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Abstract
We introduce a remarkable new family of norms on the
space of𝑛 × 𝑛 complexmatrices. These norms arise from
the combinatorial properties of symmetric functions,
and their construction and validation involve probability
theory, partition combinatorics, and trace polynomials
in non-commuting variables. Our norms enjoy many
desirable analytic and algebraic properties, such as an
elegant determinantal interpretation and the ability
to distinguish certain graphs that other matrix norms
cannot. Furthermore, they give rise to new dimension-
independent tracial inequalities. Their potential merits
further investigation.
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1 INTRODUCTION

In this note we introduce a family of norms on complex matrices. These are initially defined in
terms of certain symmetric functions of eigenvalues of complex Hermitian matrices. The fact that
we deal with eigenvalues, as opposed to their absolute values, is notable. First, it prevents standard
machinery, such as the theory of symmetric gauge functions, from applying. Second, the tech-
niques used to establish that we indeed have norms are more complicated than one might expect.
For example, combinatorics, probability theory, and Lewis’ framework for group invariance in
convex matrix analysis each play key roles.
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NORMS ON COMPLEX MATRICES 2079

These norms on the Hermitian matrices are of independent interest. They can be computed
recursively or directly read from the characteristic polynomial. Moreover, our norms distinguish
certain pairs of graphs which the standard norms (operator, Frobenius, Schatten-von Neumann,
and Ky Fan) cannot distinguish.
Our norms extend in a natural and non-trivial manner to all complex matrices. These

extensions of our original norms involve partition combinatorics and trace polynomials in non-
commuting variables. A Schur convexity argument permits our norms to be bounded below in
terms of the mean eigenvalue of a matrix.
These norms, their unusual construction, and their potential applications suggest a host of open

problems. We pose several at the end of the paper.

1.1 Notation

Denote by ℕ, ℝ, and ℂ, respectively, the set of natural numbers, real numbers, and complex
numbers. Let H𝑛(ℂ) denote the set of 𝑛 × 𝑛 complex Hermitian matrices and M𝑛(ℂ) the set of
𝑛 × 𝑛 complexmatrices. Denote the eigenvalues of𝐴 ∈ H𝑛(ℂ) by 𝜆1(𝐴) ⩾ 𝜆2(𝐴) ⩾ ⋯ ⩾ 𝜆𝑛(𝐴) and
define

𝝀(𝐴) = (𝜆1(𝐴), 𝜆2(𝐴), … , 𝜆𝑛(𝐴)) ∈ ℝ𝑛.

We may use 𝝀 and 𝜆1, 𝜆2, … , 𝜆𝑛 if the matrix 𝐴 is clear from context. Let diag(𝑥1, 𝑥2, … , 𝑥𝑛) ∈

M𝑛(ℂ) denote the 𝑛 × 𝑛 diagonal matrix with diagonal entries 𝑥1, 𝑥2, … , 𝑥𝑛, in that order. If
𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is understood from context, we may write diag(𝒙) for brevity.

1.2 Complete homogeneous symmetric polynomials

The complete homogeneous symmetric (CHS) polynomial of degree 𝑑 in the 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛
is

ℎ𝑑(𝑥1, 𝑥2, … , 𝑥𝑛) =
∑

1⩽𝑖1⩽⋯⩽𝑖𝑑⩽𝑛

𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑑 , (1)

the sum of all degree 𝑑 monomials in 𝑥1, 𝑥2, … , 𝑥𝑛 [31, Section 7.5]. For example,

ℎ0(𝑥1, 𝑥2) = 1,

ℎ1(𝑥1, 𝑥2) = 𝑥1 + 𝑥2,

ℎ2(𝑥1, 𝑥2) = 𝑥21 + 𝑥1𝑥2 + 𝑥22, and

ℎ3(𝑥1, 𝑥2) = 𝑥31 + 𝑥21𝑥2 + 𝑥1𝑥
2
2 + 𝑥32.

Elementary combinatorics confirms that there are precisely
(𝑛+𝑑−1

𝑑

)
summands in the definition

(1).We oftenwrite ℎ𝑑(𝒙), in which𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, when the number of variables is clear
from context.
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2080 AGUILAR et al.

For 𝑑 even and 𝒙 ∈ ℝ𝑛, Hunter proved that ℎ𝑑(𝒙) ⩾ 0, with equality if and only if 𝒙 = 𝟎 [11].
This is not obvious because some of the summands that comprise ℎ𝑑(𝒙) (for 𝑑 even) may be
negative. Hunter’s theorem has been reproved many times; see [2, Lemma 3.1], [3], [5, p. 69 &
Theorem 3], [7, Corollary 17], [28, Theorem 2.3], and [32, Theorem 1].

1.3 Partitions and traces

A partition of 𝑑 ∈ ℕ is an 𝑟-tuple 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑟) ∈ ℕ𝑟 such that 𝜋1 ⩾ 𝜋2 ⩾ ⋯ ⩾ 𝜋𝑟 and 𝜋1 +
𝜋2 +⋯ + 𝜋𝑟 = 𝑑; the number of terms 𝑟 depends on the partition 𝝅 . We write 𝝅 ⊢ 𝑑 if 𝝅 is a
partition of 𝑑.
For 𝝅 ⊢ 𝑑, define the symmetric polynomial

𝑝𝝅(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑝𝜋1𝑝𝜋1 ⋯𝑝𝜋𝑟 ,

in which 𝑝𝑘(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑘
1
+ 𝑥𝑘

2
+⋯ + 𝑥𝑘𝑛 are the power sum symmetric polynomials. If the

length of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is clear from context, we often write 𝑝𝝅(𝒙) and 𝑝𝑘(𝒙), respectively.
Another expression for (1) is

ℎ𝑑(𝑥1, 𝑥2, … , 𝑥𝑛) =
∑
𝝅 ⊢𝑑

𝑝𝝅(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑧𝝅
, (2)

in which the sum runs over all partitions 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑟) of 𝑑 and

𝑧𝝅 =
∏
𝑖⩾1

𝑖𝑚𝑖𝑚𝑖!, (3)

where 𝑚𝑖 is the multiplicity of 𝑖 in 𝝅 [31, Proposition 7.7.6]. For example, if 𝝅 = (4, 4, 2, 1, 1, 1),
then 𝑧𝝅 = (133!)(211!)(422!) = 384 [31, (7.17)]. The integer 𝑧𝝅 is precisely the Hall inner product
of 𝑝𝝅 with itself, in symmetric function theory.
If 𝐴 ∈ H𝑛(ℂ) has eigenvalues 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛), then

𝑝𝝅(𝝀) = 𝑝𝜋1(𝝀)𝑝𝜋2(𝝀)⋯𝑝𝜋𝑟 (𝝀) = (tr 𝐴𝜋1)(tr 𝐴𝜋2)⋯ (tr 𝐴𝜋𝑟 ). (4)

This connects eigenvalues, traces, and partitions to symmetric polynomials.

1.4 Main results

The following theorem provides a family of novel norms on the space H𝑛(ℂ) of 𝑛 × 𝑛 Hermitian
matrices. Some special properties of these norms are discussed in Section 4.

Theorem 1. For even 𝑑 ⩾ 2, the following is a norm onH𝑛(ℂ):

|||𝐴|||𝑑 = (ℎ𝑑(𝜆1(𝐴), 𝜆2(𝐴), … , 𝜆𝑛(𝐴)))
1∕𝑑.
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NORMS ON COMPLEX MATRICES 2081

For example, Equations (2) and (4) yield trace-polynomial representations

|||𝐴|||22 = 1

2

(
tr(𝐴2) + (tr𝐴)2

)
, (5)

|||𝐴|||44 = 1

24

(
(tr 𝐴)4 + 6(tr𝐴)2 tr(𝐴2) + 3(tr(𝐴2))2 + 8(tr 𝐴) tr(𝐴3) + 6 tr(𝐴4)

)
. (6)

Theorem 1 is non-trivial for several reasons.

(a) The sums (1) and (2) that characterize ℎ𝑑(𝝀(𝐴)) may contain negative summands. For
example, (tr 𝐴) tr(𝐴3) in (6) can be negative for Hermitian 𝐴: consider 𝐴 = diag(−2, 1, 1, 1).

(b) The sums that define these norms do not involve the absolute values of the eigenvalues of 𝐴.
Theorem 1 does not follow from standard considerations, but rather from delicate properties
of multivariate symmetric polynomials.

(c) The relationship between the spectra of (Hermitian)𝐴, 𝐵, and𝐴 + 𝐵, conjectured by A. Horn
in 1962 [10]was only established in 1998–99 byKlyachko [16] andKnutson–Tao [17]. Therefore,
the triangle inequality is difficult to establish. Even if 𝐴 and 𝐵 are diagonal, the result is not
obvious; see (12). In fact, even in the “easy” case of positive diagonal matrices this result has
been rediscovered and republished many times; see Remark 14.

(d) Passing from the diagonal case to the general Hermitian case is not straightforward. We
emphasize again that standard techniques like symmetric gauge functions are not applica-
ble because of (a). Our proof of this step involves Lewis’ framework for group invariance in
convex matrix analysis [19].

(e) A remarkable general approach to norms onℝ𝑛 arising frommultivariate homogeneous poly-
nomials is due to Ahmadi, de Klerk, and Hall [1, Theorem 2.1]. Unfortunately, this does not
apply in our setting because the convexity of the even-degree CHS polynomials is hard to
establish directly. In fact, Theorem 1 together with [1, Theorem 2.1] imply convexity.

Example 2. Because CHS norms do not rely upon the absolute values of the eigenvalues of a Her-
mitian matrix (that is, its singular values), they can sometimes distinguish singularly (adjacency)
cospectral graphs (graphs with the same singular values) that are not adjacency cospectral. This
feature is not enjoyed by many standard norms (for example, operator, Frobenius, Schatten–von
Neumann, and Ky Fan). For example,

𝐾 =
⎡⎢⎢⎣
0 1 1

1 0 1

1 1 0

⎤⎥⎥⎦ ,
which has eigenvalues 2, −1, −1, and is the adjacency matrix for the complete graph on three
vertices. The graphs with adjacency matrices

𝐴 =

[
𝐾 0

0 𝐾

]
and 𝐵 =

[
0 𝐾

𝐾 0

]
are singularly cospectral but not cospectral: their eigenvalues are −1,−1,−1, −1, 2, 2 and
−2,−1,−1, 1, 1, 2, respectively. Moreover, |||𝐴|||6

6
= 120 ≠ 112 = |||𝐵|||6

6
.
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2082 AGUILAR et al.

The norms of Theorem 1 extend in a natural and non-trivial fashion to the spaceM𝑛(ℂ) of all
𝑛 × 𝑛 complex matrices.

Theorem 3. Let 𝑑 ⩾ 2 be even and let 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑟) be a partition of 𝑑. Define T𝝅 ∶ M𝑛(ℂ) →

ℝ by setting T𝝅(𝐴) to be 1∕
( 𝑑

𝑑∕2

)
times the sum over the

( 𝑑

𝑑∕2

)
possible locations to place 𝑑∕2 adjoints

∗ among the 𝑑 copies of 𝐴 in

(tr 𝐴𝐴⋯𝐴
⏟⎴⏟⎴⏟

𝜋1

)(tr 𝐴𝐴⋯𝐴
⏟⎴⏟⎴⏟

𝜋2

)⋯ (tr 𝐴𝐴⋯𝐴
⏟⎴⏟⎴⏟

𝜋𝑟

).

Then

|||𝐴|||𝑑 = (∑
𝝅 ⊢𝑑

T𝝅(𝐴)

𝑧𝝅

)1∕𝑑

, (7)

in which the sum runs over all partitions 𝝅 of 𝑑 and 𝑧𝝅 is defined in (3), is a norm onM𝑛(ℂ) that
restricts to the norm onH𝑛(ℂ) given by Theorem 1.

If 𝐴 = 𝐴∗, observe that (7) coincides with the norm of Theorem 1 in light of (2) and (4). We
prove Theorems 1 and 3 in the next two sections of this paper.

Example 4. The two partitions of 𝑑 = 2 satisfy 𝑧(2) = 2 and 𝑧(1,1) = 2. There are
(2
1

)
= 2 ways to

place two adjoints ∗ in a string of two 𝐴s. Therefore,

T(2)(𝐴) =
1

2
(tr(𝐴∗𝐴) + tr(𝐴𝐴∗)) = tr(𝐴∗𝐴), and

T(1,1)(𝐴) =
1

2
((tr 𝐴∗)(tr 𝐴) + (tr𝐴)(tr 𝐴∗)) = (tr𝐴∗)(tr 𝐴),

so |||𝐴|||22 = 1

2
tr(𝐴∗𝐴) +

1

2
(tr 𝐴∗)(tr 𝐴). (8)

If 𝐴 = 𝐴∗, this simplifies to the norm (5) on H𝑛(ℂ), as expected.

Example 5. The five partitions of 𝑑 = 4 satisfy 𝑧(4) = 4, 𝑧(3,1) = 3, 𝑧(2,2) = 8, 𝑧(2,1,1) = 4, and
𝑧(1,1,1,1) = 24. There are

(4
2

)
= 6 ways to place two adjoints ∗ in a string of four 𝐴s. For example,

6T(3,1)(𝐴) = (tr𝐴∗𝐴∗𝐴)(tr 𝐴) + (tr𝐴∗𝐴𝐴∗)(tr 𝐴) + (tr𝐴∗𝐴𝐴)(tr 𝐴∗)

+ (tr 𝐴𝐴∗𝐴∗)(tr 𝐴) + (tr𝐴𝐴∗𝐴)(tr 𝐴∗) + (tr 𝐴𝐴𝐴∗)(tr 𝐴∗)

= 3 tr(𝐴∗2𝐴)(tr 𝐴) + 3(tr𝐴2𝐴∗)(tr 𝐴∗).

Some computation and (7) reveal that

|||𝐴|||44 = 1

24

(
(tr 𝐴)2 tr(𝐴∗)2 + tr(𝐴∗)2 tr(𝐴2) + 4 tr(𝐴) tr(𝐴∗) tr(𝐴∗𝐴)

+ 2 tr(𝐴∗𝐴)2 + (tr 𝐴)2 tr(𝐴∗2) + tr(𝐴2) tr(𝐴∗2) + 4 tr(𝐴∗) tr(𝐴∗𝐴2)

+ 4 tr(𝐴) tr(𝐴∗2𝐴) + 2 tr(𝐴∗𝐴𝐴∗𝐴) + 4 tr(𝐴∗2𝐴2)
)
. (9)

If 𝐴 = 𝐴∗, this simplifies to the norm (6) on H𝑛(ℂ), as expected.
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NORMS ON COMPLEX MATRICES 2083

Because of their origins in terms of CHS polynomials, we sometimes refer to the norm||| ⋅ |||𝑑 as the CHS norm of order 𝑑. The notation ‖ ⋅ ‖ is used, occasionally with subscripts, for
other norms.
In the Hermitian case, the norm ||| ⋅ |||𝑑 can be directly extracted from the series expansion of an

explicit function (Theorem 20). The general situation is elegantly summarized in a determinantal
formula.

Theorem 6. Let 𝐴 ∈ M𝑛(ℂ). For 𝑑 even,
( 𝑑

𝑑∕2

)|||𝐴|||𝑑
𝑑
is the coefficient of 𝑧𝑑∕2𝑧𝑑∕2 in the series

expansion of det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)−1 about the origin.

Helton andVinnikov showed that polynomials of the form𝑝 = det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗) ∈ ℂ[𝑧, 𝑧] are
precisely the real-zero polynomials in ℂ[𝑧, 𝑧] [9]. That is, they are characterized by the conditions
𝑝(0) = 1 and that 𝑥 ↦ 𝑝(𝛼𝑥) has only real zeros for every 𝛼 ∈ ℂ. Properties of such polynomials
are studied within the framework of hyperbolic [26] and stable [35] polynomials.
This paper is structured as follows. Sections 2 and 3 contain the proofs of Theorems 1 and 3,

respectively. Section 4 surveys the remarkable properties of the CHS norms, including Theorem 6.
We pose several open questions in Section 5.

2 PROOF OF THEOREM 1

Let 𝑑 ⩾ 2 be even. We prove thatℌ ∶ H𝑛(ℂ) → ℝ defined by

ℌ(𝐴) = ℎ𝑑(𝜆1(𝐴), 𝜆2(𝐴), … , 𝜆𝑛(𝐴))
1∕𝑑 (10)

is a norm. Hunter’s theorem ensures that ℌ(𝐴) ⩾ 0 and, moreover, that ℌ(𝐴) = 0 if and only if
𝐴 = 0 (the non-negativity of ℌ already follows from (11) below). Since ℌ(𝑐𝐴) = |𝑐|ℌ(𝐴) for all
𝐴 ∈ H𝑛(ℂ) and 𝑐 ∈ ℝ, it suffices to prove that ℌ satisfies the triangle inequality. This is accom-
plished by combining Lewis’ framework for group invariance in convex matrix analysis [19] with
a probabilistic approach to the CHS polynomials [2, 28, 32], as we now explain.

2.1 Group invariance

Let  be a finite-dimensional ℝ-inner product space. The adjoint 𝜑∗ of a linear map 𝜑 ∶  → 
satisfies ⟨𝜑∗(𝑋), 𝑌⟩ = ⟨𝑋, 𝜑(𝑌)⟩ for all𝑋,𝑌 ∈  . We say that 𝜑 is orthogonal if 𝜑∗◦𝜑 is the identity
map on  . Let O() denote the set of all orthogonal linear maps on 𝑉. For a subgroup G ⊆ O(),
we say that 𝑓 ∶  → ℝ is G-invariant if 𝑓(𝜑(𝑋)) = 𝑓(𝑋) for all 𝜑 ∈ 𝐺 and 𝑋 ∈  .
Definition 7 [19, Definition 2.1]. 𝛿 ∶  →  is a G-invariant normal form if

(a) 𝛿 is G-invariant,
(b) for each 𝑋 ∈  , there is an 𝜑 ∈ O() such that 𝑋 = 𝜑(𝛿(𝑋)), and
(c) ⟨𝑋,𝑌⟩ ⩽ ⟨𝛿(𝑋), 𝛿(𝑌)⟩ for all 𝑋,𝑌 ∈  .
In this case, ( , G, 𝛿) is called a normal decomposition system.
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2084 AGUILAR et al.

Suppose that ( , G, 𝛿) is a normal decomposition system and ⊆  is a subspace. The stabi-
lizer of  in G is G = {𝜑 ∈ G ∶ 𝜑() = }. For convenience, we restrict the domain of each
𝜑 ∈ G and consider G as a subset of O().
Our interest in this material stems from the next result.

Lemma8 [19, Theorem4.3]. Let ( , G, 𝛿) and ( , G , 𝛿| ) be normal decomposition systemswith
ran 𝛿 ⊆  ⊆  . Then a G-invariant function 𝑓 ∶  → ℝ is convex if and only if its restriction to
is convex.

Let = H𝑛(ℂ)denote theℝ-inner product space of complexHermitianmatrices, endowedwith
the inner product ⟨𝑋,𝑌⟩ = tr(𝑋𝑌), and letU𝑛(ℂ) denote the group of 𝑛 × 𝑛 unitary matrices; see
Remark 10 for more details about this inner product. For each 𝑈 ∈ U𝑛(ℂ), define a linear map
𝜑𝑈 ∶  →  by 𝜑𝑈(𝑋) = 𝑈𝑋𝑈∗. Observe that 𝜑𝑈◦𝜑𝑉 = 𝜑𝑈𝑉 and hence

G = {𝜑𝑈 ∶ 𝑈 ∈ U𝑛(ℂ)}

is a group under composition. Since 𝜑∗
𝑈
= 𝜑𝑈∗ , we conclude that G is a subgroup of O().

Moreover, the function (10) is G-invariant.
Let = D𝑛(ℝ) denote the set of real diagonalmatrices. Then inherits an inner product from

 and G = {𝜑𝑃 ∶ 𝑃 ∈ P𝑛}, in which P𝑛 denotes the set of 𝑛 × 𝑛 permutation matrices. Define
𝛿 ∶  →  by

𝛿(𝑋) = diag (𝜆1(𝑋), 𝜆2(𝑋), … , 𝜆𝑛(𝑋)),

the 𝑛 × 𝑛 diagonal matrix with 𝜆1(𝑋) ⩾ 𝜆2(𝑋) ⩾ ⋯ ⩾ 𝜆𝑛(𝑋) on its diagonal. Observe that
ran 𝛿 ⊆  since the eigenvalues of a Hermitian matrix are real. We maintain all of this notation
below.

Lemma 9. ( , G, 𝛿) and ( , G , 𝛿| ) are normal decomposition systems.

Proof. We first show that ( , G, 𝛿) is a normal decomposition system. (a) Since eigenvalues are
invariant under similarity, 𝛿 is G-invariant. (b) For 𝑋 ∈  , the spectral theorem provides a 𝑈 ∈

U𝑛(ℂ) such that 𝑋 = 𝑈𝛿(𝑋)𝑈∗ = 𝜑𝑈(𝛿(𝐴)). (c) For 𝑋,𝑌 ∈  , note that tr 𝑋𝑌 ⩽ tr 𝛿(𝑋)𝛿(𝑌) [18,
Theorem 2.2]; see Remark 10.
We now show that ( , G , 𝛿| ) is a normal decomposition system. (a) 𝛿| is G -invariant

since 𝛿(𝜑𝑃(𝑋)) = 𝛿(𝑃𝑋𝑃∗) = 𝛿(𝑋) for every 𝑋 ∈  and 𝑃 ∈ P𝑛. (b) Let 𝑋 ∈  . Since 𝑋 is
diagonal, there exists a 𝑃 ∈ P𝑛 such that 𝑋 = 𝑃𝛿(𝑋)𝑃∗ = 𝜑𝑃(𝛿(𝑋)). (c) The diagonal elements
of a diagonal matrix are its eigenvalues. Consequently, this property is inherited from  ; see
Remark 11. □

2.2 CHS polynomials as expectations

Let 𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑛) be a vector of independent standard exponential random variables [4,
(20.10)], and let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛. Since 𝔼[𝜉𝑘

𝑖
] = 𝑘! for 𝑖 = 1, 2, … , 𝑛 [4, Example 21.3], we
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NORMS ON COMPLEX MATRICES 2085

deduce that

𝔼[⟨𝝃 , 𝒙⟩𝑑] = 𝔼[(𝜉1𝑥1 + 𝜉2𝑥2⋯ + 𝜉𝑛𝑥𝑛)
𝑑]

= 𝔼

[ ∑
𝑘1+𝑘2+⋯+𝑘𝑛=𝑑

𝑑!

𝑘1! 𝑘2! … 𝑘𝑛!
𝜉
𝑘1
1
𝜉
𝑘2
2

⋯ 𝜉
𝑘𝑛
𝑛 𝑥

𝑘1
1
𝑥
𝑘2
2
⋯𝑥

𝑘𝑛
𝑛

]

=
∑

𝑘1+𝑘2+⋯+𝑘𝑛=𝑑

𝑑!

𝑘1! 𝑘2! … 𝑘𝑛!
𝔼
[
𝜉
𝑘1
1
𝜉
𝑘2
2

⋯ 𝜉
𝑘𝑛
𝑛 𝑥

𝑘1
1
𝑥
𝑘2
2
⋯𝑥

𝑘𝑛
𝑛

]

= 𝑑!
∑

𝑘1+𝑘2+⋯+𝑘𝑛=𝑑

𝔼[𝜉
𝑘1
1
]𝔼[𝜉

𝑘2
2
]⋯𝔼[𝜉

𝑘𝑛
𝑛 ]

𝑘1! 𝑘2! … 𝑘𝑛!
𝑥
𝑘1
1
𝑥
𝑘2
2
⋯𝑥

𝑘𝑛
𝑛

= 𝑑!
∑

𝑘1+𝑘2+⋯+𝑘𝑛=𝑑

𝑥
𝑘1
1
𝑥
𝑘2
2
⋯𝑥

𝑘𝑛
𝑛

= 𝑑! ℎ𝑑(𝒙)

for integral 𝑑 ⩾ 1 by the linearity of expectation and the independence of the 𝜉1, 𝜉2, … , 𝜉𝑛; see
Remark 12. Now suppose that 𝑑 is even. Then

ℎ𝑑(𝒙) =
1

𝑑!
𝔼
[ |⟨𝝃 , 𝒙⟩|𝑑 ] ⩾ 0. (11)

For 𝒙, 𝒚 ∈ ℝ𝑛, Minkowski’s inequality implies that

(
𝔼
[ |⟨𝝃 , 𝒙 + 𝒚⟩|𝑑 ])1∕𝑑 ⩽

(
𝔼
[ |⟨𝝃 , 𝒙⟩|𝑑 ])1∕𝑑 + (𝔼[ |⟨𝝃 , 𝒚⟩|𝑑 ])1∕𝑑,

and hence (for 𝑑 even)

[ℎ𝑑(𝒙 + 𝒚)]1∕𝑑 ⩽ [ℎ𝑑(𝒙)]
1∕𝑑 + [ℎ𝑑(𝒚)]

1∕𝑑. (12)

2.3 Conclusion

Recall the definition (10) of the function ℌ ∶ H𝑛(ℂ) → ℝ. The inequality (12) ensures that the
restriction of ℌ to D𝑛(ℝ) satisfies the triangle inequality. For 𝐴, 𝐵 ∈ D𝑛(ℝ) and 𝑡 ∈ [0, 1], note
that

ℌ(𝑡𝐴 + (1 − 𝑡)𝐵) ⩽ ℌ(𝑡𝐴) + ℌ((1 − 𝑡)𝐵) = 𝑡ℌ(𝐴) + (1 − 𝑡)ℌ(𝐵)

by (12) and homogeneity. Thus,ℌ is a convex function on D𝑛(ℝ). Sinceℌ is G-invariant, we con-
clude from Lemma 8 thatℌ is convex onH𝑛(ℂ). It satisfies the triangle inequality onH𝑛(ℂ) since
it is convex and homogeneous:

1

2
ℌ(𝐴 + 𝐵) = ℌ

( 1
2
𝐴 + 1

2
𝐵
)
⩽

1

2
ℌ(𝐴) + 1

2
ℌ(𝐵).

Consequently,ℌ( ⋅ ) is a norm on H𝑛(ℂ).
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2086 AGUILAR et al.

2.4 Remarks

We collect here a few remarks about the proof of Theorem 1.

Remark 10. Consider the inner product ⟨𝑋,𝑌⟩ = tr(𝑋𝑌) on H𝑛(ℂ); it is the restriction of the
Frobenius inner product to H𝑛(ℂ). The inequality

tr(𝑋𝑌) ⩽ tr 𝛿(𝑋)𝛿(𝑌) for 𝑋,𝑌 ∈ H𝑛(ℂ) (13)

is due to von Neumann [34] and has been reproved many times; see de Sá [6], Lewis [18, The-
orem 2.2], Marcus [20], Marshall [21], Mirsky [23, Theorem 1], Richter [27, Satz. 1], Rendl and
Wolkowicz [25, Corollary 3.1], and Theobald [33].

Remark 11. For diagonal matrices, the inequality (13) is equivalent to a classical rearrange-
ment result: ⟨𝒙, 𝒚⟩ ⩽ ⟨𝒙̃, 𝒚̃⟩, in which where 𝒙̃ ∈ ℝ𝑛 has the components of 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)

in decreasing order [8, Theorem 368].

Remark 12. For even 𝑑, (11) implies the non-negativity of the CHS polynomials. This probabilistic
approach appears in the comments on the blog entry [32], and in [30, Lemma 12], which cites
[2]. There are many other proofs of the non-negativity of the even-degree CHS polynomials. Of
course, there is Hunter’s inductive proof [11]. Rovenţa and Temereancă used divided differences
[28, Theorem 3.5]. Recently, Böttcher, Garcia, Omar, and O’Neill [5] employed a spline-based
approach suggested by Olshansky after Garcia, Omar, O’Neill, and Yih obtained it as a by-product
of investigations into numerical semigroups [7, Corollary 17].

Remark 13. The CHS polynomials are a special case of the more general Schur polynomials

𝑠(𝑛1,𝑛2,…,𝑛𝑁)(𝑢1, 𝑢2, … , 𝑢𝑁) =
det
(
𝑢
𝑛𝑖+𝑁−𝑖

𝑗

)
det
(
𝑢𝑁−𝑖
𝑗

) , 𝑛1 ⩾ 𝑛2 ⩾ ⋯ ⩾ 𝑛𝑁 ⩾ 0.

These polynomials are also monomial-positive, homogeneous, and symmetric in the 𝑢𝑗 , and
moreover, carry representation-theoretic content. A natural question iswhether the family of CHS
norms onHermitianmatrices is part of a larger family of “Schur norms.” In other words, is there a
converse of Hunter’s positivity result is valid for other Schur polynomials? Khare and Tao proved
that this is not the case [14, Proposition 6.3]. We thank the referee for pointing out this direction
of inquiry.

Remark 14. We stress that the inequality (12) permits 𝒙, 𝒚 ∈ ℝ𝑛; that is, with no positivity
assumptions. For 𝑝 ∈ ℕ, the similar inequality

ℎ𝑝(𝒙 + 𝒚)1∕𝑝 ⩽ ℎ𝑝(𝒙)
1∕𝑝 + ℎ𝑝(𝒚)

1∕𝑝 for 𝒙, 𝒚 ∈ ℝ𝑛
⩾0

(14)

has been rediscovered several times. According to McLeod [22, p. 211] and Whiteley [36, p. 49], it
was first conjectured by A.C. Aitken. Priority must be given to Whiteley [36, equation (5)], whose
paper appeared in 1958.McLeod’s paper was received onMarch 16, 1959, although hewas unaware
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NORMS ON COMPLEX MATRICES 2087

ofWhiteley’s proof: “To the best of my knowledge, no proof of [(14)] exists so far in the literature.”
For more exotic inequalities along the lines of (14), see [30].

3 PROOF OF THEOREM 3

The first step in the proof of Theorem 3 is a general complexification result. Let  be a com-
plex vector space with a conjugate-linear involution 𝑣 ↦ 𝑣∗. Suppose that the real subspace
ℝ = {𝑣 ∈  ∶ 𝑣 = 𝑣∗} of ∗-fixed points is endowed with a norm ‖ ⋅ ‖. For each 𝑣 ∈  and
𝑡 ∈ ℝ, we have 𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗ ∈ ℝ. Note that the path 𝑡 ↦ ‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖ is continuous for each
𝑣 ∈  .
Proposition 15. For even 𝑑 ⩾ 2, the following is a norm on  that extends ‖ ⋅ ‖:

𝔑𝑑(𝑣) =
⎛⎜⎜⎝ 1

2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0
‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖𝑑 𝑑𝑡⎞⎟⎟⎠

1∕𝑑

. (15)

Proof. If 𝑣 ∈ ℝ, then ‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖ = |2 cos 𝑡|‖𝑣‖. Moreover,𝔑𝑑(𝑣) = ‖𝑣‖ since
∫

2𝜋

0
|2 cos 𝑡|𝑑 𝑑𝑡 = 2𝜋

(
𝑑

𝑑∕2

)
.

Next we verify that𝔑𝑑 is a norm on  .
Positive definiteness. The non-negativity of ‖ ⋅ ‖ on ℝ and (15) ensure that 𝔑𝑑 is non-

negative on  . If 𝑣 ∈ ∖{0}, then 𝑣 = 𝑢 + 𝑖𝑢′, where 𝑢 = 1

2
(𝑣 + 𝑣∗) and 𝑢′ = 1

2
(−𝑖𝑣 + 𝑖𝑣∗) belong

to ℝ. Now 𝑢, 𝑢′ cannot both be zero, so the map 𝑡 ↦ ‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖ = ‖2 cos(𝑡)𝑢 + 2 sin(𝑡)𝑢′‖ is
continuous and positive almost everywhere. Thus,𝔑𝑑(𝑣) ≠ 0.
Absolute homogeneity. For 𝑟 > 0 and 𝜃 ∈ ℝ, we have 𝔑𝑑((𝑟𝑒

𝑖𝜃)𝑣) = 𝑟𝔑𝑑(𝑒
𝑖𝜃𝑣) = 𝑟𝔑𝑑(𝑣)

by the ℝ-homogeneity of ‖ ⋅ ‖ and the periodicity of the integrand in (15).
Triangle inequality. For 𝑢, 𝑣 ∈  ,

(
∫

2𝜋

0
‖𝑒𝑖𝑡(𝑢 + 𝑣) + 𝑒−𝑖𝑡(𝑢 + 𝑣)∗‖𝑑 𝑑𝑡)1∕𝑑

⩽

(
∫

2𝜋

0

(‖𝑒𝑖𝑡𝑢 + 𝑒−𝑖𝑡𝑢∗‖ + ‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖)𝑑 𝑑𝑡)1∕𝑑

⩽

(
∫

2𝜋

0
‖𝑒𝑖𝑡𝑢 + 𝑒−𝑖𝑡𝑢∗‖𝑑 𝑑𝑡)1∕𝑑

+

(
∫

2𝜋

0
‖𝑒𝑖𝑡𝑣 + 𝑒−𝑖𝑡𝑣∗‖𝑑 𝑑𝑡)1∕𝑑

,

where the first inequality holds by monotonicity of power functions and the triangle inequality
for ‖ ⋅ ‖, and the second inequality holds by the triangle inequality for the 𝐿𝑑 norm on the space
𝐶[0, 2𝜋]. □

There are several natural complexifications of a real Banach space [24]. The extensions 𝔑𝑑 in
(15) are special since they preserve some of the analytic and algebraic properties of the original
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2088 AGUILAR et al.

norm. Namely, we will show that when the extension𝔑𝑑 is applied to the norm ||| ⋅ |||𝑑 onH𝑛(ℂ),
one obtains a norm on M𝑛(ℂ) whose power is a trace polynomial; this does not happen, for
example, if one uses the minimal or the projective complexification of a norm (in which case
the resulting norm is not an algebraic function).
Let ⟨𝑥, 𝑥∗⟩ be the free monoid generated by 𝑥 and 𝑥∗. Let |𝑤| denote the length of a word

𝑤 ∈ ⟨𝑥, 𝑥∗⟩ and let |𝑤|𝑥 count the occurrences of 𝑥 in 𝑤. For 𝐴 ∈ M𝑛(ℂ), let 𝑤(𝐴) ∈ M𝑛(ℂ)

be the natural evaluation of 𝑤 at 𝐴. For example, if 𝑤 = 𝑥𝑥∗𝑥2, then |𝑤| = 4, |𝑤|𝑥 = 3, and
𝑤(𝐴) = 𝐴𝐴∗𝐴2.

Lemma 16. Let 𝑑 ⩾ 2 be even and let 𝝅 = (𝜋1, … , 𝜋𝑟) be a partition of 𝑑. If 𝐴 ∈ M𝑛(ℂ), then

1

2𝜋 ∫
2𝜋

0
tr(𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗)𝜋1 ⋯ tr(𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗)𝜋𝑟 𝑑𝑡

=
∑

𝑤1,…,𝑤𝑟∈⟨𝑥,𝑥∗⟩∶|𝑤𝑗|=𝜋𝑗 ∀𝑗|𝑤1⋯𝑤𝑟|𝑥= 𝑑
2

tr 𝑤1(𝐴)⋯ tr 𝑤𝑟(𝐴) . (16)

Proof. For every Laurent polynomial 𝑓 ∈ ℂ[𝑧, 𝑧−1] with the constant term 𝑓0 we have
∫ 2𝜋
0 𝑓(𝑒𝑖𝑡) 𝑑𝑡 = 2𝜋𝑓0. Let us view

𝑓 = tr(𝑧𝐴 + 𝑧−1𝐴∗)𝜋1 ⋯ tr(𝑧𝐴 + 𝑧−1𝐴∗)𝜋𝑟

as a Laurent polynomial in 𝑧. Its constant term is

𝑓0 =
∑

𝑤1,…,𝑤𝑟

tr 𝑤1(𝐴)⋯ tr 𝑤𝑟(𝐴),

where the sum runs over all words 𝑤1,𝑤2, … ,𝑤𝑟 in ⟨𝑥, 𝑥∗⟩ with |𝑤𝑗| = 𝜋𝑗 such that the number
of occurrences of 𝑥 in 𝑤1𝑤2⋯𝑤𝑟 equals the number of occurrences of 𝑥∗ in 𝑤1𝑤2⋯𝑤𝑟. Thus,
(16) follows. □

Given a partition 𝝅 = (𝜋1, … , 𝜋𝑟) of 𝑑 and 𝐴 ∈ M𝑛(ℂ) let

T𝝅(𝐴) =
1( 𝑑

𝑑∕2

) ∑
𝑤1,…,𝑤𝑟∈⟨𝑥,𝑥∗⟩∶|𝑤𝑗|=𝜋𝑗 ∀𝑗|𝑤1⋯𝑤𝑟|𝑥= 𝑑

2

tr 𝑤1(𝐴)⋯ tr 𝑤𝑟(𝐴).

We now complete the proof of Theorem 3. The conjugate transpose 𝐴 ↦ 𝐴∗ is a real structure
onM𝑛(ℂ). The corresponding real subspace of ∗-fixed points isH𝑛(ℂ). We apply Proposition 15 to
the norm ||| ⋅ |||𝑑 on H𝑛(ℂ) and obtain its extension 𝔑𝑑(⋅) to M𝑛(ℂ) defined by (15). The fact that
𝔑𝑑(𝐴) admits a trace-polynomial expression as in (7) follows from (2) and Lemma 16.
Concretely, if 𝐴 ∈ M𝑛(ℂ) and𝔑𝑑(𝐵) = ‖𝐵‖ is the CHS-norm over Hermitian matrices 𝐵, then

by Proposition 15, the following is a norm onM𝑛(ℂ):
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NORMS ON COMPLEX MATRICES 2089

𝔑𝑑(𝐴)
(15)
=
⎛⎜⎜⎝ 1

2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0
ℎ𝑑(𝝀(𝑒

𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗))𝑑 𝑑𝑡
⎞⎟⎟⎠
1∕𝑑

(2)
=
⎛⎜⎜⎝ 1

2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0

∑
𝝅 ⊢𝑑

𝑝𝝅(𝝀(𝑒
𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗))

𝑧𝜋
𝑑𝑡
⎞⎟⎟⎠
1∕𝑑

(4)
=
⎛⎜⎜⎝ 1( 𝑑

𝑑∕2

) ∑
𝝅 ⊢𝑑

1

𝑧𝝅 ⋅ 2𝜋 ∫
2𝜋

0
tr(𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗)𝜋1 ⋯ tr(𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗)𝜋𝑟 𝑑𝑡

⎞⎟⎟⎠
1∕𝑑

(16)
=
⎛⎜⎜⎝ 1( 𝑑

𝑑∕2

) ∑
𝝅 ⊢𝑑

T𝝅(𝐴)
( 𝑑

𝑑∕2

)
𝑧𝝅

⎞⎟⎟⎠
1∕𝑑

,

which concludes the proof.

Remark 17. Proving that (7) is a norm relies crucially on Theorem 1, which states that its restriction
toH𝑛(ℂ) is a norm. On the other hand, demonstrating that (7) is a norm in a direct manner seems
arduous. To a certain degree, thismirrors the current absence of general certificates for dimension-
independent positivity of trace polynomials in 𝑥, 𝑥∗ (see [15] for the analysis in a dimension-fixed
setting).

Remark 18. For any 𝐴 ∈ M𝑛(ℂ) and 𝑡 ∈ [0, 2𝜋], the matrices 𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗ are Hermitian. Thus,|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑑 can be defined as in Theorem 1 and hence

|||𝐴|||𝑑 = ⎛⎜⎜⎝ 1

2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0
|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑑

𝑑
𝑑𝑡
⎞⎟⎟⎠
1∕𝑑

. (17)

Remark 19. Here is anotherway to restrict ||| ⋅ |||𝑑 to theHermitianmatrices. The proof of Lemma 16
shows that

( 𝑑

𝑑∕2

)|||𝐴|||𝑑
𝑑
is the coefficient of 𝑧𝑑∕2𝑧̄𝑑∕2 in

|||𝑧𝐴 + 𝑧𝐴∗|||𝑑
𝑑
∈ ℂ[𝑧, 𝑧].

4 PROPERTIES OF CHS NORMS

We now establish several properties of the CHS norms. First, we show how the CHS norm of
a Hermitian matrix can be computed rapidly and exactly from its characteristic polynomial and
recursion (Subsection 4.1). This leads quickly to the determinantal interpretation presented in the
introduction (Subsection 4.2). Next, we identify thoseCHSnorms induced by inner products (Sub-
section 4.3). In Subsection 4.4, we use Schur convexity to provide a lower bound on theCHSnorms
in terms of the trace seminorm onM𝑛(ℂ). We discuss monotonicity properties in Subsection 4.5
and symmetric tensor powers in Subsection 4.6.
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2090 AGUILAR et al.

4.1 Exact computation via characteristic polynomial

The CHS norm of a Hermitianmatrix can be exactly computed from its characteristic polynomial.
The following theorem involves only formal series manipulations.

Theorem 20. Let 𝑝𝐴(𝑥) denote the characteristic polynomial of 𝐴 ∈ H𝑛(ℂ). For 𝑑 ⩾ 2 even, |||𝐴|||𝑑
𝑑

is the 𝑑th coefficient in the Taylor expansion of

1

det(𝐼 − 𝑥𝐴)
=

1

𝑥𝑛𝑝𝐴(1∕𝑥)

about the origin.

Proof. Let 𝑝𝐴(𝑥) = (𝑥 − 𝜆1)(𝑥 − 𝜆2)⋯ (𝑥 − 𝜆𝑛). For |𝑥| small, [32, (1)] provides
∞∑
𝑑=0

ℎ𝑑(𝜆1, 𝜆2, … , 𝜆𝑛)𝑥
𝑑 =

𝑛∏
𝑘=1

1

1 − 𝜆𝑘𝑥
=

1

𝑥𝑛

𝑛∏
𝑘=1

1

𝑥−1 − 𝜆𝑘
=

1

𝑥𝑛𝑝𝐴(1∕𝑥)
;

the apparent singularity at the origin is removable. Now observe that

𝑛∏
𝑘=1

1

1 − 𝜆𝑘𝑥
=

1

det diag(1 − 𝜆1𝑥, 1 − 𝜆2𝑥, … , 1 − 𝜆𝑛𝑥)
=

1

det(𝐼 − 𝑥𝐴)

by the spectral theorem. □

Example 21. Let 𝐴 =
[
1 1
1 0

]
. Then 𝑝𝐴(𝑧) = 𝑥2 − 𝑥 − 1 and

1

𝑥2𝑝𝐴(1∕𝑥)
=

1

1 − 𝑥 − 𝑥2
=

∞∑
𝑛=0

𝑓𝑛+1𝑥
𝑛,

in which 𝑓𝑛 is the 𝑛th Fibonacci number; these are defined by 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 and 𝑓0 = 0 and
𝑓1 = 1. Thus, |||𝐴|||𝑑

𝑑
= 𝑓𝑑 for even 𝑑 ⩾ 2.

Remark 22. If 𝐴 ∈ H𝑛(ℂ) is fixed, the sequence ℎ𝑑(𝜆1, 𝜆2, … , 𝜆𝑛) satisfies a constant-coefficient
recurrence of order 𝑛 since its generating function is a rational function whose denominator has
degree 𝑛. Solving such a recurrence is elementary, so one can compute ‖𝐴‖𝑑 for 𝑑 = 2, 4, 6, … via
this method.

Remark 23. For small 𝑑, there is a simpler method. Since 𝑝𝐴(𝑥) is monic, it follows that
𝑝𝐴(𝑥) = 𝑥𝑛𝑝𝐴(1∕𝑥) has constant term 1. For small 𝑥, we have

∞∑
𝑑=0

ℎ𝑑(𝜆1, 𝜆2, … , 𝜆𝑛)𝑥
𝑑 =

1

𝑝𝐴(𝑥)
=

1

1 − (1 − 𝑝𝐴(𝑥))
=

∞∑
𝑑=0

(1 − 𝑝𝐴(𝑥))
𝑑,

so the desired ℎ𝑑(𝜆1, 𝜆2, … , 𝜆𝑛) can be computed by the expanding the geometric series to the
appropriate degree.
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NORMS ON COMPLEX MATRICES 2091

Remark 24. For 𝑑 ⩾ 1, the Newton–Gerard identities imply

ℎ𝑑(𝑥1, 𝑥2, … , 𝑥𝑛) =
1

𝑑

𝑑∑
𝑖=1

ℎ𝑑−𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)𝑝𝑖(𝑥1, 𝑥2, … , 𝑥𝑛);

see [29, §10.12]. For 𝐴 ∈ H𝑛(ℂ) and 𝑑 ⩾ 2 even, it follows that

ℎ𝑑(𝝀(𝐴)) =
1

𝑑

𝑑∑
𝑖=1

ℎ𝑑−𝑖(𝝀(𝐴)) tr(𝐴
𝑖),

which can be used to compute |||𝐴|||𝑑
𝑑
= ℎ𝑑(𝝀(𝐴)) recursively.

Remark 25. If 𝐻,𝐾 ∈ H𝑛(ℂ), then det(𝐼 − 𝑥𝐻) = det(𝐼 − 𝑥𝐾) if and only if they are unitarily
similar. However,𝐻 = diag(1, 0) and 𝐾 = diag(1, −1) give

1

det(𝐼 − 𝑥𝐻)
=

1

1 − 𝑥
=

∞∑
𝑗=0

𝑧𝑗 and 1

det(𝐼 − 𝑥𝐾)
=

1

1 − 𝑥2
=

∞∑
𝑘=0

𝑧2𝑘,

so |||𝐻|||𝑑 = |||𝐾|||𝑑 for even 𝑑 ⩾ 2. Of course, the odd-indexed coefficients (the CHS polynomials
of odd degree) do not agree.

4.2 Determinantal interpretation

The material of the previous subsection leads to the determinantal interpretation (Theorem 6)
stated in the introduction. We restate (and prove) the result here for convenience.

Theorem 26. Let 𝐴 ∈ M𝑛(ℂ). For 𝑑 even,
( 𝑑

𝑑∕2

)|||𝐴|||𝑑
𝑑
is the coefficient of 𝑧𝑑∕2𝑧𝑑∕2 in the Taylor

expansion of det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)−1 about the origin.

Proof. If 𝐻 ∈ H𝑛(ℂ), the coefficient of 𝑥𝑑 in det(𝐼 − 𝑥𝐻)−1 is |||𝐻|||𝑑
𝑑
by Theorem 20. By plugging

in 𝐻 = 𝑧𝐴 + 𝑧𝐴∗ and treating the resulting expression as a series in 𝑧 and 𝑧, Remark 19 implies
that the coefficient of 𝑧𝑑∕2𝑧𝑑∕2 equals

( 𝑑

𝑑∕2

)|||𝐴|||𝑑
𝑑
. □

Example 27. Let 𝐴 =
[
0 1
0 0

]
. Then

det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)−1 =
1

1 − 𝑧𝑧
=

∞∑
𝑛=0

𝑧
𝑛
𝑧𝑛,

and hence ‖𝐴‖𝑑
𝑑
=
( 𝑑

𝑑∕2

)−1
for even 𝑑 ⩾ 2.
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2092 AGUILAR et al.

Example 28. For

𝐴 =
⎡⎢⎢⎣
0 1 0

0 0 1

1 0 0

⎤⎥⎥⎦ , we have det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)−1 =
1

1 − 𝑧3 − 3𝑧𝑧 − 𝑧
3
.

Computer algebra reveals that |||𝐴|||2
2
= |||𝐴|||4

4
= 3

2
, |||𝐴|||6

6
= 29

20
, and |||𝐴|||8

8
= 99

70
.

Example 29. The matrices

𝐴 =
⎡⎢⎢⎣
0 0 0

0 1 𝑖

0 𝑖 −1

⎤⎥⎥⎦ and 𝐵 =
⎡⎢⎢⎣
0 0 1

0 0 𝑖

1 𝑖 0

⎤⎥⎥⎦
satisfy

det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)−1 =
1

1 − 4𝑧𝑧
= det(𝐼 − 𝑧𝐵 − 𝑧𝐵∗)−1,

so |||𝐴|||𝑑 = |||𝐵|||𝑑 for even 𝑑 ⩾ 2. These matrices are not similar (let alone unitarily similar) since
𝐴 is nilpotent of order 2 and 𝐵 is nilpotent of order 3.

Remark 30. In terms of the Laplace operator Δ = 𝜕2

𝜕𝑧 𝜕𝑧
, Theorem 6 states that for even 𝑑,

𝑑!|||𝐴|||𝑑
𝑑
= Δ𝑑∕2 1

det(𝐼 − 𝑧𝐴 − 𝑧𝐴∗)
(0) .

4.3 Inner products

Theorem 3 says that ||| ⋅ |||𝑑 is a norm on M𝑛(ℂ) for even 𝑑 ⩾ 2. It is natural to ask when these
norms are induced by an inner product.

Theorem 31. The norm ||| ⋅ |||𝑑 on M𝑛(ℂ) (and its restriction to H𝑛(ℂ)) is induced by an inner
product if and only if 𝑑 = 2 or 𝑛 = 1.

Proof. If 𝑛 = 1 and 𝑑 ⩾ 2 is even, then |||𝐴|||𝑑 is a fixed positive multiple of |𝑎| for all 𝐴 = [𝑎] ∈

M1(ℂ). Thus, ||| ⋅ |||𝑑 onM1(ℂ) is induced by a positive multiple of the inner product ⟨𝐴, 𝐵⟩ = 𝑏𝑎,
in which 𝐴 = [𝑎] and 𝐵 = [𝑏].
If 𝑑 = 2 and 𝑛 ⩾ 1, then |||𝐴|||2

2
= 1

2
tr(𝐴∗𝐴) + 1

2
(tr 𝐴) tr(𝐴∗), which is induced by the inner

product ⟨𝐴, 𝐵⟩ = 1

2
tr(𝐵∗𝐴) + 1

2
(tr 𝐵∗)(tr 𝐴) onM𝑛(ℂ).

It suffices to show that in all other cases the norm |||𝐴|||𝑑 = (ℎ𝑑(𝝀(𝐴)))
1∕𝑑 on H𝑛(ℝ) does not

arise from an inner product. For 𝑛 ⩾ 2, let𝐴 = diag(1, 0, 0, …) and𝐵 = diag(0, 1, 0, … , 0) ∈ H𝑛(ℝ).
Then |||𝐴|||2

𝑑
= |||𝐵|||2

𝑑
= 1. Next observe that |||𝐴 + 𝐵|||2

𝑑
= (𝑑 + 1)2∕𝑑 since there are exactly 𝑑 + 1

non-zero summands, each equal to 1, in the evaluation of ℎ𝑑(𝝀(𝐴 + 𝐵)). Because of cancella-
tion, a similar argument shows that |||𝐴 − 𝐵|||2

𝑑
= 1. A result of Jordan and von Neumann says

that a vector space norm ‖ ⋅ ‖ arises from an inner product if and only if it satisfies the paral-
lelogram identity ‖𝒙 + 𝒚‖2 + ‖𝒙 − 𝒚‖2 = 2(‖𝒙‖2 + ‖𝒚‖2) for all 𝒙, 𝒚 [13]. If ||| ⋅ |||𝑑 satisfies the
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NORMS ON COMPLEX MATRICES 2093

parallelogram identity, then (𝑑 + 1)2∕𝑑 + 1 = 2(1 + 1); that is, (𝑑 + 1)2 = 3𝑑. The solutions are
𝑑 = 0 (which does not yield an inner product) and 𝑑 = 2 (which, as we showed above, does).
Thus, for 𝑛 ⩾ 2 and 𝑑 ⩾ 2, the norm ||| ⋅ |||𝑑 on H𝑛(ℂ) does not arise from an inner product. □

4.4 A tracial lower bound

EachCHSnormonM𝑛(ℂ) is bounded belowby an explicit positivemultiple of the trace seminorm.
That is, the CHS norms of a matrix can be related to its mean eigenvalue.

Theorem 32. For 𝐴 ∈ M𝑛(ℂ) and 𝑑 ⩾ 2 even,

|||𝐴|||𝑑 ⩾

(
𝑛 + 𝑑 − 1

𝑑

)1∕𝑑 | tr 𝐴|
𝑛

with equality if and only if 𝐴 is a multiple of the identity.

Proof. Let 𝑑 ⩾ 2 be even. For𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, let 𝒙̃ = (𝑥1, 𝑥2, … , 𝑥𝑛) denote its decreasing
rearrangement (the notation 𝒙↓ is frequently used in the literature). Then 𝒙majorizes 𝒚, denoted
as 𝒙 ⪰ 𝒚, if

𝑘∑
𝑖=1

𝑥𝑖 ⩾

𝑘∑
𝑖=1

𝑦𝑖 for 𝑘 = 1, 2, … , 𝑛, and
𝑛∑
𝑖=1

𝑥𝑖 =

𝑛∑
𝑖=1

𝑦𝑖.

The even-degree CHS polynomials are Schur convex [32, Theorem 1]. That is, ℎ𝑑(𝒙) ⩾ ℎ𝑑(𝒚)

whenever 𝒙 ⪰ 𝒚, with equality if and only if 𝒙 is a permutation of 𝒚.
Let 𝐴 ∈ M𝑛(ℂ) and define 𝐵(𝑡) = 𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗ for 𝑡 ∈ ℝ. Then 𝝀(𝐵(𝑡)) majorizes

𝝁(𝑡) = (𝜇(𝑡), 𝜇(𝑡), … , 𝜇(𝑡)) ∈ ℝ𝑛, in which 𝜇(𝑡) = tr 𝐵(𝑡)∕𝑛. Thus,

|||𝐵(𝑡)|||𝑑
𝑑
= ℎ𝑑(𝝀(𝐵(𝑡))) ⩾ ℎ𝑑(𝝁(𝑡)) = 𝜇(𝑡)𝑑

(
𝑛 + 𝑑 − 1

𝑑

)
with equality if and only if 𝐵(𝑡) = 𝜇(𝑡)𝐼. It follows from (17) that

|||𝐴|||𝑑 ⩾

⎛⎜⎜⎝
(𝑛+𝑑−1

𝑑

)
2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0
𝜇(𝑡)𝑑 𝑑𝑡

⎞⎟⎟⎠
1∕𝑑

. (18)

Combine this with

∫
2𝜋

0
𝜇(𝑡)𝑑 𝑑𝑡 = ∫

2𝜋

0

(
tr 𝐵(𝑡)

𝑛

)𝑑

𝑑𝑡 =
1

𝑛𝑑 ∫
2𝜋

0

(
𝑒𝑖𝑡 tr 𝐴 + 𝑒−𝑖𝑡 tr(𝐴∗)

)𝑑
𝑑𝑡

=
1

𝑛𝑑

𝑑∑
𝑘=0

(
𝑑

𝑘

)
(tr 𝐴∗)𝑑−𝑘(tr 𝐴)𝑘 ∫

2𝜋

0
𝑒𝑖(2𝑘−𝑑)𝑡 𝑑𝑡

=
2𝜋

𝑛𝑑

(
𝑑

𝑑∕2

)| tr 𝐴|𝑑
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2094 AGUILAR et al.

and get the desired inequality. The continuity of the integrand ensures that equality occurs in (19)
if and only if 𝐵(𝑡) = 𝜇(𝑡)𝐼 for all 𝑡 ∈ ℝ. An operator-valued Fourier expansion reveals that 𝑒𝑖𝑡𝐴 +

𝑒−𝑖𝑡𝐴∗ = (
∑

𝑛∈ℤ 𝜇(𝑛)𝑒
𝑖𝑛𝑡)𝐼, so 𝐴 = 𝜇̂(1)𝐼. Conversely, equality holds in (19) if 𝐴 is a multiple of

the identity. □

Remark 33. For each fixed 𝑛 ⩾ 1, the constant
(𝑛+𝑑−1

𝑑

)1∕𝑑
in Theorem 32 tends to 1 from above as

𝑑 → ∞. Therefore, |||𝐴|||𝑑 ⩾
1

𝑛
| tr 𝐴| for all 𝐴 ∈ M𝑛(ℂ).

4.5 Monotonicity

The next result shows how CHS norms relate to each other. For Hermitian matrices, the first
inequality below is superior to the second.

Theorem 34. Let 2 ⩽ 𝑝 < 𝑞 be even.

(a) If 𝐴 ∈ H𝑛(ℂ), then (𝑝!)1∕𝑝|||𝐴|||𝑝 ⩽ (𝑞!)1∕𝑞|||𝐴|||𝑞 .
(b) If 𝐴 ∈ M𝑛(ℂ), then (

( 𝑝

𝑝∕2

)
𝑝!)1∕𝑝|||𝐴|||𝑝 ⩽ (

( 𝑞

𝑞∕2

)
𝑞!)1∕𝑞|||𝐴|||𝑞 .

Proof.

(a) Let 𝐴 ∈ H𝑛(ℂ) have eigenvalues 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛), listed in decreasing order, and let
𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑛) be a random vector, in which 𝜉1, 𝜉2, … , 𝜉𝑛 are independent standard expo-
nential random variables. Let 𝑑 ⩾ 2 be even and consider the random variable 𝑋 = ⟨𝝃 , 𝝀⟩.
Then (11) ensures that

(𝑑!)1∕𝑑|||𝐴|||𝑑 = (𝑑! ℎ𝑑(𝝀))
1∕𝑑 = 𝔼

[|⟨𝝃 , 𝝀⟩|𝑑 ]1∕𝑑 = 𝔼[|𝑋|𝑑]1∕𝑑 = ‖𝑋‖𝐿𝑑 .
Since we are in a probability space (in particular, a finite measure space), ‖𝑋‖𝐿𝑝 ⩽ ‖𝑋‖𝐿𝑞 for
1 ⩽ 𝑝 < 𝑞 < ∞. For 2 ⩽ 𝑝 < 𝑞 even, this yields the desired inequality.

(b) Let 𝐴 ∈ M𝑛(ℂ) and let 2 ⩽ 𝑝 < 𝑞 be even. For 𝑡 ∈ [0, 2𝜋], (a) ensures that

|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑝𝑝 ⩽
(𝑞!)𝑝∕𝑞

𝑝!
|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑝𝑞 .

Consider 𝑓(𝑡) = |||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑞 as an element of 𝐿𝑝[0, 2𝜋]. Hölder’s inequality and (17)
imply the desired inequality:

|||𝐴|||𝑝 =
⎛⎜⎜⎝ 1

2𝜋
( 𝑝

𝑝∕2

) ∫ 2𝜋

0
|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑝𝑝 𝑑𝑡⎞⎟⎟⎠

1∕𝑝

⩽

⎛⎜⎜⎝ 1

2𝜋
( 𝑝

𝑝∕2

)⎞⎟⎟⎠
1∕𝑝(

(𝑞!)𝑝∕𝑞

𝑝! ∫
2𝜋

0
|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑝𝑞 𝑑𝑡)1∕𝑝
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NORMS ON COMPLEX MATRICES 2095

⩽
(𝑞!)1∕𝑞

(𝑝!)1∕𝑝

⎛⎜⎜⎝ 1

2𝜋
( 𝑝

𝑝∕2

)⎞⎟⎟⎠
1∕𝑝‖𝑓‖𝐿𝑝 ⩽

(𝑞!)1∕𝑞

(𝑝!)1∕𝑝

⎛⎜⎜⎝ 1

2𝜋
( 𝑝

𝑝∕2

)⎞⎟⎟⎠
1∕𝑝

(2𝜋)
1
𝑝
− 1

𝑞 ‖𝑓‖𝐿𝑞
⩽

(𝑞!)1∕𝑞

(𝑝!)1∕𝑝

⎛⎜⎜⎝ 1

2𝜋
( 𝑝

𝑝∕2

)⎞⎟⎟⎠
1∕𝑝

(2𝜋)
1
𝑝
− 1

𝑞

(
∫

2𝜋

0
|||𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗|||𝑞𝑞 𝑑𝑡)1∕𝑞

=
(𝑞!)1∕𝑞

(𝑝!)1∕𝑝

⎛⎜⎜⎝ 1( 𝑝

𝑝∕2

)⎞⎟⎟⎠
1∕𝑝

(2𝜋)
− 1

𝑞

(
2𝜋

(
𝑞

𝑞∕2

))1∕𝑞|||𝐴|||𝑞𝑞
⩽

(( 𝑞

𝑞∕2

)
𝑞!
)1∕𝑞

(( 𝑝

𝑝∕2

)
𝑝!
)1∕𝑝 |||𝐴|||𝑞𝑞.

□

Remark 35. The previous result suggests that suitable constant multiples of the CHS norms
may be preferable in some circumstances. However, the benefits appear to be outweighed by the
cumbersome nature of these constants.

Remark 36. For 𝐴, 𝐵 ∈ M𝑛(ℂ),

2|||𝐴𝐵|||22 = tr(𝐴𝐵) tr((𝐴𝐵)∗) + tr((𝐴𝐵)∗𝐴𝐵)

⩽ 2 tr(𝐴∗𝐴) tr(𝐵∗𝐵)

⩽ 2(tr(𝐴) tr(𝐴∗) + tr(𝐴∗𝐴))(tr(𝐵) tr(𝐵∗) + tr(𝐵∗𝐵))

= 8|||𝐴|||22|||𝐵|||22,
so 2||| ⋅ |||2 is submultiplicative. Actually, 2 is the smallest constant independent of 𝑛 with this
property, since

𝐽 =

[
0 1

0 0

]
satisfies |||𝐽𝐽∗|||2 = 1 = 2|||𝐽|||2|||𝐽∗|||2.
4.6 Symmetric tensor powers

Let  denote an 𝑛-dimensional ℝ-inner product space with orthonormal basis 𝒗1, 𝒗2, … , 𝒗𝑛. The
𝑘th tensor power of  is the 𝑛𝑘-dimensional ℝ-inner product space ⊗𝑘 spanned by the simple
tensors

𝒗𝑖1 ⊗ 𝒗𝑖2 ⊗⋯⊗ 𝒗𝑖𝑘 , (19)
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2096 AGUILAR et al.

with these simple tensors forming an orthonormal basis of ⊗𝑘. An operator 𝐴 ∶  →  lifts to
an operator on ⊗𝑘 as follows. Define

𝐴⊗𝑘(𝒗𝑖1 ⊗ 𝒗𝑖2 ⊗⋯⊗ 𝒗𝑖𝑘 ) = 𝐴𝒗𝑖1 ⊗ 𝐴𝒗𝑖2 ⊗⋯⊗𝐴𝒗𝑖𝑘

and use the linearity of 𝐴 and⊗ to write this in terms of the basis vectors (21). An important fact
is that any orthonormal basis for  yields, via (21), an orthonormal basis for ⊗𝑘.
The 𝑘th symmetric tensor power of  is the

(𝑛+𝑘−1
𝑘

)
-dimensional vector space Sym𝑘  ⊂ ⊗𝑘

spanned by the symmetric tensors:

𝒗𝑖1 ⊙ 𝒗𝑖2 ⊙⋯⊙ 𝒗𝑖𝑘 =
1

𝑘!

∑
𝜎∈𝑆𝑘

𝒗𝜎(𝑖1) ⊗ 𝒗𝜎(𝑖2) ⊗⋯⊗ 𝒗𝜎(𝑖𝑘),

where 𝑆𝑘 denotes the symmetric group on 𝑘 letters. Let 𝐴Sym𝑘 denote the restriction 𝐴⊗𝑘|Sym𝑘  .

Proposition 37. If 𝑑 ⩾ 2 is even and 𝐴 ∈ H𝑛(ℂ), then

|||𝐴|||𝑑
𝑑
= tr(𝐴Sym𝑑).

Proof. Let 𝐴 ∶  →  be self-adjoint with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and corresponding orthonor-
mal eigenbasis 𝒗1, 𝒗2, … , 𝒗𝑛. Then 𝒗𝑖1 ⊙ 𝒗𝑖2 ⊙⋯⊙ 𝒗𝑖𝑘 is an eigenvector of 𝐴Sym𝑘 with
eigenvalue 𝜆𝑖1𝜆𝑖2 ⋯ 𝜆𝑖𝑘 . Sum over these

(𝑛+𝑘−1
𝑘

)
eigenvectors and conclude that tr(𝐴Sym𝑘 ) =

ℎ𝑘(𝜆1, 𝜆2, … , 𝜆𝑛). □

If 𝐴 is the adjacency matrix of a graph Γ, then |||𝐴|||𝑑 concerns the 𝑑th symmetric tensor power
of Γ, a weighted graph obtained from Γ in a straightforward (but tedious) manner by computing
the matrix representation of 𝐴Sym𝑑 with respect to the normalization of the orthogonal basis of
symmetrized tensors.

4.7 Equivalence constants

Any two norms on a finite-dimensional vector space are equivalent. Thus, each norm ||| ⋅ |||𝑑
on H𝑛(ℂ) (with 𝑑 ⩾ 2 even) is equivalent to the operator norm ‖ ⋅ ‖op. We compute admissible
equivalence constants below.

Theorem 38. For 𝐴 ∈ H𝑛(ℂ) and even 𝑑 ⩾ 2,

⎛⎜⎜⎝ 1

2
𝑑
2 ( 𝑑

2
)!

⎞⎟⎟⎠
1∕𝑑‖𝐴‖op ⩽ |||𝐴|||𝑑 ⩽

(
𝑛 + 𝑑 − 1

𝑑

)1∕𝑑‖𝐴‖op.
The upper inequality is sharp if and only if 𝐴 is a multiple of the identity.
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NORMS ON COMPLEX MATRICES 2097

Proof. For 𝐴 ∈ H𝑛(ℂ) and even 𝑑 ⩾ 2, the triangle inequality yields

|||𝐴|||𝑑
𝑑
= ℎ𝑑(𝜆1(𝐴), 𝜆2(𝐴), … , 𝜆𝑛(𝐴))

= ||ℎ𝑑(𝜆1(𝐴), 𝜆2(𝐴), … , 𝜆𝑛(𝐴))||
⩽ ℎ𝑑(|𝜆1(𝐴)|, |𝜆2(𝐴)|, … , |𝜆𝑛(𝐴)|)
⩽ ℎ𝑑(‖𝐴‖op, ‖𝐴‖op, … , ‖𝐴‖op)
= ‖𝐴‖𝑑opℎ𝑑(1, 1, … , 1)

= ‖𝐴‖𝑑op(𝑛 + 𝑑 − 1

𝑑

)
.

Equality occurs if and only if 𝜆𝑖(𝐴) = |𝜆𝑖(𝐴)| = ‖𝐴‖op for 1 ⩽ 𝑖 ⩽ 𝑛; that is, if and only if 𝐴 is a
multiple of the identity.
Hunter [11] established that

ℎ2𝑝(𝒙) ⩾
1

2𝑝𝑝!
‖𝒙‖2𝑝,

in which ‖𝒙‖ denotes the Euclidean norm of 𝒙 ∈ ℝ𝑛. Let 𝑑 = 2𝑝 and conclude

|||𝐴|||𝑑 ⩾

⎛⎜⎜⎝ 1

2
𝑑
2 ( 𝑑

2
)!

⎞⎟⎟⎠
1∕𝑑‖𝐴‖𝐹 ⩾

⎛⎜⎜⎝ 1

2
𝑑
2 ( 𝑑

2
)!

⎞⎟⎟⎠
1∕𝑑‖𝐴‖op,

in which ‖𝐴‖𝐹 denotes the Frobenius norm of 𝐴 ∈ H𝑛(ℂ). □

Remark 39. For 𝐴 ∈ M𝑛(ℂ), we may apply the upper bound in Theorem 38 to 𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗ and
use (15) to deduce that

|||𝐴|||𝑑 ⩽

⎛⎜⎜⎝
(𝑛+𝑑−1

𝑑

)
2𝜋
( 𝑑

𝑑∕2

) ∫ 2𝜋

0
‖𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗‖𝑑op 𝑑𝑡⎞⎟⎟⎠

1∕𝑑

⩽ 2
⎛⎜⎜⎝
(𝑛+𝑑−1

𝑑

)( 𝑑

𝑑∕2

) ⎞⎟⎟⎠
1∕𝑑‖𝐴‖op.

Remark 40. Hunter’s lower bound was improved by Baston [3], who proved that

ℎ2𝑝(𝒙) ⩾
1

2𝑝𝑝!

(
𝑛∑
𝑖=1

𝑥2𝑖

)𝑝

+ 𝜆𝑝

(
𝑛∑
𝑖=1

𝑥𝑖

)2𝑝

for 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛, where

𝜆𝑝 =
1

𝑛𝑝

((
𝑛 + 2𝑝 − 1

2𝑝

)
1

𝑛𝑝
−

1

2𝑝𝑝!

)
> 0.

Equality holds if and only if 𝑝 = 1 or 𝑝 ⩾ 2 and all the 𝑥𝑖 are equal. However, Baston’s result does
not appear to yield a significant improvement in the lower bound of Theorem 38.
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2098 AGUILAR et al.

5 OPEN QUESTIONS AND REMARKS

The answers to the following questions have eluded us.

Problem 1. What are the best constants 𝑐𝑑, independent of 𝑛, such that 𝑐𝑑‖ ⋅ ‖𝑑 is submultiplica-
tive? Do such constants exist? See Remark 36.

Problem 2. What is the best complexified version of Theorem 38? Can the upper bound be
improved (the estimate ‖𝑒𝑖𝑡𝐴 + 𝑒−𝑖𝑡𝐴∗‖op ⩽ 2‖𝐴‖op seems wasteful on average)? Can we get a
sharp lower bound?

Problem 3. If one uses (7) to evaluate |||𝐴|||𝑑
𝑑
, there are many repeated terms. For example,

(tr 𝐴∗𝐴)(tr 𝐴)(tr 𝐴∗) = (tr 𝐴𝐴∗)(tr 𝐴∗)(tr 𝐴) because of the cyclic invariance of the trace and the
commutativity of multiplication. If one chooses a single representative for each such class of
expressions and simplifies, one gets expressions such as (8) and (9). Is there a combinatorial
interpretation of the resulting coefficients?

For motivation, the reader is invited to consider

|||𝐴|||66 = 1

720

(
(tr 𝐴)3 tr(𝐴∗)3 + 3 tr(𝐴) tr(𝐴∗)3 tr(𝐴2)

+ 9(tr 𝐴)2 tr(𝐴∗)2 tr(𝐴∗𝐴) + 9 tr(𝐴∗)2 tr(𝐴2) tr(𝐴∗𝐴)

+ 18 tr(𝐴) tr(𝐴∗) tr(𝐴∗𝐴)2 + 6 tr(𝐴∗𝐴)3 + 3(tr𝐴)3 tr(𝐴∗) tr(𝐴∗2)

+ 9 tr(𝐴) tr(𝐴∗) tr(𝐴2) tr(𝐴∗2) + 9(tr 𝐴)2 tr(𝐴∗𝐴) tr(𝐴∗2)

+ 9 tr(𝐴2) tr(𝐴∗𝐴) tr(𝐴∗2) + 2 tr(𝐴∗)3 tr(𝐴3)

+ 6 tr(𝐴∗) tr(𝐴∗2) tr(𝐴3) + 18 tr(𝐴) tr(𝐴∗)2 tr(𝐴∗𝐴2)

+ 36 tr(𝐴∗) tr(𝐴∗𝐴) tr(𝐴∗𝐴2) + 18 tr(𝐴) tr(𝐴∗2) tr(𝐴∗𝐴2)

+ 18(tr 𝐴)2 tr(𝐴∗) tr(𝐴∗2𝐴) + 18 tr(𝐴∗) tr(𝐴2) tr(𝐴∗2𝐴)

+ 36 tr(𝐴) tr(𝐴∗𝐴) tr(𝐴∗2𝐴) + 36 tr(𝐴∗𝐴2) tr(𝐴∗2𝐴)

+ 2(tr 𝐴)3 tr(𝐴∗3) + 6 tr(𝐴) tr(𝐴2) tr(𝐴∗3)

+ 4 tr(𝐴3) tr(𝐴∗3) + 18 tr(𝐴∗)2 tr(𝐴∗𝐴3)

+ 18 tr(𝐴∗2) tr(𝐴∗𝐴3) + 18 tr(𝐴) tr(𝐴∗) tr(𝐴∗𝐴𝐴∗𝐴)

+ 18 tr(𝐴∗𝐴) tr(𝐴∗𝐴𝐴∗𝐴) + 36 tr(𝐴) tr(𝐴∗) tr(𝐴∗2𝐴2)

+ 36 tr(𝐴∗𝐴) tr(𝐴∗2𝐴2) + 18(tr 𝐴)2 tr(𝐴∗3𝐴)

+ 18 tr(𝐴2) tr(𝐴∗3𝐴) + 36 tr(𝐴∗) tr(𝐴∗𝐴𝐴∗𝐴2)

+ 36 tr(𝐴∗) tr(𝐴∗2𝐴3) + 36 tr(𝐴) tr(𝐴∗2𝐴𝐴∗𝐴)

+ 36 tr(𝐴) tr(𝐴∗3𝐴2) + 12 tr(𝐴∗𝐴𝐴∗𝐴𝐴∗𝐴) + 36 tr(𝐴∗2𝐴2𝐴∗𝐴)

+ 36 tr(𝐴∗2𝐴𝐴∗𝐴2) + 36 tr(𝐴∗3𝐴3)
)
.
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NORMS ON COMPLEX MATRICES 2099

Remark 41. The recent paper of Issa, Mourad, and Abbas [12] contains results similar to ours, but
obtained with different techniques. However, their paper deals with symmetric gauge functions
and hence invokes positivity assumptions that we have eschewed. Remarkably, these papers were
written independently and nearly simultaneously: our paper appeared on the arXiv on 3 June
2021, whereas the preprint of [12] appeared on 7 June 2021.
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