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ABSTRACT

Sparse decision trees are one of the most common forms of inter-
pretable models. While recent advances have produced algorithms
that fully optimize sparse decision trees for prediction, that work
does not address policy design, because the algorithms cannot han-
dle weighted data samples. Specifically, they rely on the discreteness
of the loss function, which means that real-valued weights cannot
be directly used. For example, none of the existing techniques pro-
duce policies that incorporate inverse propensity weighting on
individual data points. We present three algorithms for efficient
sparse weighted decision tree optimization. The first approach di-
rectly optimizes the weighted loss function; however, it tends to be
computationally inefficient for large datasets. Our second approach,
which scales more efficiently, transforms weights to integer values
and uses data duplication to transform the weighted decision tree
optimization problem into an unweighted (but larger) counterpart.
Our third algorithm, which scales to much larger datasets, uses a
randomized procedure that samples each data point with a probabil-
ity proportional to its weight. We present theoretical bounds on the
error of the two fast methods and show experimentally that these
methods can be two orders of magnitude faster than the direct opti-
mization of the weighted loss, without losing significant accuracy.
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1 INTRODUCTION

Sparse decision trees are a leading class of interpretable machine
learning models that are commonly used for policy decisions [e.g.,
12, 15, 38]. Historically, decision tree optimization has involved
greedy tree induction, where trees are built from the top down
[6, 13, 35], but more recently there have been several approaches
that fully optimize sparse trees to yield the best combination of
performance and interpretability [5, 16, 20, 33]. Optimization of
sparse optimal trees is NP-hard, and many previous works have
essentially leveraged the fact that the loss takes on a discrete num-
ber of values to provide a computational advantage [1, 2, 29, 31].
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However, if one were to try to create a policy tree or estimate causal
effects using one of these algorithms, it would become immediately
apparent that such algorithms are not able to handle weighted data,
because the weights do not come in a small number of discrete val-
ues. This means that common weighting schemes, such as inverse
propensity weighting or simply weighting some samples more than
others [8, 30], are not directly possible with these algorithms.

For example, let us consider developing a decision tree for de-
scribing medical treatment regimes. Here, the cost for misclassifica-
tion of patients in different stages of the disease could be different.
To create an optimal policy, we would weight the loss from each
patient and minimize the sum of the weighted losses. While it is
possible to approximately optimize this sum using CART’s subopti-
mal greedy splitting procedures [6], there is not a way to do it with
the current fastest optimal decision tree method, GOSDT [29].

We extend the framework of GOSDT-with-Guesses [31] to sup-
port weighted samples. GOSDT-with-Guesses produces sparse de-
cision trees with closeness-to-optimality guarantees in seconds or
minutes for most datasets; we refer to this algorithm as GOSDTwG.
Our work introduces three approaches to allow weighted samples,
where the first one is slow, the second one is fast, and the third one
is fast and scales to large dataset sizes through the use of sampling.

In more detail, a key contributor to GOSDTwG’s performance
is its use of bitvectors to speed up the computation of the loss
function. However, the introduction of weights requires a vector
multiplication between the weights and this bitvector representa-
tion, which introduces a runtime penalty of one to two orders of
magnitude. We demonstrate this effect in our first (direct) approach.
Our second approach introduces a normalization and data duplica-
tion technique to mitigate the slowdown due to having real-valued
weights. Here, we transform the weights to small integer values and
then duplicate each sample by its transformed weights. In a third
approach to this problem, which scales to much larger sample sizes,
we propose a stochastic procedure, where we sample each data
point with a probability proportional to its weight. Our experimen-
tal results show that: (1) the second and third techniques decrease
run time by up to two orders of magnitude relative to that achieved
by the slower direct weighted computation (the direct approach),
(2) we can bound our accuracy loss from using the second approach
rather than the first one; and (3) the proposed weighted optimal
decision tree technique can outperform natural baselines in terms
of running time, sparsity, and accuracy.



2 RELATED WORK

Decision trees are one of the most popular forms of interpretable
models [36]. While full decision tree optimization is NP-hard [28],
it is possible to make assumptions, e.g., feature independence, that
simplify the hard optimization to cases where greedy methods suf-
fice [23]. However, these assumptions are unrealistic in practice.
Some other approaches [21, 32] assume that the data can be per-
fectly separated with zero error and use SAT solvers to find optimal
decision trees; however, real data are generally not separable.

Recent work has addressed optimizing accuracy with soft or
hard sparsity constraints on the tree size. Such decision tree opti-
mization problems can be formulated using mixed integer program-
ming (MIP) [2, 5, 20, 37, 42, 43], but MIP solvers tend to be slow.
To improve the scalability of decision tree optimization, several
studies have produced customized dynamic programming algo-
rithms that incorporate branch-and-bound techniques. In particu-
lar, analytical bounds combined with bit-vector-based computation
have been used to efficiently reduce the search space and improve
run time [4, 7, 22]. Lin et al. [29] extend this approach to use dy-
namic programming, which leads to even more improved scalabil-
ity. Demirovi¢ et al. [11] introduce constraints on both depth and
the number of nodes to improve scalability. Recently, McTavish
et al. [31] proposed smart guessing strategies, based on knowledge
gleaned from black-box models, that can be applied to any optimal
branch-and-bound-based decision tree algorithm to reduce the run
time by multiple orders of magnitude. While these studies focus on
improving running time and accuracy, they handle only uniform
sample importance and do not consider weighted data points. Our
work neatly fills this gap; our weighted objective function, data du-
plication method, and sampling approach enable us to find optimal
decision trees for these problems quickly.

Several studies focus on learning tree- and list-based treatment
regimes from data [9, 14, 24, 25, 40, 45, 47]. However, none of these
methods fully optimize the policy because it was not known at the
time how to perform optimization of the type we use in this work.

3 METHODOLOGY

Let {(xi, i, wi)}fil represent our training dataset, where x; are
M-vectors of features, y; € {0,1,...,K} are labels, w; € R20 is the
weight associated with data x;, and N is the size of the dataset. Also,
let x be the N X M covariate matrix, w be the N-vector of weights,
and y be the N-vector of labels, and let x;; denote the j-th feature
of x;. To handle continuous features, we binarize them either by
using all possible split points [22] to create dummy variables or by
using a subset of these splits as done by McTavish et al. [31]. We
let X, the binarized covariate matrix, be notated as x;; € {0,1}.

3.1 Objective

Let 7 be a decision tree that gives predictions {g;r}f\i 1- The weighted
loss of the tree 7~ on the training dataset is:

Lw(T.%y) =

1 N
— > Wy # g7 1 x wi. (1

i=1 Wi i=1

To achieve interpretability and prevent overfitting, we provide
the options to use either soft sparsity regularization on the number
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of leaves, hard regularization on the tree depth, or both [see 31]:

min;}nize Lw(T,%y) + AHy s.t. depth(7) <d, (2)

where Hy is the number of leaves in the tree 7~ and A is a regular-
ization parameter. We define Ry, (7, %,y) = Lw(7,X%,y) + AHy. We
might refer to 1[y; # })lT ] as I;(T"), for simplicity. While in practice,
depth constraints between 2 and 5 are usually sufficient, McTavish
et al. [31] provide theoretically-proven guidance to select a depth
constraint so that a single tree has the same expressive power (VC
dimension) as an ensemble of smaller trees (e.g., a random forest or
a boosted decision tree model). The parameter A trades off between
the weighted training loss and the number of leaves in the tree.

3.2 Learning Weighted Trees

We present three approaches for handling sample weights. The
first is the direct approach, where we calculate the weighted loss
directly. Implementing this approach requires multiplying each
misclassification by its corresponding weight, which is computa-
tionally expensive in any algorithm that uses bitvectors to optimize
loss computation. This overhead is due to replacing fast bitvector
operations with slower vector multiplications. The direct approach
slows GOSDTwG down by two orders of magnitude. To avoid this
computational penalty, our second approach, data-duplication, in-
volves a transformation of the weights; specifically, we normalize,
scale, and round the weights to be small integer values. We then
duplicate samples, where the number of duplicates is the value of
the rounded weights, and use this larger unweighted dataset to
learn the tree. This method avoids costly vector multiplications
and does not substantially increase run time compared to the un-
weighted GOSDTwG; note that GOSDTwG scales extremely well
with the sample size due to the bit-vector computations, so dupli-
cation does not add much to the computational cost. Finally, to
scale to larger datasets, we present a randomized procedure, called
weighted sampling, where we sample each data point with a proba-
bility proportional to its weight. This process introduces variance
(not bias) and scales to large numbers of samples.

Direct Approach. We begin with the branch-and-bound algorithm
of McTavish et al. [31] and adapt it to support weighted samples.
Given a reference model T, they prune the search space using
three “guessing” techniques: (1) guess how to transform continu-
ous features into binary features, (2) guess tree depth for sparsity-
regularized models, and (3) guess tight lower bounds on the objec-
tive for subsets of points to allow faster time-to-completion. It is
straightforward to see that the first two techniques apply directly
to our weighted loss function. However, we need to adapt the third
guessing technique to have an effective and tight lower bound for
the weighted loss function. Let le be the predictions of the refer-
ence model (perhaps a boosted decision tree model) on training
observation i. Let s, be the subset of training observations that
satisfy a boolean assertion a:

sq = {i:a(X;) =True,i € {1,..,N}}
X(sa) = {Xi : i € sa}
y(sa) ={yi :1 € sa}
w(sg) :=={wj:i€sq}.
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Motivated by McTavish et al. [31], we define our guessed lower
bound as follows:

lbguess(sa) = N; Z 1y # ng] X wi+A. (3)
Dizg Wi i€sq
Equation 3 is a lower bound guess for Ry (¢, X(sq), y(sq)) because
we assume that the (possibly black box) reference model T has loss
at most that of tree t on data s, and we know that any tree has at
least one node (hence the regularization term’s lower bound of A1x1).
Accordingly, in the branch-and-bound algorithm, to optimize
the weighted loss function introduced in Equation 2, we consider
a subproblem to be solved if we find a subtree that achieves an
objective less than or equal to its Ibgyess. If we find such a subtree,
our training performance will be at least as good as that of the
reference model. For a subset of observations s,, we let t; be the
subtree used to classify points in s;, and H;, be the number of
leaves in that subtree. We can then define the subset’s contribution
to the objective:

Rw(sa) (ta, %(sa), y(sa))

1 :
=— 1y; # 9.9] X wi + AHy,.
N Z ! ! a
Ding Wi i€sq '
For any dataset partition A, where a € A corresponds to the data
handled by a given subtree of t:

Ru(t%Y) = ) Ry(s,) (tarX(sa), y(sa)) -
acA
By introducing the abovementioned lower bound guess, we can
now replace the lower bound of McTavish et al. [31] with our
lower bound and proceed with branch-and-bound. Their approach
is provably close to optimal when the reference model makes errors
similar to those made in an optimal tree. We now show that our
approach using the weighted lower bound is also close to optimal.
Let ST incorrect be the set of observations incorrectly classified by
the reference model T, i.e., ST incorrect = {ilyi # g)lT}, and t; be a
tree returned from our lower-bound guessing algorithm. We have:

THEOREM 1. (Performance Guarantee). Let R(tg, X, y) denote the ob-
Jjective of ty on the full binarized dataset (X,y) for some per-leaf
penalty A. Then for any decision tree t that satisfies the same depth
constraint d, we have:

. 1
R(tg. %, y) S—ZN A E Wi
i=1 Wi LEST incorrect

+ Z Lly; # §;] X wi |+ AH; .
iesT,correcl
That is, the objective of the guessing model ty is no worse than the
union of errors made by the reference model and tree t.

Hence, the model t; from our lower bound guessing algorithm
achieves a weighted objective that is as good as the error of the
reference model (which should be small) plus (something smaller
than) the error of the best possible tree of the same depth. The
proof can be found in Appendix A.1.

Motivation for Data Duplication. While it might seem counter-
intuitive that increasing the size of the dataset by replicating data

Algorithm 1: Data Duplication

Input :Dataset x, y and weights w, duplication factor p < 100
Output:Duplicated dataset X, §

1 X — 0,5« 0;

2 Define w; = round (p . ( L )),

IR i

3 for x; € xdo

4 fori=1,2,...,w; do
5 X «— XU {x;};
6 g—g9{yik

7 return X. .7

would be substantially faster than the direct approach, it actually is.
Let us consider the computation involved in these two options. In
decision tree optimization, evaluation of the objective is performed
repeatedly. Any small improvement in that evaluation step leads to
a large improvement (possibly orders of magnitude) in the overall
computational speed of the algorithm. In the direct approach, com-
puting the objective (2) requires computing the inner product w - 7,
where 7; = 1[y; # 97—] In the unweighted case, as all weights are
1, this computation can be performed using bit operations, which
are extremely fast. In the weighted case, we resort to standard inner
products, which are two orders of magnitude slower (see Section
4). The data-duplication approach allows us to use bit-vectors as in
the unweighted case, preserving fast computation.

Data-duplication Algorithm. The data-duplication algorithm is
shown in Algorithm 1. Given an integer p > 0, we first normalize all
weights and scale them to (0, 1]. Then we multiply each normalized
weight by p and round them to integers. Given the scaled integer
weights, we then duplicate each sample, x;, by its corresponding
integer weight, w;. Once the data are duplicated, we can use any
optimal decision tree technique. In our experiments, we show that if
we choose the value of p appropriately, this method can speed up
the training process significantly without losing too much accuracy.
After data-duplication, there are no longer weights associated with
the samples, and we can use the fast bit-vector computations from
the unweighted case. Even in the presence of substantially more
data, since the bit-vector computation scales sublinearly with the
number of samples, it is much faster than the direct approach.

Correctness of Data Duplication. One might ask whether the
data duplication approach leads to suboptimal solutions because its
loss function is an approximation to the weighted loss. As it turns
out, as long as the weights do not change very much when round-
ing to integers, the minimum of the data duplication algorithm’s
objective is very close to the minimum of the original weighted
objective.
Recall the objective

1
R(t) = ———— Z wili(t) + A#leaves.
N
2t Wi 5
Define the objective with the approximate weights as
. 1 .
R(t) := SN o Z wil;(t) + A#leaves.
i=1 " i

When we rounded, we ensured that the weights did not change
much. That is, we know by design that ||[w — W||o < €. Note that



multiplying w;s by a scalar cannot change the value of the objective
function. Accordingly, normalizing and also scaling weights by p do
not change the value of R(t). Therefore, without loss of generality,
we can assume that w;s are weights right before rounding.

THEOREM 2. Lett* be a minimizer of the objective ast* € arg min, R(t),
and T be a minimizer of the approximate loss function as T €
argmin, R(t). If |[w — W||eo < €, we have:
((-Dy+e ('7—1)1//+6}
S ’

[R(+") = R(T)| < max{

Wi max; {w;, w; }
min; {w;, w; }

wheren = maxj<j<N {%}{ = maxj <j<N {Vi},andljf =

Note that, in other words, we provably will not lose substantial
performance when using the rounded solution, as long as we did
not change the weights very much when rounding. The value of 1
and { are usually small and near 1. If the value of ¢ is very large,
then the direct approach is more efficient, and we do not need to
use data duplication. Accordingly, when we use data duplication,
the value of ¢/ should also be small. The proof is in Appendix A.2.

Weighted Sampling. When the ratio of the biggest weight over
the smallest weight is large, the data duplication approach might
be inefficient, in that it could require us to create a huge number
of samples. To address this issue, we present a stochastic sampling
process as a pre-processing step. We sample each data point based
on its weight. Given an arbitrary number r, we sample S = rxN data
points such that the probability of choosing x; is 5 i After this

i=1 Wi
step, we can use any unweighted optimal decision tree algorithm
on the sampled dataset.

Quality Guarantee of Weighted Sampling. Let £(.) be the loss
function on the sampled dataset, it is not hard to see that E[ L] =
Ly, where Ly, is the value of the misclassification (Eq. 1) on the

weighted dataset. Based on this fact, we have the following theorem:

THEOREM 3. Given a weighted dataset D = {(x;, yi, Wi)}i'\ip

bitrary positive real number r > 0, an arbitrary positive real number
€ > 0, and a tree T, if we sample S = r X N data points from D,
D = {(xj, gi)}le, we have:

an ar-

~ . 26‘2
PIL(T%) - Lu(T.xy)| 2 ) < 2exp _T)

4 EXPERIMENTS

Our evaluation addresses the following questions:

(1) When s the direct approach more efficient than data-duplication

and weighted sampling?

(2) In practice, how well do the second and third proposed meth-
ods perform relative to the direct approach?

(3) How sparse and fast are our weighted models relative to
state-of-the-art optimal decision trees?

(4) How can our approach be used for policy making?

We use sparsity as a proxy for interpretability, because it can be

quantified thus providing an objective means of comparision [36].

4.1 Datasets

In our experiments, we use seven publicly available real-world
datasets; Table 1 shows sizes of these datasets: The Lalonde dataset
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Table 1: Datasets

Dataset samples | features | binary features
Lalonde 723 7 447
Broward 1954 38 588
Coupon 2653 21 87
Diabetes 5000 34 532
COMPAS 6907 7 134

FICO 10459 23 1917
Netherlands 20000 9 53890

|-+ without data duplication-= with data duplication. |

= 10% Y 2 10% i
(%) v
£ £ A
& 2 by 2
=} =]
=1 =
2 2l

10'F ww 1 10'F
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q (%) q (%)

Figure 1: Training time of the model with and without data duplica-
tion on different machines.

[10, 26], Broward [44], the coupon dataset, which was collected on
Amazon Mechanical Turk via a survey [46], Diabetes [39], which is
a health care related dataset, the COMPAS [27], the Fair Isaac (FICO)
credit risk dataset [17] from the Explainable ML Challenge, and
Netherlands [41] datasets, which are recidivism datasets. Unless
stated otherwise, we use inverse propensity score with respect to
one of the features as our weights. For more details about datasets
and weights see Appendix B.1.

For each dataset, we ran the experiments with different depth
bounds and regularization, and each point in each plot shows the re-
sults for one setting. Table 2 (Appendix B.2) lists the configurations
used for each dataset when training decision trees.

4.2 Baselines

We compared our proposed methods with the following baseline
models: (1) CART [6], (2) DL8.5 [3], and (3) Gradient Boosted De-
cision Trees (GBDT) [18, 19]. CART and GBDT can both handle
weighted datasets, so we use their default weighted implementation
as the baselines. As DL8.5 does not supported weighted datasets,
we use the data-duplication approach with it.

4.3 Results

Data duplication. We begin by demonstrating how much the di-
rect approach penalizes runtime relative to the data-duplication
approach. We use the unweighted FICO dataset and randomly pick
q% of the data points, S, to double weight, duplicate them and add
them to the data set, producing a dataset of size (1 + %) XN,
where N is the size of the original data set, |S|. We then compare
this to the running time of the direct approach in which we as-
sign weight of 2 to all double-weighted samples and weight of 1
to all remaining samples. We run this experiment on two different
machines, with different processors and RAMs, in order to show
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Figure 2: Sparsity vs. training accuracy: All methods but CART and GBDT use guessed thresholds. GBDT and DL8.5 use data duplication.
DL8.5 frequently times out, so there are fewer markers for it. GOSDTwG achieves the highest accuracy for every level of sparsity.
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Figure 3: Sparsity vs. test accuracy: All methods but CART and GBDT use guessed thresholds. GBDT and DL8.5 use data duplication. DL8.5
frequently times out, so there are fewer markers for it. GOSDTwG achieves the highest accuracy for every level of sparsity. GOSDTwG also

achieves the highest test accuracy for almost every level of sparsity.

the reliability of the results on different machines. The detailed
property of machines can be found in Appendix B.3. Figure 1 shows
the result of this experiment. We find that when the size of the
duplicated dataset is less than 100 times the original dataset, the
data-duplication approach is always faster.

Comparison of our approaches. We next compare the relative
accuracy achieved using the direct, data-duplication, and weighted
sampling approaches on all our evaluation datasets. The star-shaped
points in Figures 2 and 3 show the result of this comparison. These
results suggest a trade-off between accuracy and running time.
Weighted sampling is the fastest approach, but it has the worst
accuracy among our approaches because it uses only subsets of the
data. Data duplication, while slower than weighted sampling, is
faster than the direct method, without losing much accuracy.

Sparsity vs. accuracy. If we now consider the dotted line and
round and diamond shapes in Figures 2 and 3, we can see the
accuracy-sparsity tradeoff for different decision tree models (the
black line represents accuracy for GBRDT). GOSDTwG produces ex-
cellent training and test accuracy with a small number of leaves, and,
compared to other decision tree models, achieves higher accuracy
for every level of sparsity. Results of other datasets are in Appen-
dix C.1.

Training time vs. accuracy. Figures 4 and 5 show the training
time and accuracy for different decision tree models. While the
training times of GOSDTwG and CART are almost the same, GOS-
DTwG achieves the highest training and test accuracy in almost all
cases. DL8.5 struggled with the 1 hour termination condition for all
datasets except Lalonde; because DL8.5 did not solve to optimality,
it was outperformed by both CART and GOSDTwG. Results of other
datasets are in Appendix C.2.

Lalonde Case Study. The Lalonde dataset is from the National Sup-
ported Work Demonstration [10, 26], a labour market experiment
in which participants were randomized between treatment (on-the-
job training lasting between nine months and a year) and control
groups. Accordingly, for each unit U;, we have a pre-treatment
covariate vector X; and observed assigned treatment Z;. Let Yi1 be
the potential outcome if unit U; received the treatment, and Yi2 be
the potential outcome if it was not treated. When a unit is treated,
we do not observe the potential outcome if it was not treated and
vice versa. To address this issue, we use the MALTS model [34] that
estimates these missing values by matching. MALTS gives us an es-
timate of the conditional average treatment effect, which we call TE.
Since our weighted decision tree is designed for classification, we
classify participants into three groups—“should be treated,” “should
be treated if budget allows,” and “should not be treated” -— based
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Figure 5: Training time vs. test accuracy: All methods but CART and GBDT use guessed thresholds. GBDT and DL8.5 use data duplication.
DL8.5 frequently times out, so there are fewer markers for it. While CART is the fastest algorithm, GOSDTwGuses its additional runtime to
produce models with higher accuracy and generalize better.

education < 11.5 them as weights of the dataset. Figure 6 shows the generated tree
/ \ by GOSDTwG with a depth limit of 3. Generated trees with other
age < 31.5 re75 < 897.409 depth limits can be found in Appendix C.4.

N e

re75 < 21497.509  hispanic < 0.5  age < 18.5 re75 < 21497.509

/ N\ /N /N / N\

class  class class class class class  class class 5 CONCLUSIONS
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ To find the optimal weighted decision tree, we first suggest directly
1 0 1 0 1 2 1 0 optimizing a weighted loss function. However, this approach might

be time-consuming for large weighted datasets. To improve effi-
ciency, we present the data-duplication approach, which rounds all
weights to integers and then duplicates each sample by its weights.

Figure 6: The tree generated by GOSDTwG (depth limit 3) on the
Lalonde dataset.

on their conditional average treatment effect estimate. We selected Finally, to further improve efficiency, we present a stochastic pro-
features age, education, black, hispanic, married, nodegree, re75 for cess, where we sample an unweighted dataset from our weighted
the pre-treatment covariate vector. Then we labelled the data points dataset. Our results suggest a trade-off of accuracy and running
as 2,1, and 0 if the estimated treatment effect is larger than 2000, time among these approaches.

between —5000 and 2000, and less than —5000, respectively. Here,
the penalty for each misclassification is defined as follows:

0, correctly classified,
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A THEOREMS AND PROOFS

A.1 Proof of Theorem 1

THEOREM 1. (Performance Guarantee). Let R(tg, X, y) denote the objective of tg on the full binarized dataset (X, y) for some per-leaf penalty A.
Then for any decision tree t that satisfies the same depth constraint d, we have:

Z wi + Z Lly; # §;] X wi |+ AH;.

LEST incorrect LEST correct

R(te, %, y) < !
8
El lwl

That is, the objective of the guessing model is no worse than the union of errors made by the reference model and tree t.

Proor. We adapt the proof in the work of McTavish et al. [31] to the weighted setting. Similar to them, we use the following notation to
discuss lower bounds:
e 1 > 0is a regularizing term
e For some decision tree 7, we calculate its risk as R(7, %X, y) = ZNl " Zfi cwi X Ay; # Q;T] + AHq, where Hy refers to the number

i=

of leaves in tree 7.

o T is a reference model we use to guess lower bounds.

® ST correct ANd ST incorrect are, respectively, the indices of the set of observations in the training set correctly classified by T and the set
of observations incorrectly classified by T.

o s, is the set of training set observations captured in our current subproblem.

o d represents the maximum allowed depth for solutions to our current subproblem. If d = 0, no further splits are allowed.

o t4(sq, d, A) is the lower-bound-guessing-algorithm’s solution for subproblem s,, depth limit d, and regularizer .. When we just specify
ty without arguments, we are referring to the lower-bound-guessing-algorithm’s solution for the root subproblem (the whole dataset),
with the depth limit argument provided for the tree as a whole.

e Consider a subproblem s, corresponding to the full set of points passing through a specific internal or leaf node of the optimal tree
T (call it nodeq s ). Define Hy as the number of leaves below nodes, (or 1 if nodes, is a leaf). Note that this is also the number of
leaves needed in an optimal solution for subproblem s,. Similarly define H; a 85 the number of leaves below node; o5q 1 g (when sq
corresponds to the full set of points passing through a node in t4). Note that this does not necessarily correspond to the number of
leaves needed in an optimal solution for subproblem s, because t; has not been fully optimized.

® Ry(sqa,d, A) is the objective of the solution found for subproblem sa, depth limit d, and regularizer A when we use lower bound guessing:

Ry(sard,2) = 3w x Ly # 37N 4 Am .
l lwl i€s,
o lby(sq) was defined as
Iby(sq) = Dlwix Ay # 9] 1+ 4,
1 IW' i€s,

which could be obtained at equality if we achieve the accuracy of T in a single leaf. We add that this is equivalent (by definition) to

Z wij +A.

i ESTincorrectNSa

lby(sa) =

1W1

e We additionally define t*(sq4, d, A) as an optimal solution for subproblem s,, depth limit d, and regularizer A (that is, the solution found
when we do not use lower bound guessing). When we just specify t* without arguments, we are referring to a solution for the root
subproblem (the whole dataset), with the depth limit argument provided for the tree as a whole.

e We also define R(sgq, d, A) as the objective of the optimal solution found for subproblem s, depth limit d, and regularizer A (that is, the
objective of the solution found when we do not use lower bound guessing):

R(sq,d, A) =

 (sadA
Z wi X 1[y; # lt (s )] + AHp (s,

z 1 Wi i€sq

Here, by t* N s, we refer to the part of the subproblem s, captured by a part of tree ¢*.
o Define Ibmax (sq, d, A) as the highest lower bound estimate that occurs for a given subproblem s,, depth budget d, and regularization A,
across the algorithm’s whole execution when using lower bound guessing. Note that

Ry(sa,d, A) < lbmax(sa, d, )

because when a subproblem is solved, the current lower bound is made to match the objective of the solution returned for that
subproblem. As a reminder, R, is computed after the subproblem is solved. When using lower bound guesses, it is possible for
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intermediate lower bound estimates (and therefore [bmay) to exceed Ry(sq, d, A), and then the lower bound (but not Ibyax) is decreased
to match the objective of the best solution found when the subproblem is solved.

Now, without loss of generality, select a tree ¢ that is within some depth constraint d. We wish to prove that the risk on the full dataset
(with some regularization A) is bounded as:

. 1 .
Rltp%y) < ——| D, wi+ > wix L[y #g}] |+ AHy. (4)
Zi:l Wi LEST incorrect LEST correct

or, equivalently, (defining s, as the set of all points in the dataset):

1 N
Rg(sau, d, /1) < v Z wi+ Z w; X ﬂ[yl # ylt] + AH;.
Zi=1 Wi LE€ST incorrect LEST correct
To show this, it is sufficient to show a result that is strictly more general. Specifically, we show that for any subproblem s, (with d, A > 0)
that occurs as an internal or leaf node in ¢ (including the root), we can bound Ibmax (sq, d, A) as follows. Equation (4) is a direct consequence,

using s, as the full dataset s,;.

Ibmax (s>, A) < wit > wix Ly # g}] |+ AHy,. (5)

N
Z i L€ST incorrectNSa LEST correctNSa

i=1 Wi
What we originally wished to prove then follows from noting that, by definition of [bpax, we have Rg(sau, d, A) < lbmax(sap>d, A). Here, d, A
are the depth limit and regularization provided for t; (where d matches or exceeds the depth of t).
We prove this sufficient claim (hereafter referred to as Equation 5) for all subproblems in ¢ using induction.

Base Case: Let us take any subset of data s,, depth constraint d, and regularization A which corresponds to a subproblem in tree t
whose solution in t is a leaf node.

Because the solution to s, was a leaf in ¢, then its objective (without making further splits) is ub = ZN;W(Z,-ESE wi X 1[y; # g;]) +A-1
i=1 Wi
We want to show, in this case, that (5) holds.
Our initial lower bound guess is lbg. Either Ibg > ub, or by < ub. If Ib; > ub, we are done with the subproblem as per the Branch-and-
Bound algorithm in [31]. Otherwise, when lbg < ub, we know from their algorithm that the lower bound can never increase above ub.

Therefore, the highest value of the lower bound during execution, [bmax (Sq, d, A), obeys lbmax (sq, d, A) < max(ub, lbg). Then,
Ibmax(sa,d, A) < max(ub,lby) (by argument just above)

1 > R wj
= max ZN— Z (wi x L[y; # §¢1) + A, Sl inconeala L4 ) (by definition of ub and Ib,)

N
i=1 Wi jes, 2ty Wi

1
.t
=mmax Zwix]l[yizﬁyi], Z wi |+ A
i=1 "1 i€sq LE€ST incorrectNSa
N i x 1y; # ! i X L[y # §F i+
_mmax wi X L[y; # 9;] + wi X L[y; # 9;], wi [+ A
i=1 "1 LEST correctNSa LEST incorrectNSa i E€ST incorrectNSa

Note that both terms inside the max are at most Y;es;. s, Wi X L[Ui # 071 + Zicsriomeans, Wi- Therefore,

1
N
Ibmax(sq,d, 1) < N E wi X L[y; # 9;] + E wi |+ A
i=1 Wi iesT,Correctmsa iesT,incorrectﬂsa

Moreover, the number of leaves in the optimal tree for subproblem s, is 1, i.e., Hy, = 1 (since s4 corresponds to a leaf in t), so

Ibimas(sa d, A) < wit > wix Ly # g}] |+ AHy,

LEST incorrectNSa LEST correctNSa

1
N
2z Wi

And this matches Equation (5), as required. Thus, we have shown that the base case obeys the statement of the theorem.
Inductive Step: Let the set of points s;, depth constraint d > 0, and regularization A > 0 be a subproblem that corresponds to an

internal node in . Let j indicate the feature that was split on in # for this node, and define s; as the set of data points X; such that X;; = 1 and
sj‘? as the set of data points X; such that X;; = 0. We assume (5) holds for both the left and right child subproblems and aim to show that it
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holds for their parent subproblem. The left subproblem is s; N s; with depth d — 1 and the right subproblem is s; N ch. with depth d — 1. Thus,
assuming (as per the inductive hypothesis) that (5) holds, i.e.,

1
N

Ibmax (sa 0 5j,d = 1,4) S— § wi+ Z wi X L[y; # 9] |+ AHz,rs,

i=1 Wi iEST,incorrectﬂsaﬂsj iEST,correctﬁsuﬁsj
and
c 1 N

Ibmax(sa N sj,d -1L,A) < N wi + wi X 1{y; # 9;] + AHp, e

Zl:l ! lesT,incorrecthamS}‘ lEST,correctmsams;

it remains to show that Equation (5) holds for s,:

1
.t
Brnax(ad ) Scg—| >, wi+ >, wixLly #§{]|+H,.
i=1 Wi LEST incorrectNSa LEST correctNSa

We prove the inductive step by cases:

(1) Ifub < Ibg + A, then as per the branch-and-bound algorithm in [31], s, corresponds to a leaf in ¢4, with a loss for this subproblem
equal to ub. Since the algorithm returns immediately after changing the lower bound to ub, the maximum value the lower bound
takes (that is, [bpay) is whichever of lbg or ub is higher. We have:

Ibmax(sa, d, A) < max(lbg, ub)
< max(lbg, by + 1)  (Since we conditioned on ub < lbg + 1)
<lbg+ 2
1
=N Z wi + 21
Zi:l Wi iesT,incorrectmsa

1 N
< SR Z wi + Z wi X Ly; # 97 ] |+ 24.
i=

1E€ST incorrectNSa LEST correctNSa

Noting that because s, corresponds to an internal node in ¢, there are at least two leaves below it, so Hy, > 2. Thus,

Ibmax(Sa,d, 1) <

D w0 wix Ly # Gf] |+ AHy,.

LE€ST incorrectNSa LEST correctNSa

N

i=1 Wi

This equation matches Equation 5, as required.

(2) Else, the lower bound (and therefore [bmax (sq, d, 1)) cannot exceed the combined lower bounds of the left and right subproblems
from splitting on feature j. We know the split for feature j will lead to a lower bound estimate no more than lbmax (sq N'sj,d — 1, 1) +
Ibmax(sq N sjc., d — 1, 1). Thus we have:

lbmax(sa, d, /1) < lbmax(sa N Sj, d - 1,).) + lbmax(sa N Sj, d - 1,).)

Using the inductive hypothesis, this reduces to

1
N4
tmax(50,. ) < = D wie > wixy # 98|+ AHy,,
i=1 Wi iEST,incorrectnsansj iEST,correctmsamsj
1 N
+ZN ” Z w; + Z wi X 1[y; # ;] +AH;WC.
i=1 "L \i €ST incorrectNSa ﬂs; LEST correctNSa ﬁs;f

Noting that s, N sj and sq N sjc. partition sg,:

Ibmax(sa,d, ) <

wi + Z wi X 1[y; # g)f] + AH;,.

N owi . .
i=1 ™! \i€ST incorrectNSa LEST correctNSa

This equation matches Equation (5), as required.
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Thus we have proved the inductive step holds for all possible cases. By induction, then, we have proved Equation (5) holds for any internal
or leaf node in t. Since the root node is an internal node of t, we have also proven Equation (5) holds for the root problem. As per the
justification given when claiming Equation (5) was sufficient, that also means

. 1 .
R(tg,%,y) < N Z wi + Z wi X 1[y; # yl?] + AH;
Zi:l Wi LE€ST jincorrect LEST correct

which is what we wished to show. ]

A.2 Proof that Approximate Min Loss is not that far from True Min Loss
Recall the objective

R(T) :=

Z wili (T) + A#leaves.

1Wl i

Define the objective with the approximate weights as

R(T) =

- Z wili(T) + A#leaves.
=1 Wi T
When we rounded, we ensured that the weights did not change much. That is, we know by design that ||w — W||c < €.

THEOREM 2. Let t* be a minimizer of the objective as t* € argmin, R(t), and T be a minimizer of the approximate loss function as T e
arg min, R(t). If |[w — Wl|eo < €, we have:

|R(t*)_§(,~r)|<max{<§—1>¢+e - byre)
< 7 , 0 ,
wheren = max1<l<N{ }gv max1<l<N{ }andtﬁ—%.

Proor. Since we know that V1 <i < N : £ < % <n,andalso V1 <i < N : |w; — w;| < ¢, then for any tree 7,

1
¢

IR(T) = R(T)]

i[;(T) + A#leaves — -
z ’ N Wi

Wi W
-(Z-lel 5 )W)’

w; wi o i "
Zi: 21]'\:,1""1 Z - Il(T)<ZmaX{Ziwi_éijWi,Ziwi_UZiwi}Ii(T)

Z wil; (T) — A#leaves
i

({—1)w,-+e (r]—l)ﬁ/i+6 :
= Zi:max{ gzﬁlwi ’ Wzglﬁ’i }L(T)
. N
< Zmax{(g—l)maxi{wi}+e (ry—l)maxi{wi}+e} .

, ~ Li(T N x i} > i > N X min{w;
{x N xmini{w;} * 5 xN xmin;{w;} i(T)  (since N x max{wi} Zwl min{w;})

ma (5—1)1//+E’ (1= y+e P
= Zl: . { ¢ N 1 }I,-(T) (where we used that = %
= max{(g_lgl//+6,(’7_1’7)1//-'—6}.5(7'). ©)

. We will use proof-by-contradiction. Let us assume that the statement of the theorem is

(-Dy+e (n71)¢+e}
[ n

For simplicity, we let K = max {
false. This implies:
K < [R(t*) = R(T)| = [R(T) = R(t")]. ™)
Since the error rate £(7") is always less than 1 for any tree, we have that when R(T) = R(+%),
KX LG < K<I|R(T)-RE)| =R(T)-R(1)
Rt +KL(t") < R(T) 6)
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and conversely, when R(t*) > R(7),
KL(T) < K<|R(t")-R(T)|=R(t") - R(T)
RO +KLT) < RG"). ©)
Using (6) for t*, we have:

A

R(t*) =R(t") < |R(t") - R(t")| < K x L(t)
R(t") < R(") +KL(t%).
Since 7~ is the minimizer of R, we know R(7") < R(t*). Combining that with the equation above, we have:
R(T) < R(t*) + KL(t"). (10)
Analogously, using (6) for 7, we have:
R(T)-R(T) < [R(T)=R(T)| <KLT)

R(T) < R(T)+KL(T).
Since t* is the minimizer of R, we know R(t*) < R(7). Combining that with the equation above, we have:
R(t") < R(T) +KL(T). (11)
Combining (8) with (10), we have o
R(t") +KL(t") < R(T) < R(t") + KL(t"), (12)
which is a contradiction since one cannot have a number strictly less than itself. Similarly, combining (9) and (11), we have
R(T)+KL(T) <R(t*) < R(T) +KL(T), (13)

which again leads to a contradiction.
These contradictions, which occur whether R(77) > R(t*) or R(t*) > R(7T"), imply that our assumption, namely (7), is incorrect, thus, we
have its opposite, |[R(t*) — R(7)| < K. O

A.3 Proof of Theorem 3
THEOREM 3. Given a weighted dataset D = {(x;, yi, Wi)}£1:
and a tree T, if we sample S = r x N data points from D, D = {(%;, ;) }

an arbitrary positive real number r > 0, an arbitrary positive real number ¢ > 0,

S

op We have:

~ s 262
IP(IL(T,x,y) - Lw(T,xy)| = s) < 2exp =)

Proor. For a given tree 77, let X; be a random variable such that X; = 1[y; # le] Accordingly, for the sampled dataset, we have:

S
LN = ZXi.
i=1
Since for each 1 < i < S we have 0 < X; < 1, based on Hoeffding’s inequality, we have:
~ . ~ . 262
P (|.£(T,x,y) -E [.E(‘T,x,y)] | > E) < 2exp -5
As we discussed, E [LN(‘T X, 57)] = Lw(7,%x,y). So we can easily conclude the theorem. O

B EXPERIMENTAL DETAILS
B.1 Datasets

Lalonde: The Lalonde dataset is from the National Supported Work Demonstration [10, 26], a labour market experiment in which participants
were randomized between treatment (on-the-job training lasting between nine months and a year) and control groups. Accordingly, for each
unit U;, we have a pre-treatment covariate vector X; and observed assigned treatment Z;. Let Yi1 be the potential outcome if unit U; received
the treatment, and Yl.2 be the potential outcome if it was not treated. When a unit is treated, we do not observe the potential outcome if
it was not treated and vice versa. To address this issue, we use the MALTS model [34] that estimates these missing values by matching.
MALTS gives us an estimation of the conditional average treatment effect, which we call TE. Since our weighted decision tree is designed for
classification, we classify participants into three groups — “should be treated,” “should be treated if budget allows,” and “should not be treated”
- based on their estimated conditional average treatment effect (TE). We selected features age, education, black, hispanic, married, nodegree,
re75 for the pre-treatment covariate vector. Here, re75 is earnings in 1975. Then we labelled the data points as 2, 1, and 0 if the estimated
treatment effect is larger than 2000, between —5000 and 2000, and less than —5000, respectively. Here, the penalty for each misclassification
is defined as follows:
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Figure 7: Distribution of weights.

0, if we correctly classify them,

cost = 200 + 3 X age if their label is 0 and we misclassify,
100 + 3 X age if their label is 1 and we misclassify,
300 if their label is 2 and we misclassify.

We linearly scale the above costs to the range from 1 to 100, and in the case of data-duplication, we round them to integers and treat them
as weights of the dataset. Figure 7 shows the distribution of weights.
Broward: In this dataset [44], we predict whether defendants have any type of charge (for which they were eventually convicted) within two
years from the current charge/release date. We selected features sex, age_at_current_charge, age_at_first_charge, p_charges, p_incarceration,
p_probation, p_juv_fel_count, p_felprop_viol, p_murder, p_felassault, p_misdeassault, p_famviol, p_sex_offense, p_weapon, p_fta_two_year,
p_fta_two_year_plus, current_violence, current_violence20, p_pending_charge, p_felony, p_misdemeanor, p_violence, total_convictions, p_arrest,
p_property, p_traffic, p_drug, p_dui, p_domestic, p_stalking, p_voyeurism, p_fraud, p_stealing, p_trespass, six_month, one_year, three_year, and
five_year and the label general_two_year. We use the inverse propensity scores as the weights to balance the number of samples for each
value of feature “sex.” Figure 7 shows the distribution of weights.
COMPAS: In this dataset [27], we predict whether individuals are arrested within two years of release. We selected features sex, age,
Juv_fel_count, juv_misd_count, juv_other_count, priors_count, and c¢_charge_degree and the label two_year_recid. We use inverse propensity
scores as the weights to balance the number of samples for each value of feature “sex””
Coupon: In this dataset [46], we predict whether a customer will accept a coupon for takeaway food or a cheap restaurant depending
on their coupon usage history, current conditions while driving, and coupon expiration time. We selected features destination, passanger,
weather, temperature, time, expiration, gender, age, maritalStatus, Childrennumber, education, occupation, income, Bar, CoffeeHouse, CarryAway,
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Table 2: Configurations used to train decision tree models

Dataset ‘ Depth Limit ‘ Regularizer (1)

Lalonde 2,3,4,5,6 | 0.1, 0.05, 0.02, 0.01
Broward 2,3,4,5,6 | 0.005,0.002,0.001, 0.0005
Coupon 2,3,4,5,6 | 0.005,0.002,0.001, 0.0005
Diabetes 2,3,4,5,6 | 0.005,0.002,0.001, 0.0005
COMPAS 2,3,4,5,6 | 0.005,0.002, 0.001, 0.0005, 0.0002
FICO 2,3,4,5,6 | 0.01,0.005, 0.002, 0.001, 0.0005
Netherlands | 2,3,4,5,6 | 0.01,0.005, 0.002, 0.001

RestaurantLessThan20, Restaurant20To50, toCoupon_GEQ15min, toCoupon_GEQ25min, direction_same and the label Y, and removed obser-
vations with missing values. We then used one-hot encoding to transform these categorical features into binary features. We use inverse
propensity scores as the weights to balance the number of samples for each value of feature “destination””

FICO: In the FICO dataset [17], we predict whether an individual will default on a loan. We use this dataset without preprocessing, and use
propensity scores as the weights to balance the number of samples for each value of feature “ExternalRiskEstimate.”

Netherlands: The prediction task in this dataset is to see whether defendants have any type of charge within four years [41]. We translated
the feature names from Dutch to English and then selected features sex, country of birth, log # of previous penal cases, age in years, age at first
penal case, offence type, 11-20 previous case, >20 previous case, and age squared and the label recidivism_in_4y. We use inverse propensity
scores as the weights to balance the number of samples for each value of feature "sex".

Diabetes: The Diabetes dataset [39] includes the data of 10 years of clinical care at 130 US hospitals, that has over 50 features representing
patient and hospital outcomes. In this dataset we predict whether an individual will readmit to the hospital or not. We selected features
race, gender, age, medical-specialty, diagl, diag2, diag3, max-glu-serum, AlCresult, metformin, repaglinide, nateglinide, chlorpropamide,
glimepiride, acetohexamide, glipizide, glyburide, tolbutamide, pioglitazone, rosiglitazone, acarbose, miglitol, troglitazone, tolazamide, examide,
citoglipton, insulin, glyburide-metformin, glipizide-metformin, glimepiride-pioglitazone, metformin-rosiglitazone, metformin-pioglitazone, change,
diabetesMed. We use inverse propensity scores as the weights to balance the number of samples for each value of feature "gender".

B.2 Configurations

Table 2 lists the configurations used for each dataset when training decision trees. For GOSDTwG, DL8.5, and CART, we set the depth limit
from 2 to 5. Also, the last column shows the different values of the regularizer, A, for different datasets. Also, we have used different numbers
of samples in our weighted samplinng approach. We vary the percentage of samplig from 100% to 600%.

B.3 Evaluation Platform

All reported times are from a 32-core dual Intel E5-2683 v4 Broadwell processor running at 2.1 Ghz, with approximately 125 GB of available
memory. We ran all tests single-threaded (i.e., we used only one of the 32 cores) on the Cedar cluster of Compute Canada. For the experiment
reported in Figure 1, we also ran on a 2.6GHz 6-core Intel Core i7 processor and 16GB of 2400MHz DDR4 onboard memory.

B.4 Software Packages Used

GOSDT and DL8.5 with Guessing: For guessing technique proposed by McTavish et al. [31], we use their publicly released code
(https://github.com/ubc-systopia/gosdt-guesses) and (https://github.com/ubc-systopia/pydl8.5-lbguess).

DL8.5 For DL8.5 of Aglin et al. [3], we used the implementation in their main repository (https://github.com/aia-uclouvain/pydl8.5).
CART: We run CART using the Python implementation from Sci-Kit Learn.
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Figure 8: Sparsity vs. test accuracy: All methods but CART and GBDT use guessed thresholds. GBDT and DL8.5 use data duplication. DL8.5
frequently times out, so there are fewer markers for it. GOSDTwG achieves the highest training accuracy for every level of sparsity. GOSDTwG
also achieves the highest test accuracy for almost every level of sparsity.
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Figure 9: Training time vs. test accuracy: All methods but CART and GBDT use guessed thresholds. GBDT and DL8.5 use data duplication.
DL8.5 frequently times out, so there are fewer markers for it. While CART is the fastest algorithm, GOSDTwGuses its additional runtime to
produce models with higher accuracy and generalize better.

C MORE EXPERIMENTAL RESULTS
C.1 Sparsity vs. Test Accuracy

In Section 4, we discussed the results for three datasets. Figure 8 shows the results of sparsity vs. test accuracy for all datasets. GOSDTwG
produced excellent test accuracy with a small number of leaves and compared to other decision tree models, achieves higher accuracy for
every level of sparsity.

C.2 Training Time vs. Test Accuracy

In Section 4, we discussed the results of training time and test accuracy of our methods and baselines on three datasets. Figure 9 reports the
results of training time vs. test accuracy on all datasets. While the training times of GOSDTwG and CART are almost the same, GOSDTwG
achieves the highest test accuracy in almost all cases. DL8.5 struggled with the 1-hour termination condition for all datasets except Lalonde;
because DL8.5 did not solve to optimality, it was outperformed by both CART and GOSDTwG.
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Figure 10: Training accuracy vs

. sample size: the accuracy of weighted sampling approach increase with the sample size.
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Figure 11: The tree generated by weighted GOSDTwG (depth limit 2) on the Lalonde dataset.
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Figure 12: The tree generated by weighted GOSDTwG (depth limit 3) on the Lalonde dataset.
C.3 Effect of the Number Samples

Intuitavely, the accuracy of weighted sampling approach increase with the sample size. To show this effect, Figure 10 shows the effect of
sample size on accuracy. Results indicates that increasing the sample size lets us to have a more accurate model.

C.4 Lalonde Case Study

As discussed in Section 4 (Lalonde Case Study), to show the effectiveness of our approach for real-world problems, we conducted a case
study on the Lalonde dataset. Trees produced by GOSDTwG with depth limits of 2, 3, 4, and 5 are found in Figures 11-14.
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Figure 13: The tree generated by weighted GOSDTwG (depth limit 4) on the Lalonde dataset.
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Figure 14: The tree generated by weighted GOSDTwG (depth limit 5) on the Lalonde dataset.
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