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Abstract—Clinical Cohort Studies (CCS) are a great source
of documented clinical research. Ideally, a clinical expert will
interpret these articles for exploratory analysis ranging from
drug discovery for evaluating the efficacy of existing drugs in
tackling emerging diseases to the first test of newly developed
drugs. However, more than 100 CCS articles are published on
PubMed every day. As a result, it can take days for a doctor
to find articles and extract relevant information. Can we find
a way to quickly sift through the long list of these articles
faster and document the crucial takeaways from each of these
articles? In this work, we propose CCS Explorer, an end-
to-end system for relevance prediction of sentences, extractive
summarization, and patient, outcome, and intervention entity
detection from CCS. CCS Explorer is packaged in a web-
based graphical user interface where the user can provide any
disease name. CCS Explorer then extracts and aggregates
all relevant information from articles on PubMed based on
the results of an automatically generated query produced on
the back-end. CCS Explorer fine-tunes pre-trained language
models based on transformers with additional layers for each of
these tasks. We evaluate the models using two publicly available
datasets. CCS Explorer obtains a recall of 80.2%, AUC-ROC
of 0.843, and an accuracy of 88.3% on sentence relevance
prediction using BioBERT and achieves an average Micro F1-
Score of 77.8% on Patient, Intervention, Outcome detection
(PIO) using PubMedBERT. Thus, CCS Explorer can reliably
extract relevant information to summarize articles, saving time
by ∼ 660×.

Index Terms—named entity recognition, pico, relevance pre-
diction, summarization, bert, transformers, language model,
evidence based medicine

I. INTRODUCTION

One of the world’s largest biomedical publication databases,
PubMed, has over 34 million publications. Approximately
2.5 million users perform about 3 million searches and 9
million page views on PubMed every day [1]. Over the past
couple of years, 137 articles have been posted per day on

Fig. 1: Why CCS Explorer?

PubMed on COVID-19 alone [2]. In particular, clinical cohort
studies, which contain information on the specific results of
a patient or patient population for a given therapeutic and/or
condition, are considered essential for clinical research. Clin-
ical cohort studies (CCS) include randomized clinical trials,
prospective cohort studies, retrospective cohort studies, case-
control studies, patient case studies, and more. Clinical cohort
studies typically describe a patient or patient population, the
intervention(s) assessed, and the measured outcome(s).

The two major applications that require exploration of
clinical cohort studies are question answering and meta-
analysis (Figure 1a). Exploration of clinical cohort studies
is required to answer questions to identify qualitative re-
lationships. Examples of question answering include: What



drugs may be repurposed or used in combination to improve
disease outcomes [3]? What comorbidities are most impactful
to cardiac disease outcome [4]–[7]? What patient features
result in health outcome disparities [8], [9]? Exploration of
clinical cohort studies is also required to perform a meta-
analysis, which is a quantitative analysis where results of
cohort studies are aggregated in order to estimate an overall
effect size. Estimating an overall or aggregate effect size, such
as the effect of a drug on disease outcome, adjusts for disparity
or bias introduced by individual study-specific features (e.g.,
geography, gender, age, sample size, etc.). Examples of meta-
analysis include: determining overall adverse event rates with
specific treatments for cancer [10], determining the overall
prevalence of comorbidities in a rare neurodegenerative dis-
ease population [11], or determining the overall effect size of
vaccination on SARS-CoV-2 outcome [12]–[14].

The process for manual exploration of cohort studies is
iterative and time-consuming (Figure 1b). The major steps in-
clude devising the appropriate advanced PubMed query to find
articles in PubMed, reviewing the list of search title results to
determine if the query resulted in the expected type or number
of studies, examining the abstracts to determine if the journal
article contains the desired information, and curating the article
to extract the pivotal PIO elements: patient population (disease
and/or control population), intervention (what therapy was
utilized), and the outcome (what measurement was utilized to
determine a result). Depending on the number of studies to be
reviewed and included, the exploration process alone can take
hours to weeks before final curation and analysis can occur
[15]. Moreover, even with a quality control team, there may be
some remaining inconsistency between researchers or curators
[15]. Critical variations and corresponding delays may occur
depending on the researcher’s knowledge of constructing an
appropriate advanced PubMed query. An appropriate PubMed
query must include all relevant synonyms, MESH terms, and
appropriate formatting in order to return the most inclusive
and relevant list of articles. Additionally, differences in review
styles for examining lengthy abstracts or even full-text articles
may result in unintended differences in article inclusion or
stylistic differences in PIO extraction.

Here we present CCS Explorer to automate the pro-
cess of clinical cohort study exploration (Figure 1c). CCS
Explorer is an open-source web application that greatly
expedites the identification, review, and extraction of data
from clinical cohort studies. CCS only requires that the
user input a disease name. Using a pre-built list of inter-
vention names (which can also be customized if desired),
CCS Explorer formulates an advanced query to PubMed.
CCS Explorer automatically obtains all relevant articles via
their unique PubMed identification (PMID) and automatically
parses through the text. CCS Explorer provides three criti-
cal outputs for researchers: 1) a list of all relevant studies along
with a relevance prediction score; 2) an abbreviated relevance
summary that contains only the most relevant information
(or sentences) necessary for the researcher to explore the
study; 3) automated extraction of PIO elements. With CCS

Fig. 2: CCS Explorer Framework

Explorer, question answering or meta-analysis is greatly
expedited, streamlined, and optimized. CCS Explorer au-
tomates all the iterative, front-end work that would normally
take a specially trained team of researchers hours to weeks to
achieve.

There are specially trained groups dedicated to manually
synthesizing findings from CCS. However, the rapid publica-
tion of new articles makes it impossible to maintain pace [16].
However, Natural Language Processing (NLP) breakthroughs
have enabled the automation of many time-consuming tasks re-
lated to text exploration in non-biomedical domains. Examples
include sentiment analysis of customer reviews [17], language
translation [18], [19], ranking search results [20]–[22], abstrac-
tive summarization [23]–[25], and extractive summarization
[26], [27]. The present work with CCS Explorer applies
and integrates NLP tasks to automate biomedical text review,
namely clinical cohort study exploration.

To this end, we propose CCS Explorer, an end-to-end
system for exploring clinical cohort studies with PubMed and
extracting useful information necessary for tasks like question
answering or meta-analysis. 1 highlights the difference be-
tween manual exploration by an expert and CCS Explorer.
It can reduce the time taken to extract relevant information
and summarize articles from hours to seconds. For the query
demonstrated in Figure 3, it takes 26.32s for CCS Explorer
to run the query, process the resulting articles, and extract
all relevant information to construct a task-specific summary
along with the detection of PIO entities.

We introduce two models for this task, one for relevance



prediction of text and another for detecting participant, in-
tervention, and outcome (PIO) entities in CCS articles. We
compare the proposed models’ performance by initializing
the weights using 6-7 different pre-trained BERT [28] or
ELECTRA [29] models.

The main contribution of this paper is to design each of the
following pieces and combine them to form CCS Explorer:
• Web Application: front-end designed for taking inputs from

the user and displaying outputs
• Query Generator: merges MeSH terms to form an advanced

query for PubMed to obtain PMIDs
• Article Extractor: extracts articles from PubMed and stores

the text for subsequent steps
• Relevance Predictor: attention-based language model ex-

tracts relevant pieces of text from the article along with a
relevance score

• Summarizer: generates an extractive summary of the article
by putting together the most relevant sentences into a
coherent body of text

• PIO Detector: named entity recognition model finds par-
ticipants, interventions, and outcomes present in the article
along with a score for each entity

This framework is shown in Figure 2.

II. SYSTEM DESIGN

The goal of CCS Explorer is to provide a user-friendly
system for researchers to obtain reliable results quickly. For
this reason, streamlit [30] was used to design the front-end user
interface of CCS Explorer. The graphical user interface,
GUI, is shown in Figure 3. It takes inputs from the user and
displays the results in a user-friendly format for review. It has
the following parts:
• Step 1: The query is created during this step. The user has

two options: (1) create a manual query by stitching together
MeSH terms in the query (2) provide a disease name so
that the Query Generator can build an advanced query for
PubMed.

• Step 2: A query name has to be selected from the options
provided consisting of previously formed queries. PMIDs
are obtained from PubMed based on the selected query.

• Step 3: The articles are extracted from PubMed using the
PMIDs and Relevance Predictor, Summarizer, and PIO
Detector are run on each article to obtain aggregated results.
It is hidden in Figure 3 because it has already been run and
the user has moved on to step 4.

• Step 4: Three tables show the results of Relevance Predictor,
Summarizer and PIO Detector.

CCS Explorer can be divided into three different pieces
which run in the back-end: (1) Query Generator and Article
Extractor, (2) Relevance Predictor and Summarizer, (3) PIO
Detector. The details of Relevance Predictor is discussed in
Section III and PIO Detector in Section IV. The framework
of CCS Explorer is shown in Figure 2.

Query Generator and Article Extraction. CCS Explorer
provides the users with a graphical user interface to input their

Fig. 3: CCS Explorer: Graphical User Interface



National Center for Biotechnology Information (NCBI) email
and API key so repeated queries can be sent to PubMed. It
also enables the user to manually input a customized advanced
query using MeSH terms or to simply provide a cancer type
so that an automatically generated query can obtain a baseline
result. The query generation and extraction of articles are
performed using BioPython [31], [32]. The resulting text is
prepared for subsequent steps by splitting it into sentences
using SciSpacy [33].

III. RELEVANCE PREDICTION AND EXTRACTIVE
SUMMARIZATION

A. Data

The data used in building the Relevance Predictor and Sum-
marizer of CCS Explorer originate from an open source
dataset named the Evidence Inference dataset [34]–[36]. The
dataset contains useful annotations of relevant information in
CCS articles.

In this dataset [34]–[36], sections of the text are labeled
as evidence and nonevidence. In designing CCS Explorer,
we replaced the evidence label with relevant and non-evidence
with irrelevant. Thus, these relevant and irrelevant labels were
used as ground truth annotations to build the Relevance Pre-
dictor of CCS Explorer. It consists of 4,005 unique articles
split across two sets of articles. The selection of articles for
training and test set was defined in the Evidence Inference
[34], [35] dataset as train article ids and validation article ids
respectively.

The Summarizer uses results from the Relevance Predictor
to formulate summaries along with a Summary Score to denote
the quality of the summary.

B. Method

Relevance Prediction. Relevance Predictor was designed
using BERT-based language models pre-trained on scientific
articles obtained from sources such as PubMed, PubMed
Central, and UMLS. It was constructed by adding a dense
layer to the pre-trained model architecture and fine-tuned on
the Evidence Inference dataset described in Section III-A.

The pre-trained BERT models used:
• BioBERT [37]: Initialized using standard BERT [28] model,

and then pre-trained on Biomedical domain texts, which
includes PubMed abstracts and PubMed Central full-text
articles.

• PubMedBERT [38]: Pretrained a BERT [28] model from
scratch using 14 million abstracts from PubMed.

• SapBERT [39]: Pre-trained a BERT model on the biomedi-
cal knowledge graph of UMLS [40] using self-alignment to
cluster synonyms of the same concept.

• BlueBERT [41]: Initialized using standard BERT [28] model
and pre-trained on PubMed abstracts (4 Billion words) and
clinical notes from MIMIC-III (500 Million words) [42].

• KRISSBERT [43]: Initialized with PubMedBERT [38] pa-
rameters, and then pretrained using biomedical entity names
from the UMLS ontology [40] to self-supervise entity link-
ing examples from PubMed abstracts.

• SciBERT [44]: Trained a BERT [28] model on scientific
papers taken from 1.14 million full papers from Semantic
Scholar.
Let Y ′ be all the outputs from the model, Y be all the

annotations from the dataset, y′i ∈ [0, 1] represent the model
prediction and yi denote the annotation of the i-th sentence.
Let h(X ) represent the output of the transformer architecture.
This is used as input to a fully-connected layer followed by
the sigmoid function (σ). So, the output of the model for the
i-th sentence is represented by:

zi = W⊤h(xi) + b

y′
i = σ(zi) =

1

1 + zi

(1)

Binary cross entropy loss is used and is denoted by:

L(yi, y
′
i) =− [yi · log(y′

i)

+ (1− yi) · log(1− y′
i)]

(2)

Summarization. The output of the sigmoid function (σ) in
Equation (1), y′

i, represents the relevance score for the i-th
sentence. The sentences are then sorted in descending order by
these relevance scores to generate the set of sentences Y ′

sorted.
The first 4 sentences corresponding to the 4 most relevant
sentences are joined to form the extractive summary for each
article. The summary score is the average of the relevance
scores for each of these 4 sentences

Summary Score =

∑4
i=1 y

′
i,sorted

4
(3)

Metrics. The following metrics were used to evaluate the
performance of the relevance prediction model:

Accuracy =
|Y ∩ Y ′|

N

Recall, R =
|Y ∩ Y ′|

|Y|

Precision, P =
|Y ∩ Y ′|
|Y ′|

F1 score =
2 ∗ P ∗ R

P + R

(4)

where the annotated relevance labels of the entire dataset
are denoted by Y and the model predictions by Y ′; |Y| and
|Y ′| represent the number of annotated tokens and the number
of model predictions. In addition to the above metrics, the area
under receiver operating characteristics curve (AUC-ROC) is
used for comparison.

Implementation Details. We implemented Relevance Predic-
tor using PyTorch [45], [46] and transformers [47]. The model
was trained using a machine equipped with Intel Xeon Gold
6136 Processor, 376GB RAM, an Nvidia V100 GPU and
CUDA 11.4. While training Relevance Predictor, we used a
batch size of 16 and ADAM [48] as the optimization method.
The learning rate was set at 10−5 and it was trained for 4
epochs. 3,562 total articles defined in train article ids are



TABLE I: CCS Explorer: Relevance Prediction Model
Performance

Model Accuracy Precision Recall AUC-ROC F1-Score

BioBERT [37] 0.883 0.083 0.802 0.843 0.150
PubMedBERT [38] 0.880 0.080 0.801 0.841 0.145
SapBERT [39] 0.887 0.083 0.776 0.832 0.150
BlueBERT [41] 0.875 0.078 0.817 0.846 0.143
KRISSBERT [43] 0.884 0.082 0.792 0.839 0.149
SciBERT [44] 0.877 0.080 0.814 0.846 0.145

used as the training set and the 443 articles defined in val-
idation article ids list are used as the test set of the Evidence
Inference Dataset [34], [35]. To ensure consistent performance
and fair comparison, we use the same hyperparameters for all
models.

C. Result

A high recall is essential for relevance prediction as we want
to be sure that we are detecting all the relevant sentences. It is
acceptable for an automated system to include some irrelevant
sentences as long as the significant ones appear at the top of the
list. Prior research in machine translation show alignment with
human expectation is highest when the optimization focuses
on recall [59]. User evaluation of interactive information
retrieval performance [60] indicates recall is significantly more
correlated with the users’ expectation of success. Similarly,
recall is more important than precision for downstream tasks
such as summarization [61]. Most of the evaluated models
for relevance prediction displayed a recall above 80%, AUC-
ROC above 84%, and accuracy above 88%. The low F1-score
is due to the low precision, which is less critical for tasks such
as relevance prediction [59]–[61]. Due to the highest average
metrics among all methods, BioBERT [37] was selected as
the model used to make predictions in the back-end of the
web-based interface of CCS Explorer.

Case Study. An example of the relevant sentence prediction
and subsequent summary formulation using CCS Explorer
for a PubMed query targeting colorectal cancer articles is
demonstrated in Figure 4. The article obtains a Summary
Score of 0.588 using Summarizer. In this article, titled Beta-
blockers may reduce intrusive thoughts in newly diagnosed
cancer patients by Lindgren et al. [56], the highest scoring
sentence perfectly summarizes the goal of the study. The
second sentence provides an example of potential problems
faced by the cohort. The third sentence focuses on the results
of the study and the fourth sentence draws conclusions from
the study. The summary score is obtained by averaging the
relevance score of each sentence forming the summary. The
summary scores of all the articles resulting from the query are
shown in Table II. It shows that the model is consistent and
obtains a good summary score for all articles, with a maximum
score of 0.631 and a minimum score of 0.537.

(a) Article with the 4 most relevant sentences according to
Relevance Predictor highlighted

(b) Extractive summary using most relevant sentences

Fig. 4: Extractive Summarization of PMID 23255459 [56]
titled Beta-blockers may reduce intrusive thoughts in newly
diagnosed cancer patients by Lindgren et al. with a summary
score of 0.588 using Summarizer of CCS Explorer

IV. PATIENT, INTERVENTION, OUTCOME DETECTION

A. Data

The final piece of CCS Explorer is aimed at named
entity recognition of Patient, Intervention, and Outcome in
articles that describe the conduct and results of clinical cohort
studies. To train PIO Detector for this task, we used the EBM-
NLP corpus [62]. The dataset includes 4,970 medical article
abstracts with annotations indicating sequences of text that
describe the Participants, Interventions, and Outcome elements
of the respective CCS. 4,782 of these abstracts contain crowd-
sourced labels. 188 articles among the 4,970 abstracts contain
annotations from domain experts with medical training. This
test set is held-out while training the models and only used to
test the performance of the final PIO Detector models.

B. Method

The pre-trained models are used for PIO Detector:
• BioELECTRA [63]: Pre-trained an ELECTRA model on full

text articles from PubMed and PubMed Central.
• PubMedBERT [38]: Pretrained a BERT model from scratch

using 14 million abstracts from PubMed.
• SciBERT [44]: Pre-trained a BERT model trained on sci-

entific papers taken from 1.14 million full papers from
Semantic Scholar.

• BioBERT [37]: Initialized using standard BERT [28] model,
and then pre-trained on Biomedical domain texts which
includes PubMed abstracts and PubMed Central full-text
articles.



TABLE II: CCS Explorer generated extractive summaries of the following query: ((''colorectal'' AND (neoplasm OR cancer
OR tumour)) OR ''Colorectal neoplasms'' [MeSH]) AND (''Adrenergic beta-antagonists'' [MeSH] OR ''Antihypertensive Agents''
[MeSH] OR ''beta-blockers'') AND (''Cancer Survivors'' [MeSH] OR ''cancer survivorship'' OR ''cancer survivors'' OR ''cancer
survival'')

PMID Title Journal Summary Score

24050955 [49] β-Blocker usage and colorectal cancer mortality: a nested case-control study in the UK Clinical Practice Research Datalink cohort. Annals of oncology ... 0.537
35881046 [50] Beta-blocker use and urothelial bladder cancer survival: a Swedish register-based cohort study. Acta oncologica (Stockholm, Sweden) 0.605
29858097 [51] Association between perioperative beta blocker use and cancer survival following surgical resection. European journal of surgical oncology ... 0.631
29846174 [52] Impact of long-term antihypertensive and antidiabetic medications on the prognosis of post-surgical colorectal cancer: the Fujian ... Aging 0.600
34843550 [53] Providers’ mediating role for medication adherence among cancer survivors. PloS one 0.554
31062847 [54] Use of Antihypertensive Medications and Survival Rates for Breast, Colorectal, Lung, or Stomach Cancer. American journal of epidemiology 0.566
35725814 [55] β-blockers and breast cancer survival by molecular subtypes: a population-based cohort study and meta-analysis. British journal of cancer 0.568
23255459 [56] Beta-blockers may reduce intrusive thoughts in newly diagnosed cancer patients. Psycho-oncology 0.588
30917783 [57] Cardiovascular medication use and risks of colon cancer recurrences and additional cancer events: a cohort study. BMC cancer 0.551
21453301 [58] Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. British journal of clinical pharmacology 0.565

• BlueBERT [41]: Initialized using standard BERT [28] model
and pre-trained on PubMed abstracts (4 Billion words) and
clinical notes from MIMIC-III (500 Million words) [42].

• KRISSBERT [43]: Initialized with PubMedBERT [38] pa-
rameters, and then pretrained using biomedical entity names
from the UMLS ontology [40] to self-supervise entity link-
ing examples from PubMed abstracts.

• SapBERT [39]: Pre-trained a BERT model on the biomedi-
cal knowledge graph of UMLS [40] using self-alignment to
cluster synonyms of the same concept.

The labels provided in the dataset for each token is mapped
onto the following 4 labels, where 3 represent the target named
entities Patient, Intervention, and Outcome, while the 4th is
denoted by None and represents tokens which are not any of
these 3 entities.

Let Y ′ be all the outputs from the model, Y be all the
annotations from the dataset, y′

i represent the model prediction
and yi denote the annotation of the i-th token. Let h(X )
represent the output of the transformer architecture. This is
used as input to a fully-connected layer. So, the output of the
i-th token is represented by y′

i = W⊤h(xi) + b.
To train the model, we used cross entropy loss Eq. 5:

L(yi, y
′
i) = −

4∑
j=1

yi[j] log(y
′
i[j]) (5)

where L(yi, y′
i) is the estimated cross entropy loss for the

i-th token between annotations y ∈ R4 and the predicted
probabilities y′ ∈ R4, y′

i[j] represents the model predictions
for the i-th token and j-th entity.

Metrics. The following metrics were used to evaluate the
performance of the NER models for PIO detection:

Recall, R(k) =

∣∣Y(k) ∩ Y ′(k)
∣∣∣∣Y ′(k)

∣∣
Precision, P (k) =

∣∣Y(k) ∩ Y ′(k)
∣∣∣∣Y(k)

∣∣
F1 score =

2 ∗ P ∗ R

P + R

(6)

Given annotations Y , model predictions Y ′, k ={Patient,
Intervention, Outcome, None} indicating the entity,

∣∣Y(k)
∣∣

and
∣∣∣Y ′(k)

∣∣∣ represent the number of annotations and model
predictions with the label k.

Implementation Details. The was implemented using Py-
Torch [45], [46] and transformers [47]. We trained the model
using a machine equipped with Intel Xeon Gold 6136 Proces-
sor, 376GB RAM, an Nvidia V100 GPU and CUDA 11.4.
While training PIO Detector, we use batch size of 6 and
AdamW [64] as the optimization method and a learning rate
of 10−4. PIO Detector is trained for 2 epochs.

To train the model, we randomly split the data by subjects
into training and validation set in a 9:1 ratio. We train PIO
Detector using the training set and use the validation set for
hyperparameter optimization. The held-out test set is used to
evaluate PIO Detector and compare different baselines. To
ensure consistent performance and fair comparison, we use
the same model hyperparameters for all models.

C. Result

Table III compares the results of PIO Detector used in
CCS Explorer using different pre-trained BERT [28] and
ELECTRA [29] models. The average Mirco-F1 score shows
the efficacy of PIO Detector in detecting all the 3 entities:
Participants, Intervention, and Outcome. The pre-trained states
of these models do not affect the performance after fine-tuning,
as highlighted by a difference < 1% in the average micro F1-
score. PIO Detector performs particularly well in detecting
Participants resulting in the highest Recall and Micro-F1 Score
among the 3 entities detected. Due to the highest average F1-
Score among all methods, PubMedBERT [38] was selected as
the model used to make predictions in the back-end of the
web-based interface of CCS Explorer.

Case Study. Figure 5 shows the Participants, Interventions,
and Outcomes detected along with the respective scores for
the same paper expanded upon in Section III-C titled Beta-
blockers may reduce intrusive thoughts in newly diagnosed
cancer patients by Lindgren et al. [56]. In this paper, partici-
pant entities obtain much higher prediction scores on average
compared with other entities. The higher performance metrics
for participant entities are also evident in Table III, where
participant entities obtain the highest recall and F1-scores.
Overall, all the PIO entities detected align well with a manual
review.



TABLE III: CCS Explorer: Participant, Intervention, Outcome Detection Model Performance

Model
Precision Recall Micro F1-Score Average Micro F1-Score

Participant Intervention Outcome Participant Intervention Outcome Participant Intervention Outcome P/I/O

BioELECTRA [63] 0.738 0.609 0.851 0.923 0.763 0.619 0.820 0.677 0.717 0.776
PubMedBERT [38] 0.744 0.636 0.849 0.920 0.758 0.602 0.823 0.692 0.705 0.778
SciBERT [44] 0.743 0.609 0.854 0.910 0.750 0.607 0.818 0.673 0.710 0.773
BioBERT [37] 0.743 0.635 0.853 0.915 0.765 0.591 0.820 0.694 0.698 0.776
BlueBERT [41] 0.724 0.635 0.852 0.916 0.749 0.593 0.809 0.687 0.700 0.771
KRISSBERT [43] 0.760 0.613 0.852 0.918 0.756 0.601 0.832 0.677 0.705 0.776
SapBERT [39] 0.740 0.619 0.860 0.920 0.757 0.601 0.820 0.681 0.708 0.775

(a) Article with PIO Elements highlighted

(b) PIO Elements Ranked

Fig. 5: Participant, Intervention, Outcome (PIO) Detection of
PMID 23255459 [56] titled Beta-blockers may reduce intrusive
thoughts in newly diagnosed cancer patients by Lindgren et
al. using CCS Explorer

V. COMPARISON WITH MANUAL EXPLORATION

To provide context, the goal of the query used to il-
lustrate the capabilities of CCS Explorer and explore
studies to answer the following question: How do anti-
hypertensive drugs impact the outcome of colorectal cancer
survival? The advanced PubMed query automatically con-
structed by CCS Explorer shown in Figure 3 is: ((''col-
orectal'' AND (neoplasm OR cancer OR tumor)) OR ''colorec-
tal neoplasms'' [MeSH]) AND (''Adrenergic beta-antagonists''
[MeSH] OR ''Antihypertensive Agents'' [MeSH] OR ''beta-
blockers'') AND (''Cancer Survivors'' [MeSH] OR ''cancer
survivorship'' [MeSH] OR ''cancer survivors'' OR ''cancer

survival''). The formatting of the query is critical to finding
the most relevant clinical cohort studies. The aforementioned
query returned 11 studies. Entering a more general PubMed
query of ''colorectal cancer'' at the time of this writing returned
281,217 studies. A query of ''colorectal cancer AND hyperten-
sion'' returned 1,617 results. CCS Explorer automatically
formats the anti-hypertensive drug names and all synonymous
versions of the outcome ''cancer survival'' to insure maximal
coverage while still restricting the output to the most relevant
studies.

Explicitly comparing CCS Explorer to manual explo-
ration by a trained human curator is informative. Even if
the human curator does appropriately format the advanced
PubMed query, there is still a substantial time saving with
CCS Explorer. Here we compared the exploration time
once relevant articles have been selected. Based on timed
trained curator studies [15], the average exploration time per
relevant article is 29 minutes with a range of 24 to 42 minutes.
The variability in manual exploration is based both on the
innate skill of the curator and how difficult it is to find the
relevant PIO parts in the article (based on changes in article
structure, length, etc.). Thus, even if a curator only explored
the 10 relevant articles, the process would take on average
290 minutes compared to the 26.32 seconds required by CCS
Explorer.

Beyond time savings, CCS Explorer also provides crit-
ical context that is not provided during the equivalent manual
process. CCS Explorer provides the quantitative relevance
rankings of each study. The relevance ranking is extremely
helpful for prioritizing the review of large sets of returned
relevant articles. The relevance ranking is also helpful to
evaluate how well the advanced PubMed query returns results
the curator deems relevant to the exploratory objective. CCS
Explorer also provides its own extractive summary, which
takes in only the most relevant sentences from each study.
Here, we chose to use only the 4 most relevant sentences
to construct the extractive summary. However, the number
of sentences included in each extractive summary can be
adjusted by the user. The extractive summary allows for
fast and efficient exploration by the human curator. Finally,
beyond critical context, the automated PIO detection and
extraction expedites the formation of study inclusion criteria
and preliminary curation steps for a subsequent meta-analysis.



VI. CONCLUSION

Recently, there has been an explosion of articles on clinical
cohort studies (CCS), which are readily available through
PubMed. However, the sheer number of articles published
every day makes it impossible to read through them to extract
relevant information manually. In this paper, we propose
an end-to-end system with a user-friendly graphical inter-
face called CCS Explorer, which makes this accessible
to anyone. CCS Explorer can take a disease as input,
generate an advanced query for PubMed, and extract the text
from all the resulting articles. It then proceeds to rank each
sentence based on a relevance score, creates an extractive
summary of the article along with a summary score, and
extracts all Participant, Intervention, and Outcome (PIO) enti-
ties in the article. The Relevance Predictor, Summarizer, and
PIO Detector are evaluated quantitatively and case studies
are performed to demonstrate their effectiveness. Thus, CCS
Explorer makes the difficult task of performing large-scale
meta-analysis and review feasible by drastically reducing the
time required.
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