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1. Introduction

In [11], Duke proved a remarkable “short-sum theorem” that relates the value of an
Artin L-function at s = 1 to a sum over an exceptionally small set of primes. To be more
specific, if L(s,x) is an entire Artin L-function that satisfies the Generalized Riemann
Hypothesis (GRH), Duke proved that

logL(Ly) = Y. @+0(1), (1)

p<(log N)*/2

in which p is a prime, x has degree d and conductor N, and the implicit constant depends
only upon d [11, Prop. 5]. Our main result is an explicit version of Duke’s theorem (by
“explicit” we mean that there are no implied constants left unspecified).

Theorem 1. Let L(s,x) be an entire Artin L-function that satisfies GRH, in which x has
degree d and conductor N. Then

log L(Lx) = Y. X(p) < 13.53d. (2)
p<(log N)t/2

The need to make every step explicit requires great precision. A wide variety of pre-
liminary results are needed with concrete numerical constants. For example, we require
certain gamma-function integral estimates and a version of Mertens second theorem
applicable over a large range and with all numerical constants specified. Furthermore,
several parameters must be finely tuned and optimized to reduce the upper bound in
(2) as far as our techniques permit (all numerical computations that follow were verified
independently in both Mathematica and Python). Overall, the proof of Theorem 1 is
much more complex than the proof of (1).

Duke’s original motivation was the construction (under GRH) of totally real number
fields with certain extremal properties [11]; see [2,3] for related work also assuming the
Artin or strong Artin conjectures, and [9] for progress in the unconditional case. Since
its introduction in 2003, Duke’s result has been used to study the smallest point on a
diagonal cubic surface [13, p. 192], complex moments of symmetric power L-functions [8,
(1.46)], upper bounds on the class number of a CM number field with a given maximal
real subfield [10, p. 938], and extreme logarithmic derivatives of Artin L-functions [4,
p. 583] (all under GRH). Consequently, the novel bound (2) should lead to explicit
estimates in several adjacent areas.

Theorem 1 yields explicit estimates for kg, the residue at s = 1 of the Dedekind
zeta function (k(s) of a number field K (the Riemann zeta function is ( = (g). For
quadratic fields, such estimates have a long history dating back to Littlewood [21];
see also Chowla [6], Chowla-Erdds [7], Elliott [12], Granville-Soundararajan [15], and
Montgomery—Vaughan [26]. Since kg appears in the analytic class number formula [19,
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p. 161] and in Mertens-type theorems for number fields [20,35], explicit estimates such
as the following should have immediate use.

Corollary 2. Assume GRH and that (g /C is entire. If K is a number field of degree ng > 2
and discriminant Ak, then

1 17.81 ng—1
17810k —1) Jog log | Ak < kK < (e loglog [Ak|) . (3)

Forng = 2,3,4,5,6, we have the following.
! <
el”8lloglog |Ak| —
1

. _ < pr < Q1887 2
For ng =3, we have 75T Toglog [ Ag| = kK < e (loglog |Ak])
1

e For ng = 2, we have kg < et™®loglog |Ak|.

e Forng =4, we have

< kg < e**1(loglog|Ak|)3.
e22521oglog [Ak| — rg < e (loglog [ Ak |)
1

. = < kg < €22 4
For ng =5, we have T 55 Tog log | Ag| = kg < e“““(loglog |Ak|)
1

_ 33.36 5
o Forng =6, we have 72T log log | Ak | < kg < e”(loglog |Ak|)°.

That (kx/( is entire is known if K is normal or if the Galois group of its normal clo-
sure is solvable [39,40]; see [29, Ch. 2] for more information. In particular, this hypothesis
holds for any cubic or quartic number field. The upper and lower bounds in (3) have the
expected order of magnitude (under GRH) with respect to |Ak|, although the depen-
dence on ng can be improved if one uses inexplicit constants; see [5, (1.1)]. The novel
contribution in Corollary 2 is the explicit dependence upon the degree and discriminant;
there are no implied constants left unspecified.

For ng > 3, the best known explicit unconditional bounds are

00144 log |Ak |\ ™!
0.0014480 o< <e og | K) ’ ()

nig(nig)|Ax | ™ 2(ng — 1)

in which g(nk) = 1 if K has a normal tower over Q and g(ng) = nk! otherwise. The lower
bound follows from an analysis of Stark’s paper [38], although his language is ambiguous;
see [14, Rem. 13]. The upper bound is due to Louboutin [22, Thm. 1]. For entire (k/(,
Louboutin refined the upper bound in (4) [25, Thm. 1] and provided refinements under
other assumptions (e.g., K is totally imaginary) and depending upon the location of a
possible real zero of (g [23,24]; see also Ramaré [34, Cor. 1].

This paper is organized as follows. The proof of Theorem 1, which occupies the bulk
of this paper, is in Section 2. The proof of Corollary 2 is in Section 3.

Acknowledgments. Special thanks to the anonymous referee for a careful reading of this
paper. Thanks to Andrew Booker, Peter Cho, Michaela Cully-Hugill, Bill Duke, Eduardo
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Friedman, Edray Goins, Ken Ribet, Aleksander Simonic¢, Valeriia Starichkova, and Tim
Trudgian for helpful conversations.

2. Proof of Theorem 1

We assume the Generalized Riemann Hypothesis (GRH) throughout what follows.
The proof of Theorem 1 requires a series of lemmas, which are spread out over several
subsections. Section 2.1 presents Mertens’ second theorem with an explicit error term
and a large range of applicability, Section 2.2 involves general bounds for entire Artin L-
functions, and Section 2.3 deduces estimates for their logarithmic derivatives. A technical
integral estimate involving the gamma function appears in Section 2.4. In Section 2.5, we
approximate the logarithmic derivative of an entire Artin L-function using a sum over
primes. Section 2.6 builds upon the previous material and considers a particular expo-
nentially weighted sum, which is refined further in Section 2.7. The proof of Theorem 1
wraps up in Section 2.8, where we optimize several numerical parameters. Appendix A
contains a convenient, cross-referenced summary of the constants and functions that
arise throughout the proof.

2.1. Ezxplicit Mertens’ theorems

We require an explicit version of Mertens’ second theorem under the Riemann Hypoth-
esis (which is implied by GRH). We need a convenient estimate valid for 2 > (log 3)/? ~
1.04815 (this number arises because 3 is the smallest possible value of the conductor of
an entire Artin L-function; see the comments at the beginning of Subsection 2.2). Thus,
we add a rapidly decaying term to Schoenfeld’s estimate [37, Cor. 2] so that the fi-
nal result is valid in a larger range while keeping the main term essentially intact for
large .

Lemma 3. Assuming the Riemann Hypothesis,

1
Z — —loglogx — M’ <m(x) for x> 1.048, (5)
p<z

in which M = 0.261497212847642783755 ... is the Meissel-Mertens constant and

m(z) = % (%) + 2 (6)

x
Proof. For z > 13.5, the result follows from [37, Cor. 2, eq. (6.21)] (the summand 5 /2>
is not needed in this range). For 1.048 < x < 13.5, the desired inequality can be verified
by direct computation; see Fig. 1. O
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2 4 6 8 10 12 14

Fig. 1. Lemma 3 in the range not covered by [37, Cor. 2]. Graphof | 3° __ %—log log x— M| (blue) versus m(x)

(black) for 1.048 < z < 13.5. The vertical clearances at * = 5,7,11, 13 are approximately 0.061, 0.0010,
0.045, and 0.018, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

2.2. Explicit bounds for Artin L-functions

The relevant background for what follows can be found in [17, Ch. 5], [27], or [30,
Chap. VII]. Let L(s,x) be an entire Artin L-function, in which x has degree d and
conductor N; it is of finite order with a canonical product of genus 1 [17, Thm. 5.6].
We assume that L(s, x) satisfies GRH, so that log L(s, x) is analytic on Res > 1/2.
Moreover, N > 3 since it is integral and Pizarro-Madariaga proved that N > (2.91)%
[33, Thm. 3.2]; Odlyzko’s lower bound (2.38)? [31, p. 482] also implies the desired esti-
mate.

Lemma 4. |L(s, x)| < ((6)? for Res > 6 > 1.

Proof. For Res > 1, [11, (22)] ensures that
log L(s, x) Z i i ™, (7)
p m=1 m
in which |x(p™)| < d [11, (23)]. Therefore, (7) converges absolutely and

—md

|log L(s, x)| ZZ% ™) 7mRes§dZme = dlog ((9). (8)

p m=l1 p m=1

So for Res > & > 1, |L(s, x)| = e LX) | < ellog Llsx)l < edlogc(d) = ¢(5)d. O

We need an upper bound for L(s, x) on a slightly larger half plane that extends into
the critical strip. As is customary in the field, we often write s = o + it for a complex
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variable, in which o,¢ € R. For an analytic function f(s), let f(s) = f(3), which is also

analytic. Then A(s) = A(1 — s), in which A(s) = v(s)L(s, x) and

d
v(s) = eN2(573) H I'r(s+ py)

j=1

with Tr(s) = 77%/2T'(s/2) and for some |¢| = 1 and p; € {0,1} [1, Sect. 1.3]. In fact,
i = 0 exactly 1(d+ ¢) times and p; = 1 exactly 1(d — ¢) times, where ¢ is the value of
the underlying character on complex conjugation [11, p. 111].

Lemma 5. |L(s, x)| < CIVN|1 + 5\% for Res > L, where Cy := G2 ~1.04219.

27 NGT
Proof. The analytic conductor
d s +
=N L
Q(s) E o
satisfies
N
Q(s)| < (271_)d|1+s|d foro > —1. 9)

Let X(s) =7(1 —s)/7(s), so that the functional equation becomes L(s, x) = X (s)L(1 —
$,X) [1, p. 387] (note that [1] uses x for our X; we have already reserved x for the
character of L). A special case of [1, Lem. 4.1] implies that

<o<

L(s,x)I” < [X()Q(5)| sup [L(s,x)I>  for —

2

N

1
2

Since |X(s)| =1 for o = 1, the previous inequality, (9), and Lemma 4 yield
IL(s,x)| < ¢(3)VIQ(s)]  for o= 3. (10)
Lemma 4 and the definition of @ ensure that
L(s,x)| < ¢2m)? < ¢(3)WVIQ(s) for o > 2m. (11)

Since L/+/Q is analytic for o > 1, the Phragmén-Lindeldf principle and (9) imply that
the desired inequality holds for o > % O

Remark 6. Let us be more explicit about the final step in the proof of Lemma 5. As
mentioned above, L(s,x) is an entire function of finite order [17, Thm. 5.6]. Thus,
|L(s,x)| = O(explt|*) for some a > 1 and all s € C; this growth estimate permits
us to appeal to the Phragmén—Lindel6f principle below.
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Suppose that 1+ < Res < 0, in which o > 27. The bounds (10) and (11) ensure that
L/+/Q is bounded by ¢(3/2)? on the boundary of the vertical strip {o+it : £ < o < 00}
Consequently, the Phragmén—Lindelof principle for a strip [28, Thm. 8.1.3] ensures that
the same bound holds on the interior. In particular, it holds at s, which was an arbitrary
point with Res > %

2.8. An explicit bound for the logarithmic derivative

In what follows, let
l<n<? and 0<6<3.

These constants will be optimized toward the end of the proof. In particular, the range
of admissible § shall be further restricted as new information emerges.

Lemma 7. Let L(s, x) be an entire Artin L-function that satisfies GRH, in which x has
degree d and conductor N. For % +d<o<2n— % -4,

L'(s,x) 1
‘ o) ’ < Codlog (C5Na ([t| +4)), (12)
where
2
Cy :=C(4,n) = 225_2 ! and C3:=C3(n) = (Cl CC((;;))) : (13)

Proof. Since ((0)/v/o + 1 is decreasing for ¢ > 1, computation confirms that {(c) <
Civo + 1 for 0 > 1.89. For ¢ > 2, Lemma 4 and the integrality of N imply that

4 d
2 2

|L(s,x)] < ¢(2)! < Cf(2+ 1) < CIVN(|t] + 3)*2.

On the other hand, Lemma 5 ensures that
[L(s, )| < CIVN|1 452 < CIVN(lt] +3)*
for % < o < 2. Therefore,

Relog L(s,x) = log |L(s, x)| < dlog C1 + 3 log N + 4 log (| Im s| + 3)

for o > 1. Next observe that [1, Lem. 4.5] with § = 0 provides

d
(%) < |L(n +it,x)|

since n > 1. Therefore,
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Fig. 2. For t € R, the inequality (12) holds for s in the green region. In particular, it holds for all s on the

blue line segment. Since ¢t € R is arbitrary, (12) holds for Re s € [% +9,2n — % — 9.

Relog L(n + it, x) = log |L(n + it, x)| > dlog 44((2:))
For f analytic on |z| < R, [18, Cor. 5.3] says that
2R
|f'(2)] € 75— =75 sup Re(f(£) — £(0)).

(R—12])? |¢)<r

Fix ¢t € R and apply the inequality above to f(z) = log L(z + n + it, x) with

R=n-1% and |s—(n+it)|[ <R—-6

z

so that

140 =n—R+6 < Res < n+R-0 = 2n—1—4.

1
2

As z ranges over |z| < R—§, observe that s assumes every value in the horizontal segment
[%+5+it, 2n — % — 0 + it]; see Fig. 2. Since R = nf% < %f % =1, it follows that

[Im &| < 1 whenever |€| < R. Therefore,

L’(s,x)‘ 2(n - 3) . .
< sup Re (log L(§ +n+it, x) —log L(n + it, x)
‘ L(s,x) |~ (R—=(R=10))* g)<r ( )
2n—1 .
< 7752 |5S|u<pR (dlog Cy + $log N + & log (|t + Im&| + 3) — log L(n + it, x))
o —1 (2
< 77672 <d10g01+;logN+glog(|t+4)dlog C((:))>
(2n —1)d 1 ¢(2n)
<M= 2% _ S\
< o5 2log C1 +log N +log (|t| +4) — 2log )
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Fig. 3. For 0 < § < 1, the function f(—146) — f(—3 +6) has a unique real root 7 = 0.219733068786773 . . ..

ol +0) (55 ]

(2n—1)d

<
- 242

log

< Codlog (C3Na ([t] +4)).
Since t € R is arbitrary, the desired bound holds for % +d<Res<2n-— % —46. O

Duke’s approach to the previous lemma uses an estimate result of Littlewood [21,
Lem. 4], which is [11, Lem. 2] in Duke’s paper, instead of the slightly sharper [18, Cor. 5.3]
used above. More information about “sharp real part theorems” for the derivative can
be found in [18, Ch. 5], along with a host of historical references.

2.4. An integral estimate

The proof of Theorem 1 requires an integral estimate that involves the gamma func-
tion. First, consider the real-valued function

f(s)

V2 1|o+3 1
= mls + 177 exp <6| > (14)

5] s+ 1|

for s = o + it with 0 € [-1+ 6, —3 + 4]. Since

V2meds (3 + 6+ Jt])°
It]

0< f(s) <

uniformly as |[t| — oo for such o, we may use numerical methods to maximize f(s) in
the vertical strip o € [~1 4, —3 + 4. Let

7 = 0.219733068786773 ... (15)

denote the unique root of f(—1+4) —f(—% +4) with 0 < § < %; see Fig. 3. Computation
says that for 0 < § < 7, the function f(s) attains its maximum value
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Fig. 4. For 0 < § < 7 = 0.219733068786773..., the nonnegative, real-valued function f(s) attains its

maximum value in the vertical strip o € [-1+6,—% + 6] at s = =1+ 6.
V2r80 -z e (16)
=715

at s = —1 4 9; see Fig. 4.

Lemma 8. F0r0<5§7and—1+5§03—%+5,

7 1 log N
‘/|F@w%ﬁﬂbg«kN?ﬂﬂ+4»dt§ 91%5__+C%
in which
S—1 1

V(1 —96)
T
Cs :=C5(6,n) = C4(logC3 + 5)
Proof. For s = o + it with o > 0, we have the inequality [32, 5.6E9]:

1
[T (s)| < \/27r|s|"_%e_”‘t|/2 exp (%)

Since I'(s + 1) = sT'(s), the previous inequality and (14) yield

IT(s)] = uxs—k1)|<:Vﬁﬁﬂs+-ua+;e—an2eXp(: 1 ) _ feemiz. (1)

sl — |s] 6ls + 1]
For 0 < § <7, (16) and (18) imply that
IT(o +it)| < pe™ ™12 for o e [-1+6,—4 4+ 0] and t € R.

Since |I'(z)] = |T'(z)] for z € C, we get
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/ IT(0 + it)| log (CsN 4 (] + 4)) dt

:2/|F(a+z’t)\1og (C3N(t +4)) dt
0

o0

2u / e ™2 og (CgN% (t+4))dt
0

IA

IN

I 1
24 / e 2 {log Cs + p log N + log (t + 4)} dt
0

2 2 logN
<2u <—logC3+—' o8 +1>
T T

d
4 (1
g—“<°g +1og03+ﬁ>
™ 2
log N
:C4Ogd Cs. O

2.5. Approzimating the logarithmic derivative

The next lemma is an explicit version of [11, Lem. 4], which relates the logarithmic
derivative of an entire Artin L-function to a sum over the primes.

Lemma 9. Let L(s, x) be an entire Artin L-function that satisfies GRH, in which x has
degree d and conductor N. For 1 <u < % and x > 1,

- L' (u,x) Codzz 0= (Cylog N
1 veTp/® ) < 76d.
;( ogp)X(plp e+ TR < T+ Cs ) +0.76
Proof. For Res > 1, the derivative of (7) provides
- - L'(s, x)
logp »  x(p™)p™™" = - : 19
2 Toxp 2 X7 Lis.v) "

Substitute y = p/z in the Cahen—Mellin integral (see [16] or [28, 6.6.2, p. 380])

n+ioco
e Y =— / y °T'(s)ds for y > 0,

and obtain
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1 n—+i00
e P /T = 5 / p~ ™ x’T(s)ds for x > 0.
T
7N—100

For 1 <u < 2 and z > 1, it follows from (19) that

S ioen 3 x e
o 1 n-+ico
=Stoen Yo aim (o [ T as)
p m=1 n—100
! n+ioco 0
- 1 my, —m(s+u) s
oo / (zp: ogpzlx(p )p 2°T(s) ds
n—1io0 m=

n+ioco

1 r
_ 1 / 4w opig) s,
2mi L(s+u,x)
n—100
Shift the integration contour to the vertical line Res = % + § — u. Since T" has a simple
pole with residue 1 at s =0 and % 4+ — u < 0, we pick up the residue

L(s+uX) spig) = LX)
13—63( L(s +u, x) H )>

and obtain
T +0—utioco

L ) 1 L'(s +u,x)
1 - ST BN s (s)ds. (2
Z ogp Z muepm/x L(u’ X) 21 / L(S +u, X) T (S) ds ( O)

%+6—u—ioo

Since § +0 —u € [~1 + 8, —% + 8], we estimate the integral on the right-hand side of
(20) with Lemmas 7 and 8:

% +d—u+tioco

L’(s—l—u,x)ms <) ds
[ Terigere

%+57u7ioo

</ L3 +0+it,x)
L(E +6+it,x)

‘ 3EOUD(L 46— u o it)|dt
< Cydaz o / ID(L 468 — u+it)|log (CsNa ([t| + 4))dt

— 00

. Cylog N
< Codprto—v (% + c5>.
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The triangle inequality, (20), and the preceding inequality imply that

wers " Tu,y)

3" logp x(p) N L' (u, x)
. p

’"L

m/m

— pmuepm/m

ZIngZ muep’”/x '

< ngq;fr‘s*“ Cylog N
- 27 d

We bound the sum over m > 2 above using |x(p™)| < d, the inequality 1 < u < 2,
and numerical summation:

Zlng Z muep"'/z

> logp
d log p p~ " <d —w
2 Z: 2 5l

1
dz ng (0.7553666...)d < 0.76d. O

IN

2.6. An exponentially weighted sum

The next step in the proof of Theorem 1 is an explicit version of the argument at
the top of [11, p. 113]. In what follows, f(t) = O*(g(t)) means that |f(¢)| < |g(t)| for
all ¢t under consideration. That is, O* is like Landau’s Big-O notation, except that the
implicit constant is always 1.

Lemma 10. Let L(s, x) be an entire Artin L-function that satisfies GRH, in which x has
degree d and conductor N. For x > 1,

_ Cglog N + Crd
log L(1 —le—p/@ <219d+ —————
g L{1,x) ZX - z2 %logx
in which
0204 C’26'5
= (5 = d = (5 = . 2].
Co := Co(d,m) = — an Cri=Cr0m) = —— (21)

Proof. Fix x > 1. We begin by integrating the expressions in the inequality from

Lemma 9 over u € [1, 3] and obtain

p

/ > (logp)x(p)p~“e /" du ="y (logp)x(p)e *'" / p"du
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_ - /x\/ﬁil
—ZX(p)e P p3/2
p

:ZX(p le—p/z _ ZX 2,—p/=
=> x()p e P/‘”“’+O*(dz 3/2)
= x(p)p e /T +dP(3)0*(1),

in which P(z) denotes the prime zeta function. The initial interchange of integral and
summation is permissible by uniform convergence. Using (8), we obtain

[MY

1/ [2((::,))(()) du =1log L(3,x) —log L(1, x) = —log L(1,x) + d(log ¢(3))O*(1).

Lemma 9 says that

> (logp)x(p)p~ e /" = —

;" L(u,x) 2m d

Integrate this over u € [1, 3] and observe that

I I+0—u log N
Lu,x) | e (CQdm <C4 g 4 05) n 0.76d> .

3/2

/

%+67u

/ Codx Cyilog N 405 )+ 0.76d] du
2T d

_ CQ(\/E - 1)(04 IOgN + C5d) 4 0.38d
2rxi-%log

CQ (04 IOg N + Csd)
< T
2120 logx
Cglog N + C7d

= ——5, 1038,
zz °%logx

+0.384

to deduce that

Zx(p)p_le_p/m + dP( % / (logp)x(p)p —ue=P/T gy,

C@ lOgN + C7d

=log L(1, x) +d(log ¢(2))0*(1 )+0*< o logx

+ 0.38d) .

Since P(2) < 0.849567 and log((2) < 0.96026, we obtain the desired result. O
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2.7. Approzimating exponentials

The sum that appears in the previous lemma involves the expression e ?/*. Since
e P/ = 1 4+ O(1/z), one hopes to replace e ?/* with 1 if p/z is sufficiently small. In
what follows, let 5 > % and define

= (log N)? and y = (log N)*/2, (22)

Lemma 11. Let L(s, x) be an entire Artin L-function that satisfies GRH, in which x has
degree d and conductor N. Then

> oxp e =S " x(p)p!| < dlogdB+d F(x,y),
r<y

where

Fle,) = Lm(a?) +mly) + — (23)

xre®

tends to zero as N — oo for each fized 3 > &. Here m(-) denotes the function (G).

Proof. First observe that

S xp e = "xpp T+ D> x(pp (e P - 1)
P

p<y p<y

1
+ Y xp e Y xpp e

y<p<wz? z2<p

12 IS
We estimate the summands I, I, and I3 separately.

BOUNDING I;. Since p < y < x, we may use t = —p/z in the inequality
let —1] < |t| for =1 <t <0, (24)

which follows since the series ¢! — 1 =Y °7 | t"/nl is alternating for such ¢. Thus,

1| = ‘ D xpp (e —1)

p<y

|€_p/ —1]
> x| ——

p<y

> L.y (by (24))

p<y

IN

IN



S.R. Garcia, E.S. Lee / Journal of Number Theory 238 (2022) 920-943 935

IN
|

m(y)

SR

<
Although this bound can be improved asymptotically, the improvement is negligible for
the range of parameter values considered; see Remark 12 below.

BOUNDING I,. For t > (log3)'/? > 1.048, recall that the bound (5) from Lemma 3
applies. Since m(t) is decreasing,

Ll=] > x(pp e <d Y plePt<d Y p!
y<p<x?2 y<p<w? y<p<z?
sa( Y-
p<z? p<y

<d [(loglog(xg) + M + O*(m(xQ))) — (loglogy + M + O*(m(y)))]

logy

28 loglog N 9
=d| log [ 2222250
( og( %1og10gN ) +m(@) +m(y)

IN

= d(log4p +m(z?) + m(y)).
BOUNDING I3. Observe that

3| = ‘ > x(ppte /"

<d Z p—le—P/ﬂﬁ

z2<p x2<p
d d
< ;l;pe b < pk_%ﬂ(e ey
d (efl/a:)[zr"J d(efl/x)z2
22 1—e V2 = 22(1 — e 1/)
de™® Ad

T 22l —eVE) T oxe
The last inequality follows from the fact that 1[t| < |e! — 1| for 0 < [¢| < 1.

Putting this all together yields the desired result. 0O

Remark 12. For ¢ > 1, it is known that 7 (¢) < 1.25506¢/ logt [36, Cor. 1, (3.5)]. One can
asymptotically improve the estimate in the proof of Lemma 11 and get

2 Since e * and 1 — e~ ** tend to zero, computing their quotient leads to numerical issues. Thus, the
final simplifying estimate is needed to ensure the numerical stability of later computations.
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d 1.25506
L) < Sa(y) < =224
x zlogy

For the values of 3 that arise in the numerical optimization step (Subsection 2.8), both
estimates yield essentially the same final result. Therefore, we keep the original bound,
which is a bit cleaner.

2.8. Completion of the proof of Theorem 1

As defined in (22), suppose that = = (log N)? and y = (log N)'/2. Using Lemmas 10
and 11, we find that

gL~ Y X2 <564 N) (25)

p<(log N)*/2
for all 3> 1,6 € (0,7], and 5 € (1, 2), where

06(57 77) IOg N + 07(67 77)d
zz 0 logx

G(B,0,m;d, N) := 2.19d + +dlogdp + dF(z,y)

from Lemma 11

C7(8,m) > d

1
2z %logx

from Lemma 10
o C’6(57 77) 1Og N

—; +<2.19+10g4B+F(x,y)+
2 %logx

A(B,6,m;N) B(8,6,m;N)

is an affine function of d. It remains to optimize the constants 7, §, and . Before we
attempt this, let us make a few remarks about the qualitative nature of the expressions
involved. This informs our selection of the parameters below and justifies the particular
search region that we eventually consider.

First observe that F(z,y) contains the summand

m(y):i 3logy +4 +£> 3loglog N
NG 87 y? ~ 167 (log N)1/4"

This error term comes from Lemma 3, which is an asymptotically sharp form of Mertens’
second theorem under the Riemann Hypothesis. Thus, we cannot reasonably expect the
error bound in (25) to be better than O((loglog N)(log N)~1/4).

Next note that log 43 tends to infinity slowly with 8, and hence we can afford to make
0 large if this reduces the other terms significantly. In fact, the remark above suggests
that we at least take (recall the definition (15) of 7 and that 6 < 7)

5
> =~ 4.46003
pz 2—4r

so that



S.R. Garcia, E.S. Lee / Journal of Number Theory 238 (2022) 920-943 937

2500 1

2000 |

1500

1000 [

500 |

0.05 0.10 0.15 0.20

Fig. 5. Graph of C4(§) for § € (0, 7).

Cglog N Cglog N

1
z:0logz  PBlog N) G-V loglogN <(105N)‘1‘ 10%103]\7)

is dominated by m(y), which we already know cannot be much improved.

Aside from m(y), a glance at (23) shows that the other three summands that comprise
F(z,y) are of lower order in N. Moreover, increasing  increases the rate at which these
terms decay as N — oo. Thus, we should take § relatively large.

There is also the question about minimizing the constants Cs(4,7) and C7(d,n), which
are defined in (21). This involves minimizing C3(4,n), Cs(n), C4(5), and C5(4,n). All of
these tasks point in the same direction. A look at the definitions (13) of Cy(d,7n) and
(17) of C4(d) warns us to keep ¢ € (0, 7] away from zero. In fact, C4(d) is minimized for
d € (0, 7] by selecting 6 = 7; see Fig. 5. Thus, one expects that in the final optimization
0 should be close to 7. The pole of the Riemann zeta function at s = 1 and the definition
(13) of C3(n) tell us that n € (1, 3] must be kept away from 1; this also ensures that
C5(6,m) does not get out of hand.

For § > 4.5, all of the summands that comprise G(8,d,7;d, N) are decreasing func-
tions of N. Therefore, G(5,0,n;d, N) < G(8,9,n;d,3) for N > 3 (recall that the smallest
possible conductor for an entire Artin L-function is 3; see the comments at the beginning
of Subsection 2.2). Since d > 1 and

G(B,0,m:d,3) = A(B,6,1;3) + B(8,8,1;3)d < (A(B,8,m;3) + B(S,6,1;3))d,
we minimize A(S,d,n;3) + B(8,d,n;3) to obtain our final bound on (25).
Numerical investigations with é ~ 7 suggest that values of § significantly larger than
200 or smaller than 100 hurt us; see Fig. 6. Thus, we settle on the domain

(8,6,m) € [4.5,300] x (0, 7] x (1, 3] (26)

and rapidly obtain the (approximate) optimal point
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Fig. 6. Views of the surface A(B,1,1n;3) + B(B, T, n;3) (vertical axis) for 8 € [4.5,500] and n € (1, % .

(8,6,m) = (155.648, 0.213503, 1.18818), (27)

which (approximately) minimizes the objective and yields

log L(1,x) = Y. M‘<13.53d.
p<(log N)1/2

This completes the proof of Theorem 1. 0O
3. Proof of Corollary 2

The proof of Corollary 2 relies upon the final stages of the proof of Theorem 1. A
fair amount of set up is needed before we begin and there are several cases that require
special attention.

3.1. Preliminaries

Let K be a number field of degree ng > 2 over Q such that (/¢ is entire and let
L/Q denote the Galois closure of the extension K/Q. Then

L(s,x) = C?(S) = ; Xlif) for Res > 1, (28)

in which x is the character of a certain (ng —1)-dimensional representation of Gal(L/Q).
We claim that the conductor N of y satisfies N = |Ak|. Indeed, the conductor of (k(s) is
|Ak| [17, p. 125]; in particular, {(s) = {g(s) has conductor 1. Since L(s, x)((s) = (k(s),
the multiplicativity of the conductor [17, p. 95] ensures that N = |Ak|. Minkowski’s
bound implies that N > 3.

It is known that L(s, x) is meromorphic on C, and our assumption that (x /¢ is entire
ensures that L(s, x) is entire. Unconditionally, L(s, x) has no zeros or poles on the vertical
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line Res = 1 [17, Cor. 5.47]. Since ((s) has a simple pole at s = 1 with residue 1, (28)
implies that

ri = Res (k (s) = lim (s — 1)((s)L(s, x) = lim L(s, x) = L(L, x)-
In particular, this ensures that L(1,x) > 0 since (k(s)/¢(s) > 0 for s > 1 and because

(k (s) has a simple pole at s = 1.
Dirichlet convolution shows that the coefficients in (28) satisfy

) =S aun( £,

ilk

in which a; denotes the number of ideals in K of norm k and p is the Mobius function.
Therefore,

x(p) = app(1) + arp(p) = ap — 1 € [-1,ng — 1], (29)

and, in particular, |x(k)| < ng — 1. Indeed, if p is inert in K, then N(p) = p"% # p and
x(p) = —1. The other extreme x(p) = ng — 1 occurs if p splits totally in K.

3.2. Upper and lower bounds

Since N > 3, Lemma 3 provides

1
Z — < logloglog N +log & + M + m(+/log N).
p
pS(logN)%

It follows from the previous inequality, (25), and (29) that

1
logL(L,x) < Y X;p)+G(B,6,n;d,N) <d > 5+G(ﬂ,5,n;d,N)
p<(log N)? p<(log N)

— dlogloglog N + H(3,4,;d, N),
in which
H(B,6,m:d,N) = d(log } + M +m(\/Iog N)) + G(8,5,5;d, N).

Similarly,
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IOgL(].,X) > - Z p_l - G(ﬂ7§7n;d7 N)

p<(log N)2
—logloglog N —log 3 — M — m(+/log N) — G(8,6,m;d, N)
= —logloglog N — K(8,6,m;d,N),

v

in which

K(B,8,1m;d,N) =log 5 + M +m(y/log N) + G(B,8,7;d, N).

Since L(1,x) > 0, we exponentiate the inequalities above, perform the substitutions
d=ng — 1 and N = |Ak/, and obtain

1
< < ng —1,H(B,0,n;d,N)
K B5mdN) loglog [Ag| — rkk < (loglog|Axk]) e )

We now optimize the parameters 3, §, and 7 to suit our particular needs.
3.3. General case

We can optimize H and K in the same manner that we treated G in Subsection
2.8. The functions H(S,9,n;d, N) and K(f5,d,n;d, N) are affine in d and decreasing in
N when the other variables are fixed in the search region (26). The optimal choices of
(8,4,n) in both cases equal (27) (to the precision displayed). This is to be expected since
the variables 3, §, and n only appear in the definitions of H and K as arguments of the
summand G(f, d,n;d, N). In the end, we obtain

1
<
el7.81(nk —1) log log ‘AK| -

r < (17 log log | Ak )™ 1.

3.4. Fields of small degree

For 2 < ng < 6, we can make some small improvements (still assuming that the
function (i / is entire). Let Ny := Np(n) denote the minimum absolute discriminant of a
number field of degree n. For n = 2,3,4, 5,6, these are 3,23,117,1609, 9747, respectively;
see Table 1.

Since d = ng — 1 and because H(8,d,n;d, N) and K(3,0,n;d, N) are decreasing
functions of N for each fixed (8, 4d,7n) in (26), we can select (3,0,n) to minimize H and
K, respectively. It turns out that approximately the same triple minimizes both H and
K, so we quote a single triple for each pair (d, Ny) in Table 2. This leads to the following
results quoted in Corollary 2.

This completes the proof of Corollary 2. O
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Table 1
Number fields K with minimal absolute discriminant No = |Ak| for a given
degree n = 2,3,...,6, along with defining polynomials and corresponding

entry in the The L-functions and Modular Forms Database.

n N Ak Defining polynomial for K LMFBD Entry
2 3 -3 22—z +1 2.0.3.1

3 23 23 3 — 22 +1 3.1.23.1

4 117 117 zt— 2 — 2t +1 4.0.117.1

5 1609 1609 2 - -zl 441 5.1.1609.1

6 9747 —9747 % —a2® 42t — 223 +42? —3x 4+ 1 6.0.9747.1

Table 2

Minimum absolute discriminant Ny for a number field K of degree nk, a good choice of
(B,68,7n), and the corresponding values H(3,4d,n,d, No) and K(3,d,n,d, No).

nK d No (B,9,m) H(B,4,n,d, No) K(B,0,n,d, No)
2 1 3 (155.648,0.213503, 1.18818) 17.809 17.809

3 2 23 (13.0627,0.210516, 1‘16757) 18.8667 17.5328

4 3 117 (9.5721970.210398, 1.16682) 24.0981 22.5199

5 4 1609 (7.5451,0.208941, 1.15761) 28.1733 26.9298

6 5 9747 (6.80012, 0.208989, 1.15791) 33.3541 32.2334

Appendix A. Constants and functions

941

There are many constants and auxiliary functions, many of which are interdependent,

that appear in the proof of Theorem 1. For the sake of convenience, we summarize

below those expressions that arise in a non-local context (that is, not isolated to a single

environment or subsection).

o M =0.261497212847642783755 ... (Meissel-Mertens constant)

1 [(3logz+4 5
.m(x)_\/i( 8 >+x2
¢(3/2)
« (1 = = 1.0421869788690765546 . . .
1 ,\3/_
b ( 35]
« §€(0,%) (later restricted to § € (0,7] in Lemma 8)
2n—1
L 02(5777) = 262 )
¢(n) >
« C =(C
() ( ¢(2n)
o 720.2197330687867739
426 2 ew5
. O4(0) = u
V(1 —9)
e C5(6,m) = Cy(logCs + %)
e uell, %]
Co(6,m)C4(6
¢ Colon) = 20N n; o)
C5(6,m)C5(4,
« Crfa) = N0

2w

. 923)
. 923)

Ne}
[\)
oo

O O O

W N N

o © © )
—_ N T

Ne}
w
\V]

. 932)


https://www.lmfdb.org/
https://www.lmfdb.org/NumberField/2.0.3.1
https://www.lmfdb.org/NumberField/3.1.23.1
https://www.lmfdb.org/NumberField/4.0.117.1
https://www.lmfdb.org/NumberField/5.1.1609.1
https://www.lmfdb.org/NumberField/6.0.9747.1

942 S.R. Garcia, E.S. Lee / Journal of Number Theory 238 (2022) 920-943

o B> 3 (later restricted to 8 > 4.5 > 4.46003 = 5"~ on p. 936) (p- 934)
e = (logN)? (p. 934)
o y = (logN)'/? (p- 934)
_ (e — 1)y 2
o Flay) = ———+m(e*) +my) + — (p- 934)
4,m)log N
o A(B,6,n,N) = M (p. 936)
x2 %logx
1)
e B(B,4,1,N) :2.19+log4ﬁ+F(m,y)+M (p- 936)
zz 0 logx
e G(B,6,m;d,N) = A(B,6,n,N) + B(3,9,n,N)d (p. 936)
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