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Abstract

Nash-Williams’ Strong Immersion Conjecture states that graphs are well-quasi-
ordered by the strong immersion relation. That is, given infinitely many graphs, one
graph contains another graph as a strong immersion. In this paper we study the
analogous problem for directed graphs. It is known that digraphs are not well-quasi-
ordered by the strong immersion relation, but for all known such infinite antichains,
paths that change direction arbitrarily many times can be found. This paper proves
that the converse statement is true: for every positive integer k, the digraphs that
do not contain a path that changes direction k times are well-quasi-ordered by the
strong immersion relation, even when vertices are labelled by a well-quasi-order. This
result is optimal for classes of digraphs closed under taking subgraphs since paths that
change direction arbitrarily many times with vertex-labels form an infinite antichain
with respect to the strong immersion relation.
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1 Introduction

In this paper, graphs and directed graphs are finite, loopless and allowed to have parallel
edges, unless otherwise specified.

A quasi-ordering is a reflexive and transitive binary relation. A quasi-ordering � on
a set S is a well-quasi-ordering if for every infinite sequence a1, a2, ... over S, there exist
1 ≤ i < j such that ai � aj. We say that Q = (S,�) is a quasi-order (or a well-quasi-order,
respectively) if � is a quasi-ordering (or a well-quasi-ordering, respectively) on S.

The study of well-quasi-ordering on graphs can be traced back to a conjecture of Vázsonyi
proposed in 1940s: Trees are well-quasi-ordered by the topological minor relation. We say
that a graph G contains another graph H as a topological minor if some subgraph of G is iso-
morphic to a subdivision of H. This conjecture was proved by Kruskal [6] and independently
by Tarkowski [17]. Another conjecture proposed by Vázsonyi states that subcubic graphs are
well-quasi-ordered by the topological minor relation. This conjecture is significantly more
difficult than the previous conjecture on trees. The only known proof of this conjecture is
via the celebrated Graph Minor Theorem of Robertson and Seymour [15].

A graph G contains another graph H as a minor if H is isomorphic to a graph that
can be obtained from a subgraph of G by repeatedly contracting edges. The Graph Minor
Theorem [15] states that graphs are well-quasi-ordered by the minor relation. It is one of
the deepest theorems in graph theory, and its proof spans over around 20 papers. As for
subcubic graphs, the minor relation is equivalent to the topological minor relation. The
aforementioned conjecture of Vázsonyi on subcubic graphs is then an immediate corollary
of the Graph Minor Theorem.

One strength of well-quasi-ordering is an implication of the existence of a finite charac-
terization of a property that is closed under a well-quasi-ordering. A property is closed under
a quasi-ordering � if an element a satisfies this property implies that every element b with
b � a also satisfies this property. For a property P that is closed under a quasi-ordering
�, we denote the set of �-minimal elements that do not satisfy P by m(P). If � is a well-
quasi-ordering, then m(P) is finite since m(P) is an antichain with respect to �. Note that
one can determine whether a given input element x satisfies P or not by testing whether
y � x for every y ∈ m(P). So P is uniquely determined by m(P). And if |m(P)| is finite,
and if for each fixed y ∈ m(P), testing whether an input element x satisfies y � x or not can
be done in polynomial time, then one can decide whether x satisfies P or not in polynomial
time.

This leads to prominent applications of the Graph Minor Theorem. It implies that every
minor-closed property (such as the embeddability in any fixed surface, linkless embeddability
or knotless embeddability etc.) can be characterized by finitely many graphs. As Robertson
and Seymour [14] also proved that for any fixed graph H, deciding whether an input graph G
contains H as a minor or not can be done in polynomial time, the discussion in the previous
paragraph implies that every minor-closed property can be decided in polynomial time.

Due to the power of well-quasi-ordering and the success of the Graph Minor Theorem,
one might consider whether the Graph Minor Theorem can be generalized. One possible
generalization would be to extend the result to infinite graphs. However, it was disproved by
Thomas [18]. But it remains open whether the Graph Minor Theorem is true for countable
graphs.
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Another possible generalization is to extend the Graph Minor Theorem to relations that
are finer than the minor relation. The topological minor relation is an example, as if a graph
G contains another graph H as a topological minor, then G contains H as a minor. Hence
one might ask whether Vázsonyi’s two conjectures on topological minors can be extended to
all graphs. However, it is not true, and there are many different constructions for infinite
antichains with respect to the topological minor relation. Robertson conjectured a common
generalization of the two Vázsonyi’s conjecture in 1980s. This conjecture was proved by the
first author and Thomas [7]. See [7, 9] for more details.

Though the topological minor relation does not well-quasi-order all graphs, it is still possi-
ble to extend both Vázsonyi’s conjectures to all graphs. Nash-Williams conjectured that the
weak immersion relation [11] and the strong immersion relation [12] are well-quasi-ordering
on graphs. Both of these conjectures imply both Vázsonyi’s conjectures as for trees and
subcubic graphs, the weak and strong immersion relations are equivalent to the topological
minor relation. Nash-Williams’ Weak Immersion Conjecture was proved by Robertson and
Seymour [16] by strengthening the Graph Minor Theorem. The Strong Immersion conjec-
ture remains open1, and progress on it seems rare in the literature. It can be easily shown
that the conjecture is true for graphs of bounded maximum degree by using the result on
weak immersion (see [8]). Andreae [1] proved the conjecture for the class of simple graphs
satisfying that either they do not contain K2,3 as a strong immersion, or all blocks are either
complete graphs, cycles, or balanced complete bipartite graphs.

Another possible extension of the Graph Minor Theorem is to consider directed graphs.
There are different notions of minors for directed graphs. We only consider butterfly minors
here. (See [8] for a survey about well-quasi-ordering on graphs, including results for different
minor containments for digraphs.) Again, the butterfly minor relation does not well-quasi-
order all digraphs. Every construction of infinite antichains involves paths that change
direction arbitrarily many times. Chudnovsky, the second author, Oum, Seymour andWollan
(see [10]) proved that this obstruction is the only obstruction: for every positive integer k,
digraphs whose underlying graphs do not contain a path that change direction k times are
well-quasi-ordered by the butterfly minor relation.

This paper addresses a combination of two directions mentioned above: we consider the
strong immersion relation on digraphs. We need some notions to formally state our result.

Let G and H be digraphs possibly with loops. A function f is a strong immersion
embedding from H to G if the following hold.

• f maps V (H) to V (G) injectively.

• f maps each non-loop edge of H with tail x and head y to a directed path in G from
f(x) to f(y); f maps each loop of H with end x to a directed cycle passing through
f(x).

• If e1, e2 are different edges of H, then f(e1) and f(e2) are edge-disjoint.

• For every edge e of H and every vertex v of H, if v is not an end of e, then f(v) 6∈
V (f(e)).

1Robertson and Seymour believe that they had a proof of the Strong Immersion Conjecture at one time,
but even if it was correct, it was very complicated, and it is unlikely that they will write it down (see [16]).
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We say that G contains H as a strong immersion if there exists a strong immersion embed-
ding from H to G.

The strong immersion relation does not well-quasi-order digraphs. A thread is a digraph
whose underlying graph is a path. A pivot in a thread is a vertex that has either in-degree two
or out-degree two. For an integer k, a k-alternating path is a thread that contains exactly k
pivots. If for each i ∈ N, Gi is the digraph obtained from an i-alternating path by attaching
two leaves to each end of the path, then it is easy to see that {Gi : i ∈ N} forms an infinite
antichain with respect to the strong immersion relation.

In fact, the alternating paths already form an infinite antichain if vertices are allowed to
be labelled. The main result of this paper proves the converse statement: forbidding long
alternating paths is sufficient to ensure well-quasi-ordering even when vertices are labelled.

Theorem 1.1 Let k be a positive integer. Let (Q,≤Q) be a well-quasi-order. For every
i ∈ N, let Di be a digraph with loops allowed and with no k-alternating path, and let φi :
V (Di) → Q be a function. Then there exist 1 ≤ j < j′ and a strong immersion embedding η
from Dj to Dj′ such that for every v ∈ V (Dj), φj(v) ≤Q φj′(η(v)).

Note that Theorem 1.1 is optimal when Q contains two non-equivalent elements. That
is, it is the case when there exist elements x and y of Q with x 6≤Q y. For every i ∈ N, let
Di be an i-alternating path, and let φi be the function that maps the ends of Di to x and
maps all other vertices to y. Clearly, there exist no strong immersion embedding from Di to
Dj preserving the labels on the vertices, for any i 6= j.

We remark that even though Theorem 1.1 is optimal, it is known that some class of
digraphs with arbitrarily long alternating paths are well-quasi-ordered by the strong im-
mersion relation. For example, Chudnovsky and Seymour [3] proved that tournaments are
well-quasi-ordered by the strong immersion relation. Note that the class of digraphs in The-
orem 1.1 is closed under taking subgraphs, but the class of tournaments is not. The result
for tournaments was extended to semicomplete digraphs by Barbero, Paul and Pilipczuk [2].

1.1 Organization of the paper

We shall prove Theorem 1.1 by induction on k. The proof of Theorem 1.1 uses a strength-
ening of an idea in the work of Chudnovsky, the second author, Oum, Seymour and Wollan
(see [10]) for butterfly minors. Roughly speaking, it shows that if D is a digraph with no
k-alternating path, then one can delete at most f(k) vertices to kill all (k − 1)-alternating
paths in D not contained in a “series-parallel digraph with two roots”. This suggests that
we have to prove well-quasi-ordering results on those series-parallel digraphs with two roots
with respect to the strong immersion relation preserving the roots. In general, proving
well-quasi-ordering for strong immersion preserving certain “roots” is required in many cir-
cumstances of this paper. It is significantly more complicated and requires more tricks than
the analogous work for butterfly minors, even when dealing with the case of series-parallel
digraphs.

This paper is organized as follows. In Section 2 we review some well-known results about
well-quasi-ordering that will be used in this paper. In Section 3 we prove the case k = 1
of Theorem 1.1. We introduce the notion of series-parallel triples in Section 4. It is the
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formal form of the “series-parallel digraphs with two roots” mentioned above. In Section 5,
we prove a well-quasi-ordering result for the tree-like digraphs formed by repeatedly gluing
those series-parallel triples. It is a crucial step toward the result for well-quasi-ordering
series-parallel triples preserving roots which will be proved in Section 6. Then in Section
7, we prove the tools that allow us to kill all (k − 1)-alternating paths not hidden in a
series-parallel triple mentioned above, and study the relationships between all series-parallel
triples. Finally, we prove Theorem 1.1 in Section 8.

1.2 Notation

For a graph (or digraph, respectively) G and a subset S of V (G), we denote G[S] by the
graph (or digraph, respectively) induced on S; if T ⊆ V (G), then G − T is defined to be
G[V (G)− T ]; for a vertex v of G, G− v is defined to be G− {v}.

Let f be a function with domain X. If S is a subset of X, then f(S) is defined to be the
set {f(s) : s ∈ S}. If S is a sequence (s1, s2, ..., sk) over X, then f(S) is defined to be the
sequence (f(s1), f(s2), ..., f(sk)).

For every positive integer k, we define [k] to be the set {1, 2, ..., k}.

2 Preliminary about well-quasi-ordering

In this section, we review some known useful tools about well-quasi-ordering.
Let (Q1,�1) and (Q2,�2) be well-quasi-orders. We say that (Q,�) is the well-quasi-

order obtained by taking the disjoint union of (Q1,�1) and (Q2,�2) if Q is a disjoint union
of a copy of Q1 and a copy of Q2 such that for x, y ∈ Q, x � y if and only if either
x, y ∈ Q1 with x �1 y, or x, y ∈ Q2 with x �2 y. We say that (Q′,�′) is the well-quasi-order
obtained by the Cartesian product of (Q1,�1) and (Q2,�2) if Q′ = Q1 × Q2 such that for
(x1, y1), (x2, y2) ∈ Q′, (x1, y1) �

′ (x2, y2) if and only if x1 �1 x2 and y1 �2 y2.
Let (Q,≤Q) be a well-quasi-order. We say that the (Q′,�′) is the well-quasi-order ob-

tained from (Q,≤Q) by Higman’s Lemma if Q′ is the set of finite sequences over Q such
that for elements (a1, a2, ..., am) and (b1, b2, ..., bn) of Q′, (a1, a2, ..., am) �′ (b1, b2, ..., bn) if
and only if there exists a strictly increasing function ι : [m] → [n] such that ai ≤Q bι(i) for
every i ∈ [m]. Note that (Q′,�′) is indeed a well-quasi-order, as shown by a famous result
of Higman [4].

Another known result that we will use in this paper is a strengthening of Kruskal’s Tree
Theorem proved by Kriz [5]. We need the following definition to formally state the theorem.

A homeomorphic embedding from a digraphH possibly with loops to a digraph G possibly
with loops is a function η satisfying the following.

• η maps V (H) to V (G) injectively.

• η maps each loop of H with end v to a directed cycle of G passing through η(v); η
maps each non-loop edge H with tail x and head y to a directed path in G from η(x)
to η(y).

• If e1, e2 are distinct edges, then η(e1) ∩ η(e2) = η(e1 ∩ e2).
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• If a vertex v of H is not incident with an edge e of H, then η(v) 6∈ η(e).

A rooted tree is a directed graph whose underlying graph is a tree such that all but exactly
one vertex have in-degree one. We denote the first infinite ordinal number by ω. We will
only need the following special case of Kriz’s theorem.

Theorem 2.1 ([5]) Let (Q,�) be a well-quasi-order. For each positive integer i, let Ti be
a rooted tree, φi : V (Ti) → Q and µi : E(Ti) → N ∪ {0, ω}. Then there exist 1 ≤ i < j such
that there exists a homeomorphic embedding η from Ti to Tj such that the following hold.

1. For every v ∈ V (Ti), φi(v) � φj(η(v)).

2. For every e ∈ E(Ti), if f is an edge in η(e), then µi(e) ≤ µj(f).

3 1-alternating paths

For a digraph D, a source in D is a vertex of in-degree 0, and a sink in D is a vertex of
out-degree 0.

Lemma 3.1 Let D be a digraph whose underlying graph is connected. If D has no 1-
alternating path, then either |V (D)| ≤ 2, or D is obtained by a directed path or a directed
cycle by duplicating edges arbitrarily many times.

Proof. We may assume that D contains at least three vertices, for otherwise we are done.
Let P be a thread in D with maximum length. Since the underlying graph of D is connected
and has at least three vertices, P contains at least three vertices. Denote P by v1v2...vk,
where k = |V (P )|. By symmetry, we may assume that v1 is a source of P .

By the maximality of P , v1 and vk have no neighbor in D not contained in P . Since D
has no 1-alternating path, P is a directed path, and vi has no neighbor in D not contained
in P for every 2 ≤ i ≤ k − 1. Hence P contains all vertices of D.

Let e ∈ E(D) − E(P ) with tail vi and head vj. Since D is loopless, i 6= j. Since D has
no 1-alternating path, either j = i+ 1, or (i, j) = (k, 1). This proves the lemma.

Lemma 3.2 Let (Q,�) be a well-quasi-order. For each i ∈ N, let Di be a directed graph
with no 1-alternating path, and let φi : V (Di) → Q. Then there exist 1 ≤ i < j and a strong
immersion embedding η from Di to Dj such that φi(v) � φj(η(v)) for every v ∈ V (Di).

Proof. By Lemma 3.1, each Di either contains at most two vertices or can be obtained from
a directed path or a directed cycle by duplicating edges arbitrarily many times. It is easy if
there are infinitely many indices i such that Di containing at most two vertices. So we may
assume that every Di contains at least three vertices, and either every Di is obtained from
a directed path by duplicating edges arbitrarily many times, or every Di is obtained from a
directed cycle by duplicating edges arbitrarily many times.

For each i, let Wi be a Hamiltonian directed path of Di. For each i, let xi, yi be the ends
of Wi such that Wi is from xi to yi, and let ℓi be the number of directed edges in Di between
yi and xi. Let (Q1,�1) be the well-quasi-order obtained from (Q,�) and (N ∪ {−1, 0},≤)
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by taking Cartesian product. For each i, let φ′
i : V (Di) → Q1 such that φ′

i(v) = (φi(v),−1)
for every v ∈ V (Di) − {xi, yi}, and φ

′
i(v) = (φi(v), ℓi) for v ∈ {xi, yi}. For each i and each

e ∈ E(Wi), define µi(e) to be the number of edges of D′
i with tail and head equal to e.

Since each Wi is a directed path, it is a rooted tree rooted at xi. By Theorem 2.1,
there exist i, j with 1 ≤ i < j and a homeomorphic embedding η from Wi to Wj such
that φ′

i(v) �1 φ
′
j(η(v)) for every v ∈ V (Di), and µi(e) ≤ µj(f) for every e ∈ E(Wi) and

f ∈ E(η(e)).
Since ℓi ≥ 0 > −1 and φ′

i(xi) �1 φ
′
j(η(xi)), η(xi) ∈ {xj, yj}. Similarly, η(yi) ∈ {xj, yj}.

Since Wi is from xi to yi, and Wj is from xj to yj, we know that η(xi) = xj and η(yi) = yj.
In addition, since φ′

i(xi) �1 φ
′
j(η(xi)) = φ′

j(xj), ℓi ≤ ℓj. So there are ℓj ≥ ℓi directed edges
in Dj from yj to xj. Moreover, for any directed edge e = (xe, ye) in Wi, since µi(e) ≤ µj(f)
for every f ∈ E(η(e)), we know that there are at least µi(e) edge-disjoint directed paths in
Dj from η(xe) to η(ye) internally disjoint from η(V (Di)), so there exists an injection ηe from
the set of edges of Di from xe to ye to the set of those paths in Dj.

Define η∗ to be a function with domain V (Di) ∪ E(Di) such that

• η∗(v) = η(v) for every v ∈ V (Di) = V (Wi),

• η∗ maps the edges of Di from yi to xi to edges of Dj from yj = η∗(yi) to xj = η∗(xi)
injectively, and

• for each edge f of Di not from yi to xi, η
∗(f) = ηe(f), where e is the edge of Wi having

the same tail and head as f .

Then η∗ is a strong immersion embedding from Di to Dj such that φi(v) � φj(η
∗(v)) for

every v ∈ V (Di).

4 Series-parallel triples

A separation of a graph (or a directed graph, respectively) G is an ordered pair (A,B)
of edge-disjoint subgraphs (or subdigraphs, respectively) such that A ∪ B = G. The order
of (A,B) is |V (A ∩ B)|.

A series-parallel triple (D, s, t) is a triple where D is a directed graph whose underlying
graph is connected and s, t are distinct vertices of D such that every thread in D from s to t
is a directed path, and there exists no separation (A,B) of D of order at most one such that
s, t ∈ V (A) and V (B)− V (A) 6= ∅. A series-parallel triple (D, s, t) is one-way if either every
thread in D is a directed path from s to t, or every thread in D is a directed path from t to
s.

It was shown in [10, Lemma 5.2] that a one-way series parallel triple can be constructed
by a sequence of certain series operations and parallel operations. So it justifies its name.
The following simple lemma shows that a series-parallel triple can also be constructed by
series and parallel operations even though it is not one-way. It is likely a folklore result, but
we include it in this paper for completeness.

Lemma 4.1 If (D, s, t) is a series-parallel triple, then either
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1. D consists of an edge with ends s and t, or

2. there exist series-parallel triples (D1, s1, t1) and (D2, s2, t2) with |E(D1)| < |E(D)| and
|E(D2)| < |E(D)| such that either

(a) s = s1, t = t2, and D is obtained from the disjoint union of D1 and D2 by
identifying t1 and s2, or

(b) D is obtained from the disjoint union of D1 and D2 by identifying s1 and s2 into
s and identifying t1 and t2 into t.

Proof. We may assume that D contains at least two edges for otherwise we are done. When
|V (D)| = 2, Statement 2(b) holds. So we may assume that D contains at least three vertices.

We first assume that there exists a separation (A,B) of D of order one such that s ∈
V (A) − V (B) and t ∈ V (B) − V (A). Let z be the vertex in V (A ∩ B). Since (D, s, t)
is a series-parallel triple and z 6∈ {s, t}, D − z has exactly two components, where one is
A− z and the other is B − z, for otherwise there exists a separation (A′, B′) of D such that
{s, t} ⊆ V (A′) and B′ contains a component of D − z disjoint from s and t, contradicting
that (D, s, t) is a series-parallel triple. Since every thread in A between s and z can be made
a thread in D between s and t by concatenating a thread between z and t, every thread in
A between s and z is a directed path. And there exists no separation (A′, B′) of A of order
at most one such that {s, z} ⊆ V (A′) and V (B′)−V (A′) 6= ∅, for otherwise (A′ ∪B,B′) is a
separation of D of order at most one such that {s, t} ⊆ V (A′∪B) and V (B′)−V (A′∪B) 6= ∅,
contradicting that (D, s, t) is a series-parallel triple. So (A, s, z) is a series-parallel triple.
Similarly, (B, z, t) is a series-parallel triple. Hence Statement 2(a) holds.

Therefore we may assume that there exists no separation (A,B) of D of order one such
that s ∈ V (A) − V (B) and t ∈ V (B) − V (A). Since |V (D)| ≥ 3, there exist two internally
disjoint threads P1, P2 in D between s and t. Since (D, s, t) is a series-parallel graph, P1, P2

are directed paths in D, and there exists no thread in D between V (P1)−{s, t} and V (P2)−
{s, t}. Hence there exists a separation (A,B) of D such that V (A∩B) = {s, t} and E(P1) ⊆
E(A) and E(P2) ⊆ E(B). Since (D, s, t) is a series-parallel triple, there exists no separation
(A′, B′) of D of order at most one such that {s, t} ⊆ V (A′) and V (B′) − V (A′) 6= ∅, so
(A, s, t) and (B, s, t) are series-parallel triples. So Statement 2(b) holds.

For a series-parallel triple (D, s, t), we say that

• (D, s, t) is series-irreducible if either |E(D)| = 1, or Statement 2(a) in Lemma 4.1 does
not hold, and

• (D, s, t) is parallel-irreducible if either |E(D)| = 1, or Statement 2(b) in Lemma 4.1
does not hold.

5 Series-parallel trees

A march is a sequence with distinct entries. A general rooted digraph is a pair (D, σ),
where D is a digraph and σ is a march over V (D). We call σ the root march of a general
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rooted digraph (D, σ). A rooted digraph is a pair (D, v), where D is a directed graph and
v ∈ V (D), and we call v the root of D.

For simplicity of notations, we do not distinguish the rooted digraph (D, v) and the
general rooted digraph (D, (v)); and we do not distinguish the series-parallel triple (D, s, t)
and the general rooted digraph (D, (s, t)).

A strong immersion embedding from a general rooted digraph (H, σH) to a general rooted
digraph (G, σG) is a strong immersion embedding η from H to G such that η(σH) = σG.
Note that it implies that σH and σG have the same length.

Let (Q,�) be a quasi-order. Let (D, σ) and (D′, σ′) be general rooted digraphs. Let
φ : V (D) → Q and φ′ : V (D′) → Q be functions. We say that ((D′, σ′), φ′) simulates
((D, σ), φ) if there exists a strong immersion embedding η from (D, σ) to (D′, σ′) such that
φ(v) � φ′(η(v)) for every v ∈ V (D).

A set F of general rooted digraphs is well-behaved if for every infinite sequence of general
rooted digraphs (D1, σ1), (D2, σ2), ... ∈ F , every well-quasi-order (Q,≤Q) and functions φi :
V (Di) → Q for each i ≥ 1, there exist 1 ≤ j < j′ such that ((Dj′ , σj′), φj′) simulates
((Dj, σj), φj).

A cut-vertex of a graph G is a vertex v of G such that G−v has more components than G.
A block of a graph G is a maximal subgraph B such that B does not contain any cut-vertex
of B. A block of a directed graph D is a directed subgraph whose underlying graph is a block
of the underlying graph of D.

For a rooted digraph (D, r) in which the underlying graph of D is connected, the block-
structure of (D, r) is a rooted tree T such that the following hold.

• There exists a bipartition {L,C} of V (T ).

• There exists a bijection fC from C to the set that is the union of {r} and the set of
cut-vertices of the underlying graph of D.

• There exists a bijection fL from L to the set of blocks of the underlying graph of D.

• For any v ∈ C and B ∈ L, v is adjacent in T to B if and only if fC(v) ∈ V (fL(B)).

• The vertex of T mapped to r by fC is the root of T .

For a block B′ of the underlying graph of D, a child block of B′ is a block B′′ of the
underlying graph of D such that V (B′) ∩ V (B′′) 6= ∅ and the vertex of T mapped to B′′ by
fL is a descendant of the vertex of T mapped to B′ by fL. If B

′′ is a child block of B′, then
we say that B′ is the parent block of B′′.

Let F be a set of rooted digraphs. A rooted digraph (D, r) is a F-series-parallel tree if
the underlying graph of D is connected, and for every block B of D, the following hold.

• If B is a block of D containing r, then (B, r) ∈ F .

• If B is a block of D not containing r, then (B, v) ∈ F , where v is the cut-vertex of the
underlying graph of D contained in B and the parent block of B.

• For every cut-vertex v of the underlying graph of D, every thread in D from r to v is
a directed path from r to v.

9
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c
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d
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Figure 1: An F -series-parallel tree. Bi is a block for each i ∈ [10], and r, a, b, c, d are
cut-vertices. B1, B3, B6, B9 are middle blocks.

• If r ∈ V (B), then B contains at most one cut-vertex of the underlying graph of D that
is not r; if r 6∈ V (B), then B contains at most one cut-vertex of the underlying graph
of D that is not contained in the parent block of B.

Note that if (D, r) is a F -series-parallel tree, then the vertices of the block-structure of (D, r)
corresponding to blocks are of degree at most two. Observe that for each block B of D in
which B has a child block, (B, x, y) is a series-parallel triple, where x is either r or the
cut-vertex contained in B and the parent block of B, and y is the cut-vertex contained in B
and a child block of B. In this case, we call (B, x, y) a middle block of (D, r). See Figure 1
for an example.

A splitter of a series-parallel triple (B, x, y) is an ordered partition [X, Y ] of V (B) such
that x ∈ X, y ∈ Y and the number of edges with one end in X and one end in Y equals
the maximum number of edge-disjoint threads in B between x and y. We define BX to
be the digraph obtained from B by identifying Y into a single vertex yY and deleting all
resulting loops, so (BX , x, yY ) is a series-parallel triple. Similarly, we define BY to be the
digraph obtained from B by identifying X into a single vertex xX and deleting all resulting
loops, so (BY , xX , y) is a series-parallel triple. Each of (BX , x, yY ) and (BY , xX , y) is called
a truncation of (B, x, y) (with respect to [X, Y ]). Note that if (B, x, y) is a one-way series-
parallel triple, then every truncation of (B, x, y) is a one-way series-parallel triple. If there
exists a function φ with domain V (B), then let φX be the function with domain V (BX)
such that φX(yY ) = φ(y) and φX(v) = φ(v) for every v ∈ V (Bx) − {yY }, and let φY be
the function with domain V (BY ) such that φY (xX) = φ(x) and φY (v) = φ(v) for every
v ∈ V (Bx)− {xX}.

Let F be a family of rooted digraphs. Let (D, r) be a F -series-parallel tree, and let φ be
a function with domain V (D). For each middle block (B, x, y) of (D, r), we choose a splitter
[XB, YB] of (B, x, y). Let S be the set of [XB, YB] over all middle blocks (B, x, y) of (D, r).
The S-portrait of ((D, r), φ) is a pair (T, ψ) such that the following hold.

• T is a tree, and ψ is a function with domain V (T ) ∪ E(T ).

• T is obtained from the block-structure of (D, r) by subdividing each edge that is not
incident with an non-root leaf once.

10



• ψ(r) = (0, φ(r)).

• ψ maps each node t of T corresponding to a cut-vertex of the underlying graph of D
to (1, φ(t)).

• ψ maps each node t of T corresponding to a middle block (B, x, y) of (D, r) to
(2, ((B, x, y), φ|V (B))).

• ψ maps each node t of T that is obtained by subdividing an edge whose head corre-
sponds to a middle block (B, x, y) with splitter (XB, YB) ∈ S to (3, ((BXB

, x, yYB
), φ|XB

)).

• ψ maps each node t of T that is obtained by subdividing an edge whose tail corresponds
to a middle block (B, x, y) with splitter (XB, YB) ∈ S to (4, ((BYB

, xXB
, y), φ|YB

)).

• ψ maps each node t of T that corresponds to a block B of D with no child block to
(5, ((B, x), φ|V (B))), where either x = r or x is the cut-vertex contained in B and the
parent block of B.

• ψ maps each edge of T incident with a node corresponding to a cut-vertex or r to ω.

• ψ maps each edge of T incident with a node corresponding to a middle block (B, x, y)
to the number of edges with one end in XB and one end in YB.

See Figure 2 for an example.

Lemma 5.1 Let F be a well-behaved family of rooted digraphs. Let F ′ be the set of one-
way series-parallel triples (D, s, t) such that (D, s) ∈ F . Let F ′′ be the set consisting of all
series-parallel triples that are truncations of members of F ′. If F ′ and F ′′ are well-behaved,
then the set of F-series-parallel trees is well-behaved.

Proof. Let (Q,≤Q) be a well-quasi-order. For i ≥ 1, let (Di, ri) be a F -series-parallel tree,
and let φi : V (Di) → Q. For each i ≥ 1 and middle block (B, x, y) of (Di, ri), let [XB, YB]
be a splitter of (B, x, y). For each i ≥ 1, let Si = {[XB, YB] : (B, x, y) is a middle block of
(Di, ri)}, and let (Ti, ψi) be the Si-portrait of ((Di, ri), φi).

Let Q1 be the set consisting of the pairs ((D, s, t), φ) of a series-parallel triple and a
function such that there exists i such that either (D, s, t) is a middle block of (Di, ri) and
φ = φi|V (D), or (D, s, t) is a truncation of a middle block (B, x, y) of (Di, ri) with respect
to [XB, YB] and φ : V (D) → Q is the function obtained from φi defined in the truncation.
So the simulation relation, denoted by �1, is a quasi-order defined on Q1. Note that for
every ((D, s, t), φ) ∈ Q1, (D, s, t) ∈ F ′ ∪ F ′′. Since F ′ and F ′′ are well-behaved, (Q1,�1)
is a well-quasi-order. Let (Q2,�2) be the well-quasi-order obtained by the disjoint union of
(Q,≤Q) and (Q1,�1).

Let Q3 be the set consisting of the pairs ((D, r), φ) such that there exists i ∈ N such
that D is a block of Di with no child block, r is ri (if ri ∈ V (D)) or the cut-vertex of
the underlying graph of Di contained in D (if ri 6∈ V (D)), and φ = φi|V (B). Let �3 be
the simulation relation defined on Q3. Since F is well-behaved, (Q3,�3) is a well-quasi-
order. Let (Q4,�4) be the well-quasi-order obtained from the disjoint union of (Q2,�2) and
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(0, φ(r))
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(1, φ(d))
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),φ|XB1

)

(2, ((B1, r, a), φ|B1
))

(4, ((B1YB1
, rYB1

, a), φ|YB1
))

ω

3

3

ω

(3, ((B3XB3
, r, aYB1

),φ|XB3

)

(2, ((B3, r, a), φ|B3
))
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, rYB3
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))

ω

1

1

ω
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, r, aYB6

),φ|XB6

)

(2, ((B6, r, a), φ|B6
))
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, rYB6

, a), φ|YB6
))

ω
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2

ω

(3, ((B9XB9
, r, aYB9

),φ|XB9

)

(2, ((B9, r, a), φ|B9
))

(4, ((B9YB9
, rYB9

, a), φ|YB9
))

ω

1

1

ω

(5, ((B2, a), φ|B2
))

ω

(5, ((B4, b), φ|B4
)) (5, ((B5, b), φ|B5

))

ω ω

(5, ((B7, c), φ|B7
)) (5, ((B8, c), φ|B8

))

ω ω

(5, ((B10, d), φ|B10
))

ω

Figure 2: The S-portrait of the F -series-parallel tree in Figure 1, assuming S is given. Solid
circles and rectangles are vertices in the block-structure corresponding to cut-vertices and
blocks, respectively. Empty rectangles are the vertices obtained by subdividing edges.
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(Q3,�3). Define (Q′,�) to be the well-quasi-order obtained by the Cartesian product of
({0, 1, 2, 3, 4, 5},=) and (Q4,�4).

Note that the image of each ψi|V (Ti) is contained in Q′. By Theorem 2.1, there exist
1 ≤ j < j′ and a homeomorphic embedding η from Tj to Tj′ such that ψj(v) � ψj′(η(v)) for
every v ∈ V (Tj), and ψj(e) ≤ ψj′(e

′) for every e ∈ E(Tj) and e
′ ∈ E(η(e)).

Note that by the definition of ψj and ψj′ , for each middle block (B, x, y) of (Dj, rj),
there exists a node t of Tj such that t corresponds to (B, x, y), and η(t) corresponds to
a middle block of (Dj′ , rj′). For simplicity, for each middle block (B, x, y) of (Dj, rj), we
write η(B, x, y) to denote the middle block of (Dj′ , rj′) corresponding to η(t), where t is the
node of Tj corresponding to (B, x, y), and write η(B) to denote the first entry of η(B, x, y).
Similarly, we write η(BXB

, x, yYB
) and η(BYB

, xXB
, y) to denote those series-parallel triples

corresponding to η(t), where t is the node of Tj with ψj(t) = (3, ((BXB
, x, yYB

), φj|XB
)) and

ψj(t) = (4, ((BYB
, xXB

, y), φj|YB
)), respectively, and we write η(BXB

) and η(BYB
) to denote

the middle blocks of (Dj′ , rj′) such that the first entries of η(BXB
, x, yYB

) and η(BYB
, xXB

, y),
respectively, are obtained from η(BXB

) and η(BYB
) by identifying vertices, respectively. And

for each middle block (B, x, y) of (Dj, rj), we denote the corresponding strong immersion
embedding that witness ψj(t) � ψj′(η(t)) as ηB, ηXB

, ηYB
, respectively, where t is the node

of Tj corresponding to B,BXB
, BYB

, respectively.
We say that a middle block (B, x, y) of (Dj, rj) is tight if the three nodes of Tj corre-

sponding to (BXB
, x, yYB

), (B, x, y) and (BYB
, xXB

, y) are mapped by η to a path in Tj′ on
three vertices; otherwise we say (B, x, y) is loose. Note that by the definition of ψj and ψj′ ,
for every middle block (B, x, y) of (Dj, rj), (B, x, y) is tight if and only if η(BXB

) = η(BYB
).

Claim 1: Let (B, x, y) be a loose middle block of (Dj, rj). Let s be the maximum number of
edge-disjoint threads in B from x to y. Let SX be an s-element subset of the set of edges of
η(BXB

) between Xη(BXB
) and Yη(BXB

). Let SY be an s-element subset of the set of edges of
η(BYB

) between Xη(BYB
) and Yη(BYB

). Let f be a bijection between SX and SY . Then there
exist s edge-disjoint directed paths in Dj′ between Xη(BXB

) and Yη(BYB
) internally disjoint

from Xη(BXB
) ∪ Yη(BYB

) such that each path contains e and f(e) for some e ∈ SX .

Proof of Claim 1: Let W1,W2, ...,Wk (for some integer k ≥ 2) be the blocks of Dj′ such
that W1 = η(BXB

), Wk = η(BYB
) and every thread in Dj′ from V (W1) to V (Wk) intersects

Wi for every 1 ≤ i ≤ k. For each i ∈ [k], let xi and yi be the distinct vertices such that each
of them is either equal to rj′ or a cut-vertex of the underlying graph of Dj′ contained in Wi;
and we assume that xi is closer to rj′ than yi. Let u1, u2, ...us be the ends of the edges in SX

contained inXη(BXB
). Let v1, v2, ...vs be the ends of the edges in SY contained in Yη(BYB

). Note
that u1, u2, ..., us are not necessarily distinct, and v1, v2, ..., vs are not necessarily distinct.

Note that the two edges of Tj incident with the node of Tj corresponding to (B, x, y) are
mapped to s by ψj. So every edge of Tj′ incident with a node of Tj′ corresponding to one
of W1,W2, ...,Wk is mapped to a number at least s by ψj′ . Hence there exist s edge-disjoint
directed paths M1,M2, ...,Ms in Dj′ between y1 to xk internally disjoint from y1 and xk.

Since (W1, x1, y1) is a one-way series-parallel triple, and [Xη(BXB
), Yη(BXB

)] is a split-
ter of (W1, x1, y1), there exist edge-disjoint directed paths in W1 from x1 to y1 such that
each path intersects exactly one edge between Xη(BXB

) and Yη(BYB
). So s of them inter-

sects SX . Hence the subpaths U1, U2, ..., Us of those s paths are s edge-disjoint directed
paths in W1[{u1, u2, ..., us} ∪ Yη(BXB

)] between {u1, u2, ..., us} and y1. Similarly, there exist

13



s edge-disjoint directed paths U ′
1, U

′
2, ..., U

′
s in Wk[Xη(BYB

) ∪ {v1, v2, ..., vs}] between xk and
{v1, v2, ..., vs}.

By symmetry, we may denote the elements of SX by e1, e2, ..., es and the elements of SY

by e′1, e
′
2, ..., e

′
s such that for every i ∈ [s], f(ei) = e′i, Ui contains ei and U

′
i contains e

′
i. Hence

U1 ∪M1 ∪ U
′
1, U2 ∪M2 ∪ U

′
2, ..., Us ∪Ms ∪ U

′
s are desired directed paths in Dj′ . �

Claim 2: Let (B, x, y) be a loose middle block of (Dj, rj). Let S = {e1, e2, ..., e|S|} be the
set of edges of B between XB and YB. For each i ∈ [|S|], let ui be the end of ei in XB, and
let vi be the end of ei in YB. Let W1,W2, ...,Wk (for some integer k ≥ 2) be the blocks of
(Dj′ , rj′) such that W1 = η(BXB

), Wk = η(BYB
), and every thread in Dj′ from V (W1) to

V (Wk) intersects Wi for every 1 ≤ i ≤ k. Then there exist |S| edge-disjoint directed paths
Pe1 , Pe2 , ..., Pe|S|

in
⋃k

i=1Wi internally disjoint from the image of ηXB
|XB

and ηYB
|YB

such that
for each i ∈ [|S|], Pei is between ηXB

(ui) and ηYB
(vi) containing ηXB

(ei) ∪ ηYB
(ei).

Proof of Claim 2: Note that every edge in S is an edge of BXB
. So there are |S| edges

of η(BXB
) incident with the third entry of η(BXB

, x, yYB
) contained in

⋃|S|
i=1 ηXB

(ei), and
those edges are between Xη(BXB

) and Yη(BXB
). Let SX be the set consisting of those |S|

edges. Similarly, there exists a set SY consisting of |S| edges of η(BYB
) between Xη(BYB

)

and Yη(BYB
) contained in

⋃|S|
i=1 ηYB

(ei). By Claim 1, there exist edge-disjoint directed paths
Z1, Z2, ..., Z|S| in Dj′ between Xη(BXB

) and Yη(BYB
) internally disjoint from Xη(BXB

) ∪ Yη(BYB
)

such that for every i ∈ [|S|], Zi intersects ηXB
(ei) and ηYB

(ei). For each i ∈ [|S|], define
Pei = ηXB

(ei)[Xη(BXB
)] ∪ Zi ∪ ηYB

(ei)[Yη(BYB
)]. Then Pe1 , Pe2 , ..., Pe|S|

are desired directed
paths. �

For a block B of Dj with no child block, let ηB be the strong immersion embedding from
B to B′ witnessing ψj(t) � ψj′(η(t)), where t is the node of Tj corresponding to B, and B′

corresponds to η(t).
Define η∗ to be a function with domain V (Dj)∪E(Dj) such that the following statements

hold.

• If v is a cut-vertex of Dj or v = rj, then define η∗(v) = η(v).

• If v is a vertex belonging to a block B of Dj with no child block or belonging a tight
middle block (B, x, y) of (Dj, rj), and v is not a cut-vertex of Dj or rj, then define
η∗(v) = ηB(v).

• If v is a vertex belonging to a loose middle block (B, x, y) of (Dj, rj), and v is not a
cut-vertex of Dj or rj, then η

∗(v) = ηXB
(v) when v ∈ XB, and η

∗(v) = ηYB
(v) when

v ∈ YB.

• If e is an edge belonging to a block B of Dj with no child block or belonging to a tight
middle block (B, x, y), then define η∗(e) = ηB(e).

• If e is an edge belonging to a loose middle block (B, x, y) with both ends contained in
XB (and YB, respectively), then η

∗(e) = ηBXB
(e) (and η∗(e) = ηBYB

(e), respectively).

• If e is an edge belonging to a loose middle block (B, x, y) between XB and YB, then
η∗(e) = Pe, where Pe is the directed path mentioned in Claim 2.
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Figure 3: An example about how η maps vertices and edges in a loose middle block B to
vertices and directed paths, respectively. Each zigzag line indicates a directed path with the
obvious direction.
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See Figure 3 for an example.
Clearly, η∗|V (Dj) is injective and for every v ∈ V (Dj), φj(v) ≤Q φj′(η

∗(v)). Since the
edges of Tj and Tj′ mapped to ω by ψj and ψj′ are exactly the edges incident with rj, rj′ or
some nodes of Tj and Tj′ corresponding to cut-vertices of Dj and Dj′ , it is straightforward
to verify that η∗ is a strong immersion embedding from (Dj, rj) to (Dj′ , rj′). This proves the
lemma.

6 One-way series-parallel triples

The goal of this section is to prove Lemma 6.9 which shows that series-parallel triples are
well-quasi-ordered. The strategy is to decompose a given series-parallel triple in a “series
way” or “parallel way” as stated in Lemma 4.1 to reduce the “complexity”, and prove well-
quasi-ordering by induction on the “complexity”. It could be helpful if the readers first read
the related definitions and the statements of the lemmas in this section without going into
the proofs to get a big picture of the entire procedure.

For a set F of one-way series-parallel triples, the parallel-extension of F is a set F ′ of
one-way series-parallel triples such that for every (D, s, t) ∈ F ′, there exist a positive integer
ℓ and members (D1, s1, t1), (D2, s2, t2), ..., (Dℓ, sℓ, tℓ) of F such that D is obtained from the
disjoint union of D1, D2, ..., Dℓ by identifying s1, s2, ..., sℓ into s and identifying t1, t2, ..., tℓ
into t.

Lemma 6.1 Let F be a well-behaved set of one-way series-parallel triples. Let F ′ be the
parallel-extension of F . Then F ′ is well-behaved.

Proof. Let (Q,�) be a well-quasi-order. For each i ∈ N, let (Di, si, ti) be a member of
F ′, and let φi : V (Di) → Q. For each i ∈ N, since (Di, si, ti) ∈ F ′, there exist ℓi ∈ N and
members (Di,1, si,1, ti,1), (Di,2, si,2, ti,2), ..., (Di,ℓi , sℓi , tℓi) of F such that Di is obtained from
the disjoint union of Di,1, Di,2, ..., Di,ℓi by identifying si,1, si,2, ..., si,ℓi into si and identifying
ti,1, ti,2, ..., ti,ℓi into ti.

For each i ∈ N, let ai be the sequence ((Di,1, si,1, ti,1), φi|V (Di,1)), ((Di,2, si,2, ti,2), φi|V (Di,2)),
..., ((Di,ℓi , si,ℓi , ti,ℓi), φi|V (Di,ℓi

)). Since F is well-behaved, by Higman’s Lemma, there ex-
ist 1 ≤ j < j′ and a strictly increasing function f : [ℓj] → [ℓj′ ] such that for every
i ∈ [ℓj], ((Dj′,f(i), sj′,f(i), tj′,f(i)), φj′ |V (Dj′,f(i))

) simulates ((Dj,i, sj,i, tj,i), φj|V (Dj,i)). Hence

((Dj′ , sj′ , tj′), φj′) simulates ((Dj, sj, tj), φj). Therefore, F
′ is well-behaved.

For a set F of one-way series-parallel triples, the series-extension of F is a set F ′ of
one-way series-parallel triples such that for every (D, s, t) ∈ F ′, there exist a positive integer
ℓ and members (D1, s1, t1), (D2, s2, t2), ..., (Dℓ, sℓ, tℓ) of F such that D is obtained from the
disjoint union of D1, D2, ..., Dℓ by for each i ∈ [ℓ− 1], identifying ti and si+1.

Lemma 6.2 Let F be a well-behaved set of one-way series-parallel triples. Let F1 be the
series-extension of F . Let F2 be the set consisting of all series-parallel triples that are
truncations of members of F . If F2 is well-behaved, then F1 is well-behaved.
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Proof. Let (Q,�) be a well-quasi-order. For each i ∈ N, let (Di, si, ti) be a member of
F1, and let φi : V (Di) → Q. For each i ∈ N, since (Di, si, ti) ∈ F1, there exist ℓi ∈ N and
members (Di,1, si,1, ti,1), (Di,2, si,2, ti,2), ..., (Di,ℓi , sℓi , tℓi) of F such that Di is obtained from
the disjoint union of Di,1, Di,2, ..., Di,ℓi by for each j ∈ [ℓi − 1], identifying tj and sj+1. To
prove this lemma, it suffices to prove that there exist 1 ≤ j < j′ such that ((Dj′ , sj′ , tj′), φj′)
simulates ((Dj, sj, tj), φj).

Since each (Di, si, ti) is one-way by the definition of a series-extension, by symmetry and
possibly removing some members in the sequence, we may assume that for each i ∈ N, every
thread in Di between si and ti is a directed path in Di from si to ti. Let F ′ be the set
consisting of the rooted digraphs (D, s) such that (D, s, t) ∈ F for some t ∈ V (D). Note
that for each i ∈ N, (Di, si) is a F ′-series-parallel tree.

Since F is a well-behaved set of one-way series-parallel triples, F ′ is a well-behaved set
of rooted digraphs. Since F , F ′ and F2 are well-behaved, the set of F ′-series parallel trees
is well-behaved by Lemma 5.1.

Let (Q′,�′) be the well-quasi-order obtained by the Cartesian product of (Q,�) and
([2],=). For each i ∈ N, let φ′

i : V (Q′) → V (Di) such that φ′
i(ti) = (φi(ti), 2), and φ

′
i(v) =

(φi(v), 1) for every v ∈ V (Di)−{ti}. Since the set of F
′-series parallel trees is well-behaved,

there exist 1 ≤ j < j′ such that there exists a strong immersion embedding η from (Dj, sj)
to (Dj′ , sj′) such that φ′

j(v) �
′ φ′

j′(η(v)) for every v ∈ V (Dj).
By the definition of φ′

j and φ
′
j′ , η(tj) = tj′ . So ((Dj′ , sj′ , tj′), φj′) simulates ((Dj, sj, tj), φj).

This proves the lemma.

Define A0 to be the set of one-way series-parallel triples (D, s, t) such that D consists of
an edge. Define A0,0 = A0. For any nonnegative integers k and i, we define the following.

• Define Ak,2i+1 to be the parallel-extension of Ak,2i.

• Define Ak,2i+2 to be the series-extension of Ak,2i+1.

• Define Ak+1 to be the set of one-way series-parallel triples (D, s, t) such that there
exists no (k + 1)-alternating path in D with one end s or one end t.

• Define Ak+1,0 to be the set of one-way series-parallel triples (D, s, t) such that either

– every (k + 1)-alternating path in D with one end s intersects t, and there exists
no (k + 1)-alternating path in D with one end t, or

– every (k + 1)-alternating path in D with one end t intersects s, and there exists
no (k + 1)-alternating path in D with one end s.

Lemma 6.3 For every nonnegative integer k, Ak+1 ⊆ Ak,4.

Proof. By Lemma 3.1, A1 ⊆ A0,2 ⊆ A0,4. So we may assume k ≥ 1.

Claim 1: Every series-irreducible one-way series-parallel triple in Ak+1 belongs to Ak,3.

Proof of Claim 1: Suppose to the contrary that there exists a series-irreducible one-way
series-parallel triple (D, s, t) in Ak+1 − Ak,3. If |E(D)| = 1, then (D, s, t) ∈ Ak,0 ⊆ Ak,3,
a contradiction. By Lemma 4.1, (D, s, t) is not parallel-irreducible. So there exist ℓ ∈ N
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with ℓ ≥ 2 and parallel-irreducible one-way series-parallel triples (D1, s1, t1), ..., (Dℓ, sℓ, tℓ)
such that D is obtained from a disjoint union of D1, ...Dℓ by identifying s1, ..., sℓ into s and
identifying t1, ..., tℓ into t. Since (D, s, t) 6∈ Ak,3, there exists i ∈ [ℓ] such that (Di, si, ti) 6∈
Ak,2. By symmetry, we may assume that (D1, s1, t1) 6∈ Ak,2. In particular, |E(D1)| ≥ 2.
Since (D1, s1, t1) is parallel-irreducible, by Lemma 4.1, there exist ℓ1 ∈ N with ℓ1 ≥ 2 and
series-irreducible one-way series-parallel triples (D1,1, s1,1, t1,1), ..., (D1,ℓ1 , s1,ℓ1 , t1,ℓ1) such that
D is obtained from a disjoint union of D1,1, ...D1,ℓ1 by for each j ∈ [ℓ1 − 1], identifying t1,j
with s1,j+1. Since (D1, s1, t1) 6∈ Ak,2, there exists j ∈ [ℓ1] such that (D1,j, s1,j, t1,j) 6∈ Ak,1.
Since ℓ1 ≥ 2, by possibly switching s and t, switching sj and tj, and replacing j by ℓ1+1− j,
we may assume that s1,j 6= s = s1.

If there exists a k-alternating path P in D1,j with one end s1,j disjoint from t1,j, then by
concatenating P with a thread in D2 from t2 = t 6∈ V (P ) to s2 = s and a thread in D1 from
s to s1,j, we obtain a (k + 1)-alternating path in D with one end t, so (D, s, t) 6∈ Ak+1, a
contradiction.

So every k-alternating path P in D1,j with one end s1,j intersects t1,j. If there exists
a k-alternating path P in D1,j with one end t1,j, then by concatenating P with a thread
in D2 from s2 = s 6∈ V (D1,j) to t2 = t and a thread in D1 from t to t1,j, we obtain a
(k + 1)-alternating path in D with one end s, so (D, s, t) 6∈ Ak+1, a contradiction. So
no k-alternating path P in D1,j has one end t1,j. Hence (D1,j, s1,j, t1,j) ∈ Ak,0 ⊆ Ak,1, a
contradiction. �

Now we prove that Ak+1 ⊆ Ak,4.
Suppose to the contrary that there exists a series-parallel triple (D′, s′, t′) ∈ Ak+1−Ak,4.

Since Ak,3 ⊆ Ak,4, (D
′, s′, t′) is not series-irreducible by Claim 1. By Lemma 4.1, there exist

ℓ′ ∈ N with ℓ′ ≥ 2 and series-irreducible one-way series-parallel triples (D′
1, s

′
1, t

′
1), ..., (D

′
ℓ′ , s

′
ℓ′ , t

′
ℓ′)

such that D′ is obtained from the disjoint union of D′
1, ..., D

′
ℓ′ by for each i ∈ [ℓ′ − 1] identi-

fying t′i with s
′
i+1. Since (D

′, s′, t′) 6∈ Ak,4, there exists i
∗ ∈ [ℓ′] such that (D′

i∗ , s
′
i∗ , t

′
i∗) 6∈ Ak,3.

Since (D′
i∗ , s

′
i∗ , t

′
i∗) is series-irreducible, it is not in Ak+1 by Claim 1. So by symmetry, we

may assume that there exists a (k + 1)-alternating path in D′
i∗ with one end t′i∗ . But then

we can extend it to a (k + 1)-alternating path in D′ with one end t′, contradicting that
(D′, s′, t′) ∈ Ak+1. This proves the lemma.

Lemma 6.4 Let k be a positive integer. Let (D, s, t) be a one-way series-parallel triple. Let
[X, Y ] be a splitter of (D, s, t).

1. If (D, s, t) ∈ Ak, then every truncation of (D, s, t) with respect to [X, Y ] belongs to Ak.

2. If (D, s, t) ∈ Ak,0, then every truncation of (D, s, t) with respect to [X, Y ] belongs to
Ak,0.

Proof. Let (DX , s, tY ) be the series-parallel triple such that DX is obtained from D by
identifying all vertices in Y into a vertex tY and deleting all resulting loops. By symmetry,
it suffices to prove that if (D, s, t) ∈ Ak then (DX , s, tY ) ∈ Ak, and if (D, s, t) ∈ Ak,0, then
(DX , s, tY ) ∈ Ak,0.

Let w be the number of edges of D between X and Y . Since [X, Y ] is a splitter, there
exist w edge-disjoint threads in D from s to t such that every edge between X and Y
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belongs to exactly one of those threads. For each edge e between X and Y , we denote the
aforementioned thread containing e by Pe. Since (D, s, t) is one-way, Pe is a directed path
for each e.

Let P be a k-alternating path in DX with one end s or one end tY . So P contains at most
two edges incident with tY . Note that every edge incident with tY is an edge of D between
X and Y . If P contains no edge incident with tY or contains two edges incident with tY
that has a common end in Y , then P is a k-alternating in D with one end s. If P contains
exactly one edge incident with tY , then one can concatenate P with a thread in Y to obtain
a k-alternating path in D with one end t. If P contains exactly two edges e1, e2 incident
with tY , and the ends of these two edges in Y are distinct, then P ∪ Pe1 ∪ Pe2 contains a
k-alternating path in D with one end s, since tY is not an end of P .

Hence it is straightforward to verify that if (D, s, t) ∈ Ak, then (DX , s, tY ) ∈ Ak; and if
(D, s, t) ∈ Ak,0, then (DX , s, tY ) ∈ Ak,0.

Lemma 6.5 Let k be a nonnegative integer. If Ak is well-behaved, then Ak,0 is well-behaved.

Proof. When k = 0, Ak,0 = Ak. So we may assume k ≥ 1.
Let (Q,�) be a well-quasi-order. For each i ∈ N, let (Di, si, ti) be a member of Ak,0, and

let φi : V (Di) → Q. To prove this lemma, it suffices to prove that there exist 1 ≤ j < j′

such that ((Dj′ , sj′ , tj′), φj′) simulates ((Dj, sj, tj), φj).
By symmetry and possibly removing some (Di, si, ti), we may assume that for each i ∈ N,

every thread inDi is a directed path from si to ti, every k-alternating path inDi with one end
si intersects ti, and there exists no k-alternating path inDi with one end ti. Let F = {(D, s) :
there exists t ∈ V (D)− {s} such that (D, s, t) ∈ Ak}.

Claim 1: For each i ∈ N, (Di − ti, si) is a F -series-parallel tree.

Proof of Claim 1: Let i be a fixed positive integer. Since (Di, si, ti) is a series-parallel triple,
there exists no separation (A1, A2) of Di of order at most one such that {si, ti} ⊆ V (A1) and
V (A2) − V (A1) 6= ∅. So for every block B of Di − ti that has no child block, ti is adjacent
in Di to a vertex in V (B) − {v}, where v = si if si ∈ V (B), and v is the vertex contained
in B and its parent block if si 6∈ V (B). Hence no block B of Di − ti has two child blocks
intersecting B at different vertices, for otherwise there exists a thread in Di from si to ti that
is not a directed path, a contradiction. Similarly, for every cut-vertex v of the underlying
graph of Di − ti, every thread in Di − ti from si to v is a directed path from si to v. Hence
(Di− ti, si) is a F0-series-parallel tree for some set F0 of one-way series-parallel triples. Since
every k-alternating path in Di with one end si intersects ti, and there exists no k-alternating
path in Di with one end ti, we know F0 ⊆ F . �

Let (Q′,�′) be the well-quasi-order obtained by the Cartesian product of (Q,�), ([2],=),
(N,≤) and (Q,�). For each i ∈ N, let φ′

i : V (Di − ti) → Q′ such that for every v ∈
V (Di− ti), if v is not adjacent in Di to ti, then φ

′
i(v) = (φi(v), 1, 1, φi(ti)), otherwise φ

′
i(v) =

(φi(v), 2, dv, φi(ti)), where dv is the number of edges of Di between v and ti.
Let F1 be the set consisting of all series-parallel triples that are truncations of members

of Ak. By Lemma 6.4, F1 ⊆ Ak. Since Ak is well-behaved, F and F1 are well-behaved. By
Lemma 5.1, there exist 1 ≤ j < j′ and a strong immersion embedding η from (Dj − tj, sj)
to (Dj′ − tj′ , sj′) such that for every v ∈ V (Dj − tj), φ

′
j(v) �

′ φ′
j′(η(v)). By the definition of
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φ′
j and φ

′
j′ , for every neighbor u of tj in Dj, η(u) is a neighbor of tj′ in Dj′ , and the number

of edges of Dj′ between η(u) and tj′ is at least the number of edges of Dj between u and
tj. Since tj and tj′ are sinks, one can extend η to be a strong immersion embedding η∗ from
(Dj, sj, tj) to (Dj′ , sj′ , tj′) such that η∗(sj) = sj′ , η

∗(tj) = tj′ , and for every v ∈ V (Dj),
φj(v) � φj′(η(v)). This proves the lemma.

Lemma 6.6 Let k be a positive integer. Let a be a nonnegative integer. Let F be the set of
series-parallel triples that are truncations of members of Ak,a. Then F ⊆ Ak,a.

Proof. Let (D, s, t) ∈ Ak,a. Let [X, Y ] be a splitter of (D, s, t). To prove this lemma, it
suffices to show that every truncation of (D, s, t) respect to [X, Y ] belongs to Ak,a.

Let (DX , s, tY ) be the series-parallel triple such thatDX is obtained fromD by identifying
Y into the vertex tY and deleting resulting loops. By symmetry, it suffices to prove that
(DX , s, tY ) ∈ Ak,a. We shall prove it by induction on a. The case a = 0 follows from
Statement 2 of Lemma 6.4. So we may assume that a ≥ 1, and this lemma holds when a is
smaller.

We first assume that a is odd. So there exist ℓ ∈ N and (D1, s1, t1), ..., (Dℓ, sℓ, tℓ) ∈ Ak,a−1

such that D is obtained from the disjoint union of D1, ..., Dℓ by identifying s1, s2, ..., sℓ into
s and identifying t1, t2, ..., tℓ into t. For each i ∈ [ℓ], let Xi = X ∩V (Di) and Yi = Y ∩V (Di),
and let (Di,X , si, ti,Y ) be the series-parallel triple such that Di,X is obtained from Di by
identifying Yi into a vertex ti,Y and deleting resulting loops. Note that for each i ∈ [ℓ],
[Xi, Yi] is a splitter of (Di, si, ti), so (Di,X , si, ti,Y ) ∈ Ak,a−1 by the induction hypothesis.
And DX is obtained from a disjoint union of D1,X , ..., Dℓ,X by identifying s1, ..., sℓ into s and
identifying t1,Y , ..., tℓ,Y into tY . So (DX , s, tY ) ∈ Ak,a.

Hence we may assume that a is even. So there exist ℓ′ ∈ N and (D′
1, s

′
1, t

′
1), ..., (D

′
ℓ′ , s

′
ℓ′ , t

′
ℓ′) ∈

Ak,a−1 such that D is obtained from the disjoint union of D′
1, ..., D

′
ℓ′ by for each i ∈ [ℓ′ − 1],

identifying t′i and s
′
i+1. Since [X, Y ] is a splitter, there exists ℓ∗ ∈ [ℓ′] such that all edges of D

between X and Y are edges of Dℓ∗ . Let X
′ = X ∩ V (D′

ℓ∗) and Y
′ = Y ∩ V (D′

ℓ∗). Note that
[X ′, Y ′] is a splitter of (D′

ℓ∗ , s
′
ℓ∗ , t

′
ℓ∗). Let (D′

ℓ∗,X , s
′
ℓ∗ , t

′
ℓ∗,Y ) be the series-parallel triple such

that D′
ℓ∗,X is obtained from D′

ℓ∗ by identifying Y ′ into a vertex t′ℓ∗,Y and deleting resulting
loops. By the induction hypothesis, (D′

ℓ∗,X , s
′
ℓ∗ , t

′
ℓ∗,Y ) ∈ Ak,a−1. Note that DX is obtained

from a disjoint union of D′
1, ..., D

′
ℓ∗−1, D

′
ℓ∗,X by for each i ∈ [ℓ∗ − 1], identifying t′i with s

′
i+1.

So (DX , s, t
′
Y ) ∈ Ak,a.

Lemma 6.7 For any nonnegative integers k and a, if Ak,0 is well-behaved, then Ak,a is
well-behaved.

Proof. We shall prove this lemma by induction on a. When a = 0, Ak,0 is well-behaved. So
we may assume that a ≥ 1, and Ak,a−1 is well-behaved. If a is odd, then Ak,a is well-behaved
by Lemma 6.1. If a is even, then by Lemmas 6.6 and 6.2, Ak,a is well-behaved.

Lemma 6.8 For every nonnegative integer k, Ak is well-behaved.

Proof. We shall prove this lemma by induction on k. When k = 0, Ak is clearly well-
behaved. So we may assume that k ≥ 1, and Ak−1 is well-simulated. By Lemma 6.5, Ak−1,0

is well-behaved. By Lemma 6.7, Ak−1,4 is well-behaved. By Lemma 6.3, Ak ⊆ Ak−1,4, so Ak

is well-behaved.
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Lemma 6.9 Let (Q,�) be a well-quasi-order. Let k be a positive integer. For each i ∈ N,
let (Di, si, ti) be a one-way series-parallel triple such that Di does not contain a k-alternating
path, and let φi : V (Di) → Q. Then there exist 1 ≤ j < j′ and a strong immersion embedding
η from (Dj, sj, tj) to (Dj′ , sj′ , tj′) such that φj(x) � φj′(η(x)) for every x ∈ V (Dj).

Proof. For each i ∈ N, since Di has no k-alternating path, (Di, si, ti) ∈ Ak. So this lemma
immediately follows from Lemma 6.8.

7 Series-parallel separations

The goal of this section is to prove Lemmas 7.3 and 7.6. Roughly speaking, they show
that if a digraph with no (k + 1)-alternating path is not of a very special form, then we can
find a cross-free collection S of separations and a set Z of vertices of bounded size such that
every k-alternating path either intersects Z or is contained in the series-parallel part of a
separation in S.

We remark that an obvious simplification of the statement mentioned in the previous
paragraph is false. That is, there exists no function f such that every digraph with no
(k + 1)-alternating path can be made a digraph with no k-alternating path by deleting
at most f(k) vertices. Consider the series-parallel triple (D, s, t) obtained by the series-
concatenation of any number of copies of the one-way series-parallel triple whose underlying
graph is K2,3 and the roots are the two vertices of degree two. It is not hard to see that D
has no 3-alternating path. But there is a 2-alternating path in D contained in each oriented
K2,3. As the number of copies ofK2,3 can be arbitrarily large, D can contain arbitrarily many
disjoint 2-alternating paths. Hence 2-alternating paths in D cannot be killed by deleting a
bounded number of vertices.

We need some simple lemmas in order to prove Lemma 7.3.
For positive integers m and n, the m× n-grid is the graph with vertex-set [m]× [n] such

that any vertices (x, y) and (x′, y′) are adjacent if and only if |x− x′|+ |y − y′| = 1.

Lemma 7.1 Let t be a positive integer. Let D be a digraph. If some subgraph of the under-
lying graph of D is isomorphic to a subdivision of the 2 × (2t + 1)-grid, then D contains a
t-alternating path.

Proof. Since some subgraph of the underlying graph of D is isomorphic to a subdivision
of the 2 × (2t + 1)-grid, there exist two disjoint threads R1 and R2 and 2t + 1 disjoint
threads P1, P2, ..., P2t+1 from V (R1) to V (R2) internally disjoint from V (R1) ∪ V (R2) such
that for each i ∈ [2], Ri passes through xi,1, xi,2, ..., xi,2t+1 in the order listed, where V (Ri)∩⋃2t+1

j=1 V (Pj) = {xi,1, xi,2, ..., xi,2t+1}. For each i ∈ [2] and k ∈ [t], let Ri,k be the subthread of
Ri between xi,k and xi,2t+1.

To prove this lemma, it suffices to prove that for each k ∈ [t+1] and v ∈ {x1,2k−1, x2,2k−1},
there exists a (t + 1 − k)-alternating path in D[V (R1,2k−1) ∪ V (R2,2k−1) ∪

⋃2t+1
j=2k−1 Pj] with

one end v. We shall prove it by induction on t+ 1− k.
When t + 1 − k = 0, we have that k = t + 1 and P2t+1 is a 0-alternating path in

D[V (R1,2k−1) ∪ V (R2,2k−1) ∪
⋃2t+1

j=2k−1 Pj] with ends x1,2t+1 and x2,2t+1. So we may assume
that k ∈ [t], and the claim holds when t+ 1− k is smaller.
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By symmetry, we may assume that v = x1,2k−1. By the induction hypothesis, for each
i ∈ [2], there exists a (t− k)-alternating path P ∗

i in D[V (R1,2k+1)∪ V (R2,2k+1)∪
⋃2t+1

j=2k+1 Pj]
with an end xi,2k+1.

Let W1 be subthread of R1 between x1,2k−1 and x1,2k+1. Let W2 be the thread obtained
from P2k−1 ∪ P2k by concatenating the subthread of R2 between x2,2k−1 and x2,2k and the
subthread of R1 between x1,2k and x1,2k+1. LetW3 be the thread obtained from the subthread
of R1 between x1,2k−1 and x1,2k by concatenating P2k and the subthread of R2 between x2,2k
and x2,2k+1. Then it is straight forward to show that there exists i∗ ∈ [3] such that Wi∗ does
not induce a directed path in D. Hence Wi∗ ∪ P ∗

1 ∪ P ∗
2 contains a (t − k + 1)-alternating

path with end x1,2k−1. Moreover, Wi∗ ∪P
∗
1 ∪P ∗

2 is contained in D[V (R1,2k−1)∪ V (R2,2k−1)∪⋃2t+1
j=2k−1 Pj]. This proves the lemma.

The tree-width of a graph G is the minimum w such that G is a subgraph of a graph with
no induced cycle of length at least four and with no clique of size w + 2. The following is a
restatement of a lemma about the Erdős-Pósa property proved in [19].

Lemma 7.2 ([19, Proposition 2.1]) Let w be a positive integer. Let G be a graph with
tree-width at most w. Let F be a collection of subsets of V (G) such that for every S ∈ F ,
G[S] is connected. Let k be a positive integer. If there do not exist k pairwise disjoint
members of F , then there exists Z ⊆ V (G) with |Z| ≤ (k − 1)(w + 1) such that Z ∩ S 6= ∅
for every S ∈ F .

Let D be a digraph. A series-parallel 2-separation of D is a separation (A,B) of D such
that (A, s, t) is a one-way series-parallel triple, where V (A ∩ B) = {s, t}. The following
lemma is a slight strengthening of [10, Theorem 5.6], and our proof is a modification of [10,
Theorem 5.6].

Lemma 7.3 For every positive integer t, there exists an integer f(t) such that the following
holds. If D is a digraph whose underlying graph is 2-connected, and D does not contain a
(t + 1)-alternating path, then there exists Z ⊆ V (D) with |Z| ≤ f(t) such that for every
t-alternating path P in D, either

1. V (P ) ∩ Z 6= ∅, or

2. there exists a series-parallel 2-separation (A,B) of D with P ⊆ A.

Proof. Let t be a positive integer. Since D does not contain a t-alternating path, the
underlying graph of D does not contain a subdivision of the 2 × (2t + 1)-grid. Since the
2× (2t+ 1)-grid is subcubic, there exists an integer w such that the underlying graph of D
has tree-width at most w by the Grid Minor Theorem [13].

Define f(t) = 4(w + 1). Note that w only depends on t, so f(t) only depends on t.
For a t-alternating path P in D,

• if t is odd, then let mP be the ⌈ t
2
⌉-th pivot of P .

• if t is even, then let mP and m′
P be the t

2
-th and ( t

2
+ 1)-th pivots of P , respectively,

and by symmetry, we may assume that mP is a sink and m′
P is a source.
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Claim 1: Let P1 and P2 be disjoint t-alternating paths in D. Then for every thread P in
D intersecting V (P1) and V (P2) internally disjoint from V (P1) ∪ V (P2),

• if t is odd, then there exists i ∈ [2] such that

– V (Pi) ∩ V (P ) = {mPi
},

– the vertex in V (P3−i) ∩ V (P ) belongs to the sub-thread of P3−i between the
(⌈ t

2
⌉ − 1)-th pivot and the (⌈ t

2
⌉+ 1)-th pivot, and

– if V (P3−i) ∩ V (P ) 6= {mP3−i
}, then P is a directed path;

• if t is even, then P is a directed path, and there exists i ∈ [2] such that V (P )∩V (Pi) =
{mPi

} and V (P ) ∩ V (P3−i) = {m′
Pi
}.

Proof of Claim 1: For each i ∈ [2], let vi be the end of P in V (Pi), and let Qi be a
sub-thread of Pi between vi and an end of Pi such that the number of pivots is as large as
possible. Note that if t is even, then Qi contains at least t

2
pivots, and the equality holds

only when vi is contained in the sub-thread of Pi between mPi
and m′

Pi
; if t is odd, then Qi

contains at least ⌈ t
2
⌉ − 1 pivots, and the equality holds only when vi = mPi

.
We first assume that t is odd. If v1 6= mP1 and v2 6= mP2 , then the number of pivots in

Q1 ∪ P ∪ Q2 is at least 2 · ⌈ t
2
⌉ ≥ t + 1, a contradiction. So there exists i ∈ [2] such that

vi = mPi
. That is, V (Pi) ∩ V (P ) = {mPi

}. Similarly, Q3−i contains at most ⌈ t
2
⌉ pivots, so

v3−i belongs to the sub-thread of P3−i between the (⌈ t
2
⌉ − 1)-th and the (⌈ t

2
⌉+ 1)-th pivots.

If V (P3−i)∩ V (P ) 6= {mP3−i
}, then the number of pivots in Q1 ∪ P ∪Q2 is at least 2⌈ t

2
⌉ − 1

plus the number of pivots of P , so P has no pivots. This proves the case when t is odd.
Now we assume that t is even. Then the number of pivots of Q1 ∪P ∪Q2 is at least 2 ·

t
2

plus the number of pivots of P . Since there exists no (t + 1)-alternating path in D, P is a
directed path, and for every i ∈ [2], vi is contained in the sub-thread of Pi between mPi

and
m′

Pi
. Suppose to the contrary that there exists j ∈ [2] such that vj 6∈ {mPj

,m′
Pj
}. So vj is

an internal vertex of a directed subpath of Pj between mPj
and m′

Pj
. Hence we can choose

Qj such that vj is a pivot of Qj ∪P . Therefore, Qj ∪P ∪Q3−j contains at least t+1 pivots,
a contradiction. So for every i ∈ [2], vi ∈ {mPi

,mP ′
i
}. For i ∈ [2], if mPi

∈ V (P ), then since
mPi

is a sink in Pi, mPi
is the source of P , for otherwise there exists a (t+1)-alternating path

in P1 ∪ P ∪ P2; similarly, if m′
Pi

∈ V (P ), then since m′
Pi

is a source in Pi, m
′
Pi

is the sink of
P . Hence there exists i ∈ [2] such that V (P )∩V (Pi) = {mPi

} and V (P )∩V (P3−i) = {m′
Pi
}.

�

Claim 2: Let P1 and P2 be two disjoint t-alternating paths in D. Then there exist a
separation (A,B) of D of order two such that P1 ⊆ A and P2 ⊆ B, and there exist two
disjoint directed paths QP1,P2 and QP2,P1 where each of them intersects V (P1) and V (P2)
and is internally disjoint from V (P1) ∪ V (P2) such that

• if t is odd, then

– V (QP1,P2) ∩ V (P1) = {mP1} and V (QP1,P2) ∩ V (P2) 6= {mP2}, and

– V (QP2,P1) ∩ V (P1) 6= {mP1} and V (QP2,P1) ∩ V (P2) = {mP2};

• if t is even, then
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– QP1,P2 is a directed path between mP1 and m′
P2
, and

– QP2,P1 is a directed path between mP2 and m′
P1
.

Proof of Claim 2: By Claim 1, there do not exist three disjoint threads in D between
V (P1) and V (P2). So there exist a separation (A,B) of D of order at most two such that
P1 ⊆ A and P2 ⊆ B. Since the underlying graph of D is 2-connected, the order of (A,B)
equals two, and there exist two disjoint threads QP1,P2 and QP2,P1 between V (P1) and V (P2)
internally disjoint from V (P1) ∪ V (P2).

We first assume that t is odd. By Claim 1, each QP1,P2 and QP2,P1 intersects {mP1 ,mP2}.
Since QP1,P2 and QP2,P1 are disjoint, this claim holds,

Now we assume that t is even. By Claim 1, each QP1,P2 and QP2,P1 is a directed path. By
Claim 1 and symmetry, we may assume that for i ∈ [2], QPi,P3−i

is a directed path between
mPi

and m′
P3−i

. So the claim holds. �

Claim 3: If P1, P2, P3, P4, P5 are five disjoint t-alternating paths in D, then there exist
i ∈ [5] and a series-parallel 2-separation (Ai, Bi) of D with Pi ⊆ Ai.
Proof of Claim 3: Suppose to the contrary that for every i ∈ [5], there exists no series-
parallel 2-separation (Ai, Bi) of D with Pi ⊆ Ai.

By Claim 2, there exists a separation (A,B) of D of order two such that P1 ⊆ A and
P2 ⊆ B. By assumption, (A,B) and (B,A) are not series-parallel 2-separations of D.
Since at most two of P3, P4, P5 intersect V (A ∩ B), by symmetry, we may assume that
V (P3) ∩ V (B) = ∅ and P3 ⊆ A − V (B). Let s and t be the vertices in V (A) ∩ V (B).
Let QP1,P3 and QP3,P1 be the disjoint paths mentioned in Claim 2 (by taking P1, P2 in the
statement of Claim 2 by P1, P3, respectively).

Suppose that QP3,P1 intersects both s and t. Then replacing the sub-thread of QP3,P1

between s and t by any thread inB between s and t, we obtain a thread inD from V (P1−mP1)
to mP3 internally disjoint from V (P1) ∪ V (P3), so it must be a directed path by Claim 1.
But (B,A) is not a series-parallel 2-separation of D, and the underlying graph of D is 2-
connected. So (B, s, t) is not a one-way series-parallel triple. Hence there exists a thread in
B between s and t such that replacing the sub-thread of QP3,P1 between s and t by it does
not create a directed path, a contradiction.

So |V (QP3,P1) ∩ {s, t}| ≤ 1. Hence QP3,P1 ⊆ A. In addition, by Claim 1, there exists no
thread in D − {mP1 ,mP2} between V (P1 −mP1) and V (P2 −mP2).

Suppose there exists a thread P in D − {mP1 ,mP2} between V (P3) and V (P2 − mP2)
internally disjoint from V (P2) ∪ V (P3). By Claim 1, the end of P in V (P3) is mP3 . Since
there exists no thread in D−{mP1 ,mP2} between V (P1−mP1) and V (P2−mP2), P is disjoint
from V (P1). So V (QP3,P1 ∪P )∩V (P1) consists of the end of QP3,P1 in V (P1). Since mP3 is a
common vertex in QP3,P1 and P , there exists a thread P ′ in QP3,P1 ∪P from V (P1 −mP1) to
V (P2 −mP2) internally disjoint from V (P1). Since QP3,P1 ⊆ A, P ′ is internally disjoint from
V (P2). Hence P

′ is a thread in D from V (P1−mP1) to V (P2−mP2) internally disjoint from
V (P1) ∪ V (P2), contradicting Claim 1.

Hence there exists no thread inD−{mP1 ,mP2} between V (P3) and V (P2−mP2) internally
disjoint from V (P2) ∪ V (P3). So no component of D − {mP1 ,mP2} intersects both V (P3)
and V (P2−mP2). Since there exists no thread in D−{mP1 ,mP2} between V (P1−mP1) and
V (P2−mP2), no component of D−{mP1 ,mP2} intersects both V (P1−mP1) and V (P2−mP2).
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Hence there exists a separation (A′, B′) of D of order two such that V (A′∩B′) = {mP1 ,mP2},
P1 ∪ P3 ⊆ A′ and P2 ⊆ B′. Since P2 ⊆ B′, (B′,mP1 ,mP2) is not a one-way series-parallel
triple.

Let QP2,P3 and QP3,P2 be the disjoint paths mentioned in Claim 2 (by taking P1, P2 in
the statement of Claim 2 by P2, P3, respectively).

Suppose V (QP2,P3)∩V (P1) = ∅. SincemP1 ∈ V (A′∩B′)∩V (P1), |V (QP2,P3)∩V (A′∩B′)| ≤
1. Since V (QP2,P3) ∩ V (A′) ⊇ V (QP2,P3) ∩ V (P3) 6= ∅, QP2,P3 ⊆ A′. Since (B′,mP1 ,mP2) is
not a one-way series-parallel triple, we can concatenate QP2,P3 with a thread in B′ between
mP2 and mP1 to create a non-directed path thread in D from V (P3 −mP3) to mP1 internally
disjoint from V (P1) ∪ V (P3), contradicting Claim 1.

So V (QP2,P3)∩V (P1) 6= ∅. Let P ′′ be the sub-thread of QP2,P3 between V (P3 −mP3) and
V (P1) internally disjoint from V (P3) ∪ V (P1). By Claim 1, the end of P ′′ in V (P1) is mP1 .
SincemP2 is an end ofQP2,P3 not in V (P1)∪V (P3),mP2 6∈ V (P ′′). So |V (P ′′)∩V (A′∩B′)| ≤ 1.
Since V (P ′′)∩V (A′) ⊇ V (P ′′)∩V (P1) 6= ∅, P ′′ ⊆ A′. SinceQP1,P2 is betweenmP1 ∈ V (A′∩B′)
and V (P2 −mP2) ⊆ V (B′) internally disjoint from V (P2), QP1,P2 ⊆ B′. Hence P ′′ ∪ QP1,P2

is a thread in D from V (P3 −mP3) to V (P2 −mP2) internally disjoint from V (P3) ∪ V (P2),
contradicting Claim 1. This proves the claim. �

Let F = {V (P ) : P is a t-alternating path in D such that there exists no series-parallel
2-separation (A,B) of D with P ⊆ A}. By Claim 3, F does not contain five pairwise disjoint
members. Recall that the tree-width of the underlying graph of D is at most w. By Lemma
7.2, there exists Z ⊆ V (D) with |Z| ≤ 4(w+1) = f(t) such that Z ∩S 6= ∅ for every S ∈ F .
This proves the lemma.

A series-parallel 2-separation (A,B) of a digraph D is maximal if there exists no series-
parallel 2-separation (A′, B′) of D with A ⊂ A′.

Lemma 7.4 Let D be a digraph whose underlying graph is 2-connected. Assume that there
do not exist distinct vertices s, t and one-way series-parallel triples (X, s, t) and (Y, t, s) such
that D = X ∪ Y . If (A1, B1) and (A2, B2) are distinct maximal series-parallel 2-separations
of D, then for every i ∈ [2], V (Ai ∩ Bi) ⊆ V (A3−i) or V (Ai ∩ Bi) ⊆ V (B3−i).

Proof. By symmetry, it suffices to show that V (A2 ∩B2) ⊆ V (A1) or V (A2 ∩B2) ⊆ V (B1).
For each i ∈ [2], let si and ti be the vertices in Ai ∩ Bi. Since (A1, s1, t1) is one-way, by

symmetry, we may assume that every thread in A1 between s1 and t1 is a directed path from
s1 to t1.

Suppose to the contrary that V (A2 ∩ B2) − V (A1) 6= ∅ and V (A2 ∩ B2) − V (B1) 6= ∅.
By symmetry, we may assume t2 ∈ V (A1)− V (B1) and s2 ∈ V (B1)− V (A1). In particular,
{s1, t1} ∩ {s2, t2} = ∅.

Let P2 and P ′
2 be threads in A2 and B2 between s2 and t2, respectively. Since s2 ∈

V (B1) − V (A1) and t2 ∈ V (A1) − V (B1), |(V (P2) − {s2, t2}) ∩ {s1, t1}| = 1 = |(V (P ′
2) −

{s2, t2}) ∩ {s1, t1}|. So {s1, t1} ∩ V (A2) − V (B2) 6= ∅ 6= {s1, t1} ∩ V (B2) − V (A2). Hence
for every thread P in A1 from s1 to t1, P is a thread in A1 between V (A2) − V (B2) and
V (B2)− V (A2), so P contains V (A2) ∩ V (B2) ∩ V (A1) = {t2}, and hence P passes through
s1, t2, t1 in the order listed. Since every thread in A1 from s1 to t1 is a directed path from s1
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to t1 and contains t2, every thread in A1 from t2 to {s1, t1} is either a directed path from s1
to t2 or a directed path from t2 to t1.

Since (A2, B2) is a series-parallel 2-separation, P2 is a directed path. Since P2 contains
a subpath between {s1, t1} and t2, P2 contains a vertex v ∈ {s1, t1}, where v = s1 if P2 is a
directed path from s2 to t2, and v = t1 otherwise.

Since (A2, s2, t2) is one-way and P2 is an arbitrary thread in A2 between s2 and t2, we know
that every thread in A2 from s2 to t2 contains v. In particular, v ∈ V (A2)−V (B2). Let u be
the vertex in {s1, t1}− {v}. Since {s1, t1}∩ V (A2)− V (B2) 6= ∅ 6= {s1, t1}∩ V (B2)− V (A2),
we know u ∈ V (B2)− V (A2).

Note that V (A1 ∪ A2) ∩ V (B1 ∩ B2) ⊆ {s1, t1, s2, t2}. Since v ∈ V (A2) − V (B2) and
t2 ∈ V (A1)− V (B1), V (A1 ∪ A2) ∩ V (B1 ∩ B2) ⊆ {u, s2}.

Let Q be a thread in A1 ∪A2 from s2 to u. Since s2 ∈ V (B1)− V (A1) and Q ⊆ A1 ∪A2,
the edge of Q incident with s2 is in A2 − V (A1). Since u ∈ V (B2) − V (A2) and Q ⊆
A1 ∪A2, the edge of Q incident with u is in A1 − V (A2). So some internal vertex of Q is in
V (A2)∩ {s1, t1} = {v} and some internal vertex of Q is in V (A1)∩ {s2, t2} = {t2}. Hence Q
passes through s2, v, t2, u in the order listed. Since the subthread of Q between s2 and t2 is in
A2, it is a directed path. Similarly, the subthread of Q between s1 and t1 is a directed path.
Since these two subtreads of Q share a thread in A1 between v and t2, and every thread in A1

between v and t2 is a directed path, Q is a directed path between s2 and u. Moreover, since
all threads in A1 between v and t2 are directed paths with the same direction, the direction
of Q is independent with the choice of Q.

Therefore, (A1 ∪ A2, s2, u) is a one-way series-parallel triple. So (A1 ∪ A2, B1 ∩ B2) is a
series-parallel 2-separation ofD. But s2 ∈ V (A1∪A2)−V (A1), so A1 ⊂ A1∪A2, contradicting
the maximality of A1.

Lemma 7.5 Let D be a digraph whose underlying graph is 2-connected. Assume that there
do not exist distinct vertices s, t and one-way series-parallel triples (X, s, t) and (Y, t, s) such
that D = X ∪ Y . If (A1, B1) and (A2, B2) are distinct maximal series-parallel 2-separations
of D, then A1 ⊆ B2 and A2 ⊆ B1.

Proof. By symmetry, it suffices to show A1 ⊆ B2.
For each i ∈ [2], let si and ti be the vertices in Ai ∩ Bi. By symmetry, we may assume

that for every i ∈ [2], every thread in Ai between si and ti is a directed path from si to ti.

Claim 1: V (A2) ∩ V (B2) ⊆ V (B1).
Proof of Claim 1: Suppose to the contrary that V (A2)∩ V (B2)− V (B1) 6= ∅. By Lemma
7.4, V (A2)∩V (B2) ⊆ V (A1). Since the underlying graph of D is 2-connected, the underlying
graph of B1 is connected. Since V (A2) ∩ V (B2) ⊆ V (A1), either B1 ⊆ A2 or B1 ⊆ B2.

Suppose that B1 ⊆ B2. Then A1 ⊇ A2. Since (A1, B1) 6= (A2, B2), A1 6= A2, so A1 ⊃ A2,
contradicting the maximality of A2.

So B1 ⊆ A2. Since the underlying graph of D is 2-connected, there exist two disjoint
threads P1, P2 in A1 from {s1, t1} to {s2, t2}. By symmetry, we may assume that P1 contains
s2, and P2 contains t2. Since each Pi intersects {s2, t2} in at most one vertex, it is contained
in A2 or in B2. Since each Pi intersects {s1, t1} ⊆ V (B1) ⊆ V (A2), it is contained in A2.
Since B1 ⊆ A2, P1 ∪ P2 ∪B1 ⊆ A2.
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For every thread P in B1 between s1 and t1, P1 ∪ P ∪ P2 is a thread in A2 between s2
and t2, so P1 ∪ P ∪ P2 is a directed path from s2 to t2, and hence P is a directed path in
B1 between s1 and t1 such that P is a directed path from s1 to t1 if and only if P1 contains
s1. Therefore, (B1, t1, s1) is a one-way series-parallel triple. But (A1, s1, t1) is a one-way
series-parallel triple such that A1 ∪ B1 = D, a contradiction. �

Since the underlying graph of D is 2-connected, the underlying graph of A1 is connected.
Since V (A2) ∩ V (B2) ⊆ V (B1) by Claim 1, either A1 ⊆ A2 or A1 ⊆ B2. If A1 ⊆ A2, then
since (A1, B1) 6= (A2, B2), A1 ⊂ A2, a contradiction. So A1 ⊆ B2. This proves the lemma.

A series-parallel cover of a digraph D is a collection S of separations of D satisfying the
following.

• For every (A,B) ∈ S, (A,B) is a maximal series-parallel 2-separation of D.

• If (A1, B1) and (A2, B2) are distinct members of S, then A1 ⊆ B2 and A2 ⊆ B1.

• For every series-parallel 2-separation (A′, B′) of D, there exists (A,B) ∈ S such that
A′ ⊆ A.

Lemma 7.6 Let D be a digraph whose underlying graph is 2-connected. If there do not
exist distinct vertices s, t and one-way series-parallel triples (X, s, t) and (Y, t, s) such that
D = X ∪ Y , then there exists a series-parallel cover of D.

Proof. Let S be the collection of all maximal series-parallel 2-separations ofD. So S satisfies
Statement 1 in the definition of a series-parallel cover. By Lemma 7.5 , S satisfies Statement
2 in the definition of a series-parallel cover. For every series-parallel 2-separation (A′, B′)
of D, there exists a maximal series-parallel 2-separation (A,B) of D such that A′ ⊆ A, so
A′ ⊆ A for some (A,B) ∈ S. Hence S is a series-parallel cover.

8 Longer alternating paths

In this section we prove Theorem 1.1 (that is, digraphs with no k-alternating paths are
well-quasi-ordered). The strategy is to use the lemmas proved in Section 7 to reduce the
“complexity” of the digraphs, and prove well-quasi-ordering by induction on the “complex-
ity”. It could be helpful if the readers read the related definitions and statements of the
lemmas before going into their proofs to get a big picture of the entire process.

Lemma 8.1 Let D be a digraph whose underlying graph is 2-connected. Let r, x, y be three
distinct vertices. Then either there exists a 1-alternating path between r and {x, y}, or there
exist z ∈ {x, y} such that there exist a directed path from r to z and a directed path from z

to r.

Proof. Since the underlying graph is 2-connected, there exist two threads P,Q, where
P is between r and x, and Q is between r and y, and their intersection is {r}. By the
2-connectedness, there exists a thread R in D − {r} from V (P )− {r} to V (Q)− {r}.
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We are done if P or Q is not a directed path. So we may assume that P and Q are
directed paths. Similarly, we may assume that R is a directed path, for otherwise we are
done.

We first assume that r is the sink of both P and Q or the source of both P and Q. By
symmetry, we may assume that r is the sink of P and Q. By symmetry, we may assume
that the sink of R is in V (P )− {r}. Then there exists a 1-alternating path from r to x.

So we may assume that r is the sink of one of P and Q, and is the source of the other.
By symmetry, we may assume that r is the sink of Q and the source of P . If R has source
in V (Q)− {r}, then there exists a 1-alternating path in D from r to x. So we may assume
that R has source in V (P ) − {r}. If V (Q) ∩ V (R) 6= {y}, then there exists a 1-alternating
path between r to y; otherwise there exists a directed path from r to y. Note that Q is a
directed path from y to r, so we are done.

Let t, k be nonnegative integers. We define Ft,k to be the set consisting of the rooted
digraphs (D, r) satisfying the following.

• The underlying graph of D is connected.

• r is not a cut-vertex of the underlying graph of D.

• There exists no (t+ 1)-alternating path in D.

• No block of D contains a t-alternating path.

• There exists no k-alternating path in D having r as an end.

Note that every one-vertex thread is a 0-alternating path, so Ft,0 = ∅. We define the
following.

• Define Ft to be the set consisting of the rooted digraphs (D, r) such that the underlying
graph of D is connected, and there exist no t-alternating path in D.

• Define F ′
t to be the set consisting of the rooted digraphs (D, r) such that there exist

no t-alternating path in D, and either

– the underlying graph of D is 2-connected, or

– the underlying graph of D is connected and contains at most two vertices.

• Define F∗
t to be the set consisting of the rooted digraphs (D, r) such that there exist

no t-alternating path in D.

Note that F ′
t ⊆ Ft ⊆ F∗

t and ∅ = Ft,0 ⊆ Ft,1 ⊆ ... ⊆ Ft,t+1 =
⋃

k≥0 Ft,k.

Lemma 8.2 Let t be a nonnegative integer. If Ft,t+1 is well-behaved, then Ft ∪ F∗
t is well-

behaved.

28



Proof. If Ft is well-behaved, then F∗
t is well-behaved by Higman’s lemma. So it suffices to

prove that Ft is well-behaved.
Let (Q,≤Q) be a well-quasi-order. For i ∈ N, let (Di, ri) ∈ Ft and φi : V (Di) → Q. For

each component C of Di − ri, let (Di,C , ri) be the rooted digraph, where Di,C is the sub-
digraph of Di induced by V (C)∪{ri}. Hence ri is not a cut-vertex of the underlying graph of
Di,C for all i, C. Since Di has no t-alternating path and Di,C is connected, (Di,C , ri) ∈ Ft,t+1.

For each i ∈ N, let ai be the sequence ((Di,C , ri) : C is a component of Di − ri). Since
Ft,t+1 is well-behaved, by Higman’s lemma, there exist 1 ≤ j < j′, a function ι that maps
components of Dj − rj to components of Dj′ − rj′ injectively, such that for each component
C of Dj − rj, there exists a strong immersion embedding ηC from (Dj,C , rj) to (Dj′,ι(C), rj′)
such that ηC(rj) = rj′ and φj(v) ≤Q φj′(ηC(v)) for every v ∈ V (Dj,C). Then it is easy to
construct a strong immersion embedding η from (Dj, rj) and (Dj′ , rj′) such that η(rj) = rj′

and φj(v) ≤Q φj′(η(v)) for every v ∈ V (Dj). This proves the lemma.

Let (D, r) be a rooted digraph, and let v be a cut-vertex of the underlying graph of
D. Assume that v 6= r. So there exists a separation (A,B) such that V (A ∩ B) = {v},
r ∈ V (B) − V (A), and V (A) − V (B) 6= ∅. For each such (A,B), if v is not a cut-vertex of
A, then we call the rooted digraph (A, v) a branch of D at v.

Lemma 8.3 Let t be a nonnegative integer. If F ′
t is well-behaved, then Ft,k is well-behaved

for every nonnegative integer k.

Proof. We shall prove this lemma by induction on k. Since Ft,0 = ∅, the lemma holds when
k = 0. So we may assume that k ≥ 1 and Ft,k−1 is well-behaved.

Let (Q,≤Q) be a well-quasi-order. For i ∈ N, let (Di, ri) ∈ Ft,k, and let φi : V (Di) → Q.
For i ∈ N, let Si be the subset of V (Di) satisfying the following.

• Every vertex in Si is a cut-vertex of the underlying graph of Di.

• For each v ∈ Si, some branch of Di at v belongs to F ′
t ∪ Ft,k−1.

• If some branch (R, v) of Di at v belongs to F ′
t ∪ Ft,k−1, then there exists u ∈ Si (not

necessarily different from v) such that R ⊆ R′ for some branch (R′, u) of Di at u with
(R′, u) ∈ F ′

t ∪ Ft,k−1.

• There exist no distinct u, v ∈ Si such that u ∈ V (R) for some branch (R, v) of Di at v
with (R, v) ∈ F ′

t ∪ Ft,k−1.

Note that ri 6∈ Si since ri is not a cut-vertex of the underlying graph of Di. For each i ∈ N,
let Si = {((B, v), φi|V (B)) : (B, v) is a branch at v for some v ∈ Si and (B, v) ∈ F ′

t ∪Ft,k−1},
and let S ′

i = {((
⋃

((L,v),φi|V (L))∈Si
L, v), φi|V (L)) : v ∈ Si}.

LetQ1 =
⋃

i≥1 S
′
i. Let�1 be the binary relation onQ1 such that for any (B1, f1), (B2, f2) ∈

Q1, (B1, f1) �1 (B2, f2) if and only if there exists a strong immersion embedding η from B1

to B2 such that f1(v) �1 f2(η(v)) for every v ∈ V (B1). Since F
′
t and Ft,k−1 are well-behaved,

(Q1,�1) is a well-quasi-order by Higman’s Lemma. Let ⊥ be an element not in Q1. Let
(Q2,�2) be the well-quasi-order obtained by the disjoint union of (Q1,�1) and ({⊥},=). Let
(Q3,�3) be the well-quasi-order obtained by the Cartesian product of (Q,≤Q) and (Q2,�2).

For each i ≥ 1,
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• let D′
i = Di −

⋃
v∈Si

⋃
((R,v),φi|V (R))∈S

′
i
(V (R)− {v}), and

• define φ′
i : V (D′

i) → Q3 to be the function such that for every v ∈ V (D′
i),

– if v ∈ Si, then φ
′
i(v) = (φi(v), ((R, v), φi|V (R))), where (R, v) is the unique member

of S ′
i such that its second entry is v, and

– if v ∈ V (D′
i)− Si, then φ

′
i(v) = (φi(v),⊥).

Note that the underlying graph of each D′
i is connected.

To prove this lemma, it suffices to prove that there exist 1 ≤ j < j′ and a strong
immersion embedding η from (D′

j, rj) to (D′
j′ , rj′) such that φ′

j(v) �3 φ
′
j′(η(v)) for every

v ∈ V (D′
j).

If i is an index such that the underlying graph of D′
i is 2-connected or has at most two

vertices, then the underlying graph of D′
i is a block of the underlying graph of Di, and since

(Di, ri) ∈ Ft,k, (D
′
i, ri) ∈ F ′

t. Since F ′
t is well-behaved, if there are infinitely many indices i

satisfying the previous property, then we are done. So by removing finitely many terms in
the sequence, we may assume that for each i ∈ N, the underlying graph of each D′

i is not
2-connected and has at least three vertices.

Claim 1: For every i ∈ N and every cut-vertex x of the underlying graph of D′
i, every thread

in D′
i from ri to x is a directed path.

Proof of Claim 1: Suppose to the contrary that there exists a thread P in D′
i from ri to x

such that P is not a directed path. Let H ′ be a branch of D′
i at x. Since x is a cut-vertex of

the underlying graph of D′
i, x is a cut-vertex of the underlying graph of Di, so there exists

a branch H of Di at x containing H ′. By the definition of Si, (H, x) 6∈ Ft,k−1. Hence there
exists a (k − 1)-alternating path P ′ in H having x as an end. So P ∪ P ′ is a k-alternating
path in Di having ri as an end, contradicting that (Di, ri) ∈ Ft,k. �

Claim 2: For every i ∈ N and every cut-vertex x of the underlying graph of D′
i, either all

directed paths in D′
i between ri and x are from ri to x, or all directed paths in D′

i between
ri and x are from x to ri.

Proof of Claim 2: Suppose to the contrary that there exist a directed path P1 from ri
to x and a directed path P2 from x to ri. Let H ′ be a branch of D′

i at x. So there exists
a branch H of Di at x such that H contains H ′. By the definition of Si, (H, x) 6∈ Ft,k−1.
Hence there exists a (k − 1)-alternating path P in H having x as an end. If k ≥ 2, then
P contains at least one edge, so P1 ∪ P or P2 ∪ P is a k-alternating path in Di having ri
as an end, contradicting that (Di, ri) ∈ Ft,k. Hence k = 1. Since the underlying graph of
Di is connected and (H, x) is a branch at x, there exists an one-edge directed path P ′ of H
having x as an end. Then P1 ∪ P

′ or P2 ∪ P
′ is a k-alternating path in Di having ri as an

end, contradicting that (Di, ri) ∈ Ft,k. This proves the claim. �

Claim 3: Every block of the underlying graph of D′
i contains at most two cut-vertices of the

underlying graph of D′
i, and the block of the underlying graph of D′

i containing ri contains
at most one cut-vertex of the underlying graph of D′

i.

Proof of Claim 3: Suppose to the contrary that there exists a block B of the underlying
graph of D′

i such that either B contains ri and two cut-vertices x, y of the underlying graph
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of D′
i, or B contains three cut-vertices r, x, y, where r is the cut-vertex contained in the

parent block of B. Since ri is not a cut-vertex of the underlying graph of Di, B contains at
least three vertices, so B is 2-connected. If B contains ri, then we let r = ri. By Lemma 8.1,
either there exists a 1-alternating path from r to x or y, or there exists z ∈ {x, y} such that
there exist a directed path from r to z and a directed path from z to r. This contradicts
Claims 1 and 2. �

For each i ≥ 1, by Claims 1-3, either all threads in D′
i between ri and a cut-vertex of

the underlying graph of D′
i are directed paths with source ri, or all threads in D′

i between
ri and a cut-vertex of the underlying graph of D′

i are directed paths with sink ri. Hence by
possibly reversing the direction of all edges of Di and removing some Di from the sequence,
we may assume that for each i ∈ N and for every cut-vertex x of the underlying graph of
D′

i, every thread in D′
i between ri and x is a directed path from ri to x.

Claim 4: For every i ∈ N, (D′
i, ri) is a F ′

t-series-parallel tree.

Proof of Claim 4: Since (Di, ri) ∈ Ft,k, no block of Di contains a t-alternating path. So no
block of D′

i contains a t-alternating path. Hence for every block B of the underlying graph
of D′

i, (B, v) ∈ F ′
t, where v = ri if ri ∈ V (B), and v is the cut-vertex of the underlying

graph of D′
i contained in B and the parent block of B. Since the underlying graph of Di is

connected, Claims 1-3 imply that (D′
i, ri) is a F ′

t-series-parallel tree. �

Let F ′ be the set of one-way series-parallel triples (B, x, y) such that (B, x) ∈ F ′
t and

y ∈ V (B) − {x}. For every (B, x, y) ∈ F ′, since (B, x) ∈ F ′
t, there exist no t-alternating

path in B, so (B, x, y) ∈ At. Hence F ′ ⊆ At. Let F
′′ be the set of all series-parallel triples

that are truncations of members of F ′. By Statement 1 of Lemma 6.4, F ′′ ⊆ At. By Lemma
6.8, F ′ and F ′′ are well-behaved. Since F ′

t is well-behaved, this lemma follows from Claim 4
and Lemma 5.1.

Lemma 8.4 Let t be a positive integer. Let (Q,≤Q) be a well-quasi-order. For i ≥ 1, let
(Di, ri) ∈ F ′

t and φi : V (Di) → Q. If for each i ≥ 1, Di has no series-parallel cover, then
there exist 1 ≤ j < j′ and a strong immersion embedding η from (Dj, rj) to (Dj′ , rj′) such
that φj(v) ≤Q φj′(η(v)) for every v ∈ V (Dj).

Proof. This lemma obviously holds if there are infinitely many indices i such that Di

contains at most two vertices. So by removing finitely members in the sequence, we may
assume that Di contains at least three vertices for each i ≥ 1. By the definition of F ′

t, the
underlying graph of each Di is 2-connected. For each i ≥ 1, since Di has no series-parallel
cover, by Lemma 7.6, there exist one-way series-parallel triples (Xi, si, ti) and (Yi, ti, si) for
some distinct vertices si, ti ∈ V (Di) such that Di = Xi ∪ Yi.

For each i ≥ 1, since (Di, ri) ∈ F ′
t, Di does not contain a t-alternating path, so (Xi, si, ti)

and (Yi, ti, si) belong to At. Let F = {((Xi, si, ti), φi|V (Xi)) : i ≥ 1}. Let �1 be the simulation
relation defined on F . By Lemma 6.8, (F ,�1) is a well-quasi-order. Let (Q2,�2) be the
well-quasi-order obtained from (Q,≤Q) and (F ,�1) by taking Cartesian product.

For each i ≥ 1, let fi : V (Yi) → Q2 be the function such that fi(v) = (φi(v),
((Xi, si, ti), φi|V (Xi))) for every v ∈ V (Yi). Since At is well-behaved, there exist 1 ≤ j < j′

and a strong immersion embedding ηY from (Yj, tj, sj) to (Yj′ , tj′ , sj′) such that fj(v) �2

fj′(ηY (v)) for every v ∈ V (Yj). Note that ηY (sj) = sj′ and ηY (tj) = tj′ by the definition
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of strong immersion embedding of general rooted digraphs. Since fj(sj) �2 fj′(ηY (sj)) =
fj′(sj′), there exists a strong immersion embedding ηX from (Xj, sj, tj) to (Xj′ , sj′ , tj′) such
that φj(v) ≤Q φj′(ηX(v)) for every v ∈ V (Xj). Then combining ηY and ηX results in a
strong immersion embedding η from (Dj, rj) to (Dj′ , rj′) such that φj(v) ≤Q φj′(η(v)) for
every v ∈ V (Dj).

Let S be a series-parallel cover of a digraph D. Let t be a positive integer. The (S, t)-
compression of D is the digraph obtained from D by for each (A,B) ∈ S with |V (A) −
V (B)| ≥ min{t, 2},

• deleting V (A)− V (B),

• deleting all edges of A between the two vertices in V (A ∩ B),

• adding new vertices vA,L, vA,M , vA,R and new edges such that vA,0vA,LvA,MvA,RvA,1 is a
directed path from vA,0 to vA,1, where vA,0 and vA,1 are the two vertices in V (A ∩ B)
such that every thread in A is a directed path from vA,0 to vA,1, and

• duplicating vA,0vA,L, vA,LvA,M , vA,MvA,R and vA,RvA,1 such that the following hold.

– The number of edges between vA,0 and vA,L equals the degree of vA,0 in A.

– The number of edges between vA,L and vA,M equals the maximum number of
edge-disjoint directed paths in A from vA,0 to vA,1.

– The number of edges between vA,M and vA,R equals the maximum number of
edge-disjoint directed paths in A from vA,0 to vA,1.

– The number of edges between vA,R and vA,1 equals the degree of vA,1 in A.

Lemma 8.5 Let t be a positive integer. Let D be a digraph. Let Z be a subset of V (D)
such that for every t-alternating path P in D, either V (P ) ∩ Z 6= ∅, or P ⊆ A for some
series-parallel 2-separation (A,B) of D. Let S be a series-parallel cover of D. Let D′ be the
(S, t)-compression of D. Then there exists Z ′ ⊆ V (D) ∩ V (D′) with |Z ′| ≤ 2|Z| such that
V (P ′) ∩ Z ′ 6= ∅ for every t-alternating path P ′ in D′.

Proof. For each (A,B) ∈ S with |V (A) − V (B)| ≥ min{t, 2}, let vA,0, vA,L, vA,M , vA,R, vA,1

be the vertices mentioned in the definition of the (S, t)-compression. Let Z ′ = {v ∈ Z : v 6∈
V (A)−V (B) for every (A,B) ∈ S with |V (A)−V (B)| ≥ min{t, 2}}∪{vA,0, vA,1 : (A,B) ∈ S
with |V (A) − V (B)| ≥ min{t, 2} and Z − V (B) 6= ∅}. Note that Z ′ ⊆ V (D′) ∩ V (D) and
|Z ′| ≤ 2|Z|.

Suppose to the contrary that there exists a t-alternating path P ′ inD′ with V (P ′)∩Z ′ = ∅.
We may assume that |E(P ′)| is as small as possible.

Since for every (A,B) ∈ S with |V (A) − V (B)| ≥ min{t, 2}, the edges incident with
{vA,L, vA,R} are obtained by copying edges in a directed path vA,0vA,LvA,MvA,RvA,1, so the
minimality of |E(P ′)| implies that

• if vA,L ∈ V (P ′), then P ′ contains an edge between vA,0 and vA,L,

• if vA,R ∈ V (P ′), then P ′ contains an edge between vA,R and vA,1,
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• if vA,M ∈ V (P ′), then P ′ contains a directed path vA,0vA,LvA,MvA,RvA,1, and

• if P ′ contains both vA,L and vA,R but not vA,M , then vA,L′ and vA,R are the ends of P ′,
and t ≥ 2 (since P ′ is not a directed path).

In addition, for every (A,B) ∈ S with |V (A) − V (B)| ≥ min{t, 2}, there exist vertices uA
and u′A in V (A)− V (B) such that uA is a neighbor of vA,0 in D and u′A is a neighbor of vA,1

in D, and such that uA and u′A are distinct when |V (A)− V (B)| ≥ 2.
Let P be the thread in D obtained from P ′ by for each (A,B) ∈ S with |V (A)−V (B)| ≥

min{t, 2},

• if vA,M ∈ V (P ′), then deleting vA,L, vA,M , vA,R and adding a directed path in A from
vA,0 to vA,1,

• if vA,L ∈ V (P ′) and vA,M 6∈ V (P ′), then deleting vA,L and adding an edge of D between
uA and vA,0, and

• if vA,R ∈ V (P ′) and vA,M 6∈ V (P ′), then deleting vA,R and adding an edge of D between
u′A and vA,1.

Since P ′ is a t-alternating path, P is a t-alternating path in D.
Note that there exists no (A,B) ∈ S with |V (A) − V (B)| ≥ min{t, 2} and P ⊆ A, for

otherwise P ′ is contained a directed path vA,0vA,LvA,MvA,RvA,1, contracting t ≥ 1. Moreover,
for each (A,B) ∈ S, if |V (A) − V (B)| ≤ min{t − 1, 1} and P ⊆ A, then since (A,B) is a
series-parallel 2-separation, we know t = 1, so V (A) − V (B) = ∅ and hence P is a directed
edge, a contradiction. So there exists no (A,B) ∈ S such that P ⊆ A. If there exists a
series-parallel 2-separation (A′, B′) of D with P ⊆ A′, then since S is a series-parallel cover,
there exists (A,B) ∈ S with P ⊆ A′ ⊆ A, a contradiction. So the property of Z implies that
V (P ) ∩ Z 6= ∅.

Since V (P ′)∩Z ′ = ∅, by the construction of Z ′, there exists z ∈ Z∩V (P )−V (Bz) for some
(Az, Bz) ∈ S with |V (Az) − V (Bz)| ≥ min{t, 2}. But this implies that {vAz ,0, vAz ,1} ⊆ Z ′

and {vAz ,0, vAz ,1} ∩ V (P ′) 6= ∅, so V (P ′) ∩ Z ′ 6= ∅, a contradiction.

Lemma 8.6 Let F be a well-behaved set of rooted digraphs, and let s be a positive integer.
Let F ′ be the set consisting of the rooted digraphs (D, r) satisfying that (D − X, r′) ∈ F
for some X ⊆ V (D) with r ∈ X and |X| ≤ s and for some r′ ∈ V (D) − X. Then F ′ is
well-behaved.

Proof. Let (Q,≤Q) be a well-quasi-order. For i ≥ 1, let (Di, ri) ∈ F ′ and let φi : V (Di) →
Q.

By the definition of F ′, for each i ≥ 1, there exist Xi ⊆ V (Di) with ri ∈ Xi and
|Xi| ≤ s and r′i ∈ V (Di) − Xi such that (Di − Xi, r

′
i) ∈ F . For each i ∈ N, we denote

Xi by {ui,1, ui,2, ..., ui,|Xi|}, where ui,1 = ri. Since |Xi| ≤ s for all i, we may assume that
|X1| = |Xi| for all i ≥ 1. By Higman’s Lemma, we may assume that for all 1 ≤ a < b,
Da[Xa] is a subdigraph of Db[Xb] such that for each j ∈ [|X1|], ua,j corresponds to ub,j, and
φa(ua,j) ≤Q φb(ub,j).

Let (Q1,�1) be the well-quasi-order obtained by the disjoint union of (N,≤) and ({0},=).
Let (Q2,�2) be the well-quasi-order that is obtained by the Cartesian product of 2|X1| copies
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of (Q1,�1). Let (Q3,�3) be the well-quasi-order obtained by the Cartesian product (Q,≤Q)
and (Q2,�2).

For each i ≥ 1 and v ∈ V (Di) − Xi, define φ
′
i(v) = (φi(v), a1, b1, a2, b2, ..., a|Xi|, b|Xi|),

where for each j ∈ [|X1|], aj is the number of edges of Di from ui,j to v, and bj is the number
of edges of Di from v to ui,j. Note that each φ′

i is a function from V (D′
i) to Q3.

Since F is well-behaved, there exist 1 ≤ j < j′ and a strong immersion embedding η′

from (Dj −Xj, r
′
j) to (Dj′ −Xj′ , r

′
j′) such that φ′

j(v) �3 φ
′
j′(η

′(v)) for every v ∈ V (Dj)−Xj.
Then it is easy to extend η′ to a strong immersion embedding η from (Dj, rj) to (Dj′ , rj′)
such that φj(v) ≤Q φj′(η(v)) for all v ∈ V (Dj), and η(uj,ℓ) = uj′,ℓ for all ℓ ∈ [|X1|]. This
proves the lemma.

Lemma 8.7 For every positive integer t, F ′
t is well-behaved.

Proof. We shall prove this lemma by induction on t. By Lemma 3.2, F ′
1 is well-behaved. So

we may assume that t ≥ 2 and F ′
t−1 is well-behaved. By Lemma 8.3, Ft−1,t is well-behaved.

By Lemma 8.2, F∗
t−1 is well-behaved.

Let (Q,≤Q) be a well-quasi-order. For i ≥ 1, let (Di, ri) ∈ F ′
t and φi : V (Di) → Q.

It suffices to prove that there exist 1 ≤ j < j′ and a strong immersion embedding η from
(Dj, rj) to (Dj′ , rj′) such that φj(v) ≤Q φj′(η(v)) for every v ∈ V (Dj).

We are done if there are infinitely many indices i such that either |V (Di)| ≤ 2 or Di

has no series-parallel cover by Lemma 8.4. So by removing finitely many members from the
sequence, we may assume that for each i ∈ N, the underlying graph of Di is 2-connected,
and Di has a series-parallel cover Si.

By Lemma 7.3, there exists a positive integer N such that for each i ∈ N, there exists
Zi ⊆ V (Di) with |Zi| ≤ N such that for every (t − 1)-alternating path P in Di, either
V (P ) ∩ Zi 6= ∅, or there exists a series-parallel 2-separation (A,B) of Di with P ⊆ A.

For i ≥ 1, define the following:

• define D′
i to be the (Si, t)-compression of Di,

• for each (A,B) ∈ Si with |V (A)− V (B)| ≥ min{t, 2}, let vA,0, vA,L, vA,M , vA,R, vA,1 be
the vertices mentioned in the definition of the (Si, t)-compression of Di, and

• if ri ∈ V (Di) ∩ V (D′
i), then let r′i = ri; otherwise, let r

′
i be an arbitrary vertex of D′

i.

By Lemma 8.5, for each i ≥ 1, there exists Z ′
i ⊆ V (Di)∩V (D′

i) with r
′
i ∈ Z ′

i and |Z ′
i| ≤ 2N+1

such that every (t− 1)-alternating in D′
i intersects Z

′
i.

For i ≥ 1, let D′′
i = D′

i − Z ′
i and r′′i be a vertex of D′′

i . For each i ≥ 1, since every
(t− 1)-alternating path in D′

i intersects Z
′
i, we know (D′′

i , r
′′
i ) ∈ F∗

t−1.
Let F∗ be the family of rooted digraphs (D, r) such that there exists r ∈ Z ⊆ V (D)

with |Z| ≤ 2N + 1 and such that (D − Z, r′) ∈ F∗
t−1 for some r′ ∈ V (D) − Z. Note that

(D′
i, r

′
i) ∈ F∗ for each i ≥ 1. Since F∗

t−1 is well-behaved, by Lemma 8.6, F∗ is well-behaved.
For each (A,B) ∈ Si with |V (A) − V (B)| ≥ min{t, 2}, let [XA, YA] be a splitter of

(A, vA,0, vA,1). Recall that (AXA
, vA,0, vA,1YA

) and (AYA
, vA,0XA

, vA,1) are the truncations of

(A, vA,0, vA,1) with respect to [XA, YA].
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By possibly further adding a new element into Q and further label ri by using this
element, we may assume that for each i ≥ 1, φi(ri) is an element in Q incomparable with all
other elements in Q, and φi(v) 6= φi(ri) for every v ∈ V (Di).

Let Q1 = {((D, s, t), φ) : (D, s, t) ∈ At, φ : V (D) → Q}. Let �1 be the simulation
relation on Q1. By Lemma 6.8, (Q1,�1) is a well-quasi-order. Let (Q2,�2) be the well-
quasi-order obtained from (Q1,�1) and ([3],=) by taking Cartesian product. Let (Q3,�3)
be the well-quasi-order obtained from (Q,≤Q) and (Q2,�2) by taking disjoint union.

For i ≥ 1, define φ′
i to be a function with domain V (D′

i) as follows.

• If v ∈ V (D′
i) − {vA,L, vA,M , vA,R : (A,B) ∈ Si with |V (A) − V (B)| ≥ min{t, 2}}, then

define φ′
i(v) = φi(v).

• If v = vA,M for some (A,B) ∈ Si with |V (A) − V (B)| ≥ min{t, 2}, then define
φ′
i(v) = (((A, vA,0, vA,1), φi|V (A)), 1).

• If v = vA,L for some (A,B) ∈ Si with |V (A)− V (B)| ≥ min{t, 2}, then define φ′
i(v) =

(((AXA
, vA,0, vA,1YA

), φi|XA
), 2).

• If v = vA,R for some (A,B) ∈ Si with |V (A)− V (B)| ≥ min{t, 2}, then define φ′
i(v) =

(((AYA
, vA,0XA

, vA,1), φi|YA
), 3).

By Lemma 6.4, the image of φ′
i for each i is contained in Q3.

Since F∗ is well-behaved, there exist 1 ≤ j < j′ and a strong immersion embedding η from
(D′

j, r
′
j) to (D

′
j′ , r

′
j′) such that φ′

j(v) �3 φ
′
j′(η(v)) for every v ∈ V (D′

j). By the definition of φ′
i,

there exist injections ιL, ιM and ιR from {A : (A,B) ∈ Sj with |V (A)− V (B)| ≥ min{t, 2}}
to {A′ : (A′, B′) ∈ Sj′ with |V (A′) − V (B′)| ≥ 2} such that for every (A,B) ∈ Sj with
|V (A)− V (B)| ≥ min{t, 2},

• η(vA,L) = vιL(A),L, η(vA,M) = vιM (A),M , η(vA,R) = vιR(A),R, and

• there exist

– a strong immersion embedding ηA,L from (AXA
, vA,0, vA,1YA

) to (ιL(A)XιL(A)
, vιL(A),0,

vιL(A),1YιL(A)
) such that φj(v) ≤Q φj′(ηA,L(v)) for every v ∈ XA,

– a strong immersion embedding ηA,M from (A, vA,0, vA,1) to (ιM(A), vιM (A),0, vιM (A),1)
such that φj(v) ≤Q φj′(ηA,M(v)) for every v ∈ V (A), and

– a strong immersion embedding ηA,R from (AYA
, vA,0XA

, vA,1) to (ιR(A)YιL(A)
,

vιR(A),0XιR(A)
, vιR(A),1) such that φj(v) ≤Q φj′(ηA,R(v)) for every v ∈ YA.

For (A,B) ∈ Sj with |V (A)− V (B)| ≥ min{t, 2}, we say that (A,B) is loose if ιL(A) 6=
ιR(A); otherwise we say that (A,B) is tight. Note that if (A,B) is tight, then ιM(A) =
ιL(A) = ιR(A) and η(vA,M) = vιL(A),M = vιR(A),M .

Define η∗ to be a function whose domain is the union of V (Dj) and a subset of E(Dj)
such that the following hold.

• If v ∈ V (Dj) ∩ V (D′
j), then define η∗(v) = η(v).
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• If v ∈ V (A)− V (B) for some (A,B) ∈ Sj with |V (A)− V (B)| ≥ min{t, 2}, then

– if (A,B) is tight, then define η∗(v) = ηA,M(v), and

– if (A,B) is loose, then

∗ if v ∈ XA − {vA,0}, then define η∗(v) = ηA,L(v), and

∗ if v ∈ YA − {vA,1}, then define η∗(v) = ηA,R(v).

• If e ∈ E(Dj) ∩ E(D
′
j) and η(e) ⊆ Dj′ , then define η∗(e) = η(e).

• If e ∈ E(A) with both ends in XA − {vA,0} for some loose (A,B) ∈ Sj, then define
η∗(e) = ηA,L(e).

• If e ∈ E(A) with both ends in YA − {vA,1} for some loose (A,B) ∈ Sj, then define
η∗(e) = ηA,R(e).

• If e ∈ E(A) with both ends in V (A) − {vA,0, vA,1} for some tight (A,B) ∈ Sj, then
define η∗(e) = ηA,M(e).

Note that φj(v) ≤Q φj′(η
∗(v)) for every v ∈ V (Dj). Recall that φi(v) is incomparable with

φi(ri) for every i ≥ 1 and v ∈ V (Di). So η
∗(rj) = rj′ . Moreover, it is straightforward to see

that for every directed edge e of Dj, say from u to v, with η∗(e) is defined, η∗(e) is a directed
path from η∗(u) to η∗(v) internally disjoint from η∗(V (Dj)); and for distinct directed edges
e, e′ of Dj with η

∗(e), η∗(e′) defined, η∗(e) and η∗(e′) are edge-disjoint.
To prove this lemma, it suffices to show that we can further define η∗(e) for the rest of

edges of e ∈ E(Dj) to extend η∗ to a strong immersion embedding from (Dj, rj) to (Dj′ , rj′).
Note that every edge e of Dj for which η

∗(e) was not defined satisfies one of the following:

(i) e ∈ E(Dj) ∩ E(Dj′) and η(e) 6⊆ Dj′ .

(ii) e ∈ E(A) for some loose (A,B) ∈ Sj, and e is between XA and YA.

(iii) e ∈ E(A) for some loose (A,B) ∈ Sj, and e is incident with exactly one of vA,0 or vA,1.

(iv) e ∈ E(A) for some tight (A,B) ∈ Sj, and e is incident with exactly one of vA,0 or vA,1.

(v) e ∈ E(A) for some tight (A,B) ∈ Sj, and e is from vA,0 to vA,1.

For each (A′, B′) ∈ Sj′ with |V (A′)−V (B′)| ≥ min{t, 2}, we say that an edge e ∈ E(D′
j)

is (A′, B′)-free if η(e) contains all vertices in {vA′,L, vA′,M , vA′,R} as internal vertices.

Claim 1: For each (A′, B′) ∈ Sj′ with |V (A′)−V (B′)| ≥ min{t, 2}, there exists an injection
from the set of (A′, B′)-free edges of D′

j to a set of edge-disjoint directed paths in A′ ⊆ D′
j′

from vA′,0 to vA′,1 internally disjoint from η∗(V (Dj)).
Proof of Claim 1: We may assume that the set of (A′, B′)-free edges of D′

j is nonempty, for
otherwise we are done. Hence {vA′,L, vA′,M , vA′,R} is disjoint from η(V (D′

j)). So V (A′)−V (B′)
is disjoint from η∗(Dj). Let kA′ be the number of edges of D′

j′ between vA′,L and vA′,M . So
there are kA′ edge-disjoint paths in A′ from vA′,0 to vA′,1 by the definition of the (Sj′ , t)-
compression. In addition, η maps each (A′, B′)-free edge of D′

j to a path containing an edge
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between vA′,L and vA′,M , so there are at most kA′ (A′, B′)-free edges. Therefore, there exists
an injection from the set of (A′, B′)-free edges of D′

j to a set of edge-disjoint directed paths
in A′ from vA′,0 to vA′,1 internally disjoint from η∗(V (Dj)). �

For each edge e of D′
j, the free-substitution of e is the directed path in Dj′ ∪ D′

j′ ob-
tained from η(e) by for each (A′, B′) ∈ Sj′ in which e is (A′, B′)-free, replacing the subpath
vA′,0vA′,LvA′,MvA′,RvA′,1 of η(e) by the image of e under the injection mentioned in Claim 1.
Note that the free-substitution of e can be edge-partitioned into a directed path in Dj′ and
at most two directed paths in D′

j′ − E(Dj′).
For each edge e of Dj satisfying (i), define η∗(e) to be the free-substitution of e. Since e

satisfies (i), η∗(e) is a directed path in Dj′ . Then it is clear that the function η∗ defined so
far does not violate any condition for being a strong immersion embedding from (Dj, rj) to
(Dj′ , rj′). It remains to define η∗(e) for edges e satisfying (ii), (iii), (iv) or (v).

For each (A,B) ∈ Sj with |V (A)− V (B)| ≥ min{t, 2}, we define the following:

• if (A,B) is loose, then let ηA,X = ηA,L and ηA,Y = ηA,R,

• if (A,B) is tight, then let ηA,X = ηA,M and ηA,Y = ηA,M ,

• let πA,L be a bijection from the set of edges of A incident with vA,0 to the set of edges
of D′

j between vA,0 and vA,L, (note that this bijection exists since these two sets have
the same size by the definition of the (Sj, t)-compression), and

• let πA,R be a bijection from the set of edges of A incident with vA,1 to the set of edges
of D′

j between vA,1 and vA,R.

Now we define η∗(e) for edges e satisfying (iii), (iv) or (v). For each edge e ∈ E(A) for
some (A,B) ∈ Sj with |V (A)− V (B)| ≥ min{t, 2},

• if e is incident with vA,0 but not incident with vA,1, then define η∗(e) to be the di-
rected path in Dj′ obtained from the free-substitution of πA,L(e) by replacing the edge
vιL(A),0vιL(A),L = vιL(A),0η(vA,L) by the directed path ηA,X(e),

• if e is incident with vA,1 but not incident with vA,0, then define η∗(e) to be the di-
rected path in Dj′ obtained from the free-substitution of πA,R(e) by replacing the edge
vιR(A),RvιR(A),1 = η(vA,R)vιR(A),1 by the directed path ηA,Y (e), and

• if e is from vA,0 to vA,1 and (A,B) is tight, then define η∗(e) to be the directed path in
Dj′ obtained by concatenating the following three directed paths in Dj′ :

– the directed path obtained from the free-substitution of πA,L(e) by deleting the
vertex vιL(A),L = η(vA,L),

– ηA,M(e), and

– the directed path obtained from the free-substitution of πA,R(e) by deleting the
vertex vιR(A),R = η(vA,R).

37



Then it is clear that the function η∗ defined so far does not violate any condition for being
a strong immersion embedding from (Dj, rj) to (Dj′ , rj′). It suffices to define η∗(e) for edges
e satisfying (ii).

A middle path in D′
j is a directed path of the form vA,LvA,MvA,R for some (A,B) ∈ Sj with

|V (A) − V (B)| ≥ min{t, 2}. For each loose (A,B) ∈ Sj, there exists a bijection πA,M from
the set of edges of A between XA and YA and a set of edge-disjoint middle paths contained
in D′

j[vA,L, vA,M , vA,R], as these two sets have the same size.
For each (A′, B′) ∈ Sj′ with |V (A′) − V (B′)| ≥ min{t, 2}, we say that a middle path P

in D′
j is (A′, B′)-semifree if η maps P to a directed path containing both vA′,L and vA′,R as

internal vertices.

Claim 2: For each (A′, B′) ∈ Sj′ with |V (A′)−V (B′)| ≥ min{t, 2}, there exists an injection
from the set of (A′, B′)-semifree internal paths in D′

j to a set of edge-disjoint directed paths
in A′ ⊆ D′

j′ from vA′,0 to vA′,1 internally disjoint from η∗(V (Dj)).
Proof of Claim 2: We may assume that the set of (A′, B′)-semifree middle paths of D′

j

is nonempty, for otherwise we are done. Hence {vA′,L, vA′,R} is disjoint from η(V (D′
j)). So

V (A′)− V (B′) is disjoint from η∗(Dj). Let kA′ be the number of edges of D′
j′ between vA′,L

and vA′,M . So there are kA′ edge-disjoint paths in A′ from vA′,0 to vA′,1 by the definition of
the (Sj′ , t)-compression. In addition, η maps each (A′, B′)-semifree middle path of D′

j to a
path containing an edge between vA′,L and vA′,M , so there are at most kA′ (A′, B′)-semifree
middle paths. Therefore, there exists an injection from the set of (A′, B′)-semifree middle
paths in D′

j to a set of edge-disjoint directed paths in A′ from vA′,0 to vA′,1 internally disjoint
from η∗(V (Dj)). �

For each middle path P with edges e1, e2 in D′
j, the semifree-substitution of P is the

directed path in Dj′ ∪ D′
j′ obtained from η(e1) ∪ η(e2) by for each (A′, B′) ∈ Sj′ in which

P is (A′, B′)-semifree, replacing the subpath vA′,0vA′,LvA′,MvA′,RvA′,1 of η(e1) ∪ η(e2) by the
image of P under the injection mentioned in Claim 2.

If e is an edge of A between XA and YA for some loose (A,B) ∈ Sj, then ηA,X(e) contains
exactly one edge between XιL(A) and YιL(A). Since there are kA′ edge-disjoint paths in A′

between vA′,0 and vA′,1, where A
′ = ιL(A) and kA′ is the number of edges of A′ between XA′

and YA′ , we can extend ηA,X(e), for each e of A between XA and YB, by concatenating a
path in A′[YA′ ] to obtain a directed path Pe,L from ηA,X(ve) to vA′,1, where ve is the tail of
e, such that if e1, e2 are distinct edges of A between XA and YA, then Pe1,L and Pe2,L are
edge-disjoint.

Similarly, for each loose (A,B) ∈ Sj and edge e of A between XA and XB, we can
concatenate ηA,Y (e) with a path in A′[XA′ ], where A′ = ιR(A), to obtain a directed path
Pe,R from vA′,0 to ηA,Y (ve), where ve is the head of e such that if e1, e2 are distinct edges of
A between XA and YA, then Pe1.R and Pe2,R are edge-disjoint.

For each loose (A,B) ∈ Sj and each e of A between XA and YA, we define the following:

• Define Pe to be the directed path obtained by concatenating the following three directed
paths:

– Pe,L,

– the directed path obtained from the semifree-substitution of πA,M(e) by deleting
vιL(A),L, vιL(A),M , vιL(A),R, vιR(A),L, vιR(A),M , vιR(A),R, and
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– Pe,R.

• If e is not incident with vA,0 nor vA,1, then define η∗(e) = Pe.

• If e is from vA,0 to vA,1, then define η∗(e) to be the directed path obtained by concate-
nating the following three directed paths:

– the directed path obtained from the free-substitution of πA,L(e) by deleting vιL(A),L,

– Pe, and

– the directed path obtained from the free-substitution of πA,R(e) by deleting vιR(A),R.

Note that it extends the domain of η∗ to be a set containing E(Dj). It is clear that η
∗ is a

strong immersion embedding from (Dj, rj) to (Dj′ , rj′). This completes the proof.

Theorem 8.8 For every positive integer t, F∗
t is well-behaved.

Proof. By Lemma 8.7, F ′
t is well-behaved. By Lemma 8.3, Ft,t+1 is well-behaved. By

Lemma 8.2, F∗
t is well-behaved.

Now we are ready to prove Theorem 1.1. The following is a restatement.

Corollary 8.9 Let (Q,≤Q) be a well-quasi-order. Let t be a positive integer. For each i ∈ N,
let Di be a digraph with loops allowed such that there exists no t-alternating path in Di, and
let φi : V (Di) → Q be a function. Then there exist 1 ≤ j < j′ and a strong immersion
embedding η from Dj to Dj′ such that φj(v) ≤Q φj′(η(v)) for every v ∈ V (Dj).

Proof. Let (Q′,�) be the well-quasi-order obtained by the Cartesian product of (Q,≤Q) and
(N ∪ {0},≤). For each i ∈ N, let D′

i be the digraph obtained from Di by deleting all loops,
and let φ′

i : V (D′
i) → Q′ be the function such that for every v ∈ V (D′

i), φ
′
i(v) = (φi(v), ℓv),

where ℓv is the number of loops of Di incident with v. By Theorem 8.8, there exist 1 ≤ j < j′

and a strong immersion embedding η from D′
j to D′

j′ such that φ′
j(v) � φ′

j′(η(v)) for every
v ∈ V (D′

j). Hence for every v ∈ V (Dj), the number of loops of Dj incident with v is at most
the number of loops of Dj′ incident with η(v). Therefore, we can extend η to be a strong
immersion embedding from Dj to Dj′ such that φj(v) ≤Q φj′(η(v)) for every v ∈ V (Dj).
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