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Abstract—Finding the optimal beamformers in massive
multiple-input multiple-output (MIMO) networks is challenging
because of its non-convexity, and conventional optimization based
algorithms suffer from high computational costs. Recently, deep
learning based methods have been proposed because of their
computational efficiency, but they typically can not generalize
well when deployed in heterogeneous scenarios where the base
stations (BSs) are equipped with different numbers of antennas
and have different inter-BS distances. This paper proposes a
novel deep learning based beamforming algorithm to address
above challenges. Specifically, we consider the weighted sum rate
(WSR) maximization problem in multi-input and single-output
(MISO) interference channels, and propose a beamforming
learning architecture by unfolding a parallel gradient projection
algorithm. By leveraging the low-dimensional structures of the
optimal beamforming solution, our constructed learning network
can be made independent of the numbers of transmit antennas
and BSs. Moreover, such a design can be further extended to a
cooperative multicell network where users are jointly served by
multiple BSs. Numerical results based on both synthetic and ray-
tracing channel models show that the proposed neural network
can achieve high WSRs with significantly reduced runtime, while
exhibiting favorable generalization capability with respect to the
antenna number, BS number and the inter-BS distance.

Index Terms—Beamforming, deep neural network, MISO in-
terfering channel, cooperative multicell beamforming.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is an
emerging technology that uses arrays with hundreds of an-
tennas simultaneously serving tens of terminals in the same
time-frequency resource [2]. Multiuser beamforming based on
massive MIMO can provide high spectral efficiency and have
been recognized as a key technology for 5G wireless networks
[3].

However, there are many challenges in searching for optimal
beamforming strategies for effectively improving the perfor-
mance of wireless communication systems. First and fore-
most, the computational complexity brought by significantly
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increased number of base stations (BSs) and transmit antennas
is too high to fulfill the latency requirement of 5G applications.
Moreover, relying on the massive MIMO and millimeter wave
(mmWave) communication technologies [4], a large number
of small cells are expected to be deployed with macrocells
heterogeneously in ultra-dense cellular networks. There will
be different numbers of access points (APs) installed inside
the building or BSs located outdoors which are equipped with
different numbers of antennas to deal with the complex com-
munication environments. Beamforming optimization for these
dense and heterogeneous networks have to jointly consider
different network sizes and antenna configurations, making it
much harder to search for a proper beamforming solution. In
particular, the computational complexity can quickly become
prohibitive with the network size, the number of antennas
and the number of served users. Therefore, a multiuser
beamforming method that is computationally scalable in such
heterogeneous networks is highly desired.

A. Related Work

Beamforming optimization has been an active research
area in the past two decades [5]. The power minimization
based beamforming problems can be well-solved [5] or well-
approximated by various convex optimization techniques [6].
On the contrary, the weighted sum rate maximization (WSRM)
based beamforming problem is difficult to solve and in fact
NP-hard in general [7, 8]. Many suboptimal but computation-
ally efficient beamforming algorithms have been proposed in
the literature. For example, the paper [9] proposed the zero-
forcing based beamforming based on the generalized matrix
inverse theory. Approximation algorithms based on successive
convex approximation techniques are proposed in [10, 11] for
efficient resource allocation and multiuser beamforming opti-
mization. The inexact cyclic coordinate descent algorithm pro-
posed in [8] relies on the block coordinate descent (BCD) and
gradient projection (GP), and can achieve good performance
with a low complexity. The celebrated weighted minimum
mean square error (WMMSE) algorithm proposed in [12, 13]
is based on the equivalence between signal-to-interference-
plus-noise ratio (SINR) and MSE, which then is solved by
the BCD method. The WMMSE algorithm provides the state-
of-the-art performance and therefore is widely benchmarked
in the literature. However, all these existing algorithms are
iterative in nature, and their complexities quickly increase with
the antenna number and network size.

In recent years, machine learning based approaches based
on the deep neural network (DNN) have been considered in
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a range of wireless communication applications [14]. The key
motivation is to replace the conventional optimization based
iterative algorithms with a pretrained neural network (NN) that
can accurately approximate the algorithm solution in a fast
and low-complexity manner. For instance, in [15], a parallel
structured convolutional neural network (CNN) is trained with
only geographical location information of transmitters and
receivers to learn the optimal scheduling in dense device-
to-device wireless networks. In [16, 17], a black-box DNN
is trained to approximate the WMMSE solution for optimal
power control in the interference channel.

DNN based beamforming schemes have also been proposed
for alleviating the computational issues faced in massive
MIMO communications. For example, by considering the
multiple-input single-output (MISO) broadcast channel, the
work [18] proposed a beamforming neural network (BNN)
that learns virtual uplink power variables based on the well-
known uplink-downlink duality [5] for the power minimization
problem and the SINR balancing problem. For the WSRM
problem, they proposed a BNN to learn the power variables
and Lagrange dual variables based on the optimal beam-
forming structure. By considering a coordinated beamforming
scenario with multiple BSs serving one receiver, the work [19]
proposed a black-box DNN to learn the radio-frequency (RF)
downlink beamformers directly from the signals received at
the distributed BSs during the uplink transmission.

Different from the black-box DNN approach, the deep
unfolding (DU) technique [20, 21] can build a learning net-
work based on approximating a known iterative algorithm
with finite iterations. Specifically, the learning network has a
recurrent neural network (RNN) structure which is composed
by recurrent function blocks and imitates the iterative steps of
conventional optimization algorithms. For example, the works
[22], [23] and [24] respectively unfold the GP algorithm,
alternating direction method of multipliers (ADMM) and gra-
dient descent algorithm to build learning networks for MIMO
detection. For a single-cell multiuser beamforming problem,
the authors in [25] proposed a learning network by unfolding
the WMMSE algorithm. To overcome the difficulty of matrix
inversion involved in the WMMSE algorithm, they approxi-
mate the matrix inversion by its first-order Taylor expansion.
Another recent work [26] considered to unfold the WMMSE
algorithm to solve the coordinated beamforming problem in
MISO interference channels (MISO-ICs). The advantage of
these DU methods is that they can leverage the existing
algorithm as the guidance to design the learning network. So
the parameters to be learned in the learning network can be
much less compared to the black-box DNN methods.

Although above machine learning based methods have
shown promising performances, their learned networks usually
lack good generalization capabilities, that is, they cannot be
easily used to optimize a new scenario in which network
parameters such as the number of antennas, the number of
BSs or the network size are different from the scenarios when
the NN is trained. This shortcoming makes the current designs
not suitable for heterogeneous wireless environments.
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B. Contributions

In this paper, we consider learning-based beamforming
designs for WSRM in the MISO-ICs as well as the cooperative
multicell networks (see Fig. 1). Our goal is to design com-
putationally efficient beamforming learning networks (BLNs)
that can scale and generalize well in heterogeneous networks.
Different from the existing works which rely on the WMMSE
algorithm, we propose a BLN framework based on the DU
technique and by unfolding the simple parallel GP (PGP)
algorithm [27], which is referred to as “BLN-PGP” in the
paper.

The first key advantage of the proposed BLN-PGP is that it
has a parallel structure and the deployed NN is identical for
all BSs. This makes BLN-PGP have only few parameters to
be trained and can output a high-quality beamforming solution
quickly in time. The second advantage is that the complexity
of the NN can be made independent of both the number of
BSs and the number of BS antennas (which is usually large in
massive MIMO communications), and thus the dimension of
learnable parameters does not increase with the network size
and antenna size. Consequently, the proposed BLN-PGP has
the third advantage that it has good generalization capability
with respect to the cell radius, the number of antennas, and
the number of BSs, which means that the proposed BLN-PGP
can be easily deployed in heterogeneous networks (where the
BSs have different number of antennas and non-uniform inter-
BS distances) without the need of re-training. Our specific
technical contributions are summarized as follows.

1) We propose a new DU based BLN framework which is
composed by recurrent function blocks that mimic the
iterative updating steps of the PGP algorithm for solving
the WSRM problem. In order to achieve good beam-
forming performance within a small number of iterations,
we employ a multi-layer perception (MLP) to predict
the gradient vector with respect to the beamforming
vectors. By showing that the gradient vector lies in a
low-dimensional subspace, the MLP simply learns the
coefficients required to construct the gradient. Since the
MLP is identical for all BSs, the parameter space to be
learned is small.

2) We make two key steps to improve the generalization ca-
pability of BLN-PGP with respect to the number of trans-
mit antennas and BSs. Firstly, the low-dimensional struc-
ture of the optimal beamforming solution is exploited to
transform the target WSRM problem into a dimension-
reduced one. This ensures that the proposed BLN-PGP
solves a problem whose dimension is independent of
the number of transmit antennas. Secondly, instead of
considering the interference from the whole network, the
MLP only considers the signals and interference that are
sufficiently strong to predict the beamforming gradient
vector. This makes the MLP dimension independent of
the network size, and the BLN-PGP can be resilient to the
number of BSs. Furthermore, we show that the BLN-PGP
can be robust against channel state information (CSI)
errors by considering a robust training loss function.

3) The designs of the BLN-PGP are further extended to
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(b)

Fig. 1: (a) The MISO-IC [8], and (b) the cooperative multicell network [29].
The blue arrows represent information signals and the red arrows represent
the inter-cell interference. Such scenarios occur when the licensed spectrum
is used by one operator in a geographic area and the BSs for that operator
are coordinated by the cellular core network [30].

the cooperative multicell beamforming problem, which
is a joint transmission scheme with users served by all
cooperative BSs. The performance of the proposed BLN-
PGP is examined by both synthetic channel dataset and
ray-tracing based DeepMIMO dataset [28]. The results
show that the proposed BLN-PGP can perform compara-
bly with the WMMSE algorithm but has a significantly
reduced computation time. More impressively, BLN-PGP
shows promising generalization capability with respect to
the BS number, antenna number, and inter-BS distance.

Synopsis: Section II presents the system model of the
MISO-IC and formulates the WSRM problem. The existing
beamforming algorithms are also briefly reviewed. Section III
presents the main design of the proposed BLN-PGP, including
introduction of the approach to improving its generalization
capability. In Section IV, we extend our BLN-PGP to solve the
more complex cooperative multicell beamforming problem.
The simulation results are given in Section V and the paper
is concluded in Section VI.

Notations: Column vectors and matrices are respectively
written in boldfaced lower-case and upper-case letters, e.g.,
a and A, respectively. The superscripts ()7, (-)* and (:)"
represent the transpose, conjugate and hermitian transpose
respectively. Ik is the K x K identity matrix; ||a|| denotes
the Euclidean norm of vector a. 3(+) and R(-) represent the
imaginary and real part of a complex value respectively. {a;x}
denotes the set of all a;;, with subscripts j, k covering all the
admissible intergers, {a;i}; denotes the set of all aj; with
the first subscript equal to j.

II. WSRM PROBLEM AND ALGORITHMS

As shown in Fig. 1(a), we first consider the downlink
multi-user MISO-IC which has K BSs serving K respective
user equipment (UE) at the same time and over the same
spectrum. Extension to the cooperative multi-cell scenario
shown in Fig. 1(b) will be presented in Section IV. We
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assume that each BS is equipped with N; transmit antennas',
and each UE has only one receive antenna. Let s, € C,
E[|sk|?] = 1, be the information signal for UEy,, and v), € CN¢
denote the beamforming (BF) vector used by BSj, for all
k € K == {1,...,K}. Moreover, denote hj; € C™t as the
channel between BS; and UEy. Then, the signal received by
UEj is given by

K

Yk = h,':kvksk + Z h;'kvjsj +ng, ke, (1
j=1,j#k

where n; € C is the additive white Gaussian noise (AWGN)

with zero mean and variance o}, ie., ny ~ CN(0,0%).

It is assumed that the signals s, k € K, are statistically

independent from each other and from the AWGN. Thus, the

SINR for each UE; can be written as

i vn
H )
>k hGpvs2 + 0f
Assume that each BS, has perfect knowledge of CSI {hy;};,

through, e.g., channel estimation schemes in [31]. Then the
downlink transmission rate of link £ can be expressed as

Ri({vi}, {hjr};) = logy (1 + SINR,({vi }, {hji};)) . (3

We are interested in designing the beamformers so that the
network throughput is maximized. Specifically, the WSRM
problem is formulated as

S|NRk({Uk}, {hjk}]) = keK. (2

max R({vr}, {hjr})
V,eCNt ke 4)

s.t. H’ka2 < P,k ek,

where
K
R({vr}, {hjx}) = > an- Re({vr}, {hjr};), (5
k=1

in which o > 0 is a non-negative weighting coefficient of link
k, and Py denotes the maximum power budget of BS;. Hence,
the WSRM problem in the form of (4) has to be solved before
the BSs transmit signals to their receivers. However, (4) is a
non-convex problem, and it has been shown to be NP-hard in
general [7, 8]. In view of this, suboptimal but computationally
efficient algorithms have been proposed for (4). Next, we
review the WMMSE algorithm [13], the GP algorithm [8, 27],
and the polyblock outer approximation (POA) algorithm [32].

A. WMMSE Algorithm

The WMMSE algorithm [13] is one of the most popular
algorithms for handling the WSRM problem in (4). It reformu-
lates (4) as an equivalent weighted MSE minimization problem
by the MMSE-SINR equality [33], followed by solving the
problem with the BCD method [34]. The iterative steps of

WMMSE are given by: for iteration r = 1, ..., perform
K -1
uj, = Z |h';k'v§71|2 + o} hi vt (6a)
j=1

'Here, we made the assumption for ease of problem formulation. The
presented algorithms and BLNs are directly applicable to the scenario where
the BSs have different number of antennas; see discussions in Remark 2.
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-1
Wl = (1 . u;;hgkv;—l) : (6b)
-1
K
vl = ay Zaj|u§|2w;hkjhzj + urIn | upwyhgg, (6¢)
j=1

for all £ € K. In (6¢), ;. is an optimal dual variable associated
with the power budget constraint [13]. Theoretically, it has
been shown that the WMMSE algorithm can converge to a
stationary solution of (4), and practically performs well.

B. Gradient ascent based Algorithm

Since the power budget constraints of problem (4) have
a simple structure, gradient ascent based methods, such as
the gradient projection (GP) method [27], can be applied.
For example, the inexact cyclic coordinate descent (ICCD)
algorithm proposed in [8] deals with problem (4) by applying
gradient projection update for each beamformer vy in a
sequential and cyclic fashion. Specifically, the ICCD algorithm
has the following steps: for iteration » = 1,2, ..., perform for
k=1,..., K sequentially

oy = vy '+ s Vo, R{0 ar {0] ok {hir}),
v},

max{||og[l/v/ P, 1}

where s, > 0 is the step size, and the step in (7) is projected
onto the power constraint in (4). A key advantage of gradient
ascent based methods is that they involve simple computation
steps. However, compared with the WMMSE algorithm, the
gradient ascent based methods usually require a larger number
of iterations to converge to a solution as good as the WMMSE
solution.

)

v, =

C. POA Algorithm

The POA algorithm [35] is a monotonic optimization
method which can asymptotically solve problem (4) to the
global solution. Specifically, in POA algorithm, a sequence of
surrogate problems are systematically constructed, whose fea-
sible set contains that of the original problem. The constructed
feasible set will shrink iteratively and converge to the true
feasible set of the original problem [36], while the objective
values of the constructed problems will converge to the true
optimal value from above asymptotically. Therefore, POA
algorithm provides an upper bound solution for the original
optimization problem (4). However, the POA algorithm suffers
from quite high computation complexity, making it impractical
to be used in real-time scenarios.

Remark 1. It is worth noting that all of the above algorithms
are iterative in their original form. Therefore, all of them
suffer from significant computational delays especially for
massive MIMO scenarios where the numbers of cells and
transmit antennas are large. To alleviate the computation
issues, researchers have proposed the use of DNN [19] and the
deep unfolding techniques [20, 25, 26] for approximating the
WMMSE beamforming solution in a computationally efficient
fashion. However, both beamforming designs in [25, 26] have
limited generalization capability with respect to the number of
transmit antennas or network size. In particular, the learning
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networks have to be retrained whenever they are deployed in a
scenario with different numbers of BSs and transmit antennas.

III. PROPOSED BEAMFORMING LEARNING NETWORK

Our goal is to design a new BLN which has improved
generalization capability over the existing DNN based ap-
proaches. In this section, we first utilize the low-dimensional
structure of the beamforming solution of problem (4) to
transform the problem into an equivalent problem with reduced
dimension. Then, by unfolding the PGP method, we develop
the proposed BLN with a light computation complexity, and
present approaches to enhance its generalization capability
with respect to various system parameters.

A. Problem Dimension Reduction

Since in massive MIMO scenarios the number of transmit
antennas [V, is large, it is desirable to avoid handling problem
(4) in its original form. It has been shown in [37, Proposition
1] that the optimal beamforming vectors actually have a low-
dimensional structure, as stated below.

Proposition 1. [37, Proposition 1] Suppose that N; > K,
and that {hy;}; are linearly independent and satisfy

hi b #0, V4,5 € K,j # 4.

Then, if vy, is a beamforming vector that corresponds to a rate
point on the Pareto boundary, there exist {{y; }5(:1 such that

K
vy = ngjh’kj7 vi||* = P. ®)

j=1

By this property, the BF vector for each BSy lies in the
low-dimensional subspace spanned by the channel vectors
{hkj}j. Let H, = [hkl,...,th] e CM*K and £k =
[k, - - EkK]T € CX. We can let v, = Hy§,, for all k € K,
and rewrite problem (4) as

2
K ‘hzkagk‘
max Zak logy [ 1+ 2
£kEC ke k=1 Z‘]?ﬁk ‘h’;ikHJ£7 +O’£
st | Hpégl® < Pk € K. ®

To avoid handling the ellipsoid constraint |[Hzé,||*> < P,
we consider eigen-decomposition of

HU'H, = U.A, U,

where U, € CK*X ig the unitary eigen-matrix and A; €
REXK is a diagonal eigenvalue matrix. By letting w) =
A/PUYE, € CF and g, = A;PUNHY Ry, € CF, we
write (9) as

‘ggkwk‘z

K
Z aplogy | 1+
k=1

max

2
wLeCK kek H,. . 2
2tk |9w;| + o}

st. |lwi|®> < Pr. k€K, (10)
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Fig. 2: Diagram of the proposed BLN-PGP for the WSRM problem (10), where G = {g1,}; xex and G = {gy; }jex are CSI matrices. The subscript
(+)}, refers to the parameter for the k-th BS in the r-th iteration. V, P and ZF indicate the gradient, projection and phase rotation respectively.

Comparing (10) with (4), one can see that {wy} are
dimension-reduced BF (DRBF) vectors while {g,, } are equiv-
alent CSI vectors. In particular, the number of unknown
parameters are reduced from O(K N;) to O(K?). Therefore,
when N; > K, it is beneficial to deal with the dimension-
reduced problem (10). In addition, problem (10) is independent
of N, therefore a learning network based on (10) inherently
has a good generalization capability with respect to the number
of transmit antennas.

B. PGP Inspired Beamforming Learning Network

While the WMMSE algorithm can provide state-of-the-art
performance, the matrix inversion structure of the updating
rule makes it difficult to build a learning network to learn
the beamforming solution [25, 26]. In this section, in view of
the separable power constraint, we consider the simple PGP
method [27] to handle problem (10). Moreover, based on the
DU technique, we show how an effective and computationally
efficient BLN can be built.

The PGP method for (10) entails the following steps: for
iteration r = 1,..., perform for k = 1,..., K in parallel

wj, = wj, ' + 5 'V, R({w} '}, G), (11)
w] = ko (12)

max{||wy || /v/Pr, 1}’

where G = {g,;}jkex contains all the transformed channel
information. According to the DU idea, one can build an NN
with a finite iteration number to imitate the iterative updates
of the PGP method (11)-(12). In the existing works such
as [26], only the step sizes {s} '} are set to the learnable
parameters. Here, we attempt to learn both the step size s;_l
and the gradient vector Vka({w;f—l},G}), to find good

ascent directions that expedite the algorithm convergence.
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It is interesting to note that the gradient vector
Vka({wg_l},G) in fact lies in the range space of the
equivalent CSI vector {g;;};. Specifically, one can have

K
Vka({wj}, G) = Zaijkj, (13)
j=1

where K .

Uk = ak(Z |giiwi|” + ai) giwi,j =k, (14a)
=1
i = —aj|g?jwj|2 . (gzj’wk) ; 7& N
J T K ) .
(21:1 9w + C’Jz‘) (Zl# lgijwi|* + ‘732)

(14b)

In view of (13), it is sufficient to build a learning network that
simply learns the K coefficients {ay;}; rather than Vqp, R.

As shown in Fig. 2, we construct a beamforming learning
network termed “BLN-PGP” based on the above ideas. The
learning network has a recurrent structure, where each iter-
ation mimics the PGP update (11)-(12) for solving problem
(10). Specifically, in each iteration r, it contains K identical
function blocks F that produce the DRBF solutions {w}, }rex
in parallel. Here, we illustrate the detailed operations of the
learning network.

In each iteration r + 1, a central processing unit (CPU) first
gathers the channel information {g;;}, the noise variances
{02} and the DRBF vectors {w} '} obtained in the previous
iteration, and then calculates for each BSy,

=Y |ghwi?+0}, jeK, (15)
l#j
D} = aylgiiwi]?, j €K, (16)

and {a;g};wi}jex. The terms D} and Ij stand for the
information signal power and the suffered interference plus
noise power of each UE,, respectively; while gZ'j'w}; is the
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out-going interference of BS;, to UE;. The computed O, =
{D}, I}, g} ;wi} jex together with wy, and {gy;}jex are
used as the input of the main function block F which outputs
wi 't = F(w}, OF, Gy,) as the DRBF vector for BSy. Such K
function blocks are run in a fully parallel fashion. As shown
at the bottom of Fig. 2, the function block F contains the
following four key steps.

Gradient prediction: The computed O} is used as the
input of a multilayer perception (MLP) block associated with
each BSy, which is trained to predict the complex coefficients
{a;}; in (13) and the step size s}. The predicted {aj}; are
used to construct the gradient vector through

K
Vw R=V ({aij}k, {ij}j) = Zangkj- (17)
j=1

Note that the MLP in F are identical for all X BSs, which
has common parameters 6 € RM, where M is the model size.

Gradient ascent: With Vqy, R" and s, the gradient ascent
update is performed as

~ r41 "
W = wj, + s;Vap, R

This step is shown in the middle of the enlarged rectangle
in Fig. 2, where ® and & represent the multiplication and
addition operations.

Projection: Following (12), the function block P projects
the coefficient vector 1172“ onto the feasible set by computing

~ 1
Wit = Plapth) = '’ .
max{||w) " /v/Pe.1}

Phase rotation: It is worth noting that problem (10) does
not have a unique solution. In fact, if {wy} is an optimal
solution of (10), then any phase rotated solution {wpe¥*} is
also an optimal solution, where i = /—1. In order to make
sure that the BLN learns a one-to-one mapping, we rotate

(18)

the phases of {w} "'} so that each rotated @}, "', denoted by
w1, aligns with g, (e, gthw) ™" is real). In particular,

we perform via the function block £ r

i = Zp(ay )

xfpH 1
=, exp (—i tan ™! (W)) (19)
R(ghwy)
Since both exp(-) and tan(-) are differentiable functions, the
MLP parameter 8 can be trained via the standard backpropa-
gation method; see Section III-D.

As shown in Fig. 2, after a total of T iterations, the BLN
outputs the DRBF vectors {w?}. Then, one can recover the
BF vectors {v}} of the original problem (4) simply by the
transformation v} = Hy, (Ai/QUZ’)*lwg, Vk € K.

C. Enabling Generalization with the Number of BSs

As seen in the previous subsection, the proposed BLN-
PGP network would have good generalization capability with
respect to the number of transmit antennas N, since both
the MLPs and operations in each iteration do not depend on
it. To enable the MLP to have a generalization capability
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Neural
Network

Fig. 3: Illustration of the neighboring “interfered UEs™ of BSs5. The solid
red arrows represent the interference BSs gives to its neighboring “interfered
UEs”.

with respect to the different number of BSs, we need the
MLP to have its input ©}, = {D}, I}, o}, w} };ex and output
{ak;}iex to be independent of the BS number K.

As inspired by [38], for each BS; we define one neighbor
subset of UEs whom BSj, causes strong interference to, i.e.,

pi={i € K.j # k| lgiywil® > nof},  20)
where 1 a preset threshold. At the beginning of iteration r+1,
we order |g,jjw’,;|2/0]2, Jj € O in a decreasing fashion,
and further select the first ¢ indices in Oj. The selected
subset is denoted by O}, (c) C O}, which indicates the first
¢ most “interfered” UEs by BSi. An example is shown in
Fig. 3, where ¢ = 3, and the “interfered” UEs of it are
{UE,4, UEg, UE~}.

Then, we consider only UEs in O}(c) for computing the
input and output of the MLP associated with BSy,. Specifically,
instead of ©F, we let the input of the MLP associated with
BSy be ©4(c) £ {Dj, I}, a;g};wi.}je(or().ry» In addition to
the step size sj,, the output of the MLP associated with BSy, is
changed to {azj }je{o;(c),k}, which now is dependent on the
set O (c) only. Therefore, the input and output of the MLP
are independent of the whole network size K. The diagram of
the revised BLN-PGP network based on OF,(c) is illustrated in
Fig. 4, where only the block associated with BSy, at iteration
r is plotted.

Remark 2. Given the designs above, the proposed BLN-PGP
in Fig. 2 and Fig. 4 have good generalization capability w.r.t.
the BS antenna numbers N; and the cell size K. In fact, since
the input and output of the BLN-PGP is independent of the
BS antenna numbers, it can be deployed in heterogeneous
scenarios where the BSs have different antenna numbers. This
also implies that the proposed BLN-PGP needs not to be re-
trained when being deployed to a scenario that has antenna
numbers and network size different from those when it was
trained. This is a significant advantage of BLN-PGP over the
existing schemes and will be verified in Section V.
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BSy in the (» +1)—th iteration

&l
>

Fig. 4: Diagram of the revised BLN-PGP network for WSRM problem (10) where the MLP input and output are based on the subsets O} (c). Only the block
for BSy, in the r + 1-th iteration is shown in the figure. V, P and Zx indicate the gradient prediction, projection and phase rotation respectively.

D. Hybrid Training Strategy

Suppose that a training data set of size L is given, which
contains the CSI {hg?}, WSR coefficients {oz,f)}ke;c, and
the beamforming solutions {'w;f)} keic obtained by an existing
algorithm, for ¢ = 1,..., L. Suppose that the BLN-PGP has
a total number of T iterations in the training stage (see Fig. 2
with = T'), and denote {w,(f)’r} kex as the output of BLN-
PGP in the rth iteration for the ¢th data sample. The BLN-PGP
network is trained by a two-stage approach. The first stage is
based on supervised learning, using the following loss function

L K
1
S _ (0) (0) (0),T )2
L>(0) = LK 1’;0% (7”1% —w, |

T—1
4 0),r
+ 1= [lwy) —w” ||2>,
r=1

where +y is the penalty parameter. The second term in the right
hand side of (21) encourages the output of earlier iterations
of BLN-PGP to be close to {w,(f)}, which may help speed up
the convergence of BLN-PGP.

By treating the supervised training in the first stage as a
pre-training, we further refine the network in an unsupervised
fashion in the second stage. Specifically, we directly train the
network so that the WSR function is maximized; for example,
we consider the following loss function

2y

1 L
LU(6) = 5T ST R{w Ty (R, (22)
(=1

As will be shown in Section V, the two-stage training
approach can outperform those that solely use supervised
training or unsupervised training [18].

E. Improving Robustness under CSI Errors

It is well known that CSI errors at the BSs can degrade the
transmission performance, and thereby transmission schemes
that are robust to CSI errors are desired in practical systems
[39]. In order to improve the robustness of BLN-PGP against
the CSI errors, we adopt a simple approach as described below.
For each CSI sample hf > we randomly generate 2 CSI errors
egi’l),i =1,..., E, assuming that the CSI errors are bounded
and satisfy ||e§€€’l)| 2 < Eijh%)HQ, where ¢, is the relative
CSI error power. Then, we replace (22) by

1 L FE ;
LU(0) = — 75 > > RU{w ) (hf) + €Y. 23)

(=1 i=1

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.o

That is, in (23), we consider the average WSR in the presence
of the CSI errors, and the BLN-PGP will be trained to improve
the average WSR instead.

F. Complexity Comparison

In this subsection, the computational complexity in terms
of the number of floating-point operations (FLOPs) for BLN-
PGP is analyzed and compared with the PGP algorithm and
the WMMSE algorithm. By (11), the number of FLOPs per
iteration of the PGP algorithm is O(K?N;+ K N;+ K ), where
O(K?Ny) is due to the gradient calculation and O(K N; + K)
comes from the projection and descent operation. BLN-PGP
has a similar complexity as PGP except that the coefficients
{ag;} in (13) is obtained via the MLP but not by (14). Suppose
that the MLP has five layers with the three hidden layers
having M;, M5 and M3 neurons, respectively. The complexity
of the MLP is given by O(cM;+ My Mo+ My Ms+cMs). Thus
the complexity of the BLN-PGP per iteration can be computed
as O(KC2 + KC —+ CM1 —+ M1N2 —+ M2N3 —+ CM3 —+ K —+ C),
where Kc? + Kc is for computing ©7(c) and (K + c) is
for computing the gradient from the MLP output and gradient
projection step. By contrast, the WMMSE has a much higher
per-iteration complexity O(K2N2 + K2N; + KN?*" + K)
[25], mainly on the matrix inversion operation and updating
the dual variables. Since BLN-PGP can converge quickly with
only a small number of iterations, the overall computation time
of BLN-PGP can be much faster than the PGP algorithm and
the WMMSE, which will be demonstrated in Section V.

IV. EXTENSION TO COOPERATIVE MULTICELL
BEAMFORMING PROBLEM

The MISO-IC considered in Section II and Section III
treats the interference from adjacent cells as noise, resulting
in a fundamental limitation on the performance especially
for terminals close to cell edges [40]. In recent years, BS
coordination has been analyzed as a means of handling inter-
cell interference, in which one UE is served by multiple BSs
[41].

In this section, we extend the BLN-PGP to the cooperative
multicell scenario. As shown in Fig. 1(b), the cooperative
multicell communication scenario considered herein consists
of K, single-antenna receivers served by K; BSs equipped
with N; antennas each. The jth transmitter and kth receiver
are denoted BS; and UEy, respectively; the channel between
them is denoted by hj, for j € K; = {1,...,K;} and
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ke K, ={1,...,K,}. Let v, be the beamforming vector
used by BS; for serving UE;. The SINR at UE,, is given by

2
Ky pH
‘Zj:tl kv
SINRy = 5 24)
K., K
Dot |22 h;'kvjl’ + 0}
The WSRM problem is formulated as
Ky
max ag logs (1 + SINR (25a)
{Vjr}iers.kery ; log )
Ky
st Y llvll® < Py € Ky, (25b)
k=1

where (25b) represents the total power constraint of each BS;.
Analogous to Section III, we employ [42, Theorem 2] to
transform problem (25) into a dimension-reduced problem.

Theorem 1. [42, Theorem 2] For each rate tuple on the Pareto
boundary for problem (25), it holds that beamformers {v;j}
that achieve the Pareto boundary fulfill

vy, € span {hjk}U{H,Llﬂhjk} Vi k  (26)

1#£k

where H’Ll‘ = Iy,

H . Lo
; — hjihy /| hj||? is the projection onto
the orthogonal complement of hj;.

Based on Theorem 1, the optimal beamforming solution
Vi, J € K¢, k € Ky of problem (25) can be expressed as

Ky
v = Ehi+ > &bl = H gy,

(27
l#k
Lo ol el K., .
Where hjk — thlhjk’ 6]]6 - [&jlm“w ]k] e C and
ij = |:h]1'IJc_7---’hﬁglL,hjk,h§:1l7.,,7h]}.<k“J‘ c CNtXKu.

Further consider the eigenvalue decomposition of
HY\ Hji = UjpAj U,
and define w;x = AU €, and g;, = A, PUNHY by,

as the DRBF vectors and equivalent CSI vectors, respectively.
We can rewrite (25) as

K K H 2
v Ej:l 9k Wik
max Zak logy| 14 5
{Wjk}jex, kexy =1 Zlf;k ZJK;I Q?k'wjl’ + U%
Ky
st Jwiel® < Pjj € K. (28)
k=1

Let us slightly abuse the notation by defining R({w;x}, G)
as the WSR in (28). The gradient of R({w 1}, G) with respect
to each wjy, has the following form

K'U/
Vu, It = Z p (ag'l;)gjp + b;l;)g;p) ’ (29)

p=1
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(k) _ (K) H,. . k) _ (K Ke T ,.%
v = Cp 9pWik and by - Cip' 2agtj GapWak 10

which cy,? = Z{i“l ZKtl g;'kwa‘ + o2 and

where «a

q:
2
K H
- Z gquZIP

N =
Jip 2 2 )

K. | Kt K., | K¢

H 2 H 2
Z Z gquql + ap Z Z gquql + Up
I#p |q=1 =1 |q=1

for all p # k. Therefore, similar to Fig. 2, we can build
a learning network for problem (28) by unfolding the PGP
method and learning the coefficients {agi), by;)} in (29). In
Fig. 5, we present the block diagram of the BLN-PGP network
for problem (28), where we only plot the function block
associated with BS; at the rth iteration.

The BLN-PGP network for the cooperative multicell
scenario has a similar structure as that in Fig. 2. All
the MLPs also share the same structure and parameters.
The input of the MLP of BS; for UE; is ©7, =

K
{O‘P|g;|pw§k |27 ap| Zq;j g;'pwgk |27 ng I;}pEKu’ where

Ky 2 K, | K 2
H H 2
Dy, = qupw;p Ay = Z qupwgl +op. (30)
q=1 I#p ' q=1

The output of the MLP of BS; for UEy, in the rth iteration is
{a§i>7r,b§-];)’r}pe;gu and the step size S§IZ)’T. Then, the block
V constructs the gradient vector according to (29), i.e.,

k),r k),r
Vawr, B=V({a{?" 0", {g;,})
K’U,
= Z (agl;)yrgjp + b('l;)mg;p) , ke ICu7 (31)
p=1

followed by gradient ascent update ﬂ);,jl

ke Ky.

All the DRBF vectors {ﬂ;;k“ }i due to BS;; will be collected
and used to perform projection onto the feasible set of problem
(28), which yields

— ogyT r .
= wjk-l—sjkv’w;kR,

W’
~r+1l ~ 41y IR
w]k - P(wjk ) - K. otz

max{ /SR @12/ Py, 1)
for all £ € K,. Lastly, the function block £ rotates the
phases of {ﬁ);zl}k by

» (32)

wit = L)
. & H ,LAU??Jrl
= ﬁ);,jl exp (—i tan~! (M)) (33)
§R(gjkwjk )

To train the BLN-PGP network in Fig. 5, we adopt the
same hybrid strategy in Section III-D. Similarly, the BF vectors
{v;x} of the original problem (25) can be recovered from
{wji} by vj, = ij(A;,éQU?k)_lek before being applied
to the antennas of the BS.

We remark that, similar to that in Fig. 2, BLN-PGP in Fig.
5 for the cooperative multicell scenario inherently has a good
generalization with respect to the number of transmit antennas
N;. Besides, since the input size and output size of the MLPs
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BS; in the (» +1)—th iteration

Fig. 5: Diagram of the one block of BS; of the proposed BLN-PGP network for WSRM problem (28) of the cooperative multicell scenario. The subscript

()

refers to the parameters in the j-th BS for the k-th user in the r-th iteration. W, = [w; 1, ..

LWk, ], Wj = [wji1,...,w;k,]|. The subscript

(+)}; refers to the parameter for the k-th BS in the 7-th iteration. V, P and Z# indicate the gradient, projections and phase rotation respectively.

in Fig. 5 do not depend on the number of cooperative BSs K,
the BLN-PGP network also has good generalization capability
with respect to K;. These will be examined in Section V.

V. SIMULATION RESULTS

In this section, we present numerical results of the proposed
BLN-PGP in Fig. 2 and Fig. 5. Both synthetic channel and the
ray-tracing based DeepMIMO dataset [28] are considered .

A. Simulation Setup

We first consider the MISO-IC model in Section II and test
the performance of the proposed BLN-PGP in Fig. 2 under the
synthetic Rayleigh channel data. Like Fig. 3, we assume that
each BSy, is located at the center of cell £ and UEy is located
randomly according to a uniform distribution within the cell.
The half BS-to-BS distance is denoted as d and set to 1 km
if not mentioned specifically. We set Py, i.e., the maximum
transmit power level of BSy, to be 38 dBm over a 10 MHz
frequency band. The carrier frequency is set to 2GHz, and the
path loss p between the UE and its associated BS is set as
128.1 4 37.61og;((s) (dB) [43], where s (km) is the distance
between the UE and BS. The channel coefficients of {hy;}
are obtained by i.i.d. and standard complex Gaussian random
variables scaled by ,/p. The noise power spectral density of
all UEs are set the same and equal to 0> = —174 dBm/Hz.

Setting in the training stage: A total of 5000 training
samples (L = 5000) are generated, each of which contains the
CSI {hﬁ)}, WSR coefficients {a,(f) }rex, and the BF solutions

{’U](f)}ke)( obtained either by the PGP method or the POA
algorithm mentioned in Section II. To train the BLN-PGP
network in Fig. 2, we set the parameter 7 in (20) to be 5.
The iteration number of BLN-PGP in the training stage is set
to R = 20, i.e., r = 1,..., R. The function tanh is used as
the activation function in the MLP and the Adam optimizer is
used for training the BLN-PGP. The simulation environment
is based on TensorFlow 1.14.0 on a desktop computer with
Intel i7-9800X CPU Core, one NVIDIA RTX 2080Ti GPU,
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and 64GB of RAM. The GPU is used during the training stage
and CPU is used in the testing stage for all the methods.

Setting in the testing stage: A total of 1000 testing
samples are generated in the same way as the training data.
If not mentioned specifically, the beamforming solutions of
BLN-PGP are obtained by running 7' = 20 iterations, i.e.,
r=1,...,T, in the testing stage. In the presented experiment
results, we evaluate the following methods:

o PGP, WMMSE and POA: Performance achieved by the
three methods for problem (10).

o BLN-PGP (PGP) and BLN-PGP (POA): The BLN-
PGP in Fig. 2 trained by the hybrid strategy, and the
beamforming solutions used for supervised training are
obtained by the PGP and POA methods, respectively.

« DNN (PGP) and DNN (POA): The black-box DNNs,
which have 5 layers with the concatenated CSI as the
input and the beamforming solutions as the output, are
trained end-to-end by the hybrid training strategy, and
the beamforming solutions used for supervised training
are obtained by the PGP and POA methods, respectively.

e BLN-PGP (Unsuper): The BLN-PGP in Fig. 2 trained
solely by the unsupervised cost.

« BLN-PGP (POA, Stepsize): The MLPs in the BLN-
PGP only predicts the step size sj, and the gradient
vector Vo, R™ is computed explicitly by (13) and (14).
The network is trained by the hybrid strategy and the
beamforming solutions obtained by the POA method is
used during the supervised training.

We also show the “accuracy” (%) which is the ratio of the sum
rate achieved by BLN-PGP and that by the WMMSE solution.

B. Sum-rate Performance

In this subsection, we evaluate the sum-rate performance
of different schemes. The results are shown in Fig. 6(a) and
Tables I, II and III. For the “BLN-PGP (PGP)”, “BLN-PGP
(POA)” and “BLN-PGP (Unsuper)”, the setting of the MLP
is the same as that in Section V-C. For the “DNN (PGP)” and

rg/|
Authorized licensed use limited to: University of Minnesota. Downloaded on April 02,2023 at 03:58:02 UTC from IEEI? plore. Restrictions apply.

ublications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3230662

o
S

150

N
o

140

1301ME |

AA~~D

w
o

N
(=]

/| &als ~Ronanemn120] |

N
I 110 110
B \
2 \
2 \
5 100 100
o \
& 90 90 \
IS \ I
@ 80 80 N
[ \
/) 4 |
704/ / 70} (O
) S-WMMSE N
607 | |« BLN-PGP (PGP) 60 Y\
BLN-PGP (POA) L
501/  |-A=BLN-PGP (Unsuper) 50 '
-E-BLN-PGP (POA, Stepsize)
10 20 30 0 0.2 0.4 0.6 0.8 1

Iteration Number Computation Time(s)

(@)

1.1
1k i
09r
08r
>
Q0.7 % 2 1
5 . , 7
Sost -7 ]
< PR
4 ’ 4
0.5 5 7 i
7
4 -6-BLN-PGP (PGP)
0.4 ~7-BLN-PGP (POA)
BLN-PGP (Unsuper)
031 -% DNN (PGP) 1
-&- DNN (POA)
02 L L L L L L L
1 2 3 4 5 6 7 8 9

Training Size (L)

(b)

Fig. 6: (a) The sum rates achieved by various schemes versus the iteration
number and runtime in the testing stage; The sum rates achieved by “POA”
and “DNN (POA)” are 144.57 and 120.59 (bits/s/Hz) respectively. (b)
Accuracy achieved by various schemes in the testing stage for different
numbers of training samples.

“DNN (POA)”, we use a 5-layers DNN where the number of
nodes of the input and output layers are both 2K Ny, and the
numbers of nodes in the hidden layers are 1450, 1250, 1325,
respectively. The input of the MLP in the “BLN-PGP (POA,
Step-size)” is the same as that of the “BLN-PGP (PGP)”, but
the numbers of neurons of the hidden layer are 120, 75,25,
respectively, and the number of neurons of the output is
reduced to 1.

Sum-rate versus iteration number and runtime: The ex-
periment results of the achieved sum rates of various schemes
versus the iteration number 7 in the testing stage are shown in
the left-side of Fig. 6(a). Firstly, one can observe that the POA
algorithm provides an upper bound, and that the “BLN-PGP
(POA)” performs slightly poorer than the WMMSE algorithm.

Secondly, we can see that “BLN-PGP (POA)” converges
faster and yields higher sum rates than “BLN-PGP (PGP)”,
“BLN-PGP (Unsuper)” and “BLN-PGP (POA, Stepsize)”,
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which shows the benefits of the hybrid training strategy and
prediction of the gradient vector. Note from the figure that both
“BLN-PGP (POA)” and “BLN-PGP (PGP)” can converge well
around 10 iterations which is much smaller than the WMMSE
algorithm. Thirdly, except for “BLN-PGP (POA, Stepsize)”,
the BLN-PGP can greatly outperform the black-box based
“DNN (POA)”.

As seen from the right-side of Fig. 6(a), the BLN-PGP
schemes have advantage in terms of the runtime. Specifi-
cally, for running 20 iterations, the average runtimes of the
“BLN-PGP (POA)” “BLN-PGP (PGP)” are about 0.0573s and
0.0576s, while the runtimes of the WMMSE and POA algo-
rithms for 20 iterations are 1.964s and 23.231s, respectively.

Impact of training sample size: We examine the achieved
accuracy versus the size of training data (L), as is shown in
Fig. 6(b). We can see that all schemes can have improved
performance when the number of training samples increases.
Moreover, we compare the performance of BLN-PGP when
different training approaches are used. We can see that there
is a gap between hybrid training and unsupervised training, but
such a gap reduces when increasing the training data size. This
implies that the advantage of hybrid training can be significant
if the training size is small. One can also see from the figure
that the gap between the black-box based DNN schemes and
the proposed BLN-PGP cannot be effectively reduced when
the training data size increases.

Generalization w.r.t. number of transmit antennas: To
demonstrate the generalization capability of the proposed
BLN-PGP, we train the “BLN-PGP (POA)” using the data
set of N; = 36 and K = 19, but test it on data sets with
different numbers of N;. The results are shown in the 3rd
row of Table I. One can see that the proposed BLN-PGP can
yield almost the same accuracy when applied to scenarios with
N; = 36,72, and 108. Interestingly, we also test the “BLN-
PGP (POA)” in a heterogeneous scenario where the BSs’
antenna numbers are randomly chosen from 16 to 128. As seen
from the table, “BLN-PGP (POA)” still maintain an average
accuracy of 93.78%. In Table I, we also present the results
when “BLN-PGP (POA)” is trained by a mixed data set which
contains equal-sized data samples with N; € {18, 36,72, 108}.
One can see that this scheme provides slightly higher accuracy.

Generalization w.r.t. number of BSs: To verify the gen-
eralization capability of the BLN-PGP with respect to the
number of BSs K, we consider a training scenario with
N; = 64, K = 37 with ¢ = 18 and 6, respectively. From
Table II(a), one can see that with ¢ = 18, the trained “BLN-
PGP (POA)” yields a test accuracy of 96.21% for K = 37, and
has slightly reduced accuracies when deployed in scenarios
with K = 61 and K = 91. We also present in the 4th column
of the table the result when the trained BLN-PGP is deployed
in a scenario where both K and V; are respectively changed
to 91 and 128. The accuracy is maintained around 92.02%.

In Table II(b), we present another set of results with ¢ = 6.
One can see that the performance degradation is significant
when the trained BLN-PGP is deployed to scenarios with
different numbers of BSs. This implies that the neighbor size
c considered in the BLN-PGP network training should not be
too small when compared to K.
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TABLE I: The sum-rate performance of the proposed BLN-PGP in the testing stage for K = 19 and ¢ = 18; the size of hidden layers of

the MLP are 125, 100, and 85 respectively (MLP 125:100:85).

Number of antennas N; = 36 Ny =72 Ny = 108 randomly N; € [16, 128]
PGP 134.21 145.16 151.19 -
BLN-PGP (POA) Trained with Ny = 36 129.85 (96.75%)  137.29 (94.58%) 142.81 (94.46%) - (93.78%)
Trained with mixed Ny € {18, 36, 72, 108} 128.34 (95.63%)  138.47 (95.39%)  143.89 (95.17%) - (95.27%)

TABLE II: The sum-rate performance of the proposed BLN-PGP in the testing stage for N; = 64.

Number of Neighbors
Number of BS-user links
Trained with K = 37

BLN-PGP (POA) : :
Trained with K € {37, 61, 91}

K =37
222.34 (96.21%)
220.36 (95.35%)

c=18 (MLP 85 : 73 : 42)
K =61 K =091
289.92 (93.35%)  537.02 (92.21%)
292.01 (94.02%)  542.83 (93.21%)

K =91 (N; = 128)
598.01 (92.02%)
601.64 (92.57%)

Number of Neighbors
Number of BS-user links
Trained with K = 37

BLN-PGP (POA) . .
Trained with K € {19, 37, 61}

K =19
122.25 (91.09%)
124.63 (92.87%)

c¢=6 (MLP 32: 21 : 15)
K =37 K =61
213.79 (92.51%)  275.99 (88.86%)
211.48 (91.51%)  282.70 (91.02%)

K =61 (N; = 128)
379.30 (87.69%)
391.72 (90.56%)

TABLE III: The sum-rate performance of the proposed BLN-PGP in the testing stage for K = 19 and N; = 36.

Distance Between BSs
Number of Neighbors
Trained with d = 1 (km)
Trained with d € {0.5, 1}

c =6 (MLP 32:21:15)
128.85 (96.01%)
128.28 (95.59%)

c=6 (N; = 128)
156.43 (97.29%)
156.18 (97.11%)

d =1 (km)

c =9 (MLP 45:38:23)
129.63 (96.57%)
128.65 (95.85%)

c = 18 (MLP 85:73:42)
129.85 (96.75%)
128.96 (96.09%)

Distance Between BSs
Number of Neighbors
Trained with d = 1 (km)
Trained with d € {0.5, 1}

¢ = 6 (MLP 32:21:15)
138.59 (82.73%)
160.19 (95.63%)

c=6 (N; =128)
187.65 (97.18%)
187.78 (97.25%)

d = 0.5 (km)

c =9 (MLP 45:38:23)
146.76 (87.62%)
160.76 (95.97%)

c = 18 (MLP 85:73:42)
159.22 (95.05%)
161.34 (96.32%)

Generalization w.r.t. cell radius: Here, we examine the
generalization capability of the BLN-PGP with respect to the
cell radius d. We consider a training scenario with N; = 36,
K =19 and different number of neighbors ¢ = 6,9, 18, and
the half inter-BS distance is fixed to d = 1 km or is mixed
with d € {0.5,1}.

Table III(a) shows the results that the trained frameworks
are tested in the scenario with the same cell radius d = 1 km,
while Table III(b) are the results obtained when tested in the
scenario with d = 0.5 km. By comparing the 3rd rows and
first columns of the two tables, the accuracy decreases from
96.01% to 82.73% when the trained BLN-PGP is deployed in
a scenario with the cell radius decreased to 0.5 km, while the
sum rate improvement is minor (from 128.85 to 138.59). This
implies that the trained network cannot effectively mitigate
the inter-cell interference. Interestingly, as seen from the 2nd
columns of the two tables, if we apply the BLN-PGP to
scenario with the antenna number increased to N; = 128, the
accuracy degradation due to decreased cell radius becomes
minor and the sum rate improvement is more evident (from
156.43 to 187.65). By comparing the 4th rows and the first two
columns of the two tables, one can see that training with mixed
cell radius provides good robustness. Lastly, comparing the

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

first column with the 3rd and 4th columns of Table III(a)-(b),
one can also see that larger values of ¢ can make the BLN-PGP
to achieve higher accuracy for both d = 1 km and d = 0.5 km.
Therefore, in practice, ¢ should be well selected according to
the interference environment of the wireless communication
system, such as the number of BS-UE pairs and the distance
between BSs and UEs.

C. Impact of the penalty parameter v

In this subsection, the impact of the penalty parameter ~y
in (21) on the converge speed of the proposed BLN-PGP
algorithm are evaluated. The weights «j of all users are
set to be 1. In the training stage, different values of v are
selected as the penalty parameter in the cost function (21).
If not mentioned specifically, we consider the MISO-IC with
K =19 and N; = 36. We set the neighbor size ¢ to be 18
(c = 18). The MLP used is a 5-layers DNN with the numbers
of neurons of the input layer and output layer are 4K and
2K + 1, respectively, and the numbers of neurons in the three
hidden layers are 125,100, 85, respectively. All the training
data and testing data are obtained by the PGP methods, and
then the sum-rates in each iteration during the testing stage
are demonstrated in Fig. 7.
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Fig. 7: Sum rates achieved by BLN-PGP (PGP) with various choices of
in (21) in the testing stage

33886
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Fig. 8: The outdoor scenario provided in O1” of DeepMIMO dataset [28]

In the Fig. 7, we can see that the choice of + in the training
stage will influence the convergence iteration number in the
testing stage. Firstly, we see from Fig. 7 that for all values
of v, the BLN eventually converges to a similar sum rate.
Secondly, when compared with that with v = 1, the BLN with
either v = 0.95 or v = 0.8 can have improved convergence
performance. Thus, we see the acceleration effect. Intriguingly,
when v = 0, the BLN has the slowest convergence rate.
One possible explanation is that the 2nd term of (21) can
be regarded as a ‘multi-task’ function for the BLN so the
network is more difficult to train if it is the training objective
function. Therefore, it is better for the BLN to primarily focus
on improving the quality of the final output (the 1st term of
(21)) and take the 2nd term of (21) as a ‘regularization’. This
intuition is also consistent with what we observe from Fig. 7.

D. Performance on DeepMIMO dataset

In this subsection, we test the proposed BLN-PGP on the
ray-tracing based DeepMIMO dataset [28]. We consider an
outdoor scenario ‘O1’ as shown in Fig. 8. The operating carrier

. ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.olr_:g/§ublications/ri hts/index.html for more information.
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Fig. 9: (a) Sum-rate versus iteration number in DeepMIMO channel for Ny =
36 (X =1,Y =6,Z =6), K = 18 and ¢ = 17; The sum rates for “POA”,
“DNN (PGP)” and “DNN (POA)” are 107.21, 87.72 and 89.41 (bits/s/Hz),
respectively. (b) Cumulative distribution of robust sum-rates (MLP 95 : 82 :
48).

frequency is 3.5 GHz, the bandwidth is 0.5 GHz, number of
subcarriers is 64, and the number of multipath is 3. The main
street (the horizontal one) is 600m long and 40m wide, and
the second street (the vertical one) is 440m long and 40m
wide. We consider 18 BSs (K = 18), and their served UEs
are selected randomly around their respective BS within 50m
on the streets (the intersection of the black street and the red
circle in Fig. 8). The BSs are equipped with antennas with
dimensions X,Y, and Z along the x, y, and z axes, and the
antenna size is Ny = XY Z. Analogous to the synthetic data,
we generated 5000 training samples (L = 5000) and 1000 test
samples.

In this experiment, for the proposed BLN-PGP, the numbers
of neurons of the 5-layer MLP are 72,90, 75,45 and 37, re-
spectively; the black-box based DNNs also have 5 layers with
numbers of neurons equal to 2592, 2845, 2450, 1450 and 1296,
respectively. The testing results versus the iteration number are
shown in Fig. 9(a). Again, we can observe consistent results
and the proposed BLN-PGP can achieve good performance.

plore. Restrictions apply.
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TABLE IV: The sum-rate performance of the proposed BLN-PGP in the testing stage under DeepMIMO dataset [28] for K = 18 and ¢ = 17

(MLP 90:75:45).

Number of antennas Ny = 36
(number of transmit antennas in x, y and z axes) (X=1,Y=6,Z=06)
PGP 102.04

Trained with X =1,Y =6,Z =6
Trained with Ny € {36, 72, 108}

98.49 (96.53%)

BLN-PGP
97.38 (95.43%)

N =172 N = 108 Random N
(X=1,Y=6,Z2=12) (X=3Y=6,Z2=6) (X Y- -Z¢€]l6,128])
110.36 114.94 -

104.15 (94.37%) 108.18 (94.12%) - (93.57%)
105.05 (95.19%) 109.22 (95.02%) - (95.09%)

TABLE V: The sum-rate performance of the proposed BLN-PGP in the testing stage under DeepMIMO dataset [28] for K, = K.

()

Number of BSs
{active BSs}
Number of antennas
(number of transmit antennas in z, y and z axes)
BLN-PGP Trained with X =1,Y =8, 7 =38
(Trained by PGP) = Trained with N; € {36, 64, 216}

N; = 36
(X=1,Y=6,Z =6)
24.56 (92.49%)
24.84 (93.52%)

K, = K, = 6 (MLP 45:32:28)
{5,6,7,8,15,16}

Ny = 64
(X=1,Y=8,7=28)
28.12 (94.56%)

27.80 (93.49%)

N; = 216
(X=6,Y =6,Z =6)
36.07 (92.47%)
36.47 (93.51%)

(b)
Number of BSs K¢ = Ky, = 12 (MLP 75:56:50)
{active BSs} {3,4,5,6,7,8,9,10,15,16,17, 18}
Number of antennas Ny = 36 Ny = 64 Ny = 216

(number of transmit antennas in z, y and z axes)
BLN-PGP Trained with X =1,Y =8,Z2 =8
(Trained by PGP) Trained with Ny € {36, 64, 216}

(X=1,Y =6,Z =6)
37.46 (92.44%)
37.88 (93.49%)

(X =1,Y =8,Z =28)
43.72 (94.23%)
43.35 (93.43%)

(X=6,Y =6,Z =6)
54.99 (92.40%)
55.42 (93.13%)

TABLE VI: The sum-rate performance of the proposed BLN-PGP in the testing stage under DeepMIMO dataset [28] for N; = 12, K,, = 12

and Ny =64 (X =1,Y =8,Z = 8), (MLP 75:56:50).

Number of BSs K; K;=6 Ky =12 K; =18 Randomly K € [6, 18]
PGP 39.47 46.45 69.66 -
BLN-PGP Trained with Ky = 12 36.57 (92.36%) 43.76 (94.23%) 64.21 (92.17%) - (92.78%)
(Trained by PGP)  Trained with K¢ € {6, 12, 18}  36.88 (93.43%)  43.6 (93.89%)  64.96 (93.26%) - (93.31%)

Similar to Table I, we test the generalization capability of the
BLN-PGP in the DeepMIMO data set. As seen from Table
IV, the proposed BLN-PGP still can be generalized well and
maintain good accuracies.

E. Performance under CSI errors

Herein, we test BLN-PGP under CSI errors. We consider
the same setting as Section V-D using the DeepMIMO dataset,
except that CSI errors are introduced. Specifically, as described
in Section III-E, in the training stage, for each CSI sample
hfk, 500 random errors egi’”,i = 1,...,500, with €j;, €
{—25,-30} dB, are generated and used in the training loss
(23), respectively. In the testing stage, we randomly pick one
test sample, and generate 500 CSI error vectors to evaluate the
achieved sum rate under the CSI error. In particular, we plot
the cumulative density functions (CDFs) in Fig. 9(b). We can
see that the CSI errors can cause significant sum rate drops for
both PGP and BLN-PGP trained by (21). When the BLN-PGP
is trained by (23), we can see from this figure that the sum
rate degradation can be reduced about 30% to 40%.

FE. Performance for Cooperative Multicell Beamforming

In this subsection, we examine the proposed BLN-PGP in
Fig. 5 for the cooperative multicell beamforming problem in
Section IV. We again consider the outdoor scenario provided
in ’O1’ of the DeepMIMO dataset [28]. Two cases are
considered: (1) K; = K, = 6, and 2) K; = K, = 12.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

In case (1), the BSs 5-8, 15, 16 in Fig. 8 are selected,
while BSs 3-10, 15, 16, 17, 18 in Fig. 8 are selected in
case (2). UEs are selected randomly on the streets (the black
region of Fig. 8). For both cases, BLN-PGP is trained with
Ny =64 (X =1,Y = Z = 8) and the PGP solutions. The
performance results for the two cases are shown in Table V(a)
and Table V(b), respectively. One can observe that for both
cases the proposed BLN-PGP can yield high accuracy and
generalizes well when deployed in scenarios with different
number of transmit antennas.

In Table. VI, we further consider the generalization ca-
pability with respect to the number of BSs K;. The BLN-
PGP is trained under the setting of case (2) with K; = 12,
K, = 12 and N; = 64 while is tested in different scenarios
with K; = 6, K; = 18 and randomly selected numbers of BSs.
It can be observed from the table that the proposed BLN-PGP
can maintain good performance and has good generalization
capability w.r.t the number of BSs.

VI. CONCLUSION

In this paper, we have considered a learning-based beam-
forming design for MISO-ICs and cooperative multicell sce-
narios. In particular, in order to overcome the computational
issues of massive MIMO beamforming optimization, we have
proposed the BLN-PGP by unfolding the simple PGP method.
We have shown that by exploiting the low-dimensional struc-
tures of optimal beamforming solutions and by removing the

.
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dependence of the input/output of the MLP on the number of
BSs, the proposed BLN-PGP can have a low complexity, and
such complexity is independent of the numbers of transmit an-
tennas and BSs. Extensive experiments based on both synthetic
channel and the DeepMIMO dataset have demonstrated that
the proposed BLN-PGP can achieve a high solution accuracy
with the expense of a small computation time. More impor-
tantly, the proposed BLN-PGP has promising generalization
capabilities with respect to the number of transmit antennas,
the number of BSs, and the cell radius, which is a key ability
to be employed in heterogeneous networks. It is worthwhile
to point out that the proposed BLN provides a flexible design
framework, and it can be extended to other scenarios such as
the broadcast interfering channels [13].
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