

Properties of Mine Tailings for Static Liquefaction Assessment

Jorge Macedo^a, Luis Vergaray^b

ABSTRACT

4 Static liquefaction has been associated with numerous recent failures of tailings storage
5 facilities (TSFs) around the world (e.g., the 2019 Brumadinho failure). These failures lead to
6 devastating consequences for the environment and civil infrastructure as well as the loss of human
7 lives. In this study, we present trends for the mechanical response of mine tailings considering a)
8 triaxial tests, b) bender element tests, and c) consolidation tests performed on 53 mine tailings
9 materials (including recent case histories). These materials have a broad range of states, particle
10 size distributions, and compressibility. The trends are evaluated in the context of static liquefaction
11 using critical state soil mechanics concepts, focusing on the variation of the shear strength (residual
12 and peak), state and brittleness soil indexes, excess pore pressure indexes, instability stress ratios,
13 and dilatancy. In particular, we highlight that mine tailings mechanical properties reflect both the
14 properties of the particles themselves and the relative proportions of different particle sizes. For
15 instance, the observed trends suggest that particle gradation influences the small strain stiffness,
16 and dilatancy; the proportion of voids to the size of fine particles influence strength, and particle
17 shape affects dilatancy. Finally, we propose static liquefaction screening indexes based on the
18 observed trends.

^a Assistant Professor, Georgia Institute of Technology, Atlanta, GA, jorge.macedo@gatech.edu

^b Graduate Student, Georgia Institute of Technology, Atlanta, GA, luis.vergaray@gatech.edu

22 INTRODUCTION

23 The static liquefaction of mine tailings has caused numerous recent failures, e.g., the 1985 Stava
24 disaster in Italy (Chandler and Tosatti, 1995), the 1994 Merriespruit failure in South Africa (Fourie
25 and Papageorgiou, 2001), the 2014 Mount Polley disaster in Canada (Morgenstern et al., 2015),
26 the 2015 Fundao failure in Brazil (Morgenstern et al., 2016), the 2018 Cadia failure in Australia
27 (Morgenstern et al., 2019), and the 2019 Brumadinho failure in Brazil (Robertson et al., 2019).
28 Such failures of tailings storage facilities (TSFs) have caused unprecedented devastating
29 consequences for the environment, infrastructure damage as well as human losses. For example,
30 the Fundao failure is considered the largest environmental disaster in Brazil, and the Mount Polley
31 failure in Canada is one of the worst disasters in modern Canadian history. These failures have
32 triggered international debates regarding the safety of TSF systems. In particular, the conditions
33 that result in static liquefaction of mine tailings remain a considerable concern affecting the
34 financial viability of mines and the willingness of governments to allow mining.

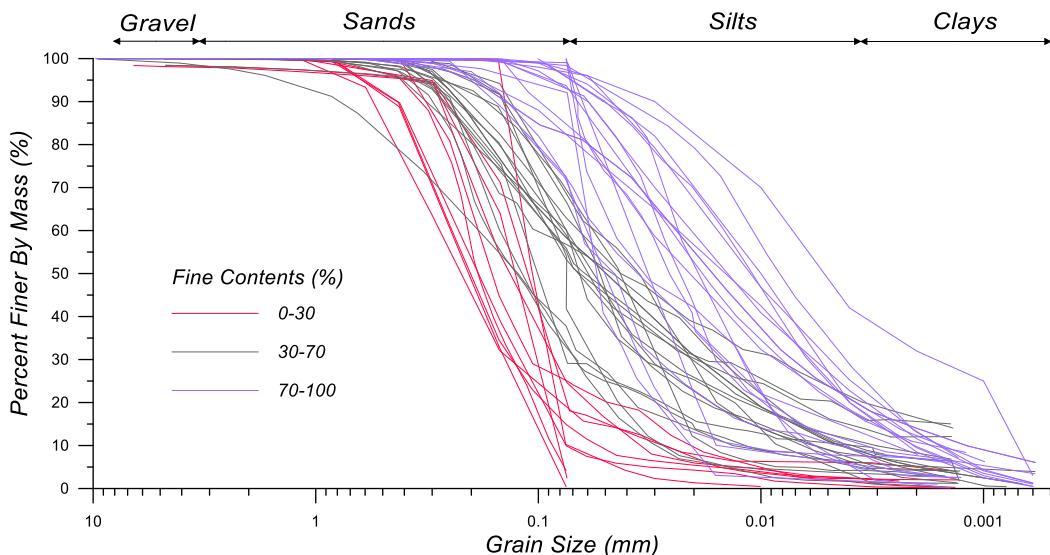
35 From a technical standpoint, it is worth highlighting that static liquefaction is just another facet
36 of soil behavior under loading, and hence it should be explained under a mechanistic framework.
37 A historical perspective on the definition of the liquefaction phenomena is provided in Jefferies
38 and Been (2015) where the authors highlight the lessons after the Calaveras dam failure (Hazen,
39 1918) and the definition of the critical void ratio concept (Casagrandre, 1936) as part of the
40 pioneering efforts to advance the understanding of liquefaction. In a historical context, one of the
41 first attempts to account for static liquefaction at a design stage goes back to the work by the US
42 Army Corps of Engineers (USACE), having designed and constructed Franklin Falls dam to resist
43 static liquefaction (“sand flow failure” in the terminology of the time) approximately eighty years
44 ago. This initial work by the USACE, documented in Lyman (1938), developed over the following
45 years into the mechanistic framework, now known as critical state soil mechanics (CSSM).
46 Arguably, CSSM is now the preeminent methodology for understanding static liquefaction, having

47 been used in the mining industry by the expert panels retained to investigate recent TSF failures
48 such as for example Fundao (Morgenstern *et al.*, 2016), Cadia (Morgenstern *et al.*, 2019), and
49 Brumadinho (Robertson *et al.*, 2019).

50 In the U.S. exist approximately 1200 TSFs, with 60% of them having a significant hazard
51 according to the USACE classification (USACE, 2016). Hence, the safety of TSFs is an important
52 issue. In some scenarios, the deposited tailings in a TSF are an essential component of the overall
53 physical stability of a TSF. This is particularly the case for upstream and centerline dams, which
54 may have a high associated risk, not only during their operation but also when they are considered
55 inactive (e.g., the Brumadinho dam was inactive since 2015 and failed in 2019). In these scenarios,
56 an adequate understanding of the mechanical response of tailing materials is essential for
57 understanding the response of the overall TSF system. Moreover, as engineering practice is
58 moving more towards finite element or finite difference-based stress analyses (e.g., the evaluations
59 performed in the forensic studies after recent failures), understanding the mechanical response of
60 mine tailings is also fundamental for the calibration of constitutive models that can later be used
61 in numerical simulations. This is not simple because mine tailings are often characterized as
62 intermediate materials (pure silts or sandy silts), which represents a fundamental challenge for
63 understanding their mechanical response. Tailings are also geologically young materials, with
64 angular grains rather than subrounded and often with lower proportions of quartz than many
65 natural soils; thus, standard geotechnical correlations should not be taken as applicable to tailings
66 without detailed consideration of these factors.

67 Previous efforts on understanding the trends in the mechanical response of particulate materials
68 under monotonic loadings have been mainly focused on sands with low fine contents (e.g.,
69 Sadrekarimi, 2014; Jefferies and Been, 2016, Rabbi *et al.*, 2019). For example, Sadrekarimi (2016)
70 used results from laboratory tests under different boundary conditions (e.g., triaxial, plane strain)
71 to find trends in the peak and residual normalized strengths of sand materials with respect to the

72 brittleness index (Bishop, 1971). Rabbi *et al.* (2019) used experimental results from an Australian
73 sand with 10% fine contents (FC) to present trends between a modified version of the brittleness
74 index and different parameters that characterize the state of a soil material (e.g., the state parameter
75 defined by Been and Jefferies, 1985). In addition, Rabbi *et al.* (2019) also presented trends for the
76 stress ratio ($\eta = q/p$, where q is the deviatoric stress, and p is the effective mean stress), at
77 liquefaction triggering against different parameters that represent soil state.


78 In terms of mine tailings, the experimental studies that have evaluated their mechanical response
79 and the associated mechanical parameters are somewhat limited compared to sand materials (e.g.,
80 Jefferies and Been, 2016; Shuttle and Jefferies, 2016; Fourie and Tshabalala, 2005; Carrera *et al.*,
81 2011). In terms of trends extracted from a large number of experimental tests, the authors are only
82 aware of the study by Smith *et al.* (2019), who presented trends for the parameters that define a
83 linear critical state line (i.e., the slope and altitude at low stresses), and the variation of the
84 brittleness index and a normalized version of the state parameter. In a broader perspective, the
85 mechanical properties in particulate materials (including mine tailings) reflect both the properties
86 of the particles themselves and the relative proportions of the different particle sizes, which affect
87 how easily particle movements create new contacts and the available space of particles to move
88 into. Some previous research exploring particle shape and gradation effects on the macro
89 mechanical response of particulate materials include the work of Cho *et al.* (2006), who explored
90 the role of particle properties on mechanical properties of uniformly graded clean sands. Torres-
91 Cruz and Santamarina (2019) explored the trends of mine tailings critical state line (CSL)
92 properties in terms of the minimum void ratio (e_{min}), concluding that e_{min} could be used to
93 characterize the variation of the CSL properties in the field. Payan *et al.* (2015) evaluated the
94 effects of particle sizes on the stiffness of sands by considering the coefficient of uniformity (C_u),
95 concluding that gradation has an important effect on the stiffness of sand materials.

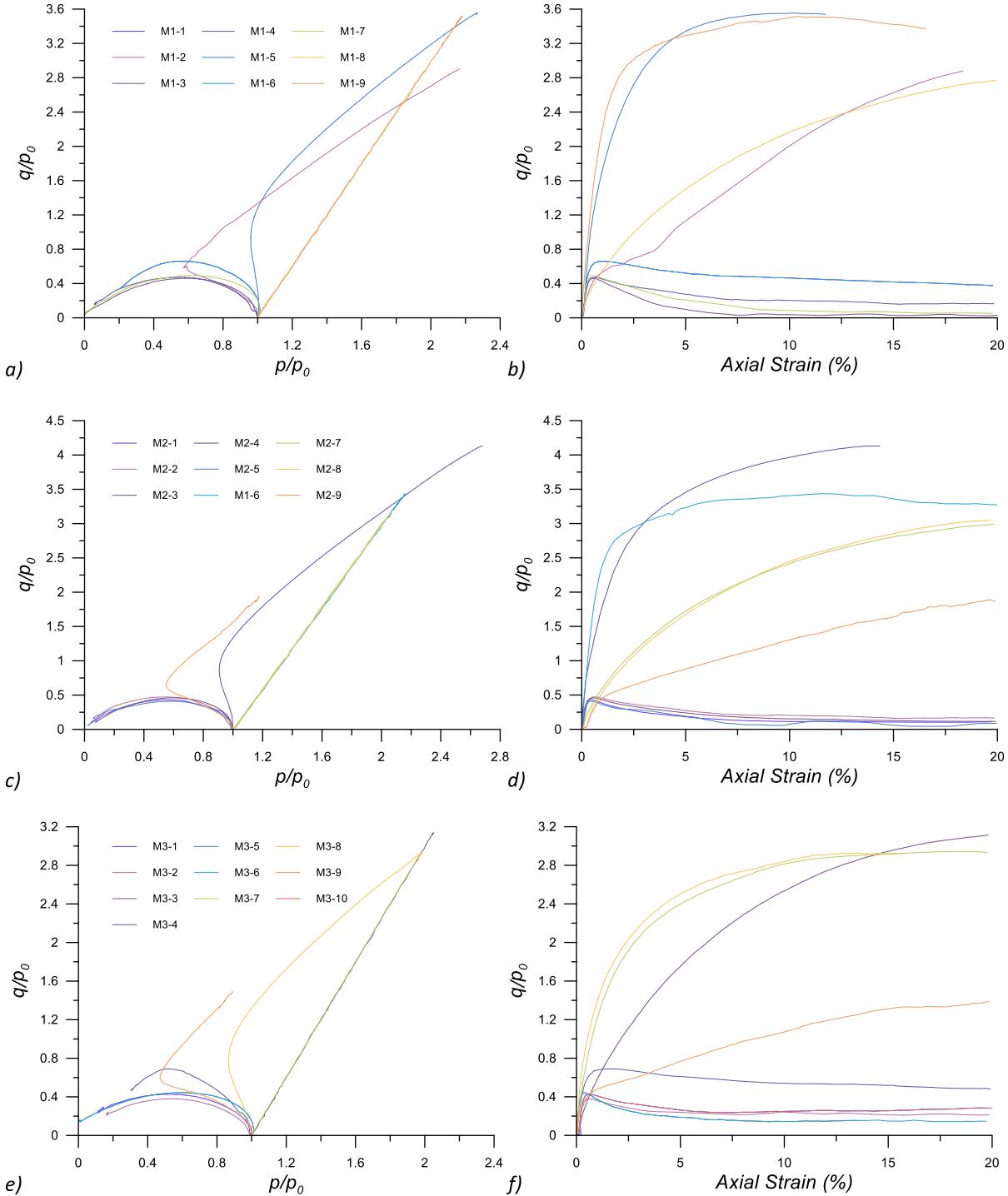
96 In this study, we present trends for mechanical-based parameters that control the response of
97 mine tailings, in the context of static liquefaction, which have not been previously explored
98 considering a large set of tailings materials. Another aspect that we highlight is the influence of
99 the relative proportions of particle sizes on the macro mechanical response of mine tailings. We
100 consider a broad range of states, a range of particle size distributions (i.e., from silty sand to almost
101 pure silt mine tailings), a broad range of compressibility, and a broad range of particle gradations.
102 The trends are presented using results from 54 mine tailings materials (including available data
103 from the recent failures previously discussed), which have been processed in a uniform manner.
104 In some instances, numerical simulations with the Norsand model (Jefferies, 1993; Jefferies and
105 Been, 2016), referred to as Norsand in this study, are used to complement the observations from
106 experimental-based trends. Finally, we provide screening indexes for the assessment of static
107 liquefaction in mine tailings using insights from the observed trends.

108 MATERIALS DATABASE

109 Figure 1 shows the particle size distribution for the materials considered in this study, separating
110 them by fine contents for easier visualization. The data for materials 01 to 07 are made available
111 as part of this study, considering the following tests: 1) TxC drained (CD) and TxC undrained
112 (CU) tests, defining a CSL, 2) consolidation (using a constant rate of strain procedure), and 3)
113 bender elements to evaluate the stiffness (i.e., shear modulus). Materials 08 to 53 were compiled
114 from Shuttle and Cunning (2007), Anderson and Eldridge (2011), Bedin *et al.* (2012), Schnaid *et*
115 *al.* (2013), Been (2016), Li and Coop (2018), Li and Coop (2019), Raposo (2016), Torres (2016),
116 Morgenstern *et al.* (2016), Riemer *et al.* (2017), Li (2017), Robertson *et al.* (2019), Macedo and
117 Petalas (2019), Gill (2019), Reid and Fanni (2020), Reid *et al.* (2018), Reid *et al.* (2020), Fourie
118 and Papageorgiou(2001), and Carrera (2011). In particular, material 22 corresponds to the Fundao
119 failure, materials 24 to 27 corresponds to the Cadia failure, materials 30 to 32 correspond to the

120 Brumadinho failure, materials 46 to 49 correspond to the Merriespruit failure, and 51 to 54
 121 correspond to the Stava failure. The database contains 334 triaxial tests, 49 consolidation tests, and
 122 54 bender element tests. The mine tailings correspond to different ores (i.e., gold, iron, silver,
 123 copper, zinc, platinum), and they cover a broad range of fine contents ($FC = 0 - 100 \%$), initial
 124 confining stress ($20 - 6000 \text{ kPa}$), specific gravity ($Gs = 2.63 - 4.89$), and states (i.e., very
 125 loose to dense). Additional details are included in Table A.1 of Appendix A.

126
 127 **Figure 1.** Range of particle size distribution for the materials considered in this study. Materials
 128 01 to 07 were generated as part of this study. Materials 08 to 53 were compiled from Fourie and
 129 Papageorgiou(2001), Shuttle and Cunning (2007), Carrera (2011), Anderson and Eldridge (2011),
 130 Bedin *et al.* (2012), Schnaid *et al.* (2013), Been (2016), Li and Coop (2018), Reid *et al.* (2018), Li
 131 and Coop (2019), Raposo (2016), Torres (2016), Morgenstern *et al.* (2016), Riemer *et al.* (2017),
 132 Li (2017), Robertson *et al.* (2019), Macedo and Petalas (2019), Gill (2019), Reid and Fanni (2020)
 133 and Reid *et al.* (2020).
 134


135 In the case of the materials tested as part of this study, a washed sieve analysis and specific
 136 gravity were completed on each specimen prior to testing. The specimens were then prepared using
 137 moist tamping, during which the specific gravities were used to calculate void ratios and dry
 138 densities before each test. Initial height and diameter measurements were taken before shearing.
 139 and void ratios were measured using the end-of-test soil freezing technique (Sladen and Handford,
 140 1987, Jefferies and Been 2015, Reid *et al.*, 2020), which were used to estimate the void ratio change

141 during the tests. The “under-compaction” method (Ladd, 1978) was used to improve the uniformity
142 of the prepared specimens by varying the weight of each compacted layer. A vacuum (<5 kPa)
143 was applied to hold the specimens before they are placed in the triaxial cell (e.g., for saturation
144 purposes). The moist tamping technique has been selected since it enhances specimen
145 homogeneity, allows better control over the specimen’s void ratio, and promotes strain-softening
146 (Sadrekarimi and Riveros 2020, Al-Tarhouni et al. 2011; Chen and van Zyl 1988; Sladen et al.
147 1985, Fourie and Tshabalala 2005, Reid et al. 2018; Schnaid et al. 2013). Recently Reid and Fanni
148 (2020) compared the CSLs obtained from intact tailings block samples and specimens prepared
149 using moist tamping, concluding that the intact block samples generally tended towards the CSL
150 obtained from the moist tamped specimens. Reid and Fanni (2020) also pointed out that slurry
151 deposited samples tended towards but did not reach the CSLs from moist tamped specimens and
152 intact block samples. Furthermore, the moist tamping technique has also been used in the recent
153 forensic studies involving mine tailings after the Fundao and Cadia TSFs failures (Morgenstern *et*
154 *al.*, 2016; Morgenstern *et al.*, 2019). Figure 2 illustrates normalized stress-strain curves and stress
155 paths obtained from drained and undrained triaxial for materials 01 to 03.

156 DATA PROCESSING

157 The available laboratory tests for each material have been processed in a uniform manner. The
158 following properties were evaluated for each material: (1) the critical state line (CSL), in the case
159 of a linear CSL, the slope (λ_e), and the altitude at 1kpa (Γ) are estimated using Eq. 1a. In the case
160 of a curve CSL, the parameters are a, b, and c, according to Eq. 1b are estimated; (2) the stress
161 ratio at critical state (M_{tc}), and the volumetric coupling (N), according to Eq. 2a; (3) the state-
162 dilatancy parameter (χ), according to Eq. 2b; and 4) the stiffness-confinement dependence
163 parameters (A, B) according to Equations 3a to 3c.

164

165 **Figure 2.** Normalized stress-strain and stress path curves for material 1 (a, b), material 2 (c, d),
166 and material 3 (e,f). Additional information for the tests in materials 1 to 7 is presented in the Table
167 A.2 of Appendix A.

169 M_{tc} was estimated as the slope of the line that joins the ultimate points in a p (mean stress)

170 versus q (deviatoric) plots or using Eq. 2a, which is based on the strength-dilatancy relationship
 171 used in Jefferies and Been (2016). In Eq. 2a, D_{min} represents the maximum dilatancy, and η_{max}
 172 is the maximum stress ratio. D_{min} was selected by plotting D versus the state parameter (ψ), after
 173 getting rid of potential fluctuations (noise) using a loess non-parametric fitting. η_{max} was selected
 174 from a η versus axial strain plot. N was also calculated from Eq. 2a., using the slope of the η_{max}
 175 versus D_{min} relationship. χ was calculated from a plot of D_{min} versus ψ , according to Eq. 2b.
 176 Finally, the parameters A and B were calculated by non-linear regressions of the shear modulus
 177 (G) measured in the bender element tests versus the mean effective stress p according to Equations
 178 3a to 3c, using the two different functional forms. Equation 3b and 3c represent the functional
 179 form proposed by Hardin and Richart (1963) and Pestana and Whittle (1995), respectively.

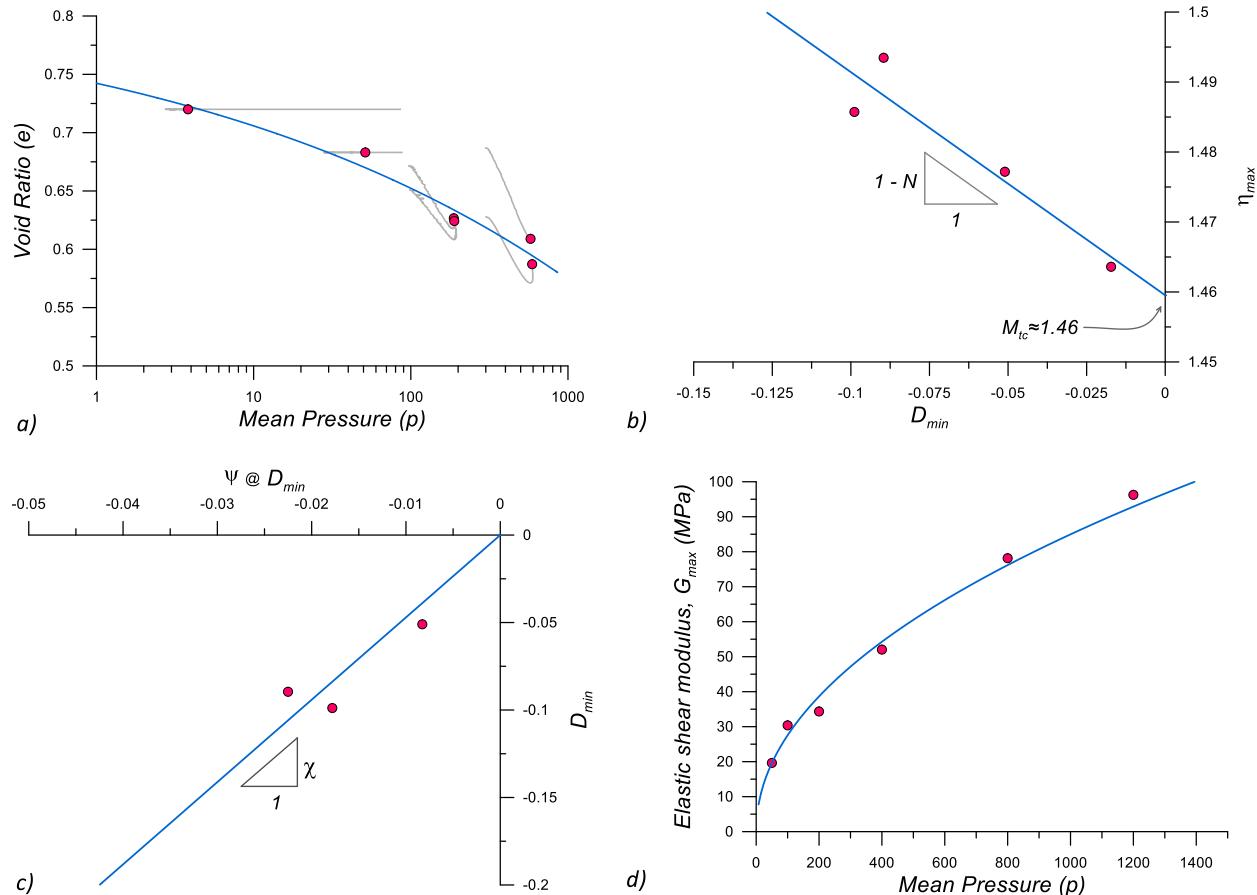
$$180 \quad e_c = \Gamma - \lambda_e \ln p \quad (1a)$$

$$181 \quad e_c = a - b \left(\frac{p}{p_{atm}} \right)^c \quad (1b)$$

$$182 \quad \eta_{max} = M_{tc} + (1 - D_{min})N \quad (2a)$$

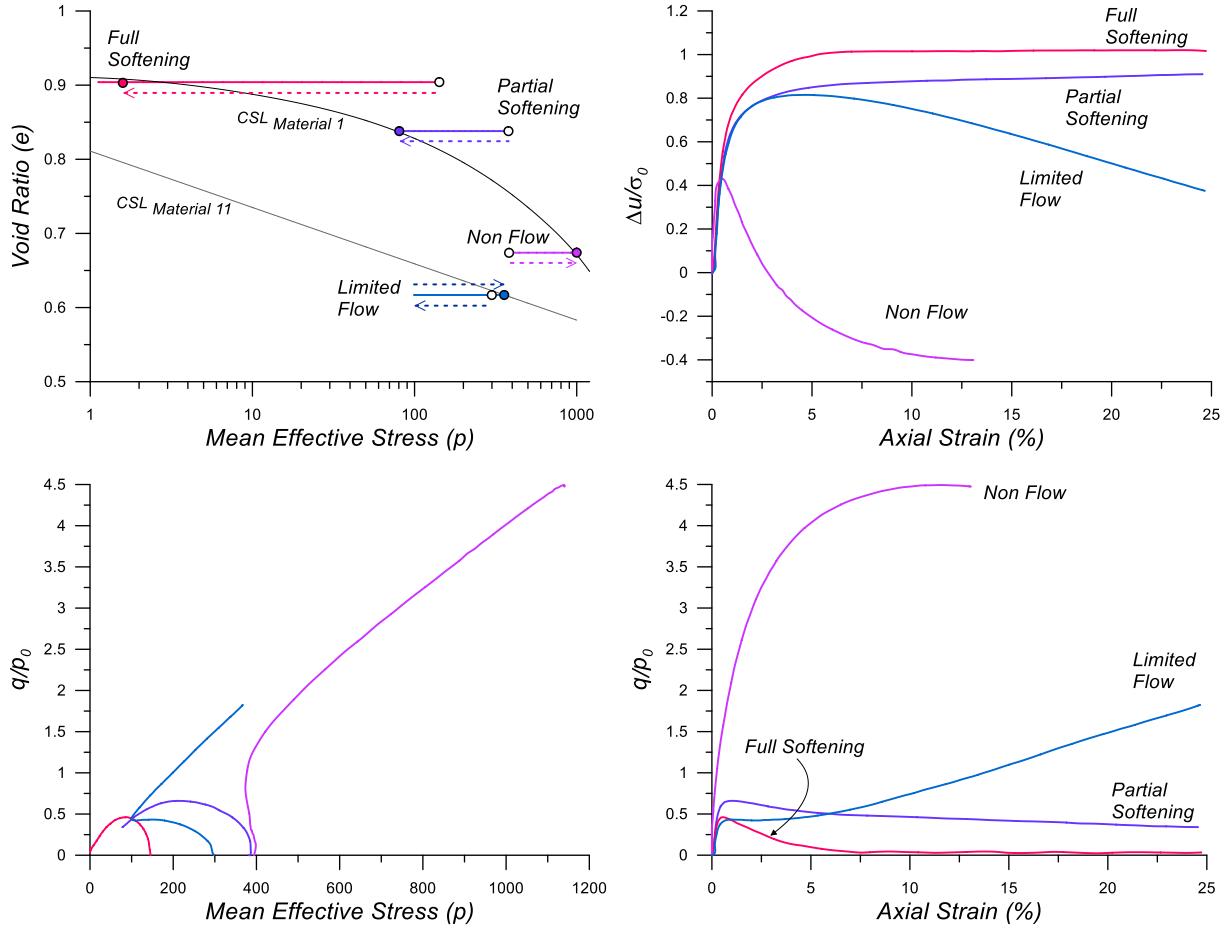
$$183 \quad D_{min} = \chi \psi \quad (2b)$$

$$184 \quad G = A \cdot F(e) \cdot \left(\frac{p}{p_a} \right)^B \quad (3a)$$


$$185 \quad F(e) = \frac{(2.97 - e)^2}{(1 + e)} \quad (3b)$$

$$186 \quad F(e) = \frac{1 + e}{e} \quad (3c)$$

187 It is important to highlight that Γ , λ_e , M_{tc} , N , χ , A , and B are often present as parameters in
 188 robust constitutive models, usually formulated for sands (although often named differently or
 189 represented by other proxies), and are the basis for the current mechanical-based understanding of
 190 static liquefaction. Figure 3 shows an example of the calculation of these parameters for material
 191 12. Fig. 3a shows the estimation of the CSL, Fig. 3b shows the η_{max} versus D_{min} plot to estimate
 192 M_{tc} and N , Fig. 3c shows the state-dilatancy relationship to estimate χ , and Fig. 3d shows the G


193 versus p plot to estimate A and B, according to equation 3a.

194

195 **Figure 3.** Illustration of the estimation of mechanical-based parameters consistent with the critical state theory for material 12. a) CSL estimation, b) η_{max} versus D_{min} plot to estimate M_{tc} and N , c) state-dilatancy relationship to estimate χ , and d) G versus p plot to estimate A, and B.

196 In the case of undrained triaxial tests, we classified each test as a) flow liquefaction with full
 197 softening, b) flow liquefaction with partial softening, c) limited flow liquefaction, and d) non-flow
 198 liquefaction. This classification is consistent with that in Rabbi *et al.* (2019). The subdivision of
 199 flow liquefaction cases in full softening and partial softening is also consistent with Soares and
 200 Viana da Fonseca (2016). Figure 4 illustrates the adopted criteria using selected materials from
 201
 202
 203
 204 our database.

205

206 **Figure 4.** Illustration of the adopted criteria to characterize different responses in undrained
 207 triaxial. Δu is the excess pore pressure and σ'_0 is the initial vertical effective stress.

208 The full softening corresponds to the cases that p and q reached values very close to zero,
 209 without any sign of a transformation point (i.e., a transition from contraction to dilation). The
 210 partial softening corresponds to cases that showed strain-softening after peak but with q values
 211 significantly larger than zero (we considered values 10 kPa as the threshold) by the end of the test.
 212 In addition, the following parameters were estimated for each test: the brittleness index $I_b =$
 213 $(Su_y - Su_r)/Su_y$ (Bishop, 1971) where Su_y is the strength at peak (also called yield strength)
 214 and Su_r is the residual strength; the yield strength ratio (Su_y/σ'_0) , where σ'_0 is the initial vertical
 215 effective stress ; the residual strength ratio (Su_r/σ'_0) ; the excess pore pressure ratio (r_u) and; and

216 the instability stress ratio η_{IL} , which corresponds to η at peak conditions in a p versus q plot when
217 the behavior is associated with flow liquefaction. Of note, in the cases with limited flow (see Figure
218 4), Su_r was selected as the minimum strength following strain-softening behavior, which
219 corresponds to the so-called transformation point (Yoshimine and Ishihara, 1998). This is
220 consistent with Sadrekarimi (2014 a,b), who pointed out that when instability and deformation
221 occur in field conditions, the soil behavior may become dynamic and turbulent due to inertial
222 effects, and hardening may not be possible after the soil reaches the transformation point under
223 such circumstances.

224 We have also considered different definitions to quantify the state and its evolution; specifically,
225 we considered the state parameter (ψ) defined by Been and Jefferies (1985); the state pressure
226 index (I_p) defined by Wang *et al.* (2002); the modified state parameter (ψ_m) defined by Bobei *et*
227 *al.* (2009); and a volumetric strain-based state parameter (ψ_v) defined in this study. Appendix B
228 presents a detailed description of these parameters that quantify the state of particulate materials
229 (see equations B.1 to B.5 and Figure B.1 in Appendix B).

230 TRENDS IN THE MECHANICAL RESPONSE OF MINE TAILINGS

231 Critical state parameters and stiffness

232 Figure 5a shows the distribution of the CSLs for all the materials considered in this study; it can
233 be observed that the estimated CSLs were, in most cases, followed a linear relationship (in a Semi-
234 Log space). In addition, the estimated CSLs cover a broad spectrum in the e versus p plane (the
235 maximum difference in e for a given p is in the order of 0.55). Table A.1 shows the estimated
236 parameters for the CSL. Figure 5b shows the distribution of the normally consolidation lines
237 (NCL) for selected cases. Again, the NCLs cover a broad spectrum in the e versus p plane with a
238 maximum difference for e in the order of 0.6 for a given p . Figure 5c shows a comparison of CSLs
239 and NCLs for three cases with different fines content. Interestingly, the finer the materials, the

more the NCL and the CSL tend to be parallel, which affects the initial tailings state and then the mechanical response. Interested readers can also refer to Olson and Stark (2003) for additional discussions on the CSL and NCL relative location. Fig. 5d illustrates the spectrum of the maximum shear modulus (G) variation (i.e., G versus mean pressure) estimated through bender element tests considering a broad range of densities.

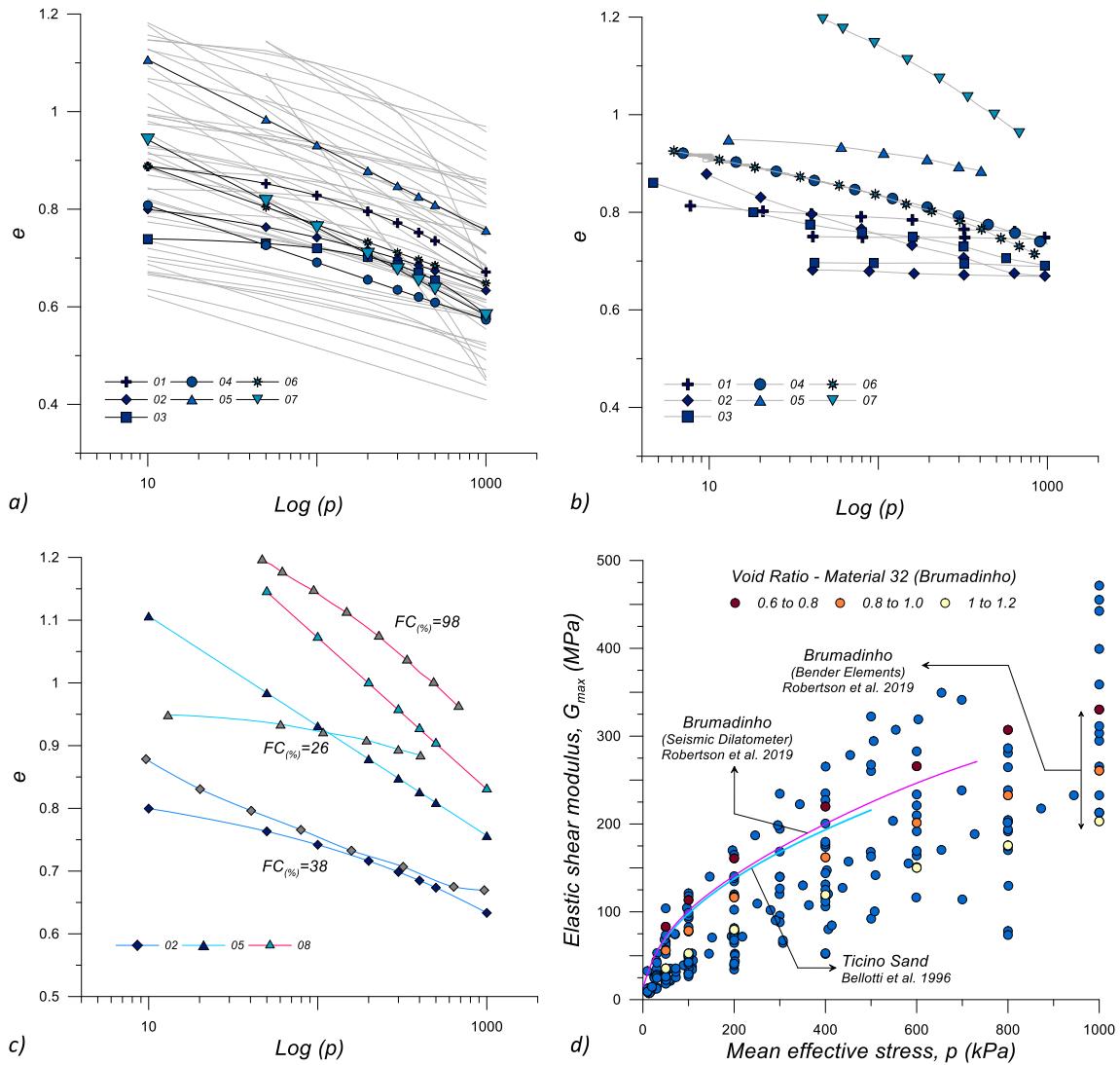
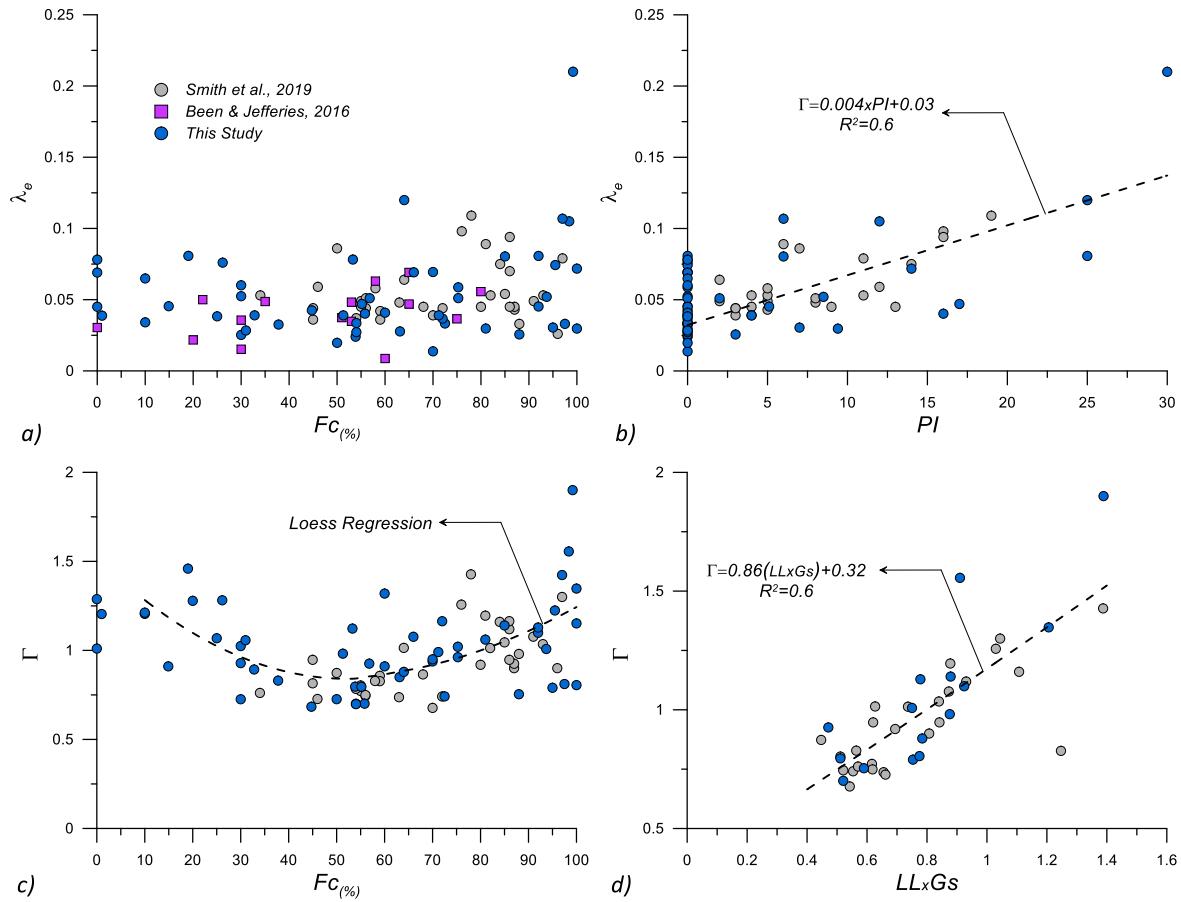
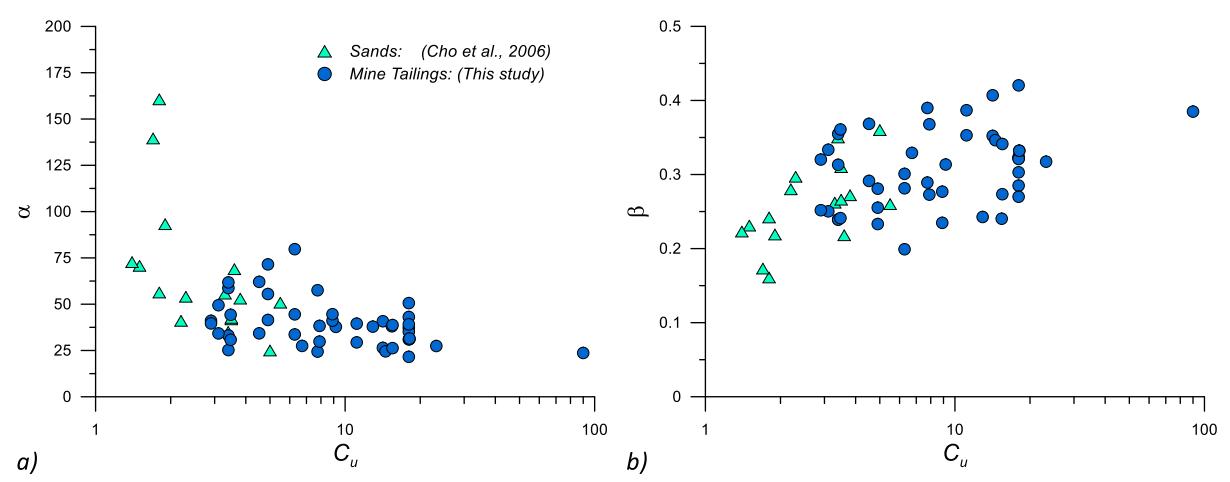
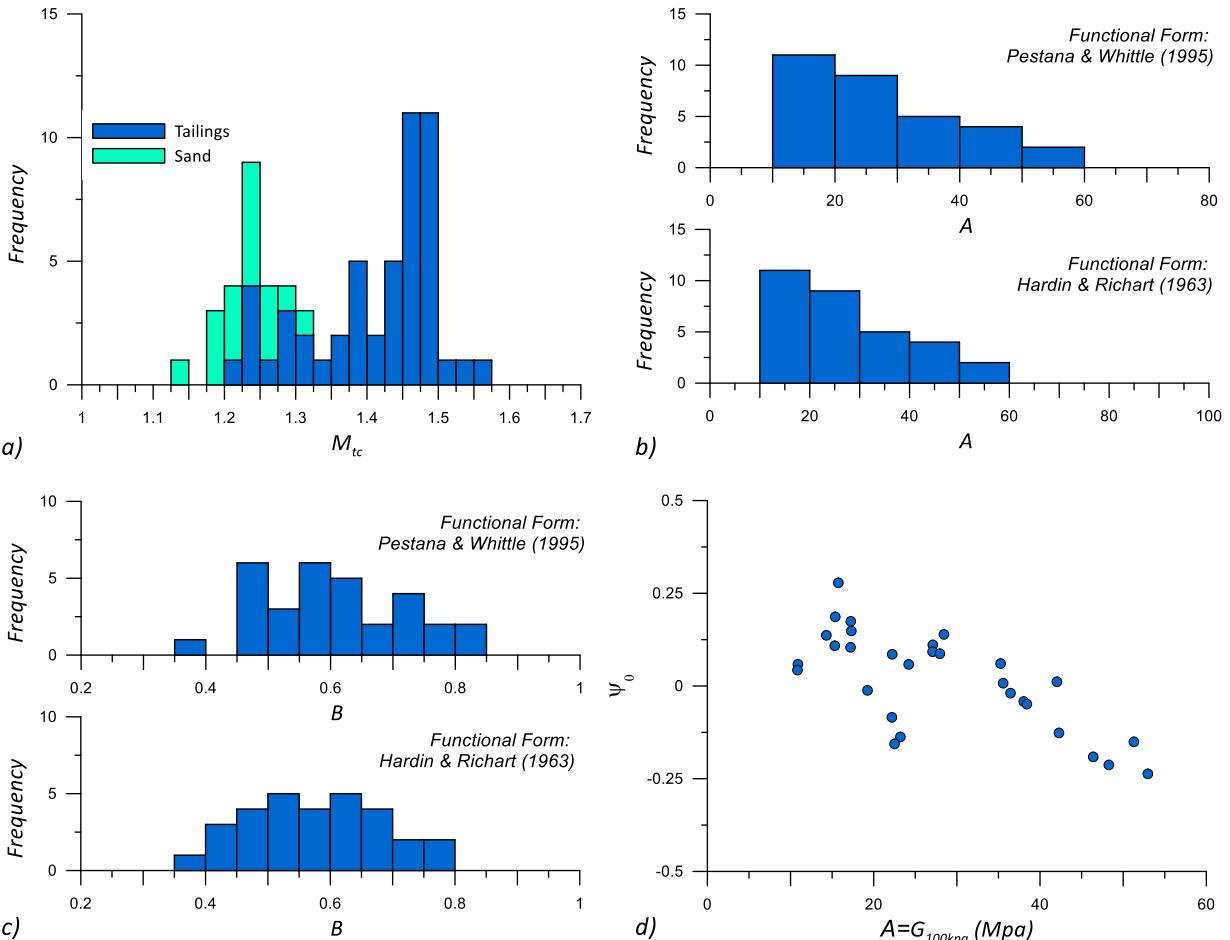



Figure 5. a) Distribution of CSLs for the materials considered in this study. b) distribution of normally consolidation lines (NCL), c) comparison of CSL and NCL for a subset of materials, d) distribution of shear modulus (G) versus mean pressure (p) curves.

For illustrative purposes, we highlight how the initial void ratio influences G for material 32

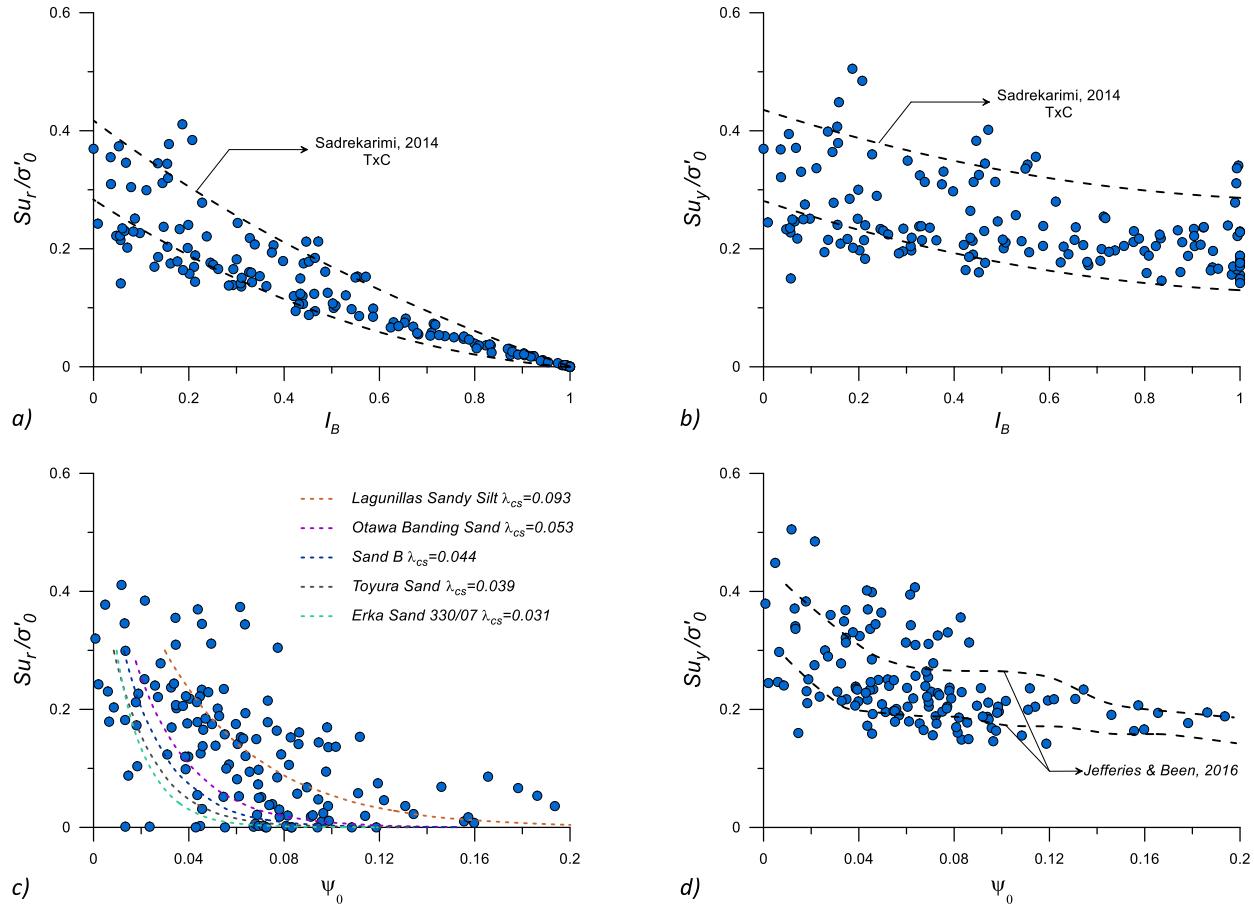
251 (e.g., a lower initial void ratio produces a larger G). Note also that the order of magnitude for G in
 252 mine tailings can be somewhat comparable to the G values in natural sand in some cases (e.g., see
 253 the trend for Ticino sand that is included for reference). Hence mine tailings, depending on their
 254 state (i.e., loose versus dense), may have a stiffness that is comparable to that of sand materials.

255 Figure 6 shows the variation of parameters that define the CSLs versus soil index parameters
 256 such as fines content (FC), plasticity index (PI), Liquid limit (LL). In these Figures (6a to 6d),
 257 we have also added the mine tailings data from Smith *et al.* (2019). Figure 6a shows the variation
 258 of λ_e versus FC and Figure 6b shows the variation of the λ_e versus PI . It can be seen that PI is
 259 correlated with λ_e ($R^2 = 0.6$ with a better correlation compared to FC), when a material presents
 260 a PI . This is expected because both PI and λ_e can be considered as proxies to compressibility.



261

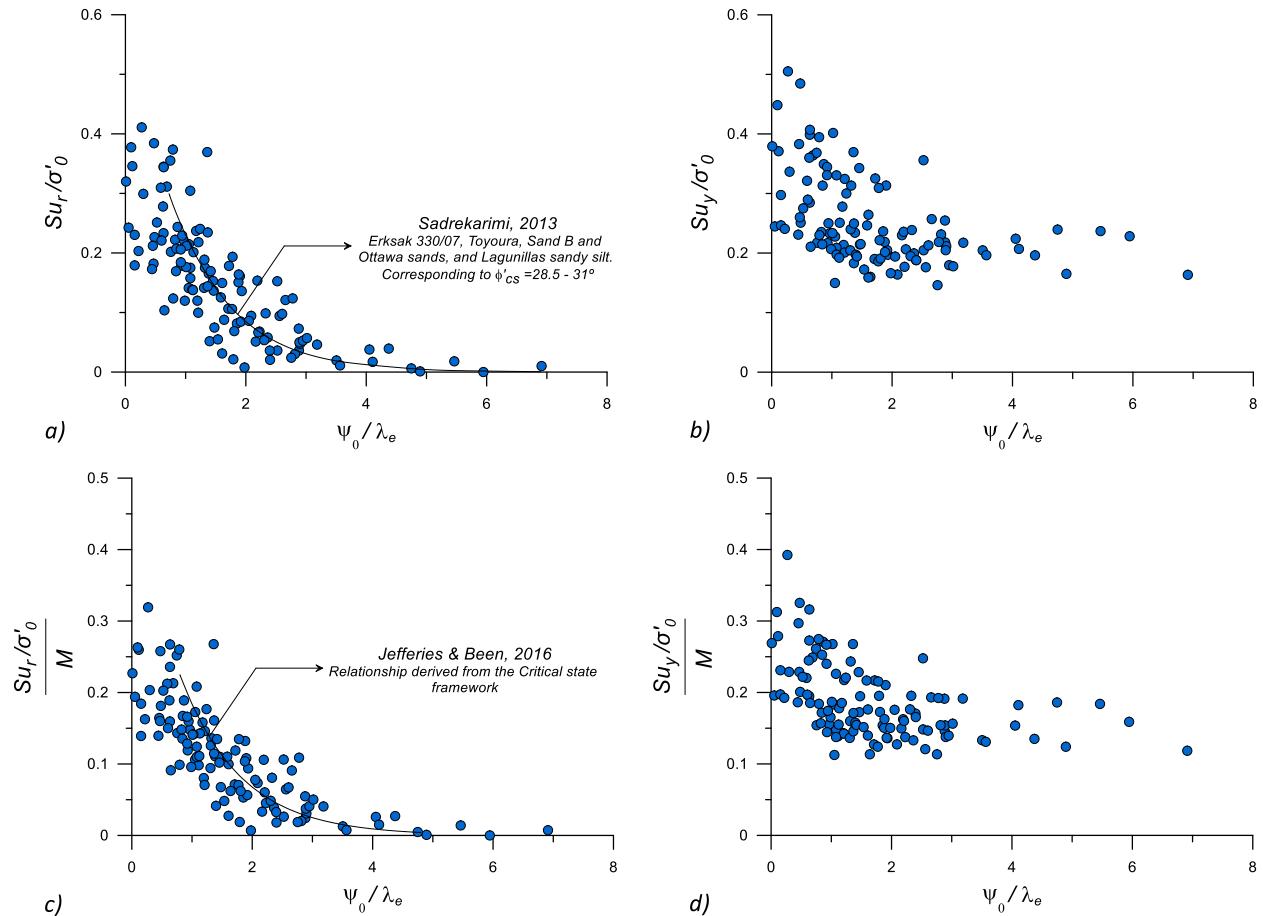
262 **Figure 6.** Variation of the CSL slope versus a) FC , and b) PI . Variation of the CSL intercept at
263 1kPa versus c) FC , and d) $LL \times Gs$.

264 The apparent correlation between PI and λ_e is also consistent with CSSM-based concepts (e.g.,
265 see Chapter 6 in Schofield and Wroth, 1968). Hence, this suggests that the common approach of
266 using FC for accounting for compressibility, as it is often done in the cyclic liquefaction
267 assessments for sand materials with fines, may be questionable. PI , on the other hand, is related
268 to the material's mineralogy, which is more fundamentally related to compressibility. This is
269 consistent with the findings from Bray and Sancio (2006), who evaluated the liquefaction
270 triggering of fine-grained soils finding that PI is a better descriptor than FC . Fig. 6c shows the
271 variation of Γ (i.e., the altitude of the CSL at 1kPa for the materials with a linear CSL) versus FC ,
272 and Fig. 6d shows the variation of Γ versus $LL \times Gs$.


273 Figure 6c does not show a strong correlation between Γ and FC , but suggests that Γ tends to
274 decrease with an initial increment of FC , a tendency that is reverted if FC keeps increasing further
275 (note the Loess-based fitting line that illustrates this trend), which is consistent with the findings
276 by previous studies that considered silty sands and sandy silts (e.g., Thevanayagam *et al.*, 2002).
277 Figure 6d evidences a stronger correlation between Γ and LL . This can be explained as LL is a
278 measure of the water content of soil at an approximate strength of 2 kPa (Wood, 1991).
279 Considering that shear strength can be normalized, p will be low (for example, if the normalized
280 strength is 0.2, p will be 10 to provide a strength of 2 kPa). The corresponding void ratio can be
281 approximated as the water content (which is represented by LL) times Gs (assuming saturation);
282 hence, by using a semi-logarithmic relationship for the CSL, a linear trend between Γ and $LL \cdot Gs$
283 is expected (as illustrated in Figure 6d), which is consistent with the findings in Smith *et al.* (2019).
284 This is also consistent with CSSM concepts, which show a linear correlation between Γ and LL
285 (e.g., see Chapter 6 in Schofield and Wroth, 1968).
286 Figure 7a shows a histogram of M_{tc} values for tailings materials sand materials. The M_{tc} values

287 for sand materials were obtained from Jefferies and Been (2016). It can be observed that M_{tc}
288 values for mine tailings are generally larger compared to sands, which has also been observed in
289 previous studies (e.g., Reid, 2015). This is due to the angularity associated with mine tailings as a
290 product of the mineral processing. Figure 7b, 7c, show histograms for the A and B coefficients in
291 Equations 3a to 3c. It can be observed that the A coefficient typically varies from 10 Mpa to 60
292 Mpa, whereas the variation of B is generally between 0.4 and 0.7. To better understand the
293 variation of the A coefficient, we plotted A versus the initial state parameter in Fig. 7d, which
294 suggested a good correlation. Hence, larger A values are generally associated with dense materials
295 (more negative state parameters), and lower A values are generally associated with loose materials
296 (more positive state parameters). Furthermore, parameters A and B have shown to be dependent
297 on particle shape and grain size distribution in sand materials (Cho *et al.*, 2006; Payan *et al.*, 2015).
298 A, in particular, represents a volumetric-blended measure of soil particle stiffness. We explored
299 the stiffness dependence on the particle size distribution of mine tailings using the α and β
300 parameters ($V_s = \alpha (\frac{p}{1kPa})^\beta$, where V_s is the shear wave velocity from bender tests). α and β are
301 shear wave velocity counterparts of A and B and are used to integrate the sand data from Cho *et*
302 *al.* (2006). Figure 8 shows the variation of C_u versus α and β , considering the data from this
303 study and the data from Cho *et al.* (2006) for clean sands (which have a C_u lower than 5). The
304 trends indicate that as C_u increases α decreases and β increases, this finding is consistent with the
305 observations of Payan *et al.* (2015) for clean sands and suggest that the overall effect of the
306 irregularities introduced by different particle sizes is to hinder particle mobility and their ability to
307 attain dense packing configurations leading to lower V_s (lower α) that are more susceptible to
308 changes in stresses (higher β). Interestingly, it can also be observed that the trends in mine tailings
309 are consistent with the trends for sands.

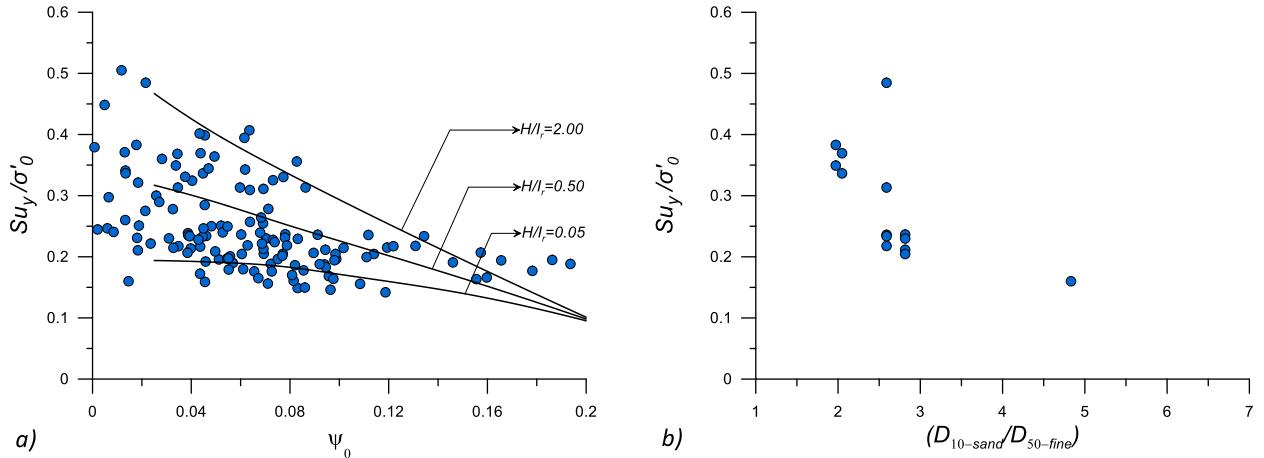
316 **Residual and peak strength**


317 In the following Figures (Fig. 9 to 11) and Figures in Appendix C, we discuss trends in terms
 318 of peak and residual shear strengths. Fig. 9a, and Fig. 9b shows the variations of Su_r/σ'_0 and
 319 Su_y/σ'_0 in terms of I_B , along with upper and lower bound trends for sand materials extracted from
 320 Sadrekarimi (2014). It is noticed that, in general, the trends are reasonably consistent.

321 **Figure 9.** Variation of Su_r/σ'_0 and Su_y/σ'_0 vs the brittleness index ((a) and (b), respectively);
 322 and Su_r/σ'_0 and Su_y/σ'_0 vs the initial state parameter (ψ_0) ((c) and (d), respectively).

323 Fig. 9c shows the variation of Su_r/σ'_0 in terms of ψ_0 along with similar trends for sands with
 324 different compressibility (including the Lagunillas sandy silt) extracted from Sadrekarimi (2013).
 325 Fig. 9d shows the variation of Su_y/σ'_0 in terms of and ψ_0 along with upper and lower bound
 326 trends for Su_y/σ'_0 in sands extracted from Jefferies and Been (2016). By examining Fig. 9c, the
 327

328 effect of compressibility is clearly observed, i.e., Su_r/σ'_0 in the case of sand materials increases
 329 with the increase of compressibility. In particular, the trends extracted for the Lagunillas sandy silt
 330 are more consistent with the overall variation of strength for mine tailings. The variation of
 331 Su_y/σ'_0 in Fig. 9d suggests that Su_y/σ'_0 tends to be larger in mine tailings compare to the sands
 332 in Jefferies and Been (2016) when ψ is lower than 0.1. To bring the effects of compressibility, we
 333 normalized the state parameter by λ_e . This normalization may also cancel out some fabric-related
 334 effects as compressibility is expected to be influenced by fabric. In cases where the CSL was a
 335 curve, we linearized the CSL in the range of stresses of interest and calculated a linearized λ_e . Fig.
 336 10a shows the variation of Su_r/σ'_0 versus ψ/λ_e , now it can be observed that bringing λ_e decreases
 337 the variability in the trends, and the normalized trends for mine tailings are now more consistent
 338 with those for sand materials reported by Sadrekarimi (2013).



339

340 **Figure 10.** Variation of Su_r/σ'_0 and Su_y/σ'_0 versus ψ_0/λ_e ((a) and (b), respectively); and
341 $Su_r/(M_{tc}\sigma'_0)$ and $Su_y/(M\sigma'_0)$ versus ψ_0/λ_e ((c) and (d), respectively).

342 A similar effect can be observed in terms of Su_y/σ'_0 in Fig. 10b, which shows that the
343 normalization of the state parameter also helps to decrease the scatter. To account for the effects
344 of angularity in strength, we further normalized the Su_r/σ'_0 and Su_y/σ'_0 ratios by M_{tc} , and plotted
345 the results in terms of ψ/λ_e . The results are shown in Figure 10 c & d. Recall that from CSSM
346 concepts (e.g., Jefferies and Been, 2016) $Su_r/(M\sigma'_0) = 0.5\exp(-\psi/\lambda_e)$, which is also plotted
347 in Figure 10c. This normalization brings an additional (minor) reduction to the scatter in the trends
348 because compressibility and angularity effects are now considered through λ_e and M_{tc} . In addition,
349 the experimental-based trends follow the trend of the aforementioned CSSM-based relationship.
350 Appendix C shows the variation of the normalized peak and residual shear strength with respect
351 to I_p , ψ_v/λ_e , and ψ_m/λ_e (Figures C1 to C3). In terms of I_p the scatter in the plots (Fig. C1) is
352 comparable to the scatter in Fig. 10 c & d because I_p brings state and compressibility information
353 (recall that based on CSSM concepts $I_p = \exp(\psi_0/\lambda_e)$). In terms of ψ_v/λ_e , Figure C2 shows that
354 ψ_v helps to slightly reduce the scatter further with respect to ψ . This suggests that the volumetric
355 strain potential brings relatively more information compared to the classical state parameter. In the
356 case of the ψ_m (Figure C3) by using the pressure index on its formulation, it brings information
357 on the strength and compressibility, making the trends similar to those in Fig. 10c & d.

358 Jefferies and Been (2016) suggest that Su_y is expected to depend on the ratio of the elastic
359 modulus (e.g., G) and plastic moduli (H). Hence, Su_y is not only driven by frictional (M_{tc}), and
360 compressibility properties, but also by G and H .

361

a)

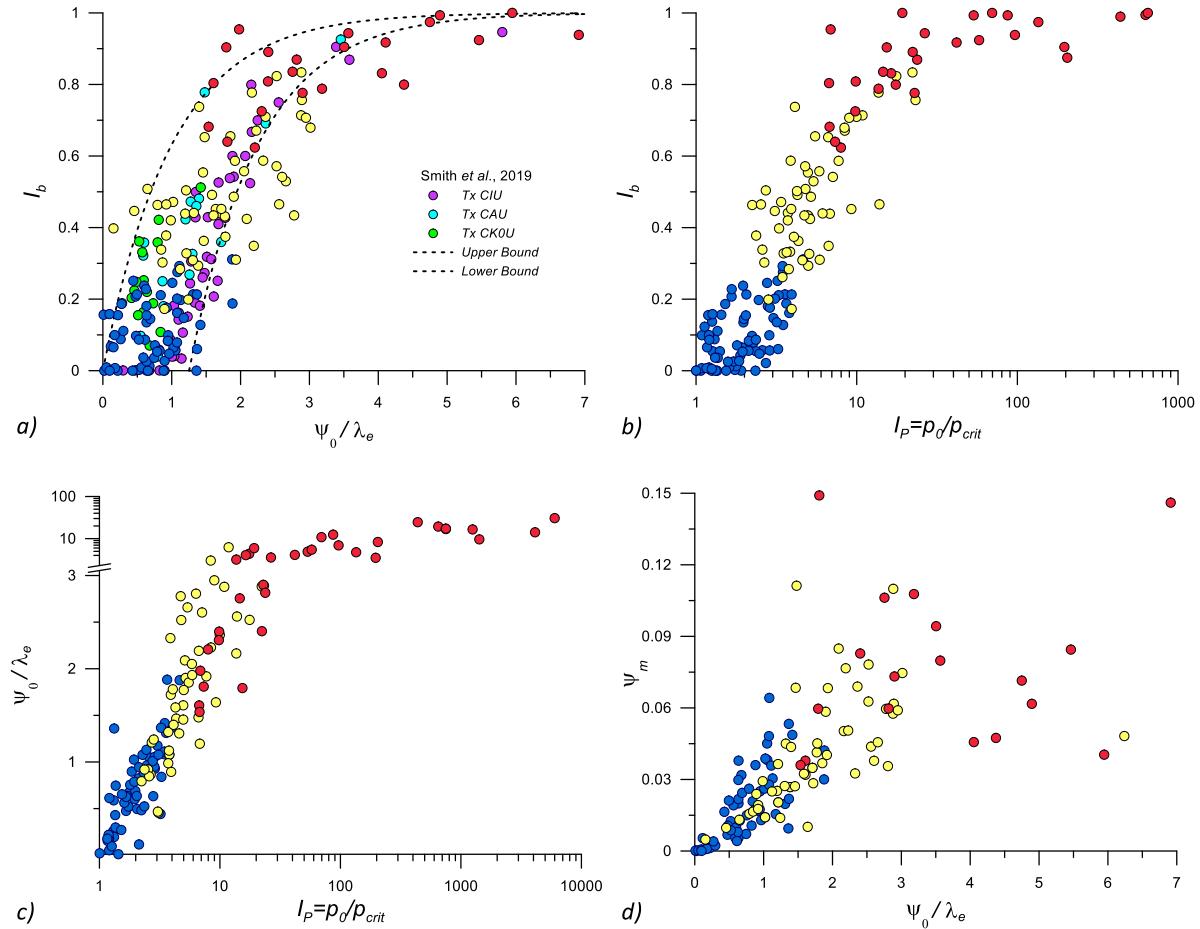
b)

362

Figure 11. a) Su_y/σ'_0 dependence on the plastic modulus (H), and the rigidity index (I_r), b) variation of Su_y/σ'_0 and $\frac{d_{10,sand}}{d_{50,silt}}$.

364

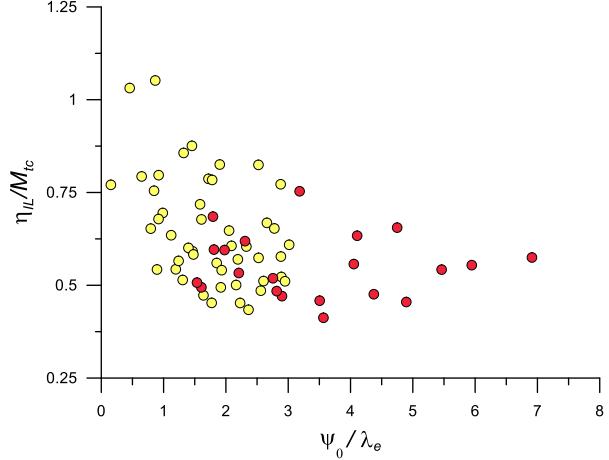
To further illustrate the influence of G and H on Su_y , we performed numerical simulations of undrained triaxial tests using the Norsand model considering different values for H/I_r (I_r is the rigidity index, defined as G/p) and the following Norsand parameters, $\lambda_e = 0.06$, $\Gamma = 1.1$, $M = 1.40$, $N = 0.30$, $\chi = 4.0$, $\nu = 0.15$. These parameters are based on the average values observed in the mine tailings considered in this study. The results (normalized Su_y values) are shown in Figure 11a, which suggest that H/I_r values of 0.05 and 2.0, are consistent with the lower and upper limits for the observed Su_y values in our mine tailings database. As a reference, Jefferies and Been (2015) found H/I_r values between 0.5 and 5 for sands. The H/I_r values in Figure 11 can be used as upper and lower bounds to estimate H (given I_r) to better constraint the calibration of the Norsand model in numerical simulations that involve tailings materials.


Ni *et al.* (2004) suggested that the contribution of silt size particles to the strength of particulate materials with relatively low FC is related to the ratio of the void size distribution of the coarse fraction and the particle size distribution of the silt fraction, which they approximated by the ratio $\frac{d_{10,sand}}{d_{50,silt}}$, where $d_{10,sand}$ is the largest particle size in the smallest 10% of sand particles and $d_{50,silt}$

378 is the mean size of fine particles. They found that the contribution of the silt size to the strength
379 decreases as $\frac{d_{10,sand}}{d_{50,silt}}$ increases. We have explored the variation of this ratio against the strength of
380 the mine tailings in our database that have a FC lower than 40%. The results are presented in
381 Figure 11b and suggest that the strength decreases with the increase of $\frac{d_{10,sand}}{d_{50,silt}}$, which is consistent
382 with Ni *et al.* (2004). However, in our database, we have only one material that shows a large
383 $\frac{d_{10,sand}}{d_{50,silt}}$ ratio, hence this trend should be further examined in future studies.

384 **State and brittleness soil indexes**

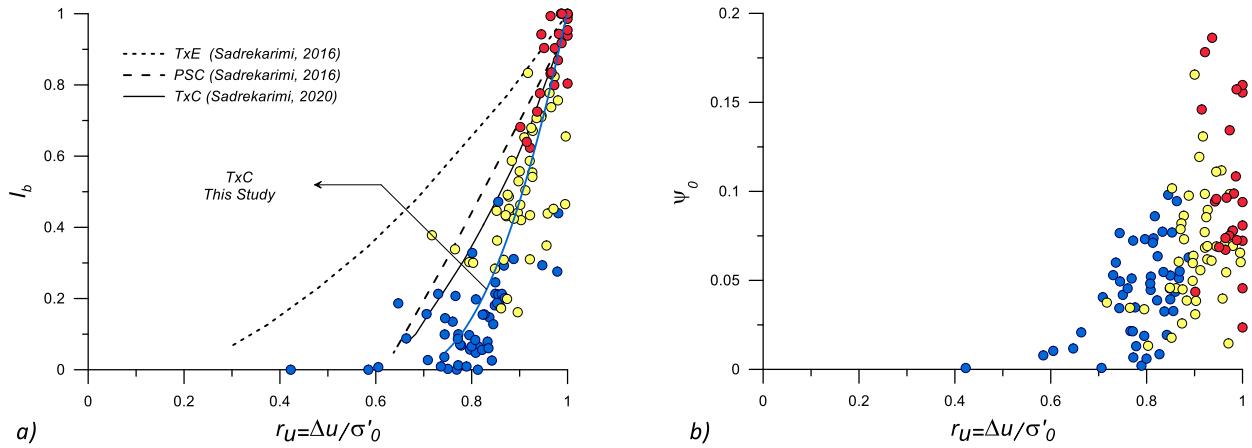
385 Figures 12a to 12d show the relationship between different parameters to represent the state and
386 brittleness of a soil material. In these Figures, the flow liquefaction cases that correspond to full
387 softening and partial softening are presented in red and yellow colors, respectively Fig. 12a shows
388 the relationship between I_b and ψ/λ_e , along with the data from Smith *et al.* (2019), and the upper
389 and lower bounds proposed by them for contractive materials (i.e., $\psi > 0$). It can be observed that
390 our data is fairly consistent with these upper and lower bounds. The upper bound in this figure is
391 representative of tests in anisotropic conditions and the lower bound with test with tests under
392 isotropic conditions. Of note, the trends suggest that flow liquefaction cases with partial softening
393 may have in general a I_b larger than 0.25 and a ψ/λ_e larger than 0.75, whereas the flow
394 liquefaction cases with full softening may be associated with I_b values higher than 0.6 and ψ/λ_e
395 values larger than 1.5. Fig. 12b shows the relationship between I_b and I_p . As expected I_p increases
396 with the increase of I_b , and I_p values higher than 2.5 seem to be indicative of flow liquefaction
397 with partial softening, whereas values larger than 10 may be indicative of potential flow
398 liquefaction with full softening. Fig. 12c shows the variation of ψ/λ_e and I_p , suggesting a good
399 correlation between these parameters until flow liquefaction with full softening occurs in cases
400 with $\psi/\lambda_e > 3$. Finally, Fig. 12d shows the variation of ψ_m and ψ/λ_e , again a good correlation


401 is observed until $\psi/\lambda_e > 3$. Interestingly, ψ_m alone brings comparable information as ψ/λ_e
 402 because it also includes information on the state pressure index.

403
 404 **Figure 12.** a) Relationship between I_b and ψ/λ_e , b) I_b versus I_p , c) ψ/λ_e versus I_p , and d) ψ_m
 405 versus ψ/λ_e .

406 Instability stress ratio

407 Figure 13 shows the variation of the normalized instability stress ratio ($\frac{\eta_{IL}}{M_{tc}}$) and the normalized
 408 state parameter (ψ_0/λ_e), for the cases where partial or full softening (i.e., flow liquefaction) was
 409 observed in undrained triaxial tests. As expected, $\frac{\eta_{IL}}{M_{tc}}$ tends to decrease with the increase of increase
 410 of ψ_0/λ_e . In addition, we observe $\frac{\eta_{IL}}{M_{tc}}$ values that are generally in the range of 0.6 to 1 for flow
 411 liquefaction cases with partial softening, and values lower than 0.6 for flow liquefaction cases with
 412 full softening.

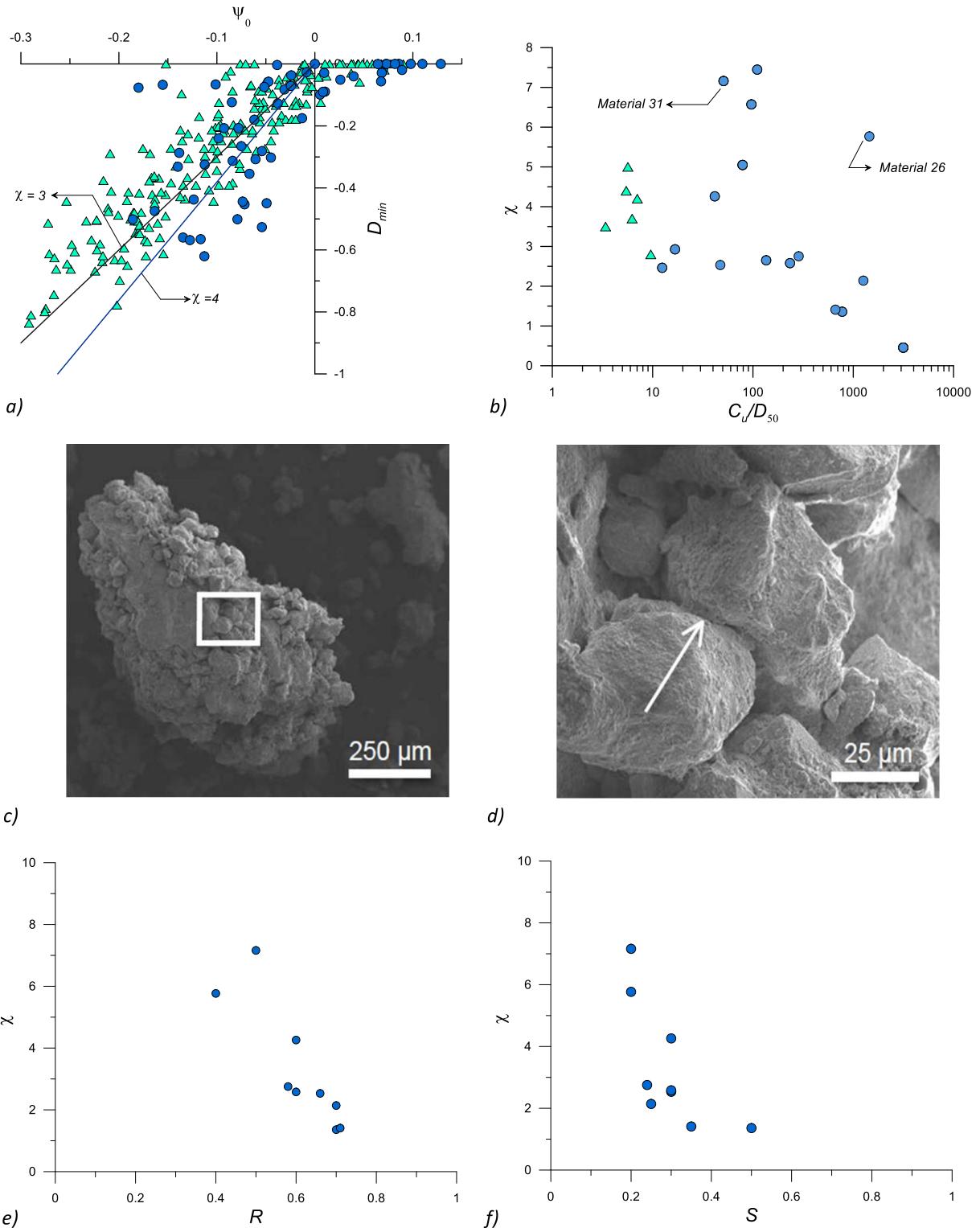

413

414 **Figure 13.** Variation of the normalized instability stress ratio (η_{IL}/M_{tc}) versus ψ/λ_e .

415 **Excess pore pressures**

416 Figure 14a shows the variation of $r_u = \Delta u/\sigma'_0$ versus I_b along with the trend of r_u relationships
 417 for sands considering triaxial extension (TxE), plane strain compression (PSC), and triaxial
 418 compression (TxC) conditions. The TxE and PSC trends were extracted from Sadrekarimi (2016),
 419 and the TxC trends were extracted from Sadrekarimi (2020).

420 In general, it can be observed that flow liquefaction cases (partial and full softening) show r_u
 421 values large than 0.8, and the data is generally consistent with the average trend extracted for sand
 422 materials, but it is observed that the r_u values in mine tailings tend to be larger compared to sands
 423 in cases with partial softening. Fig. 14b shows the r_u variation in terms of ψ . In general, large r_u
 424 values were observed with most values higher than 0.6 for $\psi > 0$. As expected r_u increases with
 425 the increase in I_b and ψ ; and an I_b higher than 0.1 or a ψ higher than 0 are indicative of large excess
 426 pore pressure generation (i.e., $r_u > 0.6$).


427

428 **Figure 14.** Variation of r_u vs a) the brittleness index, and b) state parameter.

429 **Dilatancy**

430 Figure 15a shows the variation of the maximum dilatancy in triaxial CD tests versus the initial
 431 state parameter (ψ), considering the mine tailings from this study and data available in Jefferies
 432 and Been (2016) for sand materials. If we fit the data to the relationship suggested by Been and
 433 Jefferies (1985), given by $D_{min} = \chi\psi$, we obtain representative χ values of 3.0 for sands, and 4.0
 434 for tailings. This suggests that mine tailings have an average stronger scaling of dilatancy
 435 compared with sands, given a similar state parameter. This can be explained considering that χ
 436 can be though as a kinematic parameter related to the potential of particulate materials to re-
 437 accommodate particles. Given the more angularity of mine tailings compared to sands, mine
 438 tailings seem to have, on average, a higher potential on re-accommodating particles. Figure 15b
 439 shows the variation of χ and C_u / D_{50} for mine tailings and some well-known sand materials (i.e.,
 440 Erksak, Braster, Changi, Fraser, Nerlek, and Ticino sands). The data for sands was obtained from
 441 Jefferies and Been (2016). C_u / D_{50} has been also used to examine the dilatancy of natural silts in
 442 Venice (Cola and Simonini, 2002). It can be observed that the χ values in sands vary in a narrow
 443 range between 3.5 and 5.0, which correspond to C_u and C_u / D_{50} values that are also in a narrow
 444 range (1 to 3, and 3 to 10, respectively). In addition, χ in sands tend to slightly decrease with the

445 increase of D_{50} . For example, χ for the Fraser River sand ($D_{50}=0.3$ mm) is 5, χ for the Erksak
446 sand ($D_{50}=0.33$ mm) is 4.2, and χ for the Ticino sand ($D_{50}=0.53$ mm) is 3.5. This variation of χ
447 and D_{50} in sands for a narrow range of C_u (1.5-3.0) is consistent with the findings in Amirpour *et*
448 *al.* (2019). In the case of mine tailings, we observe that χ tends to decrease with the increase of
449 C_u/D_{50} . This trend is consistent with observations from DEM simulations (Yan and Dong, 2011)
450 that show that dilatancy tends to decrease with the increase of C_u . We also noticed that the lowest
451 χ values (lower than 1.4) correspond to materials with large FC (larger than 85%) and important
452 clay size fractions. This observation is consistent with the findings from (Cola and Simonini,
453 2002), who observed a decrease in the dilatancy of Venice soils when their FC and clay size
454 content increased. The materials 26 and 31 (which correspond to the Cadia and Brumadinho
455 failures previously discussed) showed large χ values (5.8 and 7.2, respectively). These large values
456 may be associated with the large angularity on these materials, and bonding effects, as suggested
457 by Robertson *et al.* (2019) based on inspections of scanning electron microscope (SEM) images
458 from the Brumadinho tailings. An inspection of SEM images in the Cadia tailings suggested
459 similar patterns as those highlighted by Robertson *et al.* (2019). The bonding effects are illustrated
460 in Fig. 15c, and Fig. 15d, which show scanning electron microscope (SEM) images for the
461 Brumadinho tailings. The bonding effects on the strength and dilatancy of mine tailings deserves
462 further investigation. Finally, we have examined the effects of particle shape (e.g., roundness and
463 sphericity) for the tailings materials where particle shape information is available. Fig. 15e and
464 Fig. 15f show that χ tends to reduce as roundness (R) and sphericity (S) increase (i.e., angularity
465 decreases), which is consistent with the concept that χ is related the potential of particulate
466 materials to re-accommodate particles.

467
468 **Figure 15.** a) Variation of ψ_0 and D_{min} for sands and mine tailings. b) Variation of χ and
469 C_u/D_{50} , c), d) SEM images for the Brumadinho tailings suggesting bonding effects (Robertson *et*
470 *al.*, 2019), e) variation of χ and roundness, f) variation of χ and sphericity. The data for sand
471 materials was obtained from Jefferies and Been (2016).

472 **DISCUSSION**

473 The trends presented in this study for the normalized Su_y and Su_r (i.e., Figure 9 and 10) have
474 been evaluated for TxC conditions; hence, they do not reflect shearing mode effects, loading
475 anisotropy, and the effects of intermediate stresses. Sadrekarimi (2014), using a large database of
476 hollow cylinder, direct simple shear, TxC, and TxE tests on natural sands, highlighted that TxC
477 tests produce in average larger strengths than hollow cylinder/direct simple shear tests, which in
478 turn produce large strengths than triaxial extension tests. Sadrekarimi (2016), using a similar
479 database, highlighted the importance of loading anisotropy and intermediate stresses. In addition,
480 Sadrekarimi (2014) pointed out that normalized Su_y estimates from TxC tests were consistent with
481 normalized Su_y estimates by Olson (2001) and Muhammad (2012) for flow liquefaction case
482 histories, whereas normalized Su_r estimates from hollow cylinder tests/direct simple shear tests
483 were more consistent to those in case histories. Hence, future studies should consider exploring
484 loading anisotropic and intermediate effects systematically as the currently available datasets on
485 mine tailings to explore these effects are particularly scarce. Importantly these effects should be
486 explored in the context of the recent TSF failures.

487 In this context, the parameters discussed in this study are particularly useful to guide the
488 calibration of multiaxial constitutive models, which are typically first calibrated under triaxial
489 conditions. Once calibrated, they can provide predictions for other loading modes and be used in
490 boundary value problems. For example, the calibration of the Norsand model (Jefferies, 1993),
491 which has been used in recent forensic studies, follows that philosophy. Moreover, the anisotropic
492 critical state framework (Li and Dafalias, 2012) and constitutive models developed under this
493 framework (e.g., the SanisandF model developed by Petalas et al., 2020) can be used for
494 introducing anisotropic loading anisotropy and intermediate stress effects after calibrations in the
495 triaxial space. Of course, additional experimental data would greatly benefit the evaluation of the

496 performance of these models in multiaxial conditions.

497 Finally, the experimental information used in this study is mainly composed of tests on moist
498 tamped specimens as they dominate the current state of practice in tailings engineering. For
499 example, during the robin tests performed by Reid et al. (2020), more than 90% of the worldwide
500 laboratories that participated used the most tamping technique. It is recognized that moist tamping
501 may not create the best representation of field conditions; however, it is used due to its advantages
502 in CSSM-based engineering procedures (Jefferies and Been, 2015, Reid et al., 2020a; Reid et al.,
503 2020b, Schnaid, 2013). Nevertheless, future studies should consider systematic investigations on
504 the effects of reconstitution procedures on the mechanical response of mine tailings considering
505 loading anisotropy and other effects. The work by Reid and Fanni (2020) comparing moist tamping
506 and slurry deposition procedures against the response of intact block specimens is a step forward
507 in that direction, but more research is warranted.

508

509 CONCLUSIONS

510 In this study, we have used critical state soil mechanics (CSSM) concepts to examined salient
511 trends on the mechanical response of mine tailings in the context of static liquefaction, highlighting
512 the role the relative proportions of different particles sizes, and particle properties. The recent
513 worldwide failures highlight the importance of an adequate understanding of the mechanical
514 response of tailings materials. Tailings are geologically young materials, with angular grains rather
515 than subrounded and often with lower proportions of quartz than many natural soils; thus, standard
516 geotechnical correlations should not be taken as applicable to tailings without detailed
517 consideration of these factors. Our results suggest that mine tailings fit the same framework as
518 natural sands, with the key difference of showing a much larger M_{tc} and somewhat larger χ , both
519 attributed to underlying particle shape, which then affects standard correlations. Thus, the
520 mechanical response of mine tailings can be reasonably well explained once CSSM-based

521 parameters such as Γ , λ_e , ψ , M_{tc} , χ , N , and G are incorporated.

522 We have observed that particle gradation influences the small strain shear stiffness and
523 dilatancy, which is consistent with previous observations on sands. An increase in C_u typically
524 reflects on a decrease in α and χ , and an increase in β . The observed trends also suggest that
525 particle shape affect dilatancy, χ tends to decrease as roundness and sphericity increase. In the
526 case of mine tailings with large χ , bonding seems to have an important effect as suggested by
527 Robertson *et al.* (2019). Bonding effects should be further explored in future research. Finally, the
528 proportion of voids to the size of fine particles, represented through $\frac{d_{10,sand}}{d_{50,silt}}$ seems to influence
529 shear strength of mine tailings with low FC , which has been also observed in natural soils, this is
530 an aspect that should be also explored further in future studies.

531 Additional salient conclusions from this study include:

- 532 • The amount of FC is not a strong proxy to compressibility; hence, its use in liquefaction
533 procedures to bring compressibility effects is questionable. In fine-grained plastic soils, PI
534 seems to be a better proxy since it is related to mineralogy. Bray and Sancio (2006) reached
535 a similar conclusion when evaluating the liquefaction potential in fine-grained soils.
- 536 • The M_{tc} values in mine tailings (in the order of 1.4) are larger, on average, compared to M_{tc}
537 values on natural sands (in the order of 1.2). This is associated to the particle shape of mine
538 tailings, which tend to have more angular particles compared to the subrounded grains found
539 in natural soils.
- 540 • Using the functional forms from Hardin and Richart (1963) and Pestana and Whittle (1995)
541 for G (Equation 3), we observed that the parameter A that controls the magnitude of G
542 correlates well with ψ_0 . In addition, the parameter B that controls the dependence on p ,
543 generally varies from 0.4 to 0.8.
- 544 • Compressibility can have an important effect on Su_r/σ'_0 , and also controls Su_y/σ'_0 . Hence,

545 it should be carefully considered in evaluating appropriate Su_r/σ'_0 and Su_y/σ'_0 design
546 values.

547 • In addition to M_{tc} and λ_e , the elastic and plastic modulus (G – or I_r - and H , respectively),
548 control Su_y/σ'_0 . We found that H/I_r values in the range of 0.05 to 2 represent the range of
549 Su_y/σ'_0 values observed experimentally in our mine tailings database.

550 • In general, we observed that the state and brittleness indexes considered in this study such as
551 $\psi_0, \psi_m, \psi_v, I_p, I_b$ are correlated.

552 • The normalized instability stress ratio ($\frac{\eta_{IL}}{M_{tc}}$) for flow liquefaction cases with full softening was,
553 in general, lower than 0.6.

554 • The trends suggest that flow liquefaction cases with partial softening may have in general I_b ,
555 ψ/λ , and I_p values larger than 0.25, 0.75, and 2.5, respectively. Whereas flow liquefaction
556 with full softening is associated with $I_b, \psi/\lambda$, and I_p values higher than 0.6, 1.5, and 10,
557 respectively. We recommend using these values as part of screening procedures in
558 engineering practice.

559 **DATA AVAILABILITY**

560 Some or all data, models, or code generated or used during this study are available from the
561 corresponding author by request. Specific items include the data used to generate the trends on the
562 figures in this paper.

563 **ACKNOLEDGEMENTS**

564 This study has been funded by the National Science Foundation (NSF) under the CMMI 2013947
565 project. In addition, we thank Mr. Mike Jefferies for providing the data on sand materials that has
566 been published in Jefferies and Been (2016), and we thank Dr. Li Wei, who kindly share data on
567 the Panzhihua tailings.

568 **REFERENCES**

569 Al-Tarhouni, M., P. Simms, and S. Sivathayalan. 2011. "Cyclic behaviour of reconstituted and
570 desiccated-rewet thickened gold tailings in simple shear." *Canadian Geotechnical Journal*. 48 (7):
571 1044–1060. Available at: <http://dx.doi.org/10.1139/t11-022>

572 Amirpour Harehdasht, S., Hussien, M. N., Karray, M., Roubtsova, V., and Chekired, M. 2019.
573 "Influence of particle size and gradation on shear strength–dilation relation of granular materials."
574 *Canadian Geotechnical Journal*, 56(2):208–227. Available at: <http://dx.doi.org/10.1139/cgj-2017-0468>.

576 Anderson, C. and Eldridge, T., 2011. "Critical state liquefaction assessment of an upstream
577 constructed tailings sand dam." *Tailings and Mine Waste 2010*, 101–112. DOI: 10.1201/b10569-
578 15.

579 Bedin, J. Schnaid, F., Da Fonseca, A.V., and Costa Filho, L.D.M. 2012. "Gold tailings liquefaction
580 under critical state soil mechanics." *Géotechnique*, 62(3):263–267. Available at:
581 <http://dx.doi.org/10.1680/geot.10.p.037>.

582 Been, K., 2016. "Characterizing mine tailings for geotechnical design." *Geotechnical and
583 Geophysical Site Characterisation 5*. Australian Geomechanics Society, Sydney, Australia, 41–
584 56.

585 Been, K. and Jefferies, M.G. 1985. "A state parameter for sands." *Géotechnique*, 35(2):99–112.
586 Available at: <https://doi.org/10.1680/geot.1985.35.2.99>.

587 Bishop, A.W. 1971. "Shear strength parameters for undisturbed and remoulded soil specimens."
588 *Proc., Roscoe Memorial Symp.*, R.H.G. Parry, ed., Cambridge University Press, Cambridge, U.K.,
589 3–58.

590 Bobei, D.C., Lo, S.R., Wanatowski, D., Gnanendran, C.T., and Rahman, M.M. 2009. "Modified
591 state parameter for characterizing static liquefaction of sand with fines." *Canadian Geotechnical
592 Journal*, 46(3):281–295. Available at: <http://dx.doi.org/10.1139/t08-122>.

593 Bray, J.D. and Sancio, R.B. 2006. "Assessment of the liquefaction susceptibility of fine-grained
594 soils." *Journal of Geotechnical and Geoenvironmental Engineering*, 132(9) 1165–1177. Available
595 at: [http://dx.doi.org/10.1061/\(asce\)1090-0241\(2006\)132:9\(1165\)](http://dx.doi.org/10.1061/(asce)1090-0241(2006)132:9(1165)).

596 Carrera, A., Coop, M., and Lancellotta, R. 2011. "Influence of grading on the mechanical
597 behaviour of Stava tailings." *Géotechnique*, 61(11):935–946. Available at:
598 <http://dx.doi.org/10.1680/geot.9.p.009>.

599 Chandler, R. J. and Tosatti, G. 1995. The Stava tailings dams failure, Italy, July 1985. Proceedings
600 of the Institution of Civil Engineers , Geotechnical Engineering. 113, No. 2, 67–79. Available at:
601 <https://dx.doi.org/10.1680/igeng.1995.27586>

602 Chen, H. W., and D. J. A. van Zyl. 1988. "Shear strength and volume change behavior of copper
603 tailings under saturated conditions." In *Hydraulic fill structures*, edited by D. J. A. Van Zyl and S.
604 G. Vick, 430–451. New York: ASCE.

605 Cho, G.-C., Dodds, J. and Santamarina, J.C. 2006. "Particle Shape Effects on Packing Density,
606 Stiffness, and Strength: Natural and Crushed Sands." *Journal of Geotechnical and*

607 *Geoenvironmental Engineering*, 132(5):591–602. Available at:
608 [http://dx.doi.org/10.1061/\(asce\)1090-0241\(2006\)132:5\(591\)](http://dx.doi.org/10.1061/(asce)1090-0241(2006)132:5(591)).

609 Cola, S., and Simonini, P. 2002. “Mechanical behavior of silty soils of the Venice lagoon as a
610 function of their grading characteristics.” *Canadian Geotechnical Journal*, 39(4):879–893.
611 Available at: <http://dx.doi.org/10.1139/t02-037>.

612 Fourie, A. B., and Papageorgiou, G. 2001. “Defining an appropriate steady state line for
613 Merriespruit gold tailings”. *Canadian Geotechnical Journal*, 38(4), 695–706. Available at:
614 <http://dx.doi.org/10.1139/t00-111>

615 Fourie, A.B. and Tshabalala, L. 2005. “Initiation of static liquefaction and the role of K0
616 consolidation.” *Canadian Geotechnical Journal*, 42(3):892–906. Available at:
617 <http://dx.doi.org/10.1139/t05-026>.

618 Gill, S. S. 2019. “Geotechnical properties of tailings: effect of fines content”. University of
619 Toronto.

620 Hardin, B.O., and Richart, F.E. 1963. “Elastic wave velocities in granular soils.” *Journal of the
621 Soil Mechanics and Foundations Division, ASCE*, 89(SM1):33-65.

622 Jefferies, M.G., 1993. “Nor-Sand: a simple critical state model for sand.” *Géotechnique*, 43(1):91–
623 103. Available at: <http://dx.doi.org/10.1680/geot.1993.43.1.91>.

624 Jefferies, M. G. and Been, K. 2015. “Soil liquefaction: a critical state approach”, 2nd edn. Boca
625 Raton, FL, USA: CRC Press. Available at: <https://doi.org/10.1201/b19114>.

626 Ladd, R. 1978. "Preparing Test Specimens Using Undercompaction." *Geotechnical Testing
627 Journal*, 1(1), 16–23. Available at: <https://doi.org/10.1520/GTJ10364J>.

628 Li, W. 2017. “The mechanical behaviour of tailings.” PhD. Thesis, City University of Hong Kong,
629 Hong Kong.

630 Li, W. and Coop, M.R. 2019. “Mechanical behaviour of Panzhihua iron tailings.” *Canadian
631 Geotechnical Journal*, 56(3):420–435. Available at: <http://dx.doi.org/10.1139/cgj-2018-0032>.

632 Li, W., Coop, M. R., Senetakis, K., and Schnaid, F. 2018. “The mechanics of a silt-sized gold
633 tailing.” *Engineering Geology*, 241, 97–108. doi:10.1016/j.enggeo.2018.05.014.

634 Li, X. S., and Dafalias, Y. F. 2012. “Anisotropic Critical State Theory: Role of Fabric”. *Journal
635 of Engineering Mechanics*, 138(3), 263–275. Available at: [https://dx.doi.org/10.1061/\(asce\)em.1943-7889.0000324](https://dx.doi.org/10.1061/(asce)em.1943-7889.0000324)

637 Lyman. 1938. “Construction of Franklin Falls Dam”. *Report of US Army corps of Engineers*.

638 Macedo, J. and Petalas, A. 2019. “Calibration of Two Plasticity Models against the Static and
639 Cyclic Response of Tailings Materials.” *Proceedings of Tailings and Mine Waste*, Vancouver.

640 Morgenstern, N. R., Jefferies, M., Zyl, D., and Wates, J. 2019. “Independent Technical Review
641 Board.” Report on NTSF Embankment Failure. Ashurst Australia. Available at:
642 [https://www.newcrest.com/sites/default/files/2019-10/190417_Report%20on%20NTSF%20Em-
bankment%20Failure%20at%20Cadia%20for%20Ashurst.pdf](https://www.newcrest.com/sites/default/files/2019-10/190417_Report%20on%20NTSF%20Em-
643 bankment%20Failure%20at%20Cadia%20for%20Ashurst.pdf).

644 Morgenstern, N. R., Vick, S. G., Viotti, C. B., and Watts, B. D. 2016. “Fundao tailings dam review
645 panel.” Report in the immediate causes of the failure of the Fundao Dam. New York: Cleary
646 Gottlieb Steen and Hamilton LLP. Available at: <http://fundaoinvestigation.com/the-panel-report/>.

647 Morgenstern, N. R., Vick, S. G., and Zyl, D. 2015. "Independent Expert Engineering Investigation
648 and Review Panel." Report on Mount Polley Tailings Storage Facility Breach. British Columbia.
649 Available at: <https://www.mountpolleyreviewpanel.ca/final-report>.

650 Muhammad, K. 2012. "Case history-based analysis of liquefaction in sloping ground." Ph.D.
651 thesis, Univ. of Illinois at Urbana–Champaign, Urbana, IL.

652 Ni, Q., Tan, T. S., Dasari, G. R., and Hight, D. W. 2004. "Contribution of fines to the compressive
653 strength of mixed soils." *Géotechnique*, 54(9):561–569. Available at:
654 <http://dx.doi.org/10.1680/geot.2004.54.9.561>.

655 Olson, S. M. 2001. "Liquefaction analysis of level and sloping ground using field case histories
656 and penetration resistance." Ph.D. thesis, Univ. of Illinois at Urbana–Champaign, Urbana, IL.

657 Olson, S. M., and Stark, T. D. 2003. "Use of laboratory data to confirm yield and liquefied strength
658 ratio concepts". *Canadian Geotechnical Journal*, 40(6), 1164–1184. Available at:
659 <http://dx.doi.org/10.1139/t03-058>

660 Papageorgiou, G. 2004. "Liquefaction assessment and flume modelling of the Merriespruit gold
661 and Bafokeng platinum tailings". PhD. Thesis University of the Witwatersrand

662 Payan, M., Khoshghalb, A., Senetakis, K., and Khalili, N. 2016. "Effect of particle shape and
663 validity of Gmax models for sand: A critical review and a new expression." *Computers and
664 Geotechnics*, 72:28–41. Available at: <http://dx.doi.org/10.1016/j.compgeo.2015.11.003>.

665 Pestana, J.M. and Whittle, A.J. 1995. "Compression model for cohesionless soils." *Géotechnique*,
666 45(4):611–631. Available at: <http://dx.doi.org/10.1680/geot.1995.45.4.611>.

667 Petalas, A. L., Dafalias, Y. F., and Papadimitriou, A. G. 2020. "SANISAND-F: Sand constitutive
668 model with evolving fabric anisotropy". *International Journal of Solids and Structures*, 188–189,
669 12–31. Available at: <https://dx.doi.org/10.1016/j.ijsolstr.2019.09.005>

670 Rabbi, A.T.M.Z., Rahman, M.M., and Cameron, D.A. 2019. "The relation between the state
671 indices and the characteristic features of undrained behaviour of silty sand." *Soils and
672 Foundations*, 59(4):801–813. Available at: <http://dx.doi.org/10.1016/j.sandf.2019.05.001>.

673 Raposo, N. 2016. "Deposição de rejeitados espessados. caracterização experimental e modelação
674 numérica." PhD. Thesis, University of Porto.

675 Reid, D. 2015. "Estimating slope of critical state line from cone penetration test — an update".
676 *Canadian Geotechnical Journal*, 52(1), 46–57. Available at: <http://dx.doi.org/10.1139/cgj-2014-0068>

678 Reid, D. and Fanni, R. 2020. "A comparison of intact and reconstituted samples of a silt tailings".
679 *Géotechnique*, 1–13. Available at: <http://dx.doi.org/10.1680/jgeot.20.p.020>

680 Reid, D., Fanni, R., Koh, K., and Orea, I. 2018. "Characterisation of a subaqueously deposited silt
681 iron ore tailings". *Géotechnique Letters*, 8(4), 278–283. Available at:
682 <http://dx.doi.org/10.1680/jgele.18.00105>

683 Reid, D., Fourie, A., Ayala, J. L., Dickinson, S., Ochoa-Cornejo, F., Fanni, R., Garfias, A., Da
684 Fonseca, A., Ghafghaz, M, Ovalle, C, Riemer, M, Rismanchian, A., and Suazo, G. 2020. "Results
685 of a critical state line testing round robin programme". *Géotechnique*, 1–15. Available at:
686 <http://dx.doi.org/10.1680/jgeot.19.p.373>

687 Riemer, M. Macedo, J., Roman, O., and Paihua, S. 2017. "Effects of stress state on the cyclic
688 response of mine tailings and its impact on expanding a tailings impoundment." *3rd International*
689 *Conference on Performance-based Design in Earthquake Geotechnical Engineering*. Vancouver.

690 Robertson, P.K., De Melo, L., Williams, D.J., and Wilson, G.W. 2019. "Report of the Expert Panel
691 on the Technical Causes of the Failure of Feijão Dam I." Available at:
692 <http://www.b1technicalinvestigation.com/>.

693 Sadrekarimi, A. 2013. "Influence of state and compressibility on liquefied strength of sands." *Canadian Geotechnical Journal*, 50(10):1067–1076. Available at: <http://dx.doi.org/10.1139/cgj-2012-0395>.

696 Sadrekarimi, A. 2014. "Effect of the mode of shear on static liquefaction analysis." *Journal of Geotechnical and Geoenvironmental Engineering*, 140(12):04014069. Available at:
697 [http://dx.doi.org/10.1061/\(asce\)gt.1943-5606.0001182](http://dx.doi.org/10.1061/(asce)gt.1943-5606.0001182).

699 Sadrekarimi, A. 2016. "Static Liquefaction Analysis considering principal stress directions and
700 anisotropy." *Geotechnical and Geological Engineering*, 34(4):1135–1154. Available at:
701 <http://dx.doi.org/10.1007/s10706-016-0033-7>.

702 Sadrekarimi, A. 2020. "Forewarning of Static Liquefaction Landslides". *Journal of Geotechnical and Geoenvironmental Engineering*, 146(9), 04020090. Available at:
703 [https://dx.doi.org/10.1061/\(asce\)gt.1943-5606.0002320](https://dx.doi.org/10.1061/(asce)gt.1943-5606.0002320).

705 Sadrekarimi, A., and Riveros, G. A. 2020. "Static Liquefaction Analysis of the Fundão Dam
706 Failure". *Geotechnical and Geological Engineering*, 38(6), 6431–6446. Available at:
707 <https://dx.doi.org/10.1007/s10706-020-01446-8>

708 Schnaid, F., Bedin, J., Viana da Fonseca, A.J.P., and Costa Filho, L.D. 2013. "Stiffness and
709 strength governing the static liquefaction of tailings." *Journal of Geotechnical and
710 Geoenvironmental Engineering*, 139(12):2136–2144. Available at:
711 [http://dx.doi.org/10.1061/\(asce\)gt.1943-5606.0000924](http://dx.doi.org/10.1061/(asce)gt.1943-5606.0000924).

712 Schofield, A. and Wroth, C.P. 1968. "Critical State Soil Mechanics." McGraw-Hill, ISBN: 978-
713 0641940484.

714 Shuttle, D.A. and Cunning, J. 2007. "Liquefaction potential of silts from CPTu." *Canadian Geotechnical Journal*, 44(1):1–19. Available at: <http://dx.doi.org/10.1139/t06-086>.

716 Shuttle, D. and Jefferies, M. 2016. "Determining silt state from CPTu." *Geotechnical Research*,
717 3(3):90–118. Available at: <http://dx.doi.org/10.1680/jgere.16.00008>.

718 Sladen, J. A. and Handford, G. 1987. "A potential systematic error in laboratory testing of very
719 loose sands". *Canadian Geotechnical Journal*. 24, No. 3, 462–466.

720 Sladen, J. A., R. D. D'Hollander, and J. Krahn. 1985. "The liquefaction of sands, a collapse surface
721 approach." *Canadian Geotechnical Journal*. 22 (4): 564–578. Available at:
722 <https://doi.org/10.1139/t85-076>.

723 Smith, K., Fanni, R., Capman, P., Reid, D. 2019. "Critical State Testing of Tailings: Comparison
724 between Various Tailings and Implications for Design." *Proceedings of Tailings and Mine Waste*.
725 Vancouver.

726 Soares, M. and Fonseca, A.V. da, 2016. "Factors affecting steady state locus in triaxial tests."
727 *Geotechnical Testing Journal*, 39(6):20150228. Available at:
728 <http://dx.doi.org/10.1520/gtj20150228>.

729 Thevanayagam, S., Shethan, T., Mohan, S., and Liang, J. 2002. "Undrained Fragility of Clean
730 Sands, Silty Sands, and Sandy Silts." *Journal of Geotechnical and Geoenvironmental
731 Engineering*, 128(10):849–859. Available at: [http://dx.doi.org/10.1061/\(asce\)1090-0241\(2002\)128:10\(849\)](http://dx.doi.org/10.1061/(asce)1090-0241(2002)128:10(849)).

733 Torres, L.A. 2016. "Use of the cone penetration test to assess the liquefaction potential of tailings
734 storage facilities." PhD. Thesis, University of the Witwatersrand, Johannesburg.

735 Torres-Cruz, L.A. and Santamarina, J.C. 2019. "The critical state line of nonplastic tailings."
736 *Canadian Geotechnical Journal*, pp.1–10. Available at: <http://dx.doi.org/10.1139/cgj-2019-0019>.

737 USACE. 2016. "National inventory of dams." Army Corp of Engineers.

738 Wang, Z.-L. Dafalias, Y. F., Li, X.-S., and Makdisi, F. I. 2002. "State Pressure Index for Modeling
739 Sand Behavior." *Journal of Geotechnical and Geoenvironmental Engineering*, 128(6):511–519.
740 Available at: [http://dx.doi.org/10.1061/\(asce\)1090-0241\(2002\)128:6\(511\)](http://dx.doi.org/10.1061/(asce)1090-0241(2002)128:6(511)).

741 Wood, D.M. 1991. "Soil behaviour and critical state soil mechanics." Cambridge University Press.
742 Available at: <https://doi.org/10.1017/CBO9781139878272>.

743 Yan, W. M., and Dong, J. 2011. "Effect of Particle Grading on the Response of an Idealized
744 Granular Assemblage." *International Journal of Geomechanics*, 11(4):276–285. Available at:
745 [http://dx.doi.org/10.1061/\(asce\)gm.1943-5622.0000085](http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000085).

746 Yoshimine, M., and Ishihara, K. 1998. "Flow Potential of Sand During Liquefaction". *Soils and
747 Foundations*, 38(3), 189–198. Available at: https://dx.10.3208/sandf.38.3_189