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Figure 1: Robin Thomas.

Robin Thomas, a renowned mathematician, passed
away on March 26, 2020, following a long struggle
against Amyotrophic Lateral Sclerosis (ALS). He was
born in Czechoslovakia in 1962 and earned his doc-
toral degree in 1985 from Charles University. Follow-
ing the invitation of Neil Robertson and Paul Sey-
mour, Robin arrived United States in 1988 and had
positions at Ohio State University and Bellcore. He
joined Georgia Tech in 1989 as a faculty member and
was appointed a Regent’s Professor in 2010. In 2016,
he received the Class of 1934 Distinguished Professor
Award, the highest honor for a professor in Georgia
Tech.

Robin’s research lies in combinatorics, especially in
structural graph theory, with applications to different
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branches of mathematics and computer science. He
was awarded the Fulkerson Prize twice: in 1994 for
the proof of the 5-color case of Hadwiger’s conjecture
and in 2009 for the proof of the Strong Perfect Graph
Theorem. In 2011, he was awarded the Karel Janeček
Foundation Neuron Prize for Lifetime Achievement
in Mathematics. He became a fellow of the Amer-
ican Mathematical Society in 2012 and a fellow of
the Society for Industrial and Applied Mathematics
in 2018.

In addition to his prominent achievements in re-
search, Robin’s remarkable leadership had a profound
influence in education. Robin served as the director
of the Algorithms, Combinatorics, and Optimization
(ACO) program at Georgia Tech from 2006 to 2019.
The ACO program at Georgia Tech, founded around
1991, is an elite interdisciplinary doctoral program
that combines three rapid growing research areas in
computer science, mathematics and industrial engi-
neering. Robin was involved in the founding of the
ACO program and was the second program director
of the program. His long-term service preserved and
enhanced the prestigious reputation of the program.

Sadly, in 2008, Robin was diagnosed with ALS
which gradually decreased his muscle strength, re-
sulting in difficulty moving, speaking and breathing.
But he never gave up working. He kept conducting
research, teaching, advising students and leading the
ACO program until a few months prior to his tragic
passing in 2020. Indeed, he accomplished this all with
truly remarkable diligence and great passion. He de-
livered a very encouraging commencement address at
Georgia Tech in 2016.

Robin’s professionalism and personality heavily in-
fluence my life. He had offered me constant and
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Figure 2: Robin’s family.

supportive encouragement not only verbally but also
through his actions since I was a graduate student.
It continuously benefits me even today. My conver-
sations with him were always inspiring, and his sug-
gestions were always comprehensive and considerate.
He is a role model not only in academia but also in
daily life. It is my good fortune to have had Robin
as my advisor.

In this article I will briefly survey some of Robin’s
research achievements among his more than 100 pa-
pers, focusing on his most important work and re-
sults joint with his students and postdocs. My goal
is to give a rough picture of Robin’s contribution and
trajectory of his research while simultaneously high-
lighting the far reaches of his mentoring. I will finish
the article by slightly remarking Robin’s leadership
for the ACO program.

Before we survey Robin’s research we define some
common concepts and notation from graph theory
that will be used throughout. A graph G consists
of a set V (G) (called the set of vertices) and a set
E(G) (called the set of edges), where every element
e of E(G) is a subset {u, v} of V (G) with size 2 and
we say u, v are adjacent and e is incident with u and
v. We assume that graphs are finite (i.e. V (G) and
E(G) are finite) in this article, unless otherwise spec-
ified. As our goal is to give a picture of Robin’s
research instead of providing precise mathematical

Figure 3: Robin’s academic family. The photo was
taken at the banquet during the conference at Geor-
gia Tech in 2012 celebrating Robin’s work and his
50th birthday.

statements, sometimes we will allow E(G) to be a
multiset without explicitly stating it for simplicity.
The complete graph on t vertices, denoted by Kt, is
the graph consisting of t pairwise adjacent vertices.
We use Kt1,t2,...,tk to denote a complete multi-partite

graph, which is a graph whose set of vertices can be
partitioned into k parts with size t1, t2, ..., tk, respec-
tively, such that any two vertices in different parts
are adjacent.

1 Well-quasi-ordering and infi-

nite graphs

Robin’s work in the early stages of his career
is mainly on well-quasi-ordering theory and infinite
graphs.
A quasi-ordering on a set X is a reflexive and

transitive binary relation on X. A quasi-ordering
� on X is a well-quasi-ordering if for every infinite
sequence a1, a2, ... over X, there exist i < j such
that ai � aj . Well-quasi-ordering is important in
mathematics, logic and computer science. One par-
ticular strength of well-quasi-ordering is that every
property that is closed under a well-quasi-ordering1

1That is, there exists a well-quasi-ordering � such that an
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Figure 4: Edge-contraction. The graph at the right-
hand-side is a minor of the graph at the left-hand-
side. But the former is not a topological minor of the
latter.

can be characterized by finitely many objects. For
example, the celebrated Graph Minor Theorem of
Robertson and Seymour states that the minor rela-
tion is a well-quasi-ordering on graphs and implies
that every graph property that is closed under vertex-
deletion, edge-deletion and edge-contraction (such as
the property that being able to be drawn in a fixed
surface without edge-crossing) can be characterized
by a finite set of graphs and can be tested in poly-
nomial time. (See Figure 4 for an illustration for
edge-contraction.)
The study of well-quasi-ordering can be traced

back to two conjectures of Vazsonyi in the 1940s on
graphs: trees and subcubic graphs are well-quasi-
ordered by the topological minor relation, respec-
tively. Here we say that a graph H is a topological

minor of another graph G if some subgraph of G is
isomorphic to a graph that can be obtained from H
by repeatedly subdividing edges. (See Figure 5 for an
illustration for subdivisions.) Both conjectures have
been solved, where the tree conjecture is now known
as the Kruskal Tree Theorem and is important in
reverse mathematics, an area in logic that seeks to
determine the axioms that are required to prove the-
orems. However, the topological minor relation is not
a well-quasi-ordering on all graphs. For example, the
set consisting of the graphs obtained from cycles by
doubling all their edges is an infinite antichain with
respect to the topological minor relation.
Since Vazsonyi’s conjectures cannot be generalized

to all graphs, two natural directions can be consid-
ered: one is to characterize all graphs that can be
well-quasi-ordered by the topological minor relation,

element y satisfies this property implies that every element x

with x � y satisfies this property.
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Figure 5: Subdividing an edge. The graph at the
left-hand-side is a topological minor of the graph at
the right-hand-side. The former is also a minor of
the latter since the former can be obtained from the
latter by contracting an edge.

and the other is to consider weaker graph contain-
ment relations and try to generalize them to infinite
graphs if possible. Robin’s work spans both direc-
tions.

We start with the second direction. The topologi-
cal minor relation is closely related to the minor re-
lation, as shown by Kuratowski’s theorem on char-
acterizing planar graphs: a graph G can be drawn
in the plane with no edge-crossing if and only if K5

and K3,3 are not topological minors of G and if and
only if K5 and K3,3 are not minors of G. Here we say
that a graph H is a minor of another graph G if H
is isomorphic to a graph that can be obtained from a
subgraph of G by repeatedly contracting edges. If G
contains H as a topological minor, then G contains
H as a minor, but not vice versa. Hence the minor
relation is a natural candidate for considering well-
quasi-ordering. Robertson and Seymour proved that
the minor relation is a well-quasi-ordering on (finite)
graphs, confirming a conjecture of Wagner, in their
seminal series of around 20 papers. This result is
now known as the Graph Minor Theorem. The next
natural question is whether the minor relation is a
well-quasi-ordering on infinite graphs as well. Robin
[18] disproved it by constructing infinitely many un-
countable graphs that form an antichain with respect
to the minor relation. The case for countable infinite
graphs remains open. On the other hand, Robin [19]
proved that for any planar graph H, the minor re-
lation is a well-quasi-ordering on the set of H-minor
free finite or infinite graphs.

One strategy to prove that a quasi-ordering on a
set X is a well-quasi-ordering is the following. If this
relation is not a well-quasi-ordering, then there ex-
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ists an infinite sequence a1, a2, ... over X such that
ai is not smaller than aj with respect to this relation
for all i < j. In particular, a1 is not smaller than
any other entry of the sequence. So it gives an extra
property for all entries other than a1 and reduces the
well-quasi-ordering problem onX to the one on a sub-
set of X consisting of objects with lower complexity.
This addresses the importance of studying the struc-
ture of H-minor free finite or infinite graphs, for any
fixed graph H. Such a theorem for finite graphs is
the cornerstone of Robertson and Seymour’s proof of
their Graph Minor Theorem. Joint with Robertson
and Seymour, Robin [13] provided an exact charac-
terization of Kκ-minor free graphs in terms of their
structures, for any fixed infinite cardinal κ.

The case for finite cardinals κ is more complicated,
and no exact characterization is known. Robert-
son and Seymour proved that for every integer k,
every Kk-minor free finite graph admits a certain
well-described structure, and Kk′ does not admit this
structure for some larger integer k′. Though it is not
an exact characterization for Kk-minor free graphs,
it is sufficient to prove the Graph Minor Theorem
and a number of results in graph theory and com-
puter science. In joint work with Diestel, Robin ex-
tended Robertson and Seymour’s result by showing
that every Kk-minor free infinite graph admits the
same structure, for any fixed integer k.
Now we move back to topological minors for

graphs. Recall that there is an infinite antichain with
respect to the topological minor relation. Among any
known such infinite antichain, one can find a Rk-
topological minor for arbitrarily large integer k in
graphs in this antichain, where Rk is the graph ob-
tained from a path of length k by doubling all edges.
Robertson in the late 1980s conjectured that this is
the only obstruction: for any fixed integer k, (finite)
graphs with no Rk-topological minor are well-quasi-
ordered by the topological minor relation. Robin and
I proved this conjecture and characterized all topo-
logical minor-closed classes of graphs that are well-
quasi-ordered by the topological minor relation. As
in the proof of the Graph Minor Theorem, we [8]
proved a structure theorem for H-topological minor
free graphs for any fixed graph H on the way to prov-
ing Robertson’s conjecture.

For finite graphs, problems about topological mi-
nors are usually more complicated and behave less
nicely than the ones about minors. For example, it is
more complicated to state the aforementioned struc-
tural theorem for H-topological minor free graphs
than Robertson and Seymour’s theorem for H-minor
free graphs. However, the situation seems different
for infinite graphs. For example, Robin, joint with
Robertson and Seymour, proved that for any infinite
cardinal κ, an infinite graph is Kκ-topological mi-
nor free if and only if it admits a well-founded tree-
decomposition of width < κ.

Another interesting result of Robin is a construc-
tion of Lebesgue non-measurable sets in R by using
the simple fact that finite or infinite graphs with no
odd cycles are bipartite.

2 Graph minors

We have seen that Robin made significant contri-
butions on graph minors in the previous section. But
those are just the tip of the iceberg. In this sec-
tion, we will focus on Robin’s contributions to (finite)
graph minors.

Before Robertson and Seymour were able to prove
the Graph Minor Theorem, they considered the fun-
damental question of finding a structural description
of H-minor free graphs, for any fixed graph H. The
simplest non-trivial case is when H is a tree. Robert-
son and Seymour proved that for every tree (or for-
est) H, there exists an integer fH such that every
H-minor free graph can be represented by a collec-
tion S of closed intervals in R such that each ver-
tex corresponds to an interval in S, every point in
R is contained in at most fH + 1 intervals in S, and
if two vertices are adjacent, then the corresponding
two intervals overlap. As graphs are finite, we may
assume that those intervals in S are finite and have
integral endpoints. So those intervals can be treated
as subpaths of a fixed path. Such a representation of
a graph G by using a collection subpaths of a host
path (or intervals in R) is called a path-decomposition

of G. The path-width of a graph G is the minimum k
such that no vertex of the host path is contained in
more than k + 1 paths in the collection. Hence the

4



aforementioned result can be equivalently stated as
the following: for every tree (or forest) H, there ex-
ists an integer fH such that every H-minor free graph
has path-width at most fH . Since there exists no con-
stant c such that every tree has path-width at most c,
the above result is a rough characterization for graphs
that forbid a tree (or forest) as a minor. But the
value of fH obtained by Robertson and Seymour is
not optimal. In joint work with Bienstock, Robert-
son and Seymour, Robin improved the constant fH
to be |V (H)|−2, which is optimal. In joint work with
Dang, Robin further proved that every 2-connected
graph with large path-width contains a large apex-
forest or a large outerplanar graph as a minor, an-
swering a question of Seymour. The same result was
independently proved by Huynh, Joret, Micek and
Wood.
A tree-decomposition of a graph G is defined in a

way that is similar to a path-decomposition: it con-
sists of a collection of subtrees of a fixed tree T such
that each subtree corresponds to a vertex of G, and
the subtrees corresponding to any two adjacent ver-
tices of G intersect. The tree-width of G is the min-
imum k such that G has a tree-decomposition such
that no vertex in the host tree T is contained in more
than k+1 subtrees in the collection. It is known that
forests are exactly the graphs with tree-width at most
1, though trees can have arbitrarily large path-width.
Moreover, a tree-decomposition of G tells how to con-
struct G in a tree-like fashion. For every vertex v of
the host tree T , we call the subgraph of G induced by
the vertices corresponding to the subtrees of T in the
tree-decomposition containing v the bag correspond-
ing to v. Then G can be constructed by repeatedly
gluing bags in the same way as we construct the host
tree by repeatedly attaching vertices.

Tree-width is an important notion in graph the-
ory and computer science. For example, Courcelle
proved that for any fixed k, any property definable in
monadic second-order logic can be tested for graphs
with tree-width at most k in linear time. But the
running time heavily depends on the tree-width.

What can we say about the graphs with large tree-
width? It is known that planar graphs can have ar-
bitrarily large tree-width. Robertson and Seymour
proved that planar graphs are the only obstructions

for having small tree-width: for every planar graph
H, there exists an integer pH such that every H-
minor free graph has tree-width at most pH . Recall
that the running time of Courcelle’s algorithm heav-
ily depends on the tree-width. Hence reducing pH
to be as small as possible is crucial. The constant
pH in Robertson and Seymour’s theorem is enor-
mous; Robin together with Robertson and Seymour
improved pH to be 2poly(|V (H)|+|E(H)|), which was
further improved to be polynomial in |V (H)|+|E(H)|
by Chekuri and Chuzhoy around 20 years later.

How about if we forbid a general graph H as a mi-
nor? Robertson and Seymour proved that for every
graph H, every H-minor free graph admits a tree-
decomposition whose bags are “nearly embeddable”
in a surface in which H cannot be embedded. It
is a very deep and difficult result and is a corner-
stone of the proof of the Graph Minor Theorem. Re-
cently, joint with Kawarabayashi and Wollan, Robin
provided a simpler proof.

We have discussed the structure of graphs with
no fixed large graph H as a minor. Those results
are very general and sufficient for numerous applica-
tions. However, they are asymptotic results in the
sense that they only show that every H-minor free
graph satisfies a property that is not satisfied by an-
other graph that is similar to H. This is likely to be
unavoidable because H is very general.
Can we get a more precise structural description

for graphs with no fixed small graph H as a minor?
Something about these are known: K3-minor free
graphs are exactly forests; K4-minor free graphs are
exactly the graphs of tree-width at most 2; K5-minor
free graphs are exactly the graphs that admit a tree-
decomposition whose each bag is a planar graph or a
special graph on 8 vertices sharing at most 3 vertices
with each of other bags. However, there is evidence
showing that the structure of K6-minor free graphs is
much more complicated. Restricting the problems to
highly connected graphs might simplify the situation.
For example, the aforementioned result for K5 im-
plies that a 4-connected graph is K5-minor free if and
only if it is planar. Along this line, Jørgensen conjec-
tured that every 6-connected K6-minor free graph is
an apex-graph. An apex-graph is a graph G such that
G − v is planar for some vertex v. Apex-graphs are
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Figure 6: An example of the Y -∆ operation and the
∆-Y operation.

K6-minor free since planar graphs are K5-minor free.
So Jørgensen’s conjecture is equivalent to saying that
a 6-connected graph is K6-minor free if and only if
it is an apex-graph. Though Jørgensen’s conjecture
remains open, Robin together with Kawarabayashi,
Norine and Wollan proved that it is true for all large
graphs.

Theorem 1 ([7]). There exists an integer C such

that every 6-connected K6-minor free graph on at

least C vertices is an apex-graph.

This theorem was further strengthened by Norine
and Robin by replacing 6 by any constant t and re-
placing C by a constant only depending on t.
K6-minor free graphs are closely related to two nat-

ural ways for extending the notion of planar embed-
ding. We say that a graph is linkless embeddable if
it can be embedded in R

3 such that any two dis-
joint cycles have zero linking number; a graph is flat
embeddable if it can be embedded in S

3 such that
every cycle is the boundary of an open disk in S

3

disjoint from the graph. Planar graphs are obviously
linkless embeddable and flat embeddable, but K6 is
not linkless or flat embeddable. More non-linkless
embeddable graphs can be constructed by ∆-Y and
Y -∆ operations. The ∆-Y operation deletes the 3
edges of a K3-subgraph and adds a new vertex ad-
jacent to the 3 vertices of this K3-subgraph; the Y -
∆ operation deletes a vertex of degree 3 and adds
3 edges between the 3 neighbors of the deleted ver-
tex. (See Figure 6.) All graphs that can be obtained
from K6 by repeatedly applying ∆-Y and Y -∆ op-
erations are not linkless or flat embeddable. There
are 7 such graphs, where one of them is the Petersen
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Figure 7: The Petersen graph.

graph (see Figure 7). The class of these 7 graphs
is called the Petersen family. Joint with Robertson
and Seymour, Robin proved the following theorem
that connects these three notions, where the equiv-
alence between Statements 1 and 3 was conjectured
by Sachs, and the equivalence between Statements 1
and 2 was conjectured by Böhme and Saran.

Theorem 2 ([16]). The following are equivalent.

1. A graph is linkless embeddable.

2. A graph is flat embeddable.

3. A graph does not contain any graph in the Pe-

tersen family as a minor.

Another significant result of Robin about excluded
minor theory is the following separator theorem
proved in joint work with Alon and Seymour.

Theorem 3 ([1]). Let h be an integer, and let G
be a Kh-minor free graph on n vertices. If w maps

each vertex to a nonnegative real number, then there

exists X ⊆ V (G) with |X| ≤ h3/2n1/2 such that
∑

v∈V (C) w(v) ≤ 1
2

∑

v∈V (G) w(v) for every compo-

nent C of G−X.

The above separator theorem generalizes the famed
separator theorem of Lipton and Tarjan on planar
graphs and is useful for designing efficient divide-
and-conquer algorithms for numerous problems. For
example, it leads to subexponential time algorithms
of some NP-hard problems for minor-closed families
and a O(n3/2)-time algorithm for solving a system
of n linear equations with n variables whose sparsity
structure corresponds to a graph in a minor-closed
family.
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Now we turn our attention to Robin’s work on
algorithms related to graph minors. Recall that
Courcelle proved that every property expressible by
monadic second-order logic can be tested in linear
time on bounded tree-width graphs. This result can-
not be extended to general minor-closed families, un-
less NP=P. For example, testing whether a planar
graph is 3-colorable or not is an NP-hard problem,
but 3-colorability is expressible by monadic second-
order logic. Hence in an attempt to enlarge the class
of input graphs, one has to restrict the set of prop-
erties to be tested. Such natural candidates are the
first-order properties. Joint with Dvořák and Král’,
Robin successfully proved that first-order properties
can be tested in linear time on any class of graphs of
bounded expansion, which is a class of graphs that
cannot be made arbitrarily dense by contracting dis-
joint subgraphs with bounded radius and is a far-
reaching generalization of minor-closed families.

Theorem 4 ([3]). Let F be a class of graphs of

bounded expansion, and let Π be a first-order property

of graphs. Then there exists a linear time algorithm

that decides whether a graph in F satisfies Π.

Now we move to the extremal aspect. Euler’s for-
mula implies that every planar graph on n vertices
has at most 3n − 6 edges. What is the maximum
number of edges a Kp-minor free graph can have?
Planar graphs are K5-minor free, so every graph that
can be made planar by deleting at most p − 5 ver-
tices is Kp-minor free, and such a graph has at most
(p−2)n−

(

p−1
2

)

edges. Mader showed that the bound
provided by this simple observation gives the opti-
mal answer for 1 ≤ p ≤ 7. It is no longer true for
p = 8 since K2,2,2,2,2 and graphs that can be obtained
from copies ofK2,2,2,2,2 by identifying cliques of size 5
are counterexamples; Jørgensen showed that they are
exactly the only counterexamples. Joint with Song,
Robin further characterized the p = 9 case. They [17]
proved that every K9-minor free graph on n ≥ 9 ver-
tices with at least 7n−27 edges is either isomorphic to
K2,2,2,3,3 or can be obtained from copies ofK1,2,2,2,2,2

by identifying cliques of size 6. Such Mader-type re-
sults are useful for attacking Hadwiger’s conjecture.
(See Section 3 for more details about Hadwiger’s con-
jecture.) But if they were true for all sufficiently

large p, then they imply that the average degree of
Kp-minor free graphs is O(p), which is far from the
correct average degree Θ(p

√
log p) as shown by Kos-

tochka and independently by Thomason. However,
Seymour and Robin conjectured that the Mader-type
theorem holds for large highly connected graphs: for
every p ≥ 1, there exists an integer N such that ev-
ery (p−2)-connected Kp-minor free graphs on n ≥ N
vertices has at most (p−2)n−

(

p−1
2

)

edges. This was
proved by Norin and Robin.

3 Graph coloring

Arguably one of the most famous problems in
graph theory is the Four Color Problem, which asks
whether every planar graph is 4-colorable (i.e. the
vertices can be colored with 4 colors so that any two
adjacent vertices receive different colors), raised by
Guthrie in 1852. Even though this question looks el-
ementary, it is equivalent to numerous statements in
different branches of mathematics and is surprisingly
difficult to prove. Robin made significant contribu-
tions on graph coloring, mainly related to the Four
Color Problem and its variants.

A proof of the Four Color Problem was published
by Appel and Haken in the 1970s. Even though this
proof represents a major breakthrough, it was not
fully accepted because of two reasons: one is that part
of the proof uses a computer and cannot be checked
by hand, and the other is that the part of the proof
supposed to be checked by hand is extremely compli-
cated and tedious. Robertson, Sanders, Seymour and
Robin tried to read this proof, but very soon gave up.
They decided to make their own proof, and they did
it [12] in the 1990s. Though their proof still relies on
a computer, it is significantly simpler and has been
independently verified (including the computer part)
by different groups of people. Due to this work, now
it is safe to call it the Four Color Theorem.

Hadwiger in 1943 conjectured that for any t ≥ 1,
every Kt+1-minor free graph is t-colorable. Since pla-
nar graphs are K5-minor free, Hadwiger’s conjecture
is a far-reaching generalization of the Four Color The-
orem. Hadwiger’s conjecture is not hard to prove for
t ≤ 3; Wagner used his structural theorem for K5-
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minor free graphs mentioned in the previous section
to prove that the case t = 4 is equivalent to the Four
Color Theorem. Joint with Robertson and Seymour,
Robin proved the next case by proving that the case
t = 5 is also equivalent to the Four Color Theorem.
For this work, Robin was awarded his first Fulkerson
Prize. Hadwiger’s conjecture remains open for t ≥ 6.

Theorem 5 ([14]). Every K6-minor free graph is 5-

colorable.

The chromatic number of a graph G is the mini-
mum k such that G is k-colorable. The clique number

of G is the maximum size of a set of pairwise adja-
cent vertices in G. Clearly, the chromatic number is
at least the clique number. One natural question is
whether these two numbers are equal. In other words,
is everyKt+1-subgraph free graph t-colorable, for any
t? It is well-known that the answer is negative. So
Hadwiger’s conjecture can be viewed as an attempt
to remedy this by forbidding Kt+1 as a more gen-
eral structure. But can we characterize all graphs
whose chromatic number equals the clique number?
Since the disjoint union of Kt and an arbitrary graph
whose chromatic number is smaller than t satisfies
that the chromatic number equals the clique num-
ber, any meaningful characterization must consider
all induced subgraphs. This leads to the notion of
perfect graphs.
A graph G is perfect if every induced subgraph of

G satisfies that its chromatic number equals its clique
number. Typical examples of non-perfect graphs in-
clude any odd cycle of length at least 5 and its com-
plement. Berge proposed two conjectures in 1961.
The first one, proved by Lovász in 1972, states that
every graph is perfect if and only if its complement
is perfect, and it is called the Perfect Graph Theo-
rem. The second conjecture implies the first one and
states that the aforementioned odd cycles of length
at least 5 and their complements are exactly the ob-
structions for being perfect. Joint with Chudnovsky,
Robertson and Seymour, Robin proved the second
conjecture, which is now known as the Strong Perfect
Graph Theorem, and for this, Robin was awarded his
second Fulkerson Prize.

Theorem 6 ([2]). A graph is perfect if and only if it

does not contain any odd cycle of length at least 5 or

its complement as an induced subgraph.

The Four Color Theorem is equivalent to the state-
ment that every 2-edge-connected 3-regular planar
graph is 3-edge-colorable (i.e. the edges can be col-
ored with 3 colors so that any two edges sharing an
end receive different colors). Tutte in 1966 conjec-
tured that every 2-edge-connected 3-regular graph
with no Petersen minor is 3-edge-colorable. Since
the Petersen graph is non-planar, Tutte’s conjecture
is stronger than the Four Color Theorem. Tutte’s
conjecture was solved by a series of papers of Robin
and his collaborators. There are two natural kinds of
graphs having no Petersen minor: apex graphs and
double-cross graphs, where a graph is a double-cross

graph if it can be drawn in the plane with at most two
crossings, and each crossing is on the infinite region.
Joint with Robertson and Seymour, Robin showed
that every minimum counterexample to Tutte’s con-
jecture is either an apex graph or a double-cross
graph. Joint with Sanders, Robin proved that ev-
ery 2-edge-connected 3-regular apex graph is 3-edge-
colorable. Joint with Edwards, Sanders and Sey-
mour, Robin proved that every 2-edge-connected 3-
regular double-cross graph is 3-edge-colorable. Hence
Tutte’s conjecture follows.

The Four Color Theorem is optimal in the sense
that 4 colors are necessary for some planar graphs,
such as K4. A classical result of Grötzsch states that
3 colors are enough if triangles are forbidden. Even
though Grötzsch’s theorem ensures the existence of
a 3-coloring, it was unclear how to find such a col-
oring efficiently. Robin, together with Dvořák and
Kawarabayashi, gave a linear time algorithm to find
a 3-coloring for a given triangle-free planar graph.
On the other hand, Grötzsch’s theorem is no longer
true for graphs embedded in surfaces other than the
plane. But Robin, together with Dvořák and Král’,
gave a linear time algorithm to test whether a given
triangle-free graph embedded in a fixed surface is 3-
colorable or not, and a quadratic time algorithm to
find a 3-coloring if such a coloring exists.

Besides the aforementioned variation of Grötzsch’s
theorem about surfaces of higher Euler genus, a po-
tential strengthening of Grötzsch’s theorem was pro-
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posed by Havel: forbidding triangles that are close
to each other suffices. It was proved in Robin’s joint
work with Dvořák and Král’.

Theorem 7 ([4]). There exists a constant d such

that every planar graph with no two triangles within

distance at most d is 3-colorable.

The condition of having no triangles can be re-
stated in terms of the girth, which is the length of
the shortest cycle, of a graph. So an equivalent state-
ment of Grötzsch’s theorem states that every planar
graph with girth at least 4 is 3-colorble. It reduces the
number of necessary colors from the case with girth
3. So it is natural to expect that one can get even
nicer coloring results for the case with girth at least
5. One such result was proved by Robin, together
with Walls, showing that every graph with girth at
least 5 embeddable in the Klein bottle is 3-colorable.
This result answers a question of Woodburn and com-
plements results of Thomassen who proved the same
for the projective plane and torus. Postle and I later
proved a result about the edge-density for 4-critical
graphs, giving a unified proof of the aforementioned
three results.
Raising the girth not only enables us to strengthen

Grötzsch’s theorem to surfaces with higher Euler
genus but also enables us to strengthen the “col-
orability”. A list-assignment of a graph is a func-
tion L that maps each vertex to a set of colors; a
graph is L-colorable if we can assign each vertex v a
color in L(v) such that any pair of adjacent vertices
receive different colors; a list-assignment is a k-list-
assignment if it maps each vertex to a set of size
at least k. A graph is k-choosable if it is L-colorable
for any k-list-assignment L. Every k-choosable graph
is k-colorable since a k-coloring is an L-coloring for
some L that maps every vertex to the same set.
Thomassen proved that every planar graph with girth
at least 5 is 3-choosable and every planar graph is 5-
choosable. Thomassen’s results motivated many re-
sults and conjectures about coloring graphs embed-
dable in a surface with girth at least 3 ≤ ℓ ≤ 5 by
using 8 − ℓ colors or (8 − ℓ)-list-assignments. Joint
with Postle, Robin [10] developed a theory of linear
isoperimetric inequalities for graphs on surfaces and
applied it to prove a number of new results and known

results, such as coloring embedded graphs with no
short non-null-homotopic cycles or proving the exis-
tence of exponentially many different colorings.

4 Graphs on surfaces

We have discussed many of Robin’s results about
coloring graphs embeddable in a surface. In this sec-
tion, we will discuss his other results for those graphs.
One group of such results is about Hamiltonian cy-

cles. A Hamiltonian cycle in a graph G is a cycle that
contains all vertices of G. Looking for Hamiltonian
cycles is a popular topic in graph theory. It is also
related to the Four Color Theorem. Recall that the
Four Color Theorem is equivalent to the statement
that every 2-edge-connected 3-regular planar graph is
3-edge-colorable. It is easy to see that if a 3-regular
planar graph has a Hamiltonian cycle, then it is 3-
edge-colorable. Hence one might expect to prove the
Four Color Theorem by proving that every 2-edge-
connected 3-regular planar graph has a Hamiltonian
cycle. However, this expectation is too good to be
true. Tutte constructed a 3-connected 3-regular pla-
nar graph that has no Hamiltonian cycle, thereby dis-
proving a conjecture of Tait. Tutte also proved that
every 4-connected planar graph has a Hamiltonian
cycle.
Two conjectures for extending Tutte’s result to

graphs embeddable in surfaces with higher Euler
genus were proposed. One of them was conjectured
by Grünbaum, stating that every 4-connected graph
embeddable in the projective plane has a Hamilto-
nian cycle. Joint with Yu, Robin [20] proved this
conjecture. The other conjecture was proposed by
Grünbaum, and independently by Nash-Williams,
stating that every 4-connected toroidal graph (i.e. a
graph that can be drawn in the torus without edge-
crossing) has a Hamiltonian cycle. This conjecture
remains open, but Robin proved two weakenings. In
another joint paper with Yu, he proved that every
5-connected toroidal graph has a Hamiltonian cycle;
in joint work with Yu and Zang, he proved that every
4-connected toroidal graph has a Hamiltonian path.
Another set of Robin’s results is about planar cov-

ers and graphs embedded in the projective plane. A
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planar cover of a graph G is a planar graph L such
that there exists a mapping f : V (L) → V (G) such
that for every vertex v, f gives a bijection between
the set of neighbors of v in L and the set of neigh-
bors of f(v) in G. Planar covers naturally arise from
graphs embedded in the projective plane. If G is
a graph embedded in the projective plane, then the
lifting of this embedding into the universal covering
surface of the projective plane gives a planar cover of
G. So ifG is embeddable in the projective plane, then
G has a (finite) planar cover. The converse statement
is not true, as the disjoint union of two copies of K5

has a planar cover but cannot be embedded in the
projective plane. Negami conjectured that the con-
verse statement holds if only connected graphs are
considered: every connected graph has a (finite) pla-
nar cover if and only if it is embeddable in the projec-
tive plane. Negami’s conjecture remains open. Due
to work of Archdeacon, of Fellows and Negami, and of
Hliněný, it is known that Negami’s conjecture holds
if and only if K1,2,2,2 has no finite planar cover. Even
though this conjecture seems almost solved as it only
requires to check a property of a small graph, testing
this property for K1,2,2,2 does not seem to be a finite
problem. On the other hand, if Negami’s conjecture
is false, namely if there exist graphs non-embeddable
in the projective plane having planar covers, then it
is unclear what those graphs look like. A character-
ization of such graphs can be described by the set S
such that every connected graph has no finite planar
cover if and only if it contains some graph in S as a
minor. In joint work with Hliněný, Robin [6] gave an
explicit description of a finite set T and proved that
S is a subset of T .
Planar covers can also be used to construct minor-

minimal graphs with even branch-width. Branch-
width is a graph parameter that is asymptotically
equivalent to tree-width, and sometimes it is more
convenient to use. For any fixed integer w, graphs
with branch-width at most w form a minor-closed
family. So it is natural to ask what the minor-
minimal graphs with fixed branch-width are. A graph
embedded in a surface Σ is k-representative if ev-
ery homotopically non-trivial closed curve in Σ in-
tersects the embedding at least k times. This notion
frequently appears in the study of graphs embedded

in surfaces. An embedded graph is minor-minimally

k-representative if it has no isolated vertex and is
k-representative, but contracting any edge or delet-
ing any edge makes it non-k-representative. Randby
proved that every minor-minimally k-representative
graphs embedded in the projective plane can be ob-
tained from the k × k projective grid by repeatedly
taking ∆-Y and Y -∆ operations. So they can be
constructed explicitly. Joint with Inkmann, Robin
provided an explicit construction of minor-minimal
graphs with even branch-width by showing that for
every integer k, if G is a graph embedded in the
projective plane such that it is minor-minimally k-
representative, then the planar cover of G obtained
by lifting is a minor-minimal graph of branch-width
2k.

5 Matching theory and Pfaffian

orientations

Matching theory is one of the most fundamental
research directions in graph theory and boosts the
development of combinatorial optimization. Robin
made significant contributions in this area, especially
for those related to Pfaffian orientations.

A matching in a graph is a set of edges that do
not share ends; a matching M in a graph G is perfect
if every vertex of G is incident with an edge in M .
Given a bipartite graph G with a bipartition (X,Y )
with |X| = |Y | = n, we can define a 0-1 n×n matrix
A(G) such that for any 1 ≤ i, j ≤ n, the (i, j)-entry
of A(G) equals 1 if and only if the i-th vertex in
X is adjacent to the j-th vertex in Y . So a perfect
matching in G corresponds to a permutation matrix
whose (i, j)-entry is at most the (i, j)-entry of A(G),
for any i, j. Hence the number of perfect matchings
in G is the permanent of A(G). Conversely, given a
0-1 square matrix W , one can construct a bipartite
graph H such that W = A(H) and the permanent
of W equals the number of the perfect matchings of
H. Hence computing the permanent of a 0-1 ma-
trix is equivalent to computing the number of perfect
matchings in a bipartite graph.

Even though the definitions of permanent and de-
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Figure 8: A Pfaffian orientation of the cube.

terminant are similar, these two notions have signif-
icantly different behaviors. For example, computing
the permanent is #P-complete even when the matrix
is a 0-1 matrix, but computing the determinant can
be done efficiently. Pólya in 1913 asked what kind
of square 0-1 matrices A satisfies the property that
there exists a matrix B obtained from A by changing
some of the 1’s to −1’s in such a way that the deter-
minant of B equals the permanent of A. We call such
a matrix B a Pólya matrix of A, if it exists. Vazirani
and Yannakakis proved that a 0-1 square matrix has
a Pólya matrix if and only if the corresponding bi-
partite graph has a Pfaffian orientation. A Pfaffian

orientation of a graph G is an orientation such that
for every central even cycle C in G, traversing C in
any direction sees an odd number of edges with con-
sistent direction and an odd number of edges with
opposite direction, where a subgraph H of G is cen-
tral if G−V (H) has a perfect matching. (See Figure
8 for an example.) Hence Pólya’s question is equiva-
lent to characterizing the bipartite graphs that have
a Pfaffian orientation.

Little proved that a bipartite graph has a Pfaffian
orientation if and only if none of its central subgraph
is isomorphic to an even subdivision of K3,3. Lit-
tle’s characterization is elegant, but it seems that it
is not strong enough to give a polynomial time algo-
rithm for determining whether a bipartite graph has
a Pfaffian orientation. Joint with Robertson and Sey-
mour, Robin [15] proved a characterization and gave
a polynomial time algorithm to test whether a bipar-
tite graph has a Pfaffian orientation, and hence gave
a polynomial time algorithm to test whether a given
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Figure 9: The Heawood graph.

0-1 square matrix has a Pólya matrix. The follow-
ing characterization for braces is the key theorem for
their characterization. (A brace is a bipartite graph
G such that any matching of size 2 of G is contained
in a perfect matching of G; a graph G0 is obtained
from two graphs G1, G2 by a central C4-sum if G0

can be obtained from a disjoint union of G1, G2 by
identifying a central induced 4-cycle in G1 with a cen-
tral induced 4-cycle in G2 and deleting any number
of edges in the identified 4-cycle.)

Theorem 8 ([15]). A brace has a Pfaffian orienta-

tion if and only if either it is isomorphic to the Hea-

wood graph, or it can be obtained from planar braces

by repeatedly applying the central C4-sum.

(See Figure 9 for an illustration of the Heawood
graphs.)

The importance of braces comes from the work of
Edmonds, Lovász and Pulleybank about tight cut de-
compositions. They showed that for a graph whose
every edge is contained in a perfect matching, it ad-
mits no non-trivial tight cut if and only if it is a brace
or a brick. (A brick is a 3-connected graph such that
deleting any two distinct vertices from it results in
a graph that has a perfect matching.) The decision
problem about whether a graph has a Pfaffian orien-
tation can also be reduced to the problem on braces
and bricks. So the aforementioned characterization
for braces admitting a Pfaffian orientation leads to
a characterization for bipartite graphs admitting a
Pfaffian orientation. Hence, to complete the char-
acterization for graphs admitting a Pfaffian orienta-
tion, it suffices to consider bricks. However, no such
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characterization that can lead to a polynomial time
algorithm for testing whether a graph is Pfaffian or
not is known. In joint work with Norine, Robin made
progress on understanding bricks. In particular, they
provided a structure theorem for bricks by showing
that every brick can be obtained from a graph in a
list of specific graphs by splitting vertices and adding
edges in a certain way.

6 Directed graphs

We finish the outline of Robin’s research by men-
tioning some of his work on directed graphs.
Let F be a class of graphs or directed graphs.

There are two natural types problems commonly
asked in combinatorial optimization. One of them
is a packing problem: what is the maximum number
νF (G) of disjoint subgraphs of a graph or directed
graph G each isomorphic to a member of F? The
other is a covering problem: what is the minimum
number τF (G) of vertices required to intersect all
subgraphs of G isormorphic to members of F? Many
problems in graph theory can be modelled as one of
them. For example, the maximum size of a matching
of graph G is νF (G) when F = {K2}; and the mini-
mum size of a vertex-cover of G, another extensively
studied notion, is τF (G) when F = {K2}.
These two problems can be formulated as integer

programming problems, and they are dual to each
other. Note that νF (G) ≤ τF (G), as we need at least
νF (G) vertices to intersect νF (G) disjoint objects.
But unlike linear programming problems, τF (G) can-
not be upper bounded in terms of νF (G) for general
F . One direction in graph theory is to prove that
certain classes F do not have this bad property.
Formally, F has the Erdős-Pósa property if there

exists a function f such that for every graph (or di-
rected graph) G, τF (G) ≤ f(νF (G)). Having the
Erdős-Pósa property has advantages. For example,
if one can efficiently approximate one of νF (G) and
τF (G), then the Erdős-Pósa property immediately
gives an efficient approximation of the other. For
example, it is easy to show that {K2} has the Erdős-
Pósa property with f(x) = 2x. So it gives a factor-2
approximation for the minimum size of a vertex-cover

of a graph G by simply finding the maximum size of
a matching of G, which can be done in polynomial
time, even though finding the exact value of the min-
imum size of a vertex-cover is NP-hard.
A classical result of Erdős and Pósa states that the

set of all cycles has the Erdős-Pósa property. Younger
in 1973 conjectured that the set of all directed cycles
also has the Erdős-Pósa property, where the special
case for directed graphs with no two disjoint directed
cycles was independently conjectured by Gallai ear-
lier. Joint with Reed, Robertson and Seymour, Robin
[11] proved this conjecture. We denote the maximum
number of disjoint directed cycles in D by ν(D), and
we denote the minimum number of vertices in D re-
quired to intersect all directed cycles by τ(D).

Theorem 9 ([11]). There exists a function f such

that τ(D) ≤ f(ν(D)) for every directed graph D.

Another interesting question is to characterize all
directed graphs D with τ(D) = ν(D). This question
probably has no nice answer. We consider the fol-
lowing weakening: find the characterization for the
directed graphs D such that τ(D′) = ν(D′) for ev-
ery subgraph D′ of D. We say that D packs if
τ(D′) = ν(D′) for every subgraph D′ of D. Note
that this notion can be viewed as an analog of per-
fect graphs, and it is related to minors of directed
graphs.

There are many reasonable ways to define minors
of directed graphs. Here we only consider butterfly
minors, which is one of the most extensively stud-
ied notions for directed graph minors. We say that
a directed graph H is a butterfly minor of another
directed graph G if H can be obtained from a sub-
graph of G by repeatedly contracting an edge that
is either the unique out-going edge of its tail or the
unique in-going edge of its head. Note that the edge-
contractions mentioned in the definition of butterfly
minors preserve the strongly connected components.
It is also easy to see that every butterfly minor of a
directed graph that packs also packs. Hence one can
characterize directed graphs that pack by providing
the minimal butterfly minor obstructions.

The doubly directed cycle of length k is the directed
graph obtained from the cycle of length k by replacing
each edge by a pair of directed edges with opposite
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directions. It is easy to see that the doubly directed
cycle of length k has at most ⌊k/2⌋ disjoint directed
cycles and requires at least ⌈k/2⌉ vertices to intersect
all directed cycles. So doubly directed cycles of odd
length do not pack. Joint with Guenin, Robin [5]
proved that doubly directed cycles of odd length and
another special directed graph on 7 vertices, called
F7, are exactly the minimal butterfly minor obstruc-
tions for directed graphs that pack.

Theorem 10 ([5]). A directed graph packs if and

only if it does not contain any doubly directed cycle

of odd length or F7 as a butterfly minor.

Note that F7 can be obtained from the Hea-
wood graph by certain operations. Those operations
connect the notions of directed graphs and perfect
matchings in bipartite graphs. In fact, the proof of
Theorem 10 uses the characterization of braces that
have a Pfaffian orientation mentioned in the previous
section.

7 Leadership and mentorship

Besides Robin’s remarkable mentorship witnessed
by prolific work joint with his students and postdocs
mentioned in previous sections, we briefly remark
Robin’s long-term leadership for the ACO program.
The Algorithms, Combinatorics, and Optimization

(ACO) program at Georgia Tech is the oldest inter-
disciplinary PhD program at Georgia Tech founded
around 1991. It is one of the only two programs of
their named genre in United States. (The other ACO
program is at Carnegie Mellon University created one
or two years earlier than the one at Georgia Tech.)
The ACO program highlights three rapidly growing
areas of research: analysis of algorithms, combina-
torics, and discrete and combinatorial optimization.
As we have seen in previous sections, Robin’s work
spans all those three areas and shows that the bound-
ary line between those areas is vague. Many faculties
in different departments of Georgia Tech had worked
on related areas since the 1970s, motivating the cre-
ation of the ACO program with a unique curriculum
design that spans three academic units in Georgia
Tech.

In 1993, Robin’s student, Daniel Sanders, became
the first graduate of the ACO program. Robin was
the second director of the ACO program, serving
from 2006 to 2019. When Robin took over the posi-
tion from the first director, Richard Duke, the ACO
program was already well-established in the sense
that the concerns about its viability and appeal to
applicants with the highest quality had essentially re-
solved. Robin not only maintained the prestige of the
ACO program but also elevated it. By 2011, the ACO
program was considered as an elite academic program
by any of the usual metrics. Today, 30 years later
from its establishment, the ACO program remains
strong and thriving. Robin’s long-term service and
extraordinary contributions from other affiliated fac-
ulties definitely play important roles. ACO alumni
gathered at Georgia Tech in 2017 to celebrate the
25th anniversary of the ACO program and gave pub-
lic talks. Many of them recalled their days at Georgia
Tech and the graph theory course taught by Robin.
Indeed, Robin was part of the daily life of an ACO
person. We refer readers to [9] for a history of the
ACO program.
We close this article by including contributions

from some Robin’s former student and postdoc to
highlight his excellent mentorship.

Luke Postle2

Robin trained me as his Ph.D. student how to think
about research. An excellent researcher, Robin had a
wonderful taste in problems. While we both shared
a love of graph coloring, particularly the Four Color
Theorem and all its extensions and generalizations,
Robin was always open to a new problem if it was nat-
ural and well-motivated. Robin taught me to never
shy away from the hard problems of mathematics but
instead to embrace them, to believe that problems
worth working on are their own reward.
Robin also taught me the importance of commu-

nicating mathematical ideas. Through Robin’s guid-
ance during our many collaborations, I learned how
to write mathematics professionally, to understand
that technical writing was not about persuasion but

2Luke Postle is an associate professor at University of Wa-
terloo. His email address is lpostle@uwaterloo.ca.

13



precision. I learned that a colleague reading my pa-
per had to be able to reconstruct exactly what I was
doing without having me there to walk them through
it. For presentations, Robin instilled in me that each
slide should carry its own weight. Since I graduated
in 2012, I have taken to heart all the lessons I learned
from Robin. Robin shaped how I think about mathe-
matics and how I approach research writing and pre-
sentations. To this day, I still find myself asking what
would Robin say?
Robin is the best mentor I have ever had. I can

honestly say I would not be where I am today as a
tenured professor if it were not for Robin; indeed, I
wonder sometimes if I would even be in math. Robin
literally changed my life but he also changed me. He
taught me many things but most of all he taught me
by example with his constant courage, perseverance
and enthusiasm in the face of adversity.

Dan Král’3

I first met Robin during the symposium on Graph
Drawing in Prague in 1999 where he gave an invited
plenary talk on graph planarity and related topics. I
still remember his talk today, which was given with
crystal clarity whilst covering so many deep results
from the theory of graph minors, a rapidly emerging
area at that time. In 2001, Robin gave an invited talk
at the first workshop of the GROW series and dur-
ing this workshop, I became engrossed in a detailed
discussion with Robin concerning the extension of
Erdős-Posa type results on planar graphs that I had
obtained earlier to surfaces of higher genus. It was
extremely impressive how broad and deep Robin’s
knowledge is, not only of graph theory, but across
the entire field of mathematics, which made me real-
ize the importance of seeing mathematics in its unity
and led me to devote a significant amount of my time
during PhD to learning topics from other areas of
mathematics and computer science, even if I did not
intend to do any research in those areas. In 2005,
I was honored to become Robin’s postdoc and the
year that I spent at Georgia Tech really changed the

3Dan Král’ is a Donald Ervin Knuth Professor at Masaryk
University and a honorary professor at University of Warwick.
His email address is dkral@fi.muni.cz.

direction of my research career. Of course, I learnt
a lot from graph theory while working with Robin
but it was his open-minded approach to mathematics,
graph theory in particular, and the routine involve-
ment of computers in his work which have served as
a huge source of inspiration during my academic ca-
reer. However, Robin was not only an outstanding
researcher but also an excellent teacher as I witnessed
during my postdoc stay and subsequent frequent vis-
its at Georgia Tech. He paid extreme attention to
the delivery of material in his classes and I am sure
he would not mind me sharing a brief story related
to this: once whilst having lunch with Robin, a stu-
dent that Robin had taught a couple of years earlier
came to thank him for conducting the class in such
a way that he could build so much upon on for his
forthcoming years at Georgia Tech. Certainly in my
view, this is one of the greatest accolades a teacher
can receive! Robin was, and still is, a source of in-
spiration for my academic work and I continued to
consult him on scientific advice on various matters. I
stay very much indebted to Robin for the amount I
learnt from him, his overall support and a great deal
of inspiration, which are impossible to comprehend
in words.

Acknowledgement: The author thanks Sigrun An-
dradottir, Luke Postle and Petr Hliněný for some sug-
gestions when preparing this article.
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