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Abstract

Given an infinite family G of graphs and a monotone property P, an (upper) threshold for G
and P is a “fastest growing” function p : N → [0, 1] such that limn→∞ Pr(Gn(p(n)) ∈ P) = 1 for
any sequence (Gn)n∈N over G with limn→∞|V (Gn)| =∞, where Gn(p(n)) is the random subgraph
of Gn such that each edge remains independently with probability p(n).

In this paper we study the upper threshold for the family of H-minor free graphs and the prop-
erty of being (r−1)-degenerate and apply it to study the thresholds for general minor-closed families
and the properties for being r-choosable and r-colorable. Even a constant factor approximation
for the upper threshold for all pairs (r,H) is expected to be challenging by its close connection
to a major open question in extremal graph theory. We determine asymptotically the thresholds
(up to a constant factor) for being (r − 1)-degenerate (and r-choosable, respectively) for a large
class of pairs (r,H), including all graphs H of minimum degree at least r and all graphs H with no
vertex-cover of size at most r, and provide lower bounds for the rest of the pairs of (r,H).

Keywords: Graph minors, random subgraphs, degeneracy, phase transition, graph coloring.

1 Introduction

Given a graph G and a real number 0 ≤ p ≤ 1, let G(p) be the random subgraph of G where each
edge remains independently with probability p. Note that if G is an n-vertex complete graph, this is
the well-studied Erdős-Rényi model G(n, p).

Studying the random perturbation G(p) of a graph G is of both theoretical and practical interests
because most instances in the real world are subject to random noises. It is therefore valuable to
study robustness of a property or a specific algorithm. For example, Spielman and Teng [38, 39]
introduced smoothed analysis and studied a continuous version of random perturbations (e.g., noises
are Gaussian distributions). They [38] showed that the simplex method runs in polynomial time in
expectation even though the worst-case scenario runs in exponential time, explaining rigorously why
the simplex method is fast in practice. Since then, smoothed analysis for other hard graph problems
has been studied (e.g. [1, 12]). However, the techniques in [1, 12] used for continuous random models
stop working in the random model G(p), where each edge follows a discrete distribution.

Contrary to smoothed analysis, Bennett, Reichman and Shinkar [3] showed that for some NP-hard
problems related to coloring and independence number, the worst-case instances essentially remain
hard under random perturbations.
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Coloring problems on planar graphs have been extensively studied. It is trivial to determine
whether a planar graph is 4-colorable[a] by the Four Color Theorem, though it is NP-hard to determine
whether a planar graph is 3-colorable or not [17]. It is natural to consider the chromatic number
of random perturbations of planar graphs. In particular, the following question raised by Daniel
Reichman (via private communication) remains open.

Question 1.1. What are the values of p such that for each planar graph G, the random subgraph G(p)
is 3-colorable with high probability?

In this paper we systematically study a generalization of Question 1.1 by investigating the (crude)
thresholds for stronger properties (degeneracy and choosability) on more general graph classes (minor-
closed families), which is related to an open problem in extremal graph theory. One simple corollary
of our main results is the following partial answer of Question 1.1.

Corollary 1.1. For any sequence (Gn)n∈N of planar graphs with |V (Gi)| = i for each i ∈ N, if
p = o(n−1/5), then Gn(p) is 3-colorable a.a.s.[b] Moreover, there exists a sequence (Gn)n∈N of planar
graphs with |V (Gi)| = i for each i ∈ N such that if p = ω(n−1/6), then Gn(p) is not 3-colorable a.a.s.

Corollary 1.1 can be restated as “the threshold probability for being 3-colorable and for the class
of planar graphs is Ω(n−1/5) and O(n−1/6)”. The formal definition of the thresholds is included in
Definition 1.

Corollary 1.1 follows from a very special case of our general results (Theorems 1.4 and 1.6). More
corollaries for other extensively studied minor-closed families[c] can be similarly derived from those
main results. We include some examples in Corollary 1.2.

Corollary 1.2. All results in Table 1 hold.

1.1 Definitions and main questions

A graph property P is a class of graphs such that P is invariant under graph automorphisms. A
graph class G is monotone if every subgraph of a member of G is in G. We remark that a graph
property is also a graph class. So a graph property P is monotone if every subgraph of a member of
P is in P.

Given a monotone graph property P and an infinite sequence (Gn)n∈N, a function p∗ : N→ [0, 1] is a
threshold (probability) for P and (Gn)n∈N if for any slowly growing function x(n): (1) Gn(p∗(n)x(n)) /∈
P a.a.s.; and (2) Gn(p∗(n)/x(n)) ∈ P a.a.s. Thresholds for various graph properties in G(n, p) were
first observed by Erdős and Rényi [11], and then generalized to all monotone set properties and general
random set models by Bollobás and Thomason [6] (see also [15]). In addition, the results in [6] imply
the existence of the following more general setting of threshold probabilities for any monotone graph
class G.

[a]In this paper, a graph is k-colorable for some integer k if its vertices can be colored with k colors such that vertices
with the same color are not adjacent.

[b]Given a sequence of events (En)n∈N in a probability space, we say En happens asymptotically almost surely (or a.a.s.
in short) if limn→∞ Pr(En) = 1.

[c]One example included in Corollary 1.2 is the class of graphs with bounded Colin de Verdière parameter. This
parameter, denoted by µ(G), is defined to be the largest corank of certain matrices associated with a graph G. Its formal
definition is long and is omitted in this paper because we do not need the formal definition to derive results from our
main theorem. It is known that µ(H) ≤ µ(G) if H is a minor of G [8], so the class of graphs whose µ is at most a fixed
constant k is a minor-closed family. This parameter can capture certain topological properties of graphs. It is known
that µ(G) ≤ 1 if and only if G is a disjoint union of paths [8]; µ(G) ≤ 2 if and only if G is outerplanar [8]; µ(G) ≤ 3 if
and only if G is planar [8]; µ(G) ≤ 4 if and only if G is linklessly embeddable [26, 34, 36].
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Graph class
Range for r,
where r ∈ N

Properties
(r − 1)-degenerate r-choosable r-colorable

Graphs embeddable
in a surface Σ with
Euler genus g,
where Σ 6= S2

r ≥ b7+
√
1+24g
2 c Θ(1) Θ(1) Θ(1)

4 ≤ r < b7+
√
1+24g
2 c, Ω(n

− 2
(r+1)r−2 ) Ω(n

− 2
(r+1)r−2 ) Ω(n

− 2
(r+1)r−2 )

and if Σ is the Klein
bottle, then r 6= 6

r = 6, and Σ is the
Klein bottle

Ω(n−1/20) Θ(1) Θ(1)

r = 3 Θ(n−1/5) Θ(n−1/5) Ω(n−1/5)

O(n−1/6)

r = 2 Θ(n−1/2) Θ(n−1/2) Ω(n−1/2)

O(n−1/3)

Graphs with Colin
de Verdière
parameter µ ≤ k,
for some fixed
integer k

r = k ≥ 2 Θ(n−
1

2k−1 ) Θ(n−
1

2k−1 ) Ω(n−
1

2k−1 )

O(n
− 2

(k+1)k )

2 ≤ r ≤ k − 1 Θ(n−
1
r ) Θ(n−

1
r ) Ω(n−

1
r )

O(n
− 2

(r+1)r )

Linkless embeddable
graphs (i.e. µ ≤ 4)

r = 5 Ω(n−1/12) Ω(n−1/12) Θ(1)

O(n−1/42) O(n−1/1470)

r = 4 Θ(n−1/7) Θ(n−1/7) Ω(n−1/7)

O(n−1/10)

r = 3 Θ(n−1/3) Θ(n−1/3) Ω(n−1/3)

O(n−1/6)

r = 2 Θ(n−1/2) Θ(n−1/2) Ω(n−1/2)

O(n−1/3)

Planar graphs (i.e.
µ ≤ 3)

r ≥ 6 Θ(1) Θ(1) Θ(1)

r = 5 Ω(n−1/14) Θ(1) Θ(1)

O(n−1/30)

r = 4 Ω(n−1/9) Ω(n−1/9) Θ(1)

O(n−1/12) O(n−1/219)

r = 3 Θ(n−1/5) Θ(n−1/5) Ω(n−1/5)

O(n−1/6)

r = 2 Θ(n−1/2) Θ(n−1/2) Ω(n−1/2)

O(n−1/3)

Outerplanar graphs
(i.e. µ ≤ 2)

r ≥ 3 Θ(1) Θ(1) Θ(1)

r = 2 Θ(n−1/3) Θ(n−1/3) Θ(n−1/3)

Table 1: Examples of the threshold probability for certain minor-closed families and three special
properties: being (r − 1)-degenerate, r-choosable and r-colorable, for integers r.
Among the results in this table, results that state the thresholds are equal to Θ(1) follow from known
results in the literature; all other lower bounds of the thresholds in this table follow from our main
theorems (Theorems 1.4 and 1.6); all other upper bounds follow from a combination of our tools
developed in Section 3 and either known results in the literature or trivial observations.
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Definition 1 (Upper threshold pPG ). Let P be a monotone graph property and let G be a monotone
graph class. When G is an infinite family, we say that a function pPG : N→ [0, 1] is an upper threshold
for G and P if the following two conditions hold.

1. For every sequence (Gn)n∈N of graphs with Gn ∈ G and |V (Gn)| = n, and for any function
q : N→ [0, 1] with pPG (n)/q(n)→∞, the random subgraphs Gn(q(n)) are in P a.a.s.

2. There exists a sequence (Gn)n∈N of graphs with Gn ∈ G and |V (Gn)| = n such that for any
function q : N→ [0, 1] with q(n)/pPG →∞, the random subgraphs Gn(q(n)) are not in P a.a.s.

When G is finite, a function pPG : N→ [0, 1] is an upper threshold for G and P if pPG = Θ(1).

In the case when G consists of a sequence (Gn)n∈N where |V (Gn)| = n for each n ∈ N, the
definition for the upper threshold for G coincides with the aforementioned definition for a threshold
for the sequence (Gn)n∈N. For simplicity, we call the upper threshold the threshold. Note that pPG is
unique up to multiplying by positive constant factors. So it is sufficient to determine the order of pPG .

In comparison to numerous results on thresholds for various graph properties on G(n, p) (see e.g.
[5, 16, 24]), only few results are known when the host graphs are other graphs. In addition, these few
known results tend to depend on the high density, such as in [18], or special geometric or spectral
features, such as being expanders [2] or being an n-dimensional cube [7].

In this paper, we complement the knowledge in this direction by considering the case when the
host graphs belong to minor-closed families. Minor-closed families are classes of sparse graphs with a
pure combinatorial property that generalizes a number of topological properties.

A graph H is a minor of another graph G if H is isomorphic to a graph that can be obtained from
a subgraph of G by contracting edges. A family G of graphs is minor-closed if every minor of any
member of G belongs to G. A minor-closed family is proper if it does not contain all graphs. Typical
examples of minor-closed families include the class of planar graphs (and more generally, the class
of graphs embeddable in a fixed surface), the class of linkless embeddable graphs, and the class of
knotless embeddable graphs.

Inspired by coloring problems such as Question 1.1, the key property studied in this paper is the
property of being r-degenerate, for any fixed integer r, defined below.

Definition 2. Let r be a nonnegative integer, and let G be a graph. Then

• G is r-degenerate if every subgraph of G contains a vertex of degree at most r;

• G is r-choosable if for every list-assignment (Lv : v ∈ V (G)) with |Lv| ≥ r, there exists a
function c that maps each vertex v ∈ V (G) to an element of Lv such that c(x) 6= c(y) for any
edge xy of G.

It is well-known that any r-degenerate graph is (r+ 1)-choosable and (r+ 1)-colorable by a simple
greedy algorithm. Note that a graph is not r-degenerate if and only if it contains a subgraph of
minimum degree at least r + 1. So being non-r-degenerate is equivalent to having an “(r + 1)-core”,
which is an object whose size has been extensively studied in random graphs (see [27, 31] for example).

In this paper, we consider the following properties.

Definition 3. Let r be a positive integer. We define

• Dr to be the property of being (r − 1)-degenerate,

• χr to be the property of being r-colorable,
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• χ`r to be the property of being r-choosable, and

• Rr to be the property of having no r-regular subgraphs.

Question 1.2. For any integer r ≥ 2 and proper minor-closed family G, what is the threshold proba-
bility pPG , where P ∈ {Dr, χ`r, χr,Rr}?

It is easy to see that Dr, χr, χ`r and Rr are monotone properties, Dr ⊆ χ`r ⊆ χr and Dr ⊆ Rr. So
results for Dr is a crucial part for our results on the other three properties.

For every graph H, let M(H) be the set of H-minor free graphs. Note that M(H) is a proper
minor-closed family for any fixed graph H. And for every proper minor-closed family G, there exists
a graph H ′ such that H ′ 6∈ G, so G ⊆ M(H ′). This simple observation together with the following
trivial proposition show that the heart of Question 1.2 is the special case stated in Question 1.3.

Proposition 1.3. For any proper minor-closed family G and graph H 6∈ G, pPG = Ω(pPM(H)) for every
monotone property P.

Question 1.3. For any graph H and integer r ≥ 2, what is the threshold probability pDr

M(H)?

Remark. Question 1.3 is expected to be very challenging: determining whether the threshold is
Θ(1) or not for all r and H implies solutions of long-standing open questions in extremal graph
theory about determining the degeneracy function or giving a constant approximation of the extremal
function for all H. The degeneracy function dH(n) is the minimum d such that any H-minor free
graph on n vertices is d-degenerate. A simple observation shows that for any fixed connected graph
H, determining whether the answer to Question 1.3 is Θ(1) for every r ≥ 2 is equivalent to determining
limn→∞ dH(n), denoted by d∗H . (See Proposition A.1 for the precise description and a proof.[d]) The
limit d∗H is closely related to another challenging function, the extremal function fH(n), which is the
maximum possible number of edges in an H-minor free graph on n vertices. Proposition A.2 shows
that f∗H ≤ d∗H ≤ 2f∗H , where f∗H = supn∈N

fH(n)
n .[e] Despite having been extensively studied, even

approximating f∗H within a factor of 2 is not known for general sparse graphs (see [41]). We remark
that a combination of recent results [29, 32, 33, 42] gives an approximation with a factor 0.319+ε

0.319−ε for
almost every graph H of average degree at least a function of ε (so a density condition for H is still
required), where 0 < ε < 1; and very recently, some results about the extremal function were obtained
for the case when H satisfies certain sparsity assumptions about its expansion, such as [20, 22].

Similarly, the analogous problems for r-colorability or r-choosability correspond to Hadwiger’s
conjecture and its variants about the chromatic number or choice number of graphs in minor-closed
families, which are other major open problems in graph theory.

In addition, even though the thresholds for Dr, χr and χ`r are well-studied in G(n, p) (all of which
are Θ(n−1)), those techniques do not work for H-minor free graphs, since H-minor free graphs are
sparse and lacks symmetry.

1.2 Our results

Our main Theorem 1.4 answers Question 1.3 for a large family of pairs (r,H). The other main
Theorem 1.6 provides lower bounds for the rest of the pairs (r,H). Those results are for degeneracy
and choosability (i.e. the properties Dr and χ`r). They yield results for colorability and existence of

[d]Note that dH is a non-decreasing function, as being (r − 1)-degenerate remains when adding isolated vertices. In
addition, a result of Mader [28] implies that dH(n) has a constant (only depending on H) upper bound for every n ∈ N.
Therefore d∗H is well-defined, which equals supn∈N dH(n).

[e]Mader [28] proved that f∗H exists.
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regular subgraphs (i.e. the properties χr and Rr, see Corollary 1.2 and Theorems 7.1 and 7.2), but we
do not put any effort to optimize results for these two properties in this paper. The results for these
four properties also generalize to arbitrary proper minor-closed family by Proposition 1.3.

It turns out that the threshold for H-minor free graphs and degeneracy is closely related to the
vertex cover of H, defined below.

Definition 4. A vertex-cover of a graph H is a subset S of V (H) such that H − S is edgeless. We
denote the minimum size of a vertex-cover of a graph H by τ(H).

We also need the following standard definition of a join of two graphs.

Definition 5. For any graphs G,G′ and positive integer t, we define tG to be the disjoint union of t
copies of G, and define G ∨G′ to be the graph that is obtained from a disjoint union of G and G′ by
adding all edges with one end in V (G) and one end in V (G′).

Clearly, τ(H) = 0 if and only if H has no edge. Hence if τ(H) = 0, then no H-minor free graph
has more than |V (H)| vertices, so the threshold pPM(H) is Θ(1) for any property P. Therefore, we are

only interested in graphs H with τ(H) ≥ 1.
The following theorem determines the threshold forM(H) and for degeneracy Dr and choosability

χ`r for a large class of pairs (r,H), including the case τ(H) > r or the case that H has minimum degree
at least r.

Theorem 1.4. Let r ≥ 2 be an integer and H a graph (not necessarily connected). Let P ∈ {Dr, χ`r}.
Then

pPM(H) = Θ(n
− 1

qH )

in each of the following cases, where qH is an integer defined as follows.

1. If τ(H) ≥ r + 1, then qH = r.

2. If 1 ≤ τ(H) ≤ r and H is not a subgraph of Kτ(H)−1 ∨ tKr+2−τ(H) for any positive integer t,

then qH = (r + 2− τ(H))r −
(
r+2−τ(H)

2

)
.

3. If 1 ≤ τ(H) ≤ r, H has minimum degree at least r, and H is not a subgraph of Kr−1 ∨ tK2 for
any positive integer t, then qH = 2r − 1.

4. If 1 ≤ τ(H) ≤ r, H has minimum degree at least r, H is a subgraph of Kr−1 ∨ tK2 for some
positive integer t, and H 6∈ {K2,K3,K4}, then qH = 3r − 3.

Furthermore, pPM(H) = Θ(1) if either

• H = Kr+1 and r ≤ 3, or

• H has at most one component on at least two vertices and every component of H is an isolated
vertex or a star of maximum degree at most r.

Note that Statements 2 and 3 of Theorem 1.4 are consistent since if τ(H) ≤ r and δ(H) ≥ r, then
τ(H) = r.

It is clear that for any fixed nonnegative integer r, the graphs H in which the threshold is not
determined in Theorem 1.4 belong to the set

Hr := {H : 1 ≤ τ(H) ≤ r and H ⊆ Kτ(H)−1 ∨ t∗Kr+2−τ(H) for some positive integer t∗}.
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Theorem 1.4 also shows[f] that pDr

M(H) = Θ(1) if H is a graph in Hr with τ(H) = 1. Therefore, we
have the following corollary.

Corollary 1.5. The thresholds for Dr and χ`r are determined by Theorem 1.4 unless H ∈ Hr and
τ(H) ≥ 2.

We remark that the number of cases not covered by Theorem 1.4 is not large. Every graph in Hr
has the property that deleting at most τ(H)−1 vertices results in a graph whose every component has
at most r+2−τ(H) ≤ r+1 vertices. Even though every graph W is a subgraph of Kτ(W )∨|V (W )|K1,
which looks close to the definition of the graphs in Hr, there is no control for the maximum degree of
the remaining graph if we only delete τ(W )− 1 vertices from W .

We provide a lower bound for the thresholds in Theorem 1.6 for the cases not covered by Theorem
1.4.

The lower bound in Theorem 1.6 might look artificial at first glance, but it naturally arises from
constructions that establish upper bounds. Those upper bounds come from gluing several copies of the
same graph. We explain the intuition before we provide the formal description. We use the following
notation.

Definition 6. Let G be a graph, and let Z = {z1, z2, ..., z|Z|} be a subset of V (G). For any positive
integer k, let G ∧k Z be the graph obtained from a union of k disjoint copies of G by identifying, for
each i with 1 ≤ i ≤ |Z|, the k copies of zi.

For example, if G is a star with three leaves and Z is the set of the leaves, then G ∧k Z is Kk,3.
Note that if every vertex in V (G)− Z has degree at least r in G, then G ∧k Z is not r-degenerate

when k is sufficiently large, and it can be used to prove upper bounds for the thresholds. This motivates
the following notions.

Definition 7. For graphs G and F0 and a nonnegative integer r, define F(G,F0, r) to be the set
consisting of the graphs that can be obtained from a disjoint union of G and F0 by adding edges
between V (G) and V (F0) such that every vertex in V (F0) has degree at least r.

For a graph F in F(G,F0, r), the type of F is the number of edges of F incident with V (F0), and
we call V (G) the heart of F .

Note that every graph in F(G,F0, r) has type at least r. Figure 1(a) is an example of some
F ∈ F(I2,K3, 3) of type 6.[g] Figure 1(b) is an example of F ∧t V (I2) for some F ∈ F(I2,K3, 3) of
type 6 and t = 4.

The type defined in Definition 7 provides an upper bound for the thresholds: Assume that F is a
graph in F(I, F0, r) with type q for some edgeless graph I. Consider Gk := F ∧k V (I) for sufficiently
large k. Note that every edge of Gk is incident with a copy of F0 since I is edgeless. If a subgraph
of Gk is (r − 1)-degenerate, then for each of almost all copies C of F in Gk, at least one edge in C
cannot appear in this (r− 1)-degenerate subgraph. So a simple probabilistic argument shows that the
random subgraph Gk(p) of Gk is not (r − 1)-degenerate if the probability p is ω(|V (Gk)|−1/q). Hence
if the graph class G contains such Gk = F ∧k V (I) for infinitely many integers k, then the type of F
gives an upper bound for the threshold for G and Dr. Therefore, we would like to know the smallest
type of such graphs F . And this smallest type is essentially sr(H) + 1, where sr(H) is the number in
the following definition, except that we have to restrict sr(H) ≤

(
r+1
2

)
for some technical reasons.

[f]When τ(H) = 1, H is a graph that is a disjoint union of K1,s for some positive integer s and isolated vertices. Since
H ∈ Hr and τ(H) = 1, H is a subgraph of t∗Kr+1 for some positive integer t∗, so s ≤ r, and hence every component of
H is either an isolated vertex or a star of maximum degree at most r.

[g]For every nonnegative integer t, we denote the edgeless graph on t vertices by It, where I0 is the empty graph with
no vertices. Note It = tK1. We will use the notation It instead of tK1 for simplicity because the description for t can be
complicated.
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(a) F0 is a triangle K3. Each vertex of F0 has
degree at least r = 3 in F . There are in total
6 edges incident with vertices in F0. Thus F ∈
F(I2, F0, 3) and is of type 6. The vertex-set of
I2 is the heart of F .

(b) F ∧4 Z, where Z is the heart of F .

Figure 1: An example of a graph F ∈ F(I2, F0, 3) of type 6 and F ∧4 Z for some set Z.

Definition 8. For any graph H and integer r ≥ 2, let sr(H) be the largest integer s with 0 ≤ s ≤(
r+1
2

)
such that for every integer s′ with 0 ≤ s′ ≤ s, every connected graph F0 and every graph

F ∈ F(Iτ(H)−1, F0, r) of type s′, H is a minor of F ∧t I for some positive integer t, where I is the
heart of F .

Note that sr(H) ≥ r − 1, since there exists no connected graph F0 such that there exists a graph
in F(Iτ(H)−1, F0, r) of type at most r − 1.

As discussed above, sr(H) + 1 gives an upper bound for the threshold, subject to an extra require-
ment that sr(H) ≤

(
r+1
2

)
. Our result for lower bounds (Theorem 1.6) essentially matches this upper

bound sr(H)+1 and the upper bounds appeared in Theorem 1.4, except that we also have to consider(
r+1
2

)
due to technical reasons.

Theorem 1.6. Let r ≥ 2 be an integer and H ∈ Hr. Let P ∈ {χ`r,Dr}.

1. If τ(H) ≥ 2, then sr(H) ≥ (r − τ(H) + 2)r −
(
r−τ(H)+2

2

)
− 1 =

(
r+1
2

)
−
(
τ(H)−1

2

)
− 1.

2. If 2 ≤ τ(H) ≤ r, then pPM(H) = Ω(n−1/qH ), where qH = min{sr(H) + 1,
(
r+1
2

)
}.

Simple corollaries of Theorems 1.4 and 1.6 for many extensively studied minor-closed families are
included in Corollary 1.2. We remark that it is far from a complete list of corollaries that can be
derived from Theorems 1.4 and 1.6.

We will sketch the proof ideas in the next section.

2 Proof ideas and organization

2.1 Notations

In this paper, graphs are simple. Let G be a graph and X a subset of V (G). We denote the
subgraph of G induced by X by G[X]. We define NG(X) = {v ∈ V (G) − X : v is adjacent in G
to some vertex in X}, and define NG[X] = NG(X) ∪ X. For any vertex v, G − v,NG(v) and NG[v]
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are defined to be G[V (G) − {v}], NG({v}) and NG[{v}], respectively. The degree of a vertex is the
number of edges incident with it. The minimum degree of G is denoted by δ(G). The length of a path
is the number of its edges. The distance of two vertices in G is the minimum length of a path in G
connecting these two vertices; the distance is infinity if no such path exists.

For every real number k, we define [k] to be the set {x ∈ Z : 1 ≤ x ≤ k}. We use N to denote the
set of all positive integers, which does not include 0.

2.2 Proof ideas

To establish an upper bound f of the thresholds in Theorem 1.4, it suffices to construct a sequence
(Gn : n ∈ N) of graphs in M(H) such that limn→∞ Pr(Gn(p(n)) ∈ P) = 0 for every function p with
f(n)/p(n)→ 0, as shown in Section 3. These constructions use notions in Definitions 6 and 7. Roughly
speaking, the graphs Gn in the construction are altered from the complete bipartite graphs such that
they have minimum degree at least r in various ways.

Proving the lower bounds in Theorems 1.4 and 1.6 are much more difficult, and most of the paper
is dedicated to it. It suffices to prove lower bounds for pDr

M(H) and then use the following trivial

observation (Proposition 2.1) for other properties.

Proposition 2.1. For any positive integer r and graph class G, the threshold for Dr is upper bounded
by each of the thresholds for the properties χ`r, χr and Rr.

If G(p) is (r−1)-degenerate, every subgraph R of G with δ(R) ≥ r has to have some edge disappear
in G(p). Hence the lower bound of the threshold for Dr comes from a value p that ensures that every
subgraph R of G with δ(R) ≥ r has a missing edge in G(p). If one ignores the interplay between
different subgraphs of G of minimum degree at least r, then since there are possibly O(2|E(G)|) =
O(2O(n)) such subgraphs, there is no hope to obtain a lower bound of the form O(n−1/q) (for some
q > 0) which is the corresponding upper bound.

The strategy to obtain a lower bound of the form O(n−1/q) is to find a small set of “signatures”
such that every subgraph of minimum degree at least r contains such a signature, so as long as G(p)
misses an edge for each signature, G(p) has no subgraph of minimum degree at least r. The following
definitions and lemma formalize this idea.

Definition 9. For any real number c and nonnegative integers q and r, a (c, q, r)-good signature
collection for a graph G is a collection C of subsets of E(G) with the following properties.

1. Each member of C has exactly q edges.

2. |C| ≤ c|V (G)|.

3. For every subgraph of G of minimum degree at least r, its edge-set contains some member in C.

Definition 10. For a given graph class G and nonnegative integers q and r, we say G has (q, r)-good
signature collections if there is a constant c = c(G) such that for every graph G in G, there is a
(c, q, r)-good signature collection for G.

The following lemma shows that the existence of (q, r)-good signature collections for G provides a
lower bound on the threshold probability in terms of q.

Lemma 2.2. Let G be a class of graphs and q, r be positive integers. If G has (q, r)-good signature
collections, then pDr

G = Ω(n−1/q).
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Proof. Let p∗ : N→ [0, 1] be the function such that p∗(n) = n−1/q for every n ∈ N. Let p : N→ [0, 1]
be a function with limn→∞ p(n)/p∗(n) = 0. Let (Gn)n∈N be a sequence of graphs in G such that
|V (Gn)| = n for every n ∈ N. To show pDr

G = Ω(n−1/q), it suffices to show that limn→∞ Pr(Gn(p(n)) ∈
Dr) = 1.

Since G has (q, r)-good signature collections, there exists a constant c such that for any inte-
ger n, there exists a (c, q, r)-good collection Cn for Gn. For each T ∈ Cn, since |T | = q, Pr(T ⊆
E(Gn(p(n)))) = (p(n))q. Since for each subgraph R of Gn with δ(R) ≥ r, there exists T ∈ Cn with
T ⊆ E(R), so the probability that Gn(p(n)) contains a subgraph of minimum degree at least r is at
most the probability that some member of Cn is a subset of E(Gn(p(n))) which is at most |Cn|(p(n))q

by a union bound. But as n→∞, |Cn|(p(n))q ≤ cn · (p(n))q = cn · (n−1/q · p(n)p∗(n))
q = c

(
p(n)
p∗(n)

)q
→ 0.

Thus with probability approaching 1 as n approaches infinity, no subgraph of minimum degree at
least r is contained in Gn(p(n)). Therefore, limn→∞ Pr(Gn(p(n)) ∈ Dr) = 1.

Remark. We want to emphasize that the value q in Lemma 2.2 determines the lower bound for pDr
G .

The majority of work of this paper is to find the largest or sufficiently large value of q, which turns out
to be the value qH defined in Theorems 1.4 and 1.6. Theorems 1.4 and 1.6 are proved by combining it
with the upper bound established in Section 3.

We will prove the existence of (q, r)-good signature collections with a large value of q in Lemmas
5.1 and 5.4. We will show how these two lemmas imply the main theorems 1.4 and 1.6 in Section 6.

A key sufficient condition to establish the existence of (q, r)-good signature collections in Lemmas
5.1 and 5.4 is the following.

Lemma 2.3. Let r be a positive integer and G a hereditary graph class[h]. If there exist nonnegative
real numbers a, t, ζ with t ≤ 2r + 1 such that for every graph G ∈ G, there exist a subset Z of V (G)
with |Z| ≤ ζ and a vertex z∗ ∈ Z such that

1. every vertex in Z has degree at most a in G, and

2. for every subgraph R of G with δ(R) ≥ r and with z∗ ∈ V (R), |V (R) ∩ Z| ≥ t,

then every graph in G has a
((

ζ
t

)(
a
r

)t
, rt−

(
t
2

)
, r
)

-good signature collection. In other words, G has(
rt−

(
t
2

)
, r
)
-good signature collections.

Proof. Assume that for every graph G ∈ G, there exist Z and z∗ satisfying the two conditions stated

in this lemma. We shall prove that every graph G ∈ G has a
((

ζ
t

)(
a
r

)t
, rt−

(
t
2

)
, r
)

-good signature

collection by induction on the number of vertices in G. The claim trivially holds when |V (G)| = 1, as
there exists no subgraph of G of minimum degree at least one.

For any set T of t distinct vertices z1, ..., zt in Z and every sequence s = (ST,1, ST,2, ..., ST,t), where
ST,i is a set consisting of r edges of G incident with zi for every i ∈ [t], let Ss =

⋃t
j=1 ST,j . Note that

|Ss| ≥ rt−
(
t
2

)
. Let C0 be the collection of all possible such sets Ss. Then |C0| ≤

(
ζ
t

)(
a
r

)t
as the number

of t-element subsets of Z is at most
(
ζ
t

)
, and each vertex in Z is incident with at most a edges.

The second condition mentioned in the statement of this lemma implies that for every subgraph
R of G with δ(R) ≥ r and with z∗ ∈ V (R), the edge-set E(R) contains some member of C0. Since G is

hereditary, G−z∗ ∈ G. Applying the induction hypothesis to G−z∗, G−z∗ has a
((

ζ
t

)(
a
r

)t
, rt−

(
t
2

)
, r
)

-

good signature collection C1. For every subgraph R of G with δ(R) ≥ r and z∗ 6∈ V (R), R is a subgraph
of G− z∗ with δ(R) ≥ r, so E(R) contains some member of C1 by the induction hypothesis.

[h]A graph class is hereditary if every induced subgraph of a member of this class is a member of this class. Note that
M(H) is hereditary for every graph H.
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Let C2 = C0 ∪ C1. Then C2 has the property that for every subgraph R of G with δ(R) ≥ r,
E(R) contains some member of C2. In addition, by the induction hypothesis, |C2| ≤ |C0| + |C1| ≤(
ζ
t

)(
a
r

)t
+
(
ζ
t

)(
a
r

)t
(|V (G)| − 1) =

(
ζ
t

)(
a
r

)t|V (G)|.
Note that C2 satisfies the conditions of being a

((
ζ
t

)(
a
r

)t
, rt−

(
t
2

)
, r
)

-good signature collection except

some member of C2 possibly has size strictly greater than rt−
(
t
2

)
. For each member M of C2, let f(M)

be an arbitrary subset of M of size rt−
(
t
2

)
. Note that for every subgraph R of G with δ(R) ≥ r, E(R)

contains some member M of C2 and hence contains f(M). Then the collection {f(M) : M ∈ C2} is a((
ζ
t

)(
a
r

)t
, rt−

(
t
2

)
, r
)

-good signature collection for G.

Note that the exponent of n in pDr

M(H) is essentially determined by the size q of the members of C
mentioned in Lemma 2.2, and q is determined by the value t mentioned in Lemma 2.3. The majority
of work of this paper is to prove the sufficient condition in Lemma 2.3 with the correct value t. The
starting point is the following lemma.

Lemma 2.4 (Special case of Lemma 4.4). For any α, β ∈ N and nonnegative integer `, there exists
a real number d such that for every graph G with no Kα,β-minor, there exist X ⊆ V (G) and z∗ ∈ X
such that

1. every vertex in X has degree at most d in G, and

2. there exists a set S ⊆ V (G)−X with |S| ≤ α−1 such that for every vertex x ∈ X, if the distance
between x and z∗ is at most `− 1 in G[X], then every neighbor of x in G not contained in X is
contained in S.

It is easy to see that every graph with no H-minor has no Kτ(H),β-minor for some large β, so
Lemma 2.4 can be applied to H-minor free graphs by choosing α = τ(H) and some β and `. Assume
α = τ(H) < r. Then for every subgraph R of G with δ(R) ≥ r containing z∗, it must contain at least
r − |S| ≥ r − α + 1 neighbors of z∗ in X; moreover, unless there are many edges of R between those
neighbors, R also contains neighbors of those neighbors in X, and so on. So we can obtain the desired
set Z in Lemma 2.3 by defining it to be the set of vertices in X with distance at most ` − 1 from z∗

in G[X] (where ` only depends on the value t that we aim), and we are done. However, this argument
is based on two assumptions: one is τ(H) < r and the other is that R does not contain many edges
between neighbors of z∗ in X. The second one is not serious, because in that case R still contains
many edges incident with Z and we can modify the proof of Lemma 2.3 so that the parameter in a
good signature collection determining the value q in the exponent of n in the threshold is the lower
bound for the number of edges of R incident with Z that we can ensure, instead of a function of the
lower bound t for |V (R)∩Z|. The assumption τ(H) < r is more serious. So we should not assume it.
Before we proceed further, we remark that if C is the component of R[X ∩ V (R)] containing z∗, then
R[V (C)∪ (V (R)∩ S)] is a graph in F(R[V (R)∩ S], C, r) whose type equals the number of edges of R
incident with a vertex in V (C) ⊆ Z.

In fact, Lemma 2.4 is a very special case of what we really prove (Lemma 4.4). Lemma 4.4 actually
shows that we can obtain many such z∗ instead of just one z∗, with the same set S. It will allow us
to construct a subgraph of G isomorphic to F ∧t I for some graph F in F(Iτ(H)−1, C, r) with type
equal to the number of edges of R incident with V (C) ⊆ Z, and for some large integer t, where I
is the heart. So if we cannot make sure that R has many edges incident with V (C), then we get a
graph F ∧t I for some F ∈ F(Iτ(H)−1, C, r) with small type; but it implies that sr(H) is small by its
definition, since G is H-minor free. Hence it would imply that the value q in the threshold is bounded
by sr(H), as stated in Theorem 1.6. With more work we can improve this bound for some graphs H
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to obtain Theorems 1.4. This completes the proof sketch. More details can be found in Sections 5 and
6.

We remark that Lemma 4.4 applies to graph classes that are more general than minor-closed
families and is of independent interests. In particular, it generalizes a result of Ossona de Mendez,
Oum, and Wood [30], and the first author further extends it in a later paper [25] to solve a number of
open Turán-type questions for robustly sparse graphs.

2.3 Organization of the paper

We prove upper bounds for the threshold probabilities in Section 3 and prove the lower bounds in
Sections 4, 5, and 6. As we have discussed earlier, the main lemmas are Lemmas 5.1 and 5.4 regarding
the existence of good collections, which are proved in Section 5. Lemma 5.1 is simple, but Lemma 5.4
is much more complicated and requires a technical lemma (Lemma 4.4, which is proved in Section 4).
We then use Lemmas 5.1 and 5.4 to prove the main theorems in Section 6. More intuitions for the
proof of those lemmas will be provided in Sections 5 and 6. Finally we conclude the paper with some
remarks in Section 7.

3 Upper bounds for the threshold probabilities

Our goal in this section is proving Corollary 3.6 which proves some upper bounds of the thresholds.
We will construct sequences of graphs (Gn : n ∈ N) that are hard to be made (r − 1)-degenerate by
randomly deleting edges. Namely, if p goes to 0 too slow, then limn→∞ Pr(Gn(p) ∈ Dr) = 0. These
sequences (Gn : n ≥ 1) will be used to establish upper bounds for pDr

M(H) for different graphs H. The

same construction will also be used for proving upper bounds for p
χ`
r

M(H).
A stable set in a graph is a subset of pairwise non-adjacent vertices. A standard second moment

method proves the following lemma.

Lemma 3.1. Let Q be a graph and Z a (possibly empty) stable set in Q. Let q = |E(Q)| ≥ 2. For

every n ∈ N, let `n = b n−|Z|
|V (Q)|−|Z|c and let Gn be the graph obtained from Q ∧`n Z by adding isolated

vertices to make Gn have n vertices. Let p : N → [0, 1] with limn→∞ n
−1/q/p(n) = 0. Then for every

k ∈ N, limn→∞ Pr(Q ∧k Z ⊆ Gn(p)) = 1.

Proof. Note that for every n ∈ N, Gn contains `n edge-disjoint copies of Q, denoted by A1, A2, ..., A`n .
For each 1 ≤ i ≤ `n, define a random variable Xi to be 1 if all the edges of Ai remain in the random
subgraph Gn(p); let Xi = 0 otherwise.

Let X =
∑`n

i=1Xi. It suffices to show limn→∞ Pr(X ≥ k) = 1. This is because when X ≥ k,⋃
i:Xi=1Ai contains Q ∧k Z as a subgraph in Gn(p), as desired.

Note E[Xi] = Pr(Xi = 1) = (p(n))q. So nE[Xi] → ∞ as n → ∞, by the definition of p. Hence
`nE[Xi]→∞ as n→∞ by the definition of `n. By the linearity of expectation, E[X] =

∑`n
i=1 E[Xi] =

`nE[Xi] � k. Since Xi’s are i.i.d. random variables, the desired inequality limn→∞ Pr(X ≥ k) = 1 is
a consequence of standard concentration inequalities (such as Chebyshev’s inequality).

Lemma 3.2. Let r, r′ be integers with r ≥ 2 and 0 ≤ r′ ≤ r and let s be a nonnegative integer. Let
F0 be a connected graph and let F ∈ F(Ir′ , F0, r) be of type s. Let Z be the heart of F (thus Z is a
stable set of size r′ in F ).

For every positive integer n, let `n = b n−|Z||V (F0)|c and let Gn be an n-vertex graph obtained from F∧`nZ
by adding isolated vertices to make Gn have n vertices. Let p : N→ [0, 1] with limn→∞ n

−1/s/p(n) = 0.
Then limn→∞ Pr(Gn(p) ∈ Dr) = 0.
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Proof. By Lemma 3.1, limn→∞ Pr(F ∧r Z ⊆ Gn) = 1. We claim F ∧r Z has a subgraph of minimum
degree at least r. Every vertex in V (F )\Z has degree at least r in F . So every vertex in V (F ∧rZ)\Z
has degree at least r in F ∧r Z. For each vertex in Z, if it has zero degree in F , it has zero degree in
F ∧r Z; if it has degree at least one in F , it has degree at least r in F ∧r Z as each of its neighbors
has r copies in F ∧r Z. So some component of F ∧r Z has of minimum degree at least r. Therefore,
limn→∞ Pr(Gn(p) ∈ Dr) = 0.

Recall that for every nonnegative integer t, we denote the edgeless graph on t vertices by It, where
I0 is the empty graph with no vertices. The proof of the following lemma is straightforward, so we
move it to the appendix (Section A.2).

Lemma 3.3. Let r be a positive integer and w an integer with 0 ≤ w ≤ r. Then Ir−w ∨ rr−wKw+1 is
not r-choosable.

Lemma 3.4. Let r be an integer with r ≥ 2 and let w be an integer with r ≥ w ≥ 0. Let q =
(w + 1)r −

(
w+1
2

)
. For every n ∈ N with n > r, let Gn be the n-vertex graph obtained from Ir−w ∨

bn−(r−w)w+1 cKw+1 by adding isolated vertices to make Gn have n vertices. Let p : N→ [0, 1] be a function

with limn→∞ n
−1/q/p(n) = 0. Then the following hold.

1. limn→∞ Pr(Ir−w ∨ rrKw+1 ⊆ Gn(p)) = 1.

2. limn→∞ Pr(Gn(p) ∈ Dr) = limn→∞ Pr(Gn(p) ∈ χ`r) = 0.

3. If r 6= w, then limn→∞ Pr(Gn(p) ∈ χw+1) = 0.

4. If r is divisible by w + 1, then limn→∞ Pr(Gn(p) ∈ Rr) = 0.

Proof. Let Q = Ir−w ∨Kw+1, and let Z be the subset of V (Q) corresponding to V (Ir−w). For every
n ∈ N with n > r, let G′n = Q ∧bn−(r−w)

w+1
c Z. So for every n ∈ N, Gn is the graph obtained from G′n

by adding isolated vertices to make Gn have n vertices. Note that the number of edges of Q incident
with at least one vertex in V (Q)− Z is (w + 1)(r − w) +

(
w+1
2

)
= q.

Note that for any positive integer k, Ir−w∨kKw+1 = Q∧kZ. Hence by Lemma 3.1, limn→∞ Pr(Q∧rr
Z ⊆ Gn(p)) = limn→∞ Pr(Ir−w ∨ rrKw+1 ⊆ Gn(p)) = 1. Since Ir−w ∨ rrKw+1 has minimum degree
at least r, limn→∞ Pr(Gn(p) ∈ Dr) = 0. By Lemma 3.3, Ir−w ∨ rrKw+1 is not r-choosable, so
limn→∞ Pr(Gn(p) ∈ χ`r) = 0.

If r 6= w, then Ir−w ∨ rrKw+1 is not properly (w+ 1)-colorable, so limn→∞ Pr(Gn(p) ∈ χw+1) = 0.
If r is divisible by w + 1, then Ir−w ∨ r

w+1Kw+1 is a r-regular subgraph of Ir−w ∨ rrKw+1, so
limn→∞ Pr(Gn(p) ∈ Rr) = 0.

To define another sequence of graphs that are hard to be made (r − 1)-degenerate, we need the
following definition.

Definition 11. Let r be a positive integer with r ≥ 4. In the graph Ir−1 ∨K3, let Y be the stable set
of size r − 1 corresponding to V (Ir−1), and let X be the three vertices in K3. Let L be a connected
graph obtained from Ir−1 ∨K3 by deleting the edges of a matching of size three between X and Y .

For every positive integer t, let Lt = L ∧t Y .

Note that L exists as r ≥ 4. Also, Lt has (r − 1) + 3t vertices and 3(r − 1)t edges.

Lemma 3.5. Let r be an integer with r ≥ 4. For every n ∈ N, let Gn be the n-vertex graph obtained
from Lb(n−r+1)/3c by adding isolated vertices to make Gn have n vertices. Let p : N → [0, 1] be a

function such that limn→∞ n
−1/(3r−3)/p(n) = 0. Then limn→∞ Pr(Gn(p) ∈ Dr) = limn→∞ Pr(Gn(p) ∈

χ`r) = 0.
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Proof. By Lemma 3.1, limn→∞ Pr(Lrr−1 ⊆ Gn(p)) = 1. Since Lrr−1 has minimum degree at least r,
limn→∞ Pr(Gn(p) ∈ Dr) = 0.

Now we show that Lrr−1 is not r-choosable. Note that it implies that limn→∞ Pr(Gn(p) ∈ χ`r) = 0.
We will construct a list of r colors for each vertex v, denoted as Lv. Denote Y = {y1, y2, ..., yr−1}.
For each i with 1 ≤ i ≤ r − 1, define Lyi = {ri + j : 0 ≤ j ≤ r − 1}. Thus the color lists of yi and
yj are disjoint for any i 6= j. Let C1, C2, ..., Crr−1 be the rr−1 copies of V (L) − Y in Lrr−1 . For each
i with 1 ≤ i ≤ rr−1, let Si be a set of size r − 1 such that |Si ∩ Lvj | = 1 for every 1 ≤ j ≤ r − 1,
and Sk 6= Sk′ for distinct k, k′ ∈ [rr−1]. This is possible since there are rr−1 ways to pick exactly one
element from each of Lyi for 1 ≤ i ≤ r − 1. For each i with 1 ≤ i ≤ rr−1 and each vertex v in Ci,
define Lv = {−1,−2}∪ (Si−Lyv) where yv is the vertex in {y1, y2, ..., yr−1} such that v is not adjacent
in Lrr−1 to yv. Note that each Lv has size r. Then it is easy to see that Lrr−1 is not colorable with
respect to (Lv : v ∈ V (Lrr−1)).

The following corollary provides an upper bound for threshold probabilities.

Corollary 3.6. Let r ≥ 2 be an integer and let w be an integer with r ≥ w ≥ 0. Let G be a monotone
class of graphs. Then the following hold.

1. If there exists n0 ∈ N such that {Kr,n−r : n ≥ n0} ⊆ G, then pDr
G = O(n−1/r), p

χ`
r
G = O(n−1/r)

and pRr
G = O(n−1/r).

2. If there exists n0 ∈ N such that {Ir−w ∨ tKw+1 : t ≥ n0} ⊆ G, then the following hold.

(a) pDr
G = O(n−1/q) and p

χ`
r
G = O(n−1/q), where q = (w + 1)r −

(
w+1
2

)
.

(b) If r 6= w, then p
χw+1

G = O(n−1/q), where q = (w + 1)r −
(
w+1
2

)
.

(c) If r is divisible by w + 1, then pRr
G = O(n−1/q), where q = (w + 1)r −

(
w+1
2

)
.

3. If r ≥ 4 and there exists n0 ∈ N such that {Lt : t ≥ n0} ⊆ G, then pDr
G = O(n−1/(3r−3)) and

p
χ`
r
G = O(n−1/(3r−3)).

4. Let r, r′ be an integers with r ≥ 2 and r′ ≤ r and let s be a nonnegative integer. Let F0 be a
connected graph and let F ∈ F(Ir′ , F0, r) be with type s. Let Z be the heart of F . If there exists
n0 ∈ N such that {F ∧t Z : t ≥ n0} ⊆ G, then pDr

G = O(n−1/s).

Proof. Statements 2, 3 and 4 of this corollary immediately follows from Lemmas 3.4, 3.5 and 3.2,
respectively. Statement 1 of this corollary following from Statement 2 by taking w = 0.

4 Neighbors of low degree vertices

In this section we prove Lemma 4.4, which gives structural information for graphs with no dense
shallow minors and is a generalization of the main lemma in the work of Ossona de Mendez, Oum,
and Wood [30], where they used the lemma to study defective coloring for a broader class of graphs.
We refer interested readers to [30] for details. Lemma 4.4 might be of independent interests beyond
this paper. We will state the motivation of this lemma in Section 5 when we are about to apply it.

The average degree of a graph G is 2|E(G)|
|V (G)| . The maximum average degree of a graph G is

maxH
2|E(H)|
|V (H)| , where the maximum is over all subgraphs H of G. The following lemma can be found

in [44, Lemma 18] or in the proof of [13, Theorem 1.1].
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Lemma 4.1 ([44, Lemma 18],[13]). Let r be a positive integer and let k be a positive real number. If
G is a graph of maximum average degree at most k, then G contains at most

(
k
r−1
)
|V (G)| cliques of

size r.

For every nonnegative integer `, we say that a graph G is an `-subdivision of a graph H if it can
be obtained from H by subdividing each edge of H exactly ` times. That is, G can be obtained from
H by replacing each edge of H by a path of length ` + 1, where those paths are pairwise internally
disjoint. For a set S of nonnegative integers, we say a graph G is an S-subdivision of H if for every
e ∈ E(H), there exists se ∈ S such that G can be obtained from H by subdividing each edge e of
H exactly se times. Thus an `-subdivision is the same as an {`}-subdivision. For every nonnegative
integer `, a graph G is a (≤ `)-subdivision of H if it is an ([`] ∪ {0})-subdivision of H.

The radius of a graph G is the minimum k such that there exists a vertex v of G such that every
vertex of G has distance from v at most k. Let ` ∈ Z∪ {∞}. We say that a graph G contains a graph
H as an `-shallow minor if H can be obtained from a subgraph G′ of G by contracting pairwise disjoint
connected subgraphs of G′ of radius at most `. In other words, every branch set of an `-shallow minor
is a connected subgraph of radius at most `. Note that G contains H as an ∞-shallow minor if and
only if G contains H as a minor; G contains H as a 0-shallow minor if and only if H is a subgraph of
G.

The next concept is important in our proof.

Definition 12. For a graph G, a subset Y of V (G), and an integer r, we say a subgraph H of G is
r-adherent to Y if V (H) ∩ Y = ∅ and |NG(V (H)) ∩ Y | ≥ r.

The proof of the following lemma is inspired by the proof of [30, Lemma 2.2].

Lemma 4.2. For any r, t ∈ N and positive real number k′, there exists a real number α > 0 such that
for every ` ∈ Z ∪ {∞}, for every graph G, for every Y ⊆ V (G), and for every collection C of disjoint
connected subgraphs of G − Y , if each member of C is r-adherent to Y and of radius at most `, then
either

1. there exists a graph H of average degree greater than k′ such that G contains a subgraph isomor-
phic to a [2`+ 1]-subdivision of H,

2. G contains Kr,t as an `-shallow minor, or

3. |C| ≤ α|Y |.

Proof. Let r, t ∈ N and let k′ be a positive real number. Define α = (t− 1)
(
k′

r−1
)

+ k′/2.
Let ` ∈ Z ∪ {∞}, let G be a graph and Y ⊆ V (G). Let C be a collection of disjoint connected

subgraphs of G− Y such that each member of C is r-adherent to Y and of radius at most `.
Assume that for every graph H, if G contains some subgraph isomorphic to a [2`+ 1]-subdivision

of H, then the average degree of H is at most k′. Assume that G does not contain Kr,t as an `-shallow
minor. We shall show that Statement 3 of this lemma holds.

Let G′ be the graph obtained from G by contracting each member of C into a vertex. Since each
member of C is a subgraph of G of radius at most `, G′ is an `-shallow minor of G. In addition,
Y ⊆ V (G′) since each member of C is disjoint from Y . Let Z = V (G′)− V (G). (That is, Z is the set
of the vertices of G′ obtained by contracting members of C.) Define G′′ to be the graph obtained from
G′ − E(G′[Y ]) by repeatedly picking a vertex v in Z that is adjacent in G′ to a pair of nonadjacent
vertices u,w in (G′−E(G′[Y ]))[Y ], deleting v, and adding an edge uw, until for any remaining vertex
in Z, its neighbors in Y form a clique.
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Let H = G′′[Y ]. So some subgraph H ′ of G′ is isomorphic to a 1-subdivision of H. Together with
the fact that G contains H ′ as an `-shallow minor and V (H) = Y ⊆ V (G)−Z, we know G contains a
subgraph isomorphic to a [2` + 1]-subdivision of H. This implies that for every subgraph L of H, G
contains a subgraph isomorphic to a [2`+ 1]-subdivision of L. So the average degree of any subgraph
of H is at most k′ by our assumption. Hence there are at most(

k′

r − 1

)
|V (H)| =

(
k′

r − 1

)
|Y | (1)

cliques of size r in H by Lemma 4.1.
Since G contains G′ as an `-shallow minor, G′ does not contain Kr,t as a subgraph, for otherwise

G contains Kr,t as an `-shallow minor. This implies that for each clique K in G′′[Y ] of size r,
|{z ∈ Z ∩ V (G′′) : K ⊆ NG′′(z)}| ≤ t − 1. In addition, for every z ∈ Z ∩ V (G′′), NG′′(z) ∩ Y is a
clique consisting of at least r vertices in H since every member of C is r-adherent to Y . So a double
counting argument applied to (1) implies

|Z ∩ V (G′′)| ≤ (t− 1)

(
k′

r − 1

)
|Y |.

Furthermore, by the definition of G′′, the vertices in Z but not in V (G′′) are the ones being deleted
while adding one edge in between two vertices in Y . Thus |Z − V (G′′)| ≤ |E(G′′[Y ])| = |E(H)| ≤
k′|Y |/2. So |C| = |Z| ≤ (t− 1)

(
k′

r−1
)
|Y |+ k′|Y |/2 = α|Y |.

For any vertex x of a graph G and any (possibly negative) real number `, we denote by N≤`G [x] the

set of all the vertices in G whose distance to x is at most `; in particular, N≤1G [x] = NG[x].

Definition 13. For a subset Y of V (G), v ∈ V (G)− Y and integers k and r, we define a (v, Y, k, r)-
span (in G) to be a connected subgraph H of G− Y containing v such that |Y ∩NG(V (H))| ≥ r, and
for every vertex u of H, there exists a path in H from v to u of length at most k.

Note that if H is a (v, Y, k, r)-span in G, then H is r-adherent to Y , and V (H) ⊆ N≤kH [v] ⊆ N≤kG [v].
A (v, Y, k, r)-span H is minimal if no proper subgraph of H is a (v, Y, k, r)-span.

Lemma 4.3. Let G be a graph, Y ⊆ V (G) and k, r be integers. Then every minimal (v, Y, k, r)-span
is a subgraph of a union of at most r paths in G− Y where each path starts from v and is of length at
most k. In particular, every minimal (v, Y, k, r)-span contains at most kr + 1 vertices.

Proof. Let H be a minimal (v, Y, k, r)-span. Since H is a (v, Y, k, r)-span, |NG(V (H)) ∩ Y | ≥ r. So
there exists a subset S = {v1, v2, ..., v|S|} of V (H) with |S| ≤ r such that |Y ∩ NG(S)| ≥ r and

Y ∩ NG(vi+1) −
⋃i
j=1NG(vj) 6= ∅ for each i with 0 ≤ i ≤ |S| − 1. Since H is a (v, Y, k, r)-span, for

every u ∈ S, there exists a path Pu in H ⊆ G− Y from v to u of length at most k. Hence
⋃
u∈S Pu is

a (v, Y, k, r)-span and is a subgraph of H. By the minimality of H, H =
⋃
u∈S Pu. Therefore, H is a

union of |S| ≤ r paths in G− Y where each path starts from v and is of length at most k. Note that
|V (Pu)− {v}| ≤ k, so |V (H)| ≤ 1 + rk.

Now we are ready to state and prove Lemma 4.4.

Lemma 4.4. For any r, t ∈ N, nonnegative integer `, positive real numbers k, k′, and nonnegative real
number β, there exists a real number d such that for every graph G, either

1. the average degree of G is greater than k,
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2. there exists a graph H of average degree greater than k′ such that some subgraph of G is isomor-
phic to a [2`+ 1]-subdivision of H,

3. G contains Kr,t as an `-shallow minor, or

4. there exist X,Z ⊆ V (G) with Z ⊆ X and |Z| > β|V (G)−X| such that

(a) every vertex in X has degree at most d in G,

(b) for any distinct z, z′ ∈ Z, the distance in G[X] between z, z′ is at least `+ 1,

(c) for every z ∈ Z and u ∈ X whose distance from z in G[X] is at most `, |NG(u)−X| ≤ r−1,
and

(d) |NG(N≤`−1G[X] [z])−X| ≤ r − 1 for every z ∈ Z.

Proof. Let r, t ∈ N, ` be a nonnegative integer, k, k′ be positive real numbers, and β be a nonnegative
real number. Let α be the one in Lemma 4.2 by taking r = r, t = t and k′ = k′. Let γ = β+(`r+1)α.

Define d = (1 + (1 + γ)(r+1)`)k.
Let G be a graph. Assume that the average degree of G is at most k, and assume that there

exists no graph H of average degree greater than k′ such that some subgraph of G is isomorphic to a
[2`+ 1]-subdivision of H. Assume that G does not contain Kr,t as an `-shallow minor.

For any Y ⊆ V (G) and v ∈ V (G) − Y , we define the Y -correlation of v to be the sequence
(a0, a1, a2, ..., a`−1), where ai = |Y ∩ NG(N≤iG−Y [v])| for each i with 0 ≤ i ≤ ` − 1. Note that if some
entry of the Y -correlation of a vertex v is at least r, then there exists a (v, Y, `, r)-span. Observe that
the Y -correlation of v is an empty sequence when ` = 0.

Let X0 be the set of the vertices of G of degree at most d, and let Y0 = V (G) −X0. We use the
following iterative procedure for each step i ≥ 0 to define the vertex partition V (G) = Xi ∪ Yi. For
each i ≥ 0, we define the following.

• Define Ci to be a maximal collection of pairwise disjoint subgraphs of G[Xi], where each member
of Ci is a minimal (v, Yi, `, r)-span for some vertex v ∈ Xi satisfying that if ` ≥ 1, then |Yi ∩
NG(N≤`−1G−Yi [v])| ≥ r.

• Di =
⋃
H∈Ci V (H).

• Zi is a maximal subset of Xi −Di such that

– for any two distinct vertices in Zi, their distance in G[Xi] is at least `+ 1, and

– for every z ∈ Zi, N≤`−1G[Xi−Di]
[z] ∩NG(Di) = ∅.

• Xi+1 = Xi − (Zi ∪Di).

• Yi+1 = Yi ∪ Zi ∪Di.

Note that {Xi, Yi} is a partition of V (G) for every i ≥ 0, where Xi or Yi is possibly empty.

Claim 4.4.1. For every nonnegative integer i and z ∈ Zi,

• |NG(N≤`−1G[Xi]
[z])−Xi| ≤ r − 1, and

• if u is a vertex in Xi such that the distance in G[Xi] from z to u is at most `, then |NG(u)−Xi| ≤
r − 1.
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Proof of Claim 4.4.1: We first suppose N≤`−1G[Xi]
[z] 6= N≤`−1G[Xi−Di]

[z]. So there exists v′ ∈ N≤`−1G[Xi]
[z] −

N≤`−1G[Xi−Di]
[z]. This means that there exists a path in G[Xi] of length at most ` − 1 from z to v′

intersecting Di. Hence there exists v ∈ Xi such that there exists a path Pv in G[Xi] of length at most
` − 1 from z to v intersecting Di. We may assume that v is chosen such that |V (Pv)| is as small as
possible. Hence Pv is internally disjoint from Di. Since z ∈ Zi, z 6∈ Di. So v ∈ Di and Pv contains
at least two vertices. Let v′′ be the neighbor of v in Pv. Since Pv is internally disjoint from Di and
z 6∈ Di, it follows that v′′ ∈ N≤`−1G[Xi−Di]

[z]∩NG(v) ⊆ N≤`−1G[Xi−Di]
[z]∩NG(Di). However, since z ∈ Zi, by

the definition of Zi, N
≤`−1
G[Xi−Di]

[z] ∩NG(Di) = ∅, a contradiction.
Hence

N≤`−1G[Xi]
[z] = N≤`−1G[Xi−Di]

[z]. (2)

So N≤`−1G[Xi]
[z] ∩NG(Di) = ∅. Since z 6∈ Di, N

≤`−1
G[Xi]

[z] ∩Di = ∅.
Suppose |NG(N≤`−1G[Xi]

[z]) − Xi| ≥ r. Since {Xi, Yi} is a partition of V (G), |NG(N≤`−1G−Yi [z]) ∩ Yi| =

|NG(N≤`−1G[Xi]
[z])∩Yi| ≥ r. Therefore G[N≤`−1G−Yi [z]] = G[N≤`−1G[Xi]

[z]] is a (z, Yi, `, r)-span in G; it is disjoint

from members in Ci since N≤`−1G[Xi]
[z] ∩Di = ∅. Hence there exists a minimal (z, Yi, `, r)-span H ′ in G

such that V (H ′) ⊆ N≤`−1G[Xi]
[z]. But V (H ′) ∩Di ⊆ N≤`−1G[Xi]

[z] ∩Di = ∅, contradicting the maximality of
Ci.

Therefore, |NG(N≤`−1G[Xi]
[z])−Xi| ≤ r − 1.

Let u be a vertex in Xi such that the distance in G[Xi] from z to u is at most `. Suppose u ∈ Di.
Since z 6∈ Di, there exists a vertex u′ ∈ Xi ∩ NG(u) such that the distance in G[Xi] from z to u′ is
at most `− 1. So u′ ∈ N≤`−1G[Xi]

[z] ∩NG(u) ⊆ N≤`−1G[Xi]
[z] ∩NG(Di) = N≤`−1G[Xi−Di]

[z] ∩NG(Di) by (2). But

z ∈ Zi, so N≤`−1G[Xi−Di]
[z] ∩NG(Di) = ∅, a contradiction.

Hence u 6∈ Di. If |NG(u) − Xi| ≥ r, then the graph consisting of the vertex u is a minimal
(u, Yi, 0, r)-span (and hence a minimal (u, Yi, `, r)-span), so u is contained in Di by the maximality of
Ci, a contradiction. So |NG(u)−Xi| ≤ r − 1. �

If there exists a nonnegative integer i∗ such that |Zi∗ | > β|V (G)−Xi∗ |, then by defining X = Xi∗

and Z = Zi∗ , we know that |Z| > β|V (G)−X|, and every vertex in X ⊆ X0 has degree at most d in
G; statements 4(b)-4(d) follow from the definition of Zi∗ and Claim 4.4.1, so Statement 4 holds.

So we may assume that |Zi| ≤ β|V (G)−Xi| = β|Yi| for every nonnegative integer i.
Since Xi+1 ⊆ Xi, we have for any v ∈ Xi+1 and any 0 ≤ j ≤ `− 1,

N≤jG[Xi+1]
[v] ⊆ N≤jG[Xi]

[v]. (3)

Note that for every v ∈ Xi+1, if there exists an integer j with 0 ≤ j ≤ ` − 1 such that N≤jG[Xi+1]
[v] =

N≤jG[Xi]
[v], then it is easy to see that for every u ∈ N≤jG[Xi+1]

[v], the distance between u and v in G[Xi+1]

is the same as the distance between u and v in G[Xi] by induction on the distance between u and v

in G[Xi+1], and hence for every integer j′ with 0 ≤ j′ ≤ j, N≤j
′

G[Xi+1]
[v] = N≤j

′

G[Xi]
[v].

Claim 4.4.2. Let i be a nonnegative integer, and let v be a vertex in Xi+1. Denote the Yi+1-correlation
of v by (a0, a1, ..., a`−1), and denote the Yi-correlation of v by (b0, b1, ..., b`−1). If there exists an integer
k ≤ ` − 1 such that N≤kG[Xi+1]

[v] ( N≤kG[Xi]
[v], and N≤jG[Xi+1]

[v] = N≤jG[Xi]
[v] for every 0 ≤ j < k, then

(a0, a1, . . . , ak−1) is strictly greater than (b0, b1, . . . , bk−1) in the lexicographic order.

Proof of Claim 4.4.2: Since N≤kG[Xi+1]
[v] ( N≤kG[Xi]

[v], k ≥ 1.
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Since Xi+1 ⊆ Xi, Yi ⊆ Yi+1. By the condition of this claim, NG(N≤jG[Xi]
[v]) = NG(N≤jG[Xi+1]

[v])

for every integer j with 0 ≤ j ≤ k − 1. So for every j with 0 ≤ j ≤ k − 1, Yi ∩ NG(N≤jG[Xi]
[v]) ⊆

Yi+1 ∩NG(N≤jG[Xi+1]
[v]), and hence aj ≥ bj .

Let u be an arbitrary vertex in N≤kG[Xi]
[v]−N≤kG[Xi+1]

[v]. By the condition of this claim, N≤k−1G[Xi]
[v] =

N≤k−1G[Xi+1]
[v]. So

u ∈ N≤kG[Xi]
[v] = NG[Xi][N

≤k−1
G[Xi]

[v]] = NG[Xi][N
≤k−1
G[Xi+1]

[v]]. (4)

Hence the distance between u and v in G[Xi+1 ∪ {u}] is at most k. Since u 6∈ N≤kG[Xi+1]
[v], u ∈

Xi −Xi+1 = Yi+1 − Yi. Together with (4), u ∈ Yi+1 ∩NG(N≤k−1G[Xi+1]
[v])− Yi.

Since NG(N≤k−1G[Xi]
[v]) = NG(N≤k−1G[Xi+1]

[v]), we have Yi ∩ NG(N≤k−1G[Xi]
[v]) ⊆ Yi+1 ∩ NG(N≤k−1G[Xi+1]

[v]).

Recall that ak−1 = |Yi+1 ∩ NG(N≤k−1G[Xi+1]
[v])| and bk−1 = |Yi ∩ NG(N≤k−1G[Xi]

[v])|. Since u ∈ Yi+1 ∩
NG(N≤k−1G[Xi+1]

[v])− Yi, ak−1 > bk−1. Therefore, (a0, a1, ..., ak−1) > (b0, b1, ..., bk−1). �

Claim 4.4.3. Let i be a nonnegative integer, and let v be a vertex in Xi+1. Denote the Yi+1-
correlation of v by (a0, a1, ..., a`−1), and denote the Yi-correlation of v by (b0, b1, ..., b`−1). If ` ≥ 1 and
N≤jG[Xi+1]

[v] = N≤jG[Xi]
[v] for every integer j with 0 ≤ j ≤ `− 1, then (a0, a1, . . . , a`−1) is strictly greater

than (b0, b1, . . . , b`−1) in the lexicographic order.

Proof of Claim 4.4.3: Since Yi+1 ⊇ Yi, and for every integer j with 0 ≤ j ≤ ` − 1, N≤jG[Xi+1]
[v] =

N≤jG[Xi]
[v], we have aj ≥ bj for every j with 0 ≤ j ≤ `− 1.

Since v ∈ Xi+1, v 6∈ Zi ∪ Di by the definition of Xi+1. Assume that there exists v′ ∈ Yi+1 −
Yi = Xi − Xi+1 such that the distance in G[Xi] between v and v′ is `′ for some 0 ≤ `′ ≤ `, then

v′ ∈
(
Yi+1 ∩NG(N≤`

′−1
G[Xi+1]

[v])
)
−
(
Yi ∩NG(N≤`

′−1
G[Xi]

[v])
)

, so a`′−1 > b`′−1. Recall that aj ≥ bj for every

j with 0 ≤ j ≤ `− 1, so (a0, a1, ..., a`−1) > (b0, b1, ..., b`−1), and hence the claim follows.
Hence we may assume that there is no v′ ∈ Yi+1 − Yi = Xi −Xi+1 such that the distance in G[Xi]

between v and v′ is at most `. Equivalently, N≤`G[Xi]
[v] ∩ Yi+1 − Yi = ∅. Since Di ∪ Zi = Yi+1 − Yi,

N≤`G[Xi]
[v] ∩ (Di ∪ Zi) = ∅. Therefore any vertex in Xi whose distance to v in G[Xi] is at most `

is not in Di ∪ Zi. In other words, for any j ≤ `, we have N≤jG[Xi]
[v] = N≤jG[Xi−(Di∪Zi)]

[v]. Thus

N≤`−1G[Xi+1]
[v] = N≤`−1G[Xi−(Di∪Zi)]

[v] = N≤`−1G[Xi−Di]
[v]. Since v ∈ Xi+1, v 6∈ Zi. Since N≤`G[Xi]

[v]∩(Di∪Zi) = ∅,
by the maximality of Zi, N

≤`−1
G[Xi−Di]

[v] ∩ NG(Di) 6= ∅. So there exists x ∈ N≤`−1G[Xi−Di]
[v] ∩ NG(Di) =

N≤`−1G[Xi+1]
[v] ∩ NG(Di). Hence there exists y ∈ Di ∩ NG(x). Since y ∈ NG(x), y ∈ NG(N≤`−1G[Xi+1]

[v]).

Since y ∈ Di, y ∈ Yi+1−Yi. So (Yi+1−Yi)∩NG(N≤`−1G[Xi+1]
[v]) 6= ∅. Therefore, aj∗ > bj∗ for some j∗ with

0 ≤ j∗ ≤ `−1. Recall that aj ≥ bj for every j with 0 ≤ j ≤ `−1. So (a0, a1, ..., a`−1) > (b0, b1, ..., b`−1).
�

Claim 4.4.4. Let i be a nonnegative integer, and let v be a vertex in Xi+1. Denote the Yi+1-correlation
of v by (a0, a1, ..., a`−1), and denote the Yi-correlation of v by (b0, b1, ..., b`−1). If there exists k with
0 ≤ k ≤ ` − 1 such that bk ≥ r and bj < r for every 0 ≤ j ≤ k − 1, then (a0, a1, ..., ak−1) is strictly
greater than (b0, b1, ..., bk−1) in the lexicographic order.

Proof of Claim 4.4.4: If there exists an integer j∗ with 0 ≤ j∗ ≤ k such that N≤j
∗

G[Xi+1]
[v] ( N≤j

∗

G[Xi]
[v],

then by Claim 4.4.2, (a0, a1, ..., ak−1) is strictly greater than (b0, b1, ..., bk−1). So by (3), we may assume
that N≤jG[Xi+1]

[v] = N≤jG[Xi]
[v] for every j with 0 ≤ j ≤ k. In particular, N≤kG[Xi+1]

[v] = N≤kG[Xi]
[v].
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Since Yi ⊆ Yi+1, for any j with 0 ≤ j ≤ k − 1, NG(N≤jG[Xi]
[v]) ∩ Yi = NG(N≤jG[Xi+1]

[v]) ∩ Yi ⊆
NG(N≤jG[Xi+1]

[v]) ∩ Yi+1. So aj ≥ bj for every j with 0 ≤ j ≤ k − 1.

Since bk ≥ r, there exists a minimal (v, Yi, k, r)-span Q in G[Xi] with V (Q) ⊆ N≤kG[Xi]
[v]. Since

v ∈ Xi+1 and v ∈ V (Q), we have Q 6∈ Ci. By the maximality of Ci, there exists a member M of
Ci intersecting Q. Since v ∈ Xi+1, v 6∈ V (M). So ∅ 6= V (M) ∩ V (Q) ⊆ V (M) ∩ N≤kG[Xi]

[v] − {v}.
Hence there exists an integer k′ with 1 ≤ k′ ≤ k such that V (M) ∩N≤k

′

G[Xi]
[v]−N≤k

′−1
G[Xi]

[v] 6= ∅. Recall

that N≤jG[Xi+1]
[v] = N≤jG[Xi]

[v] for every j with 0 ≤ j ≤ k, so ∅ 6= V (M) ∩ N≤k
′

G[Xi]
[v] − N≤k

′−1
G[Xi]

[v] =

V (M) ∩ N≤k
′

G[Xi+1]
[v] − N≤k

′−1
G[Xi+1]

[v] ⊆ V (M) ∩ NG(N≤k
′−1

G[Xi+1]
[v]). Together with the fact that V (M) ⊆

Di ⊆ Yi+1 − Yi, we have ∅ 6= NG(N≤k
′−1

G[Xi+1]
[v]) ∩ Yi+1 − (NG(N≤k

′−1
G[Xi]

[v]) ∩ Yi). Hence ak′−1 > bk′−1.

Therefore, (a0, a1, ..., ak−1) is strictly greater than (b0, b1, ..., bk−1). �

Claim 4.4.5. X0 ⊆ Y(r+1)`.

Proof of Claim 4.4.5: We first assume ` = 0. Then for every two distinct vertices in X0−D0, their
distance in G[X0] is at least 1 = `+ 1. And for every z ∈ X0 −D0, N

≤`−1
G[X0−D0]

[z] = N≤−1G[X0−D0]
[z] = ∅.

So Z0 = X0 −D0. Hence Z0 ∪D0 = X0. So X0 ⊆ Y1 = Y(r+1)0 = Y(r+1)` .
Hence we may assume ` ≥ 1. Let v ∈ X0. We shall show that there exists a nonnegative integer

iv such that v ∈ Yiv and show iv ≤ (r + 1)`.

For each nonnegative integer i, if v is in Xi, then let a(i) = (a
(i)
0 , a

(i)
1 , . . . , a

(i)
`−1) be the Yi-correlation

of v. By Claims 4.4.2 and 4.4.3 and (3), for every nonnegative integer i, if v ∈ Xi+1, then a(i+1) > a(i)

in the lexicographic order. So if v ∈ Xi+1, then one entry in a(i) will increase its value by at least one.

By Claim 4.4.4, if v ∈ Xi+1 and there exists j with 0 ≤ j ≤ ` − 1 such that the entry a
(i)
j ≥ r while

a
(i)
j′ < r for all 0 ≤ j′ < j, then a

(i+1)
j′ > a

(i)
j′ for some j′ < j.

Therefore, there exists a nonnegative integer iv with iv ≤ r · (r + 1)`−1 such that either v ∈ Yiv or

a
(iv)
0 ≥ r. Note that if v 6∈ Yiv , then a

(iv)
0 ≥ r, so |NG(v)∩Yiv | ≥ r. So when v 6∈ Yiv , the graph consists

of the vertex v is a (v, Yiv , 0, r)-span, so v is contained in some member of Civ by the maximality of
Civ , and hence v ∈ Yiv+1 ⊆ Y(r+1)` . Therefore, X0 ⊆ Y(r+1)` . �

Recall that we assume |Zi| ≤ β|Yi| for every nonnegative integer i. By Lemma 4.2, |Ci| ≤ α|Yi| for
every nonnegative integer i. For every nonnegative integer i, since each member T of Ci is a minimal
(v, Yi, `, r)-span, it contains at most `r+ 1 vertices by Lemma 4.3. So for every nonnegative integer i,

|Yi+1 − Yi| = |Zi|+
∑
T∈Ci

|V (T )|

≤ |Zi|+ |Ci| · (`r + 1) ≤ (β + α · (`r + 1))|Yi| = γ|Yi|.

Hence |Yi+1| ≤ (1 + γ)|Yi| for every nonnegative integer i. Therefore, |Yi| ≤ (1 + γ)i|Y0| for every

nonnegative i. By Claim 4.4.5, |X0| ≤ |Y(r+1)` | ≤ (1 + γ)(r+1)` |Y0|. Since V (G) = X0 ∪ Y0,

|Y0| ≥
1

1 + (1 + γ)(r+1)`
|V (G)|.

Therefore,
∑

v∈V (G) degG(v) ≥
∑

v∈Y0 degG(v) > d|Y0| ≥ d

1+(1+γ)(r+1)`
|V (G)| = k|V (G)|, which implies

that the average degree of G is greater than k, a contradiction. This proves the lemma.

We remark that the main lemma in the work of Ossona de Mendez, Oum, and Wood [30, Lemma
2.2] is implied by the case (`, β) = (0, 0) of Lemma 4.4 (up to the constant d).
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5 Existence of good collections

We prove Lemmas 5.1 and 5.4, which will provide the correct value q for Lemma 2.2. Recall the
definitions of good signatures in Definitions 9 and 10.

Lemma 5.1. For every positive integer r and graph H, there exists a constant c = c(r,H) > 0 such
that for every H-minor free graph G, there exists a (c, r, r)-good signature collection for G.

Proof. Let r be a positive integer and let H be a graph. By [28], there exists a real number k such
that every graph of average degree at least k contains H as a minor. Define c =

(
k
r

)
.

Let G be an H-minor free graph. Since G has no H-minor, the average degree of G is less than k.
So there exists a vertex z∗ of G of degree less than k. Let Z = {z∗}. Then this lemma immediately
follows from Lemma 2.3 by taking a = k, t = 1 and ξ = 1.

Recall that as shown in Lemma 2.2, we want the value q to be as large as possible. Lemma 5.1
provides such a value q and will be used in the proof of our main results. But it is not strong enough to
prove our other results, and in fact it uses almost no structural information for H-minor free graphs.
We shall provide a better value for q by looking into the structure of H-minor free graphs. This is the
purpose of Lemma 5.4, and the rest of this section is dedicated to a proof of it.

We first sketch the ideas of the proof of Lemma 5.4. Recall that by Lemma 2.3, to obtain a good
signature collection, it suffices to find a set Z of vertices of bounded maximum degree such that every
subgraph with minimum degree at least r containing a particular vertex in Z must contain many
vertices in Z. Lemma 4.4 already provides a preliminary form of such Z: it shows that either G
contains a certain graph as a minor (Statements 1-3), or there exists a set Z of vertices contained in
another set X of vertices with bounded maximum degree such that if we visit vertices by going from
any vertex z ∈ Z along paths with bounded length in G[X], then the total number of neighbors outside
X of those vertices we visited is small (Statement 4). If we can show that the total number of neighbors
is 0, then every subgraph with large minimum degree containing z must contain many vertices in Z,
so we are done. However, it is too good to be true in general. So we shall bootstrap Lemma 4.4
to obtain Lemma 5.2 to show that either we can ensure every subgraph with large minimum degree
containing z contains many vertices in Z (Statement 4(b) in Lemma 5.2), or we obtain something
similar so that we can adapt the proof of Lemma 2.3 to obtain a good signature collection (Statement
4(c)ii in Lemma 5.2), or there exists an obstruction that looks like the graphs that give the upper
bound of the thresholds (Statement 4(c)i in Lemma 5.2). Then in Lemmas 5.3 and 5.4, we show how
to adapt the proof of Lemma 2.3 to obtain a desired good signature collection.

Before we proof Lemma 5.2, we recall that for graphs G and H and a nonnegative integer r,
F(G,H, r) is the set consisting of the graphs that can be obtained from a disjoint union of G and H
by adding edges between V (G) and V (H) such that every vertex in V (H) has degree at least r. For a
graph W in F(G,H, r), the type of W is the number of edges of W incident with V (H), and the heart
of W is V (G).

Lemma 5.2. For any r, t, t′ ∈ N, w ∈ Z with r ≥ w ≥ 0, nonnegative integer s0 and positive real
numbers k, k′, there exists an integer d such that for every graph G, either

1. the average degree of G is greater than k,

2. there exists a graph H of average degree greater than k′ such that some subgraph of G is isomor-
phic to a [4s0 + 2w + 5]-subdivision of H,

3. G contains Kr−w+1,t as a (2s0 + w + 2)-shallow minor, or
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4. there exists X ⊆ V (G) such that

(a) every vertex in X has degree at most d in G,

(b) there exists v∗ ∈ X such that for every subgraph R of G of minimum degree at least r
containing v∗, there exists a path in G[X ∩ V (R)] of length w starting at v∗, and

(c) either X = V (G), or there exists a nonnegative integer s with s ≤ s0 such that either

i. there exists a connected graph F0 such that G contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s, where I is the heart of F , or

ii. there exists x∗ ∈ X such that for every subgraph R of G of minimum degree at least r
containing x∗, there exists a connected subgraph F of R[X ∩ V (R)] containing x∗ such
that the number of edges in R incident with V (F ) is at least s0 + 1.

Proof. Let r, t, t′ ∈ N, w ∈ Z with r ≥ w ≥ 0, s0 ∈ Z with s0 ≥ 0, and k, k′ be positive real numbers.

Let β = (s0+1)2 ·2(s0+1
2 ) ·(r−w+1)(t′−1+r−w)

(
k′

2 +
(

k′

bk′/2c
)
· t′ · 2(r−w)(s0+1)

)
t′ ·2(r−w)(s0+1). Define

d to be the integer mentioned in Lemma 4.4 by taking (r, t, `, k, k′, β) = (r−w+1, t, 2s0+w+2, k, k′, β).
Let G be a graph. Suppose that Statements 1-3 of this lemma do not hold. So by Lemma 4.4,

there exist X,Z ⊆ V (G) with Z ⊆ X and |Z| > β|V (G)−X| such that

(i) every vertex in X has degree at most d in G,

(ii) for any distinct pair of vertices in Z, the distance in G[X] between them is at least 2s0 +w+ 3,

(iii) for every z ∈ Z and u ∈ X whose distance from z in G[X] is at most 2s0 +w+ 2, |NG(u)−X| ≤
r − w, and

(iv) |NG(N≤2s0+w+1
G[X] [z])−X| ≤ r − w for every z ∈ Z.

We shall prove that Statement 4 of this lemma holds. Statement 4(a) immediately follows from
(i).

We first prove Statement 4(b). Let v∗ be any vertex in Z. Suppose to the contrary that there
exists a subgraph R of G of minimum degree at least r containing v∗ such that the longest path P in
R[X∩V (R)] starting at v∗ has length at most w−1. For every vertex v ∈ V (P ), |NR(v)∩X−V (P )| ≥
|NR(v)|−|NR(v)−X|−|NR(v)∩V (P )| ≥ |NR(v)|−|NG(v)−X|−(|V (P )|−1) ≥ r−(r−w)−(w−1) = 1
where the last inequality follows from (iii) by taking (z, u) in (iii) to be (v∗, v). So P is not a longest
path in R starting at v∗ since if v is the other end of P , then we can extend P by concatenating a
vertex in NR(v) ∩ X − V (P ). This leads to a contradiction. Since R[X ∩ V (R)] ⊆ G[X ∩ V (R)],
Statement 4(b) is proved.

Now we prove Statement 4(c). We may assume that X 6= V (G), for otherwise we are done. Assume
4(c)ii does not hold. We shall show 4(c)i holds.

For every z ∈ Z and every subgraph R of G of minimum degree at least r containing z, define sR,z
to be the number of edges of R incident with the vertices in the component of R[V (R)∩X] containing
z. For every z ∈ Z, define s′z = minR sR,z, where the minimum is taken over all subgraphs R of G of
minimum degree at least r containing z. Note that for every z ∈ Z, s′z ≥ r as the minimum is taken
over all subgraphs of minimum degree at least r. If there exists z ∈ Z such that s′z ≥ s0 + 1, then
Statement 4(c)ii holds by taking x∗ = z.

So we may assume that s′z ≤ s0 for every z ∈ Z. Define s to be an integer with 0 ≤ s ≤ s0 such
that |{z ∈ Z : s′z = s}| is maximum. Let Zs = {z ∈ Z : s′z = s}. In particular,

|Zs| ≥
1

s0 + 1
|Z| > β

s0 + 1
|V (G)−X|. (5)
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If there is a vertex z ∈ Zs such that for every subgraph R of G of minimum degree at least r
containing z with sR,z = s′z = s, the connected component FR,z of R[V (R)∩X] containing z contains
at least s0 + 2 vertices, then for every such R, the number of edges in R incident with V (FR,z) is at
least s0 + 1 ≥ s+ 1 = sR,z + 1, a contradiction. So for every z ∈ Zs, there exists a subgraph Rz of G of
minimum degree at least r containing z with sRz ,z = s such that the component Fz of Rz[V (Rz)∩X]
containing z satisfies that

|V (Fz)| ≤ s0 + 1. (6)

Since there are at most (s0 + 1) · 2(s0+1
2 ) non-isomorphic labelled graphs on at most s0 + 1 vertices,

there exist a connected (labelled) graph F on at most s0 + 1 vertices and Z ′s ⊆ Zs with

|Z ′s| ≥
|Zs|

(s0 + 1) · 2(s0+1
2 )

>
β

(s0 + 1)2 · 2(s0+1
2 )
|V (G)−X|

such that F is isomorphic to each (labelled) Fz for every z ∈ Z ′s, where the we use (5) for the second
inequality.

For every z ∈ Z ′s, since Fz is connected and contains at most s0 + 1 vertices,

V (Fz) ⊆ N≤s0G[X][z]. (7)

By (iv), for every z ∈ Z ′s, |NG(N≤s0G[X][z])−X| ≤ r−w. So there exist an integer p with 0 ≤ p ≤ r−w
and a set Z∗s ⊆ Z ′s with

|Z∗s | ≥
|Z ′s|

r − w + 1
>

β

(s0 + 1)2 · 2(s0+1
2 ) · (r − w + 1)

|V (G)−X| (8)

≥ β

(s0 + 1)2 · 2(s0+1
2 ) · (r − w + 1)

≥ t′ − 1 + r − w

such that |NG(V (Fz))−X| = p for every z ∈ Z∗s .
A quick remark is that, by (ii), for distinct vertices z1, z2 in Z ′s, N

≤s0
G[X][z1] and N≤s0G[X][z2] are disjoint.

Together with (7), we have that
V (Fz) ∩ V (Fz′) = ∅. (9)

We first assume that p = 0. Then for every z ∈ Z∗s , Fz is of minimum degree at least r since R is
of minimum degree at least r and NG(V (Fz)) ⊆ X. Since |Z∗s | ≥ t′ + r −w, the graphs Fz for z ∈ Z∗s
form at least r − w + t′ disjoint copies of F in G. We just showed that F is of minimum degree at
least r. Let F ′ be a disjoint union of F and r−w isolated vertices. Then F ′ ∈ F(Ir−w, F, r) and is of
type s. Since G contains r − w + t′ disjoint copies of F , we know G contains F ′ ∧t′ I where I is the
heart of F ′, as we can take t′ disjoint copies of F and one vertex in each of other r − w copies of F .
So Statement 4(c)i holds.

So we may assume that p ≥ 1. Recall that by the definition of Z∗s , |NG(V (Fz))−X| = p for every
z ∈ Z∗s .

Claim 5.2.1. If there is a subset S ⊆ V (G) − X such that S equals NG(V (Fz)) − X for at least
t′ · 2p(s0+1) vertices z ∈ Z∗s , then Statement 4(c)i holds.

Proof of Claim 5.2.1: For every z ∈ Z∗s , since |NG(V (Fz))−X| = p, and each of the copies Fz are
isomorphic (as a labelled graph), there are at most 2|V (Fz)|p ≤ 2(s0+1)p possibilities for how vertices in
Fz are connected in G to the p vertices in the set NG(V (Fz))−X by (6) and the fact that there are
|V (Fz)|p potential egdes between vertices in Fz and NG(V (Fz))−X.
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Notice that each vertex in Fz has degree at least r in G[NG[V (Fz)]]. By a pigeonhole argument, if
S is a subset of V (G)−X such that S equals NG(V (Fz))−X for at least t′ · 2p(s0+1) vertices z ∈ Z∗s ,
then there are at least t′ vertices z ∈ Z∗s such that the graphs G[S ∪V (Fz)]−E[S], denoted by F ′z, are
isomorphic to a graph F ′ as a labelled graph. Let F0 be Fz for one of these t′ vertices z ∈ Z∗s . Then
F ′ ∈ F(Ip, F0, r) and the union of F ′z among these t′ vertices in Z∗s is a subgraph G′ of G isomorphic
to F ′ ∧t′ I, where I is the stable set corresponding to V (Ip). Let G′′ be the union of G′ and r−w− p
vertices in the remaining |Z∗s | − t′ ≥ r−w vertices in Z∗s . Then G′′ is isomorphic to F ′′ ∧t′ I ′′ for some
F ′′ ∈ F(Ir−w, F0, r), where I ′′ is the union of I and the new r − w − p vertices. Therefore Statement
4(c)i holds. �

Claim 5.2.2. If Statement 4(c)i does not hold, then

|{NG(V (Fz))−X : z ∈ Z∗s}| ≤
(
k′

2
+

(
k′

bk′/2c

)
· t′ · 2p(s0+1)

)
|V (G)−X|.

Proof of Claim 5.2.2: By (9), V (Fz) ∩ V (Fz′) = ∅ for distinct vertices z1, z2 in Z∗s . Starting from
G[
⋃
z∈Z∗s V (Fz) ∪ (V (G) − X)] − E(G[V (G) − X]), we obtain a graph H ′ by repeatedly deleting all

the vertices in V (Fz) for some z ∈ Z∗s where some pair of distinct vertices y, y′ in NG(V (Fz))−X are
non-adjacent in the current graph, and adding the edge yy′. We continue this process until for every
remaining vertex z′ in Z∗s , NG(V (Fz))−X is a clique.

Let H = H ′[V (G) − X]. Since p ≥ 1 and V (Fz) ⊆ N≤s0G[X][z] by (9) for every z ∈ Z∗s (which

implies any two vertices in Fz can be connected in Fz by a path of length at most 2s0), we know
G[
⋃
z∈Z∗s ((NG(V (Fz))−X)∪V (Fz))] contains a [2s0 + 1]-subdivision of H. It implies that G contains

a [2s0 + 1]-subdivision of any subgraph of H. Since Statement 2 of this lemma does not hold, the
average degree of any subgraph of H is at most k′.

For each vertex z ∈ Z∗s , either V (Fz) has been deleted thus corresponding to a unique edge in H,
or V (Fz) survives in H ′, in which case NG(V (Fz))−X becomes a clique of size |NG(V (Fz))−X| = p
in H ′, and thus also a clique of size p in H since NG(V (Fz)) − X ⊆ V (G) − X. There are at
most |E(H)| vertices in Z∗s of the first kind. Since the maximum average degree of H is at most k′,

|E(H)| ≤ k′|V (H)|
2 = k′

2 |V (G)−X|.
For the vertices in Z ′ of the second kind, note that NG(V (Fz))−X is a clique of size p in H. Let

c be the number of vertices in Z∗s of the second kind. By Claim 5.2.1, each S ⊆ V (G) − X is the
neighborhood of at most t′ ·2p(s0+1) vertices z ∈ Z∗s of the second kind. Since each z ∈ Z∗s gives a clique

of size p in H and by Lemma 4.1, the number of cliques of size p in H is at most
(
k′

p−1
)
|V (G)−X| ≤(

k′

bk′/2c
)
|V (G)−X|. Combining these two facts, we have c ≤

(
k′

bk′/2c
)
· t′ ·2p(s0+1)|V (G)−X|. Therefore,

|{NG(V (Fz))−X : z ∈ Z∗s}| ≤ |E(H)|+ c ≤
(
k′

2
+

(
k′

bk′/2c

)
· t′ · 2p(s0+1)

)
|V (G)−X|.

�
By Claim 5.2.2, the number of distinct sets of the form NG(V (Fz))−X for some z ∈ Z∗s is at most(

k′

2 +
(

k′

bk′/2c
)
· t′ · 2p(s0+1)

)
|V (G) − X|. However, by (8), |Z∗s | >

β

(s0+1)2·2(
s0+1

2 )·(r−w+1)

· |V (G) − X|.

Therefore there is a subset S ⊆ V (G) − X with |S| = p ≤ r − w such that there are at least(
β

(s0+1)2·2(
s0+1

2 )·(r−w+1)

)
/
(
k′

2 +
(

k′

bk′/2c
)
· t′ · 2p(s0+1)

)
≥ t′ · 2p(s0+1) vertices z in Z∗s satisfying S =

NG(Fz)−X. Then Statement 4(c)i holds by Claim 5.2.1. This completes the proof.

We show how to adapt the proof of Lemma 2.3 to obtain a desired good signature collection by
using Lemma 5.2 in Lemmas 5.3 and 5.4.
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Lemma 5.3. For any r, t, t′ ∈ N, w ∈ Z with r ≥ w ≥ 0, nonnegative integer s0 and positive real
numbers k, k′, there exist integers c, d such that for every graph G, either

1. the average degree of G is greater than k,

2. there exists a graph H of average degree greater than k′ such that some subgraph of G is isomor-
phic to a [4s0 + 2w + 5]-subdivision of H,

3. G contains Kr−w+1,t as a (2s0 + w + 2)-shallow minor, or

4. there exists a vertex v∗ ∈ V (G) and a collection C∗ of ((w + 1)r −
(
w+1
2

)
)-element subsets of

E(G) with |C∗| ≤ c such that for every subgraph R of G of minimum degree at least r containing
v∗, E(R) contains some member of C∗, and either

(a) every vertex of G is of degree at most d, and there exists a vertex x∗ ∈ V (G) and a collection
C of

(
r+1
2

)
-element subsets of E(G) with |C| ≤ c such that for every subgraph R′ of G of

minimum degree at least r containing x∗, E(R′) contains some member of C, or

(b) there exists a nonnegative integer s with s ≤ s0 such that either

i. there exists a connected graph F0 such that G contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s, where I is the heart of F , or

ii. there exists a vertex x∗ ∈ V (G) and a collection C of (s0 + 1)-element subsets of E(G)
with |C| ≤ c such that for every subgraph R′ of G of minimum degree at least r con-
taining x∗, E(R′) contains some member of C.

Proof. Let r, t, t′ ∈ N, w ∈ Z with r ≥ w ≥ 0, s0 be a nonnegative integer, and k, k′ be posi-
tive real numbers. Let d be the number d mentioned in Lemma 5.2 by taking (r, t, t′, w, s0, k, k

′) =

(r, t, t′, w, s0, k, k
′). Define c =

(
d
r

)r+1 · (4(r + 1)d)(r+1)2 +
(
d·(s0+3)ds0+2

s0+1

)
· 2(s0+3)2d2s0+4

.
Let G be a graph. Assume that Statements 1-3 of this lemma do not hold. By Lemma 5.2, there

exists X ⊆ V (G) such that

(i) every vertex in X has degree at most d in G,

(ii) there exists v∗ ∈ X such that for every subgraph R of G of minimum degree at least r containing
v∗, there exists a path QR in G[X ∩ V (R)] of length w starting at v∗, and

(iii) either X = V (G), or there exists an integer s with 0 ≤ s ≤ s0 such that either

(C1) there exists a connected graph F0 such that G contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s, where I is the heart of F , or

(C2) there exists x∗ ∈ X such that for every subgraph R of G of minimum degree at least r
containing x∗, there exists a connected subgraph F of R[X ∩V (R)] containing x∗ such that
the number of edges in R incident with V (F ) is at least s0 + 1.

We shall show Statement 4 of this lemma holds. For every v ∈ X, let Cv be the collection of all
r-element subsets of E(G) such that each of the r edges is incident with v. Since every vertex in X
has degree at most d in G, |Cv| ≤

(
d
r

)
for every v ∈ X.

For every subgraph Q in G[X], let

CQ = {
⋃

v∈V (Q)

Tv : (Tv ∈ Cv : v ∈ V (Q))}.
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In other words, each member of CQ is a union of |V (Q)| sets where each of them consists of r edges
incident with a vertex of Q and no two distinct sets are corresponding to the same vertex of Q. For
every subgraph Q in G[X], since |CQ| ≤

∏
v∈V (Q) |Cv|, we have

|CQ| ≤
(
d

r

)|V (Q)|
. (10)

Claim 5.3.1. Let u ∈ X and q be a nonnegative integer. If C is the set consisting of all the members
of CQ for all connected subgraphs Q in G[X] containing u satisfying that |V (Q)| = q and every
vertex v ∈ V (Q) has degree at least r in G, then every member of C has size at least qr −

(
q
2

)
, and

|C| ≤
(
d
r

)q · (4qd)q
2
.

Proof of Claim 5.3.1: Since every vertex of Q has degree at least r in G, every member of C
has size at least qr −

(
q
2

)
. Since every vertex in X has degree at most d in G, for every q′ with

0 ≤ q′ ≤ q, there are at most dq
′ ≤ dq paths in G[X] of length q′ starting at u. So |N≤qG [u]| ≤ qdq + 1.

Since every connected subgraph Q in G[X] containing u with |V (Q)| = q satisfies V (Q) ⊆ N≤qG [u],

there are at most
(|N≤q

G [u]|
q

)
· 2(|V (Q)|

2 ) ≤ (4qd)q
2

connected subgraphs Q in G[X] containing u with

|V (Q)| = q. So together with (10), |C| ≤
(
d
r

)q · |{Q : Q is a connected subgraph in G[X] containing u

with |V (Q)| = q}| ≤
(
d
r

)q · (4qd)q
2
. �

Define C0 to be the union of CQR
over all subgraphs R of G of minimum degree at least r containing

v∗, where v∗ and QR are defined in (ii). By Claim 5.3.1, every member of C0 has size at least

(w + 1)r −
(
w+1
2

)
and |C0| ≤

(
d
r

)w+1 · (4(w + 1)d)(w+1)2 ≤ c. By (ii), for every subgraph R′ of G of
minimum degree at least r containing v∗, E(R′) contains some member of C0.

For every S ∈ C0, since |S| ≥ (w+1)r−
(
w+1
2

)
, there exists a subset f∗(S) of S of size (w+1)r−

(
w+1
2

)
.

Let C∗ = {f∗(S) : S ∈ C0}. So every member of C∗ has size (w + 1)r −
(
w+1
2

)
, |C∗| ≤ |C0| ≤ c, and for

every subgraph of G of minimum degree at least r containing v∗, its edge-set contains some member
of C∗.

Therefore, to prove Statement 4 of this lemma, it suffices to prove Statements 4(a) or 4(b) holds.
We first assume that X = V (G). Then every vertex of G is of degree at most d by (i). If every vertex of
G has degree less than r, then there exists no subgraph of G of minimum degree at least r, so Statement
4(a) holds by choosing C = ∅ and choosing x∗ to be any vertex of G. Hence we may assume that there
exists a vertex v of G of degree at least r. For every subgraph R of G of minimum degree at least r
containing v, there exists a star TR on r + 1 vertices centered at v contained in R. Note that every
vertex in such TR has degree at least r in G since R has minimum degree at least r. Define C1 to be
the union of CTR over all subgraphs R of G of minimum degree at least r containing v. By Claim 5.3.1,

every member of C1 has size at least (r+ 1)r−
(
r+1
2

)
=
(
r+1
2

)
and |C1| ≤

(
d
r

)r+1 · (4(r+ 1)d)(r+1)2 ≤ c.
For every subgraph R′ of G of minimum degree at least r containing v, since V (TR′) ⊆ V (R′), E(R′)
contains some member of C1. Hence Statement 4(a) holds and we are done.

So we may assume that X 6= V (G). Hence by (iii), there exists a nonnegative integer s with s ≤ s0
such that either (C1) or (C2) holds. We may also assume that Statement 4(b)(i) does not hold, for
otherwise we are done. In particular, (C2) holds by (iii).

Let C = {E(Q) : Q is a subgraph of G obtained from a connected subgraph Q′ of G[X] containing x∗

with |E(Q′)| ≤ s0 +1 by adding edges of G incident with V (Q′) such that |E(Q)| = s0 +1}. Note that
for every connected subgraph Q′ of G[X] with x∗ ∈ V (Q′) and |E(Q′)| ≤ s0 + 1, V (Q′) ⊆ N≤s0+2

G[X] [x∗]

by the connectedness. Since every vertex in X has degree at most d in G, |V (Q′)| ≤ |N≤s0+2
G[X] [x∗]| ≤
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(s0 + 3)ds0+2. Thus the number of such connected graphs Q′ is at most 2
|N≤s0+2

G[X]
[x∗]| · 2(

|N≤s0+2
G[X]

[x∗]|
2

) ≤
2
(|N≤s0+2

G[X]
[x∗]|)2 ≤ 2(s0+3)2d2s0+4

. So the number of subgraphs Q of G obtained from a connected
subgraphs Q′ of G[X] containing x∗ with |E(Q′)| ≤ s0 + 1 by adding edges of G incident with V (Q′)

such that |E(Q)| = s0 + 1 is at most
(
d|V (Q′)|
s0+1

)
multiplying by the number of Q′, which is at most(

d·(s0+3)ds0+2

s0+1

)
· 2(s0+3)2d2s0+4 ≤ c. Hence |C| ≤ c. In addition, every member of C has size s0 + 1.

By (C2), for every subgraph R of G of minimum degree at least r containing x∗, there exists a
connected subgraph F ′R of R[X ∩V (R)] containing x∗ whose number of edges in R incident to vertices
in F ′R is at least s0 + 1, so there exists a connected subgraph FR of R obtained from a connected
subgraph F ′′R of F ′R containing x∗ with |E(F ′′R)| ≤ s0 + 1 by adding edges of R incident with V (F ′′R)
such that |E(FR)| = s0 + 1. Note that E(FR) ∈ C. Hence E(R) contains E(FR) ∈ C. Therefore
Statement 4(b)(ii) holds.

Now we are ready to prove Lemma 5.4.

Lemma 5.4. For any r, t, t′ ∈ N, integer w with r ≥ w ≥ 0, and nonnegative integer s0, there exists
an integer c such that for every graph G, either

1. G contains Kr−w+1 ∨ It as a minor, or

2. there exist a (c, (w+ 1)r−
(
w+1
2

)
, r)-good signature collection C for G and a nonnegative integer

s with s ≤ s0 such that either

(a) there exists a connected graph F0 such that G contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s, where I is the heart of F , or

(b) there exists a (c,min{s0 + 1,
(
r+1
2

)
}, r)-good signature collection for G.

Proof. Let r, t, t′ ∈ N and w be an integer with r ≥ w ≥ 0. Let s0 be a nonnegative integer. Let
k be a real number such that every graph with average degree at least k contains Kr−w+1 ∨ It as
a minor. Note that such a number k exists since we can take k to be any value larger than the
supreme of maximum average degree in all Kr−w+1+t-minor free graphs, and the supreme exists by
[40]. Define c and d to be the numbers c and d mentioned in Lemma 5.3 by taking (r, t, t′, w, s0, k, k

′) =
(r, t+

(
r−w+1

2

)
, t′, w, s0, k, k).

Let G be a graph. We shall prove this lemma by induction on |V (G)|. This lemma holds when
|V (G)| = 1 since there exists no subgraph of G of minimum degree at least r and hence Statement 2
holds. Now we assume that this lemma holds for all graphs with fewer vertices than G.

We may assume that G does not contain Kr−w+1∨It as a minor, for otherwise we are done. Since G
does not contain Kr−w+1∨It as a minor, every subgraph of G has average degree less than k. Similarly,
there does not exist a graph H of average degree greater than k such that some subgraph H ′ of G is a
[4s0+2w+5]-subdivision of H, for otherwise H ′ (and hence G) contains a subdivision of a subgraph of
H that contains Kr−w+1∨ It as a minor, a contradiction. In addition, since Kr−w+1,t+(r−w+1

2 ) contains

Kr−w+1 ∨ It as a minor, G does not contain Kr−w+1,t+(r−w+1
2 ) as a (2s0 + w + 2)-shallow minor.

Hence, applying Lemma 5.3 by taking (r, t, t′, w, s0, k, k
′) = (r, t +

(
r−w+1

2

)
, t′, w, s0, k, k), there

exists x∗ ∈ V (G) and a collection Cx∗ of q-element subsets of E(G) with |Cx∗ | ≤ c such that for every
subgraph R of G of minimum degree at least r containing x∗, E(R) contains some member of Cx∗ ,
where q is defined as follows:

• if every vertex of G is of degree at most d, then q =
(
r+1
2

)
;
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• otherwise, if there exists a connected graph F0 such that G contains F ∧t′ I as a subgraph for
some F ∈ F(Ir−w, F0, r) of type s for some integer s with 0 ≤ s ≤ s0, where I is the heart of F ,
then q = (w + 1)r −

(
w+1
2

)
;

• otherwise, q = max{(w + 1)r −
(
w+1
2

)
,min{s0 + 1,

(
r+1
2

)
}}.

Since w is an integer with 0 ≤ w ≤ r, (w + 1)r −
(
w+1
2

)
≤
(
r+1
2

)
.

Let G′ = G − x∗. Note that G′ does not contain Kr−w+1 ∨ It as a minor. So by the induction
hypothesis, there exists a collection C′ of q′-element subsets of E(G′) with |C′| ≤ c|V (G′)| = c(|V (G)|−
1) such that for every subgraph R of G′ of minimum degree at least r, E(R) contains some member
of C′, where

• if there exists a connected graph F0 such that G′ contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s for some integer s with 0 ≤ s ≤ s0, where I is the heart of F , then
q′ = ((w + 1)r −

(
w+1
2

)
), and

• otherwise, q′ = max{((w + 1)r −
(
w+1
2

)
),min{s0 + 1,

(
r+1
2

)
}}.

Note that if there exists a connected graph F0 such that G′ contains F ∧t′ I as a subgraph for some
F ∈ F(Ir−w, F0, r) of type s, where I is the heart of F , then so does G. So q′ ≤ q. Hence for
every S ∈ Cx∗ , there exists a subset f(S) of S of size q′ such that |{f(S) : S ∈ Cx∗}| ≤ c, and for
every subgraph R of G of minimum degree at least r containing x∗, E(R) contains some member of
{f(S) : S ∈ Cx∗}.

Define C = {f(S) : S ∈ Cx∗} ∪ C′. So C is a collection of q′-element subsets of E(G) with size at
most |Cx∗ | + |C′| ≤ c|V (G)|. Let R be a subgraph of G of minimum degree at least r. If R contains
x∗, then E(R) contains some member of {f(S) : S ∈ Cx∗} ⊆ C. If R does not contain x∗, then R is a
subgraph of G′ of minimum degree at least r, so E(R) contains some member of C′ ⊆ C. Therefore,
Statement 2 holds for G. This proves this lemma.

6 Proof of main theorems

We prove Theorems 1.4, 1.6 and Corollary 1.2 in this section. We first prove the following simple
lemma.

Lemma 6.1. Let r be a positive integer. Let H be a graph that is not a subgraph of Kr ∨ It for any
positive integer t. Then {Kr,s : s ≥ r} ⊆ M(H).

Proof. For every integer s with s ≥ r, every minor of Kr,s is a subgraph of Kr ∨ Is. Hence, if there is
an integer s such that Kr,s contains H as a minor, then H is a subgraph of Kr ∨ Is, a contradiction.
Hence Kr,s does not contain H as a minor for every s ≥ r.

Now we combine Lemmas 2.2, 5.1 and 5.4 to determine or find a lower bound for the threshold for
degeneracy. It is an essential step toward proving our main results in Section 1.2.

Lemma 6.2. Let r ≥ 2 be an integer. Let H be a graph. Then pDr

M(H) = Ω(n−1/qH ), where qH is
defined as follows.

1. If H is not a subgraph of Kr ∨ It for any positive integer t, then qH = r.

2. Otherwise let w be the largest integer with 1 ≤ w ≤ r such that H is a subgraph of Kr−w+1 ∨ It
for some positive integer t.
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(a) If H is not a subgraph of Kr−w∨tKw+1 for any positive integer t, then qH = (w+1)r−
(
w+1
2

)
.

(b) Otherwise, qH = max{min{s + 1,
(
r+1
2

)
}, (w + 1)r −

(
w+1
2

)
}, where s is the largest integer

with 0 ≤ s ≤
(
r+1
2

)
such that for every integer s′ with 0 ≤ s′ ≤ s, every connected graph

F0 and every graph F ∈ F(Ir−w, F0, r) of type s′, H is a minor of F ∧t I for some positive
integer t, where I is the heart of F .

Furthermore, pDr

M(H) = Θ(n−1/qH ) and p
χ`
r

M(H) = Θ(n−1/qH ) in Statements 1 and 2(a).

Proof. We first assume that H is not a subgraph of Kr ∨ It for any positive integer t. By Lemma 5.1,
there exists a real number c (only depending on r and H) such that for every H-minor free graph G,
there exists and a collection C of r-element subsets of E(G) with |C| ≤ c|V (G)| such that for every
subgraph of G of minimum degree at least r, its edge-set contains some member of C. So the threshold
pDr

M(H) = Ω(n−1/r) by Lemma 2.2. In addition, by Lemma 6.1, M(H) contains {Kr,s : s ≥ r}. So

pDr

M(H) = O(n−1/r) and p
χ`
r

M(H) = O(n−1/r) by Corollary 3.6. Thus pDr

M(H) = Θ(n−1/r) and p
χ`
r

M(H) =

Θ(n−1/r) by Proposition 2.1. This proves Statement 1.
Now we may assume that H is a subgraph of Kr ∨ It for some positive integer t. So there exists

the largest integer w with 1 ≤ w ≤ r such that H is a subgraph of Kr−w+1 ∨ It for some positive
integer t. Hence there exists an integer tH ≥ r such that H is a subgraph of Kr−w+1 ∨ ItH . Since
Kr−w+1,tH+(r−w+1

2 ) contains Kr−w+1 ∨ ItH as a minor, every H-minor free graph does not contain

Kr−w+1,tH+(r−w+1
2 ) as a minor and hence does not contain Kr−w+1 ∨ ItH+(r−w+1

2 ) as a minor.

Let c1 be the number c mentioned in Lemma 5.4 by taking (r, t, t′, w, s0) = (r, tH +
(
r−w+1

2

)
, 1, w,(

r+1
2

)
). Since every H-minor free graph does not contain Kr−w+1 ∨ ItH+(r−w+1

2 ) as a minor, Lemma

5.4 implies that for every H-minor free graph G, there exists a collection of subsets of E(G) which is

a good-(c1, CG,1 of ((w+ 1)r−
(
w+1
2

)
), r) signature. So pDr

M(H) = Ω(n−1/((w+1)r−(w+1
2 ))) by Lemma 2.2.

Hence by Proposition 2.1, p
χ`
r

M(H) = Ω(n−1/((w+1)r−(w+1
2 ))) by Lemma 2.2.

Now we assume that H is not a subgraph of Kr−w∨ tKw+1 for any positive integer t. Note that for
every positive integer s with s ≥ r−w, every minor of Ir−w ∨ sKw+1 is a subgraph of Kr−w ∨ sKw+1.
So for every positive integer t with t ≥ r − w, Ir−w ∨ tKw+1 does not contain H as a minor. That is,

{Ir−w∨sKw+1 : s ≥ r−w} ⊆ M(H). By Corollary 3.6, pDr

M(H) = O(n−1/qH ) and p
χ`
r

M(H) = O(n−1/qH ).

This proves Statement 2(a).
Hence we may assume that H is a subgraph of Kr−w ∨ tKw+1 for some positive integer t. Note

that it implies that H is a subgraph of Kr−w ∨ tKw+1 for every sufficiently large positive integer t.
We say that a triple (a, F0, F ) is a standard triple if a is a nonnegative integer, F0 is a connected

graph, and F is a member of F(Ir−w, F0, r) of type a. Let s be the largest integer with 0 ≤ s ≤
(
r+1
2

)
such that for every integer s′ with 0 ≤ s′ ≤ s and for every standard triple (s′, F0, F ), H is a minor of
F ∧t I for some positive integer t, where I is the heart of F . The number s is well-defined (i.e., s ≥ 0)
since there is no graph F in F(Ir−w, F0, r) of type 0.

This definition implies that for every integer s′ with 0 ≤ s′ ≤ s and standard triple (s′, F0, F ), there
exists an integer ts′,F0,F such that H is a minor of F ∧t I for every integer t with t ≥ ts′,F0,F , where I
is the heart of F . In addition, for every integer s′ with 0 ≤ s′ ≤ s and standard triple (s′, F0, F ), since
F0 is connected, we know |V (F0)| ≤ |E(F0)|+ 1 ≤ s′ + 1 ≤

(
r+1
2

)
+ 1. So there are only finitely many

different standard triple (s′, F0, F ) with 0 ≤ s′ ≤ s. We define t∗ to be the maximum ts′,F0,F among
all integers s′ with 0 ≤ s′ ≤ s and standard triples (s′, F0, F ). So H is a minor of F ∧t∗ I, where I is
the heart of F .

Applying Lemma 5.4 by taking (r, t, t′, w, s0) = (r, tH +
(
r−w+1

2

)
, t∗, w, s), there exists a number
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c2 such that for every Kr−w+1 ∨ ItH+(r−w+1
2 )-minor free graph G, there exists an integer sG with

0 ≤ sG ≤ s such that either

(i) there exists a connected graph F0 such that G contains F ∧t∗ I as a subgraph for some F ∈
F(Ir−w, F0, r) of type sG, where I is the heart of F , or

(ii) there exists a collection C of subsets of E(G) which is a good-(c2,min{s+ 1,
(
r+1
2

)
}, r) signature.

Let G be an H-minor free graph. Suppose that (i) holds for G. Then there exists a connected
graph F0 such that G contains F ∧t∗ I as a subgraph for some F ∈ F(Ir−w, F0, r) of type sG ≤ s,
where I is the heart of F . By the definition of t∗, H is a minor of F ∧t∗ I, so G contains H as a
minor, contradiction. Hence (ii) holds for G. Therefore, there exists a collection CG,2 of subsets of

E(G) which is a good-(c2,min{s + 1,
(
r+1
2

)
}, r) signature. Hence pDr

M(H) = Ω(n−1/min{s+1,(r+1
2 )}) by

Lemma 2.2 and Statement 2(b) holds. This proves the lemma.

Note that the value qH and the conditions stated in Lemma 6.2 is less precise than the ones stated
in results in Section 1.2. We shall improve them in Lemmas 6.5 and 6.6. In order to do so, we need to
understand the subgraphs of Kr−1 ∨ tK2, as they appear in Statement 2(a) in Lemma 6.2. Lemmas
6.3 and 6.4 are dedicated to this purpose, and their proofs are included in the appendix (Section A.3).

Lemma 6.3. Let r be a positive integer with r ≥ 4. Let H be a graph of minimum degree at least r
such that H is a subgraph of Kr−1 ∨ tK2 for some positive integer t. Let t∗ be the minimum such that
H is a subgraph of Kr−1 ∨ t∗K2. Then either H is not a minor of Lt (defined in Definition 11) for
any positive integer t, or 2t∗ = 3q for some positive integer q.

Lemma 6.4. Let r be a positive integer with r ≥ 2. Let H be a graph of minimum degree at least r
such that H is a subgraph of Kr−1 ∨ tK2 for some positive integer t. Then either

1. H is not a minor of Kr−2 ∨ tK3 for any positive integer t, or

2. r ≥ 4 and H is not a minor of Lt for any positive integer t, or

3. r ∈ {2, 3} and H = Kr+1.

Now we are ready to improve Lemma 6.2 by using more precise descriptions. Lemmas 6.5 and 6.6
are essentially equivalent to our main results stated in Section 1.2. We will prove how to derive the
main results in Section 1.2 from these two lemmas after they are proved.

Lemma 6.5. Let r be a positive integer with r ≥ 2. Let H be a graph of minimum degree at least r.
Then pDr

M(H) = Θ(n−1/qH ), where qH is defined as follows.

1. If H is not a subgraph of Kr ∨ It for any positive integer t, then qH = r.

2. If H is a subgraph of Kr ∨ It for some positive integer t, and H is not a subgraph of Kr−1 ∨ tK2

for any positive integer t, then qH = 2r − 1.

3. If H is a subgraph of Kr ∨ It and is a subgraph of Kr−1 ∨ tK2 for some positive integer t, and
H 6= Kr+1, then qH = s+ 1, where s is the largest integer with 0 ≤ s ≤

(
r+1
2

)
such that for every

integer s′ with 0 ≤ s′ ≤ s, every connected graph F0 and every graph F ∈ F(Ir−1, F0, r) of type
s′, H is a minor of F ∧t I for some positive integer t, where I is the heart of F . Furthermore,
2r − 1 ≤ s+ 1 ≤

(
r+1
2

)
.

4. If H = Kr+1 and r ≤ 3, then qH =∞; if H = Kr+1 and r ≥ 4, then qH = 3r − 3.
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Moreover, p
χ`
r

M(H) = Θ(n−1/qH ) for Statements 1, 2 and 4.

Proof. Statement 1 immediately follows from Statement 1 of Lemma 6.2.
So we may assume that H is a subgraph of Kr ∨ It for some positive integer t. Since H has

minimum degree at least r, H is not a subgraph of Kr−1∨ It for any positive integer t. So 1 equals the
largest integer w with 1 ≤ w ≤ r such that H is a subgraph of Kr−w+1 ∨ It for some positive integer
t. Let w = 1.

If H is not a subgraph of Kr−1 ∨ tK2 = Kr−w ∨ tKw+1 for any positive integer t, then pDr

M(H) =

Θ(n−1/qH ) and p
χ`
r

M(H) = Θ(n−1/qH ), where qH = 2r−1 by Statement 2(a) in Lemma 6.2. So Statement
2 of this lemma holds.

Hence we may assume that H is a subgraph of Kr−1 ∨ tK2 for some positive integer t.
Now we assume that H 6= Kr+1 and prove Statement 3 of this lemma. By Lemma 6.2, pDr

M(H) =

Ω(n−1/qH ), where qH = max{min{s + 1,
(
r+1
2

)
}, 2r − 1} and s is the largest integer with 0 ≤ s ≤(

r+1
2

)
such that for every integer s′ with 0 ≤ s′ ≤ s, every connected graph F0 and every graph

F ∈ F(Ir−1, F0, r) of type s′, H is a minor of F ∧t I for some positive integer t, where I is the heart
of F . For every positive integer t, define Ft to be the graph that is the disjoint union of Ir−1 and t
copies of Kr+1. Clearly, for every positive integer t, Ft = F ∧t I for some F ∈ F(Ir−1,Kr+1, r) of type(
r+1
2

)
. Suppose that H is a minor of Ft for some positive integer t. Since the minimum degree of H

is at least r, H is a disjoint union of copies of Kr+1. On the other hand, since H is a subgraph of
Kr ∨ It for some positive integer t, one can delete at most r vertices to make H edgeless. Therefore H
is one copy of Kr+1. That is, H = Kr+1, a contradiction. So H is not a minor of Ft for some positive
integer t. In particular, s ≤

(
r+1
2

)
− 1. Hence, by the maximality of s, there exists a connected graph

F ∗0 and a graph F ∗ ∈ F(Ir−1, F
∗
0 , r) of type s+1 ≤

(
r+1
2

)
such that H is not a minor of F ∗∧t I for any

positive integer t, where I is the heart of F ∗. Therefore, {F ∗ ∧t I : t ∈ N} ⊆ M(H). By Statement
4 of Corollary 3.6, pDr

M(H) = O(n−1/(s+1)). In addition, since F ∗ ∈ F(Ir−1, F
∗
0 , r), |V (F ∗0 )| ≥ 2. Note

that for any two vertices in F ∗0 , there are at least r+ (r− 1) = 2r− 1 edges of F ∗ incident with them.
So s+ 1 ≥ 2r− 1. Hence max{min{s+ 1,

(
r+1
2

)
}, 2r− 1} = s+ 1 and pDr

M(H) = Ω(n−1/(s+1)) and hence

pDr

M(H) = Θ(n−1/(s+1)). This proves Statement 3.
Now we assume that H = Kr+1 and prove Statement 4.
So H is a subgraph of Kr ∨ It and Kr−1 ∨ tK2 for some positive integer t. Recall that w = 1.

Note that for every nonnegative integer s′, connected graph F1 and graph F ′ ∈ F(Ir−w, F1, r) of
type s′, if |V (F1)| ≥ 3, then s′ ≥ 3r − 3 since for any S ⊆ V (F1) with |S| = 3, there are at least
3r −

(
3
2

)
= 3r − 3 edges of F ′ incident with S. So if F1 is a connected graph and F ′ is a member

of F(Ir−w, F1, r) of type at most 3r − 4, then |V (F1)| ≤ 2, so |V (F1)| = 2 since w = 1, and hence
F ′ = Ir−1 ∨ K2. Hence for every nonnegative integer s′ with 0 ≤ s′ ≤ 3r − 4, connected graph
F1 and graph F ′ ∈ F(Ir−w, F1, r) of type s′, H is a minor of F ′ ∧t I for some positive integer t,
where I is the heart of F ′. Therefore, by Statement 2(b) in Lemma 6.2, pDr

M(H) = Ω(n−1/q), where

q ≥ max{min{3r − 4 + 1,
(
r+1
2

)
}, 2r − 1} = max{3r − 3, 2r − 1} = 3r − 3, since r ≥ 2.

If r = 2, then every H-minor free graph is a forest and does not contain any subgraph of minimum
degree at least two, thus G itself (which is also G(p) where p is the constant function p = 1) is already
1-degenerate, so pDr

M(H) = Θ(1). If r = 3, then H = K4, and by [10], every K4-minor free graph
contains a vertex of degree at most two, so no subgraph of any H-minor free graph has minimum

degree at least r = 3, and hence pDr

M(H) = Θ(1). Recall that p
χ`
r

M(H) = Θ(1) when pDr

M(H) = Θ(1) by
Proposition 2.1.

Hence we may assume that r ≥ 4. Since Kr+1 = Kr−1 ∨ K2, Lt is Kr+1-minor free by Lemma

6.3. Hence pDr

M(H) = O(n−1/(3r−3)) and p
χ`
r

M(H) = O(n−1/(3r−3)) by Statement 3 of Corollary 3.6. This
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completes the proof.

Lemma 6.6. Let r ≥ 2 be an integer. Let H be a graph with δ(H) ≥ r. If H 6= Kr+1 and H
is a subgraph of Kr−1 ∨ tK2 and a subgraph of Kr ∨ It for some positive integer t, then pDr

M(H) =

Θ(n−1/(3r−3)) and p
χ`
r

M(H) = Θ(n−1/(3r−3)).

Proof. Let t∗ be the minimum positive integer such that H is a subgraph of Kr−1 ∨ t∗K2. Since
δ(H) ≥ r, H can be obtained from Kr−1 ∨ t∗K2 by deleting a set S of edges contained in Kr−1. Let
s be the largest integer with 0 ≤ s ≤

(
r+1
2

)
such that for every integer s′ with 0 ≤ s′ ≤ s, every

connected graph F0 and every graph F ∈ F(Ir−1, F0, r) of type s′, H is a minor of F ∧t I for some
positive integer t, where I is the heart of F . We shall prove that s = 3r − 4.

Suppose to the contrary that s ≤ 3r−5. Since r ≥ 2, 3r−5 ≤
(
r+1
2

)
−1. So by the maximality of s,

there exist an integer s′ with 0 ≤ s′ ≤ 3r−5+1, a connected graph F0 and a graph F ∈ F(Ir−1, F0, r)
of type s′ such that H is not a minor of F ∧t I for any positive integer t, where I is the heart of F .
If |V (F0)| ≥ 3, then for any Z ⊆ V (F0) with |Z| = 3, there exist at least |Z|r −

(|Z|
2

)
= 3r − 3 > s′

edges of F incident with Z ⊆ V (F0), a contradiction. So |V (F0)| ≤ 2. Hence F0 = K1 or K2. Since
the heart of F has size r− 1, F0 = K2. So F = Ir−1 ∨K2. Since H is a subgraph of Kr−1 ∨ tK2 which
is a minor of F ∧t′ I where I is the heart of F for sufficiently large t′, we have H is a minor of F ∧t′ I
for some sufficiently large positive integer t′, where I is the heart of F . This is a contradiction.

So s ≥ 3r− 4. By Lemma 6.4, either H is not a minor of Kr−2 ∨ tK3 for any positive integer t, or
r ≥ 4 and H is not a minor of Lt of any positive integer t. For every positive integer t, let L′t be the
graph obtained from Ir−2 ∨ tK3 by adding an isolated vertex. Since H has no isolated vertex, if H
is not a minor of Kr−2 ∨ tK3 for any positive integer t, then H is not a minor of L′t for any positive
integer t. Hence either r ≥ 4 and H is not a minor of Lt for any positive integer t, or H is not a minor
of L′t for any positive integer t.

Note that for every positive integer t, Lt = F ∧t I for some F ∈ F(Ir−1,K3, r) of type 3r − 3,
where I is the heart of F , and L′t = F ′ ∧t I ′ for some F ′ ∈ F(Ir−1,K3, r) of type 3r − 3, where I ′ is
the heart of F ′. So s ≤ 3r − 4.

Therefore, s = 3r − 4. By Statement 3 of Lemma 6.5, pDr

M(H) = Θ(n−1/(s+1)) = Θ(n−1/(3r−3)).

Hence p
χ`
r

M(H) = Ω(n−1/(3r−3)). Recall that either H is not a minor of Kr−2 ∨ tK3 for any positive

integer t, or r ≥ 4 and H is not a minor of Lt of any positive integer t. So p
χ`
r

M(H) = O(n−1/(3r−3)) by

Statements 2(a) and 3 of Corollary 3.6. Therefore p
χ`
r

M(H) = Θ(n−1/(3r−3)).

Now we prove a lower bound for sr(H), which is part of Theorem 1.6. Recall that sr(H) is defined
in Definition 8.

Lemma 6.7. Let r be a positive integer. Let H be a graph with τ(H) ≥ 2. Then sr(H) ≥
(
r+1
2

)
−

(τ(H)−1)(τ(H)−2)
2 − 1 = (r − τ(H) + 2)r −

(
r−τ(H)+2

2

)
− 1.

Proof. Let c = τ(H). Let w = (r − c+ 2)r −
(
r−c+2

2

)
− 1. Note that w =

(
r+1
2

)
− (c−1)(c−2)

2 − 1.
Suppose to the contrary that sr(H) < w. So there exist an integer s′ with 0 ≤ s′ ≤ w, a connected

graph F0 and a graph F ∈ F(Ic−1, F0, r) of type s′ such that H is not a minor of F ∧t I for any positive
integer t, where I is the heart of F . Since every vertex in F0 has degree in F at least r, and every edge
in F is incident with some vertex in F0, we have |V (F0)| · r ≤

∑
v∈V (F0)

degF (v) = |E(F )|+ |E(F0)| ≤
2s′ < 2

(
r+1
2

)
, so |V (F0)| < r + 1. Since every vertex in F0 has degree in F at least r, |V (F )| ≥ r + 1,

so |V (F0)| = |V (F )| − (c− 1) ≥ r + 1− (c− 1) = r + 2− c. Hence r + 2− c ≤ |V (F0)| ≤ r.
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For every i ∈ [c − 1], let Ai = {v ∈ V (F0) : degF0
(v) = r − i}. Since every vertex in F0 has

degree in F at least r, we know that for every i, every vertex in Ai is incident with at least i edges
in E(F ) − E(F0). Since |V (F ) − V (F0)| = c − 1,

⋃c−1
i=1 Ai = V (F0). And note that if Ai 6= ∅, then

r − i ≤ |V (F0)| − 1, so i ≥ r + 1− |V (F0)|. So V (F0) =
⋃c−1
i=1 Ai =

⋃c−1
i=r+1−|V (F0)|Ai.

Hence

s′ = |E(F )| ≥ |E(F0)|+
c−1∑
i=1

i|Ai| =
1

2

c−1∑
i=1

(r − i)|Ai|+
c−1∑
i=1

i|Ai|

=
r + 1

2

c−1∑
i=1

|Ai|+
1

2

c−1∑
i=1

(i− 1)|Ai|

=
r + 1

2
|V (F0)|+

1

2

c−1∑
i=1

(i− 1)|Ai|

=
r + 1

2
|V (F0)|+

1

2

c−1∑
i=r+1−|V (F0)|

(i− 1)|Ai|

≥ r + 1

2
|V (F0)|+

r − |V (F0)|
2

c−1∑
i=r+1−|V (F0)|

|Ai|

=
2r + 1− |V (F0)|

2
|V (F0)|.

Since r + 2− c ≤ |V (F0)| ≤ r,

s′ ≥2r + 1− |V (F0)|
2

|V (F0)| ≥
(2r + 1− (r + 2− c))(r + 2− c)

2

=
(r − 1 + c)(r + 2− c)

2
=
r2 + r − (c− 1)(c− 2)

2
=

(
r + 1

2

)
− (c− 1)(c− 2)

2
> w,

a contradiction.

Now we are ready to prove Theorems 1.4 and 1.6 and Corollary 1.2. We first show a simple
connection between vertex-cover and subgraphs of Ks ∨ It for some integers s, t.

Lemma 6.8. Let r, w, t be nonnegative integers such that r ≥ 1 and r ≥ w ≥ 0. Then the following
two statements are equivalent:

1. H is a subgraph of Kr−w+1 ∨ It for some positive integer t but not a subgraph of Kr−w ∨ It for
any positive integer t;

2. τ(H) = r − w + 1.

Proof. Let s be a nonnegative integer. Note that if a graph H is a subgraph of Ks ∨ Ik for some
integer k, then τ(H) ≤ s. On the other hand, if τ(H) ≤ s, then H is a subgraph of Ks ∨ Ik for any
sufficiently large integer k by embedding the vertices in a minimum vertex-cover into Ks and the rest
of the |V (H)|−τ(H) vertices to Ik. Therefore H is a subgraph of Kr−w+1∨It for some positive integer
t is equivalent with τ(H) ≤ r−w+ 1. And H is not a subgraph of Kr−w ∨ It for any positive integer
t is equivalent with τ(H) > r − w.
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Proof of Theorem 1.6: Statement 1 follows from Lemma 6.7, so it suffices to show Statement 2.
Since 2 ≤ τ(H) ≤ r, there exists w with r − 1 ≥ w ≥ 1 such that τ(H) = r − w + 1. By Lemma
6.8, w is the largest integer with r − 1 ≥ w ≥ 1 such that H is a subgraph of Kr−w+1 ∨ It for some
positive integer t. Note that w = r − τ(H) + 1. Since H ∈ Hr, H is a subgraph of Kr−w ∨ t∗Kw+1

for some positive integer t∗. By Statement 2(b) of Lemma 6.2, pPM(H) = Ω(n−1/qH ), where qH =

max{min{s+ 1,
(
r+1
2

)
}, (w+ 1)r−

(
w+1
2

)
}, where s is the largest integer with 0 ≤ s ≤

(
r+1
2

)
such that

for every integer s′ with 0 ≤ s′ ≤ s, every connected graph F0 and every graph F ∈ F(Ir−w, F0, r)
of type s′, H is a minor of F ∧t I for some positive integer t, where I is the heart of F . Note that
w = r−τ(H)+1, so s = sr(H). Hence max{min{s+1,

(
r+1
2

)
}, (w+1)r−

(
w+1
2

)
} = min{sr(H)+1,

(
r+1
2

)
}

by Statement 1 of this theorem. �

Proof of Theorem 1.4: If τ(H) ≥ r+ 1, then H is not a subgraph of Kr ∨ It for any positive integer

t by Lemma 6.8, so pDr

M(H) = Θ(n−1/r) and p
χ`
r

M(H) = Θ(n−1/r) by Statement 1 of Lemma 6.2. So
Statement 1 of Theorem 1.4 holds.

Now we assume that 1 ≤ τ(H) ≤ r and H is not a subgraph of Kτ(H)−1 ∨ tKr+2−τ(H) for any
positive integer t. Since 1 ≤ τ(H) ≤ r, there exists w with r ≥ w ≥ 1 such that τ(H) = r−w+ 1. So
H is a subgraph of Kr−w+1 ∨ It for some positive integer t but is not a subgraph of Kr−w ∨ It for any
positive integer t by Lemma 6.8. Since H is not a subgraph of Kτ(H)−1∨ tKr+2−τ(H) = Kr−w ∨ tKw+1

for any positive integer t, pDr

M(H) = Θ(n−1/qH ) and p
χ`
r

M(H) = Θ(n−1/qH ), where qH = (w+ 1)r−
(
w+1
2

)
,

by Statement 2(a) of Lemma 6.2. Hence Statement 2 of Theorem 1.4 holds.
Now we assume τ(H) ≤ r and δ(H) ≥ r. Then H is a subgraph of Kr∨It for some positive integer

t. If H is not a subgraph of Kr−1 ∨ tK2 for any positive integer t, then pDr

M(H) = Θ(n−1/(2r−1)) and

p
χ`
r

M(H) = Θ(n−1/(2r−1)) by Statement 2 of Lemma 6.5. Hence Statement 3 of Theorem 1.4 holds.

Now we assume τ(H) ≤ r, δ(H) ≥ r, and H is a subgraph of Kr−1∨tK2 for some positive integer t.
So H is a subgraph of Kr ∨ It and a subgraph of Kr−1 ∨ tK2 for some positive integer t. If H 6= Kr+1,

then pDr

M(H) = Θ(n−1/(3r−3)) and p
χ`
r

M(H) = Θ(n−1/(3r−3)) by Lemma 6.6. If H = Kr+1 and r ≥ 4, then

pDr

M(H) = Θ(n−1/(3r−3)) and p
χ`
r

M(H) = Θ(n−1/(3r−3)) by Statement 4 of Lemma 6.5. Hence Statement
4 of Theorem 1.4 holds.

Furthermore, if τ(H) = 0, then H is edgeless, so every graph on more than |V (H)| vertices contains
H as a minor, and hence pDr

M(H) = Θ(1). If H consists of K1,s and isolated vertices for some s with

1 ≤ s ≤ r, then every H-minor free graph on more than |V (H)| vertices has maximum degree at
most s − 1 ≤ r − 1 and hence is (r − 1)-degenerate, so PDr

M(H) = Θ(1). If H = Kr+1 for r ≤ 3, then

PDr

M(H) = Θ(1) by Statement 4 of Lemma 6.5. Recall that p
χ`
r

M(H) = Θ(1) whenever pDr

M(H) = Θ(1) by
Proposition 2.1. This proves Theorem 1.4. �

Now we prove Corollary 1.2. Note that Corollary 1.1 is contained in the planar case of Corollary
1.2.

Proof of Corollary 1.2: Let Σ be a surface other than S2. Let g be the Euler genus of Σ. Let G
be the class of graphs embeddable in Σ. Euler’s formula implies that every graph in G is 5+

√
1+24g
2 -

degenerate, so it is 7+
√
1+24g
2 -choosable. (Note that it was also proved by Heawood [21].) So the

thresholds for G and for each of Dr, χr` and χr are Θ(1) when r ≥ 7+
√
1+24g
2 .

And Euler’s formula implies thatK3,2g+3 6∈ G. So by Proposition 1.3, the pDr
G is at least pDr

M(K3,2g+3)
=

Ω(n−1/qH ), where qH ≥ min{sr(K3,2g+3) + 1,
(
r+1
2

)
} ≥

(
r+1
2

)
− 1 by Theorem 1.6 (for r ≥ 3) and The-

orem 1.4 (for r = 2). By Proposition 2.1, Ω(n−1/qH ) is also a lower bound for p
χ`
r
G and pχr

G .
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A result of Böhme, Mohar, and Stiebitz [4] implies that every graph embeddable in the Klein
bottle is 6-choosable. So the thresholds for χ`r and χr are Θ(1) when r = 6 and Σ is the Klein bottle.
In addition, Ir−w ∨ tKw+1 is planar for every positive integer t, when r = 3 and w = 1. Hence by

Statement 2 of Corollary 3.6, pD3
G and p

χ`
3
G are both O(n−1/5). Therefore, the thresholds for G and

for each of D3 and χ`3 are both Θ(n−1/5). And the threshold for being 3-colorable is O(n−1/6) by
Statement 4 of Corollary 3.6 since K4 ∈ F(I0,K4, 3) with empty heart and K4 ∧t ∅ is planar for any
integer t. Moreover, K2,t is planar for any integer t, so Statement 1 of Corollary 3.6 implies that
the thresholds for D2 and χ`2 are both O(n−1/2). This completes the proof for the case for graphs
embeddable in Σ.

Now we consider the class G of graphs with Colin de Verdière parameter µ ≤ k, for some fixed
integer k ≥ 2. It is known [23] that for every positive integer s and t ≥ max{s, 3}, µ(Ks,t) = s + 1.
So Kk,k+2 6∈ G. Note that τ(Kk,k+2) = k. By Propositions 1.3 and 2.1, pDr

M(Kk,k+2)
is a lower bound

for the threshold for Dr, χr` , χr and for G. By Theorem 1.4, if r ≤ k − 1, then the threshold for
Dr and G is at least pDr

M(Kk,k+2)
= Ω(n−1/r); if r = k, then since Kk,k+2 has minimum degree at

least k = r, and Kk,k+2 is not a subgraph of Kr−1 ∨ tK2 for any positive integer t, we know the
pDr
G ≥ pDr

M(Kk,k+2)
= Ω(n−1/(2r−1)). And if r ≤ k − 1, then µ(Kr,t) = r + 1 ≤ k for every sufficiently

large integer t, so pDr
G = O(n−1/r) and p

χ`
r
G = O(n−1/r) by Statement 1 of Corollary 3.6. Note that for

every integer t, Kk−1 ∨ tK2 can be obtained from a union of t disjoint copies of Kk+1 by identifying
a clique on k − 1 vertices, so µ(Kk−1 ∨ tK2) ≤ k by [23]. Hence µ(Ik−1 ∨ tK2) ≤ µ(Kk−1 ∨ tK2) ≤ k.

So if r = k, Statement 2 of Corollary 3.6 implies that pDr
G = O(n−1/(2r−1)) and p

χ`
r
G = O(n−1/(2r−1)).

Moreover, it is known [23] that µ(tKr+1) = r for any positive integer t, so pχr

G = O(n−1/(
r+1
2 )) by

Lemma 3.1. This completes the proof for the case for the graphs with Colin de Verdière parameter at
most k.

Now we assume G is the class of planar graphs. By the Four Color Theorem, every planar graph

is 4-colorable, so pχr

G = Θ(1) for r ≥ 4. Since every planar graph is 5-choosable [43], p
χ`
r
G = Θ(1) for

r ≥ 5. And Euler’s formula implies that every planar graph is 5-degenerate, so pDr
G = Θ(1) for r ≥ 6.

When r ≥ 4, τ(K3,r) = 3 ≤ r and K3,r is not a subgraph of K2 ∨ tKr−1 = Kτ(K3,r)−1 ∨ tKr+2−τ(K3,r)

for any positive integer t, so p
χ`
r
G ≥ p

Dr
G ≥ p

Dr

M(K3,r)
= Ω(n−1/((r−1)r−(r−1

2 )) by Statement 2 of Theorem

1.4. Note that (r − 1)r −
(
r−1
2

)
= (r − 1)(r + 2)/2. And the icosahedron is a 5-regular planar graph

with 12 vertices and 30 edges. Note that any union of disjoint copies of the icosahedron is still planar.
So Statement 4 of Corollary 3.6 implies that pD5

G = O(n−1/30). Similarly, the octahedron is a 4-regular

planar graph with 12 edges. So pD4
G = O(n−1/12). Moreover, there exists a planar non-4-choosable

graph with 75 vertices and 219 edges [19], so p
χ`
4
G = O(n−1/219) by Lemma 3.1. And the case r ≤ 3

follows from the case for the graphs with Colin de Verdière parameter at most 3. This completes the
proof for the planar case.

Now we assume that G is the class of linkless embeddable graphs. Every linkless embeddable
graph is K6-minor free [36], so it is 5-colorable [35]. So pχ5

G = Θ(1). And K4,4 6∈ G [37]. Note that
τ(K4,4) = 4 ≤ 5 and K4,4 is not a subgraph of K3 ∨ tK3 = Kτ(K4,4)−1 ∨ tK5+2−τ(K4,4) for any positive

integer t. So p
χ`
5
G ≥ p

D5
G ≥ p

D5

M(K4,4)
= Ω(n−1/12) by Statement 2 of Theorem 1.4. And the icosahedron

is a 5-regular planar graph with 12 vertices and 30 edges. So the graph obtained by adding a new
vertex adjacent to the disjoint union of any number of copies of icosahedron is linkless embeddable.
Note that such graphs are F∧tV (I1) for integers t, where F is in F(I1, F0, 6) with type 30+12 and F0 is
the icosahedron. So Statement 4 of Corollary 3.6 implies that pD5

G = O(n−1/42). Similarly, since there
exists a planar non-4-choosable graph with 75 vertices and 219 edges, we can obtain a non-5-choosable
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K6-minor free graph by first taking five disjoint copies of that graph and then adding a new vertex
adjacent to all other vertices. So there exists a non-5-choosable apex graph with 5 · (219 + 75) = 1470

edges, so p
χ`
5
G = O(n−1/1470). And the case r ≤ 4 follows from the case for the graphs with Colin de

Verdière parameter at most 4. This completes the proof of the linkless embeddable case.
Finally, let G be the class of outerplanar graphs. It is well-known that every outerplanar graph is

2-degenerate and hence is 3-choosable and 3-colorable. So pDr
G = pχr

G = p
χ`
r
G = Θ(1) for every r ≥ 3.

The case r = 2 follows from the r = k = 2 case of the class of graphs with Colin de Verdière parameter
µ ≤ k. This completes the proof of the corollary. �

7 Concluding remarks

In this paper, we initiate a systematic study of threshold probabilities for monotone properties in
the random model G(p), where G belongs to a given proper minor-closed family. Minor-closed families
are natural classes of sparse graphs, and results about threshold probability on sparse graph classes
in the literature seem rare.

Theorems 1.4 and 1.6 address the properties Dr (being (r − 1)-degenerate) and χ`r (being r-
choosable). Those results immediately provide lower bound for the thresholds for the properties Rr
(non-existence of r-regular subgraphs) and χr (being r-colorable) by Proposition 2.1. We do not put
any effort on the results for the properties Rr and χr in this paper; but for some minor-closed families
M(H), the machinery developed in this paper easily provides matching upper bounds, as described
in the following two theorems whose proofs are simple and left in the appendix.

Theorem 7.1. Let r ≥ 2 be an integer and H a graph. Then pRr

M(H) is Θ(n−1/qH ), where qH is defined
as follows.

1. If τ(H) ≥ r + 1, then qH = r.

2. If 1 ≤ τ(H) ≤ r, r is divisible by r+ 2− τ(H) and H is not a subgraph of Kτ(H)−1 ∨ tKr+2−τ(H)

for any positive integer t, then qH = (r + 2− τ(H))r −
(
r+2−τ(H)

2

)
.

3. If 1 ≤ τ(H) ≤ r, r is even, H has minimum degree at least r and H is not a subgraph of
Kr−1 ∨ tK2 for any positive integer t, then qH = 2r − 1.

Furthermore, if either H = Kr+1 and r ≤ 3, or H = K1,s for some s ≤ r , then pRr

M(H) = Θ(1).

Theorem 7.2. Let r ≥ 2 be an integer and let H be a graph. Then the following hold.

1. If 1 ≤ τ(H) ≤ 2 and H is not a subgraph of K1 ∨ tKr for any positive integer t, then pχr

M(H) =

Θ(n−2/(r(r+1))).

2. If either H = Kr+1 and r ≤ 3, or H has at most one component on more than two vertices
and every component of H is an isolated vertex or a star of maximum degree at most r, then
pχr

M(H) = Θ(1).

As we mentioned above, we do not try to strengthen results for pRr

M(H) and pχr

M(H) in this paper.
We leave it for future research.

Question 7.1. For any integer r ≥ 2 and graph H, what are pRr

M(H) and pχr

M(H)? And more generally,

what are pRr
G and pχr

G for any given proper minor-closed family?
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The threshold studied in this paper is also called the crude threshold. A function p∗ : N→ [0, 1] is
an (upper) sharp threshold for a graph class G and a monotone property P if the following hold.

1. for every sequence (Gi)i∈N of graphs with Gi ∈ G and |V (Gi)| → ∞ and any ε > 0 , the random
subgraphs Gi((1− ε)p(ni)) are in P a.a.s. where ni = |V (Gi)|;

2. there is some sequence (Gi)i∈N of graphs with Gi ∈ G and |V (Gi)| → ∞ such that for any ε > 0,
the random subgraphs Gi((1 + ε)p(ni)) are not in P a.a.s. where ni = |V (Gi)|.

Friedgut [14] provides a necessary and sufficient condition to check whether there is a sharp thresh-
old for a general class of random models. However it is not an easy task to apply to our model. The
next natural question is:

Question 7.2. What are the sharp thresholds for properties Dr, χ`r, χr,Rr for minor-closed families?

It is also interesting to study other global properties, where some natural algorithms are NP-hard
even on some proper minor-closed families, such as the set of planar graphs.
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A Appendix

A.1 Degeneracy function and extremal function

Proposition A.1. For every integer r with r ≥ 2 and every connected graph H, pDr

M(H) = Θ(1) if and

only if r − 1 ≥ d∗H .

Proof. Since dH(n) is non-decreasing in n, we know r− 1 ≥ d∗H if and only if r− 1 ≥ dH(n) for every
n ∈ N. Hence it suffices to prove that PDr

M(H) = Θ(1) if and only if r − 1 ≥ dH(n) for every n ∈ N.

If r − 1 ≥ dH(n) for every n ∈ N, then every graph G ∈ M(H) on sufficiently many vertices is
already (r − 1)-degenerate and thus the threshold probability is Θ(1).

Now we show that pDr
G = Θ(1) implies that r − 1 ≥ dH(n) for every n ∈ N. For every graph

G ∈ M(H), let p(G) be the supremum of all p such that the random subgraph G(p) is (r − 1)-
degenerate with probability at least 0.9. Note that such p(G) exists since degeneracy is a monotone
property. For every n ∈ N, let p(n) be the minimum of p(G) among all graphs G ∈ M(H) on n
vertices. Note that there are only finite number of graphs on n vertices. Since adding isolated vertices
to any G ∈ M(H) results in a G′ ∈ M(H) on more vertices, and p(G) = p(G′), the function p is
non-increasing. Hence limn→∞ p(n) exists.

Let p∗ = limn→∞ p(n). We claim that p∗ = 1 or p∗ = 0. Suppose to the contrary that 0 < p∗ < 1.
Let p′ be any real number with 0 < p′ < p∗. Let G ∈ M(H) be a graph such that p(G) < 1, and
let a be the probability that G(p′) is (r − 1)-degenerate. Thus 0.9 ≤ a. Since p(G) < 1, G is not

(r − 1)-degenerate, a ≤ 1 − p′e(G). In particular, 0 < a < 1. For every k ∈ N, let Gk be a union of k
disjoint copies of G. Thus when k ≥ dloga(1/2)e, the probability that at least one copy of Gk(p

′) is
not (r− 1)-degenerate is 1−ak ≥ 1−adloga(1/2)e ≥ 0.5 > 0.1. So p(Gk) ≤ p′ for every k ≥ dloga(1/2)e.
That is, p(|V (Gk)|) ≤ p′ for every k ≥ dloga(1/2)e. Hence (p(nk) : k ≥ dloga(1/2)e) is a subsequence
of (p(n) : n ∈ N), where nk = |V (Gk)|, such that p(nk) ≤ p′ for every k ≥ dloga(1/2)e. Therefore,
p∗ ≤ p′, a contradiction.

Suppose pDr

M(H) = Θ(1) and p∗ = 0. Let q(n) = min{p(n)+ 1
n , 1} for every n ∈ N. Since q(n) > p(n)

for every n ∈ N, there exist G1, G2, ... such that |V (Gn)| = n and Pr(Gn(q) ∈ Dr) < 0.9 for every

n ∈ N. Hence limn→∞
q(n)
1 ≤ p

∗ = 0, but limn→∞ Pr(Gn(q) ∈ Dr) 6= 1, contradicting pDr

M(H) = Θ(1).
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Therefore, if pDr
G = Θ(1), then p∗ = 1. Thus p(n) = 1 for all n ∈ N since p(n) is non-increasing

in n. Suppose that there exists G ∈ M(H) such that G is not (r − 1)-degenerate. Let w = (0.2)1/n
2
.

Then Pr(G(w) ∈ Dr) = 1 − Pr(G(w) 6∈ Dr) ≤ 1 − Pr(G(w) = G) = 1 − w|E(G)| ≤ 1 − wn2
< 0.9. So

p(G) ≤ w and hence p(|V (G)|) < 1, a contradiction.
Therefore every graph in M(H) is (r − 1)-degenerate, which is equivalent to r − 1 ≥ dH(n) for

every n ∈ N.

Proposition A.2. Let H be a graph. Then f∗H ≤ d∗H ≤ 2f∗H .

Proof. By the definition of dH , every H-minor free graph G is dH(|V (G)|)-degenerate, so G contains a
vertex of degree at most dH(|V (G)|). Hence every H-minor free graph on n vertices contains at most∑n

i=1 dH(i) edges by induction. Since dH is non-decreasing, every H-minor free graph on n vertices
contains at most

∑n
i=1 dH(i) ≤ dH(n)n edges. That is, fH(n) ≤ dH(n)n for every n ∈ N. Hence

f∗H = supn∈N
fH(n)
n ≤ supn∈N dH(n) = d∗.

By the definition of f∗H , |E(G)|/|V (H)| ≤ f∗H for every H-minor free graph G. So every H-minor
free graph G contains a vertex of degree at most 2|E(G)|/|V (G)| ≤ 2f∗H . Hence every H-minor free
graph is 2f∗H -degenerate. That is, dH(n) ≤ 2f∗H for every n ∈ N. Therefore, d∗ = supn∈N dH(n) ≤
2f∗H .

A.2 Proof of Lemma 3.3

Proof of Lemma 3.3: Denote the vertices in V (Ir−w) by v1, v2, ..., vr−w. For each i with 1 ≤ i ≤
r−w, define a list of r colors Lvi = {ri+ j : 0 ≤ j ≤ r− 1}. Thus Lvi ∩Lvj = ∅ for 1 ≤ i < j ≤ r−w.
And for each vertex v in V (Ir−w ∨ rr−wKw+1) − {v1, v2, ..., vr−w}, we define Lv to be a set of size r
that is a union of {−1,−2, ...,−w} and a set Sv with |Sv ∩Lvi | = 1 for every 1 ≤ i ≤ r−w, such that
for every distinct vertices x, y ∈ V (Ir−w ∨ rr−wKw+1) − {v1, v2, ..., vr−w}, Lx = Ly if and only if x, y
are in the same component of (Ir−w ∨ rr−wKw+1)− {v1, v2, ..., vr−w}. This is possible since there are
rr−w components and there are rr−w ways to pick precisely one element from each size-r list Lvi for
1 ≤ i ≤ r − w.

Suppose to the contrary that Ir−w ∨ rr−wKw+1 is r-choosable. Then there exists a function f such
that f(v) ∈ Lv for every v ∈ Ir−w ∨ rr−wKw+1, and f(x) 6= f(y) for every adjacent vertices x, y. By
construction, there exists a component C of (Ir−w ∨ rr−wKw+1) − {vi : 1 ≤ i ≤ r − w} such that
Lv − {f(vi) : 1 ≤ i ≤ r − w} = {−1,−2, ...,−w} for every v ∈ V (C). Since |V (C)| = w + 1 and
Lv − {f(vi) : 1 ≤ i ≤ r − w} = {−1,−2, ...,−w} for every v ∈ V (C), there exist two distinct vertices
x, y of C such that f(x) = f(y). Since C is isomorphic to Kw+1, x is adjacent to y, a contradiction.
Therefore, Ir−w ∨ rr−wKw+1 is not r-choosable.

A.3 Proof of Lemmas 6.3 and 6.4

We need the following auxiliary lemma.

Lemma A.3. Let r be a positive integer with r ≥ 2. Let H be a graph of minimum degree at least r
such that H is a subgraph of Kr−1 ∨ tK2 for some positive integer t. Let t∗ be the minimum such that
H is a subgraph of Kr−1 ∨ t∗K2. Then either H is not a minor of Kr−2 ∨ tK3 for any positive integer
t, or 2t∗ = 3q − 1 for some positive integer q.

Proof. We may assume that there exists an H-minor α in Kr−2 ∨ tK3 for some positive integer t, for
otherwise we are done. Let Y be the vertex-set V (Kr−2) in Kr−2 ∨ tK3.

40



Since δ(H) ≥ r and H is a subgraph of Kr−1 ∨ t∗K2, H = (Kr−1 ∨ t∗K2)− S, where S is a set of
edges of Kr−1 ∨ t∗K2 in E(Kr−1). Hence Ir−1 ∨ t∗K2 ⊆ H ⊆ Kr−1 ∨ t∗K2. We call each vertex of H
in V (Kr−1) an inner vertex, and call each vertex of H in V (t∗K2) an outer vertex.

Claim A.3.1. Let A1 be a branch set of α disjoint from Y . Let X be the vertex-set of the component
of (Kr−2 ∨ tK3)− Y intersecting A1. Then the following hold.

1. A1 consists of one vertex.

2. X is a union of three branch sets of α.

3. Every vertex in Y belongs to a branch set, and different vertices of Y belong to different branch
sets of α.

4. either A1 is a branch set corresponding to an inner vertex, or t∗ = 1.

Proof of Claim A.3.1 Since δ(H) ≥ r, A1 is adjacent in Kr−2 ∨ tK3 to at least r other branch sets
of α. Since A1 is disjoint from Y , |A1| = 1. Hence every vertex in Y ∪ (X − A1) belongs to a branch
set, and different vertices in Y ∪ (X −A1) belong to different branch sets. So Statements 1-3 hold.

Assume that A1 is a branch set corresponding to an outer vertex. Since every outer vertex is
adjacent to all inner vertices, each branch set corresponding to an inner vertex either intersects Y or
is contained in X. Since there are r − 1 inner vertices and |Y | = r − 2, there exists an inner vertex
whose branch set is contained in X, so every branch set corresponding to an outer vertex intersects
Y ∪X. Hence there are at most |X ∪Y |−2t∗ = r+ 1−2t∗ branch sets corresponding to inner vertices
adjacent to A1. So r + 1− 2t∗ ≥ r − 1. That is, t∗ = 1. So Statement 4 holds. �

Since |Y | = r − 2 and |V (H)| = r − 1 + 2t∗ > r − 2, there exists a vertex v of H such that the
branch vertex corresponding to v in α is disjoint from Y . Hence there exist a positive integer q and
components C1, C2, ..., Cq of (Kr−2∨tK3)−Y such that those Ci are the components of (Kr−2∨tK3)−Y
containing some branch sets disjoint from Y . We may assume that t∗ 6= 1, for otherwise 2t∗ = 3 − 1
and we are done. So by Claim A.3.1, for each i ∈ [q], V (Ci) is the union of three branch sets of α
corresponding to inner vertices. So the number of inner vertices whose branch sets are disjoint from
Y is 3q.

Since each outer vertex is adjacent to all inner vertices, each branch set corresponding to an outer
vertex intersects Y and hence contains exactly one vertex in Y (by Claim A.3.1). Hence by Claim
A.3.1, there are exactly |Y |− 2t∗ = r− 2− 2t∗ branch sets corresponding to inner vertices intersecting
Y . Therefore, the number of inner vertices is 3q+r−2−2t∗. In addition, the number of inner vertices
is |V (Ir−1)| = r − 1. Hence 2t∗ = 3q − 1. This proves the lemma.

Proof of Lemma 6.3: Let us recall the definition of Lt. Let Y be the stable set of size r − 1 in
Ir−1 ∨ K3 corresponding to V (Ir−1), and let X = V (Ir−1 ∨ K3) − Y . Let L be a connected graph
obtained from Ir−1 ∨K3 by deleting the edges of a matching of size three between X and Y . Denote
Y = {y1, y2, ..., yr−1}. For every positive integer t, Lt is the graph obtained from a union of disjoint t
copies of L by for each i with 1 ≤ i ≤ r− 1, identifying the yi in each copy of L into a new vertex y∗i .

We may assume that there exists an H-minor α in Lt, for otherwise we are done. Since δ(H) ≥ r
and H is a subgraph of Kr−1 ∨ t∗K2, Ir−1 ∨ t∗K2 ⊆ H ⊆ Kr−1 ∨ t∗K2. We call each vertex of H in
V (Kr−1) an inner vertex, and call each vertex of H in V (t∗K2) an outer vertex.

Claim A.3.2. Let A1 be a branch set of α disjoint from Y . Let Z be the vertex-set of the component
of Lt − Y intersecting A1. Then the following hold.
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• A1 consists of one vertex.

• Z is a union of three branch sets of α.

• Every vertex in Y belongs to a branch set, and different vertices of Y belong to different branch
sets of α.

• A1 is a branch set corresponding to an inner vertex.

Proof of Claim A.3.2: Since δ(H) ≥ r, A1 is adjacent in Lt to at least r other branch sets of α. So
1 ≤ |A1| ≤ 2.

Suppose |A1| = 2. Then |Y ∪ (Z − A1)| = r. So each vertex in Y ∪ (Z − A1) is contained in a
branch set of α, and different vertices in Y ∪ (Z −A1) are contained in different branch sets. So some
branch set of α consists of the single vertex u in Z −A1. Since u is nonadjacent in Lt to some vertex
in Y , the branch set consisting of u is adjacent to at most (|Y | − 1) + 1 = r − 1 branch sets of α,
contradicting δ(H) ≥ r.

So |A1| = 1 and Statement 1 holds. Let x1 be the vertex in A1. By symmetry, we may assume
that y1 is the vertex in Y nonadjacent to x1 in Lt. Since A1 ∩ Y = ∅ and δ(H) ≥ r, each vertex in
(Y −{y1})∪(Z−A1) is contained in a branch set of α, and different vertices in (Y −{y1})∪(Z−A1) are
contained in different branch sets of α. This implies that there exist two different branch sets A2, A3

of α other than A1 such that A2∩Z 6= ∅ 6= A3∩Z, and one of A2, A3 is disjoint from Y . By symmetry,
we may assume that A2 is disjoint from Y . So |A2| = 1. Let x2 be the vertex in A2. By symmetry,
we may assume that y2 is the vertex in Y nonadjacent to x2 in Lt. Since δ(H) ≥ r, each vertex in
(Y −{y2})∪ (Z−A2) is contained in a branch set of α, and different vertices in (Y −{y2})∪ (Z−A2)
are contained in different branch sets of α. This implies that y1 6∈ A3. So A3 consists of one vertex,
say x3, in Z. Hence Z is a union of three branch sets A1, A2, A3 of α, where each of Ai consists of one
vertex. So Statement 2 holds.

By symmetry, let y3 be the vertex in Y nonadjacent to x3 in Lt. Since δ(H) ≥ r, each vertex in
(Y −{y3})∪ (Z−A3) is contained in a branch set of α, and different vertices in (Y −{y3})∪ (Z−A3)
are contained in different branch sets of α. So y1 and y2 are contained in different branch sets. Hence
each vertex of Y is contained in a branch set of α other than A1, A2, A3, and different vertices of Y
are contained in different branch sets of α. This proves Statement 3.

Suppose that A1 is the branch set of α corresponding to an outer vertex v1 of H. Let v′1 be the
outer vertex of H adjacent to v1 in H. Since the neighbors of v1 are v′1 and the r− 1 inner vertices, y1
is contained in the branch set of α corresponding to an outer vertex other than v′1. Suppose some of
A2, A3, say A2, is the branch set of α corresponding to an outer vertex v2 of H. Then y2 is contained in
the branch set of α corresponding to an outer vertex. So there are at most (|Y |−2)+(|Z|−2) ≤ r−2
branch sets corresponding to an inner vertex intersecting (Y − {y1}) ∪ Z. Since there are r − 1 inner
vertices, A1 is nonadjacent to some branch vertex corresponding to an inner vertex, a contradiction. So
each of A2, A3 is the branch set corresponding to an inner vertex. Hence every branch set corresponding
to an outer vertex other than v1 intersects Y . So there are at most |Y |−(2t∗−1) ≤ r−2t∗ branch sets
corresponding to an inner vertex intersecting Y . Since A1 is adjacent to r−1 branch sets corresponding
to inner vertices, r − 2t∗ + 2 = r − 2t∗ + (|Z| − 1) ≥ r − 1, we know t∗ = 1. So v1 and v′1 are the only
outer vertices. But y1 is contained in the branch set of α corresponding to an outer vertex other than
v′1, a contradiction. Statement 4 is thus proved. �

Since |Y | = r − 1 and |V (H)| = r − 1 + 2t∗ > r − 1, there exists a vertex v of H such that the
branch set corresponding to v in α is disjoint from Y . Hence there exist a positive integer q and
components C1, C2, ..., Cq of Lt−Y such that those Ci are the components of Lt−Y containing some
branch sets disjoint from Y . By Claim A.3.2, for each i ∈ [q], V (Ci) is the union of three branch sets
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of α corresponding to inner vertices. So the number of inner vertices whose branch sets are disjoint
from Y is 3q.

Since each outer vertex is adjacent to all inner vertices, each branch set corresponding to an outer
vertex intersects Y and hence contains exactly one vertex in Y (by Claim A.3.2). Hence by Claim
A.3.2, there are exactly |Y |−2t∗ = r−1−2t∗ branch sets corresponding to an inner vertex intersecting
Y .

Therefore, the number of inner vertices is 3q+r−1−2t∗. In addition, the number of inner vertices
is |V (Ir−1)| = r − 1. Hence 2t∗ = 3q. This proves the lemma.

Proof of Lemma 6.4: When r ≥ 4, Statements 1 or 2 hold by Lemmas A.3 and 6.3. So we may
assume that r ∈ {2, 3}. We may assume that H is a minor of Kr−2 ∨ tK3 for some positive integer
t, for otherwise we are done. Note that for any positive integer t, every minor of Kr−2 ∨ tK3 is a
subgraph of Kr−2 ∨ tK3. So H is a subgraph of Kr−2 ∨ tK3 for some positive integer t.

When r = 2, H is a subgraph of Kr−1 ∨ tK2 = K1 ∨ tK2 and a subgraph of tK3 for some positive
integer t, so H = K3 = Kr+1 since δ(H) ≥ 2. So we may assume r = 3. Hence H is a subgraph of
K2∨ tK2 and a subgraph of K1∨ tK3 for some positive integer t. Since δ(H) ≥ 3 and H is a subgraph
of K2 ∨ tK2 for some positive integer t, there exists a positive integer t∗ such that H = K2 ∨ t∗K2 or
H = I2 ∨ t∗K2. In particular, H is 2-connected. Since H is a subgraph of K1 ∨ tK3 for some positive
integer t and δ(H) ≥ 3, either H = K4 or H has a cut-vertex. So H = K4. This proves the lemma.

A.4 Results on being r-colorable, having no r-regular subgraphs

Proof of Theorem 7.1: Statement 1 holds by Statement 1 of Corollary 3.6, Lemma 6.1, Proposition
2.1 and Statement 1 in Theorem 1.4. Now we can assume 1 ≤ τ(H) ≤ r. So there exists an integer w
with 1 ≤ w ≤ r such that τ(H) = r − w + 1.

We first prove Statement 2. So r is divisible by w + 1 and H is not a subgraph of Kr−w ∨ tKw+1

for any positive integer t. Since every minor of Ir−w ∨ tKw+1 is a subgraph of Kr−w ∨ tKw+1, {Ir−w ∨
sKw+1 : s ≥ s0} ⊆ M(H) for some sufficiently large s0. Hence Statement 2 of this theorem follows
from Statement 2 of Corollary 3.6, Statement 2 of Theorem 1.4 and Proposition 2.1.

Now we prove Statement 3. Note that for any positive integer t, every minor of Ir−1 ∨ tK2 is a
subgraph of Kr−1∨ tK2. Hence {Ir−1∨sK2 : s ∈ N} ⊆ M(H). And Kr+1 = Kr−1∨K2, so H 6= Kr+1.
Hence Statement 3 of this theorem follows from Statement 2(c) of Corollary 3.6 by taking w = 1,
Statement 3 of Theorem 1.4 and Proposition 2.1.

If either H = Kr+1 and r ≤ 3, or H = K1,s for some s ≤ r, then every graph in M(H) is
(r − 1)-degenerate and hence pRr

M(H) = pDr

M(H) = Θ(1).

Proof of Theorem 7.2: We first prove Statement 1. If τ(H) = 1, then H is a disjoint union of
a star and isolated vertices, so H is a subgraph of K1 ∨ tKr for some positive integer t, a con-
tradiction. So τ(H) = 2. Hence Statement 2 in Theorem 1.4 and Proposition 2.1 implies that
pχr

M(H) = Ω(n−2/(r(r+1))). Since every minor of K1 ∨ tKr is a subgraph of K1 ∨ tKr, we know

{I1 ∨ sKr : s ∈ N} ⊆ M(H). By Statement 2(b) of Corollary 3.6 by taking w = r − 1, we know
pχr

M(H) = O(n−2/(r(r+1))). This proves Statement 1.
Statement 2 follows from the last sentence of Theorem 1.4 and Proposition 2.1.
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