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ABSTRACT
The accuracy of recent deep learning based clinical decision sup-
port systems is promising. However, lack of model interpretability
remains an obstacle to widespread adoption of artificial intelligence
in healthcare. Using sleep as a case study, we propose a generaliz-
able method to combine clinical interpretability with high accuracy
derived from black-box deep learning.

Clinician-determined sleep stages from polysomnogram (PSG)
remain the gold standard for evaluating sleep quality. However, PSG
manual annotation by experts is expensive and time-prohibitive.We
propose SERF, interpretable Sleep staging using Embeddings, Rules,
and Features to read PSG. SERF provides interpretation of classified
sleep stages through meaningful features derived from the AASM
Manual for the Scoring of Sleep and Associated Events.

In SERF, the embeddings obtained from a hybrid of convolutional
and recurrent neural networks are transposed to the interpretable
feature space. These representative interpretable features are used
to train simple models like a shallow decision tree for classification.
Model results are validated on two publicly available datasets. SERF
surpasses the current state-of-the-art for interpretable sleep staging
by 2%. Using Gradient Boosted Trees as the classifier, SERF obtains
0.766 𝜅 and 0.870 AUC-ROC, within 2% of the current state-of-the-
art black-box models.
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1 INTRODUCTION
The prevalence of electronic health records has led to an abun-
dance of patient health data [1, 16]. Meanwhile, recent advances
in deep learning have shown great promise in utilizing these data
for accurate clinical decision support systems. However, the lack
of interpretability remains an obstacle to widespread adoption for
a high stakes application like healthcare [6, 11, 15, 35, 40]. On the
other hand, simple linear models are not accurate enough to be
used by clinicians for decision-making [23]. Can a clinical decision
support system be developed that is interpretable and accurate?

In this paper, we focus on sleep staging. Sleep stages annotated
by clinicians from polysomnograms (PSG) remain the gold standard
for evaluating sleep quality and diagnosing sleep disorders.

Sleep disorders affect 50–70 million US adults and 150 million
in developing countries worldwide [13]. Sleep staging is the most
important precursor to sleep disorder diagnoses such as insomnia,
narcolepsy, or sleep apnea [34]. However, the clinician-determined
sleep staging, which is the gold standard, is labor-intensive and
expensive [14]. Neurologists visually analyze multi-channel PSG
signals and provide empirical scores of sleep stages, including wake,
rapid eye movement (REM), and the non-REM stages N1, N2, and
N3, following guidelines stated in the American Academy of Sleep
Medicine (AASM) Manual for the Scoring of Sleep and Associated
Events [4]. Such a visual task is cumbersome and takes several
hours for one sleep expert to annotate a patient’s PSG signals from
a single night [42].

Automated algorithms for sleep staging alleviate these limita-
tions. Deep learning methods have successfully automated annota-
tion of sleep stages by using convolutional neural networks (CNN)
[7, 28, 33, 41], recurrent neural networks [10, 29], recurrent convo-
lutional neural networks [5, 36], deep belief nets [24], autoencoders
[37], attention [21, 30, 31], and graph convolutional neural networks
[17, 21]. Although deep learning models can produce accurate sleep
staging classification, they are often treated as black-box models
that lack interpretability [22]. Lack of interpretability limits the
adoption of the deep learning models in practice because clinicians
must understand the reason behind each classification to avoid data
noise and unexpected bias [2, 35]. Furthermore, current clinical
practice at sleep labs relies on the AASM sleep scoring manual
[4], which is interpretable for clinical experts but lacks precise
definitions needed for a robust computational model [3].

Thus, an automated model for sleep staging should ideally be
as clinically interpretable as the sleep scoring manual and as ac-
curate as the black-box neural network models. To this end, we
propose SERF, interpretable Sleep staging using Embeddings, Rules,
and Features, which combines clinical interpretability with the ac-
curacy derived from a deep learning model. It provides clinically
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Table 1: Datasets

Number of
Subjects

Sampling
Frequency (Hz)

Number of
Channels

Annotation
Schema

ISRUC [20] 100 200 9 AASM [4]
PhysioNet-EDFX [12, 19] 197 100 4 R&K [32, 38]

meaningful explanations, derived from the AASM manual [4], with
each sleep stage prediction. SERF surpasses the interpretable sleep
staging baseline [3] and performs within 2% of state-of-the-art
black-box deep learning models [28].

2 DATA
The following two publicly available datasets, summarized in Table
1, are used to evaluate the performance of SERF:
• PhysioNet EDFX [12, 19]: The PhysioNet EDFX database contains
197 whole-night PSG sleep recordings. The corresponding hypno-
grams were scored by technicians according to the Rechtschaffen
and Kales guidelines [32]. Sleep Stages N3 and N4 were combined
to adhere to AASM standards. 153 subjects were healthy Cau-
casians without any sleep-related medication. 44 subjects had
mild difficulty falling asleep. It contains two Electroencephalog-
raphy (EEG) channels, one Electrooculography (EOG) channel,
and one Electromyography (EMG) channel sampled at 100 Hz.

• ISRUC [20]: The ISRUC dataset contains PSG recordings of 100
subjects with evidence of having sleep disorders. The data was
collected from 55 male and 45 female subjects, whose ages range
from 20 to 85 years old, with an average age of 51. The cor-
responding hypnograms were manually scored by technicians
according to the AASM manual [4]. It includes six EEG channels
(F3, F4, C3, C4, O1, and O2), two EOG channels (E1 and E2), and
a single EMG channel sampled at 200 Hz.

3 METHOD

Figure 1: SERF Framework

SERF predicts sleep stages using PSG data through an inter-
pretable model derived from expert-defined features and embed-
dings from a deep neural network. The method is explained using

the ISRUC dataset. Table 1 and Section 2 can be used to find the
corresponding metrics for PhysioNet-EDFX.

The input data are multi-channel PSG signals. It consists of multi-
variate continuous time-series data,X, partitioned into 𝑁 segments
called epochs, denoted as X = {𝑿1, · · · ,𝑿𝑁 }. Each epoch 𝑿𝑛 ∈
R9×6,000 is 30 seconds long and contains 9 physiological signals from
9 channels. The sampling frequency is 200Hz. Each epoch, 𝑿𝑛 , also
has an associated sleep stage label 𝑦𝑛 ∈ {Wake, REM, N1, N2, N3}
provided by a clinical expert. The goal is to predict a sequence
of sleep stages, 𝑺 = {𝑠1, . . . 𝑠𝑁 } based on X so that they mimic
the labels provided by human experts, 𝒀 = {𝑦1, . . . 𝑦𝑁 }. In SERF,
these predictions also contain meaningful explanations derived
from expert-defined features. The SERF framework shown in Figure
1 comprises the following steps:

3.1 Latent Embedding
The multivariate PSG signals are embedded using CNN-LSTM to
capture translation invariant and complex patterns. The CNN is
composed of 3 convolutional layers. Each convolutional layer is
followed by batch normalization, ReLU activation, and max pooling.
Using a kernel size of 201, the convolutions in the first layer extract
features based on 1-second segments. Subsequent layers have a
kernel size of 11. The output channels of the three convolution
layers are 256, 128, and 64. The output of the final convolutional
layer is flattened and fed into a single layer of bi-directional Long
Short-Term Memory (LSTM) cells with 256 hidden states to capture
temporal relations between epochs. This results in 512 hidden states
for each epoch, 𝑿𝑖 and represents the latent embedding used in
subsequent steps:

𝒉(𝑿𝑖 ) ∈ R512

A single fully connected layer with softmax activation is then used
to predict the five sleep stages:

𝒛𝑖 =𝑾𝑇ℎ(𝑿𝑖 ) + 𝒃

𝒔𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒛𝑖 )
whereW ∈ R512×5 is the weight matrix, b ∈ R5 is the bias vector,
and 𝒔𝑖 is the estimated probabilities of all 5 sleep stages at epoch i.
Cross-entropy loss is used to train the model:

𝐿(𝒚𝑖 , 𝒔𝑖 ) = −
5∑︁
𝑗

𝒚𝑖 [ 𝑗]𝑙𝑜𝑔(𝒔𝑖 [ 𝑗])

where 𝐿 (𝒚𝑖 , 𝒔𝑖 ) is the estimated cross-entropy loss for epoch i
between human labels 𝒚𝑖 and the predicted probabilities 𝒔𝑖 . After
training on sleep stage prediction, the latent embedding 𝒉 (X) ∈
R𝑁×512 is obtained from the hidden states of the LSTM.

3.2 Expert Defined Features
Concurrently, each epoch is encoded into a feature vector. Expert
suggestions are incorporated to supplement the technical guidelines
in the AASMmanual [4]. Using this rule augmentation procedure, a
set of𝑀 ′ features are extracted, 𝑭 ′ (𝑿𝒏) =

[
𝑓 ′1 (𝑿𝑛) , . . . 𝑓 ′𝑀′ (𝑿𝑛)

]
,

where element 𝑓 ′
𝑗
(𝑿𝑛) is the function generating feature j for epoch

𝑿𝑛 .
These meaningful features are described below:
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• Sleep spindles are bursts of oscillatory signals originating from
the thalamus and depicted in EEG [9]. It is a discriminatory
feature of N2.

• Slow-wave sleep is prominent in N3 and is marked by low-
frequency and high-amplitude delta activity [39].

• Delta (0.5–4Hz) waves feature in N3, Theta (4–8 Hz) in N1, Alpha
(8–12 Hz), and Beta (>12 Hz) help to differentiate between Wake
and N1 [18]. EMG bands determine the muscle tone used to distin-
guish between REM and Wake [25]. Each band’s Power Spectral
Density (PSD) is calculated using a multi-taper spectrogram.

• Amplitude is vital in finding K Complexes, Chin EMG ampli-
tude, and Low Amplitude Mixed Frequency and thus used to
differentiate Wake, REM, N1, and N2.

• Mean, Variance, Kurtosis, and Skew are used to capture the distri-
bution of values in the channel. It can help detect outlier values
that highlight signatures such as K-Complexes.

The importance of expert-defined features is analyzed using the
ANOVA test to select the top 90% of themost discriminative features,
𝑭 . It reduces the number of features from𝑀 ′ to𝑀 , where 𝑭 ⊂ 𝑭 ′.
These𝑀 features from𝑁 epochs leads to our featurematrix 𝑭 (X) ∈
R𝑁×𝑀 , which forms the basis of the interpretation module of our
framework where an element 𝑓𝑗 (𝑿𝑖 ) is the value of feature j at
the epoch 𝑿𝑖 . Number of features in ISRUC dataset: 𝑀 ′ = 87 and
𝑀 = 78, and in Physionet dataset:𝑀 ′ = 38 and𝑀 = 34 due to fewer
channels.

3.3 Linear Map
A linear map, 𝑻 , combines the inputs encoded by features and latent
embeddings. After the feature matrix, 𝑭 (X), and latent CNN-LSTM
embedding matrix, 𝒉 (X), are generated, a linear transformation 𝑻
is learned, which maps the features into the latent space defined
by the embeddings. The linear transformation matrix, 𝑻 , is learned
using ridge regression:

min
𝑇

| |𝒉 (X) − 𝑭 (X) 𝑻 | |22 + ||𝑻 | |22

3.4 Representative Features
The linear map, 𝑻 , is used to generate a representative feature, 𝒔 𝑗 ,
for each epoch using the embedding vectors 𝒉 (𝑿𝑛). These repre-
sentative features collectively form the similarity matrix 𝑺 and is
used to train an interpretable classifier like a shallow decision tree.

Given an epoch, 𝑿 𝑗 , the CNN-LSTM embedding module is used
to obtain the embedding, 𝒉

(
𝑿 𝑗

)
. A representative feature similarity

matrix, 𝑺 , is then generated using the linear map, T:

𝑺 = 𝒉(𝑿 𝑗 )𝑻𝑇

This representative feature similarity matrix is used as input to
simple classifiers such as a shallow decision tree. When a new PSG
is provided, 𝑿 , the embedding vector 𝒉(𝑿 ) is first generated using
the CNN-LSTM network followed by the representative feature
similarity matrix 𝑺 = 𝒉(𝑿𝑖 )𝑻𝑇 . These representative features are
used as input to simple classifiers and form the basis for model
interpretability.

Table 2: Model Evaluationa

Model
Accuracy (%) ROC-AUC (%) Cohen’s 𝜅 Macro F1

EDFx ISRUC EDFx ISRUC EDFx ISRUC EDFx ISRUC

SERF-DT 81.2 80.5 82.5 85.8 0.735 0.747 0.719 0.768
SERF-XG 82.3 81.9 84.4 87.0 0.753 0.766 0.753 0.789
SERF-GB 82.2 81.7 84.8 87.0 0.753 0.763 0.758 0.789
SERF-LR 82.9 79.5 85.0 85.3 0.762 0.733 0.759 0.773
Features-XG 81.0 77.4 83.2 83.0 0.734 0.704 0.732 0.722
Features-DT 68.7 71.6 74.3 79.4 0.555 0.629 0.583 0.665
SLEEPER-DT [3] 78.8 78.0 81.5 83.4 0.704 0.712 0.696 0.730
SLEEPER-GB [3] 80.7 79.7 82.8 85.1 0.729 0.736 0.721 0.756
U-Time [28] 86.2 84 88.3 88.8 0.810 0.793 0.811 0.816
CNN-LSTM 86.4 83.1 88.6 88.8 0.813 0.783 0.815 0.819
1D-CNN [3] 84.4 82.5 86.6 87.2 0.784 0.773 0784 0.789

aXG: DART Gradient Boosted Trees, DT: Decision Tree, LR: Logistic Regression, GB:
Gradient Boosted Trees

4 EXPERIMENTS
Implementation Details: SERF was built using PyTorch 1.0 [26],
scikit-learn [27], and XGBoost [8]. A batch size of 1000 samples
from 1 PSG is used. Each model is trained for 20 epochs with a
learning rate of 10−4 using ADAM as the optimization method. The
data is randomly split by subjects into a training and test set in a 9:1
ratio with the same seed for each experiment. For each dataset, the
training set is used to fix model parameters, and the test set is used
to obtain performance metrics. The same model hyperparameters
and feature extraction schema are used to prevent overfitting and
ensure consistent performance across different datasets.
Baselines:
• Convolutional Neural Network with a stacked bi-directional
LSTM layer (CNN-LSTM): the black-box model used in obtaining
the signal embeddings.

• 1D-Convolutional Neural Network (1D-CNN): a black-box model
proposed in [3].

• Expert Feature Matrix, 𝑭 (X), as input to simple classifiers.
• SLEEPER [3]: an interpretable sleep staging algorithm based on
prototypes.

• U-Time [28]: state-of-the-art black-box deep learningmodel which
adapts the U-Net architecture for sleep staging.

Metrics:
• Accuracy =

|Y∩Y′ |
𝑁

• Sensitivity, 𝑆 (𝑘) =
��Y (𝑘 )∩Y′(𝑘 ) ��

|Y′(𝑘 ) |
• Precision, 𝑃 (𝑘) =

��Y (𝑘 )∩Y′(𝑘 ) ��
|Y (𝑘 ) |

• F1 score = 2 ∗ 𝑃 ∗ 𝑆
𝑃 + 𝑆

• Cohen’s 𝜅 =
𝐴𝑐𝑐−𝑝𝑒
1−𝑝𝑒 , where 𝑝𝑒 = 1

𝑁 2
∑5
𝑘

���Y (𝑘)
��� ���Y ′(𝑘)

���
Given expert annotations Y ′ and predicted stages Y of size 𝑁 , 𝑘 =

{𝑊, 𝑁 1, 𝑁 2, 𝑁 3, 𝑅} indicating the sleep stage, and
���Y ′ (𝑘)

��� (���Y (𝑘)
���)

is the number of human (algorithm) labels from sleep stage k.
Results: The results from experiments are compared in Table 2 and
3. SERF performs within 2% of state-of-the-art black box models
such as U-Time [28] and far exceeds the performance of expert
feature-based models. Table 3 shows that for all sleep stages other
than Wake, SERF surpassed SLEEPER [3] and was comparable to
black-box models, U-Time [28] and CNN-LSTM. N1 is a challenging
sleep stage to identify where SERF was comparable to black-box
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Table 3: Sensitivity across Sleep Stages

Model
Wake N1 N2 N3 R

EDFx ISRUC EDFx ISRUC EDFx ISRUC EDFx ISRUC EDFx ISRUC

SERF-DT 0.897 0.889 0.283 0.440 0.849 0.798 0.803 0.855 0.763 0.859
SERF-XG 0.892 0.894 0.386 0.481 0.863 0.809 0.823 0.889 0.802 0.870
SERF-GB 0.892 0.888 0.410 0.495 0.863 0.811 0.824 0.888 0.802 0.865
SERF-LR 0.904 0.895 0.398 0.535 0.865 0.768 0.832 0.847 0.799 0.819
Features-XG 0.891 0.873 0.340 0.324 0.842 0.768 0.828 0.859 0.761 0.788
Features-DT 0.757 0.821 0.110 0.250 0.742 0.717 0.692 0.789 0.612 0.749
SLEEPER-DT [3] 0.902 0.893 0.256 0.329 0.840 0.764 0.819 0.865 0.661 0.799
SLEEPER-GB [3] 0.911 0.902 0.313 0.397 0.848 0.787 0.835 0.876 0.700 0.816
U-Time [28] 0.941 0.890 0.552 0.504 0.897 0.839 0.749 0.898 0.883 0.951
CNN-LSTM 0.936 0.871 0.507 0.548 0.905 0.781 0.838 0.937 0.859 0.956
1D-CNN [3] 0.926 0.914 0.397 0.398 0.910 0.840 0.817 0.886 0.819 0.907

models. These results show that SERF can generalize better than
other interpretable methods [3] and is comparable to black-box
models [28] in identifying all stages.

SERF has the following improvements over the interpretable
method, SLEEPER [3]: (1) SERF surpasses SLEEPER by 2-3% in all
evaluation metrics. (2) SERF has a lower representative feature
dimension by utilizing raw feature values instead of binary rules
resulting in smaller matrices. (3) SERF learns a linear map using
ridge regression with a lower dimension than the prototype matrix
learned in SLEEPER using cosine similarity, thus resulting in a
smaller model size. (4) The smaller feature size of SERF results
in faster training and faster inference from the simple classifiers.
(5) Meaningful feature value cutoffs are obtained at nodes of the
decision tree, as seen in Figure 3, instead of just similarity indices.

The results also show the significance of different channels when
building an interpretable model. The clinical sleep staging man-
ual [4] utilizes all the 9 channels in the ISRUC dataset. Since the
Physionet EDFx dataset only contains 4 channels there are some
features that cannot be extracted. As a result, SERF, SLEEPER [3]
and Feature models exhibit worse performance relative to black-box
models for the EDFx dataset than ISRUC.

Figure 2 shows the significance of representative features for
classifying each sleep stage based on SERF and gradient boosted
trees. We focus on 2 of the top 7 features, which can be better attrib-
uted to guidelines in the sleep staging manual [4]. The rest of the
top 7 features are general meaningful features rather than distinc-
tive signal traits embedded in epochs. The 3rd feature, Spindle in
the C3-A2 and C4-A1 contra-lateral channel pairs, is important in
identifying REM stages. The manual states the absence of Spindles
as a critical observation when annotating REM. The 7th most im-
pactful feature, Slow Wave in the C3-A2 and C4-A1 contra-lateral
channel pairs, contributes significantly to the distinction of N3 from
N2. The most distinctive attribute clinicians look for in N3 is a slow
wave.

5 INTERPRETATION
Figure 3 shows a decision tree of depth 4, based on SERF. The left-
most node denotes the root of the tree. The color indicates the most
frequent sleep stage at a node, and the intensity is proportional
to its purity. The five rows of each node contain the following: (1)
the feature and the channels used, (2) the feature cutoff value, (3)
the percentage of data passing through, (4) the ratio of each sleep
stage in the following order: [Wake, N1, N2, N3, REM], (5) the most
frequent sleep stage, in other words if classification is performed at
that node, this label is assigned. Analyzing the resulting decision

Figure 2: SERF-XG feature importance SHAP values (ISRUC)

Figure 3: SERF-Decision Tree (ISRUC)

tree reveals some promising aspects of SERF. According to the sleep
staging guidelines for human annotators [4], N3 is distinguished
by the occurrence of slow waves, one of the underlying features
of SERF. The bottom leaf node is partitioned using Slow Waves
>= 0.01 in the C3-A2 & C4-A1 channel pair. 92% of this leaf node
contains N3, while only 34% of the previous node contains it.

6 CONCLUSION
We propose a method, SERF, to provide accurate and interpretable
clinical decision support and demonstrate it on automated sleep
stage prediction. In order to achieve this goal, SERF combines em-
beddings from a deep neural network with clinically meaningful
features. SERF achieves high performance metrics, comparable to
state-of-the-art deep learning baselines. Moreover, the SERF expert
feature module incorporates standard AASM guidelines to ensure
the model enables transparent clinical interpretability, as illustrated
using two qualitative case studies.
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