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FROBENIUS—RIEFFEL NORMS ON
FINITE-DIMENSIONAL C#*-ALGEBRAS

KONRAD AGUILAR, STEPHAN RAMON GARCIA AND ELENA KIM

(Communicated by C.-K. Ng)

Abstract. In 2014, Rieffel introduced norms on certain unital C*-algebras built from conditional
expectations onto unital C*-subalgebras. We begin by showing that these norms generalize the
Frobenius norm, and we provide explicit formulas for certain conditional expectations onto uni-
tal C*-subalgebras of finite-dimensional C*-algebras. This allows us compare these norms to
the operator norm by finding explicit equivalence constants. In particular, we find equivalence
constants for the standard finite-dimensional C*-subalgebras of the Effros—Shen algebras that
vary continuously with respect to their given irrational parameters.

1. Introduction

A main goal of noncommutative metric geometry is to establish the convergence
of spaces arising in the physics or operator-algebra literature [24, 25, 14, 11, 12, 17].
To accomplish this, one must equip operator algebras with compact quantum metrics,
which were introduced by Rieffel [22, 23] and motivated by work of Connes [4, 5].
Then, convergence of compact quantum metric spaces is proven with quantum ana-
logues of the Gromov—Hausdorff distance [24, 16, 15, 13, 18, 28].

In [2], the first author and Latrémoliere recently exhibited the convergence of
quantum metric spaces built from approximately finite-dimensional C*-algebras (AF
algebras) and, in particular, convergence of the Effros—Shen algebras [8] with respect
to their irrational parameters. Quantum metric spaces are obtained by endowing unital
C*-algebras with a type of seminorm whose properties are inspired by the Lipschitz
seminorm. A property, which is not needed in [2], but appears desirable in other con-
text [26], is called the strongly Leibniz property. A seminorm s satisfies the strongly
Leibniz property on an operator algebra o7 if

S(A7) < s(A)- |G,
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for all invertible A € &7, in which || -||op is the operator norm. This can be seen as a
noncommutative analogue of the quotient rule for derivatives. Although the authors of
[2] were able to prove their results without this property, Rieffel’s work on module con-
vergence over the sphere [20] uses the strong Leibniz property, and it can be expected
to play a role in the study of module convergence in general.

Let T be a topological space and let # € T'. The reason that the seminorms in [2]
do not likely satisfy the strongly Leibniz rule is because the seminorms are of the form

Ar— A _PI(A)HOpa

where A is an element of the C*-algebra o/, & is a C*-subalgebra of </, and B, :
o/ — 2 is a certain surjective linear map called a faithful conditional expectation.
But conditional expectations are rarely multiplicative (otherwise, the strongly Leibniz
property of this seminorm would come for free). Rather than replace P, which pro-
vides crucial estimates, Rieffel provided another option in [27, Section 5] following
his previous work in [21]: replace the operator norm with one induced by P, and the
subalgebra Z. For A € <7, the Frobenius—Rieffel norm is

[All7 = /I[P (A*A)lop,

where A* is the adjoint of A. If we define
sp A= [|[A=FB(A)|p,

then sp, is a seminorm that is strongly Leibniz [27, Theorem 5.5].

However, this replacement comes at a cost. Following [2], we want the family
of maps (sp )rer to vary continuously (pointwise) on a particular subset of </ with
respect to || - ||op. Thankfully, in the setting of [2], one need only verify this continuity
when &7 is finite dimensional. In this case, || -||p and |- [|op are equivalent on <7,
meaning there exist constants &;", k; > 0 such that

K- llop <INl < 711 - llop
for each ¢ € T. Therefore, we can replace sp, with

1

A —sp (A
— K[+SPt( )7

which is strongly Leibniz. However, the constants k7, k; need not change continu-
ously with respect to z. Therefore, our aim in this paper is to find explicit equivalence
constants for the operator norm and Frobenius—Rieffel norms on finite-dimensional C*-
algebras, so that we may prove the continuity of the constants k= with respecttoz € T\
In fact, one of our main results (Theorem 5.2) shows that there exist explicit equiva-
lence constants for the finite-dimensional C*-algebras that form the Effros—Shen alge-
bras which vary continuously with respect to the irrational parameters that determine
these algebras.
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After some background on C*-algebras and the construction of the Frobenius—
Rieffel norms, we provide some basic facts in the next section. Then, we find equiv-
alence constants when 7 is the space of complex n x n-matrices. This provides a
framework for the general case of finite-dimensional C*-algebras, which we tackle
next. Our main method is to represent the conditional expectations as means of unitary
conjugates for some standard subalgebras, and then extend these results to all unital
C*-subalgebras by showing that although the Frobenius—Rieffel norms are not unitarily
invariant, their equivalence constants are.

2. Preliminaries

The facts we state about C*-algebras in this section can be found in standard texts
suchas [7, 19,20]. A C*-algebra (<7,||-||) is a Banach algebra over C equipped with a
conjugate-linear anti-multiplicative involution * : &7 — o7 called the adjoint satistfying
the C*-identity (i.e., |A*A|| = ||A||* for all A € o7). We say that <7 is unital if it has a
multiplicative identity. If two C*-algebras <7, % are *-isomorphic, then we denote this
by o 2 AB. Letne N=1{1,2,3,...}. We denote the space of complex n x n matrices
by .4, and its C*-norm by || - ||op, the operator norm induced by the 2-norm on C”.
We denote the n x n identity matrix by I,. For A € .#),, we let A; ; € € denote the
(i,])-entry of A forall i, j € [N], where [N] ={1,2,...,N}.

EXAMPLE 2.1. Let N € N and let dy,d>,...,dy € IN. The space
N
P 4,
k=1

is a unital C*-algebra with coordinate-wise operations; the norm is the maximum of the
operator norms in each coordinate. If we set n =d| +d, +---+dy, then [, = EBQ’z 11a,
is the unit, which we frequently denote by /. Every finite-dimensional C*-algebra is of
this form up to *-isomorphism [7, Theorem III.1.1].

We denote A € @Y, .4y, by A= (A1 AP . AN) so that AW € .7, for

each k € [N] and AE? € C is the (i, j)-entry of A% forall i, € [d].

The following maps are needed for the construction of Frobenius—Rieffel norms.

DEFINITION 2.2. Let 7 be a unital C*-algebra and let % C ./ be a unital C*-
subalgebra. A linear function P : &/ — £ is a conditional expectation if

1. VBe #, P(B) =B, and
2. vAe o, |[P@)] < Al
We say that P is faithful if P(A*A) =0 <= A =0.

We can now define norms induced by faithful conditional expectations.
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THEOREM 2.3. ([21][27, Section 5]) Let <7 be a unital C*-algebra and B C of
be a unital C*-subalgebra. Let P : o/ — % be a faithful conditional expectation. For
all A € o, set

[Allpz = V/|[P(A*A)]].

This defines a norm on </ called the Frobenius—Rieffel norm associated to % and P.

The terminology for these norms is due to two facts: Rieffel introduced these
norms [27, Section 5] using his work that introduced spaces called Hilbert C*-modules
[21] and we show in Theorem 3.16 that one can recover the Frobenius norm using a
particular C*-subalgebra.

One of the main results that makes our work in this paper possible is the fact
that we can express our conditional expectations as orthogonal projections. The key
property that allows this is the preservation of faithful tracial states. A state on a C*-
algebra o7 is a positive linear functional ¢ : & — C of norm 1. We say that ¢ is
faithful if (A*A) =0 <= A =0 and tracial if ¢(AB) = ¢(BA) forall A,B € o/ . If
2 is a unital C*-subalgebra and P : .« — Z is a conditional expectation onto %, then
we say that P is ¢@-preserving if poP = ¢.

EXAMPLE2.4. Let N € IN and dy,dp...,dyv € N. Let v = (vi,v2,...,vy) €

(0,1)V such that Y, v¢ = 1. Forevery A = (A),...,AN)) € @ | .#,, , define

Ny .

w(A) =Y —£Tr(aW),

=1 dx
where Tr is the trace of a matrix. Then Ty is a faithful tracial state on @} _, Mg, . In
fact, all faithful tracial states on @Q’z | Ay, are of this form [7, Example IV.5.4]. For
My, we have v=(1). Thus, 7y = %Tr, and we simply denote 7, by 7 in this case.

A faithful tracial state allows us to define an inner product on 7.

THEOREM 2.5. ([6, Proposition VIIL.5.11]) Let </ be a unital C*-algebra and
let @ : &/ — C be a faithful state. Then

(A,B)p = @(B"A)
is an inner product on <f .

The following fact is well known.

THEOREM 2.6. ([2, Expression (4.1)]) Let </ be a unital C*-algebra, let 5B C
o/ be a unital C*-subalgebra, and let ¢ : o/ — C be a faithful tracial state. If A
is finite dimensional, then there exists a unique @ -preserving conditional expectation
P; s — B onto B such that given any basis B of % which is orthogonal with
respect to (-,-)q, we have
<A7B><P

P —

forall A e o .
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In this case, we denote the associated Frobenius—Rieffel norm on < by || - ||.%.
Now, let &/ = EBkN:1 Mg, ,let B C o/ beaunital C*-subalgebra, and let v= (v, vs,...,
vn) € (0,1)V such that TN v = 1.

1. We denote the conditional expectation of Theorem 2.6 induced by the faithful tracial
state 7y of Example 2.4 by PJ,. We denote the associated Frobenius—Rieffel norm

by ||- ”v,%’-

2. If N=1,then 7= dilTr is the unique faithful tracial state on ./, , and we denote
the conditional expectation of Theorem 2.6 induced by 7 by Pyz. We denote the
associated Frobenius—Rieffel norm by || - |-

3. Some properties of Frobenius—Rieffel norms

In this section, we detail the subalgebras of EBQ’: | Ay, that we will be working
with and the conditional expectations given by Theorem 2.6. We also explain why we
use “Frobenius” in the name of the norms of Theorem 2.3.

A partition A of n € N, denoted A I n, is a tuple A = (ny,ny,...,n.) € NF,
where L € IN depends on n and n = Y%, n;. We need the following refinement to
describe certain subalgebras of .7, .

DEFINITION 3.1. Let n,L € IN. A formal expression A = (n|",n5?,...,n;'"), in
which m;,n; € IN for 1 <i< L, and

L
n= Zmini (31)

i=1
is a refined partition of n, denoted (A Fn). Write my = (m,my,...,my) and ny =
(n1,n2,...,n1), so that n =m, -n, . The vectors my and n, are the multiplicity

vector and dimension vector of A, respectively. We drop the subscript A unless needed
for clarity. In the formal expression for A, we suppress m; if m; = 1. The number
L =L(A) of summands in (3.1) is the length of .

For example, (22,2),(2%),(2,2,1?),(3,3),(6) are refined partitions of 6 with, re-
spectively, lengths 2,1,3,2, 1; multiplicity vectors (2,1),(3),(1,1,2),(1,1),(1); and
dimension vectors (2,2),(2),(2,2,1),(3,3),(6).

In what follows, we use Kronecker products and direct sums. For example, by
(h&.4,)® (I @ #4,) C .#s, we mean the subalgebra

{diag(A,A,u): A € Mo, € M1}
of ./, where diag(A,A, i) is the block-diagonal matrix

A
A

u

with Os in the entries not occupied by the As and u .
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DEFINITION 3.2. Let n € IN and let A be a refined partition of n. The subalgebra
of My corresponding to (A Fn) is

L(A)
=D (U © ). (3.2)

i=1

We sometimes write %, instead of %’ when the context is clear.

EXAMPLE 3.3. Foreach n € IN, we have %, =1,® .#\ = .#\ and

n

11 =P @) = {diag(uy 1, Mn) : 1, Mo, iy € CF 2 C7,

shyeesy
i=1

where n-copies of 1 are in the subscript of %}, | and = denotes *-isomorphism.

EXAMPLE 3.4. Observe that
,@‘1‘272 = (L) ® (L, @ M) = {diag (1, u,A): u € C,A € Mo} = M\ D M.

Thus,
{diag(u,A,p) : p € C,A € M}

is a unital C*-subalgebra of .#4 which is not of the form (3.2), but is *-isomorphic to

B

122°

The algebra of circulant matrices provides another example of a unital C*-subalge-
bra of ., that is not of the form (3.2).

EXAMPLE 3.5. A matrix of the form
ay az az --- day
ap ap az -+ ap—|
dp—1 ap ay --- dp—2

a as--- dp ap

is a circulant matrix [10, 0.9.6 and 2.2.P10]. The *-algebra of n X n circulant matrices
is a unital commutative C*-subalgebra of .7, thatis *-isomorphicto 2}, . Indeed,
they are simultaneously unitarily diagonalizable normal matrices.

The next definition serves as a vital intermediate step in finding equivalence con-
stants associated to all unital C*-subalgebras and faithful tracial states of @}, My, -

DEFINITION 3.6. Consider </ = @}_, .4y, . For each k € [N], let

Pk — My,
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be the canonical projection onto the kth summand. We say that & C &7 is a standard
unital C*-subalgebra if it is a unital C*-subalgebra such that for each k € [N]

pu(B) = B,

where (A = d;). Then £ is a unital C*-subalgebra of
N
Cs =D,
k=1
which is a unital C*-subalgebra of o7 .

EXAMPLE 3.7. Observe that
B = {diag(u,v)®u € M ® M p,v € C = C?
is a standard unital C*-subalgebra of .#, & .#, and
Cp = {diag(u,v)Bn € M@ M u,v,n €C} =B 0B = C.
We note that the unital C*-subalgebra of .#3 given by
{diag(u, v, p) : p,v € C}

is not standard, but it is *-isomorphic to . Thus, whether a subalgebra is standard or
not depends upon the larger ambient algebra.

EXAMPLE 3.8. Observe that
B ={diag(U,A, L) BAE My M>:u€ECAE M}

is not a standard unital C*-subalgebra of .#4 & .#, since p(#) = {diag(u,A,u) :
u € C,A € 4>} is not of the form (3.2). But it is *-isomorphic to the standard unital
C*-subalgebra

& = {diag(A, 1, u) DA€ MsD M>: u € C,AE M}
of M4 @ > . Note pl(éa) = ,@2712 and pz(éa) =By =M.

Up to unitary equivalence, standard unital C*-subalgebras comprise all unital C*-
subalgebras of @Y .4, . To be clear, let B,¢ C o = @}, .#y be two unital
C*-subalgebras. We say that 4 and ¢ are unitarily equivalent (with respect to <) if
there exists a unitary U € &7 such that B — UBU* is a bijection from % onto ¢, in
which case we write € = U2ZU*. Sometimes the term spatially isomorphic is used for
unitary equivalence, but spatially isomorphic is also sometimes used in a more general
sense.
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Unitary equivalence is stronger than *-isomorphism. For example, the unital C*-
subalgebras
@12 @%’171 and %1716%@12

of .4, ® > are *-isomorphic but not unitarily equivalent in .#, & .#> (they are uni-
tarily equivalent in .Z4, but we are viewing them as subalgebras of .#, & .#>). We
now state the following well-known result.

THEOREM 3.9. ([7, Theorem III.1.1, Corollary III.1.2, and Lemma II1.2.1]) Every
unital C*-subalgebra % C M, is unitarily equivalent with respect to M, to B, for
some refined partition A = (n]"",n5?,...,n]") of n, and

IIZ

=@t

Furthermore, any unital C*-subalgebra of EBQ’: | Mg, is unitarily equivalent, with re-
spect to EBQ’: | Mgy, to a standard unital C*-subalgebra.

For example, the *-algebra of circulant matrices of Example 3.5 is unitarily equiv-
alent with respect to .7, to 2} | |, notjust *-isomorphictoit[10, 2.2.P10]. Also, the
subalgebras % and & of Example 3.8 are unitarily equivalent, not just *-isomorphic.

We use Theorem 3.9 to generalize our results to all unital C*-subalgebras once we
verify our results for the standard subalgebras. One of the advantages of working with
standard unital C*-subalgebras is that they have canonical bases which are orthogonal
with respect to the inner products induced by faithful tracial states.

DEFINITION 3.10. Consider @Y, .#, . For each k € [N] and i,j € [d;], let

EY e D, My, have a 1 in the (i, j)-entry of the kth summand and zeros in all other

i,j
entries and all other summands. We call Ei(’];)

the superscript (k).

amatrix unit. If N =1, then we suppress

Any standard unital C*-subalgebra % C @Q’: | Ay, has a standard basis (up to
ordering of terms) given by matrix units or sums of distinct matrix units, which we
denote by B4.

EXAMPLE 3.11. For the subalgebra # C .#, & .4, of Example 3.7, we have
1 2 1
B ={E\) +E) ELS}.

EXAMPLE 3.12. For %}, C My, we have By, = {3} Exx} = {I,}.
For #}, | C My, we have Bgn  =A{E11,E22,. . Enn}

For @32 - ///4, we have ﬁﬂgz = {Ew’ +E,‘+27j+2 1, j € [2]}

All cases in the example above can be recovered as follows.
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REMARK 3.13. Let & C ., be a standard unital C*-subalgebra of Definition
3.6. Thus, there exists a refined partition A = (n}",n5?,...,n]") of n such that # =
,@;{ , and we have that

L my—1 k—1
ﬁ%g=U{2El, ilg)  P>9q € [milyi (p)_p:jt(CI)_q:tnk"‘Zmrnr}»

k=1 r=1
where we regard a sum over an empty set of indices as zero.

For these bases, although some of the elements are sums of distinct matrix units,

we note that the summands are from distinct blocks. For example, for %’32 , no element

of the form E; ; + E; ,, appears in the standard basis. This easily verified fact and more
are summarized in the following.

THEOREM 3.14. Let B C @y, .4y, be a standard unital C*-subalgebra. For
each B € By, let Yp = {(k;i,]) :BE? =1} (ie, B= X (ki j)ew, EiE];-) ). The following
hold:

1. YgNWy =0 for every B,B’' € By with B#B'.

2. If (kyi, j), (K51, j) € W, then (k;i,j) = (K';i,j) ifand only if k=K and (i =1
o
orj=7j)

3. Ifv=(vi,v2,...,vn) € (0,1)N, then B is an orthogonal basis of % with respect
tO <', ->Tv .
We now provide an explicit way of calculating the conditional expectations asso-

ciated with standard unital C*-subalgebras. This is a complete generalization of [1,
Proposition 2.8].

THEOREM 3.15. Let B C o = @}, My, be a standard unital C*- subalgebra
For each B € By and k € [N], let ‘Pl(;k) ={(i,)): (k;i,]) € Yp}, and let |‘P \ denote
the cardinality of ‘I’g{). Let v € (0,1)N satisfy ZkZI w=1.IfA €, then
k
N wAY

k=1d, .. k
PLZZ(A) _ k (z ])E‘P

Beﬁ% ZN ‘Vk

Proof. Fix B € B4. Since ‘Pg{) is the set of indices for the nonzero entries of the
basis element B contained in the kth summand, we know that

B—= i D £®
ij "

ey



742 K. AGUILAR, S. R. GARCIA AND E. KiM
If m € IN, then Tr(E];C) = C; ; for any C € 4, and i, j € [m]. We use this fact

repeatedly in the following calculatlon Let A € o/ and observe that

*

7(B*A) = 1 z > EY ka T oA

=i j)ewy “ Jery
We also have by Theorem 3.14

N N
(B*B) = 1y > 2 Ei(,j> PSS Ei(.,j)
1 jewy) ey

Yy i'v"

= (m)ew(;)

I

Hence, by (3) of Theorem 3.14 and Theorem 2.6, we conclude that

<>A§'

Vi
Zk 1 dk lJ)E\Pk

BeBy z ‘W‘

k
which completes the proof. [
‘We next show how the Frobenius—Rieffel norms recover the Frobenius norm.
THEOREM 3.16. Forall A € 4,
1Al 2, = Al

where ||Allf, = \/— \/Tr(A*A) is the Frobenius norm normalized with respect to I,.

Proof. By Theorem 3.15, we have that

1
P,%’ln (A) = ZTI'(A)I"

Therefore,

= Al O

. 1
2 = 1P 44) | = | a1
op

The next two examples show that Frobenius—Rieffel norms are not generally sub-
multiplicative or unitarily invariant.
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EXAMPLE 3.17. Consider the unital C*-subalgebra %fl of M. Let A= [1 2]

21
54 50
P%%l <|:4 5:|> op: H |:O 5:|

Thus, HA||%%l . HA||%%l = 5. Similarly, ||AA||%%l =41, so

and use Theorem 3.15 to calculate

=5.
op

1Al

Py (A74)

2 ‘ _
, = -
A\ op

|AA

7, > Al g A
11
i

-51t)

Following similar calculations as the last example, we conclude

7.2
Jal‘l

EXAMPLE 3.18. Consider

and the unitary

2
A% =2#4=U"AUl%; .

4. Equivalence constants for the operator norm

As discussed in the introduction, it is important to be able to compare the Frobenius—
Rieffel norms with the operator norm. Theorem 2.3 says that

A1l = \/IPAA) lop < /114" Allop = 1/ 1412 = Al

for all A € EBQ/: | g, , any unital C*-subalgebra % C &7, and any conditional expec-
tation P: .o/ — % onto A. This equality is achieved by the identity matrix. Thus, the
nontrivial task is to find a constant KIJ{ > 0 such that

Kp zllAllop < [|A

PA

forall A € @Y, Ay,

We begin with some general results and then focus on the case of .#,. Then, we
move to the general case, which is more involved since the Frobenius—Rieffel norms
depend on the underlying subalgebra and faithful tracial state. We begin with an in-
equality that allows us to avoid dealing with A*A.

LEMMA 4.1. Let B C of = @ivzl//fdk be a unital C*-subalgebra, let T be a
faithful tracial state on < , and let |1 € (0,o0). The following are equivalent.

1. [|Cllop < U||P%(C)||op for all positive C € < .
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2. [|Allop < Al forall A€ o7

Proof. We begin with (1) = (2). Suppose ||C|lop < it||P%/(C)l|op for all posi-
tive C € <7 . Then ||A*A|op < u||PY, (A*A)|lop forall A € 7 . Since [|A*Allop = [|Al3,
we see that |A]lop < VAl

For (2) = (1), suppose that

[Allop < VAl 2,0 = VA [[P5(A*A) [lop

forall A € 7. Then [A*Allop = [IAII2 < [[P% (A"A) lop- Thus, [Cllop < ]1P% () lop
for all positive C € o7. U

The next lemma allows us to extend our results from standard unital C*-subalgebras
to all unital C*-subalgebras. The following fact is surprising since, at the end of the
last section, we showed that the Frobenius—Rieffel norms are not unitarily invariant in
general. Also, it can be the case that ||A||; % # ||A||r¢ for certain A € <7, but the
equivalence constants are the same for uniatrily equivalent subalgebras #,%¢ C <« .

LEMMA 4.2. Let T be a faithful tracial state on <f = @ivzl My, let B,C C of
be unitarily equivalent (with respect to o/ ) unital C*-subalgebras , and let 1L € (0,00).
The following are equivalent.

1. ullAllop < lAlle, forail A € .

2. ullAllop < Alleis forall A€ s

Proof. The argument is symmetric, so we prove only (1) = (2). Fix an orthog-
onal basis B = {By,Ba,...,By} for # withrespectto 7. Since U(-)U*: % — € is a
linear bijection, ' = {UB\U*,UByU*, ..., UB,U*} is a basis for €. Furthermore, if
J.k € [m], we have

T(UB;U*)'UBU") = t(UB}BU") = T(U*UBBy) = T(B}By).

Hence, B’ is an orthogonal basis for 4 with respect to 7.
Now let A € o/. Theorem 2.6 implies that
(U B;U*)*UB;U*)

=2
( ’L'UB* A )B>U*

i=1
*AUB*
( (U >Bl> .
1=

=UP(

((UB;U*)*A)

UB;U*

/—\

|
=

w:st

Q
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Forall A € &7,
JAI 4 = 1PZ(A"A) lop
= [UPL(U"A AUV op
P (UTAAU) |op
= [|P5((AU)*AU)llop = [|AU|17 5
> p?[AU |3,
= 12[|AlIGp
which completes the proof. [

We next present a basic lemma about positive matrices.

LEMMA 4.3. If T = A — B for some positive A,B € #,, then
1T ]lop < max{[|A[lop, [|Bllop}-

Proof. Since —||Bllop] < —B < T <A <||Al|opl, it follows that T — A1, is invert-
ible if A > ||Al[op or A < —||B||op. Thus, the spectrum of the self-adjoint matrix 7" is
contained in the interval [—||B|op, [|Allop]. [

Lemma 4.4 is our main tool in providing equivalence constants. It is motivated by
the notion of “pinching” in matrix analysis (see [3]).

LEMMA 4.4. Let X € M, be positive. If P(X) is a mean of n unitary conjugates
of X, XT (the transpose of X ), or X*, one ofwhich is X itself, then

1P(X)lop > HXIIop

Proof. Since X is positive, a unitary conjugate of X, X', or X* is also positive
(and has the same operator norm as X ). Suppose that

lnl

Zc

is a mean of n unitary conjugates C; of X, X', or X* and that Cy = X itself. Since
P(X) is positive, the previous lemma ensures that

1= 1 n
1X = P(X)llop = —X——ZC <

Consequently,
1PX)llop = IX + P(X) = X[lop
2 [[Xllop = [1X = P(X)lop

2 [ X{lop —

1
=~ X op
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which completes the proof. [

We first apply this lemma to the following family of unital C*-subalgebras.

THEOREM 4.5. Let %), C M, where (At n) and A = (ny,ny,...,ng).
If X € A, is positive, then

1
21X lop < [1Pa3, (X llop-

Moreover,
1
ﬁ”XHop < |1X]| 2,

forall X € M.

Proof. Consider the unitary U = EB,-L: 1 a)il,1i, where o is a primitive Lth root of
unity. Let X € .#,. We may write X as blocks in the following way

Xy, A

where X, € Ay, with (Xy, )i, j = Xivn,+tn_y, j+nm+-+n, foreach ke {1,2,... L},
and i,j € {1,2,...,m}, and A and B denote the remaining entries of X. By Theorem
3.15, it follows that
X, 0
X,
P, (X) =

0 X,
On the other hand, a direct computation shows that

X, 0
S Xny
I Zg) U'Xu* =
0 X,
Hence, Py, (X) = 1 35 U'XU.
By Lemma 4.4, we have that ||Pg, (X)[lop = (1/L)[|Xlop-
By Lemma 4.1, we have

<X,

1

—||X

\/Z” HOP
forall X € A#,. O
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‘We can now use the ideas from Theorem 4.5 to calculate equivalence constants for
a subalgebra of the form %, for arbitrary A (Definition 3.2). The idea of the proof is
as follows. Assume we want to project a matrix of the form

A1 A1 A3
X = |A21 A2 As3
Az1 Azp A3

onto the subalgebra of matrices of the form

B0OO
0BO
00C

We can do this in two steps. First project X onto

Aip 00
Y=10 A, 0 |,
0 0 A3z

which is the setting of Theorem 4.5. Then project ¥ onto

MO O
oOM O
0 0 Asz3

The proof of the next theorem shows how we can represent this final projection using a
mean of unitary conjugates, which allows us to utilize Lemma 4.4 as done in the proof
of Theorem 4.5. The reason for this two-step approach is that it does not seem feasible
to represent the projection directly onto the desired subaglebra as a mean of unitary
conjugates.

THEOREM 4.6. Consider %) C My suchthat (At n), where 2 = (n]",n3?, ...,
ny't). Set r= SE  m; and € =1em{my,my,...my}. If X € M, is positive, then

1
1Pz, (X)llop = 511X [lop-

Moreover,

1Xllop = —=1X1lop

1
N
forall X € M.

Proof. We write Py, as the composition of two maps. For each i € [r], set

e if1 , il
“T\n if2 and 1+ 'm, <i<3 _ m 1)
J =1"Mp XPX Lp=1"p>
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thatis, ey =ny, ex=ny, ..., ey, =ng,and

Cmy+1 = N2, €my4+2 = N2y oy Cmy4+my = N2,

etc. Now set A’ = (ey,ez...,e;) and note that (A’ Fn). By Theorem 4.5, we have
1Pz, (X)|lop = (1/7)||X]lop for all positive X € .4,.

For each i € [L], let V;; to be the nym; X njm; circulant matrix with all zeros in
the first row, except for a 1 in the (1+ jn;)th position for j € 0,1,...,m; — 1. Then
we define V; = EBi-‘:lV(j modm;),i for j=0,1,....¢—1 where £ =lcm{my,m;...,mp}.
For any positive X € .#,,, define

1 -1
00X) = X VAV;.

J

By Lemma 4.4 [|Q(X)||op = (1/£)||X||op for all positive X € .#,. Then, a direct
computation along with Theorem 3.15 provides that Py, (X) = Q(P#,, (X)), which
gives us

1
1Pz, (X)llop = 511X [lop,

for any positive X € .#,,. The rest follows from Lemma 4.1. [J

EXAMPLE 4.7. We calculate the values of r,¢ for the following subalgebras of
M.
For %;2, wehave r=1+1=2and {=Icm{1,1} =1. Thus r{ =2.

For ﬂ;zil,wehave r=2+4+1=3and {=1cm{2,1} =2. Thus r{ =6.
For % |, ,wehave r=1+2+1=4 and {=lcm{1,2,1} = 2. Thus r{ = 8.
For ) |;, wehave r =143 =4 and £ =lcm{1,3} = 3. Thus r{ = 12.

We also note that for the subalgebra %‘1‘3 . C My, wehave r=3+1=4, { =
lem{3,1} =3, and r/ = 12.

Thus, combining Theorem 4.6 with Lemma 4.2 and Theorem 3.9, we have found
equivalence constants for Frobenius—Rieffel norms constructed from any unital C*-
subalgebra of ., built from natural structure (the dimensions of the terms of the block
diagonals of the given subalgebra).

Table 1 outlines the equivalence constants for all unital *-subalgebras of ., for
1 <n < 5. The second column contains equivalence constants suggested by brute force
using software (this was done by making software calculate the operator and Frobenius—
Rieffel norms of many matrices, and then making a guess), which we think might be
the sharp equivalence constants. The third column contains the theoretical equivalence
constant found in Theorems 4.5, 4.6. Our goal in this paper is not to find the sharp
equivalence constants, but just explicit ones that afford us some continuity results as
mentioned in the first section. It remains an open question to find the sharp constants,
and this table suggests that we may have found the sharpest constants in some cases.
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Algebra | Guess of Sharp Equiv. Const. | Theorem 4.6 Equiv. Const.
8 1/v2 1/V2
B | 1/V3 1/V/6
B3, 1/V2 1/V2
5, 1/v4 1/V4
%3,1,1 1/V3 1/V/3
7 1/V3 1/vV6
ey 1/va 1/V12

B 1/va 1/V8
%g,z 1/V2 1/V2
%3,2,1 1/V3 1/V/3
B, | 1/V4 1/V6
'@3,1/,1 1/V3 1/V/3
%;12 1/V3 1/V/6

@3,1,1.1 1/v4 1/V3
e 1/V4 1/V12

e 1/V4 1/V8

Table 1: Theorem 4.6 equivalence constants and guesses of sharp equivalence constants

4.1. The general case

We now study the case of EBszl My, , which is much more involved for two main
reasons. First, as seen in Example 3.11, the canonical basis elements for standard unital
C*-subalgebras of @ivzl ///dk can have non-zero terms in multiple summands, which
requires more bookkeeping than the previous section. Second, the Frobenius—Rieffel
norms now vary on an extra parameter: the faithful tracial state. In the .7, case,
the only faithful tracial state is %Tr, so this was not an issue. For instance, consider
Mo M, and the subalgebra

P = {diag(u,v) ® diag(u,p) : u,v € C}.

To build a Frobenius—Rieffel norm on .4, @& .4, with respect to %, we also need a
faithful tracial state on .#, & .#>. We could take T(1/43/4) on > © A (see Ex-
ample 2.4). Hence, taking into account the expression for the associated conditional
expectation of Theorem 3.15, we need to keep track of how the coefficients 1/4 and
3/4 impact the construction of the Frobenius—Rieffel norm since p appears in both
summands. Thus, we cannot simply view Z as a subalgebra of .#4 and proceed to use
the previous section since we would lose track of the weights since .#4 has a unique
faithful tracial state. The following definition environment allows us to collect all the
terms that we use to find our equivalence constants in this much more involved setting.
We note that we generalize the constants r, ¢ from Theorem 4.6.
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DEFINITION 4.8. Let Z C &/ = @2’:1 Mg, be a standard unital C*-subalgebra,
where for each k € [N], we have pi(%) = %’i’; with (A I di). We denote my, =

(mk71 s M2y ,mk7Lk) and Illk = (l’lk71,l’lk72, . ,nk7Lk) .

Next, we collect the data we need associated to a given faithful tracial state. Let
v = (vi,v2,...,vy) € (0, 1)V such that ¥¥ ,v; = 1, and let {by,bs,...,by} be the
canonical orthogonal basis for % given by matrix units.

Define:

L C=lem{my;:ke[N)i€ L]},

2. r=lem{r(,ry...,rn}, where ry is the number of blocks of % in the kth sum-
mand of &7 for each k € [N],

3. m=Ilem{my,,...,mp, }, where m, is the number of nonzero entries of the basis
element b; for each i € [M],

4. a:min{:l—":ke [N]}7 and
k

5. 7= max{Zf{vz P ’2’:" e [M]}, where py; is the number of times there is a
nonzero entry of b; in the kth summand of .« for each i € [M] and k € [N].

First, we tackle the subalgebras of the form %% in Definition 3.6, which recovers
Theorem 4.6 when N = 1.

THEOREM 4.9. Consider o/ = @}_, My,. For each k € [N], consider %;, C
Mg, such that (A &= dy). Set

N
B=D 5,
k=1

Let v=(vi,v2,...,vn) € (0, )N such that 22\;1 ve=1.If X € & is positive, then

1
P () lop = 11X lop,

and, moreover,

1
W“Xnopg 1Xlv,
forall X € o .

Proof. For each B € B4, let kg € [N] be the summand where B has a non-zero
entry. Theorem 3.15 implies that

(kg)
i A
Y (A) = Z (1.1)E€Yp iy i) B

BeBy ‘LPB?kB‘

forall A € &/.
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We recover PY, using a mean of unitary conjugates in two steps. Let k € [N].

Suppose the ith block of %, has dimension (el(k))2 (see Expression (4.1)). Set 4] =

(e(1k>,e§k), . ,egf)) and note that (4] - di). Then, let

Tk
U(k) = @ a)ile(k)7
i=1 i

where @ is a primitive ry th root of unity.
Note that U = (U M ... ,uW )) is unitary as each U®) is unitary. We then define
P @il — @il By by

N 1=l i mod ry, *y i mod ry,

=15 0) ™ (0 )

1 (X) g - g(,)

where i mod ry € {0,1,...,r,—1}. By Lemma 4.4, we have ||Pi(X)|op = (1/7)||X||op-
Using the convention for my, ,n; in Notation 4.8, we then define, for k € [N],i €

(L], the matrix Vi ;; to be the nymy; x nymy; circulant matrix with all zeros in

the first row, except for a 1 in the (1 + jng;)th position for 0 < j < my; — 1. Set

k L ,
V,.( ) =@:% Vi(jmod my).i for j=0,....¢—1,and let

r
i

Then define P> : @Y, Py — & by

1 (-1 .
P(X) = 7 > ViXV;.
j=0

Since Vy =1, we know ||P2(X)|lop = (1/£)||X||op by Lemma 4.4. We also have that
P}, = P, o Py by construction. Hence

1
1% (X)llop = —5 11X llop,

which completes the proof by Lemma 4.1. [

The values of v= (v{,v2,...,vy) € (0,1)V do not appear in the calculations above.
This makes sense because the case of Theorem 4.9 is essentially the case when N = 1
since the non-zero entries of a basis element do not appear in multiple summands, and
so the different coordinates of v do not appear and we simply work with sz=1 v =1.
Thus, we now move towards the case when the non-zero entries of our basis elements
can appear in multiple summands, such as in Example 3.7 and as in the subalgebras
defined before Theorem 5.2. To provide intuition for the following proof, we revisit the
example at the beginning of the section. Consider .#, & .#/, and the C*-subalgebra

P = {diag(u, v) & diag(u,u) : u,v € C}.
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The first step of the following proof is to project an A& B € .#> & .#> onto an element
of the form diag(a,b) @ diag(c,d) € M ® #>. Next, in order to project diag(a,b) ®
diag(c,d) into A, we view diag(a,b) ® diag(c,d) as diag(a,b,c,d) € 44 and we
view elements of % as diag(u, Vv, u, ). Then we use a mean of unitary conjugates in
My to project diag(a,b,c,d) to an element of the form diag(u,v,u, ), which is an
element in Z. To form the unitaries, begin with W; = I,. Next, since the (1,1)-entry
in diag(u,v,u,u) repeats in the (3,3)-entry and (4,4)-entry, we permute the first,
third, and fourth column of W| = I two times to get two more unitaries

0010 0001
0100 0100
W2= 10001 and - W= 1500
1000 0010

If we permute these columns one more time, then we obtain 1. Note that
3
Y Widiag(a,b,c,d)W;" € .
i=1

Using Definition 4.8, note that m = lem{3, 1} = 3 since the standard basis elements of
P are diag(1,0,1,1) and diag(0,1,0,0).

THEOREM 4.10. Let v= (v{,v2,...,vy) € (0,1)V such that 227:1\/1( =1.Let A
be a standard unital C*-subalgebra of </ = @szl Mg, . If X € o is positive, then

o
o X lop < 1P ()l ep
and, moreover,
L

7||XH0p < HXHVLB’

v/ rlmy

forall X € o .

Proof. For € as defined in Definition 3.6, we have [|Py_(X)||op = (1/(r€))[IX[lop
for positive X € o7 by Theorem 4.9.
We then define

N
Vi
P(X)= @a—k %j@(x)(k),
=1

which gives us [|P'(X)|lop = Z||X ||op for all positive X € @}, .4y, -

Suppose eﬁ is the dimension of the kth block of % and b is the total number of
blocks of Z. For the following, we view % and </ as subalgebras of .#,, where
d=3N  dp.Let

b
Wi =P, =1.
k=1
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We construct W, by permuting the blocks of W) in the following way. If the kth block
of % is not repeated, then fix I, . Next, assume that the kth block of # is repeated
and that the kth block is the first position this repeated block appears. Assume that
the jth block is the next block to the right that the the kth block is repeated. Then
I, stays in the same rows it occupied in Wy, but its columns permute to the columns
(in .#y) of the jth block in Z. If the jth block is repeated, then repeat this process
with 1, ;- However, if the jth block is not repeated, then permute the columns Ie_,. to the
columns of the kth block. Continue in this way until all blocks are either permuted or
fixed depending on repetition or lack thereof, which gives us W,. Repeat this process
to make W3, Wy, ..., W,,, where m is defined in (3) of Definition 4.8 (see the example
before the statement of the theorem). Note that W,,. | = I;. Define f: €5 — % by

I & .
FX) = — 3 WXWS,
i=1

which satisfies

o
AP GO lop >~ X lop
for all positive X € ¥z by Lemma 4.4.
Finally, by Theorem 3.15 and a direct computation, we have that

néaww=ﬂﬂﬂamw.

We conclude that o

PL(X)|lop = ——
125 op >

[1Xop

for all positive X € .o/'. Lemma 4.1 completes the proof. [J

We can use the previous theorem to find equivalence constants for all unital *-
subalgebras Z C @)_, .4, by Lemma 4.2.

5. An application to Effros—Shen algebras

To finish, we now apply our main result to the finite-dimensional C*-algebras in
the inductive sequence used by Effros and Shen in the construction of their AF alge-
bras from the continued fraction expansion of irrational numbers [7, Section VIL.3], [8].
These algebras provide a suitable example to test our results. Indeed, in [2], it was
shown that the Effros—Shen algebras vary continuously with respect to their irrational
parameters in a noncommutative analogue to the Gromov—Hausdorff distance, called
the dual Gromov—Hausdorff propinquity [15]. A crucial part of this result is the fact
that each Effros—Shen algebra comes equipped with a unique faithful tracial state and
that the faithful tracial states themselves vary continuously with respect to the irrational
parameters. Therefore, to test our results in the previous section, we will see that for the
Frobenius—Rieffel norms that are built from these faithful tracial states, this continuity
passes through to the equivalence constants. This further displays how far-reaching the
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information of the irrational parameters appears in structures related to the Effros—Shen
algebras.

First, given an irrational 6 € (0, 1), the Effros—Shen algebras are built using the
continued fraction expansion of 6. The continuity results in [2] were established using
the Baire space, a metric space that is homeomorphic to (0,1)\ @ with its usual topol-
ogy. The Baire space is the set of positive integer sequences, which is in one-to-one
correspondence with (0,1) \ Q via the continued fraction expansion, equipped with the
Baire metric. We begin reviewing continued fractions and the Baire space. Background
on continued fractions can be found in many introductory number theory texts, such as
[9].

Let 6 € R be irrational. There exists a unique sequence of integers (r,?)ne]NO
(where INg = {0} UIN) with ¢ > 0 for all n € IN such that

6 = lim r§ +

Nn—s00 1

When 6 € (0,1), we have that rg = 0. The sequence (r,?)ne]NO is called the continued
fraction expansion of 0.

To define the Baire space, first let .4~ denote the set of positive integer sequences.
The Baire metric dp on ./ is defined by

0 ifx=y,
dp (xa)’) = o—min{n€NxaFya}l  if 7& y.

The metric space (./,dp) is the Baire space. In particular, the distance in the Baire
metric between two positive integer sequences is less than 27" if and only if their
terms agree up to n. We now state the following well-known result in the descriptive
set theory literature.

PROPOSITION 5.1. ([2, Proposition 5.10]) The map
0c(0,1)\Q— (r)en € N
is a homeomorphism with respect to the usual topology on R and the Baire metric.

Thus, convergence of a sequence of irrationals to an irrational in the usual topol-
ogy on R can be expressed in terms of their continued fraction expansions using the
topology induced by the Baire metric.

Next, we define the finite-dimensional C*-subalgebras of the Effros—Shen alge-
bras. For each n € IN, define

0 °] 0 0
Po =710, plzl and ‘IO:L qp =T
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and set
0 6 6., 6
pn+1 = rn+lpn +pn71
and
0 6 6., 6
9n+1 = Tnt+149n +qn—1'
The sequence (pg /48 )n Ny of convergents p?/q® converges to 6. In fact, for each
nelN,
i _ 6 !
q! 0 1

Ly 1
-+
We now define the C*-algebras with which we endow Frobenius—Rieffel norms.
We set o7y o = C and, for each n € Ng, we set

52{97,, = %qg @ ///qe

n—1

For the subalgebras, define
0y, ADBE ﬂgm — diag (A,...,A,B)®A € W97n+17 5.1

where there are V;? 41 copies of A on the diagonal in the first summand of 7 1. This
is a unital *-monomorphism by construction. For n =0,

Opo: A€ 42{970 — diag(?L,...,)L) GA € 42{971.
For each n € Ny, set
%O.ﬁ+l = a97n(%97n)7

which is a standard unital C*-subalgebra of .7 ;1 .
To complete the construction of the Frobenius—Rieffel norm, we need to define a
faithful tracial state. We begin with

1(6,n) = (=1)""'q; (6q;_ — p;—1) € (0.1).

Then set
Vo, = (1(0,n),1—1(0,n)),

so for all (A,B) € @/ ,, we have
1 1
Tp, (A B) = 1(6,n)—5 Tr(A) + (1 —1(6,n)) ——Tr(B).
dn qn—l
For each n € N, the Frobenius—Rieffel norm on .7, associated to vg, and to the

unital C*-subalgebra %y , is denoted by

|| : Hvﬂ.nv*@&n °
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We conclude the paper with the following theorem, which shows that the equiv-
alence constants we found in this paper are natural in the sense that they reflect the
established continuity of the Effros-Shen algebras with respect to their irrational pa-
rameters.

THEOREM 5.2. Let 6 € (0,1)\ Q and N € IN. Then

66]6—[79
¢ PN lallop < llallve o < lallop

(098 > —pRo) ru(ry+1)

forall a € . If (Bp)nen is a sequence in (0,1)\ Q converging to some 6 €

(0,1)\ Q, then

0, 0 0
lim 9n61N Py Oqy — Py

e 9 _ 0 )00 :
<9q19\,"_2 - pj%_2> (e 412 (008, P L) S 0R 1)

Proof. First, we gather the necessary information from the canonical basis of % ,,
given by matrix units. Let

ﬁe,n = {bl, . ’b(q,i’,l)z}

be the set of basis elements that span elements of the form ag ,—1(A4,0) € By ,,. Let

o
Bo.n = {b<q2,1>2+17 T vb(qs,n%(qs,zﬂ}

be the set of basis elements that span elements of the form o ,—1(0,B) € %y, . Note
for n =1, we have [3(’97,, = 0. Thus, the canonical basis for %y , is

ﬁr%’g‘,, = ﬁe,n U ﬂé,n'
Using Definition 4.8, we have

£(0,n) = lcm{rn, =

and

r(8,n) =lem{rd + 1,1} =9 1.
Next

m(0,n) =lem{rf +1,1} =% +1
and

o(9,m) = min { (~1)"~" (6g_ —p?1) . (~1)" (042~ p!) |
= (=1)" (007 —pt).
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where the second term is given at the end of the proof of [2, Lemma 5.5], and finally

7(0,m) = max {rd - (<1~ (005, — pi_,) + (~1)" (042 — pY)
(~1" (081~ p8) }
=18 (=1 (g8~ py) + (=1)" (648 — pf)
= (—=1)"(044_>— py_2)-

Thus, we conclude that the equivalence constant of Theorem 4.10 is

0q8 — pd
(048 5 —pb ) r8(r8 +1)?

(5.2)

Next, by Proposition 5.1, for fixed n € IN, there exists 0 > 0 such that if 1 €

(0,1)\Q and |6 —n| < &, then 18 = r} forall m € {0,...,n+ 1}, and thus the same
holds for pff1 = p and q,?l = g, In particular, for irrational 6, (5.2) is continuous in

0.
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