.2. Let d be a positive integer. Let H be a graph with maximum degree d such
that there exists a cycle in H containing at least 3 vertices of degree d. Then the clustered
chromatic number of the class of graphs that do not contain H as a strong immersion is at
least x«(d — 3) + 2.

Proof. Suppose to the contrary that there exists a positive integer N such that every graph
that does not contain H as a strong immersion is (x.(d —3)+ 1)-colorable with clustering N.
Let L be a graph with maximum degree at most d — 3 such that no (x.(d — 3) — 1)-coloring
of L with clustering N exists. Let L* be the simple graph obtained from a path vivs...vn11
on N + 1 vertices by for each i € [N], adding 2N — 1 disjoint copies L;1, L; 2, ..., L;an—1 of
L and adding edges such that v; and v, are adjacent to all vertices in U?f{ ! L; ;.

Since L has maximum degree at most d — 3, vy, v, ...,vyy1 are the only vertices in L*
with degree at least d. Suppose that L* contains H as a strong immersion. Since there exists
a cycle in H containing 3 vertices of degree d, there exist distinct elements @ < 8 < 7 in
[N + 1] and edge-disjoint paths Py, Py, P; in L* such that each P; contains exactly 2 vertices

26



in {v,,vg, v, }. But there exists no path in L* — vz from v, to v,, contradicting the existence
of Pl, PQ, Pg.

Hence L* does not contain H as a strong immersion. So by assumption, there exists a
(x«(d—3)+1)-coloring ¢ of L* with clustering N. So the path vjvs,,,vny1 on N+ 1 vertices
is not c-monochromatic. Hence there exists ¢ € [IN] such that c(v;) # ¢(vi41). By symmetry,
we may assume that c(v;) = x«(d —3) and ¢(v;41) = x«(d —3) + 1. Since ¢ has clustering N,
there are most NV — 1 indices j such that L;; contains a vertex with color x.(d — 3) and at
most N — 1 indices j’ such that L, ; contains a vertex with color x.(d — 3) + 1. Hence there
exists an index j* € [2N —1] such that the restriction of ¢ on L; j« is a (x«(d—3) —1)-coloring
with clustering N, contradicting the definition of L. =

Note that there are infinitely many positive integers d such that x.(d —3) +2 > x.(d —
X+ () X+ ()

1) 4+ 1, for otherwise lim, > %, contradicting lim, < % Hence Proposition
6.2 and Theorem 4.6 show that the clustered chromatic number of H-immersion free graphs
and H-strong immersion free graphs are different for infinitely many graphs H. However, it
is unknown whether the gap can be arbitrarily large. We conjecture that it is not the case.

Conjecture 6.3. There exists a positive integer C' such that for every graph H, the clustered
chromatic number of the class of graphs that do not contain H as a strong immersion is at
most x.(H)+ C.
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