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Abstract

Nash-Williams’ Strong Immersion Conjecture states that graphs are well-quasi-
ordered by the strong immersion relation. That is, given infinitely many graphs, one
graph contains another graph as a strong immersion. In this paper we study the
analogous problem for directed graphs. It is known that digraphs are not well-quasi-
ordered by the strong immersion relation, but for all known such infinite antichains,
paths that change direction arbitrarily many times can be found. This paper proves
that the converse statement is true: for every positive integer k, the digraphs that
do not contain a path that changes direction k£ times are well-quasi-ordered by the
strong immersion relation, even when vertices are labelled by a well-quasi-order. This
result is optimal for classes of digraphs closed under taking subgraphs since paths that
change direction arbitrarily many times with vertex-labels form an infinite antichain
with respect to the strong immersion relation.
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1 Introduction

In this paper, graphs and directed graphs are finite, loopless and allowed to have parallel
edges, unless otherwise specified.

A quasi-ordering is a reflexive and transitive binary relation. A quasi-ordering < on
a set S is a well-quasi-ordering if for every infinite sequence ay, as, ... over S, there exist
1 <i < j such that a; < a;. We say that @ = (S, <) is a quasi-order (or a well-quasi-order,
respectively) if < is a quasi-ordering (or a well-quasi-ordering, respectively) on S.

The study of well-quasi-ordering on graphs can be traced back to a conjecture of Vazsonyi
proposed in 1940s: Trees are well-quasi-ordered by the topological minor relation. We say
that a graph G contains another graph H as a topological minor if some subgraph of G is iso-
morphic to a subdivision of H. This conjecture was proved by Kruskal [6] and independently
by Tarkowski [17]. Another conjecture proposed by Vazsonyi states that subcubic graphs are
well-quasi-ordered by the topological minor relation. This conjecture is significantly more
difficult than the previous conjecture on trees. The only known proof of this conjecture is
via the celebrated Graph Minor Theorem of Robertson and Seymour [15].

A graph G contains another graph H as a minor if H is isomorphic to a graph that
can be obtained from a subgraph of G by repeatedly contracting edges. The Graph Minor
Theorem [15] states that graphs are well-quasi-ordered by the minor relation. It is one of
the deepest theorems in graph theory, and its proof spans over around 20 papers. As for
subcubic graphs, the minor relation is equivalent to the topological minor relation. The
aforementioned conjecture of Véazsonyi on subcubic graphs is then an immediate corollary
of the Graph Minor Theorem.

One strength of well-quasi-ordering is an implication of the existence of a finite charac-
terization of a property that is closed under a well-quasi-ordering. A property is closed under
a quasi-ordering < if an element a satisfies this property implies that every element b with
b = a also satisfies this property. For a property P that is closed under a quasi-ordering
=, we denote the set of <-minimal elements that do not satisfy P by m(P). If < is a well-
quasi-ordering, then m(P) is finite since m(P) is an antichain with respect to <. Note that
one can determine whether a given input element x satisfies P or not by testing whether
y = x for every y € m(P). So P is uniquely determined by m(P). And if |m(P)| is finite,
and if for each fixed y € m(P), testing whether an input element z satisfies y < x or not can
be done in polynomial time, then one can decide whether x satisfies P or not in polynomial
time.

This leads to prominent applications of the Graph Minor Theorem. It implies that every
minor-closed property (such as the embeddability in any fixed surface, linkless embeddability
or knotless embeddability etc.) can be characterized by finitely many graphs. As Robertson
and Seymour [14] also proved that for any fixed graph H, deciding whether an input graph G
contains H as a minor or not can be done in polynomial time, the discussion in the previous
paragraph implies that every minor-closed property can be decided in polynomial time.

Due to the power of well-quasi-ordering and the success of the Graph Minor Theorem,
one might consider whether the Graph Minor Theorem can be generalized. One possible
generalization would be to extend the result to infinite graphs. However, it was disproved by
Thomas [18]. But it remains open whether the Graph Minor Theorem is true for countable
graphs.



Another possible generalization is to extend the Graph Minor Theorem to relations that
are finer than the minor relation. The topological minor relation is an example, as if a graph
G contains another graph H as a topological minor, then G contains H as a minor. Hence
one might ask whether Vazsonyi’s two conjectures on topological minors can be extended to
all graphs. However, it is not true, and there are many different constructions for infinite
antichains with respect to the topological minor relation. Robertson conjectured a common
generalization of the two Véazsonyi’s conjecture in 1980s. This conjecture was proved by the
first author and Thomas [7]. See [7, 9] for more details.

Though the topological minor relation does not well-quasi-order all graphs, it is still possi-
ble to extend both Vazsonyi’s conjectures to all graphs. Nash-Williams conjectured that the
weak immersion relation [11] and the strong immersion relation [12] are well-quasi-ordering
on graphs. Both of these conjectures imply both Vazsonyi’s conjectures as for trees and
subcubic graphs, the weak and strong immersion relations are equivalent to the topological
minor relation. Nash-Williams’ Weak Immersion Conjecture was proved by Robertson and
Seymour [16] by strengthening the Graph Minor Theorem. The Strong Immersion conjec-
ture remains open!, and progress on it seems rare in the literature. It can be easily shown
that the conjecture is true for graphs of bounded maximum degree by using the result on
weak immersion (see [8]). Andreae [1] proved the conjecture for the class of simple graphs
satisfying that either they do not contain Ks 3 as a strong immersion, or all blocks are either
complete graphs, cycles, or balanced complete bipartite graphs.

Another possible extension of the Graph Minor Theorem is to consider directed graphs.
There are different notions of minors for directed graphs. We only consider butterfly minors
here. (See [8] for a survey about well-quasi-ordering on graphs, including results for different
minor containments for digraphs.) Again, the butterfly minor relation does not well-quasi-
order all digraphs. Every construction of infinite antichains involves paths that change
direction arbitrarily many times. Chudnovsky, the second author, Oum, Seymour and Wollan
(see [10]) proved that this obstruction is the only obstruction: for every positive integer k,
digraphs whose underlying graphs do not contain a path that change direction k£ times are
well-quasi-ordered by the butterfly minor relation.

This paper addresses a combination of two directions mentioned above: we consider the
strong immersion relation on digraphs. We need some notions to formally state our result.

Let G and H be digraphs possibly with loops. A function f is a strong immersion
embedding from H to G if the following hold.

e f maps V(H) to V(G) injectively.

e f maps each non-loop edge of H with tail x and head y to a directed path in G from
f(z) to f(y); f maps each loop of H with end x to a directed cycle passing through

f(@).
o If 1,5 are different edges of H, then f(e;) and f(ez) are edge-disjoint.

e For every edge e of H and every vertex v of H, if v is not an end of e, then f(v) ¢
V(f(e)).

'Robertson and Seymour believe that they had a proof of the Strong Immersion Conjecture at one time,
but even if it was correct, it was very complicated, and it is unlikely that they will write it down (see [16]).




We say that G contains H as a strong immersion if there exists a strong immersion embed-
ding from H to G.

The strong immersion relation does not well-quasi-order digraphs. A thread is a digraph
whose underlying graph is a path. A pivotin a thread is a vertex that has either in-degree two
or out-degree two. For an integer k, a k-alternating path is a thread that contains exactly k
pivots. If for each ¢ € N, G is the digraph obtained from an ¢-alternating path by attaching
two leaves to each end of the path, then it is easy to see that {G; : i € N} forms an infinite
antichain with respect to the strong immersion relation.

In fact, the alternating paths already form an infinite antichain if vertices are allowed to
be labelled. The main result of this paper proves the converse statement: forbidding long
alternating paths is sufficient to ensure well-quasi-ordering even when vertices are labelled.

Theorem 1.1 Let k be a positive integer. Let (Q),<g) be a well-quasi-order. For every
1 € N, let D; be a digraph with loops allowed and with no k-alternating path, and let ¢; :
V(D;) — Q be a function. Then there exist 1 < j < j' and a strong immersion embedding n
from D; to Dj such that for every v € V(D;), ¢;(v) <g ¢;/(n(v)).

Note that Theorem 1.1 is optimal when () contains two non-equivalent elements. That
is, it is the case when there exist elements x and y of Q with x £g y. For every ¢ € N, let
D; be an i-alternating path, and let ¢; be the function that maps the ends of D; to x and
maps all other vertices to y. Clearly, there exist no strong immersion embedding from D; to
D; preserving the labels on the vertices, for any @ # j.

We remark that even though Theorem 1.1 is optimal, it is known that some class of
digraphs with arbitrarily long alternating paths are well-quasi-ordered by the strong im-
mersion relation. For example, Chudnovsky and Seymour [3] proved that tournaments are
well-quasi-ordered by the strong immersion relation. Note that the class of digraphs in The-
orem 1.1 is closed under taking subgraphs, but the class of tournaments is not. The result
for tournaments was extended to semicomplete digraphs by Barbero, Paul and Pilipczuk [2].

1.1 Organization of the paper

We shall prove Theorem 1.1 by induction on k. The proof of Theorem 1.1 uses a strength-
ening of an idea in the work of Chudnovsky, the second author, Oum, Seymour and Wollan
(see [10]) for butterfly minors. Roughly speaking, it shows that if D is a digraph with no
k-alternating path, then one can delete at most f(k) vertices to kill all (k — 1)-alternating
paths in D not contained in a “series-parallel digraph with two roots”. This suggests that
we have to prove well-quasi-ordering results on those series-parallel digraphs with two roots
with respect to the strong immersion relation preserving the roots. In general, proving
well-quasi-ordering for strong immersion preserving certain “roots” is required in many cir-
cumstances of this paper. It is significantly more complicated and requires more tricks than
the analogous work for butterfly minors, even when dealing with the case of series-parallel
digraphs.

This paper is organized as follows. In Section 2 we review some well-known results about
well-quasi-ordering that will be used in this paper. In Section 3 we prove the case k = 1
of Theorem 1.1. We introduce the notion of series-parallel triples in Section 4. It is the



formal form of the “series-parallel digraphs with two roots” mentioned above. In Section 5,
we prove a well-quasi-ordering result for the tree-like digraphs formed by repeatedly gluing
those series-parallel triples. It is a crucial step toward the result for well-quasi-ordering
series-parallel triples preserving roots which will be proved in Section 6. Then in Section
7, we prove the tools that allow us to kill all (kK — 1)-alternating paths not hidden in a
series-parallel triple mentioned above, and study the relationships between all series-parallel
triples. Finally, we prove Theorem 1.1 in Section 8.

1.2 Notation

For a graph (or digraph, respectively) G and a subset S of V(G), we denote G[S] by the
graph (or digraph, respectively) induced on S; if T C V(G), then G — T is defined to be
G[V(G) — T1; for a vertex v of G, G — v is defined to be G — {v}.

Let f be a function with domain X. If S is a subset of X, then f(S) is defined to be the
set {f(s) : s € S}. If S is a sequence (s, Sg, ..., s;) over X, then f(S) is defined to be the

sequence (f(s1), f(s2), -y f(Sk))-
For every positive integer k, we define [k] to be the set {1,2,...,k}.

2 Preliminary about well-quasi-ordering

In this section, we review some known useful tools about well-quasi-ordering.

Let (@Q1,=1) and (Q2, <2) be well-quasi-orders. We say that (@, <) is the well-quasi-
order obtained by taking the disjoint union of (Q1, =1) and (Q2, =2) if @ is a disjoint union
of a copy of @1 and a copy of )y such that for z,y € @, x = y if and only if either
x,y € Q1 with x X y, or z,y € Q2 with x <5 y. We say that (Q’, X’) is the well-quasi-order
obtained by the Cartesian product of (Q1,=1) and (Q2,=X2) if Q" = Q1 X Q2 such that for
(1,91), (22,92) € Q' (x1,91) 2 (w2,92) if and only if z; =1 25 and y; =2 yo.

Let (@, <g) be a well-quasi-order. We say that the (@), X') is the well-quasi-order ob-
tained from (Q,<g) by Higman’s Lemma if Q' is the set of finite sequences over @) such
that for elements (aq,as,...,a,) and (by, by, ..., b,) of Q' (a1, a9, ...,an) =<' (b1,bs,...,b,) if
and only if there exists a strictly increasing function ¢ : [m| — [n] such that a; <¢ b, for
every i € [m]. Note that (@', <) is indeed a well-quasi-order, as shown by a famous result
of Higman [4].

Another known result that we will use in this paper is a strengthening of Kruskal’s Tree
Theorem proved by Kriz [5]. We need the following definition to formally state the theorem.

A homeomorphic embedding from a digraph H possibly with loops to a digraph G possibly
with loops is a function 7 satisfying the following.

e n maps V(H) to V(G) injectively.

e 1) maps each loop of H with end v to a directed cycle of G passing through n(v); n
maps each non-loop edge H with tail  and head y to a directed path in G from n(z)

to 1(y).

e If ey, 9 are distinct edges, then n(e;) Nn(es) = nler Ney).



e If a vertex v of H is not incident with an edge e of H, then n(v) & n(e).

A rooted tree is a directed graph whose underlying graph is a tree such that all but exactly
one vertex have in-degree one. We denote the first infinite ordinal number by w. We will
only need the following special case of Kriz’s theorem.

Theorem 2.1 ([5]) Let (Q, =) be a well-quasi-order. For each positive integer i, let T; be
a rooted tree, ¢; : V(T;) = Q and u; : E(T;) - NU{0,w}. Then there exist 1 < i < j such
that there exists a homeomorphic embedding n from T; to T such that the following hold.

1. For every v € V(T;), ¢;(v) < ¢;(n(v)).
2. For every e € E(T;), if f is an edge in n(e), then p;(e) < p;(f).

3 1-alternating paths

For a digraph D, a source in D is a vertex of in-degree 0, and a sink in D is a vertex of
out-degree 0.

Lemma 3.1 Let D be a digraph whose underlying graph is connected. If D has no I-
alternating path, then either |V (D)| < 2, or D is obtained by a directed path or a directed
cycle by duplicating edges arbitrarily many times.

Proof. We may assume that D contains at least three vertices, for otherwise we are done.
Let P be a thread in D with maximum length. Since the underlying graph of D is connected
and has at least three vertices, P contains at least three vertices. Denote P by vjvs...v,
where k = |V(P)|. By symmetry, we may assume that v; is a source of P.

By the maximality of P, v; and v; have no neighbor in D not contained in P. Since D
has no 1-alternating path, P is a directed path, and v; has no neighbor in D not contained
in P for every 2 < i < k — 1. Hence P contains all vertices of D.

Let e € E(D) — E(P) with tail v; and head v;. Since D is loopless, ¢ # j. Since D has
no l-alternating path, either j =i+ 1, or (i,5) = (k,1). This proves the lemma. m

Lemma 3.2 Let (Q, <) be a well-quasi-order. For each i € N, let D; be a directed graph
with no 1-alternating path, and let ¢; : V(D;) — Q. Then there exist 1 <i < j and a strong
immersion embedding n from D; to D; such that ¢;(v) < ¢;(n(v)) for every v € V(D;).

Proof. By Lemma 3.1, each D; either contains at most two vertices or can be obtained from
a directed path or a directed cycle by duplicating edges arbitrarily many times. It is easy if
there are infinitely many indices ¢ such that D; containing at most two vertices. So we may
assume that every D; contains at least three vertices, and either every D; is obtained from
a directed path by duplicating edges arbitrarily many times, or every D; is obtained from a
directed cycle by duplicating edges arbitrarily many times.

For each 7, let W; be a Hamiltonian directed path of D;. For each ¢, let x;, y; be the ends
of W; such that W; is from z; to y;, and let ¢; be the number of directed edges in D; between
y; and x;. Let (Qq,=1) be the well-quasi-order obtained from (@, <) and (NU {-1,0}, <)

6



by taking Cartesian product. For each i, let ¢} : V(D;) — Q1 such that ¢(v) = (¢;(v), —1)
for every v € V(D;) — {xi,y:}, and ¢}(v) = (¢s(v), 4;) for v € {x;,y;}. For each i and each
e € E(W;), define p;(e) to be the number of edges of D! with tail and head equal to e.

Since each W; is a directed path, it is a rooted tree rooted at x;. By Theorem 2.1,
there exist 7,5 with 1 < 7 < j and a homeomorphic embedding 1 from W; to W; such
that ¢)(v) =1 ¢}(n(v)) for every v € V(D;), and p;(e) < pu;(f) for every e € E(W;) and
1 € E(n(e)).

Since ¢; > 0 > —1 and ¢;(x;) =1 ¢}(n(z:)), n(w;) € {z;,y;}. Similarly, n(y;) € {z;,v;}.
Since W; is from z; to y;, and W; is from z; to y;, we know that n(z;) = z; and n(y;) = y;.
In addition, since ¢;(x;) =1 ¢}(n(x:)) = ¢}(x;), €i < £;. So there are £; > {; directed edges
in D; from y; to x;. Moreover, for any directed edge e = (¢, y.) in W;, since p;(e) < p;(f)
for every f € E(n(e)), we know that there are at least u;(e) edge-disjoint directed paths in
D; from n(z.) to n(y.) internally disjoint from n(V'(D;)), so there exists an injection 7, from
the set of edges of D; from z. to y. to the set of those paths in D;.

Define n* to be a function with domain V(D;) U E(D;) such that

" (v) = n(v) for every v € V(D;) = V(W;),

e 1* maps the edges of D; from y; to z; to edges of D; from y; = n*(y;) to x; = n*(x;)
injectively, and

e for each edge f of D; not from y; to x;, n*(f) = n.(f), where e is the edge of W; having
the same tail and head as f.

Then n* is a strong immersion embedding from D; to D; such that ¢;(v) =< ¢;(n*(v)) for
every v € V(D;).

4 Series-parallel triples

A separation of a graph (or a directed graph, respectively) G is an ordered pair (A, B)
of edge-disjoint subgraphs (or subdigraphs, respectively) such that AU B = G. The order
of (A,B) is [V(AN B)|.

A series-parallel triple (D, s,t) is a triple where D is a directed graph whose underlying
graph is connected and s, ¢ are distinct vertices of D such that every thread in D from s to ¢
is a directed path, and there exists no separation (A4, B) of D of order at most one such that
s,t € V(A) and V(B) —V(A) # 0. A series-parallel triple (D, s,t) is one-way if either every
thread in D is a directed path from s to ¢, or every thread in D is a directed path from ¢ to
S.

It was shown in [10, Lemma 5.2 that a one-way series parallel triple can be constructed
by a sequence of certain series operations and parallel operations. So it justifies its name.
The following simple lemma shows that a series-parallel triple can also be constructed by
series and parallel operations even though it is not one-way. It is likely a folklore result, but
we include it in this paper for completeness.

Lemma 4.1 If (D, s,t) is a series-parallel triple, then either



1. D consists of an edge with ends s and t, or

2. there exist series-parallel triples (D1, s1,t1) and (Da, $o,t2) with |E(Dy)| < |E(D)| and
|E(Ds)| < |E(D)| such that either

(a) s = s1, t = tg, and D is obtained from the disjoint union of Dy and Dy by
identifying t, and so, or

(b) D is obtained from the disjoint union of Dy and Dy by identifying sy and ss into
s and identifying t1 and ty into t.

Proof. We may assume that D contains at least two edges for otherwise we are done. When
|[V(D)| = 2, Statement 2(b) holds. So we may assume that D contains at least three vertices.

We first assume that there exists a separation (A, B) of D of order one such that s €
V(A) —V(B) and t € V(B) — V(A). Let z be the vertex in V(AN B). Since (D, s,t)
is a series-parallel triple and z & {s,t}, D — z has exactly two components, where one is
A — z and the other is B — z, for otherwise there exists a separation (A’, B") of D such that
{s,t} C V(A") and B’ contains a component of D — z disjoint from s and ¢, contradicting
that (D, s,t) is a series-parallel triple. Since every thread in A between s and z can be made
a thread in D between s and ¢t by concatenating a thread between z and ¢, every thread in
A between s and z is a directed path. And there exists no separation (A’, B") of A of order
at most one such that {s,z} C V(A') and V(B') — V(A’) # 0, for otherwise (A'U B, B') is a
separation of D of order at most one such that {s,t} C V(A'UB) and V(B')-V(A'UB) # 0,
contradicting that (D, s,t) is a series-parallel triple. So (A, s, z) is a series-parallel triple.
Similarly, (B, z,t) is a series-parallel triple. Hence Statement 2(a) holds.

Therefore we may assume that there exists no separation (A, B) of D of order one such
that s € V(A) — V(B) and t € V(B) — V(A). Since |V (D)| > 3, there exist two internally
disjoint threads P;, P, in D between s and t. Since (D, s,t) is a series-parallel graph, Py, P,
are directed paths in D, and there exists no thread in D between V(P) —{s,t} and V() —
{s,t}. Hence there exists a separation (A, B) of D such that V(ANB) = {s,t} and E(P;) C
E(A) and E(P,) C E(B). Since (D, s,t) is a series-parallel triple, there exists no separation
(A', B') of D of order at most one such that {s,t} C V(A’) and V(B') — V(A) # 0, so
(A,s,t) and (B, s,t) are series-parallel triples. So Statement 2(b) holds. =

For a series-parallel triple (D, s,t), we say that

e (D,s,t)is series-irreducible if either |E(D)| = 1, or Statement 2(a) in Lemma 4.1 does
not hold, and

e (D,s,t) is parallel-irreducible if either |E(D)| = 1, or Statement 2(b) in Lemma 4.1
does not hold.
5 Series-parallel trees

A march is a sequence with distinct entries. A general rooted digraph is a pair (D, o),
where D is a digraph and o is a march over V(D). We call ¢ the root march of a general



rooted digraph (D, o). A rooted digraph is a pair (D,v), where D is a directed graph and
v € V(D), and we call v the root of D.

For simplicity of notations, we do not distinguish the rooted digraph (D,v) and the
general rooted digraph (D, (v)); and we do not distinguish the series-parallel triple (D, s,t)
and the general rooted digraph (D, (s,t)).

A strong immersion embedding from a general rooted digraph (H, og) to a general rooted
digraph (G, 0¢) is a strong immersion embedding 1 from H to G such that n(oy) = og.
Note that it implies that oy and og have the same length.

Let (@, =) be a quasi-order. Let (D,o) and (D’,0’) be general rooted digraphs. Let
¢ : V(D) - Q and ¢ : V(D) — @ be functions. We say that ((D',0’),¢') simulates
((D,0), ) if there exists a strong immersion embedding 1 from (D, o) to (D’,0’) such that
d(v) X ¢ (n(v)) for every v € V(D).

A set F of general rooted digraphs is well-behaved if for every infinite sequence of general
rooted digraphs (D1, 01), (Da,02), ... € F, every well-quasi-order (@), <g) and functions ¢; :
V(D;) — @ for each i > 1, there exist 1 < j < j’ such that ((D;,0;),¢;) simulates
((Dj,05), ¢;)-

A cut-vertez of a graph G is a vertex v of G such that G —v has more components than G.
A block of a graph G is a maximal subgraph B such that B does not contain any cut-vertex
of B. A block of a directed graph D is a directed subgraph whose underlying graph is a block
of the underlying graph of D.

For a rooted digraph (D, r) in which the underlying graph of D is connected, the block-
structure of (D, r) is a rooted tree T" such that the following hold.

e There exists a bipartition {L,C} of V(7).

There exists a bijection fo from C to the set that is the union of {r} and the set of
cut-vertices of the underlying graph of D.

e There exists a bijection f7, from L to the set of blocks of the underlying graph of D.
e For any v € C and B € L, v is adjacent in T" to B if and only if fo(v) € V(fL(B)).
e The vertex of T' mapped to r by f¢ is the root of T'.

For a block B’ of the underlying graph of D, a child block of B’ is a block B” of the
underlying graph of D such that V/(B") N V(B”) # () and the vertex of T" mapped to B” by
fr is a descendant of the vertex of T" mapped to B’ by fr. If B” is a child block of B’, then
we say that B’ is the parent block of B”.

Let F be a set of rooted digraphs. A rooted digraph (D, r) is a F-series-parallel tree if
the underlying graph of D is connected, and for every block B of D, the following hold.

e If B is a block of D containing r, then (B,r) € F.

e If B is a block of D not containing r, then (B,v) € F, where v is the cut-vertex of the
underlying graph of D contained in B and the parent block of B.

e For every cut-vertex v of the underlying graph of D, every thread in D from r to v is
a directed path from r to v.



Figure 1: An F-series-parallel tree. B; is a block for each ¢ € [10], and r,a,b,c,d are
cut-vertices. By, B3, Bg, By are middle blocks.

e If r € V(B), then B contains at most one cut-vertex of the underlying graph of D that
is not r; if r € V(B), then B contains at most one cut-vertex of the underlying graph
of D that is not contained in the parent block of B.

Note that if (D, r) is a F-series-parallel tree, then the vertices of the block-structure of (D, r)
corresponding to blocks are of degree at most two. Observe that for each block B of D in
which B has a child block, (B,z,y) is a series-parallel triple, where x is either r or the
cut-vertex contained in B and the parent block of B, and y is the cut-vertex contained in B
and a child block of B. In this case, we call (B,x,y) a middle block of (D,r). See Figure 1
for an example.

A splitter of a series-parallel triple (B, z,y) is an ordered partition [X,Y] of V(B) such
that x € X, y € Y and the number of edges with one end in X and one end in Y equals
the maximum number of edge-disjoint threads in B between x and y. We define Bx to
be the digraph obtained from B by identifying Y into a single vertex yy and deleting all
resulting loops, so (By,x,yy) is a series-parallel triple. Similarly, we define By to be the
digraph obtained from B by identifying X into a single vertex xx and deleting all resulting
loops, so (By,zx,y) is a series-parallel triple. Each of (Bx,z,yy) and (By,zx,y) is called
a truncation of (B, z,y) (with respect to [X,Y]). Note that if (B, z,y) is a one-way series-
parallel triple, then every truncation of (B, z,y) is a one-way series-parallel triple. If there
exists a function ¢ with domain V' (B), then let ¢x be the function with domain V' (Bx)
such that ¢x(yy) = ¢(y) and ¢x(v) = ¢(v) for every v € V(B,) — {yy}, and let ¢y be
the function with domain V(By) such that ¢y(xx) = ¢(x) and ¢y (v) = ¢(v) for every
veV(B,) —{zx}.

Let F be a family of rooted digraphs. Let (D, r) be a F-series-parallel tree, and let ¢ be
a function with domain V(D). For each middle block (B, x,y) of (D, ), we choose a splitter
(X, Yg] of (B,z,y). Let S be the set of [Xg, Yp] over all middle blocks (B, z,y) of (D,r).
The S-portrait of ((D,r), @) is a pair (T,1) such that the following hold.

e T is a tree, and 1 is a function with domain V(7T") U E(T).

e T is obtained from the block-structure of (D, r) by subdividing each edge that is not
incident with an non-root leaf once.
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o (r) = (0,0(r)).

e ) maps each node t of T' corresponding to a cut-vertex of the underlying graph of D

to (1,¢(t)).

e ) maps each node ¢ of T' corresponding to a middle block (B,z,y) of (D,r) to
(27 ((BJ xZ, y)? ¢|V(B)))

e ) maps each node t of T" that is obtained by subdividing an edge whose head corre-
sponds to a middle block (B, z, y) with splitter (Xp,Yg) € Sto (3, (Bxg, %, Yvs), ?lxz))-

e ) maps each node t of T" that is obtained by subdividing an edge whose tail corresponds
to a middle block (B, x,y) with splitter (Xp,Yp) € S to (4, (Byg, Txz,Y), ®lys))-

e ) maps each node t of T" that corresponds to a block B of D with no child block to
(5, ((B,x),¢|v(m))), where either x = r or z is the cut-vertex contained in B and the
parent block of B.

e ) maps each edge of T" incident with a node corresponding to a cut-vertex or r to w.

e ) maps each edge of T" incident with a node corresponding to a middle block (B, x,y)
to the number of edges with one end in Xg and one end in Yp.

See Figure 2 for an example.

Lemma 5.1 Let F be a well-behaved family of rooted digraphs. Let F' be the set of one-
way series-parallel triples (D, s,t) such that (D,s) € F. Let F" be the set consisting of all
series-parallel triples that are truncations of members of F'. If F' and F" are well-behaved,
then the set of F-series-parallel trees is well-behaved.

Proof. Let (Q, <g) be a well-quasi-order. For i > 1, let (D;, ;) be a F-series-parallel tree,
and let ¢; : V(D;) — Q. For each ¢ > 1 and middle block (B, x,y) of (D;,1;), let [Xp, Y5]
be a splitter of (B, z,y). For each i > 1, let S; = {[Xp, Ys] : (B,z,y) is a middle block of
(Dj,ri)}, and let (T3, 1;) be the S;-portrait of ((D;,1;), ¢;).

Let @1 be the set consisting of the pairs ((D,s,t),$) of a series-parallel triple and a
function such that there exists i such that either (D, s,t) is a middle block of (D;,r;) and
¢ = ¢ilvpy, or (D,s,t) is a truncation of a middle block (B, z,y) of (D;,r;) with respect
to [Xp,Ys] and ¢ : V(D) — @ is the function obtained from ¢; defined in the truncation.
So the simulation relation, denoted by =i, is a quasi-order defined on ;. Note that for
every ((D,s,t),¢) € Q1, (D,s,t) € FFUF". Since F' and F” are well-behaved, (Q1, <1)
is a well-quasi-order. Let (Q2, =2) be the well-quasi-order obtained by the disjoint union of
Q. <q) and (Q1, <1).

Let @3 be the set consisting of the pairs ((D,7),¢) such that there exists ¢ € N such
that D is a block of D; with no child block, r is r; (if 7, € V(D)) or the cut-vertex of
the underlying graph of D; contained in D (if r; ¢ V(D)), and ¢ = ¢;|y (). Let <3 be
the simulation relation defined on (3. Since F is well-behaved, (@3, <3) is a well-quasi-
order. Let (Q4, <4) be the well-quasi-order obtained from the disjoint union of (@3, <) and
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(3’((31XB1’r’aY31>‘¢|XBl) (3,((Bsx33,7",aY31),¢\XB3) o (37((36x3677",ay36),¢|x36)
3 1 2
(2,((B1,7,0),9lB,)) (2,((Bs,,a),¢lBg)) (2,((Bg, 7 a), ¢l Bg))
3 1 2
(4, (Bryg ryp - @) ¢lyg ) (4, (Bayg, ryp, @) Hlyp, )} g 4 ((Boyg »ryp, a) dlvg )
(1, ¢(a)) (1, ¢(0)) (1,9(c))
w
(5, (B2, a), ¢|B,)) w @ (3 (Boxpy ™ avpg)olxpy ) T
(5, ((Ba, ), 9| B,)) (5, ((Bs, b), ¢ B5)), w w (2, ((Bg, 1, a), ¢lBg))

(4, ((Boyp - rypg - a): lygy )i

(5, ((B7,¢), ¢l B;)) (5, ((Bs, c), ¢IBg)) (1, ¢(d))

5, ((B10, d), ¢l 1))
Figure 2: The S-portrait of the F-series-parallel tree in Figure 1, assuming S is given. Solid

circles and rectangles are vertices in the block-structure corresponding to cut-vertices and
blocks, respectively. Empty rectangles are the vertices obtained by subdividing edges.
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(@3, =<3). Define (@', <) to be the well-quasi-order obtained by the Cartesian product of
({07 1,2,3,4, 5}7 :) and <Q4a j4)

Note that the image of each |y (r,) is contained in @’. By Theorem 2.1, there exist
1 < j < j and a homeomorphic embedding 7 from T} to T} such that v;(v) < ¥;(n(v)) for
every v € V(T}), and ¢;(e) < 1p;/(€') for every e € E(T;) and €' € E(n(e)).

Note that by the definition of ¢; and 1/, for each middle block (B,z,y) of (Dj;,7;),
there exists a node ¢ of T; such that t corresponds to (B, z,y), and n(t) corresponds to
a middle block of (D, r;). For simplicity, for each middle block (B,z,y) of (Dj;,r;), we
write (B, x,y) to denote the middle block of (D;/, r;) corresponding to 7(t), where ¢ is the
node of T} corresponding to (B, z,y), and write n(B) to denote the first entry of n(B, z,y).
Similarly, we write n(Bx,,,yy,) and n(By,, xx,,y) to denote those series-parallel triples
corresponding to 7(t), where ¢ is the node of T with ¢;(t) = (3, (Bxz, %, yvs), ¢j|x,)) and
¥;(t) = (4, (Bys, Txp,Y)s ®jlvs)), respectively, and we write n(Bx,) and n(By,) to denote
the middle blocks of (D;, ;) such that the first entries of n(Bx,, x, yy,) and n(By,, Tx,, Y),
respectively, are obtained from n(Bx,) and n(By, ) by identifying vertices, respectively. And
for each middle block (B,z,y) of (D;,r;), we denote the corresponding strong immersion
embedding that witness v;(t) < ¢;/(n(t)) as g, nx,, Nyy, respectively, where ¢ is the node
of Tj corresponding to B, Bx,, By,, respectively.

We say that a middle block (B,xz,y) of (Dj,r;) is tight if the three nodes of T} corre-
sponding to (Bx,,,Yyy), (B,z,y) and (By,,Tx,,y) are mapped by 7 to a path in T} on
three vertices; otherwise we say (B, z,y) is loose. Note that by the definition of ¥; and 1/,
for every middle block (B, z,y) of (Dj,r;), (B,,y) is tight if and only if n(Bx,) = n(By,)-

Claim 1: Let (B, z,y) be a loose middle block of (D;, ;). Let s be the maximum number of
edge-disjoint threads in B from x to y. Let Sx be an s-element subset of the set of edges of
n(Bx,) between Xn(BxB) and Yn(BxB)- Let Sy be an s-element subset of the set of edges of
n(By,) between Xoy(By,,) and Yy(s,,). Let f be a bijection between Sx and Sy. Then there
exist s edge-disjoint directed paths in D; between X, Bxp) and Yy Byy) internally disjoint
from X, (py,) U Y, such that each path contains e and f(e) for some e € Sx.

Proof of Claim 1: Let Wy, Wy, ..., W}, (for some integer & > 2) be the blocks of Dj such
that Wy = n(Bx,), Wi = n(By,) and every thread in Dj from V(W;) to V(W) intersects
W; for every 1 < i < k. For each i € [k], let x; and y; be the distinct vertices such that each
of them is either equal to 7 or a cut-vertex of the underlying graph of D;s contained in W;;
and we assume that z; is closer to 7 than y;. Let u;, us, ...us be the ends of the edges in Sy
contained in Xn(BxB)' Let vy, vq, ...vs be the ends of the edges in Sy contained in Yn(ByB)' Note
that uy,us, ..., us are not necessarily distinct, and vy, vs, ..., v5 are not necessarily distinct.
Note that the two edges of 7} incident with the node of 7} corresponding to (B, x,y) are
mapped to s by ;. So every edge of T} incident with a node of T} corresponding to one
of Wy, Wy, ..., W}, is mapped to a number at least s by ;. Hence there exist s edge-disjoint
directed paths My, My, ..., My in Dj between y; to xj internally disjoint from y; and z.
Since (W1, z1,y1) is a one-way series-parallel triple, and [Xn(BxB)’Yn(BxB)] is a split-
ter of (Wy,x1,11), there exist edge-disjoint directed paths in W from z; to y; such that
cach path intersects exactly one edge between X, 5, ) and Yyp, ). So s of them inter-
sects Sx. Hence the subpaths Uy, Us,...,U, of those s paths are s edge-disjoint directed
paths in Wil[{ui, ug, ..., us} UYypy )] between {u1,us, ..., us} and y;. Similarly, there exist
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s edge-disjoint directed paths U7, Us, ..., Uy in Wi[Xyp,, ) U {v1, v2, ..., vs}] between xj, and
{Ul, V2, ...y US}.

By symmetry, we may denote the elements of Sx by ey, es, ..., es and the elements of Sy
by €/, e, ..., €. such that for every i € [s], f(e;) = €}, U; contains e; and U/ contains e}. Hence
Uy UM, UU, U, UM, UU;,...,Us UM, UU. are desired directed paths in Dj,. O

Claim 2: Let (B, z,y) be a loose middle block of (Dj,r;). Let S = {ey,ea,...,e5} be the
set of edges of B between Xp and Y. For each i € [|S]], let u; be the end of ¢; in Xp, and
let v; be the end of e; in Y. Let Wy, Wy, ..., W) (for some integer k > 2) be the blocks of
(Djr,rj) such that Wy = n(Bx,), Wi = n(By,), and every thread in D; from V(WW;) to
V(W) intersects W; for every 1 < ¢ < k. Then there exist |S| edge-disjoint directed paths
Poyy Peyy ooy Py In Ule W; internally disjoint from the image of 7x,|x, and 7y, |y, such that
for each ¢ € [|S|], P., is between nx,(u;) and 1y, (v;) containing nx,(e;) U ny, (€;).

Proof of Claim 2: Note that every edge in S is an edge of Bx,. So there are |S| edges
of n(Bx,) incident with the third entry of n(Bx,,z,yy,) contained in U|zi‘1 Nxp(ei), and
those edges are between X,](BXB) and Yn(BxB)- Let Sx be the set consisting of those |S]|
edges. Similarly, there exists a set Sy consisting of [S| edges of n(By;) between X, p, )
and Yyp,,) contained in Uill Ny, (e;). By Claim 1, there exist edge-disjoint directed paths
Zy, 2y, ..., Z|s| in Dy between Xn(BxB) and Yn(ByB) internally disjoint from Xn(BxB) U Yn(ByB)
such that for every i € [|S|], Z; intersects nx,(e;) and ny,(e;). For each i € [|S]], define
P, = nXB(e’i)[Xﬁ(BXB)] U Z; U nYB<€i>[Y7](BYB)]' Then P, P, ..., Py are desired directed
paths. [

For a block B of D; with no child block, let 1 be the strong immersion embedding from
B to B’ witnessing ;(t) < ¢;/(n(t)), where t is the node of T} corresponding to B, and B’
corresponds to 7(t).

Define n* to be a function with domain V' (D;)UE(D;) such that the following statements
hold.

e If v is a cut-vertex of D; or v = r;, then define n*(v) = n(v).

o If v is a vertex belonging to a block B of D; with no child block or belonging a tight
middle block (B, z,y) of (D;,r;), and v is not a cut-vertex of D; or r;, then define

" (v) = ns(v).

e If v is a vertex belonging to a loose middle block (B, z,y) of (Dj,r;), and v is not a
cut-vertex of D; or r;, then n*(v) = nx,(v) when v € Xp, and n*(v) = 1y, (v) when
NS YB-

e If e is an edge belonging to a block B of D; with no child block or belonging to a tight
middle block (B, z,y), then define n*(e) = ng(e).

e If e is an edge belonging to a loose middle block (B, x,y) with both ends contained in
Xp (and Yp, respectively), then n*(e) = 1, (€) (and 1*(e) = np,,, (e), respectively).

e If e is an edge belonging to a loose middle block (B, x,y) between Xp and Yj, then
n*(e) = P., where P, is the directed path mentioned in Claim 2.
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XB

Yp

U(BYB)

Figure 3: An example about how 1 maps vertices and edges in a loose middle block B to
vertices and directed paths, respectively. Each zigzag line indicates a directed path with the
obvious direction.
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See Figure 3 for an example.

Clearly, n*|v(p,) is injective and for every v € V(D;), ¢;(v) <q ¢y (n*(v)). Since the
edges of T; and T mapped to w by 1; and v, are exactly the edges incident with r;, r; or
some nodes of T and T} corresponding to cut-vertices of D; and Dy, it is straightforward
to verify that n* is a strong immersion embedding from (D;, ;) to (D +, 7). This proves the
lemma. m

6 One-way series-parallel triples

The goal of this section is to prove Lemma 6.9 which shows that series-parallel triples are
well-quasi-ordered. The strategy is to decompose a given series-parallel triple in a “series
way” or “parallel way” as stated in Lemma 4.1 to reduce the “complexity”, and prove well-
quasi-ordering by induction on the “complexity”. It could be helpful if the readers first read
the related definitions and the statements of the lemmas in this section without going into
the proofs to get a big picture of the entire procedure.

For a set F of one-way series-parallel triples, the parallel-extension of F is a set F' of
one-way series-parallel triples such that for every (D, s,t) € F', there exist a positive integer
¢ and members (D1, s1,11), (Da, S2,t2), ..., (Dy, s¢, te) of F such that D is obtained from the
disjoint union of Dy, D», ..., D, by identifying si, so, ..., s¢ into s and identifying t,, %o, ..., t,
into t.

Lemma 6.1 Let F be a well-behaved set of one-way series-parallel triples. Let F' be the
parallel-extension of F. Then F' is well-behaved.

Proof. Let (Q, =) be a well-quasi-order. For each i € N, let (D, s;,t;) be a member of
F', and let ¢; : V(D;) — Q. For each i € N, since (D;, s;,t;) € F', there exist ¢; € N and
members (D; 1, 8;1,ti1), (Di2, Sia,ti2), ..y (Dig;s Se;,te;) of F such that D; is obtained from
the disjoint union of D; 1, D; o, ..., D;y, by identifying s; 1, s;2, ..., s;y, into s; and identifying
ti717 ti727 ceey ti,ﬁi into tz

For each i € N, let a; be the sequence ((D; 1, si,1,ti,1), Pilv(p,)), (Dig2, Siz2,ti2), @ilv(pio)),
eoes (Dt s 0, lg) bilv(p Dy, y)- Since F is well-behaved, by Higman’s Lemma, there ex-
ist 1 < j < j and a strictly increasing function f : [¢;] — [¢;] such that for every
1 € [Zj], ((D] (@) Sj’,f(i)atj’,f(i))7¢j'|V(Dj/,f(i))> simulates ((Dj,i, Sj,i;tj,i)>¢j|V(Dj,i))~ Hence
((Djr, sj,tjr), ;) simulates ((Dy, s;,t;), ¢;). Therefore, F' is well-behaved. m

For a set F of one-way series-parallel triples, the series-extension of F is a set F' of
one-way series-parallel triples such that for every (D, s, t) € F', there exist a positive integer
¢ and members (Dy, s1,t1), (Ds, Sa,12), ..., (Dg, S¢, tg) of F such that D is obtained from the
disjoint union of Dy, Ds, ..., D, by for each i € [¢ — 1], identifying ¢; and s;.

Lemma 6.2 Let F be a well-behaved set of one-way series-parallel triples. Let Fy be the

series-extension of F. Let Fy be the set consisting of all series-parallel triples that are
truncations of members of F. If Fy is well-behaved, then Fi is well-behaved.
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Proof. Let (Q, =) be a well-quasi-order. For each ¢ € N, let (D, s;,t;) be a member of
Fi, and let ¢; : V(D;) — Q. For each i € N, since (D;, s;,t;) € Fi, there exist ¢; € N and
members (D; 1, 8;1,ti1), (Di2, Si2:ti2), s (Dig,;, Se,,ts;) of F such that D; is obtained from
the disjoint union of D; 1, D; o, ..., D; g, by for each j € [¢; — 1], identifying ¢; and s;11. To
prove this lemma, it suffices to prove that there exist 1 < j < j' such that ((Dj, s, t;/), ¢;)
simulates ((Dj, sj,t;), ¢;)-

Since each (D;, s;,t;) is one-way by the definition of a series-extension, by symmetry and
possibly removing some members in the sequence, we may assume that for each i € N, every
thread in D; between s; and ¢; is a directed path in D; from s; to t;. Let F’ be the set
consisting of the rooted digraphs (D, s) such that (D, s,t) € F for some t € V(D). Note
that for each i € N, (D, s;) is a F'-series-parallel tree.

Since F is a well-behaved set of one-way series-parallel triples, F’ is a well-behaved set
of rooted digraphs. Since F, F' and JF, are well-behaved, the set of F'-series parallel trees
is well-behaved by Lemma 5.1.

Let (@', =’) be the well-quasi-order obtained by the Cartesian product of (@, =) and
([2],=). For each i € N, let ¢} : V(Q') — V(D;) such that ¢)(t;) = (¢:(t;),2), and ¢}(v) =
(¢:(v),1) for every v € V(D;) — {t;}. Since the set of F'-series parallel trees is well-behaved,
there exist 1 < j < j’ such that there exists a strong immersion embedding 7 from (D;, s;)
to (Dj:, sj) such that ¢(v) =" ¢ (n(v)) for every v € V(D;).

By the definition of ¢; and ¢, n(t;) = t;:. So (Dy:, sy, t;), @) simulates ((Dj, s5,t5), ¢;).
This proves the lemma. m

Define Ay to be the set of one-way series-parallel triples (D, s, t) such that D consists of
an edge. Define Ay, = Ay. For any nonnegative integers k and ¢, we define the following.

e Define Aj 2,41 to be the parallel-extension of Ay o;.
e Define Ay 2,12 to be the series-extension of Ay, 9i41.

e Define Ay, to be the set of one-way series-parallel triples (D, s,t) such that there
exists no (k + 1)-alternating path in D with one end s or one end t.

e Define Ax. 1 to be the set of one-way series-parallel triples (D, s,t) such that either

— every (k + 1)-alternating path in D with one end s intersects ¢, and there exists
no (k + 1)-alternating path in D with one end ¢, or

— every (k + 1)-alternating path in D with one end ¢ intersects s, and there exists
no (k + 1)-alternating path in D with one end s.

Lemma 6.3 For every nonnegative integer k, Axi1 C Ag4.

Proof. By Lemma 3.1, A; C Ap2 C Ap4. So we may assume k > 1.
Claim 1: Every series-irreducible one-way series-parallel triple in Ay belongs to Ay 3.

Proof of Claim 1: Suppose to the contrary that there exists a series-irreducible one-way
series-parallel triple (D, s,t) in Ay — Ags. If |E(D)| = 1, then (D, s,t) € Ayo C Ags,
a contradiction. By Lemma 4.1, (D, s,t) is not parallel-irreducible. So there exist ¢ € N
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with ¢ > 2 and parallel-irreducible one-way series-parallel triples (D, s1,t1), ..., (Dy, S¢, ts)
such that D is obtained from a disjoint union of Dy, ...D, by identifying s1, ..., sy into s and
identifying t;, ..., ¢, into t. Since (D, s,t) & Ay s, there exists ¢ € [(] such that (D, s;, ;) &
Ao By symmetry, we may assume that (Dy,s1,t1) € Ago. In particular, |[E(Dy)| > 2.
Since (D1, s1,t1) is parallel-irreducible, by Lemma 4.1, there exist ¢; € N with ¢; > 2 and
series-irreducible one-way series-parallel triples (D11, S1.1,%1.1); -, (D1,6,5 81,015 t1,¢,) such that
D is obtained from a disjoint union of D; 1,...Dy e, by for each j € [¢; — 1], identifying ¢; ;
with s j41. Since (Dy,s1,t1) € Apo, there exists j € [(1] such that (D, s1;,t1,;) & Ak
Since {1 > 2, by possibly switching s and ¢, switching s; and ¢;, and replacing j by ¢; +1— j,
we may assume that s, ; # s = s1.

If there exists a k-alternating path P in D, ; with one end s, ; disjoint from ¢, ;, then by
concatenating P with a thread in Dy from t5 =t & V(P) to s, = s and a thread in D; from
s to s1;, we obtain a (k + 1)-alternating path in D with one end ¢, so (D, s,t) & Ay+1, a
contradiction.

So every k-alternating path P in D, ; with one end s, ; intersects t; ;. If there exists
a k-alternating path P in D, ; with one end ¢ ;, then by concatenating P with a thread
in Dy from s, = s € V(D;;) to t =t and a thread in D; from ¢ to t;;, we obtain a
(k + 1)-alternating path in D with one end s, so (D,s,t) € Agy1, a contradiction. So
no k-alternating path P in D;; has one end t;;. Hence (Dij,s1,t1;) € Aro C Ag1, a
contradiction. [J

Now we prove that A1 C Ay 4.

Suppose to the contrary that there exists a series-parallel triple (D', s',t') € Agy1 — Ag.4.
Since Ay 3 C A4, (D', s',t') is not series-irreducible by Claim 1. By Lemma 4.1, there exist
¢" € Nwith ¢ > 2 and series-irreducible one-way series-parallel triples (D1, 1, t}), ..., (Dp, Sy, t)
such that D’ is obtained from the disjoint union of Dj, ..., D}, by for each i € [¢' — 1] identi-
fying t; with s, ,. Since (D', s',t') & A4, there exists i* € [¢'] such that (D)., s.,t..) & A 3.
Since (D.., s}, t;.) is series-irreducible, it is not in A1 by Claim 1. So by symmetry, we
may assume that there exists a (k + 1)-alternating path in D.. with one end ¢,.. But then
we can extend it to a (k + 1)-alternating path in D’ with one end ', contradicting that
(D', s',t') € Agyq. This proves the lemma. =

Lemma 6.4 Let k be a positive integer. Let (D, s,t) be a one-way series-parallel triple. Let
(X, Y] be a splitter of (D, s,t).

1. If (D, s,t) € Ay, then every truncation of (D, s,t) with respect to [X,Y] belongs to A.

2. If (D, s,t) € Aio, then every truncation of (D,s,t) with respect to [X,Y] belongs to
Ao

Proof. Let (Dyx,s,ty) be the series-parallel triple such that Dy is obtained from D by
identifying all vertices in Y into a vertex ty and deleting all resulting loops. By symmetry,
it suffices to prove that if (D, s,t) € Ay then (Dx,s,ty) € A, and if (D, s,t) € Ay, then
(DX, S, ty) S Ak:,o-

Let w be the number of edges of D between X and Y. Since [X, Y] is a splitter, there
exist w edge-disjoint threads in D from s to ¢ such that every edge between X and Y

18



belongs to exactly one of those threads. For each edge e between X and Y, we denote the
aforementioned thread containing e by P.. Since (D, s,t) is one-way, P, is a directed path
for each e.

Let P be a k-alternating path in Dx with one end s or one end ty. So P contains at most
two edges incident with ty. Note that every edge incident with ¢y is an edge of D between
X and Y. If P contains no edge incident with ¢ty or contains two edges incident with ¢y
that has a common end in Y, then P is a k-alternating in D with one end s. If P contains
exactly one edge incident with ¢y, then one can concatenate P with a thread in Y to obtain
a k-alternating path in D with one end t. If P contains exactly two edges eq, es incident
with ty, and the ends of these two edges in Y are distinct, then P U P., U P., contains a
k-alternating path in D with one end s, since ty is not an end of P.

Hence it is straightforward to verify that if (D, s,t) € Ay, then (Dx, s, ty) € Ag; and if
(D, s,t) € Ak, then (Dx,s,ty) € Axp. =

Lemma 6.5 Let k be a nonnegative integer. If Ay is well-behaved, then Ay is well-behaved.

Proof. When k =0, Ao = Ax. So we may assume k > 1.

Let (@, =) be a well-quasi-order. For each i € N, let (D;, s;,t;) be a member of Ay ¢, and
let ¢; : V(D;) — Q. To prove this lemma, it suffices to prove that there exist 1 < j < 5’
such that ((Dj:,sj,t5), ¢;) simulates ((D;, s;,t;), ;).

By symmetry and possibly removing some (D;, s;, t;), we may assume that for each i € N,
every thread in D; is a directed path from s; to t;, every k-alternating path in D; with one end
s; intersects t;, and there exists no k-alternating path in D; with one end ¢;. Let F = {(D, s) :
there exists t € V(D) — {s} such that (D,s,t) € Ag}.

Claim 1: For each i € N, (D; — t;, s;) is a F-series-parallel tree.

Proof of Claim 1: Let i be a fixed positive integer. Since (D;, s;,t;) is a series-parallel triple,
there exists no separation (A, Az) of D; of order at most one such that {s;,t;} C V(A;) and
V(Ay) — V(A;) # 0. So for every block B of D; — t; that has no child block, ¢; is adjacent
in D; to a vertex in V(B) — {v}, where v = s; if 5; € V(B), and v is the vertex contained
in B and its parent block if s; ¢ V(B). Hence no block B of D; — ¢; has two child blocks
intersecting B at different vertices, for otherwise there exists a thread in D; from s; to ¢; that
is not a directed path, a contradiction. Similarly, for every cut-vertex v of the underlying
graph of D; —t;, every thread in D; — t; from s; to v is a directed path from s; to v. Hence
(D; —t;, s;) is a Fo-series-parallel tree for some set Fy of one-way series-parallel triples. Since
every k-alternating path in D; with one end s; intersects ¢;, and there exists no k-alternating
path in D; with one end ¢;, we know Fy C F. [J

Let (@', =') be the well-quasi-order obtained by the Cartesian product of (@, <), ([2],=),
(N, <) and (Q,=). For each i € N, let ¢, : V(D; —t;) — @ such that for every v €
V(D; —t;), if v is not adjacent in D; to t;, then ¢}(v) = (¢;(v), 1,1, ¢;(t;)), otherwise ¢;(v) =
(i (v),2,dy, ¢i(t;)), where d, is the number of edges of D; between v and t;.

Let F; be the set consisting of all series-parallel triples that are truncations of members
of A;. By Lemma 6.4, F; C A,. Since Ay, is well-behaved, F and F; are well-behaved. By
Lemma 5.1, there exist 1 < j < j’ and a strong immersion embedding 7 from (D; — t;, s;)
to (Dj — ty, s) such that for every v € V(D; —t;), ¢3(v) =’ ¢, (n(v)). By the definition of
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¢ and ¢, for every neighbor u of ¢; in Dy, n(u) is a neighbor of ¢ in D, and the number
of edges of D; between n(u) and t; is at least the number of edges of D, between v and
t;. Since t; and t; are sinks, one can extend 7 to be a strong immersion embedding 7* from
(Dj,sj,t;) to (Dj,sj,t;) such that n*(s;) = sj, n*(t;) = tj, and for every v € V(D;),
¢j(v) = ¢y(n(v)). This proves the lemma. m

Lemma 6.6 Let k be a positive integer. Let a be a nonnegative integer. Let F be the set of
series-parallel triples that are truncations of members of Akq. Then F C Ajq.

Proof. Let (D,s,t) € Ak, Let [X,Y] be a splitter of (D,s,t). To prove this lemma, it
suffices to show that every truncation of (D, s,t) respect to [X,Y] belongs to Ay ,.

Let (Dx, s,ty) be the series-parallel triple such that Dy is obtained from D by identifying
Y into the vertex ty and deleting resulting loops. By symmetry, it suffices to prove that
(Dx,s,ty) € Ap,. We shall prove it by induction on a. The case a = 0 follows from
Statement 2 of Lemma 6.4. So we may assume that ¢ > 1, and this lemma holds when a is
smaller.

We first assume that a is odd. So there exist £ € N and (D1, s1,t1), ..., (Dy, Se, te) € Aga—1
such that D is obtained from the disjoint union of Dy, ..., D, by identifying si, ss, ..., S¢ into
s and identifying 1, ta, ..., t, into t. For each i € [(], let X; = XNV(D;) and Y; =Y NV (D;),
and let (D; x,s;,t;y) be the series-parallel triple such that D, x is obtained from D, by
identifying Y; into a vertex t¢;y and deleting resulting loops. Note that for each i € [/],
[X;,Y;] is a splitter of (D;, s;,t;), so (D x,Si,tiy) € Aka—1 by the induction hypothesis.
And Dx is obtained from a disjoint union of D; x, ..., Dy x by identifying sq, ..., s¢ into s and
identifying ¢y, ..., tey into ty. So (Dx, s,ty) € Ay 4.

Hence we may assume that a is even. So there exist ¢ € Nand (D1, 1, 1), ..., (Dy, Sy, ty) €
A a—1 such that D is obtained from the disjoint union of D, ..., Dj, by for each i € [¢/ — 1],
identifying ¢; and s, ,. Since [X, Y] is a splitter, there exists ¢* € [¢] such that all edges of D
between X and Y are edges of Dy«. Let X' = X NV(D).) and Y =Y NV (D}.). Note that
[X', Y] is a splitter of (Dy., sj.,tj-). Let (Dj. x, S, ). y) be the series-parallel triple such
that Dj. y is obtained from Dj. by identifying Y” into a vertex t;. - and deleting resulting
loops. By the induction hypothesis, (Dj. x, g, tpy) € Apa-1. Note that Dy is obtained
from a disjoint union of D, ..., Dj._;, Dy. x by for each i € [¢* — 1], identifying #; with s} ;.
So (Dx,s,t) € Agy. m

Lemma 6.7 For any nonnegative integers k and a, if Ako is well-behaved, then Ay, is
well-behaved.

Proof. We shall prove this lemma by induction on a. When a = 0, Ay is well-behaved. So
we may assume that a > 1, and Ay, is well-behaved. If a is odd, then A , is well-behaved
by Lemma 6.1. If a is even, then by Lemmas 6.6 and 6.2, Ay, is well-behaved. =

Lemma 6.8 For every nonnegative integer k, A, is well-behaved.

Proof. We shall prove this lemma by induction on k. When k = 0, A, is clearly well-
behaved. So we may assume that £ > 1, and Aj_; is well-simulated. By Lemma 6.5, Ax_10
is well-behaved. By Lemma 6.7, Aj_1 4 is well-behaved. By Lemma 6.3, Ay C Ay_1 4, so Ay
is well-behaved. m
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Lemma 6.9 Let (Q, X) be a well-quasi-order. Let k be a positive integer. For each i € N,
let (D, s;,t;) be a one-way series-parallel triple such that D; does not contain a k-alternating
path, and let ¢; : V(D;) — Q. Then there exist 1 < j < j' and a strong immersion embedding
n from (Dj, s;,t;) to (Dy,sj,tjy) such that ¢;(x) = ¢j(n(x)) for every x € V(D).

Proof. For each i € N, since D; has no k-alternating path, (D;, s;,t;) € Ag. So this lemma
immediately follows from Lemma 6.8. =

7 Series-parallel separations

The goal of this section is to prove Lemmas 7.3 and 7.6. Roughly speaking, they show
that if a digraph with no (k + 1)-alternating path is not of a very special form, then we can
find a cross-free collection S of separations and a set Z of vertices of bounded size such that
every k-alternating path either intersects Z or is contained in the series-parallel part of a
separation in S.

We remark that an obvious simplification of the statement mentioned in the previous
paragraph is false. That is, there exists no function f such that every digraph with no
(k + 1)-alternating path can be made a digraph with no k-alternating path by deleting
at most f(k) vertices. Consider the series-parallel triple (D, s,t) obtained by the series-
concatenation of any number of copies of the one-way series-parallel triple whose underlying
graph is K3 and the roots are the two vertices of degree two. It is not hard to see that D
has no 3-alternating path. But there is a 2-alternating path in D contained in each oriented
K5 3. As the number of copies of K5 3 can be arbitrarily large, D can contain arbitrarily many
disjoint 2-alternating paths. Hence 2-alternating paths in D cannot be killed by deleting a
bounded number of vertices.

We need some simple lemmas in order to prove Lemma 7.3.

For positive integers m and n, the m X n-grid is the graph with vertex-set [m| x [n] such
that any vertices (z,y) and (2/,y’) are adjacent if and only if |z — 2| + |y — ¢/| = 1.

Lemma 7.1 Lett be a positive integer. Let D be a digraph. If some subgraph of the under-
lying graph of D is isomorphic to a subdivision of the 2 x (2t + 1)-grid, then D contains a
t-alternating path.

Proof. Since some subgraph of the underlying graph of D is isomorphic to a subdivision
of the 2 x (2t + 1)-grid, there exist two disjoint threads R; and Ry and 2t + 1 disjoint
threads Py, Ps, ..., Pyy1 from V(R;) to V(Ry) internally disjoint from V(R;) U V(Ry) such
that for each ¢ € [2], R; passes through x;1,2;9, ..., %; 2141 in the order listed, where V(R;) N
thjll V(Pj) ={xi1,%i2, ..., Tioes1}. For each i € [2] and k € [t], let R;; be the subthread of
R; between z; ;, and x; 2¢41.

To prove this lemma, it suffices to prove that for each k € [t+1] and v € {z1 21, T2 251},
there exists a (t + 1 — k)-alternating path in D[V (Ry9,—1) U V(R ok—1) U Uj:;}{fl P;] with
one end v. We shall prove it by induction on ¢t + 1 — k.

When t +1 — k = 0, we have that £ = ¢t + 1 and Py, is a 0-alternating path in
D[V (Ry25-1) UV (R29k-1) U Ufgz_l P;] with ends @211 and x9211. So we may assume
that k € [t], and the claim holds when ¢ + 1 — k is smaller.
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By symmetry, we may assume that v = 1 9;,-1. By the induction hypothesis, for each
i € [2], there exists a (¢ — k)-alternating path P in D[V (R 2k4+1) UV (Ra2541) U U?Z;;H bl
with an end z; 2p.41.

Let W, be subthread of R; between x 951 and x 9541. Let W5 be the thread obtained
from Py,_; U Py, by concatenating the subthread of Ry between 39,1 and 39, and the
subthread of R; between x; o, and @1 o541. Let W3 be the thread obtained from the subthread
of Ry between z; 9,1 and x5 by concatenating P, and the subthread of Ry between 3 o,
and 3 9,+1. Then it is straight forward to show that there exists i* € [3] such that W;- does
not induce a directed path in D. Hence W;« U P} U Pj contains a (¢t — k + 1)-alternating
path with end 1 9x_1. Moreover, Wi« U P} U Py is contained in D[V (Ry x—1) UV (Ra2x-1) U
U?:;ﬁ_l P;]. This proves the lemma. m

The tree-width of a graph G is the minimum w such that G is a subgraph of a graph with
no induced cycle of length at least four and with no clique of size w + 2. The following is a
restatement of a lemma about the Erdds-Pdsa property proved in [19].

Lemma 7.2 ([19, Proposition 2.1]) Let w be a positive integer. Let G be a graph with
tree-width at most w. Let F be a collection of subsets of V(G) such that for every S € F,
G[S] is connected. Let k be a positive integer. If there do not exist k pairwise disjoint
members of F, then there exists Z C V(G) with |Z| < (k — 1)(w + 1) such that ZNS # 0
for every S € F.

Let D be a digraph. A series-parallel 2-separation of D is a separation (A, B) of D such
that (A, s,t) is a one-way series-parallel triple, where V(A N B) = {s,t}. The following
lemma is a slight strengthening of [10, Theorem 5.6], and our proof is a modification of [10,
Theorem 5.6].

Lemma 7.3 For every positive integer t, there exists an integer f(t) such that the following
holds. If D is a digraph whose underlying graph is 2-connected, and D does not contain a
(t + 1)-alternating path, then there exists Z C V(D) with |Z| < f(t) such that for every
t-alternating path P in D, either

1. V(P)NZ £0, or

2. there exists a series-parallel 2-separation (A, B) of D with P C A.

Proof. Let t be a positive integer. Since D does not contain a t-alternating path, the
underlying graph of D does not contain a subdivision of the 2 x (2¢ + 1)-grid. Since the
2 X (2t + 1)-grid is subcubic, there exists an integer w such that the underlying graph of D
has tree-width at most w by the Grid Minor Theorem [13].

Define f(t) = 4(w + 1). Note that w only depends on ¢, so f(¢) only depends on t.

For a t-alternating path P in D,

e if t is odd, then let mp be the [£]-th pivot of P.

e if t is even, then let mp and m/, be the %—th and (% + 1)-th pivots of P, respectively,
and by symmetry, we may assume that mp is a sink and m/, is a source.

22



Claim 1: Let P, and P, be disjoint t-alternating paths in D. Then for every thread P in
D intersecting V' (P;) and V(P,) internally disjoint from V' (P;) UV (P,),

e if ¢ is odd, then there exists ¢ € [2] such that

= V(R)NV(P) = {mp},

— the vertex in V(Ps;_;) N V(P) belongs to the sub-thread of P;_; between the
(741 — 1)-th pivot and the ([§] 4 1)-th pivot, and

— if V(Ps_;)) N V(P) # {mp,_,}, then P is a directed path;

e if ¢ is even, then P is a directed path, and there exists i € [2] such that V(P)NV(P;) =
{mp} and V(P) NV (Ps_;) = {m) }.

Proof of Claim 1: For each i € [2], let v; be the end of P in V(F;), and let @Q; be a
sub-thread of P; between v; and an end of P; such that the number of pivots is as large as
possible. Note that if ¢ is even, then (); contains at least % pivots, and the equality holds
only when v; is contained in the sub-thread of P; between mp, and m’p; if ¢ is odd, then @Q;
contains at least [£] — 1 pivots, and the equality holds only when v; = mp,.

We first assume that t is odd. If vy # mp, and ve # mp,, then the number of pivots in
Q1UPUQ, is at least 2- [£] > t + 1, a contradiction. So there exists i € [2] such that
v; = mp,. That is, V(P;)) NV (P) = {mp,}. Similarly, Qs_; contains at most [£] pivots, so
v3—; belongs to the sub-thread of P;_; between the ([£] — 1)-th and the ([£] 4 1)-th pivots.
If V(Ps_;) N V(P) # {mp,_,}, then the number of pivots in Q; U P UQ; is at least 2[5] — 1
plus the number of pivots of P, so P has no pivots. This proves the case when ¢ is odd.

Now we assume that ¢ is even. Then the number of pivots of ()1 U PU Q) is at least 2 -
plus the number of pivots of P. Since there exists no (¢ + 1)-alternating path in D, P is
directed path, and for every i € [2], v; is contained in the sub-thread of P; between mp, and
m/p,. Suppose to the contrary that there exists j € [2] such that v; & {mp,, m}p }. So v; is
an internal vertex of a directed subpath of P; between mp, and m’Pj. Hence we can choose
Q; such that v; is a pivot of Q); U P. Therefore, QQ; U P U Qs_; contains at least ¢ + 1 pivots,
a contradiction. So for every i € [2], v; € {mp,,mp/}. For i € [2], if mp, € V(P), then since
mp, is a sink in P;, mp, is the source of P, for otherwise there exists a (t+ 1)-alternating path
in Py U P U Py; similarly, if m’, € V(P), then since m/, is a source in P;, m’p is the sink of
P. Hence there exists ¢ € [2] such that V(P)NV(P;) = {mp,} and V(P)NV (Ps_;) = {m/p }.
OJ

Claim 2: Let P, and P, be two disjoint t-alternating paths in D. Then there exist a
separation (A, B) of D of order two such that P, C A and P, C B, and there exist two
disjoint directed paths Qp, p, and Qp, p, where each of them intersects V(P;) and V(%)
and is internally disjoint from V(P;) U V(P;,) such that

joV) DN |+

e if ¢ is odd, then

- V(QP17P2) N V(Pl) = {mpl} and V<QP1,P2) N V(P2) 7£ {mPQ}v and
— V(Qp,,p) NV(P1) # {mp } and V(Qp,p) NV (F2) = {mp,};

e if t is even, then
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— Qp, p, is a directed path between mp, and m/, , and
1,602 p 1 P>

— @p,,p, is a directed path between mp, and m/131~

Proof of Claim 2: By Claim 1, there do not exist three disjoint threads in D between
V(Py) and V(P,). So there exist a separation (A, B) of D of order at most two such that
P, C A and P, C B. Since the underlying graph of D is 2-connected, the order of (A, B)
equals two, and there exist two disjoint threads Q) p, p, and Qp, p, between V(P;) and V (FP,)
internally disjoint from V(P,) UV (P,).

We first assume that ¢ is odd. By Claim 1, each Qp, p, and Qp, p, intersects {mp,, mp, }.
Since Qp, p, and @Qp, p, are disjoint, this claim holds,

Now we assume that ¢ is even. By Claim 1, each Qp, p, and @p, p, is a directed path. By
Claim 1 and symmetry, we may assume that for i € [2], Qp, p, , is a directed path between
mp, and m'p,_. So the claim holds. []

Claim 3: If P, Py, P3, Py, P5 are five disjoint t-alternating paths in D, then there exist
i € [5] and a series-parallel 2-separation (A;, B;) of D with P, C A;.

Proof of Claim 3: Suppose to the contrary that for every i € [5], there exists no series-
parallel 2-separation (A;, B;) of D with P, C A;.

By Claim 2, there exists a separation (A, B) of D of order two such that P, C A and
P, C B. By assumption, (A, B) and (B, A) are not series-parallel 2-separations of D.
Since at most two of Ps, Py, Ps intersect V(A N B), by symmetry, we may assume that
V(P)NV(B) =0 and P;, C A— V(B). Let s and t be the vertices in V(A) N V(B).
Let Qp, p, and @Qp, p, be the disjoint paths mentioned in Claim 2 (by taking Py, P> in the
statement of Claim 2 by Py, Ps, respectively).

Suppose that Q)p, p, intersects both s and ¢. Then replacing the sub-thread of Qp, p,
between s and ¢ by any thread in B between s and ¢, we obtain a thread in D from V (P,—mp, )
to mp, internally disjoint from V(P;) U V(P5), so it must be a directed path by Claim 1.
But (B, A) is not a series-parallel 2-separation of D, and the underlying graph of D is 2-
connected. So (B, s,t) is not a one-way series-parallel triple. Hence there exists a thread in
B between s and ¢ such that replacing the sub-thread of QQp, p, between s and ¢ by it does
not create a directed path, a contradiction.

So [V(Qp,.p,) N{s,t}| < 1. Hence @Qp, p, C A. In addition, by Claim 1, there exists no
thread in D — {mp,, mp,} between V(P, —mp,) and V(Py — mp,).

Suppose there exists a thread P in D — {mp,, mp,} between V(P3) and V (P, — mp,)
internally disjoint from V(P,) U V(P;). By Claim 1, the end of P in V(Ps) is mp,. Since
there exists no thread in D—{mp,, mp, } between V (P, —mp,) and V(P,—mp,), P is disjoint
from V(Py). So V(Qp,.p, UP)NV(Py) consists of the end of Qp, p, in V(P;). Since mp, is a
common vertex in @Qp, p, and P, there exists a thread P’ in Qp, p, U P from V(P —mp,) to
V (P, —mp,) internally disjoint from V(). Since Qp, p, € A, P’ is internally disjoint from
V(P;). Hence P’ is a thread in D from V (P, —mp,) to V(P2 —mp,) internally disjoint from
V(Py) UV(P,), contradicting Claim 1.

Hence there exists no thread in D—{mp,, mp, } between V(P;) and V (P,—mp,) internally
disjoint from V(P,) U V(P;). So no component of D — {mp,,mp,} intersects both V(Ps)
and V (P, —mp,). Since there exists no thread in D — {mp,, mp,} between V (P, —mp,) and
V(Py—mp,), no component of D—{mp,, mp,} intersects both V(P —mp,) and V (P, —mp,).
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Hence there exists a separation (A’, B') of D of order two such that V(A'NB’) = {mp,, mp,},
PrUP; C A and P, C B'. Since P, C B', (B',;mp,,mp,) is not a one-way series-parallel
triple.

Let @Qp, p, and Qp, p, be the disjoint paths mentioned in Claim 2 (by taking P, P in
the statement of Claim 2 by P,, P3, respectively).

Suppose V(Qp, p, )NV (P) = 0. Since mp, € V(ANB )NV (P), |[V(Qp,.p,) NV (ANB)| <
1. Since V(Qp27p3) N V(A/) 2 V(sz,p:;) N V(Pg) 7é @, QP27]33 g Al. Since (Bl,mpl,mpz) is
not a one-way series-parallel triple, we can concatenate ()p, p, with a thread in B’ between
mp, and mp, to create a non-directed path thread in D from V' (P; —mp,) to mp, internally
disjoint from V' (P;) U V(Ps), contradicting Claim 1.

So V(Qp,.p,) NV (Py) # 0. Let P” be the sub-thread of @ p, p, between V(Ps —mp,) and
V(Py) internally disjoint from V(P3) U V(P;). By Claim 1, the end of P” in V(F;) is mp,.
Since mp, is an end of Q) p, p, not in V(P)UV (P3), mp, € V(P"). So |[V(P")NV(A'NB’)| < 1.
Since V(P")NV(A") D V(P")NV(Py) # 0, P” C A’. Since Qp, p, is between mp, € V(A'NB’)
and V (P, —mp,) C V(B’') internally disjoint from V(B), Qp, p, € B'. Hence P" U Qp, p,
is a thread in D from V(P; — mp,) to V(P» — mp,) internally disjoint from V(Ps) UV (P,),
contradicting Claim 1. This proves the claim. [J

Let F = {V(P) : P is a t-alternating path in D such that there exists no series-parallel
2-separation (A, B) of D with P C A}. By Claim 3, F does not contain five pairwise disjoint
members. Recall that the tree-width of the underlying graph of D is at most w. By Lemma
7.2, there exists Z C V(D) with |Z] < 4(w+1) = f(¢) such that ZNS # 0 for every S € F.
This proves the lemma. m

A series-parallel 2-separation (A, B) of a digraph D is mazimal if there exists no series-
parallel 2-separation (A’, B") of D with A C A'.

Lemma 7.4 Let D be a digraph whose underlying graph is 2-connected. Assume that there
do not exist distinct vertices s,t and one-way series-parallel triples (X, s,t) and (Y,t,s) such
that D = X UY. If (A1, B1) and (As, Bs) are distinct maximal series-parallel 2-separations
of D, then for every i € [2], V(A; N B;) CV(As_;) or V(A; N B;) C V(Bs;).

Proof. By symmetry, it suffices to show that V(Ay N By) C V(A;) or V(A2 N By) C V(By).

For each i € [2], let s; and ¢; be the vertices in A; N B;. Since (A, 1, 1) is one-way, by
symmetry, we may assume that every thread in A; between s; and t; is a directed path from
s1 to t1.

Suppose to the contrary that V(Ay N By) — V(A;) # 0 and V(A3 N By) — V(By) # 0.
By symmetry, we may assume ty € V(A;) — V(By) and sy € V(By) — V(A;). In particular,
{81, tl} N {82, tz} = @

Let P, and Pj be threads in As and By between s, and to, respectively. Since sy €
V(B1) = V(A1) and ¢ € V(A1) = V(By), [(V(P2) — {s2,2}) N {s1, 1} = 1 = [(V(P3) —
{Sz,tg}) N {81,t1}|. So {Sl,tl} N V(AQ) - V(BQ) 7A (Z) 7A {Sl,tl} N V(B2> - V(Ag) Hence
for every thread P in A; from s; to ¢, P is a thread in A; between V(As) — V(B3) and
V(By) — V(A3), so P contains V(A2) NV (B2) NV (A;) = {t2}, and hence P passes through
S1,to,t1 in the order listed. Since every thread in A; from s; to t; is a directed path from s;

25



to t; and contains ts, every thread in A; from t5 to {s1,¢;} is either a directed path from s;
to ty or a directed path from ¢ to t;.

Since (Ag, By) is a series-parallel 2-separation, P, is a directed path. Since P, contains
a subpath between {s1,;} and ty, P, contains a vertex v € {s,t;}, where v = s; if P, is a
directed path from s, to t9, and v = t; otherwise.

Since (A, s9,t5) is one-way and P; is an arbitrary thread in As between sy and t9, we know
that every thread in As from s, to t5 contains v. In particular, v € V(Ay) — V(Bs). Let u be
the vertex in {s1,t1} — {v}. Since {s1,t1} NV (Ag) =V (By) # 0 # {s1,t:} NV (By) — V(Ay),
we know u € V(Bz) — V(As).

Note that V(Al U AQ) N V(Bl N Bg) - {Sl,tl, Sg,tg}. Since v € V(AQ) — V(BQ) and
t2 S V(Al) - V(Bl), V(Al U AQ) N V(Bl N Bg) Q {u, 82}.

Let @ be a thread in Ay U Ay from s, to u. Since sy € V(By) — V(A7) and @ C A; U As,
the edge of @ incident with sy is in Ay — V(A;). Since u € V(By) — V(Ay) and Q C
A; U Ay, the edge of @ incident with w is in A; — V(As). So some internal vertex of ) is in
V(A) N {s1,t1} = {v} and some internal vertex of @ is in V(A;) N{sq,t2} = {t2}. Hence Q
passes through ss, v, 5, u in the order listed. Since the subthread of ) between s, and t5 is in
As, it is a directed path. Similarly, the subthread of () between s; and ¢; is a directed path.
Since these two subtreads of () share a thread in A; between v and t,, and every thread in A;
between v and t5 is a directed path, () is a directed path between s, and u. Moreover, since
all threads in A; between v and 5 are directed paths with the same direction, the direction
of () is independent with the choice of ().

Therefore, (A; U Ag, s9,u) is a one-way series-parallel triple. So (A; U Ag, By N By) is a
series-parallel 2-separation of D. But ss € V(A;UAs)—V (A1), so Ay C AjUAs, contradicting
the maximality of A;. =

Lemma 7.5 Let D be a digraph whose underlying graph is 2-connected. Assume that there
do not exist distinct vertices s,t and one-way series-parallel triples (X, s,t) and (Y,t,s) such
that D = X UY. If (A1, B1) and (As, Bs) are distinct mazimal series-parallel 2-separations
of D, then Ay C By and Ay C B;.

Proof. By symmetry, it suffices to show A; C B,.
For each ¢ € [2], let s; and t; be the vertices in A; N B;. By symmetry, we may assume
that for every i € [2], every thread in A; between s; and t; is a directed path from s; to t;.

Claim 1: V(As) N V(Bsy) CV(By).

Proof of Claim 1: Suppose to the contrary that V(Ay) NV (Bs) — V(By) # 0. By Lemma
7.4, V(A2)NV(B2) C V(A;). Since the underlying graph of D is 2-connected, the underlying
graph of Bj is connected. Since V(Ay) NV(By) C V(Ay), either By C Ay or By C Bs.

Suppose that B; C By. Then A; D A,. Since (Ay, By) # (As, B), A1 # As, so A} D A,
contradicting the maximality of As.

So By C As. Since the underlying graph of D is 2-connected, there exist two disjoint
threads Py, P in Ay from {sy,t;} to {s2,t2}. By symmetry, we may assume that P; contains
sy, and P, contains ty. Since each P; intersects {so, 2} in at most one vertex, it is contained
in Ay or in Bs. Since each P; intersects {s1,t1} C V(By) C V(Ay), it is contained in A,.
Since Bl QAQ, P1UP2UBI QAQ
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For every thread P in B; between sy and t;, P, U P U P, is a thread in As between s,
and ty, so P, U P U P, is a directed path from sy to t5, and hence P is a directed path in
By between s; and t; such that P is a directed path from s; to t; if and only if P; contains
s1. Therefore, (By,t1,s1) is a one-way series-parallel triple. But (Aj, s1,t1) is a one-way
series-parallel triple such that A; U B; = D, a contradiction. [J

Since the underlying graph of D is 2-connected, the underlying graph of A; is connected.
Since V(A3) NV (By) C V(By) by Claim 1, either A; C Ay or Ay C By. If A; C As, then
since (A1, By) # (Ag, By), Ay C As, a contradiction. So A; C B,. This proves the lemma.
n

A series-parallel cover of a digraph D is a collection S of separations of D satisfying the
following.

e For every (A, B) € S, (A, B) is a maximal series-parallel 2-separation of D.
o If (A1, By) and (As, By) are distinct members of S, then A; C By and Ay C By.

e For every series-parallel 2-separation (A’, B') of D, there exists (A, B) € S such that
A C A

Lemma 7.6 Let D be a digraph whose underlying graph is 2-connected. If there do not
exist distinct vertices s,t and one-way series-parallel triples (X, s,t) and (Y,t,s) such that
D = X UY, then there exists a series-parallel cover of D.

Proof. Let S be the collection of all maximal series-parallel 2-separations of D. So § satisfies
Statement 1 in the definition of a series-parallel cover. By Lemma 7.5 , S satisfies Statement
2 in the definition of a series-parallel cover. For every series-parallel 2-separation (A’, B')
of D, there exists a maximal series-parallel 2-separation (A, B) of D such that A" C A, so
A" C A for some (A, B) € S. Hence S is a series-parallel cover. m

8 Longer alternating paths

In this section we prove Theorem 1.1 (that is, digraphs with no k-alternating paths are
well-quasi-ordered). The strategy is to use the lemmas proved in Section 7 to reduce the
“complexity” of the digraphs, and prove well-quasi-ordering by induction on the “complex-

ity”. It could be helpful if the readers read the related definitions and statements of the
lemmas before going into their proofs to get a big picture of the entire process.

Lemma 8.1 Let D be a digraph whose underlying graph is 2-connected. Let r,x,y be three
distinct vertices. Then either there ezists a 1-alternating path between r and {x,y}, or there
exist z € {x,y} such that there exist a directed path from r to z and a directed path from z
to r.

Proof. Since the underlying graph is 2-connected, there exist two threads P, (), where

P is between r and z, and @ is between r and y, and their intersection is {r}. By the
2-connectedness, there exists a thread R in D — {r} from V(P) — {r} to V(Q) — {r}.
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We are done if P or () is not a directed path. So we may assume that P and () are
directed paths. Similarly, we may assume that R is a directed path, for otherwise we are
done.

We first assume that r is the sink of both P and @ or the source of both P and ). By
symmetry, we may assume that r is the sink of P and (). By symmetry, we may assume
that the sink of R is in V(P) — {r}. Then there exists a l-alternating path from r to .

So we may assume that r is the sink of one of P and (), and is the source of the other.
By symmetry, we may assume that r is the sink of ) and the source of P. If R has source
in V(Q) — {r}, then there exists a 1-alternating path in D from r to x. So we may assume
that R has source in V(P) — {r}. If V(Q) NV (R) # {y}, then there exists a l-alternating
path between r to y; otherwise there exists a directed path from r to y. Note that @) is a
directed path from y to r, so we are done. =

Let t,k be nonnegative integers. We define F;; to be the set consisting of the rooted
digraphs (D, r) satisfying the following.

e The underlying graph of D is connected.

e 1 is not a cut-vertex of the underlying graph of D.

e There exists no (¢ + 1)-alternating path in D.

e No block of D contains a t-alternating path.

e There exists no k-alternating path in D having r as an end.

Note that every one-vertex thread is a 0O-alternating path, so Fip = 0. We define the
following.

e Define F; to be the set consisting of the rooted digraphs (D, r) such that the underlying
graph of D is connected, and there exist no t-alternating path in D.

e Define F/ to be the set consisting of the rooted digraphs (D, r) such that there exist
no t-alternating path in D, and either

— the underlying graph of D is 2-connected, or

— the underlying graph of D is connected and contains at most two vertices.

e Define F; to be the set consisting of the rooted digraphs (D,r) such that there exist
no t-alternating path in D.

Note that 7/ C F, C Ffand 0 = F o C Fi1 C ... C Frpp1 = Usso Fk-

Lemma 8.2 Let t be a nonnegative integer. If Fy 11 is well-behaved, then F, U F; is well-
behaved.
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Proof. If F; is well-behaved, then F; is well-behaved by Higman’s lemma. So it suffices to
prove that F; is well-behaved.

Let (@, <g) be a well-quasi-order. For i € N, let (D;,r;) € F; and ¢; : V(D;) — Q. For
each component C' of D; — r;, let (D;¢,7;) be the rooted digraph, where D; ¢ is the sub-
digraph of D; induced by V(C)U{r;}. Hence r; is not a cut-vertex of the underlying graph of
D, ¢ for all i, C. Since D; has no t-alternating path and D; ¢ is connected, (D; ¢, 7i) € Fit1-

For each i € N, let a; be the sequence ((D;¢,r;) : C is a component of D; — r;). Since
Fii41 is well-behaved, by Higman’s lemma, there exist 1 < j < 7', a function ¢ that maps
components of D; —r; to components of D; — r; injectively, such that for each component
C of D; — rj, there exists a strong immersion embedding n¢ from (Djc,7;) to (Djr oy, 75)
such that ne(r;) = ry and ¢;(v) <g ¢ (nc(v)) for every v € V(D; ). Then it is easy to
construct a strong immersion embedding n from (D;,r;) and (D, r;) such that n(r;) = r;
and ¢;(v) <g ¢;(n(v)) for every v € V(D;). This proves the lemma. m

Let (D,r) be a rooted digraph, and let v be a cut-vertex of the underlying graph of
D. Assume that v # r. So there exists a separation (A, B) such that V(AN B) = {v},
r € V(B)—V(A), and V(A) — V(B) # ). For each such (4, B), if v is not a cut-vertex of
A, then we call the rooted digraph (A,v) a branch of D at v.

Lemma 8.3 Let t be a nonnegative integer. If F| is well-behaved, then F; is well-behaved
for every nonnegative integer k.

Proof. We shall prove this lemma by induction on k. Since F;o = 0, the lemma holds when
k = 0. So we may assume that k > 1 and F; 1 is well-behaved.
Let (@, <g) be a well-quasi-order. For i € N, let (D;,r;) € Fix, and let ¢; : V(D;) — Q.
For i € N, let S; be the subset of V(D) satisfying the following.

e Every vertex in S; is a cut-vertex of the underlying graph of D;.
e For each v € §;, some branch of D; at v belongs to F, U Fx_1.

e If some branch (R,v) of D; at v belongs to F, U F; ;_1, then there exists u € S; (not
necessarily different from v) such that R C R’ for some branch (R',u) of D; at u with
(R u) € F{UFyp-a.

e There exist no distinct u, v € S; such that u € V(R) for some branch (R, v) of D; at v
with (R,v) € F, U Fpi-1.

Note that r; € S; since r; is not a cut-vertex of the underlying graph of D;. For each i € N,
let S; = {((B,v), ¢s|lv(p)) : (B,v) is a branch at v for some v € S; and (B,v) € F/U Fy 1},
and let S = {((U((L,U)7¢i|V(L))€Si L,v), ¢ilvwy) : v € Si}.

Let Q1 = U;>; S.. Let =; be the binary relation on )1 such that for any (B, f1), (Ba, f2) €
Q1, (B1, fi) =1 (Ba, f2) if and only if there exists a strong immersion embedding 7 from B,
to By such that fi(v) <1 fa(n(v)) for every v € V(By). Since F] and Fy ;1 are well-behaved,
(@1, =1) is a well-quasi-order by Higman’s Lemma. Let L be an element not in Q. Let
(@2, <2) be the well-quasi-order obtained by the disjoint union of (@1, <) and ({ L}, =). Let
(@3, =3) be the well-quasi-order obtained by the Cartesian product of (@, <g) and (Q2, =2).

For each i > 1,
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e let D} =D; — UUESi U((va)7¢i|V(R))ESz{(V(R) —{v}), and
e define ¢} : V(D!) — Q3 to be the function such that for every v € V(D)),

— ifv € 5;, then ¢ (v) = (¢:i(v), (R, v), ¢s|v(r))), where (R, v) is the unique member
of S8/ such that its second entry is v, and

—ifv e V(D)) — Si, then ¢(v) = (¢3(v), L).

Note that the underlying graph of each D is connected.

To prove this lemma, it suffices to prove that there exist 1 < j < 5’ and a strong
immersion embedding 7 from (D}, 7;) to (D}, r;) such that ¢}(v) =3 ¢%(n(v)) for every
v e V(D}).

If ¢ is an index such that the underlying graph of D} is 2-connected or has at most two
vertices, then the underlying graph of D; is a block of the underlying graph of D;, and since
(Dj, 1) € Frg, (Dj,1;) € F,. Since F is well-behaved, if there are infinitely many indices i
satisfying the previous property, then we are done. So by removing finitely many terms in
the sequence, we may assume that for each i € N, the underlying graph of each D; is not
2-connected and has at least three vertices.

Claim 1: For every i € N and every cut-vertex x of the underlying graph of D, every thread
in D} from r; to = is a directed path.

Proof of Claim 1: Suppose to the contrary that there exists a thread P in D} from r; to z
such that P is not a directed path. Let H' be a branch of D] at x. Since x is a cut-vertex of
the underlying graph of D!, x is a cut-vertex of the underlying graph of D;, so there exists
a branch H of D; at x containing H'. By the definition of S;, (H,x) & Fi 1. Hence there
exists a (k — 1)-alternating path P’ in H having x as an end. So P U P’ is a k-alternating
path in D; having r; as an end, contradicting that (D;,r;) € Frp. O

Claim 2: For every i € N and every cut-vertex x of the underlying graph of D], either all
directed paths in D! between r; and z are from r; to x, or all directed paths in D] between
r; and x are from z to r;.

Proof of Claim 2: Suppose to the contrary that there exist a directed path P; from r;
to x and a directed path P, from x to r;. Let H' be a branch of D) at x. So there exists
a branch H of D; at z such that H contains H'. By the definition of S;, (H,z) & Frx-1.
Hence there exists a (k — 1)-alternating path P in H having x as an end. If k > 2, then
P contains at least one edge, so P, U P or P, U P is a k-alternating path in D; having r;
as an end, contradicting that (D;,r;) € Fi. Hence k = 1. Since the underlying graph of
D; is connected and (H,x) is a branch at x, there exists an one-edge directed path P’ of H
having = as an end. Then P, U P’ or P, U P’ is a k-alternating path in D; having r; as an
end, contradicting that (D;,r;) € Fyx. This proves the claim. [J

Claim 3: Every block of the underlying graph of D} contains at most two cut-vertices of the
underlying graph of D}, and the block of the underlying graph of D} containing r; contains
at most one cut-vertex of the underlying graph of D}.

Proof of Claim 3: Suppose to the contrary that there exists a block B of the underlying
graph of D) such that either B contains r; and two cut-vertices z, y of the underlying graph
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of Di, or B contains three cut-vertices 7, x,y, where r is the cut-vertex contained in the
parent block of B. Since r; is not a cut-vertex of the underlying graph of D;, B contains at
least three vertices, so B is 2-connected. If B contains r;, then we let r = ;. By Lemma 8.1,
either there exists a 1-alternating path from r to z or y, or there exists z € {z,y} such that
there exist a directed path from r to z and a directed path from z to r. This contradicts
Claims 1 and 2. [J

For each i > 1, by Claims 1-3, either all threads in D} between r; and a cut-vertex of
the underlying graph of D} are directed paths with source r;, or all threads in D) between
r; and a cut-vertex of the underlying graph of D) are directed paths with sink r;. Hence by
possibly reversing the direction of all edges of D; and removing some D; from the sequence,
we may assume that for each ¢ € N and for every cut-vertex x of the underlying graph of
D:, every thread in D) between r; and z is a directed path from r; to x.

Claim 4: For every ¢ € N, (D}, r;) is a F{-series-parallel tree.

Proof of Claim 4: Since (D;,r;) € Fi, no block of D; contains a t-alternating path. So no
block of D! contains a t-alternating path. Hence for every block B of the underlying graph
of DI, (B,v) € F/, where v = r; if r; € V(B), and v is the cut-vertex of the underlying
graph of D} contained in B and the parent block of B. Since the underlying graph of D; is
connected, Claims 1-3 imply that (D, r;) is a F}-series-parallel tree. [

Let F' be the set of one-way series-parallel triples (B, x,y) such that (B,z) € F, and
y € V(B) — {z}. For every (B,z,y) € F', since (B,z) € F/, there exist no t-alternating
path in B, so (B,z,y) € A;. Hence /' C A;. Let F” be the set of all series-parallel triples
that are truncations of members of 7'. By Statement 1 of Lemma 6.4, 7’ C A;. By Lemma
6.8, 7' and F” are well-behaved. Since F] is well-behaved, this lemma follows from Claim 4
and Lemma 5.1. =

Lemma 8.4 Let t be a positive integer. Let (Q,<g) be a well-quasi-order. For i > 1, let
(Dj,ri) € F| and ¢; : V(D;) — Q. If for each i > 1, D; has no series-parallel cover, then
there exist 1 < j < j' and a strong immersion embedding n from (D;,r;) to (Djy,rj) such
that ¢;(v) <q ¢;(n(v)) for every v € V(D;).

Proof. This lemma obviously holds if there are infinitely many indices ¢ such that D;
contains at most two vertices. So by removing finitely members in the sequence, we may
assume that D; contains at least three vertices for each i > 1. By the definition of F}, the
underlying graph of each D; is 2-connected. For each ¢ > 1, since D; has no series-parallel
cover, by Lemma 7.6, there exist one-way series-parallel triples (X, s;,¢;) and (Y;,t;,s;) for
some distinct vertices s;,t; € V(D;) such that D; = X; UY].

For each i > 1, since (D;,r;) € F,, D; does not contain a t-alternating path, so (Xj, s;, ;)
and (Y;, t;, ;) belong to A;. Let F = {((Xi, s5,t:), ¢ilv(xy)) 1 @ > 1}. Let <4 be the simulation
relation defined on F. By Lemma 6.8, (F, <) is a well-quasi-order. Let ((Q2, <3) be the
well-quasi-order obtained from (Q, <g) and (F, =<;) by taking Cartesian product.

For each ¢ > 1, let f; : V(Y;) — Q2 be the function such that f;(v) = (¢:(v),
(X5, si5 ), dilv(x,))) for every v € V(Y;). Since A; is well-behaved, there exist 1 < j < j
and a strong immersion embedding 7y from (Y}, t;,s;) to (Yj/,t;,s;) such that f;(v) <
fir(ny(v)) for every v € V(Y;). Note that ny(s;) = s; and ny(t;) = t; by the definition
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of strong immersion embedding of general rooted digraphs. Since f;(s;) =2 fi(nv(s;)) =
fj(sjr), there exists a strong immersion embedding ny from (Xj, s;,t;) to (Xj, sj,t;) such
that ¢;(v) <g ¢y (nx(v)) for every v € V(X;). Then combining 7y and ny results in a
strong immersion embedding 7 from (Dj, ;) to (Dj, ;) such that ¢,;(v) <g ¢;(n(v)) for
every v € V(D;). m

Let S be a series-parallel cover of a digraph D. Let t be a positive integer. The (S,
compression of D is the digraph obtained from D by for each (A4, B) € S with |V(A)
V(B)| > min{t, 2},

t)-

e deleting V(A) — V(B),
e deleting all edges of A between the two vertices in V(AN B),

e adding new vertices va 1,V n, Va4 r and new edges such that v ova v MV RVAL IS @
directed path from vs to va1, where v40 and v4; are the two vertices in V(A N B)
such that every thread in A is a directed path from v4 o to v41, and

e duplicating va0va ., VA VA M, VamVar and v4 V41 such that the following hold.

— The number of edges between v4 and v4 1, equals the degree of v4 in A.

— The number of edges between v4; and v4 s equals the maximum number of
edge-disjoint directed paths in A from v40 to v4 ;.

The number of edges between v4 ) and v4 r equals the maximum number of
edge-disjoint directed paths in A from v40 to v4 ;.

— The number of edges between v4 r and v4; equals the degree of v4; in A.

Lemma 8.5 Let t be a positive integer. Let D be a digraph. Let Z be a subset of V(D)
such that for every t-alternating path P in D, either V(P)NZ # 0, or P C A for some
series-parallel 2-separation (A, B) of D. Let S be a series-parallel cover of D. Let D' be the
(S,t)-compression of D. Then there exists Z' C V(D) N V(D) with |Z'| < 2|Z| such that
V(P')YNZ" # 0 for every t-alternating path P’ in D'.

Proof. For each (A, B) € S with |V(A) — V(B)| > min{t, 2}, let va0,va,L,Va0M, VAR Va1
be the vertices mentioned in the definition of the (S, t)-compression. Let Z' ={ve Z :v ¢
V(A)—V(B) for every (A, B) € S with |V (A)—V(B)| > min{t, 2} }U{vap,va1: (A, B) €S
with |[V(A) — V(B)| > min{t,2} and Z — V(B) # ()}. Note that Z’ C V(D') N V(D) and
7] < 27|

Suppose to the contrary that there exists a t-alternating path P" in D’ with V(P)NZ' = (.
We may assume that |E(P’)| is as small as possible.

Since for every (A, B) € S with |V(A) — V(B)| > min{t, 2}, the edges incident with
{va,,var} are obtained by copying edges in a directed path v ova VA MV RVA1, SO the
minimality of |E(P’)| implies that

o if vy € V(P'), then P’ contains an edge between vs o and va

o if vyp € V(P), then P’ contains an edge between v4 g and vy,
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o if vy € V(P'), then P’ contains a directed path v ova LvamVAa RVA 1, and

e if P’ contains both v4 j, and vy g but not va s, then vy 1 and vy g are the ends of P,
and ¢t > 2 (since P’ is not a directed path).

In addition, for every (A, B) € S with |V(A) — V(B)| > min{t, 2}, there exist vertices ua
and v/, in V(A) — V(B) such that uy is a neighbor of v4 in D and /4 is a neighbor of v, ;
in D, and such that us and «/, are distinct when |V (A) — V(B)| > 2.

Let P be the thread in D obtained from P’ by for each (A, B) € S with |[V(A) -V (B)| >
min{t, 2},

o if vy € V(P), then deleting va 1, va ., va g and adding a directed path in A from
Va0 t0 VA,

o ifvyy € V(P')and vy € V(P'), then deleting vy 1, and adding an edge of D between
uy and vy, and

o ifvgr € V(P)and vay & V(P'), then deleting vy g and adding an edge of D between
uy and v4 ;.

Since P’ is a t-alternating path, P is a t-alternating path in D.

Note that there exists no (A, B) € S with |[V(A) — V(B)| > min{¢,2} and P C A, for
otherwise P’ is contained a directed path v ova VA pVA RVA1, cOntracting ¢ > 1. Moreover,
for each (A, B) € S, if |[V(A) — V(B)| < min{t — 1,1} and P C A, then since (A, B) is a
series-parallel 2-separation, we know ¢ = 1, so V(A) — V(B) = () and hence P is a directed
edge, a contradiction. So there exists no (A, B) € S such that P C A. If there exists a
series-parallel 2-separation (A’, B") of D with P C A’, then since S is a series-parallel cover,
there exists (A, B) € S with P C A’ C A, a contradiction. So the property of Z implies that
V(P)NZ # 0.

Since V(P")NZ'" = ), by the construction of Z’, there exists z € ZNV (P)—V (B,) for some
(A.,B,) € S with |V(A,) — V(B,)| > min{¢,2}. But this implies that {va,o,v4.1} C 2
and {va. 0,041} NV (P') #0,s0 V(P)NZ" # 0, a contradiction. m

Lemma 8.6 Let F be a well-behaved set of rooted digraphs, and let s be a positive integer.
Let F' be the set consisting of the rooted digraphs (D,r) satisfying that (D — X,r') € F
for some X C V(D) with r € X and |X| < s and for some r' € V(D) — X. Then F' is
well-behaved.

Proof. Let (@, <g) be a well-quasi-order. For i > 1, let (D;,r;) € F' and let ¢, : V/(D;) —

Q.

By the definition of F’, for each i > 1, there exist X; C V(D;) with r; € X, and
| X;] < s and r; € V(D;) — X; such that (D; — X;,r!) € F. For each i € N, we denote
Xi by {win, w2, ..., U |x,}, where u;; = r;. Since |X;| < s for all 4, we may assume that
| X1| = |X;| for all > 1. By Higman’s Lemma, we may assume that for all 1 < a < b,
D,[X,] is a subdigraph of D,[X}| such that for each j € [|Xi]|], u,,; corresponds to w, ;, and
Galtia,;) <q d(us,;)-

Let (@1, <1) be the well-quasi-order obtained by the disjoint union of (N, <) and ({0}, =).
Let (Q2, =2) be the well-quasi-order that is obtained by the Cartesian product of 2| X7 | copies
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of (Q1,=1). Let (Q3, =3) be the well-quasi-order obtained by the Cartesian product (Q, <)
and (QQ, jg)

For each i > 1 and v € V(D;) — X;, define ¢j(v) = (¢(v),a1,b1,az,ba, ..., a1x,), bx;))
where for each j € [|Xi]], a; is the number of edges of D; from u; ; to v, and b; is the number
of edges of D; from v to u; ;. Note that each ¢/ is a function from V(D}) to Q3.

Since F is well-behaved, there exist 1 < j < j' and a strong immersion embedding 7’
from (D — Xj,7%) to (Dy — Xjr,75) such that ¢ (v) =3 ¢ (n'(v)) for every v € V(D;) — Xj.
Then it is easy to extend 7' to a strong immersion embedding 7 from (Dj;,7;) to (Dj,1;/)
such that ¢;(v) <g ¢;(n(v)) for all v € V(D;), and n(u;¢) = uj, for all £ € [|X;]]. This
proves the lemma. m

Lemma 8.7 For every positive integer t, F, is well-behaved.

Proof. We shall prove this lemma by induction on ¢. By Lemma 3.2, F] is well-behaved. So
we may assume that ¢ > 2 and F/_; is well-behaved. By Lemma 8.3, F;_;; is well-behaved.
By Lemma 8.2, F; ; is well-behaved.

Let (@, <g) be a well-quasi-order. For i > 1, let (D;,r;) € F/ and ¢; : V(D;) — Q.
It suffices to prove that there exist 1 < j < j' and a strong immersion embedding 7 from
(Dj,r;) to (Djr,rj) such that ¢,(v) <g ¢j(n(v)) for every v € V(D;).

We are done if there are infinitely many indices ¢ such that either |V(D;)| < 2 or D;
has no series-parallel cover by Lemma 8.4. So by removing finitely many members from the
sequence, we may assume that for each i € N, the underlying graph of D; is 2-connected,
and D; has a series-parallel cover S;.

By Lemma 7.3, there exists a positive integer N such that for each i € N, there exists
Z; € V(D;) with |Z;] < N such that for every (¢ — 1)-alternating path P in D;, either
V(P)N Z; # 0, or there exists a series-parallel 2-separation (A4, B) of D; with P C A.

For ¢ > 1, define the following:

e define D) to be the (S;,t)-compression of D;,

e for each (A, B) S Sz with |V(A) - V(B)| 2 min{t,Z}, let VA0, VA,L, VA M,VAR, VA1 be
the vertices mentioned in the definition of the (S;,t)-compression of D;, and

o if r, € V(D;) NV (D)), then let r; = r;; otherwise, let r; be an arbitrary vertex of D).

By Lemma 8.5, for each i > 1, there exists Z! C V(D;)NV (D}) with r; € Z! and | Z]| < 2N+1
such that every (¢ — 1)-alternating in D} intersects Z.

For i > 1, let DY = D, — Z! and 7/ be a vertex of D/. For each i > 1, since every
(t — 1)-alternating path in D/ intersects Z!, we know (D}, r!) € F, .

Let F* be the family of rooted digraphs (D, r) such that there exists r € Z C V(D)
with |Z] < 2N + 1 and such that (D — Z,7") € F;, for some " € V(D) — Z. Note that
(Di,r}) € F* for each i > 1. Since F; ; is well-behaved, by Lemma 8.6, F* is well-behaved.

For each (A,B) € §; with |V(A) — V(B)| > min{t, 2}, let [X4,Y4] be a splitter of
(A,v40,v41). Recall that (AXA,UA,(),’UAJYA) and (AYA,’UAOXA,UAJ) are the truncations of
(A,v40,v41) with respect to [X4, Yal.
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By possibly further adding a new element into ) and further label r; by using this
element, we may assume that for each i > 1, ¢;(r;) is an element in ) incomparable with all
other elements in @, and ¢;(v) # ¢;(r;) for every v € V(D).

Let @1 = {((D,s,t),¢) : (D,s,t) € A, ¢ : V(D) — Q}. Let =y be the simulation
relation on @;. By Lemma 6.8, (Q1, <1) is a well-quasi-order. Let (@2, <) be the well-
quasi-order obtained from (@1, <;) and ([3],=) by taking Cartesian product. Let (Q3, <3)
be the well-quasi-order obtained from (Q, <g) and (Q2, =2) by taking disjoint union.

For i > 1, define ¢ to be a function with domain V(D)) as follows.

o Ifve V(D)) —{var,vam,var: (A B) €S with |V(A) — V(B)| > min{¢, 2}}, then
define 61(v) = 6,(0)

o If v = vy for some (A,B) € S; with |[V(A) — V(B)| > min{t,2}, then define
¢i(v) = (((A,v40,va1); Dilv(a)), 1)-

o If v =wv, for some (A, B) € S; with |V(A) — V(B)| > min{t, 2}, then define ¢;(v) =
(((AXAaUA,[)aUA,IYA)a ¢i|XA)7 2)-

o If v =wv4p for some (A, B) € §; with |V(A) — V(B)| > min{t, 2}, then define ¢;(v) =
(((AYA7 UA70XA ) UA,l)? ¢i’YA)7 3)

By Lemma 6.4, the image of ¢} for each i is contained in Q3.
Since F* is well-behaved, there exist 1 < j < j" and a strong immersion embedding 7 from
(D}, %) to (D}, %) such that ¢ (v) <3 ¢ (n(v)) for every v € V(D). By the definition of ¢/,

3"
there exist injections ¢, 1y and tp from {A: (A, B) € §; with |V(A) — V(B)| > min{¢t, 2}}
to {A" : (A, B) € S§; with |V(A") — V(B’)| > 2} such that for every (A, B) € S; with

|[V(A) — V(B)| > min{t, 2},
o N(va,L) = Viy(a),0, N(VAM) = Viy(a),M> N(Va,R) = Vip(a),r, and
e there exist

— astrong immersion embedding 74 1, from (Ax,, v4, /UAJ_YA) to (/,L(A)XLL(A) sV (A),05
vLL(A)JYLL(A)) such that ¢;(v) <g ¢;/(na,(v)) for every v € Xy,

— astrong immersion embedding 14, from (A, va,0,v4,1) t0 (¢ar(A), Uiy (4),05 Virs(4),1)
such that ¢;(v) <g ¢j(na,m(v)) for every v € V(A), and

— a strong immersion embedding 14 p from (Ay,, VAO 5 va1) to (tr(A)
Vin(A)0x, U, p(4)1) such that ¢;(v) <g ¢j(na,r(v)) for every v € Yy.

Yo a0

For (A, B) € S; with |V(A) — V(B)| > min{t, 2}, we say that (A, B) is loose if 11,(A) #
tr(A); otherwise we say that (A, B) is tight. Note that if (A, B) is tight, then ¢y (A) =

tr(A) = tr(A) and 1(van) = Vi (a).0 = Vig(a)m-
Define n* to be a function whose domain is the union of V(D;) and a subset of E(D;)
such that the following hold.

e If v € V(D;) NV(D}), then define n*(v) = n(v).
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o If v e V(A)—V(B) for some (A, B) € §; with |V(A) — V(B)| > min{¢, 2}, then

— if (A, B) is tight, then define n*(v) = nan(v), and

— if (A, B) is loose, then
« if v € X4 —{vao}, then define n*(v) = na r(v), and
« if v € Y4 — {vaq}, then define n*(v) = na r(v).

o If e € E(D;) N E(Dj) and n(e) € Dy, then define n*(e) = n(e).

o If e € E(A) with both ends in X4 — {va} for some loose (A, B) € S;, then define
n*(e) = na.Lle)-

o If e € E(A) with both ends in Y4 — {va} for some loose (A, B) € S;, then define
n*(e) = nar(e).

e If e € E(A) with both ends in V(A) — {vap,va1} for some tight (A, B) € S;, then
define 17(¢) = 4.1 (¢).

Note that ¢;(v) <g ¢;(n*(v)) for every v € V(D,). Recall that ¢;(v) is incomparable with
¢i(r;) for every ¢ > 1 and v € V(D;). So n*(r;) = r;. Moreover, it is straightforward to see
that for every directed edge e of D, say from u to v, with n*(e) is defined, n*(e) is a directed
path from 7*(u) to n*(v) internally disjoint from n*(V(D;)); and for distinct directed edges
e, e of D; with n*(e),n*(e’) defined, n*(e) and n*(e’) are edge-disjoint.

To prove this lemma, it suffices to show that we can further define n*(e) for the rest of
edges of e € E(D;) to extend n* to a strong immersion embedding from (D;, ;) to (D, 7).

Note that every edge e of D; for which 1*(e) was not defined satisfies one of the following:

for some loose (A, B) € §;, and e is between X4 and Yjy.

) (
) (4)

(ili) e € E(A) for some loose (A, B) € S;, and e is incident with exactly one of v or v4 .
) (A) for some tight (A, B) € S;, and e is incident with exactly one of v49 or v4;.
) (

For each (A’, B') € Sy with |V(A') = V(B')| > min{t, 2}, we say that an edge e € E(D)
is (A', B")-free if n(e) contains all vertices in {va 1, va/ m,va g} as internal vertices.

Claim 1: For each (A", B') € §;; with |V(A") —V(B’)| > min{t, 2}, there exists an injection
from the set of (A’, B)-free edges of D’ to a set of edge-disjoint directed paths in A" C D,
from va o to varq internally disjoint from n*(V(D;)).

Proof of Claim 1: We may assume that the set of (A’, B')-free edges of D’ is nonempty, for
otherwise we are done. Hence {va 1, var ar, var g} is disjoint from n(V(Dj)). So V(A")-V (B’)
is disjoint from 7n*(D,). Let k4 be the number of edges of D;, between vy 1, and var p. So
there are ks edge-disjoint paths in A" from va to va; by the definition of the (S;/,t)-
compression. In addition, n maps each (A’, B')-free edge of Dj to a path containing an edge
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between vy 1, and var a7, so there are at most ka (A’, B')-free edges. Therefore, there exists
an injection from the set of (A’, B')-free edges of D to a set of edge-disjoint directed paths
in A’ from v4 o to v internally disjoint from n*(V(D;)). O

For each edge e of D7, the free-substitution of e is the directed path in Dy U D7, ob-
tained from 7(e) by for each (A’, B') € §; in which e is (A’, B')-free, replacing the subpath
VaroVa LVa VA rUA 1 Of M(e) by the image of e under the injection mentioned in Claim 1.
Note that the free-substitution of e can be edge-partitioned into a directed path in D; and
at most two directed paths in D}, — E(Dy).

For each edge e of D, satisfying (i), define n*(e) to be the free-substitution of e. Since e
satisfies (i), n*(e) is a directed path in D;,. Then it is clear that the function n* defined so
far does not violate any condition for being a strong immersion embedding from (Dj;, ;) to
(Djs, 7). It remains to define n*(e) for edges e satisfying (ii), (iii), (iv) or (v).

For each (A, B) € S; with |V (A) — V(B)| > min{t, 2}, we define the following:

o if (A, B) is loose, then let 74 x =1 and nay = 1a.r,
e if (A, B) is tight, then let na x = nam and nay = nan,

e let m4 1 be a bijection from the set of edges of A incident with v4 to the set of edges
of D; between v4 o and vy 1, (note that this bijection exists since these two sets have
the same size by the definition of the (S;,t)-compression), and

e let m4 r be a bijection from the set of edges of A incident with v4; to the set of edges
of D;- between v4 1 and vy g.

Now we define n*(e) for edges e satisfying (iii), (iv) or (v). For each edge e € E(A) for
some (A, B) € §; with |V(A) — V(B)| > min{¢, 2},

e if e is incident with v but not incident with v,4;, then define n*(e) to be the di-
rected path in D; obtained from the free-substitution of 74 1 (e) by replacing the edge
Uyp (4),0V0p(A),L = Vi (a),0M(va,n) by the directed path na x(e),

e if ¢ is incident with v4; but not incident with v4g, then define n*(e) to be the di-
rected path in Dj obtained from the free-substitution of 74 r(e) by replacing the edge
Uyp(A),RVip(A),1 = 1(VA,R)Vig(a),1 Dy the directed path 74y (e), and

e if e is from va o to va; and (A, B) is tight, then define n*(e) to be the directed path in
Dj: obtained by concatenating the following three directed paths in Dj:

— the directed path obtained from the free-substitution of w4 ;(e) by deleting the
vertex v, (a),L = N(va,L),
— naum(e), and

— the directed path obtained from the free-substitution of 74 g(e) by deleting the
vertex v,,(4),r = N(Va,R)-
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Then it is clear that the function n* defined so far does not violate any condition for being
a strong immersion embedding from (Dj, ;) to (Dj,rj). It suffices to define n*(e) for edges
e satisfying (ii).

A middle path in D; is a directed path of the form v4 v av 4 R for some (A, B) € S; with
|V(A) — V(B)| > min{t, 2}. For each loose (A, B) € S;, there exists a bijection 74 s from
the set of edges of A between X4 and Y, and a set of edge-disjoint middle paths contained
in D;- [VAL,VA M, VAR, as these two sets have the same size.

For each (A', B') € Sy with |[V(A') — V(B’)| > min{t, 2}, we say that a middle path P
in D’ is (A, B')-semifree if n maps P to a directed path containing both v/, and var g as
internal vertices.

Claim 2: For each (4', B') € Sj; with |V (A’) —V(B’)| > min{t, 2}, there exists an injection
from the set of (A’, B')-semifree internal paths in D’ to a set of edge-disjoint directed paths
in A" C DY, from varg to var; internally disjoint from 7*(V(D;)).

Proof of Claim 2: We may assume that the set of (A’, B')-semifree middle paths of D
is nonempty, for otherwise we are done. Hence {va/ 1,va g} is disjoint from n(V(Dj)). So
V(A") = V(B') is disjoint from n*(D;). Let ka be the number of edges of D), between var
and vas ps. So there are ky edge-disjoint paths in A" from var g to va;1 by the definition of
the (Sj/,t)-compression. In addition, n maps each (A’, B')-semifree middle path of Dj to a
path containing an edge between v/ 1, and var ar, so there are at most ka (A’, B')-semifree
middle paths. Therefore, there exists an injection from the set of (A’, B')-semifree middle
paths in D’ to a set of edge-disjoint directed paths in A" from vas g to var; internally disjoint
from n*(V(Dy)). O

For each middle path P with edges ej, ey in Dj, the semifree-substitution of P is the
directed path in Dy U D7, obtained from n(e1) Un(ez) by for each (A, B') € Sy in which
P is (A', B')-semifree, replacing the subpath var gvar V4 pvar g1 Of n(er) Un(ez) by the
image of P under the injection mentioned in Claim 2.

If e is an edge of A between X4 and Yy for some loose (A, B) € S, then 14 x(e) contains
exactly one edge between X,, 4y and Y;, (4). Since there are ks edge-disjoint paths in A’
between vy o and v 1, where A" = 11 (A) and kus is the number of edges of A’ between X 4/
and Ya, we can extend 14 x(e), for each e of A between X4 and Yjp, by concatenating a
path in A’[Ya/] to obtain a directed path P, from 74 x(v.) to var 1, where v, is the tail of
e, such that if ey, es are distinct edges of A between X4 and Yy, then P., ; and P, are
edge-disjoint.

Similarly, for each loose (A,B) € S, and edge e of A between X4 and Xp, we can
concatenate 174y (e) with a path in A'[X /], where A" = 1g(A), to obtain a directed path
P. g from va o to nay(ve), where v, is the head of e such that if e;, eo are distinct edges of
A between X4 and Yy, then P, g and P, r are edge-disjoint.

For each loose (A, B) € §; and each e of A between X4 and Yy, we define the following:

e Define P, to be the directed path obtained by concatenating the following three directed
paths:

- leL;
— the directed path obtained from the semifree-substitution of w4 y(e) by deleting
Vyp (A),Ls Vop (A),Ms Vup (A),R> Veg(A),L» Vig(A),M> Vig(A),R, and
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- e,R-
e If e is not incident with v4 ¢ nor v4 1, then define n*(e) = P..

o If e is from v4 0 to va 1, then define n*(e) to be the directed path obtained by concate-
nating the following three directed paths:

— the directed path obtained from the free-substitution of 74 1 (e) by deleting v, (4,1,
— P,, and
— the directed path obtained from the free-substitution of 74 r(e) by deleting v, ,(a),r.

Note that it extends the domain of n* to be a set containing E(D;). It is clear that n* is a
strong immersion embedding from (D;,r;) to (Djs,r;). This completes the proof. m

Theorem 8.8 For every positive integer t, F; is well-behaved.

Proof. By Lemma 8.7, F/ is well-behaved. By Lemma 8.3, F;y1 is well-behaved. By
Lemma 8.2, F; is well-behaved. m

Now we are ready to prove Theorem 1.1. The following is a restatement.

Corollary 8.9 Let (Q,<g) be a well-quasi-order. Lett be a positive integer. For eachi € N,
let D; be a digraph with loops allowed such that there exists no t-alternating path in D;, and
let ¢; : V(D;) — Q be a function. Then there exist 1 < j < j' and a strong immersion
embedding n from D; to Dj such that ¢;(v) <g ¢4 (n(v)) for every v € V(D;).

Proof. Let (@', <) be the well-quasi-order obtained by the Cartesian product of (@), <) and
(NU {0}, <). For each i € N, let D} be the digraph obtained from D; by deleting all loops,
and let ¢ : V(D]) — @' be the function such that for every v € V(D)), ¢i(v) = (¢i(v), ly),
where £, is the number of loops of D; incident with v. By Theorem 8.8, there exist 1 < j < j
and a strong immersion embedding 7 from D} to D}, such that ¢(v) < ¢/ (n(v)) for every
v € V(Dj). Hence for every v € V(D;), the number of loops of D; incident with v is at most
the number of loops of D; incident with n(v). Therefore, we can extend 7 to be a strong
immersion embedding from D, to D; such that ¢;(v) <g ¢;/(n(v)) for every v € V(D;). =
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