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1. Introduction

In [11], Duke proved a remarkable “short-sum theorem” that relates the value of an 
Artin L-function at s = 1 to a sum over an exceptionally small set of primes. To be more 
specific, if L(s, χ) is an entire Artin L-function that satisfies the Generalized Riemann 
Hypothesis (GRH), Duke proved that

log L(1, χ) =
∑

p≤(log N)1/2

χ(p)
p

+ O(1), (1)

in which p is a prime, χ has degree d and conductor N , and the implicit constant depends 
only upon d [11, Prop. 5]. Our main result is an explicit version of Duke’s theorem (by 
“explicit” we mean that there are no implied constants left unspecified).

Theorem 1. Let L(s, χ) be an entire Artin L-function that satisfies GRH, in which χ has 
degree d and conductor N . Then

∣∣∣∣ log L(1, χ) −
∑

p≤(log N)1/2

χ(p)
p

∣∣∣∣ ≤ 13.53d. (2)

The need to make every step explicit requires great precision. A wide variety of pre-
liminary results are needed with concrete numerical constants. For example, we require 
certain gamma-function integral estimates and a version of Mertens second theorem 
applicable over a large range and with all numerical constants specified. Furthermore, 
several parameters must be finely tuned and optimized to reduce the upper bound in 
(2) as far as our techniques permit (all numerical computations that follow were verified 
independently in both Mathematica and Python). Overall, the proof of Theorem 1 is 
much more complex than the proof of (1).

Duke’s original motivation was the construction (under GRH) of totally real number 
fields with certain extremal properties [11]; see [2,3] for related work also assuming the 
Artin or strong Artin conjectures, and [9] for progress in the unconditional case. Since 
its introduction in 2003, Duke’s result has been used to study the smallest point on a 
diagonal cubic surface [13, p. 192], complex moments of symmetric power L-functions [8, 
(1.46)], upper bounds on the class number of a CM number field with a given maximal 
real subfield [10, p. 938], and extreme logarithmic derivatives of Artin L-functions [4, 
p. 583] (all under GRH). Consequently, the novel bound (2) should lead to explicit 
estimates in several adjacent areas.

Theorem 1 yields explicit estimates for κK, the residue at s = 1 of the Dedekind 
zeta function ζK(s) of a number field K (the Riemann zeta function is ζ = ζQ). For 
quadratic fields, such estimates have a long history dating back to Littlewood [21]; 
see also Chowla [6], Chowla–Erdős [7], Elliott [12], Granville–Soundararajan [15], and 
Montgomery–Vaughan [26]. Since κK appears in the analytic class number formula [19, 
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p. 161] and in Mertens-type theorems for number fields [20,35], explicit estimates such 
as the following should have immediate use.

Corollary 2. Assume GRH and that ζK/ζ is entire. If K is a number field of degree nK ≥ 2
and discriminant ΔK, then

1
e17.81(nK−1) log log |ΔK| ≤ κK ≤ (e17.81 log log |ΔK|)nK−1. (3)

For nK = 2, 3, 4, 5, 6, we have the following.

• For nK = 2, we have 
1

e17.81 log log |ΔK| ≤ κK ≤ e17.81 log log |ΔK|.

• For nK = 3, we have 
1

e17.54 log log |ΔK| ≤ κK ≤ e18.87(log log |ΔK|)2.

• For nK = 4, we have 
1

e22.52 log log |ΔK| ≤ κK ≤ e24.1(log log |ΔK|)3.

• For nK = 5, we have 
1

e26.93 log log |ΔK| ≤ κK ≤ e28.2(log log |ΔK|)4.

• For nK = 6, we have 
1

e32.24 log log |ΔK| ≤ κK ≤ e33.36(log log |ΔK|)5.

That ζK/ζ is entire is known if K is normal or if the Galois group of its normal clo-
sure is solvable [39,40]; see [29, Ch. 2] for more information. In particular, this hypothesis 
holds for any cubic or quartic number field. The upper and lower bounds in (3) have the 
expected order of magnitude (under GRH) with respect to |ΔK|, although the depen-
dence on nK can be improved if one uses inexplicit constants; see [5, (1.1)]. The novel 
contribution in Corollary 2 is the explicit dependence upon the degree and discriminant; 
there are no implied constants left unspecified.

For nK ≥ 3, the best known explicit unconditional bounds are

0.0014480
nKg(nK)|ΔK|1/nK

< κK ≤
(

e log |ΔK|
2(nK − 1)

)nK−1

, (4)

in which g(nK) = 1 if K has a normal tower over Q and g(nK) = nK! otherwise. The lower 
bound follows from an analysis of Stark’s paper [38], although his language is ambiguous; 
see [14, Rem. 13]. The upper bound is due to Louboutin [22, Thm. 1]. For entire ζK/ζ, 
Louboutin refined the upper bound in (4) [25, Thm. 1] and provided refinements under 
other assumptions (e.g., K is totally imaginary) and depending upon the location of a 
possible real zero of ζK [23,24]; see also Ramaré [34, Cor. 1].

This paper is organized as follows. The proof of Theorem 1, which occupies the bulk 
of this paper, is in Section 2. The proof of Corollary 2 is in Section 3.

Acknowledgments. Special thanks to the anonymous referee for a careful reading of this 
paper. Thanks to Andrew Booker, Peter Cho, Michaela Cully-Hugill, Bill Duke, Eduardo 
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Friedman, Edray Goins, Ken Ribet, Aleksander Simonič, Valeriia Starichkova, and Tim 
Trudgian for helpful conversations.

2. Proof of Theorem 1

We assume the Generalized Riemann Hypothesis (GRH) throughout what follows. 
The proof of Theorem 1 requires a series of lemmas, which are spread out over several 
subsections. Section 2.1 presents Mertens’ second theorem with an explicit error term 
and a large range of applicability, Section 2.2 involves general bounds for entire Artin L-
functions, and Section 2.3 deduces estimates for their logarithmic derivatives. A technical 
integral estimate involving the gamma function appears in Section 2.4. In Section 2.5, we 
approximate the logarithmic derivative of an entire Artin L-function using a sum over 
primes. Section 2.6 builds upon the previous material and considers a particular expo-
nentially weighted sum, which is refined further in Section 2.7. The proof of Theorem 1
wraps up in Section 2.8, where we optimize several numerical parameters. Appendix A
contains a convenient, cross-referenced summary of the constants and functions that 
arise throughout the proof.

2.1. Explicit Mertens’ theorems

We require an explicit version of Mertens’ second theorem under the Riemann Hypoth-
esis (which is implied by GRH). We need a convenient estimate valid for x ≥ (log 3)1/2 ≈
1.04815 (this number arises because 3 is the smallest possible value of the conductor of 
an entire Artin L-function; see the comments at the beginning of Subsection 2.2). Thus, 
we add a rapidly decaying term to Schoenfeld’s estimate [37, Cor. 2] so that the fi-
nal result is valid in a larger range while keeping the main term essentially intact for 
large x.

Lemma 3. Assuming the Riemann Hypothesis,

∣∣∣∣ ∑
p≤x

1
p

− log log x − M

∣∣∣∣ < m(x) for x ≥ 1.048, (5)

in which M = 0.261497212847642783755 . . . is the Meissel–Mertens constant and

m(x) := 1√
x

(
3 log x + 4

8π

)
+ 5

x2 . (6)

Proof. For x ≥ 13.5, the result follows from [37, Cor. 2, eq. (6.21)] (the summand 5/x2

is not needed in this range). For 1.048 ≤ x < 13.5, the desired inequality can be verified 
by direct computation; see Fig. 1. �
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Fig. 1. Lemma 3 in the range not covered by [37, Cor. 2]. Graph of | ∑p≤x
1
p −log log x −M | (blue) versus m(x)

(black) for 1.048 ≤ x ≤ 13.5. The vertical clearances at x = 5, 7, 11, 13 are approximately 0.061, 0.0010, 
0.045, and 0.018, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

2.2. Explicit bounds for Artin L-functions

The relevant background for what follows can be found in [17, Ch. 5], [27], or [30, 
Chap. VII]. Let L(s, χ) be an entire Artin L-function, in which χ has degree d and 
conductor N ; it is of finite order with a canonical product of genus 1 [17, Thm. 5.6]. 
We assume that L(s, χ) satisfies GRH, so that log L(s, χ) is analytic on Re s > 1/2. 
Moreover, N ≥ 3 since it is integral and Pizarro-Madariaga proved that N ≥ (2.91)d

[33, Thm. 3.2]; Odlyzko’s lower bound (2.38)d [31, p. 482] also implies the desired esti-
mate.

Lemma 4. |L(s, χ)| ≤ ζ(δ)d for Re s ≥ δ > 1.

Proof. For Re s > 1, [11, (22)] ensures that

log L(s, χ) =
∑

p

∞∑
m=1

1
m

χ(pm)p−ms, (7)

in which |χ(pm)| ≤ d [11, (23)]. Therefore, (7) converges absolutely and

| log L(s, χ)| ≤
∑

p

∞∑
m=1

1
m

|χ(pm)|p−m Re s ≤ d
∑

p

∞∑
m=1

p−mδ

m
= d log ζ(δ). (8)

So for Re s ≥ δ > 1, |L(s, χ)| = |elog L(s,χ)| ≤ e| log L(s,χ)| ≤ ed log ζ(δ) = ζ(δ)d. �
We need an upper bound for L(s, χ) on a slightly larger half plane that extends into 

the critical strip. As is customary in the field, we often write s = σ + it for a complex 
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variable, in which σ, t ∈ R. For an analytic function f(s), let f(s) = f(s), which is also 
analytic. Then Λ(s) = Λ(1 − s), in which Λ(s) = γ(s)L(s, χ) and

γ(s) = εN
1
2 (s− 1

2 )
d∏

j=1
ΓR(s + μj)

with ΓR(s) = π−s/2Γ(s/2) and for some |ε| = 1 and μi ∈ {0, 1} [1, Sect. 1.3]. In fact, 
μi = 0 exactly 1

2 (d + 
) times and μi = 1 exactly 1
2 (d − 
) times, where 
 is the value of 

the underlying character on complex conjugation [11, p. 111].

Lemma 5. |L(s, χ)| ≤ Cd
1
√

N |1 + s| d
2 for Re s ≥ 1

2 , where C1 := ζ(3/2)√
2π

≈ 1.04219.

Proof. The analytic conductor

Q(s) = N

d∏
j=1

s + μj

2π

satisfies

|Q(s)| ≤ N

(2π)d
|1 + s|d for σ ≥ −1

2 . (9)

Let X(s) = γ(1 − s)/γ(s), so that the functional equation becomes L(s, χ) = X(s)L(1 −
s, χ) [1, p. 387] (note that [1] uses χ for our X; we have already reserved χ for the 
character of L). A special case of [1, Lem. 4.1] implies that

|L(s, χ)|2 ≤ |X(s)Q(s)| sup
σ= 3

2

|L(s, χ)|2 for −1
2 ≤ σ ≤ 3

2 .

Since |X(s)| = 1 for σ = 1
2 , the previous inequality, (9), and Lemma 4 yield

|L(s, χ)| ≤ ζ( 3
2)d

√
|Q(s)| for σ = 1

2 . (10)

Lemma 4 and the definition of Q ensure that

|L(s, χ)| ≤ ζ(2π)d ≤ ζ(3
2 )d

√
|Q(s)| for σ ≥ 2π. (11)

Since L/
√

Q is analytic for σ ≥ 1
2 , the Phragmén–Lindelöf principle and (9) imply that 

the desired inequality holds for σ ≥ 1
2 . �

Remark 6. Let us be more explicit about the final step in the proof of Lemma 5. As 
mentioned above, L(s, χ) is an entire function of finite order [17, Thm. 5.6]. Thus, 
|L(s, χ)| = O(exp |t|α) for some α ≥ 1 and all s ∈ C; this growth estimate permits 
us to appeal to the Phragmén–Lindelöf principle below.
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Suppose that 1
2 ≤ Re s ≤ σ0, in which σ0 ≥ 2π. The bounds (10) and (11) ensure that 

L/
√

Q is bounded by ζ(3/2)d on the boundary of the vertical strip {σ + it : 1
2 ≤ σ ≤ σ0}. 

Consequently, the Phragmén–Lindelöf principle for a strip [28, Thm. 8.1.3] ensures that 
the same bound holds on the interior. In particular, it holds at s, which was an arbitrary 
point with Re s ≥ 1

2 .

2.3. An explicit bound for the logarithmic derivative

In what follows, let

1 < η ≤ 3
2 and 0 < δ < 1

2 .

These constants will be optimized toward the end of the proof. In particular, the range 
of admissible δ shall be further restricted as new information emerges.

Lemma 7. Let L(s, χ) be an entire Artin L-function that satisfies GRH, in which χ has 
degree d and conductor N . For 1

2 + δ ≤ σ ≤ 2η − 1
2 − δ,∣∣∣∣L′(s, χ)

L(s, χ)

∣∣∣∣ ≤ C2d log
(
C3N

1
d (|t| + 4)

)
, (12)

where

C2 := C2(δ, η) = 2η − 1
2δ2 and C3 := C3(η) =

(
C1

ζ(η)
ζ(2η)

)2

. (13)

Proof. Since ζ(σ)/
√

σ + 1 is decreasing for σ > 1, computation confirms that ζ(σ) ≤
C1

√
σ + 1 for σ ≥ 1.89. For σ ≥ 2, Lemma 4 and the integrality of N imply that

|L(s, χ)| ≤ ζ(2)d ≤ Cd
1 (2 + 1) d

2 ≤ Cd
1
√

N(|t| + 3) d
2 .

On the other hand, Lemma 5 ensures that

|L(s, χ)| ≤ Cd
1
√

N |1 + s| d
2 ≤ Cd

1
√

N(|t| + 3) d
2

for 1
2 ≤ σ ≤ 2. Therefore,

Re log L(s, χ) = log |L(s, χ)| < d log C1 + 1
2 log N + d

2 log (| Im s| + 3)

for σ > 1
2 . Next observe that [1, Lem. 4.5] with θ = 0 provides

(
ζ(2η)
ζ(η)

)d

≤ |L(η + it, χ)|

since η > 1. Therefore,
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Fig. 2. For t ∈ R, the inequality (12) holds for s in the green region. In particular, it holds for all s on the 
blue line segment. Since t ∈ R is arbitrary, (12) holds for Re s ∈ [ 1

2 + δ, 2η − 1
2 − δ].

Re log L(η + it, χ) = log |L(η + it, χ)| ≥ d log ζ(2η)
ζ(η) .

For f analytic on |z| < R, [18, Cor. 5.3] says that

|f ′(z)| ≤ 2R

(R − |z|)2 sup
|ξ|<R

Re(f(ξ) − f(0)).

Fix t ∈ R and apply the inequality above to f(z) = log L(z + η + it, χ) with

R = η − 1
2 and | s − (η + it)︸ ︷︷ ︸

z

| ≤ R − δ

so that

1
2 + δ = η − R + δ ≤ Re s ≤ η + R − δ = 2η − 1

2 − δ.

As z ranges over |z| ≤ R−δ, observe that s assumes every value in the horizontal segment 
[ 1

2 + δ + it, 2η − 1
2 − δ + it]; see Fig. 2. Since R = η − 1

2 < 3
2 − 1

2 = 1, it follows that 
| Im ξ| < 1 whenever |ξ| < R. Therefore,

∣∣∣∣L′(s, χ)
L(s, χ)

∣∣∣∣ ≤
2(η − 1

2 )
(R − (R − δ))2 sup

|ξ|<R

Re
(

log L(ξ + η + it, χ) − log L(η + it, χ)
)

≤ 2η − 1
δ2 sup

|ξ|<R

(
d log C1 + 1

2 log N + d
2 log (|t + Im ξ| + 3) − log L(η + it, χ)

)

≤ 2η − 1
δ2

(
d log C1 + 1

2 log N + d
2 log (|t| + 4) − d log ζ(2η)

ζ(η)

)

≤ (2η − 1)d
2

(
2 log C1 + log N

1
d + log (|t| + 4) − 2 log ζ(2η)

)

2δ ζ(η)
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Fig. 3. For 0 < δ ≤ 1
2 , the function f(−1 + δ) − f(− 1

2 + δ) has a unique real root τ = 0.219733068786773 . . ..

≤ (2η − 1)d
2δ2 log

[
C2

1 N
1
d (|t| + 4)

(
ζ(η)
ζ(2η)

)2
]

≤ C2d log
(
C3N

1
d (|t| + 4)

)
.

Since t ∈ R is arbitrary, the desired bound holds for 1
2 + δ ≤ Re s ≤ 2η − 1

2 − δ. �
Duke’s approach to the previous lemma uses an estimate result of Littlewood [21, 

Lem. 4], which is [11, Lem. 2] in Duke’s paper, instead of the slightly sharper [18, Cor. 5.3]
used above. More information about “sharp real part theorems” for the derivative can 
be found in [18, Ch. 5], along with a host of historical references.

2.4. An integral estimate

The proof of Theorem 1 requires an integral estimate that involves the gamma func-
tion. First, consider the real-valued function

f(s) =
√

2π|s + 1|σ+ 1
2

|s| exp
(

1
6|s + 1|

)
(14)

for s = σ + it with σ ∈ [−1 + δ, −1
2 + δ]. Since

0 ≤ f(s) ≤
√

2πe
1

6δ ( 1
2 + δ + |t|)δ

|t| → 0

uniformly as |t| → ∞ for such σ, we may use numerical methods to maximize f(s) in 
the vertical strip σ ∈ [−1 + δ, −1

2 + δ]. Let

τ = 0.219733068786773 . . . (15)

denote the unique root of f(−1 +δ) −f(−1
2 +δ) with 0 < δ < 1

2 ; see Fig. 3. Computation 
says that for 0 < δ ≤ τ , the function f(s) attains its maximum value
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Fig. 4. For 0 < δ ≤ τ = 0.219733068786773 . . ., the nonnegative, real-valued function f(s) attains its 
maximum value in the vertical strip σ ∈ [−1 + δ, − 1

2 + δ] at s = −1 + δ.

μ =
√

2πδδ− 1
2 e

1
6δ

1 − δ
(16)

at s = −1 + δ; see Fig. 4.

Lemma 8. For 0 < δ ≤ τ and −1 + δ ≤ σ ≤ −1
2 + δ,

∞∫
−∞

|Γ(σ + it)| log
(
C3N

1
d (|t| + 4)

)
dt ≤ C4 log N

d
+ C5,

in which

C4 := C4(δ) = 4
√

2 δδ− 1
2 e

1
6δ

√
π(1 − δ)

and (17)

C5 := C5(δ, η) = C4

(
log C3 + π

2

)
.

Proof. For s = σ + it with σ ≥ 0, we have the inequality [32, 5.6E9]:

|Γ(s)| ≤
√

2π|s|σ− 1
2 e−π|t|/2 exp

(
1

6|s|

)
.

Since Γ(s + 1) = sΓ(s), the previous inequality and (14) yield

|Γ(s)| = |Γ(s + 1)|
|s| ≤

√
2π|s + 1|σ+ 1

2 e−π|t|/2

|s| exp
(

1
6|s + 1|

)
= f(s)e−π|t|/2. (18)

For 0 < δ ≤ τ , (16) and (18) imply that

|Γ(σ + it)| ≤ μe−π|t|/2 for σ ∈ [−1 + δ, −1
2 + δ] and t ∈ R.

Since |Γ(z)| = |Γ(z)| for z ∈ C, we get
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∞∫
−∞

|Γ(σ + it)| log
(
C3N

1
d (|t| + 4)

)
dt

= 2
∞∫

0

|Γ(σ + it)| log
(
C3N

1
d

(
t + 4

))
dt

≤ 2μ

∞∫
0

e−πt/2 log
(
C3N

1
d

(
t + 4

))
dt

≤ 2μ

∞∫
0

e−πt/2
[
log C3 + 1

d
log N + log (t + 4)

]
dt

≤ 2μ

(
2
π

log C3 + 2
π

· log N

d
+ 1

)

≤ 4μ

π

(
log N

d
+ log C3 + π

2

)

= C4
log N

d
+ C5. �

2.5. Approximating the logarithmic derivative

The next lemma is an explicit version of [11, Lem. 4], which relates the logarithmic 
derivative of an entire Artin L-function to a sum over the primes.

Lemma 9. Let L(s, χ) be an entire Artin L-function that satisfies GRH, in which χ has 
degree d and conductor N . For 1 ≤ u ≤ 3

2 and x > 1,

∣∣∣∣ ∑
p

(log p)χ(p)p−ue−p/x + L′(u, χ)
L(u, χ)

∣∣∣∣ ≤ C2dx
1
2 +δ−u

2π

(
C4 log N

d
+ C5

)
+ 0.76d.

Proof. For Re s > 1, the derivative of (7) provides

∑
p

log p

∞∑
m=1

χ(pm)p−ms = −L′(s, χ)
L(s, χ) . (19)

Substitute y = pm/x in the Cahen–Mellin integral (see [16] or [28, 6.6.2, p. 380])

e−y = 1
2πi

η+i∞∫
η−i∞

y−sΓ(s) ds for y > 0,

and obtain
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e−pm/x = 1
2πi

η+i∞∫
η−i∞

p−msxsΓ(s) ds for x > 0.

For 1 ≤ u ≤ 3
2 and x > 1, it follows from (19) that∑

p

log p

∞∑
m=1

χ(pm)p−mue−pm/x

=
∑

p

log p
∞∑

m=1
χ(pm)p−mu

(
1

2πi

η+i∞∫
η−i∞

p−msxsΓ(s) ds

)

= 1
2πi

η+i∞∫
η−i∞

( ∑
p

log p
∞∑

m=1
χ(pm)p−m(s+u)

)
xsΓ(s) ds

= − 1
2πi

η+i∞∫
η−i∞

L′(s + u, χ)
L(s + u, χ) xsΓ(s) ds.

Shift the integration contour to the vertical line Re s = 1
2 + δ − u. Since Γ has a simple 

pole with residue 1 at s = 0 and 1
2 + δ − u < 0, we pick up the residue

Res
s=0

(
L′(s + u, χ)
L(s + u, χ) xsΓ(s)

)
= L′(u, χ)

L(u, χ)

and obtain

∑
p

log p

∞∑
m=1

χ(pm)
pmuepm/x

+ L′(u, χ)
L(u, χ) = − 1

2πi

1
2 +δ−u+i∞∫

1
2 +δ−u−i∞

L′(s + u, χ)
L(s + u, χ) xsΓ(s) ds. (20)

Since 1
2 + δ − u ∈ [−1 + δ, −1

2 + δ], we estimate the integral on the right-hand side of 
(20) with Lemmas 7 and 8:∣∣∣∣∣∣∣

1
2 +δ−u+i∞∫

1
2 +δ−u−i∞

L′(s + u, χ)
L(s + u, χ) xsΓ(s) ds

∣∣∣∣∣∣∣
≤

∞∫
−∞

∣∣∣∣L′( 1
2 + δ + it, χ)

L( 1
2 + δ + it, χ)

∣∣∣∣x 1
2 +δ−u|Γ( 1

2 + δ − u + it)|dt

≤ C2dx
1
2 +δ−u

∞∫
−∞

|Γ( 1
2 + δ − u + it)| log

(
C3N

1
d (|t| + 4)

)
dt

≤ C2dx
1
2 +δ−u

(
C4 log N + C5

)
.

d
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The triangle inequality, (20), and the preceding inequality imply that
∣∣∣∣∣∑

p

log p
χ(p)

puep/x
+ L′(u, χ)

L(u, χ)

∣∣∣∣∣
≤

∣∣∣∣∣∑
p

log p

∞∑
m=1

χ(pm)
pmuepm/x

+ L′(u, χ)
L(u, χ)

∣∣∣∣∣ +

∣∣∣∣∣∑
p

log p

∞∑
m=2

χ(pm)
pmuepm/x

∣∣∣∣∣
≤ C2dx

1
2 +δ−u

2π

(
C4 log N

d
+ C5

)
+

∣∣∣∣∣∑
p

log p
∞∑

m=2

χ(pm)
pmuepm/x

∣∣∣∣∣ .

We bound the sum over m ≥ 2 above using |χ(pm)| ≤ d, the inequality 1 ≤ u ≤ 3
2 , 

and numerical summation:∣∣∣∣ ∑
p

log p
∞∑

m=2

χ(pm)
pmuepm/x

∣∣∣∣ ≤ d
∑

p

log p
∞∑

m=2
p−mu ≤ d

∑
p

log p

pu(pu − 1)

≤ d
∑

p

log p

p(p − 1) = (0.7553666 . . .)d < 0.76d. �

2.6. An exponentially weighted sum

The next step in the proof of Theorem 1 is an explicit version of the argument at 
the top of [11, p. 113]. In what follows, f(t) = O�(g(t)) means that |f(t)| ≤ |g(t)| for 
all t under consideration. That is, O� is like Landau’s Big-O notation, except that the 
implicit constant is always 1.

Lemma 10. Let L(s, χ) be an entire Artin L-function that satisfies GRH, in which χ has 
degree d and conductor N . For x > 1,∣∣∣∣∣ log L(1, χ) −

∑
p

χ(p)p−1e−p/x

∣∣∣∣∣ ≤ 2.19d + C6 log N + C7d

x
1
2 −δ log x

,

in which

C6 := C6(δ, η) = C2C4

2π
and C7 := C7(δ, η) = C2C5

2π
. (21)

Proof. Fix x > 1. We begin by integrating the expressions in the inequality from 
Lemma 9 over u ∈ [1, 32 ] and obtain

3
2∫ ∑

p

(log p)χ(p)p−ue−p/x du =
∑

p

(log p)χ(p)e−p/x

3
2∫

p−u du
1 1
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=
∑

p

χ(p)e−p/x

√
p − 1
p3/2

=
∑

p

χ(p)p−1e−p/x −
∑

p

χ(p)p−3/2e−p/x

=
∑

p

χ(p)p−1e−p/x + O�

(
d

∑
p

1
p3/2

)

=
∑

p

χ(p)p−1e−p/x + dP ( 3
2 )O�(1),

in which P (x) denotes the prime zeta function. The initial interchange of integral and 
summation is permissible by uniform convergence. Using (8), we obtain

3
2∫

1

L′(u, χ)
L(u, χ) du = log L( 3

2 , χ) − log L(1, χ) = − log L(1, χ) + d
(

log ζ( 3
2)

)
O�(1).

Lemma 9 says that

∑
p

(log p)χ(p)p−ue−p/x = −L′(u, χ)
L(u, χ) + O∗

(
C2dx

1
2 +δ−u

2π

(C4 log N

d
+ C5

)
+ 0.76d

)
.

Integrate this over u ∈ [1, 32 ] and observe that

3/2∫
1

[
C2dx

1
2 +δ−u

2π

(
C4 log N

d
+ C5

)
+ 0.76d

]
du

= C2(
√

x − 1)(C4 log N + C5d)
2πx1−δ log x

+ 0.38d

≤ C2(C4 log N + C5d)
2πx

1
2 −δ log x

+ 0.38d

= C6 log N + C7d

x
1
2 −δ log x

+ 0.38d,

to deduce that

∑
p

χ(p)p−1e−p/x + dP ( 3
2 )O�(1) =

3
2∫

1

∑
p

(log p)χ(p)p−ue−p/x du

= log L(1, χ) + d
(

log ζ( 3
2 )

)
O�(1) + O∗

(
C6 log N + C7d

x
1
2 −δ log x

+ 0.38d

)
.

Since P ( 3 ) < 0.849567 and log ζ( 3 ) < 0.96026, we obtain the desired result. �
2 2
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2.7. Approximating exponentials

The sum that appears in the previous lemma involves the expression e−p/x. Since 
e−p/x = 1 + O(1/x), one hopes to replace e−p/x with 1 if p/x is sufficiently small. In 
what follows, let β > 1

2 and define

x = (log N)β and y = (log N)1/2. (22)

Lemma 11. Let L(s, χ) be an entire Artin L-function that satisfies GRH, in which χ has 
degree d and conductor N . Then∣∣∣∣∣ ∑

p

χ(p)p−1e−p/x −
∑
p≤y

χ(p)p−1

∣∣∣∣∣ < d log 4β + d F (x, y),

where

F (x, y) := y

x
+ m(x2) + m(y) + 4

xex
(23)

tends to zero as N → ∞ for each fixed β > 1
2 . Here m(·) denotes the function (6).

Proof. First observe that∑
p

χ(p)p−1e−p/x =
∑
p≤y

χ(p)p−1 +
∑
p≤y

χ(p)p−1(e−p/x − 1)

︸ ︷︷ ︸
I1

+
∑

y<p≤x2

χ(p)p−1e−p/x

︸ ︷︷ ︸
I2

+
∑

x2<p

χ(p)p−1e−p/x

︸ ︷︷ ︸
I3

.

We estimate the summands I1, I2, and I3 separately.

Bounding I1. Since p ≤ y < x, we may use t = −p/x in the inequality

|et − 1| ≤ |t| for −1 < t ≤ 0, (24)

which follows since the series et − 1 =
∑∞

n=1 tn/n! is alternating for such t. Thus,

|I1| =
∣∣∣ ∑

p≤y

χ(p)p−1(e−p/x − 1)
∣∣∣

≤
∑
p≤y

|χ(p)| |e
−p/x − 1|

p

≤ d
∑ 1

p
· p

x
(by (24))
p≤y
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≤ d

x
π(y)

≤ dy

x
.

Although this bound can be improved asymptotically, the improvement is negligible for 
the range of parameter values considered; see Remark 12 below.

Bounding I2. For t ≥ (log 3)1/2 > 1.048, recall that the bound (5) from Lemma 3
applies. Since m(t) is decreasing,

|I2| =
∣∣∣∣ ∑

y<p≤x2

χ(p)p−1e−p/x

∣∣∣∣ ≤ d
∑

y<p≤x2

p−1e−p/x ≤ d
∑

y<p≤x2

p−1

≤ d

( ∑
p≤x2

p−1 −
∑
p≤y

p−1
)

≤ d
[(

log log(x2) + M + O�(m(x2))
)

−
(

log log y + M + O�(m(y))
)]

≤ d

(
log

(
log(x2)
log y

)
+ m(x2) + m(y)

)

= d

(
log

(
2β log log N
1
2 log log N

)
+ m(x2) + m(y)

)
= d

(
log 4β + m(x2) + m(y)

)
.

Bounding I3. Observe that

|I3| =
∣∣∣ ∑

x2<p

χ(p)p−1e−p/x
∣∣∣ ≤ d

∑
x2<p

p−1e−p/x

≤ d

x2

∑
x2<p

e−p/x ≤ d

x2

∞∑
k=�x2	

(e−1/x)k

= d

x2
(e−1/x)�x2	

1 − e−1/x
≤ d(e−1/x)x2

x2(1 − e−1/x)

≤ de−x

x2(1 − e−1/x)
≤ 4d

xex
.

The last inequality follows from the fact that 1
4 |t| < |et − 1| for 0 < |t| < 1.2

Putting this all together yields the desired result. �
Remark 12. For t > 1, it is known that π(t) < 1.25506t/ log t [36, Cor. 1, (3.5)]. One can 
asymptotically improve the estimate in the proof of Lemma 11 and get

2 Since e−x and 1 − e−1/x tend to zero, computing their quotient leads to numerical issues. Thus, the 
final simplifying estimate is needed to ensure the numerical stability of later computations.
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|I1| ≤ d

x
π(y) ≤ 1.25506y

x log y
d.

For the values of β that arise in the numerical optimization step (Subsection 2.8), both 
estimates yield essentially the same final result. Therefore, we keep the original bound, 
which is a bit cleaner.

2.8. Completion of the proof of Theorem 1

As defined in (22), suppose that x = (log N)β and y = (log N)1/2. Using Lemmas 10
and 11, we find that∣∣∣∣ log L(1, χ) −

∑
p≤(log N)1/2

χ(p)
p

∣∣∣∣ ≤ G(β, δ, η; d, N) (25)

for all β > 1
2 , δ ∈ (0, τ ], and η ∈ (1, 32 ), where

G(β, δ, η; d, N) := 2.19d + C6(δ, η) log N + C7(δ, η)d
x

1
2 −δ log x︸ ︷︷ ︸

from Lemma 10

+ d log 4β + d F (x, y)︸ ︷︷ ︸
from Lemma 11

= C6(δ, η) log N

x
1
2 −δ log x︸ ︷︷ ︸

A(β,δ,η;N)

+
(

2.19 + log 4β + F (x, y) + C7(δ, η)
x

1
2 −δ log x

)
︸ ︷︷ ︸

B(β,δ,η;N)

d

is an affine function of d. It remains to optimize the constants η, δ, and β. Before we 
attempt this, let us make a few remarks about the qualitative nature of the expressions 
involved. This informs our selection of the parameters below and justifies the particular 
search region that we eventually consider.

First observe that F (x, y) contains the summand

m(y) = 1
√

y

(
3 log y + 4

8π

)
+ 5

y2 ≥ 3 log log N

16π(log N)1/4 .

This error term comes from Lemma 3, which is an asymptotically sharp form of Mertens’ 
second theorem under the Riemann Hypothesis. Thus, we cannot reasonably expect the 
error bound in (25) to be better than O((log log N)(log N)−1/4).

Next note that log 4β tends to infinity slowly with β, and hence we can afford to make 
β large if this reduces the other terms significantly. In fact, the remark above suggests 
that we at least take (recall the definition (15) of τ and that δ ≤ τ)

β ≥ 5
2 − 4τ

≈ 4.46003

so that
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Fig. 5. Graph of C4(δ) for δ ∈ (0, τ ].

C6 log N

x
1
2 −δ log x

= C6 log N

β(log N)β( 1
2 −δ) log log N

= O

(
1

(log N) 1
4 log log N

)

is dominated by m(y), which we already know cannot be much improved.
Aside from m(y), a glance at (23) shows that the other three summands that comprise 

F (x, y) are of lower order in N . Moreover, increasing β increases the rate at which these 
terms decay as N → ∞. Thus, we should take β relatively large.

There is also the question about minimizing the constants C6(δ, η) and C7(δ, η), which 
are defined in (21). This involves minimizing C2(δ, η), C3(η), C4(δ), and C5(δ, η). All of 
these tasks point in the same direction. A look at the definitions (13) of C2(δ, η) and 
(17) of C4(δ) warns us to keep δ ∈ (0, τ ] away from zero. In fact, C4(δ) is minimized for 
δ ∈ (0, τ ] by selecting δ = τ ; see Fig. 5. Thus, one expects that in the final optimization 
δ should be close to τ . The pole of the Riemann zeta function at s = 1 and the definition 
(13) of C3(η) tell us that η ∈ (1, 32 ] must be kept away from 1; this also ensures that 
C5(δ, η) does not get out of hand.

For β ≥ 4.5, all of the summands that comprise G(β, δ, η; d, N) are decreasing func-
tions of N . Therefore, G(β, δ, η; d, N) ≤ G(β, δ, η; d, 3) for N ≥ 3 (recall that the smallest 
possible conductor for an entire Artin L-function is 3; see the comments at the beginning 
of Subsection 2.2). Since d ≥ 1 and

G(β, δ, η; d, 3) = A(β, δ, η; 3) + B(β, δ, η; 3)d ≤
(
A(β, δ, η; 3) + B(β, δ, η; 3)

)
d,

we minimize A(β, δ, η; 3) + B(β, δ, η; 3) to obtain our final bound on (25).
Numerical investigations with δ ≈ τ suggest that values of β significantly larger than 

200 or smaller than 100 hurt us; see Fig. 6. Thus, we settle on the domain

(β, δ, η) ∈ [4.5, 300] × (0, τ ] × (1, 3
2 ] (26)

and rapidly obtain the (approximate) optimal point
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Fig. 6. Views of the surface A(β, τ, η; 3) + B(β, τ, η; 3) (vertical axis) for β ∈ [4.5, 500] and η ∈ (1, 3
2 ].

(β, δ, η) = (155.648, 0.213503, 1.18818), (27)

which (approximately) minimizes the objective and yields∣∣∣∣ log L(1, χ) −
∑

p≤(log N)1/2

χ(p)
p

∣∣∣∣ < 13.53d.

This completes the proof of Theorem 1. �
3. Proof of Corollary 2

The proof of Corollary 2 relies upon the final stages of the proof of Theorem 1. A 
fair amount of set up is needed before we begin and there are several cases that require 
special attention.

3.1. Preliminaries

Let K be a number field of degree nK ≥ 2 over Q such that ζK/ζ is entire and let 
L/Q denote the Galois closure of the extension K/Q. Then

L(s, χ) = ζK(s)
ζ(s) =

∞∑
k=1

χ(k)
ks

for Re s > 1, (28)

in which χ is the character of a certain (nK−1)-dimensional representation of Gal(L/Q). 
We claim that the conductor N of χ satisfies N = |ΔK|. Indeed, the conductor of ζK(s) is 
|ΔK| [17, p. 125]; in particular, ζ(s) = ζQ(s) has conductor 1. Since L(s, χ)ζ(s) = ζK(s), 
the multiplicativity of the conductor [17, p. 95] ensures that N = |ΔK|. Minkowski’s 
bound implies that N ≥ 3.

It is known that L(s, χ) is meromorphic on C, and our assumption that ζK/ζ is entire 
ensures that L(s, χ) is entire. Unconditionally, L(s, χ) has no zeros or poles on the vertical 
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line Re s = 1 [17, Cor. 5.47]. Since ζ(s) has a simple pole at s = 1 with residue 1, (28)
implies that

κK = Res
s=1

ζK(s) = lim
s→1

(s − 1)ζ(s)L(s, χ) = lim
s→1

L(s, χ) = L(1, χ).

In particular, this ensures that L(1, χ) > 0 since ζK(s)/ζ(s) > 0 for s > 1 and because 
ζK(s) has a simple pole at s = 1.

Dirichlet convolution shows that the coefficients in (28) satisfy

χ(k) =
∑
i|k

akμ

(
k

i

)
,

in which ak denotes the number of ideals in K of norm k and μ is the Möbius function. 
Therefore,

χ(p) = apμ(1) + a1μ(p) = ap − 1 ∈ [−1, nK − 1], (29)

and, in particular, |χ(k)| ≤ nK − 1. Indeed, if p is inert in K, then N(p) = pnK 	= p and 
χ(p) = −1. The other extreme χ(p) = nK − 1 occurs if p splits totally in K.

3.2. Upper and lower bounds

Since N ≥ 3, Lemma 3 provides

∑
p≤(log N)

1
2

1
p

≤ log log log N + log 1
2 + M + m(

√
log N).

It follows from the previous inequality, (25), and (29) that

log L(1, χ) ≤
∑

p≤(log N)
1
2

χ(p)
p

+ G(β, δ, η; d, N) ≤ d
∑

p≤(log N)
1
2

1
p

+ G(β, δ, η; d, N)

= d log log log N + H(β, δ, η; d, N),

in which

H(β, δ, η; d, N) = d
(

log 1
2 + M + m(

√
log N)

)
+ G(β, δ, η; d, N).

Similarly,
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log L(1, χ) ≥ −
∑

p≤(log N)
1
2

p−1 − G(β, δ, η; d, N)

≥ − log log log N − log 1
2 − M − m(

√
log N) − G(β, δ, η; d, N)

= − log log log N − K(β, δ, η; d, N),

in which

K(β, δ, η; d, N) = log 1
2 + M + m(

√
log N) + G(β, δ, η; d, N).

Since L(1, χ) > 0, we exponentiate the inequalities above, perform the substitutions 
d = nK − 1 and N = |ΔK|, and obtain

1
eK(β,δ,η;d,N) log log |ΔK| ≤ κK ≤ (log log |ΔK|)nK−1eH(β,δ,η;d,N).

We now optimize the parameters β, δ, and η to suit our particular needs.

3.3. General case

We can optimize H and K in the same manner that we treated G in Subsection 
2.8. The functions H(β, δ, η; d, N) and K(β, δ, η; d, N) are affine in d and decreasing in 
N when the other variables are fixed in the search region (26). The optimal choices of 
(β, δ, η) in both cases equal (27) (to the precision displayed). This is to be expected since 
the variables β, δ, and η only appear in the definitions of H and K as arguments of the 
summand G(β, δ, η; d, N). In the end, we obtain

1
e17.81(nK−1) log log |ΔK| ≤ κK ≤ (e17.81 log log |ΔK|)nK−1.

3.4. Fields of small degree

For 2 ≤ nK ≤ 6, we can make some small improvements (still assuming that the 
function ζK/ζ is entire). Let N0 := N0(n) denote the minimum absolute discriminant of a 
number field of degree n. For n = 2, 3, 4, 5, 6, these are 3, 23, 117, 1609, 9747, respectively; 
see Table 1.

Since d = nK − 1 and because H(β, δ, η; d, N) and K(β, δ, η; d, N) are decreasing 
functions of N for each fixed (β, δ, η) in (26), we can select (β, δ, η) to minimize H and 
K, respectively. It turns out that approximately the same triple minimizes both H and 
K, so we quote a single triple for each pair (d, N0) in Table 2. This leads to the following 
results quoted in Corollary 2.

This completes the proof of Corollary 2. �
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Table 1
Number fields K with minimal absolute discriminant N0 = |ΔK| for a given 
degree n = 2, 3, . . . , 6, along with defining polynomials and corresponding 
entry in the The L-functions and Modular Forms Database.

n N0 ΔK Defining polynomial for K LMFBD Entry
2 3 −3 x2 − x + 1 2.0.3.1
3 23 23 x3 − x2 + 1 3.1.23.1
4 117 117 x4 − x3 − x2 + x + 1 4.0.117.1
5 1609 1609 x5 − x3 − x2 + x + 1 5.1.1609.1
6 9747 −9747 x6 − x5 + x4 − 2x3 + 4x2 − 3x + 1 6.0.9747.1

Table 2
Minimum absolute discriminant N0 for a number field K of degree nK, a good choice of 
(β, δ, η), and the corresponding values H(β, δ, η, d, N0) and K(β, δ, η, d, N0).

nK d N0 (β, δ, η) H(β, δ, η, d, N0) K(β, δ, η, d, N0)
2 1 3 (155.648, 0.213503, 1.18818) 17.809 17.809
3 2 23 (13.0627, 0.210516, 1.16757) 18.8667 17.5328
4 3 117 (9.57219, 0.210398, 1.16682) 24.0981 22.5199
5 4 1609 (7.5451, 0.208941, 1.15761) 28.1733 26.9298
6 5 9747 (6.80012, 0.208989, 1.15791) 33.3541 32.2334

Appendix A. Constants and functions

There are many constants and auxiliary functions, many of which are interdependent, 
that appear in the proof of Theorem 1. For the sake of convenience, we summarize 
below those expressions that arise in a non-local context (that is, not isolated to a single 
environment or subsection).

• M = 0.261497212847642783755 . . . (Meissel–Mertens constant) (p. 923)

• m(x) = 1√
x

(
3 log x + 4

8π

)
+ 5

x2 (p. 923)

• C1 = ζ(3/2)√
2π

= 1.0421869788690765546 . . . (p. 925)

• η ∈ (1, 32 ] (p. 926)
• δ ∈ (0, 12 ) (later restricted to δ ∈ (0, τ ] in Lemma 8) (p. 926)

• C2(δ, η) = 2η − 1
2δ2 (p. 926)

• C3(η) =
(

C1
ζ(η)
ζ(2η)

)2

(p. 926)

• τ ≈ 0.2197330687867739 (p. 928)

• C4(δ) = 4
√

2 δδ− 1
2 e

1
6δ

√
π(1 − δ)

(p. 929)

• C5(δ, η) = C4
(

log C3 + π
2

)
(p. 929)

• u ∈ [1, 32 ] (p. 930)

• C6(δ, η) = C2(δ, η)C4(δ)
2π

(p. 932)

• C7(δ, η) = C2(δ, η)C5(δ, η) (p. 932)
2π

https://www.lmfdb.org/
https://www.lmfdb.org/NumberField/2.0.3.1
https://www.lmfdb.org/NumberField/3.1.23.1
https://www.lmfdb.org/NumberField/4.0.117.1
https://www.lmfdb.org/NumberField/5.1.1609.1
https://www.lmfdb.org/NumberField/6.0.9747.1
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• β > 1
2 (later restricted to β > 4.5 > 4.46003 = 5

2−4τ on p. 936) (p. 934)
• x = (log N)β (p. 934)
• y = (log N)1/2 (p. 934)

• F (x, y) = (e − 1)y
x

+ m(x2) + m(y) + 4
xex

(p. 934)

• A(β, δ, η, N) = C6(δ, η) log N

x
1
2 −δ log x

(p. 936)

• B(β, δ, η, N) = 2.19 + log 4β + F (x, y) + C7(δ, η)
x

1
2 −δ log x

(p. 936)

• G(β, δ, η; d, N) = A(β, δ, η, N) + B(β, δ, η, N)d (p. 936)
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