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1 | INTRODUCTION

In this note we introduce a family of norms on complex matrices. These are initially defined in
terms of certain symmetric functions of eigenvalues of complex Hermitian matrices. The fact that
we deal with eigenvalues, as opposed to their absolute values, is notable. First, it prevents standard
machinery, such as the theory of symmetric gauge functions, from applying. Second, the tech-
niques used to establish that we indeed have norms are more complicated than one might expect.
For example, combinatorics, probability theory, and Lewis’ framework for group invariance in
convex matrix analysis each play key roles.
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These norms on the Hermitian matrices are of independent interest. They can be computed
recursively or directly read from the characteristic polynomial. Moreover, our norms distinguish
certain pairs of graphs which the standard norms (operator, Frobenius, Schatten-von Neumann,
and Ky Fan) cannot distinguish.

Our norms extend in a natural and non-trivial manner to all complex matrices. These
extensions of our original norms involve partition combinatorics and trace polynomials in non-
commuting variables. A Schur convexity argument permits our norms to be bounded below in
terms of the mean eigenvalue of a matrix.

These norms, their unusual construction, and their potential applications suggest a host of open
problems. We pose several at the end of the paper.

1.1 | Notation

Denote by N, R, and C, respectively, the set of natural numbers, real numbers, and complex
numbers. Let H,(C) denote the set of n X n complex Hermitian matrices and M, (C) the set of
n X n complex matrices. Denote the eigenvaluesof A € H,(C) by 1,(A) > 1,(4) = --- > 1,,(A) and
define

A(A) = (44(A), Ay(A), ..., A,(A)) € R™.

We may use 4 and 4;,4,, ..., 4,, if the matrix A is clear from context. Let diag(x,, x5, ..., X,) €
M,,(C) denote the n x n diagonal matrix with diagonal entries x;, x,, ..., X,,, in that order. If
x = (X, X, ..., X,;) is understood from context, we may write diag(x) for brevity.

1.2 | Complete homogeneous symmetric polynomials

The complete homogeneous symmetric (CHS) polynomial of degree d in the n variables x;, x,, ..., X,,
is

hy(xy, X5, s X,) = Z Xj, X;, X, @

1<) <+ <ig<n
the sum of all degree d monomials in x;, x5, ..., X,, [31, Section 7.5]. For example,

hO(xl7x2) = 1’
hy(xy, %) = X7 + XX, + x5, and
hy(xy,x,) = xf + xfx2 + x1x§ + xg.

Elementary combinatorics confirms that there are precisely ("+d_1) summands in the definition
(1). We often write h;(x), in which x = (x;, x5, ..., X,,) € R", when the number of variables is clear

from context.
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2080 | AGUILAR ET AL.

For d even and x € R", Hunter proved that hy(x) > 0, with equality if and only if x = 0 [11].
This is not obvious because some of the summands that comprise h;(x) (for d even) may be
negative. Hunter’s theorem has been reproved many times; see [2, Lemma 3.1], [3], [5, p. 69 &
Theorem 3], [7, Corollary 17], [28, Theorem 2.3], and [32, Theorem 1].

1.3 | Partitions and traces

A partition of d € Nis an r-tuple 7 = (7}, 7y, ..., 7,) € N"such that 7, > 7, > -+ > w, and 7, +
7, + -+ + 7, = d; the number of terms r depends on the partition 7. We write z - d if 7 is a
partition of d.

For 7 - d, define the symmetric polynomial

pn-(xl» xz,--.,xn) = Pr,Pr, *** Pr.»

r

in which p(x, x5, ..., X,,) = x’f + x’z‘ + -+ x’rj are the power sum symmetric polynomials. If the
length of x = (x, x5, ..., X,,) is clear from context, we often write p.(x) and p,(x), respectively.
Another expression for (1) is

Dr(X1, %5, 05 X;)
hd(xlaxZ:---yxn) = Z M) (2)

rhkd Zx

in which the sum runs over all partitions 7 = (7, 75, ..., 7,) of d and

z, = [[imm, 3)

i>1
where m; is the multiplicity of i in z [31, Proposition 7.7.6]. For example, if 7 = (4,4,2,1,1,1),
then z, = (1331)(2!1!)(4%2!) = 384 [31, (7.17)]. The integer z, is precisely the Hall inner product

of p, with itself, in symmetric function theory.
If A € H,(C) has eigenvalues 4 = (4, 4,, ..., 4,,), then

Pz(A) = pr (D, (4) -+ pr (A) = (tr AT )(tr A™2) - (tr A™). 4

This connects eigenvalues, traces, and partitions to symmetric polynomials.

1.4 | Main results

The following theorem provides a family of novel norms on the space H,(C) of n X n Hermitian
matrices. Some special properties of these norms are discussed in Section 4.

Theorem 1. Foreven d > 2, the following is a norm on H, (C):

Al = (Rg(A,(A), A5(A), ..., A, (AN
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For example, Equations (2) and (4) yield trace-polynomial representations

AN = 3 (tr(a%) + (tr 4)2), )

AN = 52 (GrA)* + 6(tr A)? tr(A%) + (A2 + 8(tr A)(AD) + 6(4D).  (6)

Theorem 1 is non-trivial for several reasons.

(a) The sums (1) and (2) that characterize h;(1(A)) may contain negative summands. For
example, (tr A) tr(A3) in (6) can be negative for Hermitian A: consider A = diag(—2, 1,1, 1).

(b) The sums that define these norms do not involve the absolute values of the eigenvalues of A.
Theorem 1 does not follow from standard considerations, but rather from delicate properties
of multivariate symmetric polynomials.

(c) The relationship between the spectra of (Hermitian) A, B, and A + B, conjectured by A. Horn
in 1962 [10] was only established in 1998-99 by Klyachko [16] and Knutson-Tao [17]. Therefore,
the triangle inequality is difficult to establish. Even if A and B are diagonal, the result is not
obvious; see (12). In fact, even in the “easy” case of positive diagonal matrices this result has
been rediscovered and republished many times; see Remark 14.

(d) Passing from the diagonal case to the general Hermitian case is not straightforward. We
emphasize again that standard techniques like symmetric gauge functions are not applica-
ble because of (a). Our proof of this step involves Lewis’ framework for group invariance in
convex matrix analysis [19].

(e) Aremarkable general approach to norms on R" arising from multivariate homogeneous poly-
nomials is due to Ahmadi, de Klerk, and Hall [1, Theorem 2.1]. Unfortunately, this does not
apply in our setting because the convexity of the even-degree CHS polynomials is hard to
establish directly. In fact, Theorem 1 together with [1, Theorem 2.1] imply convexity.

Example 2. Because CHS norms do not rely upon the absolute values of the eigenvalues of a Her-
mitian matrix (that is, its singular values), they can sometimes distinguish singularly (adjacency)
cospectral graphs (graphs with the same singular values) that are not adjacency cospectral. This
feature is not enjoyed by many standard norms (for example, operator, Frobenius, Schatten-von
Neumann, and Ky Fan). For example,

0 1 1
K=|1 0 1],
1 1 O

which has eigenvalues 2,—1,—1, and is the adjacency matrix for the complete graph on three
vertices. The graphs with adjacency matrices

K o0 0 K
A_[O K] and B—[K 0]

are singularly cospectral but not cospectral: their eigenvalues are —1,—-1,—1,—1,2,2 and
—2,-1,-1,1,1,2, respectively. Moreover, [[A[|® = 120 # 112 = [|B||¢.
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The norms of Theorem 1 extend in a natural and non-trivial fashion to the space M, (C) of all
n X n complex matrices.

Theorem 3. Letd > 2 be even and let w = (7, 75, ..., ) be a partition of d. Define T, : M,(C) —
R by setting T, (A)tobel/ ( d‘/i 2) times the sum over the ( d‘j 2) possible locations to place d /2 adjoints
* among the d copies of A in

(tr AA - A)(tr AA -+ A) --- (tr AA -+ A).

Ty o) T,
Then
T (A) 1/d
Aally = ( D ”—) : ©)
Td Zz

in which the sum runs over all partitions  of d and z, is defined in (3), is a norm on M,,(C) that
restricts to the norm on H, (C) given by Theorem 1.

If A = A*, observe that (7) coincides with the norm of Theorem 1 in light of (2) and (4). We
prove Theorems 1 and 3 in the next two sections of this paper.

Example 4. The two partitions of d = 2 satisfy z,) = 2 and z(, ;) = 2. There are (i) = 2 ways to
place two adjoints * in a string of two As. Therefore,

Tp)(A) = %(tr(A*A) + tr(AA™)) = tr(A*A), and

T 1)(A) = %((trA*)(trA) + (tr A)(tr A™)) = (tr A*)(tr A),
o)

AN = %tr(A*A) + %(trA*)(trA). ®)
If A = A*, this simplifies to the norm (5) on H,,(C), as expected.

Example 5. The five partitions of d = 4 satisty z(y) =4, z51) =3, 22 = 8, Zp11) = 4, and
Z(111,) = 24. There are (‘21) = 6 ways to place two adjoints * in a string of four As. For example,

6T31)(A) = (tr A"A"A)(tr A) + (tr A"AA™)(tr A) + (tr A*AA)(tr A*)
+ (tr AA*A*)(tr A) + (tr AA*A)(tr A™) + (tr AAA™)(tr A¥)

= 3tr(A*2A)(tr A) + 3(tr A2A*)(tr A™).
Some computation and (7) reveal that
4 _ i 2 #)2 )2 2 % %
Al = > ((tr A)* tr(A*)? + tr(A*)? tr(A%) + 4 tr(A) tr(A¥) tr(A* A)

+2tr(A*A)? + (tr A)? tr(A*?) + tr(A%) tr(A*?) + 4 tr(A*) tr(A* A?)
+ 4tr(A) tr(A™A) + 2tr(A*AA*A) + 4 tr(A*2A?%)) . 9)

If A = A*, this simplifies to the norm (6) on H,(C), as expected.
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Because of their origins in terms of CHS polynomials, we sometimes refer to the norm

Il - Iz as the CHS norm of order d. The notation || - || is used, occasionally with subscripts, for
other norms.
In the Hermitian case, the norm || - || ; can be directly extracted from the series expansion of an

explicit function (Theorem 20). The general situation is elegantly summarized in a determinantal
formula.

Theorem 6. Let A € M,,(C). For d even, (di2)|||A|||g is the coefficient of 282792 in the series

expansion of det(I — zA — zZA*)~! about the origin.

Helton and Vinnikov showed that polynomials of the form p = det(I — zA — ZA*) € C[z,z] are
precisely the real-zero polynomials in C[z, z] [9]. That is, they are characterized by the conditions
p(0) = 1 and that x — p(ax) has only real zeros for every a € C. Properties of such polynomials
are studied within the framework of hyperbolic [26] and stable [35] polynomials.

This paper is structured as follows. Sections 2 and 3 contain the proofs of Theorems 1 and 3,
respectively. Section 4 surveys the remarkable properties of the CHS norms, including Theorem 6.
We pose several open questions in Section 5.

2 | PROOF OF THEOREM 1
Let d > 2 be even. We prove that $ : H,(C) — R defined by
H(A) = hg(41(A), A5(A), .., 2, (AN (10)

is a norm. Hunter’s theorem ensures that $(A) > 0 and, moreover, that $(A) = 0 if and only if
A = 0 (the non-negativity of $ already follows from (11) below). Since $H(cA) = |c|$H(A) for all
A € H,(C) and ¢ € R, it suffices to prove that § satisfies the triangle inequality. This is accom-
plished by combining Lewis’ framework for group invariance in convex matrix analysis [19] with
a probabilistic approach to the CHS polynomials [2, 28, 32], as we now explain.

2.1 | Group invariance

Let V be a finite-dimensional R-inner product space. The adjoint ¢* of a linear map ¢ : ¥V - V
satisfies (p*(X),Y) = (X, o(Y)) forall X, Y € V. We say that ¢ is orthogonal if p* op is the identity
map on V. Let O(V) denote the set of all orthogonal linear maps on V. For a subgroup G C O(V),
we say that f : ¥V — R is G-invariant if f(¢(X)) = f(X)forallp € Gand X € V.

Definition 7 [19, Definition 2.1]. § : V — V is a G-invariant normal form if

(a) 6 is G-invariant,
(b) foreach X € V, there is an ¢ € O(V) such that X = ¢(5(X)), and
(©) (X,Y) < {(6(X),8(Y)) forall X,Y € V.

In this case, (V, G, §) is called a normal decomposition system.
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Suppose that (V, G, §) is a normal decomposition system and W C V is a subspace. The stabi-
lizer of Win G is Gy = {p € G : (W) = W}. For convenience, we restrict the domain of each
@ € G,y and consider G, as a subset of O(W).

Our interest in this material stems from the next result.

Lemma 8 [19, Theorem 4.3]. Let (¥, G, §) and (W, Gy, 8|,y ) be normal decomposition systems with
rand C W C V. Then a G-invariant function f : V — R is convex if and only if its restriction to W
is convex.

Let VY = H,(C) denote the R-inner product space of complex Hermitian matrices, endowed with
the inner product (X,Y) = tr(XY), and let U, (C) denote the group of n X n unitary matrices; see
Remark 10 for more details about this inner product. For each U € U,(C), define a linear map
oy @V = Vby py(X) = UXU*. Observe that ¢;09,, = ¢y, and hence

G={py : UeU,©C)}

is a group under composition. Since ¢;; = ¢+, we conclude that G is a subgroup of O(V).
Moreover, the function (10) is G-invariant.

Let W = D,(R) denote the set of real diagonal matrices. Then W inherits an inner product from
V and Gy = {gp : P € P}, in which P, denotes the set of n X n permutation matrices. Define
§:V->Vby

S(X) = dlag (AI(X)r AZ(X): LR} /‘ln(X)),

the nxn diagonal matrix with 4;(X) > 1,(X) = --- > 1,(X) on its diagonal. Observe that
rand C W since the eigenvalues of a Hermitian matrix are real. We maintain all of this notation
below.

Lemma 9. (V,G,d) and (W, Gyy, 8|,y) are normal decomposition systems.

Proof. We first show that (V, G, §) is a normal decomposition system. (a) Since eigenvalues are
invariant under similarity, § is G-invariant. (b) For X € V, the spectral theorem provides a U €
U,(C) such that X = US(X)U* = ¢;(8(A)). (c) For X,Y € V, note that tr XY < tr §(X)5(Y) [18,
Theorem 2.2]; see Remark 10.

We now show that (W, Gy, 8|yy) is a normal decomposition system. (a) 8|,y is Gyy-invariant
since 8(¢p(X)) = S(PXP*) = 6(X) for every X € W and P € P,,. (b) Let X € W. Since X is
diagonal, there exists a P € P, such that X = P§(X)P* = ¢p(5(X)). (c) The diagonal elements
of a diagonal matrix are its eigenvalues. Consequently, this property is inherited from V; see
Remark 11. O

2.2 | CHS polynomials as expectations

Let & = (&,,¢&,,...,&,) be a vector of independent standard exponential random variables [4,
(20.10)], and let x = (x;, x,, ..., X,,) € R". Since [E[Elk] =k!fori=1,2,..,n[4, Example 21.3], we
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deduce that
[E[<£7x>d] = E[(§1x1 + §2x2 et gnxn)d]

- Z d! ky ghy § k1 k2 oo xKn
kilky! ... k171 72 " "
Ky +ky+etk,=d 1772 n

ki ¢k k, ki, _k k
= I:g 1 2 ... gn"xllxzz e X ”]

| n
ky gk, = dk1 kz
kl k2
=d| Z |E[§ |E[§ gn kan
’ ki'ky! . k! %2 "
ky+ky+--+k,=d 172
— kl k2 k
=d! Z X7 e Xy

ky+ky+--+k,=d

= dl hy(x)

for integral d > 1 by the linearity of expectation and the independence of the &, ¢,, ...

Remark 12. Now suppose that d is even. Then

ha(x) = ZE[E.2)1] > 0

For x, y € R", Minkowski’s inequality implies that

1/d

(E[1E, %+ y)1) Y < (E[1€,0)14]) " + (E[1K€, »)19])

and hence (for d even)

[ha(x + 1Y < [Rg(0)]? + [hg(p)]*“.

2.3 | Conclusion

,&,; see

()

(12)

Recall the definition (10) of the function $ : H,,(C) — R. The inequality (12) ensures that the
restriction of $ to D,(R) satisfies the triangle inequality. For A,B € D,(R) and ¢t € [0, 1], note

that
H(A+ (1 -1)B) < H(tA) + H((1 —1)B) = tH(A) + (1 - 1)H(B)

by (12) and homogeneity. Thus, $ is a convex function on D, (R). Since § is G-invariant, we con-
clude from Lemma 8 that § is convex on H,,(C). It satisfies the triangle inequality on H, (C) since

it is convex and homogeneous:
1H(A+B) = 5(1/1 + lB) <1H(A) + 1 H(B).
2 2 2 2 2

Consequently, $(-) is a norm on H, (C).
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2.4 | Remarks
We collect here a few remarks about the proof of Theorem 1.

Remark 10. Consider the inner product (X,Y) = tr(XY) on H, (C); it is the restriction of the
Frobenius inner product to H, (C). The inequality

tr(XY) < tr6(X)é(Y) for X,Y € H,(C) (13)

is due to von Neumann [34] and has been reproved many times; see de Sa [6], Lewis [18, The-
orem 2.2], Marcus [20], Marshall [21], Mirsky [23, Theorem 1], Richter [27, Satz. 1], Rendl and
Wolkowicz [25, Corollary 3.1], and Theobald [33].

Remark 11. For diagonal matrices, the inequality (13) is equivalent to a classical rearrange-
ment result: (x, y) < (X,¥), in which where X € R" has the components of x = (x;, X,, ..., X,,)
in decreasing order [8, Theorem 368].

Remark 12. For even d, (11) implies the non-negativity of the CHS polynomials. This probabilistic
approach appears in the comments on the blog entry [32], and in [30, Lemma 12], which cites
[2]. There are many other proofs of the non-negativity of the even-degree CHS polynomials. Of
course, there is Hunter’s inductive proof [11]. Roventa and Temereancd used divided differences
[28, Theorem 3.5]. Recently, Bottcher, Garcia, Omar, and O’Neill [5] employed a spline-based
approach suggested by Olshansky after Garcia, Omar, O’Neill, and Yih obtained it as a by-product
of investigations into numerical semigroups [7, Corollary 17].

Remark 13. The CHS polynomials are a special case of the more general Schur polynomials

det (u;"+N_i)

det ()
These polynomials are also monomial-positive, homogeneous, and symmetric in the u;, and
moreover, carry representation-theoretic content. A natural question is whether the family of CHS
norms on Hermitian matrices is part of a larger family of “Schur norms.” In other words, is there a
converse of Hunter’s positivity result is valid for other Schur polynomials? Khare and Tao proved
that this is not the case [14, Proposition 6.3]. We thank the referee for pointing out this direction
of inquiry.

Remark 14. We stress that the inequality (12) permits x,y € R"; that is, with no positivity
assumptions. For p € N, the similar inequality

1 1 1
hy(x + WP < hy)YP + hy(»'/P forx,y eRE (14)
has been rediscovered several times. According to McLeod [22, p. 211] and Whiteley [36, p. 49], it

was first conjectured by A.C. Aitken. Priority must be given to Whiteley [36, equation (5)], whose
paper appeared in 1958. McLeod’s paper was received on March 16, 1959, although he was unaware
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NORMS ON COMPLEX MATRICES | 2087

of Whiteley’s proof: “To the best of my knowledge, no proof of [(14)] exists so far in the literature.”
For more exotic inequalities along the lines of (14), see [30].

3 | PROOF OF THEOREM 3

The first step in the proof of Theorem 3 is a general complexification result. Let ¥V be a com-
plex vector space with a conjugate-linear involution v — v*. Suppose that the real subspace
Vr ={v €V : v=0v"} of x-fixed points is endowed with a norm || -||. For each v € ¥V and
t € R, we have e''v + e~'v* € V. Note that the path t — ||e!v + e~*v*|| is continuous for each
vEV.

Proposition 15. Foreven d > 2, the following is a norm on V that extends || - ||:

1/d

27
N,0) = ;d/ leffv + e o || 4de]| . (15)
27 /2

Proof. Ifv € Vg, then |le‘v + e~v*|| = |2 cost]|||v]|. Moreover, R ;(v) = ||v]| since

2 p d
2 t®dt =2 .
/o |2 cost| ﬂ<d/2>

Next we verify that 92, is a norm on V.

POSITIVE DEFINITENESS. The non-negativity of || - || on Vy and (15) ensure that 9, is non-
negative on V. If v € V\{0}, thenv = u + iv/, where u = %(v +v*)andu’ = %(—iv + iv*) belong
to V. Now u, u’ cannot both be zero, so the map ¢ = |le‘v + e~ v*|| = ||2 cos(t)u + 2 sin(t)u’|| is
continuous and positive almost everywhere. Thus, 91;(v) # 0.

ABSOLUTE HOMOGENEITY. For r > 0 and 8 € R, we have 9,((re?®)v) = rf 4(e°v) = rN,(v)
by the R-homogeneity of || - || and the periodicity of the integrand in (15).

TRIANGLE INEQUALITY. For u,v € V,

2 _ 1/d
(/ le“(u + v) + e ¥ (u + v)*||¢ dt)
0
27 ) ) ) ) d
< (/ (lleu + e~ u™|| + [le'v + e~ "v*||) dt)
0
1/d

o _ 1/d o _
< (/ lle'u +e‘”u*||ddt> + </ lle'v +e—”v*||ddt> ,
0 0

where the first inequality holds by monotonicity of power functions and the triangle inequality
for || - ||, and the second inequality holds by the triangle inequality for the LY norm on the space
Clo, 2x]. ]

1/d

There are several natural complexifications of a real Banach space [24]. The extensions 9, in
(15) are special since they preserve some of the analytic and algebraic properties of the original

A °9 “TTOT “0T1T69YT

1//:sdny woxy pap

25U00I] SUOWIWO,) 2ANEaX) A[qeatidde oy Aq PaIGAOS SIE SIOIIE V() (2SN JO SO 10§ AIEIQIT AUIUQ KB[1AL UO (SUONIPUOD-PUE-SWLIY W00 Kol 14 ATEIqHaUI[UO//:sd1y) SUONIPUOD) PUE SWA L o 998 “[Z207/Z1/b1] U0 ATeIqr] ouIuQ ASTIA\ “6L9T1'SWIQ/Z] [ 101/10p/wi00" Ko



2088 | AGUILAR ET AL.

norm. Namely, we will show that when the extension 91, is applied to the norm ||| - ||; on H,(C),
one obtains a norm on M, (C) whose power is a trace polynomial; this does not happen, for
example, if one uses the minimal or the projective complexification of a norm (in which case
the resulting norm is not an algebraic function).

Let (x,x*) be the free monoid generated by x and x*. Let |w| denote the length of a word
w € (x,x*) and let |w|, count the occurrences of x in w. For A € M,(C), let w(A) € M,,(C)
be the natural evaluation of w at A. For example, if w = xx*x?, then |w| =4, |w|, = 3, and
w(A) = AA* A2,

Lemma 16. Letd > 2 be even and let & = (7, ..., r,) be a partition of d. If A € M,,(C), then

27
L tr(e A + e T A*) .. tr(e A + e AYY T dt
27 J
= > trw; (A) - trw,(A). (16)
W1 5oy Wy E(X,XT)
|wj|=7rj Vj

-, =4

Proof. For every Laurent polynomial f € C[z,z"!] with the constant term f, we have

/0271 f(e")dt = 2z f. Let us view

f=tr(zA+ z7 1A . tr(zA 4+ 2 LAF)™
as a Laurent polynomial in z. Its constant term is

fo= ), trw(A)-trw,(A),

W1 ey W

where the sum runs over all words w;, w,, ..., w, in (x, x*) with |w j| =7; such that the number
of occurrences of x in w,w, -+ w, equals the number of occurrences of x* in w,w, -+ w,. Thus,
(16) follows. O

Given a partition 7 = (7,...,7m,) of d and A € M,,(C) let

1
To(A) = —— D trw; (A) - trw,(A).
d/2 Wy ,en, W, €(0,*)
lwjl=7; ¥
|wl"'wr|x:%l

We now complete the proof of Theorem 3. The conjugate transpose A — A* is a real structure
on M,,(C). The corresponding real subspace of *-fixed points is H, (C). We apply Proposition 15 to
the norm || - ||; on H,(C) and obtain its extension 9,(-) to M,,(C) defined by (15). The fact that
N ,(A) admits a trace-polynomial expression as in (7) follows from (2) and Lemma 16.

Concretely, if A € M,,(C) and 9 ,(B) = ||B|| is the CHS-norm over Hermitian matrices B, then
by Proposition 15, the following is a norm on M,,(C):
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1/d
27
N,(4) 2 ;d / hy(A(e" A+ e " A") dt
2 d/2) 0
. ) 1/d
@l_1 /2” peAe At e AT
zn(diz) 0 wkd Zn
1/d
@l 1 1 o : , ,
= / tr(e”A + e—ltA*)ﬂ'l tr(e”A + e_ltA*)ﬂr dt
(3,) AraZz 2 Jo
djp2’ *
d\1l/d
16) 1 T”(A)(d/z)
= - ’
(d/Z) Thd Zz

which concludes the proof.

Remark 17. Proving that (7) is a norm relies crucially on Theorem 1, which states that its restriction
to H,(C) is a norm. On the other hand, demonstrating that (7) is a norm in a direct manner seems
arduous. To a certain degree, this mirrors the current absence of general certificates for dimension-
independent positivity of trace polynomials in x, x* (see [15] for the analysis in a dimension-fixed
setting).

Remark 18. For any A € M,,(C) and t € [0, 27r], the matrices e’ A + e~ A* are Hermitian. Thus,
lle’ A + e~ A*|||; can be defined as in Theorem 1 and hence

1/d
1 2 ) )
lAlly = [ ——— / lleA+eA*|dde | . (17)
27 ( ARL
Remark19. Here is another way to restrict ||| - || ; to the Hermitian matrices. The proof of Lemma 16
shows that ( d‘;z) |||A|||g is the coefficient of z4/224/2 in

llzA +ZA*||4 € C[z,Z].

4 | PROPERTIES OF CHS NORMS

We now establish several properties of the CHS norms. First, we show how the CHS norm of
a Hermitian matrix can be computed rapidly and exactly from its characteristic polynomial and
recursion (Subsection 4.1). This leads quickly to the determinantal interpretation presented in the
introduction (Subsection 4.2). Next, we identify those CHS norms induced by inner products (Sub-
section 4.3). In Subsection 4.4, we use Schur convexity to provide a lower bound on the CHS norms
in terms of the trace seminorm on M,,(C). We discuss monotonicity properties in Subsection 4.5
and symmetric tensor powers in Subsection 4.6.
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4.1 | Exact computation via characteristic polynomial

The CHS norm of a Hermitian matrix can be exactly computed from its characteristic polynomial.
The following theorem involves only formal series manipulations.

Theorem 20. Let p ,(x) denote the characteristic polynomial of A € H,(C). For d > 2 even, |||A|||§
is the dth coefficient in the Taylor expansion of

1 3 1
det(I — xA) x"p,(1/x)

about the origin.

Proof. Let p,(x) = (x — 4)(x — 4,) --- (x — 4,,). For |x| small, [32, (1)] provides

n

©0 n
1 1 1 1

hy(A, Ay, o, A)x% = == - :

;) d( 1> 42 n)x g 1—A.x xn ] x—1 - x"p,(1/x)

the apparent singularity at the origin is removable. Now observe that

n

1 1 1
g 1—2Ax  detdiag(1 —2A,x,1—Ax,..,1—1,x) det(I — xA)

by the spectral theorem. O

Example 21. Let A = [} l|. Then p,(z) = x* —x — 1 and

[Se]
1 1
= = f 1xn’
x?p,(1/x) 1-—x-—x2 nZ:o wr

in which f,, is the nth Fibonacci number; these are defined by f,,, = f,., + f, and f, = 0 and
f1 = 1. Thus, |||A|||g = fyforevend > 2.

Remark 22. If A € H,(C) is fixed, the sequence h;(1,, 4,, ..., 4,,) satisfies a constant-coefficient
recurrence of order n since its generating function is a rational function whose denominator has
degree n. Solving such a recurrence is elementary, so one can compute ||A||; for d = 2,4,6, ... via
this method.

Remark 23. For small d, there is a simpler method. Since p,(x) is monic, it follows that
Da(x) = x"p,(1/x) has constant term 1. For small x, we have

1 1
pa(x)  1-Q1-pyx)

D h(Ay, A, e, A = =Y -pa),
d=0 d=0

so the desired h;(4,4,,...,4,) can be computed by the expanding the geometric series to the
appropriate degree.
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Remark 24. For d > 1, the Newton—Gerard identities imply

Q-

d
hg(X1, X5 ey X)) = Z hg_i(%1, X5, e s X)) D (15 X5 w5 X,);
i=1

see [29, §10.12]. For A € H,,(C) and d > 2 even, it follows that

d
hg(A(A) = = Y hy_i(A(A)) tr(AD),
i=1

Q|

which can be used to compute |||A|||§ = hy(A(A)) recursively.

Remark 25. If H,K € H,(C), then det(I — xH) = det(I — xK) if and only if they are unitarily
similar. However, H = diag(1,0) and K = diag(1, —1) give

[s9) (69
1 1 ; 1 1 "
= = z/ and = = z=",
detI—xH) 1-—x j;o det(Il —xK) 1-—x2 kz“)

so IH]llg = IK|l4 for even d > 2. Of course, the odd-indexed coefficients (the CHS polynomials
of odd degree) do not agree.

4.2 | Determinantal interpretation

The material of the previous subsection leads to the determinantal interpretation (Theorem 6)
stated in the introduction. We restate (and prove) the result here for convenience.

Theorem 26. Let A € M,,(C). For d even, (diz) |||A|||g is the coefficient of 2412592 10 the Taylor

expansion of det(I — zA — ZA*)~! about the origin.

Proof. If H € H,,(C), the coefficient of x in det(I — xH)™ ! is ||H |||Z by Theorem 20. By plugging
in H = zA + ZA* and treating the resulting expression as a series in z and z, Remark 19 implies

that the coefficient of z4/2z%/? equals ( dcjz) LAS. O

Example 27. Let A= [J l|. Then

()
det(I —zA —2A") ' = — 1 — > z"",

d

-1
d/z) forevend > 2.

and hence [|A[|4 = (
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Example 28. For

0 1 O
A=[0 0 1|, wehave det(—zA—-zA")'= 1 —-
1 0 o 1—2z3-3zz—-2

3 29 99
Computer algebra reveals that || A3 = [|A[l; = % NANS = = and NANE = =

Example 29. The matrices

0 0 0 0 1
A=|(0 1 i and B=|0 0 i
o i -1 1 i 0
satisfy
det(I —zA —2A") ' = — 1 _ = det(I — zB —2B*)",
1—-4zz

so [lAllz = lIBlll4 for even d > 2. These matrices are not similar (let alone unitarily similar) since
A is nilpotent of order 2 and B is nilpotent of order 3.

52

Remark 30. In terms of the Laplace operator A = 55 Theorem 6 states that for even d,

1
det(] — zA — ZA*)

dijAllg = A/ 0).

4.3 | Inner products

Theorem 3 says that || - || is a norm on M, (C) for even d > 2. It is natural to ask when these
norms are induced by an inner product.

Theorem 31. The norm || - || on M, (C) (and its restriction to H,(C)) is induced by an inner
productifand onlyifd =2orn = 1.

Proof. If n =1 and d > 2 is even, then [|A||, is a fixed positive multiple of |a| for all A = [a] €
M, (C). Thus, || - I; on M;(C) is induced by a positive multiple of the inner product (A, B) = ba,
in which A = [a] and B = [b].

If d=2 and n > 1, then |||A|||§ = %tr(A*A) + %(trA) tr(A*), which is induced by the inner
product (A, B) = 3 tr(B*A) + 3(tr B¥)(tr A) on M,,(C).

It suffices to show that in all other cases the norm [|A|; = (hd(/l(A)))l/ 4 on H,(R) does not
arise from an inner product. For n > 2,let A = diag(1,0,0, ...) and B = diag(0, 1,0, ...,0) € H,(R).
Then [|A|l7 = lIBII = 1. Next observe that [|A + BJ|3 = (d + 1)?/4 since there are exactly d + 1
non-zero summands, each equal to 1, in the evaluation of h;(A(A + B)). Because of cancella-
tion, a similar argument shows that ||A — B|||fi = 1. A result of Jordan and von Neumann says
that a vector space norm || - || arises from an inner product if and only if it satisfies the paral-
lelogram identity ||x + y|I> + [lx — ylI* = 2(|lx[I> + [|y]|*) for all x, y [13]. If || - ll; satisfies the

A °9 “TTOT “0T1T69YT

1//:sdny woy pap

25U00I] SUOWIWO,) 2ANEaX) A[qeatidde oy Aq PaIGAOS SIE SIOIIE V() (2SN JO SO 10§ AIEIQIT AUIUQ KB[1AL UO (SUONIPUOD-PUE-SWLIY W00 Kol 14 ATEIqHaUI[UO//:sd1y) SUONIPUOD) PUE SWA L o 998 “[Z207/Z1/b1] U0 ATeIqr] ouIuQ ASTIA\ “6L9T1'SWIQ/Z] [ 101/10p/wi00" Ko



NORMS ON COMPLEX MATRICES | 2093

parallelogram identity, then (d + 1)2/9 + 1 = 2(1 + 1); that is, (d + 1)® = 3%. The solutions are
d = 0 (which does not yield an inner product) and d = 2 (which, as we showed above, does).
Thus, forn > 2and d > 2, the norm || - [|; on H,(C) does not arise from an inner product.  []

4.4 | A tracial lower bound

Each CHS norm on M,,(C) is bounded below by an explicit positive multiple of the trace seminorm.
That is, the CHS norms of a matrix can be related to its mean eigenvalue.

Theorem 32. For A € M,,(C) and d > 2 even,

1/d
n+d-1 [trA|

All; >

LAl 4 ( d > "

with equality if and only if A is a multiple of the identity.

Proof. Letd > 2beeven. Forx = (x, x5, ..., X,,) € R", letX = (X}, X,, ..., X,,) denote its decreasing
rearrangement (the notation x* is frequently used in the literature). Then x majorizes y, denoted
asx > y,if

k k n n

Zfi > 2371 fork =1,2,..,n,and in = Zyi.

i=1 i=1 i=1

i=1 i

The even-degree CHS polynomials are Schur convex [32, Theorem 1]. That is, hy(x) > hy(y)
whenever x > y, with equality if and only if x is a permutation of y.

Let A€ M,(C) and define B(t) =e’A+e A" for t €R. Then A(B(t)) majorizes
p(t) = (u(t), u(t), ..., u()) € R, in which u(t) = tr B(t)/n. Thus,

+d-1
BN = hy(AB®))) > hy(u()) = u(t)? (” J >
with equality if and only if B(¢) = u(t)I. It follows from (17) that
(n+d—1) o 1/d
Bl > | == [ par| 1s)
Zﬂ(d/z) 0

Combine this with

27 27 d 2
/ ut)? dt = / <%> dt = id/ (e"trA+e™™ tr(A*))ddt
0 0 n n 0
1w (d 2”
==Y} )ran ki a) / eIkt gy
nd =5 \k 0

(e

[\]
R

[sH

n
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2094 | AGUILAR ET AL.

and get the desired inequality. The continuity of the integrand ensures that equality occurs in (19)
if and only if B(t) = u(t)I for all t € R. An operator-valued Fourier expansion reveals that e’ A +
eTMA* = (3, c, A(n)e™)I, so A = p(1)I. Conversely, equality holds in (19) if A is a multiple of
the identity. O

_1\1/d .
n+d 1) / in Theorem 32 tends to 1 from above as

Remark 33. For each fixed n > 1, the constant ( p
d — oo. Therefore, [|All; = =|tr A| for all A € M,,(C).

1
n

4.5 | Monotonicity

The next result shows how CHS norms relate to each other. For Hermitian matrices, the first
inequality below is superior to the second.

Theorem 34. Let2 < p < q be even.

(a) If A € H,(C), then (pY)'/?l|Alll, < (g2l Al
(b) If A € M,/(C), then ((pl}z)p!)l/plllAlllp < ((chz)q!)l/qlllAlllq-

Proof.

(a) Let A € H,(C) have eigenvalues 4 = (4;,4,,...,4,), listed in decreasing order, and let
&=(&,&,,..., &, be arandom vector, in which £, &,, ..., £, are independent standard expo-
nential random variables. Let d > 2 be even and consider the random variable X = (£, ).
Then (11) ensures that

/d
(@Al = @ @) = e[, m1* | = x4

= [IX|l -
Since we are in a probability space (in particular, a finite measure space), ||X||;» < [|X||;q for
1< p <q < . For2 < p < qeven, this yields the desired inequality.

(b) Let Ae M, (C)andlet2 < p < g be even. For t € [0, 27], (a) ensures that

(gh?/a
p!

lleA + e AL < lle A +e AL,

Consider f([') = I"e”A + e—i[A*
imply the desired inequality:

ll; as an element of LP[0,27]. Holder’s inequality and (17)

. 1/p
1 ; it A%
141, =| s / e A+ A" |12 di
p/2
1 v (ghp/a [ . , 1/p
<|—L ( = |||e”A+e—”A*|||5dt>
Zﬂ(p/z) pl Jo
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1y 1/p Y 1/p
CORE 1 (gh'/4 1 11
< —— flle € = ——=| @m)*r flla
(p/e{ 2w () (eOv/e| 2m(,),)
1/p
(gh/a 1 11 o it —it g4 a
< NV > Q2m)r a / lle® A + e " A%l dt
(ph/ei 2z (f) 0
1/p
INCORS L (zn)‘§<zn< q >>1/q|||A|||g
wo7e| (7)) a/?
1/q
((7.)a") ]
< — 7 1Allg-
( D )p' /p
p/2/ %" O

Remark 35. The previous result suggests that suitable constant multiples of the CHS norms
may be preferable in some circumstances. However, the benefits appear to be outweighed by the
cumbersome nature of these constants.

Remark 36. For A,B € M,,(C),

2l|ABI|I; = tr(AB) tr((AB)*) + tr((AB)*AB)
< 2tr(A*A) tr(B*B)

< 2(tr(A) tr(A*) + tr(A* A))(tr(B) tr(B*) + tr(B*B))

= 8|l AlI3IBII3
so 2|l - I, is submultiplicative. Actually, 2 is the smallest constant independent of n with this
property, since
0 1
J =
oo

satisties [[J7ll; = 1 = 27l 07l

4.6 | Symmetric tensor powers
Let V denote an n-dimensional R-inner product space with orthonormal basis v,, v,, ..., v,.. The

kth tensor power of V is the n*-dimensional R-inner product space V® spanned by the simple
tensors

v, @V, ® U, 19)
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with these simple tensors forming an orthonormal basis of V®¥. An operator A : ¥ — V lifts to
an operator on V® as follows. Define

A®k(vl~1 ® viz ® cee ® vik) = Avil ®Avl’2 ® oo ®Avik

and use the linearity of A and @ to write this in terms of the basis vectors (21). An important fact
is that any orthonormal basis for V yields, via (21), an orthonormal basis for P&k,

The kth symmetric tensor power of V is the ("”k‘_l)-dimensional vector space Sym, ¥ c Y&k
spanned by the symmetric tensors:

1
v, OV, O OV =17 X Vo) ® Vo) ® + ® gy,

oES)
where ), denotes the symmetric group on k letters. Let ASY™ denote the restriction A®¥ |sym, v-
Proposition 37. Ifd > 2 iseven and A € H,(C), then
NS = tr(ASY™a),

Proof. Let A : VY — V be self-adjoint with eigenvalues 4,, 4,, ..., 4,, and corresponding orthonor-
mal eigenbasis v;,v,,...,v,. Then v, @vi2 ®~~~®v,-k is an eigenvector of ASYMe with
eigenvalue 4; 4; --4; . Sum over these (”+I]z_1) eigenvectors and conclude that tr(A%™) =

h (A1, Agy e s Ap). [l

If A is the adjacency matrix of a graph T', then || A[|; concerns the dth symmetric tensor power
of ', a weighted graph obtained from I in a straightforward (but tedious) manner by computing
the matrix representation of ASY™¢ with respect to the normalization of the orthogonal basis of
symmetrized tensors.

4.7 | Equivalence constants

Any two norms on a finite-dimensional vector space are equivalent. Thus, each norm || - [I4
on H,(C) (with d > 2 even) is equivalent to the operator norm || - ||,,. We compute admissible
equivalence constants below.

Theorem 38. For A € H,(C) and evend > 2,

1/d
1/d
1 n+d-1
- IAllp < NAllg < < p ) Al op-

22(%)!

The upper inequality is sharp if and only if A is a multiple of the identity.
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Proof. For A € H,(C) and even d > 2, the triangle inequality yields

LAY = hg(2,(A), ,(A), ..., 2,(A))
= |h4(21(A), 1, (A), ..., 4,(A)]
< hy(I4(A)], 12,(A)], .., 12,(A))
< hy(IAllops Allops - » 1ATlop)

= lAIIS, hg(1,1, .., 1)

+d-1
= ||A||zp<" p )

Equality occurs if and only if 2;,(4) = [2;(A)| = ||Allp for 1 <i < n;thatis, if and only if Ais a
multiple of the identity.
Hunter [11] established that

L

2
LA

h2p(x) >

in which ||x|| denotes the Euclidean norm of x € R". Let d = 2p and conclude

1/d 1/d

1 1
_ Al > | — 1Al op:

22 (5! 22 (5)!

Al >

in which ||A|| denotes the Frobenius norm of A € H,(C). O

Remark 39. For A € M,,(C), we may apply the upper bound in Theorem 38 to ¢/’ A + e A* and
use (15) to deduce that

n+d-1 1/d n+d-1 1/d
pane<| ) i et a] <o el |y
Cen() Jo A I W "
d/2 d/2

Remark 40. Hunter’s lower bound was improved by Baston [3], who proved that
1 n p n 2p
2
i 35(27) +4(2)

for x = (xy, x,, ..., x,,) € R", where

Apzi n+2p—-1\1 1 S0
np 2p np  2Pp!
Equality holds if and only if p = 1 or p > 2 and all the x; are equal. However, Baston’s result does
not appear to yield a significant improvement in the lower bound of Theorem 38.
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5 | OPEN QUESTIONS AND REMARKS

The answers to the following questions have eluded us.

Problem 1. What are the best constants c;, independent of n, such that ¢4]| - ||; is submultiplica-
tive? Do such constants exist? See Remark 36.

Problem 2. What is the best complexified version of Theorem 38? Can the upper bound be
improved (the estimate ||e"’ A + e " A*||,, < 2[|Al,, seems wasteful on average)? Can we get a
sharp lower bound?

Problem 3. If one uses (7) to evaluate [|A[|¢, there are many repeated terms. For example,
(tr A*A)(tr A)(tr A*) = (tr AA™)(tr A*)(tr A) because of the cyclic invariance of the trace and the
commutativity of multiplication. If one chooses a single representative for each such class of
expressions and simplifies, one gets expressions such as (8) and (9). Is there a combinatorial
interpretation of the resulting coefficients?

For motivation, the reader is invited to consider

1
720

+9(tr A)? tr(A*)? tr(A* A) + 9 tr(A*)* tr(A%) tr(A* A)

lANS = ((tr A)® tr(A*)* + 3 tr(A) tr(A*)’ tr(4?)

+18tr(A) tr(A*) tr(A*A)? + 6 tr(A* A)* + 3(tr A)> tr(A*) tr(A*?)
+9tr(A) tr(A*) tr(A%) tr(A*?) + 9(tr A)? tr(A* A) tr(A*?)
+9tr(A%) tr(A*A) tr(A*?) + 2 tr(A*)3 tr(A?)

+ 6 tr(A™) tr(A™2) tr(A3) + 18 tr(A) tr(A*)? tr(A* A?)

+36 tr(A*) tr(A* A) tr(A* A%) + 18 tr(A) tr(A*?) tr(A* A?)
+18(tr A)? tr(A*) tr(A*2A) + 18 tr(A™) tr(A%) tr(A*2 A)

+ 36 tr(A) tr(A*A) tr(A*2A) + 36 tr(A*A%) tr(A*2 A)

+2(tr A)? tr(A*) + 6 tr(A) tr(A?) tr(A*%)

+4tr(A) tr(A*3) + 18 tr(A*)* tr(A* A%)

+18tr(A*?) tr(A* A%) 4+ 18 tr(A) tr(A™) tr(A*AA* A)
+18tr(A*A) tr(A* AA* A) + 36 tr(A) tr(A*) tr(A*? A%)
+36tr(A*A) tr(A*2A%) + 18(tr A)* tr(A*3 A)

+18tr(A%) tr(A*3A) + 36 tr(A™) tr(A*AA* A?)

+ 36 tr(A*) tr(A*2A3) + 36 tr(A) tr(A** AA* A)

+36tr(A) tr(A*3A%) + 12 tr(A*AATAA™ A) + 36 tr(A™2 A%A* A)

+ 36 tr(A*2AA*A?) + 36 tr(A** A%)) .
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Remark 41. The recent paper of Issa, Mourad, and Abbas [12] contains results similar to ours, but
obtained with different techniques. However, their paper deals with symmetric gauge functions
and hence invokes positivity assumptions that we have eschewed. Remarkably, these papers were
written independently and nearly simultaneously: our paper appeared on the arXiv on 3 June
2021, whereas the preprint of [12] appeared on 7 June 2021.
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