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Rectifiability of singular sets of
noncollapsed limit spaces with Ricci
curvature bounded below

By JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

Abstract

This paper is concerned with the structure of Gromov-Hausdorff limit
spaces (M|, gi,pi) ey (X™,d,p) of Riemannian manifolds satisfying a
uniform lower Ricci curvature bound RicM;L > —(n — 1) as well as the
noncollapsing assumption Vol(Bi(p;)) > v > 0. In such cases, there is a
filtration of the singular set, S° C S'-..5""!:= S, where S* := {reX:
no tangent cone at x is (k 4+ 1)-symmetric}. Equivalently, S* is the set of
points such that no tangent cone splits off a Euclidean factor R¥*1. Tt is
classical from Cheeger-Colding that the Hausdorff dimension of S* satisfies
dimS* < k and § = S"72, ie.,, S\ §"72 = ). However, little else has
been understood about the structure of the singular set S.

Our first result for such limit spaces X™ states that S* is k-rectifiable
for all k. In fact, we will show for H*-a.e. z € S* that every tangent
cone X, at z is k-symmetric, i.e., that X, = R* x C(Y) where C(Y)
might depend on the particular X,. Here H* denotes the k-dimensional
Hausdorff measure. As an application we show for all 0 < € < €(n, v) there
exists an (n — 2)-rectifiable closed set S 2 with H" 2(S*"2) < C(n,v,€),
such that X™\ S 2 is e-bi-Holder equivalent to a smooth Riemannian
manifold. Moreover, S = |, S™~2. As another application, we show that
tangent cones are unique H" 2-a.e.

In the case of limit spaces X" satisfying a 2-sided Ricci curvature bound
[Ricarr| < m —1, we can use these structural results to give a new proof of
a conjecture from Cheeger-Colding stating that S is (n —4)-rectifiable with
uniformly bounded measure. We can also conclude from this structure that
tangent cones are unique H " 4ae.

Our analysis builds on the notion of quantitative stratification intro-
duced by Cheeger-Naber, and the neck region analysis developed by Jiang-
Naber-Valtorta. Several new ideas and new estimates are required, includ-
ing a sharp cone-splitting theorem and a geometric transformation theorem,
which will allow us to control the degeneration of harmonic functions on
these neck regions.
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This paper is concerned with the structure of noncollapsed limit spaces

with a

(1.1)
(1.2)

lower bound on Ricei curvature:

RiCMin > —(n — 1),
Vol(Bi(p;)) > v > 0.

Our results represent both a qualitative and quantitative improvement over

what was previously known about noncollapsed Gromov Hausdorff limit spaces
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with Ricci curvature bounded below. For 2-sided Ricci curvature bounds,
(1.3) |R1CM1n’ <n-— 1,

we are able to combine our techniques with the Codimension 4 Conjecture,
proved in [CN15], in order to give a new proof that the singular set is recti-
fiable with a definite bound on its (n — 4)-dimensional Hausdorff measure, a
result originally proved by the second and third named authors of this article
in [JN21].

1.1. The classical stratification. Let C(Y) denote the metric cone on the
metric space Y. We begin by recalling the following definition.

Definition 1.1. The metric space X is called k-symmetric if X is isometric
to R* x C(Z) for some Z.

Remark 1.2. We say X is k-symmetric at € X if there is an isometry of
X with R¥ x C(Z) which carries = to a vertex of the cone R* x C(Z).

In [CCI7] a filtration on the singular set S was defined. Namely,

(1.4) pcs®c...csml.=5cCcx"
where
(1.5) S* .= {z € X : no tangent cone at z is (k + 1)-symmetric}.

The set S*\ S¥~1 is called the kth stratum of the singular set. A key result of
[CCI7] is the Hausdorff dimension bound

(1.6) dim S¥ <k for all k.

In [CC97], [CN15], by showing that S*~1\ S"~2 = (), respectively S7~1\ §7~*
= (), the following sharper estimates were proved:

7) dim S <n -2 if Ricym > —(n—1),

8) dim S <n—4 if ‘RiC]\;zjﬂ| <(n-—1).

—~~
—_ =

Note that for noncollapsed limit spaces satisfying the lower Ricci bound
(1.1), the singular set can be dense and one can have H"2(SNB1(p)) = oo; see
Example 3.4. For general strata, essentially nothing else beyond the dimension
estimate in (1.6) was previously known about the structure of the sets S*.
In the present paper, we will show that S* is k-rectifiable for all k and in
addition, that for H*-a.e. € S*, every tangent cone at z is k-symmetric; see
Theorems 1.9 and 1.12.}

LAt the above-mentioned points, uniqueness of tangent cones can actually fail to hold for
k < n —2; see Example 3.3. Namely, the non-Euclidean factor need not be unique. However,
as a consequence of Theorem 1.12, it will follow that the tangent cones are unique H" *-a.e..
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For the case in which the lower Ricci bound (1.1) is strengthened to the
2-sided Ricci bound (1.3), the singular set is closed. In this case, we will
give new proofs of conjectures stated in [CC97]. Specifically, the singular set
S = 8" % is (n — 4)-rectifiable and has an a priori bound on its (n — 4)-
dimensional Hausdorff measure:

9‘("74(5 N Bi(p)) < C(n,v).

The first proofs of those conjectures were given by W. Jiang and A. Naber
in [JN21], who even proved a priori L? curvature estimates on M™; for ear-
lier results in which integral bounds on curvature were assumed, see [Che03],
[CCTO02]. The proofs in the present paper are based on new estimates, which
assume only a lower bound on Ricci. In that case, the stronger estimates
proved [JN21], which require assuming a 2-sided bound, can fail to hold.

1.2. The quantitative stratification. The quantitative stratification involves
sets SF

€,77
tion was introduced in [CN13a] in the context of Ricci curvature, in order to

whose definition will be recalled below. The quantitative stratifica-

state and prove new effective estimates on noncollapsed manifolds with Ricci
curvature bounded below and, in particular, Einstein manifolds. These quan-
titative stratification ideas have been since used in a variety contexts (see
[CN13b], [CHN13], [CHN15], [CNV15], [NV17b], [BL15], [Chul6], [Wanl6],
[NV19], [EE19]) to prove similar results in other areas including minimal sub-
manifolds, harmonic maps, mean curvature flow, harmonic map flow, critical
sets of linear elliptic PDE’s, bi-harmonic maps, stationary Yang-Mills and free
boundary problems.

Next, we recall some relevant definitions; compare (1.4). Let X denote a
metric space.

Definition 1.3. Given ¢ > 0 we say a ball B,(z) C X is (k,€)-symmetric
if there exists a k-symmetric metric cone X’ = R¥ x C(Z), with 2 a vertex of
RF x C(Z), such that dgr (B, (z), B,(2')) < er.

Remark 1.4. If v : B.(2') — B,(z) is the er-GH map and £, :=¢(R* x {2}
N B(2)), then we say B,(x) is (k, €)-symmetric with respect to L ,.

Definition 1.5.

(1) For e, > 0, we define the k™ (e,r)-stratum to be Sfyr \ Sf;l, where
S~1:=0 and for k>0,
(1.9)
Sf;r ={x € Bi(p) : fornor <s<1is Bs(x) a (k+ 1,€)-symmetric ball}.

This should be seen as a first step toward a conjecture of [CN13], [Nabl4], stating that
tangent cones are unique away from a set of codimension three. Theorems 1.9 and 1.12 give
the precise results in this context.
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(2) For € > 0, we define the k" e-stratum to be S*\ S¥~! where S~1 := 0
and for k£ > 0,

(1.10)
SFi= ) SE(X)
r>0
:={x € Bi(p) : forno 0 <r < 1is B.(z) a (k+ 1,¢)-symmetric ball}.

Remark 1.6. The standard and quantitative stratification are related as
follows:
(1.11) st = sk
e>0

One can see this through a simple, instructive (though not a priori obvious)
contradiction argument.

To summarize,

o The sets S* are defined by grouping together all points x € X, all of whose
tangent cones fail to have k + 1 independent translational symmetries.

e The sets Sf are defined by grouping together all points x € X such that all
balls fail by a definite amount to have at most k+1 independent translational
symmetries.

o The sets Séfr are defined by grouping together points of x € X such that all
balls Bs(x) of radius at least r fail by a definite amoun to have at most k + 1
translational symmetries.

1.3. Significance of the quantitative stratification. According to (1.10),
(1.11), the quantitative stratification carries more information than the stan-
dard stratification. Thus, estimates proved for the quantitative stratification
have immediate consequences for the standard stratification. The latter, how-
ever, are significantly weaker. In order to illustrate this, we introduce the
following notation.

Notation. Let B,(A) = J,c4 Br(a) denote tubular neighborhood of A C
X with radius r.

In [CN13a], the Hausdorff dimension estimates (1.6) on S* were improved
to the Minkowski type estimate,

(1.12) Vol(BT(Sér N Bi(p)) < e(n,v,e,n) - rmkn (for all n > 0).

This is further sharpened in the present paper; see Theorem 1.7, where the 7
in (1.12) is removed.

A complementary point to (1.12), which is crucial for various applications,
accounts for much of the significance of the quantitative stratification. Namely,
for solutions of various geometric equations, we have on the complement of the
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tubular neighborhood (1.12) that the solution has a definite amount of regu-
larity, as measured by the so called regularity scale; see also Theorem 1.7 for
the improved version. Essentially, this means that if = lies in the complement
of BT(SQT N B1(p)), then on B, 5(x) the solution satisfies uniform scale invari-
ant estimates on its derivatives. A key element of this is the existence of an
e-regularity theorem, stated in scale invariant form. For balls of radius 2, the
e-regularity theorem typically states the following: There exists k (whose value
depends on the particular equation being considered) such that

If Bo(x) is (k, €)-symmetric, then By(x) has bounded regularity.

In the context of the present paper, see Theorem 4.35 for the appropriate
e-regularity theorem for spaces with 2-sided Ricci curvature bounds. Such
results allow us to turn estimates on the quantitative stratification into classical
regularity estimates on the solution itself. See Theorem 1.16, as well as the LP
estimates proved in [CN13al, [CN15].

1.4. Main results on the quantitative stratification. In this subsection, we
give our main results on the quantitative stratification for limit spaces satis-
fying the lower Ricci bound (1.1) and the noncollapsing condition (1.2). Our
first result gives us k-dimensional Minkowski estimates on the quantitative
stratification. That is, we can remove the constant 7 > 0 in (1.12).

THEOREM 1.7 (Measure bound for S¥,). For each € > 0, there exists
Ce = Ce(n,v,€) such that the following holds. Let (M, gi, p;) dox (X,d,p)

1

satisfy Vol(B1(p;)) > v > 0 and Ricpyr > —(n—1). Then

(1.13) Vol (BT (Sf,r) N B, (p)) < ¢(n,v,e) -k

Showing that one can replace (n — k —n) in (1.12) by n — k in (1.13)
requires techniques which are fundamentally different from those used to es-
tablish (1.12) and arguments which are significantly harder. This is because
such estimates are tied in with the underlying structure of the singular set
itself. On the other hand, the new techniques enable us to prove much more.
Our next result states that the set S¥ is rectifiable. Let us recall the definition
of rectifiablity for our context.

Definition 1.8. A metric space Z is k-rectifiable if there exists a countable
collection of H¥-measurable subsets Z; C Z, and bi-Lipschitz maps ¢; : Z; —
R¥ such that 3*(Z \ |J; Z;) = 0.

For further details on rectifiability, especially for subsets of Euclidean
space, see [Fed69]. Our main theorem on the structure of the quantitative
stratification S¥ is now the following:
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THEOREM 1.9 (e-Stratification). There exists Ce = Ce(n,v,€) for each
e > 0 such that the following holds. Let (M, g;,p;) don (X,d,p) satisfy

1

Vol(Bi1(pi)) > v >0 and Ricyp > —(n —1). Then

(1.14) Vol(Br(Sf(X)) N B (p)) <O,k
In particular,

(1.15) H* (SN Bi(p)) < Ce.

Moreover, the set S* is k-rectifiable, and for H*-a.e. x € S¥, every tangent
cone at x is k-symmetric.

Remark 1.10. The techniques used in proving the above results provide
an even stronger estimate than the Minkowski estimate of (1.14). Namely,
they lead to a uniform k-dimensional packing content estimate: Let { By, (x;)}
denote any collection of disjoint balls such that z; € Sf. Then

(1.16) rk < ..

Remark 1.11. The structural results above are actually sharp. In Exam-
ple 3.2 we will explain a construction from [LN20] of a noncollapsed limit space
X™ such that

S =Sk =gk,
0 < H*(S) < o0,

for which S* is both k-rectifiable and bi-Lipschitz to a k-dimensional (fat)
Cantor set. In particular, the singular set has no manifold points. However,
it is still an open question to show that in the presence of a 2-sided bound on
Ricci curvature, the singular set must contain manifold points.?

1.5. Results for the classical stratification. We now state our main results
for the classical stratification S*. They follow as special cases of the preceding
results on the quantitative stratification.

Since S* = . Sk the following theorem is essentially an immediate con-
sequence of Theorem 1.9.

THEOREM 1.12 (Stratification). Let (M), g;,pi) dor (X" d,p) satisfy

Vol(Bi(pi)) = v > 0 and Ricyp > —(n —1). Then Sk is k-rectifiable and
for H*-a.e. x € S*, every tangent cone at x is k-symmetric.

2If M™ is Kiahler with a polarization, then it has been shown in [DS14], [Tial3] that
the singular set is topologically a variety. However, the smoothness or even the bi-Lipschitz
structure of the singular set is still unknown even in this case.
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Remark 1.13. Note that unlike in the Hausdorff measure bound on S¥
Sk given in (1.15), we are not asserting a finite measure bound on all of S*.
Example 3.4 shows that such a bound need not hold. However, as will become
clear in the proof of Theorem 1.12, to prove results which concern the structure
of the sets S*, it is crucial to be able to break the stratification into the well-
behaved finite measure subsets SF.

We end this subsection with two results which are essentially direct appli-
cations of Theorems 1.9 and 1.12.

THEOREM 1.14 (Manifold structure). Let (M]", gi, p;) dor (X", d,p) sat-
isfy Vol(Bi(pi)) > v > 0 and Ricpypr > —(n — 1). Then there exists a subset

S. C X™ which is (n — 2)-rectifiable with H"2 (Se N B (p)) < Cln,v,€) and

such that X™\Se is bi-Hélder homeomorphic to a smooth Riemannian manifold.

THEOREM 1.15 (Tangent uniqueness). Let (M, g;, pi) dor (X™,d,p) sat-
isfy Vol(B1(pi)) > v > 0 and Ricyp > —(n — 1). Then there exists a subset
S C X with H"~%(S) = 0 such that for each x € X \ S, the tangent cones are

unique and isometric to R"2 x C(S}) for some 0 <1 < 1.

1.6. 2-sided bounds on Ricci curvature. In this subsection, we state a re-
sult for noncollapsed limit spaces with a 2-sided bound on Ricci curvature,
Theorem 1.16. Recall that under the assumption of a 2-sided bound, the sin-
gular set S is closed and can be described as the set of points no neighborhood
of which is diffeomorphic to an open subset of R™. Our result follows quickly by
combining the quantitative stratification results of for limit spaces satisfying
(1.1) with the e-regularity theorem of [CN15]; see Section 4.11 for a review of
this material. A stronger version of Theorem 1.16 was first proved in [JN21],
where additionally L? bounds on the curvature were produced, but by using
estimates and techniques which definitely require a 2-sided bound on Ricci
curvature:

THEOREM 1.16 (Two sided Ricci). Let (M, g;, pi) don (X™ d,p) satisfy

Vol(Bi(p;i)) > v >0 and |Ricyr| < (n—1). Then S is (n — 4)-rectifiable and
there exists C = C(n,v) such that

(1.17) Vol(Br (SN By (p))) < ort,

In particular, H"=*(S N By) < C. Furthermore, for K" *-a.e. x € S, the
tangent cone at T is unique and isometric to R"* x C(S3/T'), where I' C O(4)
acts freely.

1.7. The remainder of the paper. The paper can be viewed as having four
parts. The first part consists of the present section and Section 2; the second
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consists of Sections 3-5; the third part consists of Sections 6—8; the fourth part
consists of Sections 9 and 10.

Section 2 contains the definition and concept of “neck region,” including
an explanation of the role played by each of the conditions in the definition, the
statements of the Neck Structure Theorem 2.9 and the Neck Decomposition
Theorem 2.12, and some basic examples. In addition, this section contains
the proofs of our main results on the quantitative stratification, under the
assumption that the Neck Structure Theorem 2.9 and the Neck Decomposition
Theorem 2.12 hold. Part three of the paper is devoted to developing the new
tools which are needed for the proofs the neck theorems, while the proofs
themselves are given in part four.

The second part of the paper begins with Section 3, in which we give
some examples beyond those given in Section 2. One of these concerns neck
regions. The remaining examples illustrate the sharpness of our results on the
quantitative stratification.

In Section 4, we collect background results which are needed in parts three
and four. Some of these results are by now rather standard in the smooth Rie-
mannian geometry context (as opposed to the context of synthetic lower Ricci
bounds). In such cases, we will just give references. For the more technical
results which are less well known, we will give the proofs or at least outlines.

In Section 5, we give a brief outline of part three (Sections 6-8) and of
part four (Sections 9 and 10).

In Sections 6-8, which form the third part of the paper, we prove sharp
estimates on quantitative cone-splitting. The statements of these theorems
involve the local pointed entropy. Like harmonic splitting maps and heat kernel
estimates, the entropy can be viewed as analytical tool which, once it has been
controlled by the geometry, enables one to draw additional (and in this case
sharp) geometrical conclusions from the original geometric hypotheses. The
results on necks, especially the Neck Structure Theorem 2.9, depend on the
new sharp estimates. The estimates enable us to take full advantage of the
behavior of the geometry over an arbitrary number of consecutive scales. This
is crucial for the proofs of the neck theorems.

Sections 9 and Section 10 constitute the fourth part of the paper. In
Section 9 we prove the Neck Structure Theorem 2.9. The proof depends on
the results of Sections 6-8. In Section 10, via an induction argument, we
prove the Neck Decomposition Theorem 2.12. Remarkably, for the most part
the proof only involves (highly nontrivial) covering arguments, and only at a
certain point is an appeal to Theorem 2.9 made.

Remark 1.17 (Future directions). Although in the present paper we have
stated our results for fixed k, the complete description of the geometry should
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include simultaneously all k = 0,1,...,n — 1. In the general case, it should
also involve behavior on multiple scales, thereby generalizing the bubble tree
decompositions in [AC91], [Ban90] and Section 4 of [CN15].

1.8. Acknowledgements. The first author was supported by NSF Grant
DMS-1406407 and a Simons Foundation Fellowship. The second author was
supported by NSFC (No. 11701507 and No. 12071425) and EPSRC grant
EP/K00865X/1. The third author was supported by NSF grant DMS-1406259.

2. Proofs of the stratification theorems
modulo results on neck regions

In this section we will begin by introducing the notion of neck regions and
stating our main theorems for them: namely the Neck Structure Theorem 2.9
and the Decomposition Theorem 2.12. Proving these results will constitute
the bulk of this paper. The proofs are outlined in Section 5. In the last
subsection of this section, assuming that the Neck Structure Theorem and the
Decomposition Theorem hold, we will prove all of the results on quantitative
and classical stratifications. In a few places, we will appeal to results which
are reviewed in Section 4.

2.1. Background and motivation. Let Vol®(B;) denote the volume of an
r-ball in a simply connected space M, of constant curvature = k. Define the
volume ratio by

(2.1) Vi(x) = W.

The Bishop-Gromov inequality states that if Ricym > —(n — 1)k, then VE(x)
is monotone nonincreasing in r:

(2.2) dir\?f(x) <.

In addition to being monotone, the quantity V,(z) coercive in the following
sense. Given € > 0, there exists 0 < § = d(e, n, &), such that if r’x < § and

(2.3) [VE() = V()] <6,

then B,(x) is e-Gromov Hausdorff close to a ball B,(y*) C C(Y) for some
metric cone with cross-section Y and vertex y*. This statement is the “almost
volume cone implies almost metric cone theorem” of [ChCo2]|; see Section 4.1
for a more complete review.

Remark 2.1. Whenever we have specified a definite lower bound, say
Ricym > —(n — 1)k, we will write V,(x) for V¥(x). Similarly, for a sequence
My %1 X if liminfi e Ricare > 0, we will write V,(z) for V2(z).
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The noncollapsing assumption (1.2) and the monotonicity (2.2) of V,(x)
directly imply

(2.4) 3 WVs2rs (@) = Vymra-ieon (@) < C(n,v,0).

As an immediate consequence, for any § > 0,
(2.5) lim W(;,,(:C) — V571T($)| =0.
r—0

This, together with the “almost volume cone implies almost metric cone” the-
orem, was used in [CC97] to prove that for noncollapsed limit spaces satisfying
(1.1), (1.2), every tangent cone is a metric cone.

For applications which concern S*, the “cone-splitting principle” is also
crucial. In abstract form, where we are using Definition 1.1, it can be stated
as follows:

THE CONE-SPLITTING PRINCIPLE. Let X be a metric space which is 0-sym-
metric with respect to two distinct points g, x1 € X. Then X is 1-symmetric
with respect to these points.

The estimate (2.4), together with the cone-splitting principle, was used in
[CN13a] to prove the weak Minkowski estimate (1.12).

Notation. A scale is just a number of the form r; = 27J. Note then that
(2.4) actually yields the following:

Effective version of (2.5). Given e > 0, on all but a definite number N,
of scales, relation (2.3) will hold and B, (z) will be (0, €)-symmetric.

Remark 2.2 (Lack of sharpness). The effective version of (2.5), together
with a quantitative version of cone-splitting, was used in [CN13a] to obtain
effective estimates on the sets S¥, notably (1.12). Clearly this makes use of
more information than the classical dimension reduction arguments of [CC97],
which require only (2.5). Nonetheless, a lot of information is being disregarded
when passing from (2.4) to the above effective version of (2.5). The ability to
take full advantage of (2.4) eventually leads to the main volume and rectifia-
bility estimates of this paper. However, this requires a number of new ideas in

order to not lose any information, all of which turns out to be essential.

2.2. Neck regions. As explained in Section 1, our results on the classical
stratification S* follow from structural results for the quantitative stratifica-
tion S¥, and these results follow from results on neck regions and neck decom-
positions. Neck decompositions of the type employed here were first introduced
in [JN21] and [NV19], where they played a key role in the proofs of the a priori
L? curvature bound for spaces with a 2-sided bound on Ricci curvature and
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the energy identity, respectively;® compare also [NV17a]. As these papers il-
lustrate, neck decompositions are of interest in their own right. In particular,
their uses go beyond applications to structural results on singular sets, which
are the main focus of the present paper.

We will need the following notion of a tubular neighborhood of variable
radius.

Definition 2.3 (Tube of variable radius). If D C X is a closed subset and
x — ry (the radius function) is a nonnegative continuous function defined
on D, then the corresponding tube of variable radius is

By, (D) := | Br.(2).
z€eD

Recall Definition 1.3 and Remark 1.4 the notion of (k, €)-symmetry with
respect to a subspace. We now give our definition of a neck region:

Definition 2.4 (Neck Regions). Let (M, g, pi) dax (X, d, p) satisty Ricpn
> —(n —1)6%, Vol(B1(p;)) > v >0, and let n > 0. Let C = CuU C, C Ba(p)
denote a closed subset with p € €, and let 7, : € — R be continuous such that
7y :=0on €y and r, > 0 on C,. The set N = Bsy(p) \ B, (C) is a (k, , n)-neck
region if for all € €, the following hold:

(n1) {B2,,(x)} C Ba2(p) are pairwise disjoint, where 7, = 10710,

(02) V-1 (@) = Ver, (2)] < 6%

(n3) for each 7, < r < §71, the ball B,(x) is (k,§?)-symmetric, wrt £, ., but
not (k + 1, n)-symmetric;

(n4) for each r > r, with By,(x) C Ba(p), we have L., C B, ,(C) and
€N By(1) C Bror(Ley).

(nb) |Liprg| < 6.

Remark 2.5 (Vitali covering terminology). Throughout the paper a cov-
ering as in (nl), but possibly with some other constant v < 1/6 in place of 7,,,
will be referred to as a Vitali covering.

Remark 2.6. The set C will be referred to as the set of centers of N.
Below we provide some explanation for the various conditions, (nl)-(n5), in
Definition 2.4.

(1) The effective disjointness property of (nl) guarantees that we do not overly
cover, which would prevent property (3) of the Neck Structure Theorem
2.12 from holding. The center set € is used not solely as approximation

3In those papers, only the top stratum of the neck regions could be controlled, and only
under much more restrictive hypotheses.
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to the singular set but also as an approximation to the relevant Haus-
dorff measure; see the packing measure defined in Definition 2.8. Without
(nl1) we would have no hope of controlling this packing measure; see The-
orem 2.9. Another simple consequence is that the set C, consists of a
discrete set of points.

(2) Condition (n2) has the consequence that even if the neck region involves
infinitely many scales, there is a summable energy condition over the whole
region. This summable energy is key for both the rectifiability and measure
estimates of Theorem 2.9.

(3) One consequence of (n3) is that if x € €, then x € Sf;mz; in particular,
Co C Sf;’ . Both the assumed k-symmetry and the assumed lack of (k4 1)-
symmetry play a key role in the Geometric Transformation Theorem 5.6.
These conditions act as a form of rigidity which stops harmonic splitting
maps from degenerating in uncontrollable ways.

(4) Condition (n4) plays the role of a Reifenberg condition on the singular set.
It is strong enough to prove bi-Holder control on €, but not bi-Lipschitz
control, which requires in addition (n2), and is the main goal of this paper.

(5) Condition (n5) says that if z € €, then r, looks roughly constant on
Byga,, (x). It turns out that constructing neck regions with this condition
is quite painful, but it is especially important for the Nondegeneration
Theorem 8.1. It allows us to take integral estimates on neck regions and
use them to control the behavior of the center points themselves.

(6) If N is a neck region in a smooth Riemannian manifold M", then Cy = 0.

(7) If N C By(p) is a (k, 9, n)-neck region and Bas(q) C Ba(p) with ¢ € €, then
NN Bas(q) C Bas(q) defines a (k, §,n)-neck region.

Remark 2.7 (Important convention). Often throughout the paper we will
state a result for balls of radius 1 and use it (often without comment) for balls
of radius r < 1, where the more general case follows immediately from the
special case by scaling.

We will want to view € as a discrete approximation of a k-dimensional
set. Similarly, we want to associate to it a measure which is a discrete approx-
imation of the k-dimensional Hausdorff measure on C:

Definition 2.8. Let N := By(p) \ B, (C) denote a k-neck region. The
associated packing measure is the measure

(2.6) W= N = Z T];(S;p + }Ck‘eoa

xzeCq

where H*|¢, denotes the k-dimensional Hausdorff measure restricted to Cp.
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Our main result on the structure of k-neck regions is the following. The
proof, which will be outlined in Section 5, depends on several new ideas. It
constitutes the bulk of the paper:

THEOREM 2.9 (Neck Structure Theorem). Fiz n > 0 and 6 < §(n,v,n).
Then if N = Ba(p) \ By, (C) is a (k,d,n)-neck region, the following hold:
(1) For each x € C and Ba,(x) C Ba(p), the induced packing measure [ is
Ahlfors regular:

(2.7) An)~rF < u(B,(z)) < A(n)r*.
(2) Cq is k-rectifiable.

Remark 2.10. One can view the Ahlfors regularity condition (2.7) as an ef-
fective consequence of rectifiability. Indeed, for simplicity, imagine that u(Cy)U
{B,,(u(x))} is contained in By (0*) for a bi-Lipschitz map u : Ba(p) N C — RF,
It is a simple but highly instructive exercise to see that (2.7) would follow
immediately. Conversely, much of the work of this paper will be devoted to
showing that if (2.7) holds, then such a mapping u exists. More precisely, the
mapping u will be taken to be a harmonic splitting function. If (2.7) holds,
then we will see that u is automatically bi-Lipschitz, at least on most of €. One
must do this carefully in order to close the loop. Thus, we will show essentially
simultaneously through an inductive argument that (2.7) holds and that wu is
bi-Lipschitz. The proof of this, which is quite involved, takes up most of the
paper; see Section 5 for a detailed outline.

Before continuing let us mention the simplest example of a k-neck region:

Ezample 2.11 (Simplest). Consider the metric cone space X = R¥xC(S}),
where S} is a circle of radius r < 1. Denote by 0 € C(S}) the cone point, so
that £ := R¥ x {0} is the singular set of X. Choose any function ., : By(0F) C
L — R* such that |Vr,| < §, and let € C B(0*) x {0} be any closed subset
such that {B2, (7)} is a maximal disjoint set. Then for r < 1 — C(n)n, it
is an easy but instructive exercise to check that B \ B, (€) is a (k, d,n)-neck
region. Note that it is trivial that Cq is k-rectifiable, as Gy C R* canonically.
Similarly, the Ahlfors regularity condition (2.7) may be verified as {B,, (z)}
forms a Vitali covering of Ba(0F).

For additional and more complicated examples, see Section 3.
2.3. Neck decompositions. In order to prove our theorems on stratifica-

tions, we also need to suitably control the part of X™ which does not consist
of neck regions. This is provided by the following result.

THEOREM 2.12 (Neck Decomposition). Let (M}, gi,pi) dox (X™,d,p)
satisfy Vol(Bi(p;)) > v > 0 and Ricyp > —(n —1). Then for each n > 0
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and 6 < 6(n,v,n), we can write

(2.8) Bi(p) €| Nan By,) Ul B, () U ST,
a b

(2.9) §hon C | J (€0 N By, ) LSk,

where

(1) for all a, the set Ny = Bay, (x4) \ By, (€) is a (k,8,m)-neck region;
(2) the balls Bay,(xp) are (k + 1,2n)-symmetric; hence xy, & Sé“mrb;

(3) 2ourh + 21 + HE(8M0T) < C(n,v,6,m);

(4) Co,a € Bay, () is the k-singular set associated to Ng;

(5) 8k satisfies HE (Sk"s’n) =0;

(6) 8*9m s k-rectifiable;

(7) for any €, if n < n(n,v,€) and § < §(n,v,n,€), we have S* C §&om,

Remark 2.13. In the case of a smooth manifold M", we have 8597 = {);
compare (6) of Remark 2.6. In that case, M™ decomposes into only two types
of regions, k-neck regions and the k + 1-symmetric balls B,, .

The following two examples illustrate the Decomposition Theorem.

Ezample 2.14 (k-Symmetric symmetric example). Let S"~*~1/T" denote a
compact manifold of curvature = 1. The space X" := C(S" 5 1/T") x R® is
s-symmetric with 0 < s < n — 2. Consider Bi(p) C X", where p = (y,, 0°) is
the cone vertex. For each integer 0 < k <n —2 and n <1y and § = 0, we are
able to choose a decomposition as in Theorem 2.12. To see this, we will divide
it into three cases:

Case 1: 0 <k < s—1. We can choose our decomposition to be the single
ball B, (xp) = Ba(p), which is k + 1-symmetric.

Case 2: k = s. We can choose By, (z,) = Ba(p) with Ny = B, (z4) \
{ye} x R® and 8%%7 = ({y.} x R*) N Ba(p). Then

(2.10) Bi(p) € N, U8k,

and 8¥97 is k-rectifiable. In this case, N, is a (k,0,7)-neck region with C =
Gy = 8F0m,

Case 3: k > s+ 1. For each r > 0, let us consider a Vitali covering
{Beyr(xrj),5 = 1,...,N,} of Ba(p) N Bar({ye} x R®*) \ Br({ye} x R®), where
€0 < €o(n,I') so that Bae,,(2r ;) is n-symmetric. Then the cardinality satisfies
N, < C(n,I')r=*. Each Bacyr(2;) is n-symmetric, and we will belong to the

b-ball in the decomposition. Let us define 8597 = §k01 = {3} x R*. Then we
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have
Ny,

(2.11) Bip) < |J U Ben(@r,i)ustom.
1>rp=2-0>014=1

We have H*(8%01) = 0, and the k-content of b-balls satisfies

Np,
(2.12) Yo > rf< > e, D)yt < C(n,T).
1>7rp>0 =1 1>rp>0

Hence (2.11) is the desired decomposition.

Ezample 2.15 (The boundary of a simplex). Let X" := do"™*! denote
the boundary of the standard (n + 1)-simplex in R"*! normalized so that all
edges have length 1. Let ¥* denote the closed k-skeleton of X™. By ap-
propriately smoothing the sequence of boundaries 9B, (¢™!), of the tubular
neighborhoods, B, (c"*!), and letting r; — 0, one see that X™ is a limit space
with RicMin > 0, indeed sec Mr > 0. Note that S¥ = ¥F is k-rectifiable and
H*(S* N By(p)) < c(n) forall 0 < k < n — 2.

For each 0 <k <n—2and 0 < d,n < n(n), we will build a decomposition
for X™ as in Theorem 2.12. The idea is similar to Case 3 of Example 2.14. The
decomposition consists of two parts, corresponding to the a-balls and b-balls
of 2.12, respectively.

(1) Neck regions. We will construct neck regions with center in S*\ S¥~1.
For each 0 < r < 1, consider a Vitali covering { Bs2,(Tay), Tar € S¥\ S¥71} of
the annuli A, o,(S*~1) N Bgs,(S¥). One checks that Ny, = Bs2,(74,) \ S* is a
(k,8,m)-neck region for n < n(n). The neck regions {Ng,, 7 =274 i=1,...}
are the desired neck regions of the decomposition. Moreover, by noting that
3*(S*¥) < C(n), we obtain the k-content estimate

(2.13) ZZ . < C(n,d).

(2) (k4 1)-symmetric balls. Consider a Vitali covering {Bys, (%), Ta, €
Ao (SF1)\ Bys,. (S¥)} of Ayar(S*71)\ Bys,.(S*). The cardinality of this cover-
ing is less than C(n,§)r =¥+, From the construction we have that Bsa,(z4,)N
S* =, which implies that Bga,(z4,) is (k + 1)-splitting. For each n > 0, by
the Almost Volume Cone Implies Almost Metric Cone Theorem, we have that
for each y € Bgi,(4,), the ball B.s1,(y) would be (0,n%)-symmetric for some
v(n,d,n) < 1. Therefore, B.ss,(y) is (k+1,7/2)-symmetric, which implies that
each Bgi,(z4,) can be covered by finitely many (k + 1,7/2)-symmetric balls.
Hence, we can choose at most N, = C(n,d,n)r %! (k + 1,1/2)-symmetric
balls B.s1,, whose union covers Ay2.(S* 1)\ Bss,.(S*). By combining them
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all for r =r; = 27% < 1, we get the desired b-balls in our decomposition which
satisfy the following content estimate:

Ny,
(2.14) Yo D> ()b < YD Clnn,d)ri < Cln,n,d).
0<7‘i:27i§1 j=1 0<T’i:27i§1

Define 8% := §k~1 then

(2.15) X" JWNan B,) U By, (ap) U ST,
a b
(2.16) §P01 C | J(€oa N By, ) USHO,

a

with Coq = B,, NS k. This completes the description of the decomposition for
X" = 9o" L,

Remark 2.16 (Role of the >, ¥ bound). In light of the fact that the b-balls
are approximately (k + 1)-symmetric, the crucial role of the a priori bound on
> r,’f in the Neck Decomposition Theorem 2.12 might not be immediately ob-
vious if one thinks only of the application to 3*(S* N By (x)). Recall, however,
that our volume bounds for the quantitative stratification pertain to tubes of
fixed radius r, while the function r, of the a-balls, goes to zero as x — S*1.
This suggests that it should not suffice to consider only a-balls in obtaining
the applications to the volumes of the tubes around the quantitative strata on
neck regions, particularly, the Neck Decomposition Theorem 2.12. This should
be kept in mind when reading the details of the proofs which are given in the
next subsection.

2.4. Proofs of the stratification theorems assuming the neck theorems. In
this subsection we will prove the main stratification Theorems 1.7, 1.9 and the
classical stratification Theorems 1.12, 1.14, 1.16, under the assumption that
the Neck Structure and Decompositions of Theorems 2.9, 2.12 hold. We will
outline the proof of the Neck Structure Theorem in Section 5.

The main result concerns the (e,r)-stratification of Theorem 1.7. The
other theorems follow fairly quickly from it and the Decomposition Theorem
2.12.

Proof of Theorem 1.7. From (6) and (7) of the Neck Decomposition The-
orem it follows that Se is rectifiable. Thus, it remains to prove estimate (1.13)
in Theorem 1.7, which states

(2.17) Vol(Br (sk N B (p))) < Ok,
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By the Volume Convergence Theorem of [Col97], [Che01] and the defini-
tion of the sets Sﬁr, to obtain the estimate in (2.17) for the case of limit spaces,
it easily suffices to prove (2.17) for the case of manifolds M™. We will now give
the proof in that case.

Given € > 0, let n < n(n,v,e) and § < §(n,v,€,n) be chosen sufficiently
small, to be fixed later. Recall that for the case of manifolds, the Decomposi-

tion Theorem 2.12 states

(2.18) Bi(p) c | (Na nB,, (xa)) Ul B, (@),
a b

where N, C By, (x4) is a (k,0,n)-neck and Bay, (xp) is (k + 1, 2n)-symmetric.
In addition, Theorem 2.12 provides the k-content estimate:

(2.19) Zr{j + Zrl’f <C(n,v,d,n).
a b

The proof of Theorem 1.7 amounts to combining the estimates of Lem-
mas 2.17 and 2.19 below. The proof of Lemma 2.17 relies on the Ahlfors
regularity of the packing measures p, on the balls B, (z,); see (2.7) of Theo-
rem 2.9.

LEMMA 2.17. Let n < n(n,v,€), § < d(n,v,e) and x < x(e,n,v). If the

neck region N, satisfies ro > x~'r, then

(2.20) Vol(Br (Sf,T N Na) ) < C(n,v,x)rk . rmk,

(2.21) Vol | B, Sf,r N U N, < C(n,v,8,m,x)r" ",
TaZXflf“

Proof. First we will prove (2.20). Let €, C Ba,,(x4) be the associated
center points of the neck region N,, and let p, be the associated packing
measure.

Claim. If y € Séfr NNy, then d(y, C,) < x 7.

Let us prove the claim. We will show that if y € N, with d(y, C,) > x "',
then there exists By(y) with s > 2r such that Bs(y) is (k + 1, €/2)-symmetric,
which implies that y ¢ Sfﬂn. Hence it will prove the claim.

For y € N, with d(y,C,) > x ' and for any ¢ > 0 if x < x(n,€,v),
we have by the “almost volume cone implies almost metric cone” Theorem 4.1
that Bs(y) is (0, €)-symmetric for some s > 2r. On the other hand, by the
almost splitting Theorem 4.11 and almost splitting Theorem 9.25 in [Che01]
along geodesic , if § < d(n,v,€) and x < x(n,€,v), then Bos(y) is € s-close to
a product space R¥*! x Z. These imply that Bs(y) is (k + 1, €¢/2)-symmetric
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if € = €(n,v,e€) is sufficiently small. Hence y ¢ S¥.. Thus, the proof of the

T
clalm is completed.
Now choose a maximal disjoint collection of balls {B,(x;), z; € Cq,j =
., K4} with centers in C,. By the Ahlfors regularity for pg, (2.7) of Theo-

rem 2.9, we have

K, K,
(2.22) K,C(n,x)r* < ;Ma By, —1,.(x5)) < C(n, X)z;’u o(Br(z}))

< C(n, xX)pa(Bar, (24)) < C(n, X)?“§

Thus, K, < C(n,x)r %7k, which, by using the claim, clearly implies (2.20).
Relation (2.21) follows by summing (2.20) over all neck regions and using
(2.19). Namely,

(2.23)

Vol (BT (Sk N UN)) < Z Vol (B, (S5, 1N, ) )

<Cnvxz k< C(n,v,8,n, x)r" .
This completes the proof of of Lemma 2.17. U

LEMMA 2.18. Let v < 7(n,v,€), n < n(n,v,e). If the b-ball By, (xp)
satisfies v < v -1y, then

(2.24) SF. 0 By, jo(w3) = 0.

Proof. Tt suffices to show that for y € Bs,, j2(p), the ball Bs(y) is (k+1,
€/2)-symmetric for some s > ~vr,. To see this, fix ' = n/(n,v,e) > 0 and
¢ = €(n,e,v) to be chosen below. If n < n(n,n,v), then since By, (xp) is
(k + 1,2n)-symmetric, it follows that B, ,(y) is (k + 1,7)-splitting. Also,
by the Almost Volume Cone Implies Almost Metric Cone Theorem and (2.3),
(2.4), (2.5), it follows that for some v = y(n,v,€), the ball B,,, (y) is (0,€)-
symmetric. For 7'(n,v,e) and €'(n,v,e€) sufficiently small, this implies that
By, (y) is (k + 1, €/2)-symmetric. This completes the proof of (2.24) and thus
of Lemma 2.18. O

LEMMA 2.19. Let Q := {x1,...,zn} denote a minimal r/4-dense subset
of SQT \ Uy, >y-14Br (Séf,, N Na) for x the constant in Lemma 2.17. Then for
~ the constant in Lemma 2.18, the following hold:

(1) Any ball B, 4(z;) satisfies
(2.25) >oooohe Y = Cmvyort

BTGCB4)(_17“(Ij) BTbCB4'y_1r(zj)

(2) The cardinality of Q satisfies N < r=%C(n,v,8,1,7, ).
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(3) The measure estimate:

Vol (BT (SE N\ Upusy-1eBr (SE, NNG)) ) < C(n,v,8,m,7,x)r" ",

Proof. First we will prove (1). Since z; € Sfm \ Upy>y—10-Br (Sﬁr NNa),
we have B, (z;) NN, = 0 for any r, > x~r. In addition, for any r, < ry~ 1,
if B,/4(x;) "Ny # 0, then we have By, (z4) C Byy-1,(x5). If B a(zj) N By, #
0, by Lemma 2.18 we have r, < 477, which implies By, (3) C By,-1,(2;).
Therefore, by (2.18) of the Decomposition Theorem, we have

2260 Bu@)c( U Bu@))u( U Bulw).
B”“acB4X*1T(Z‘j) B""};CB4'7717‘(:C.7')
Thus,

(2.27)
C(n,v)r" < Vol(B, 4(x;))

< 3 Vol(By, (z4)) + > Vol(By,(a))

Br,CBy, —1,(x;) Br,CBy,—1,(;)
< C(n,v) g ry + E Th
BT‘QCB4X71T(:Bj) BrbClefy*lr(‘rJ')

< C(n,v,y,X)r" " > rh+ > r

BraCB4X*1T(xj) BrbCBszlT(xj)

This implies (2.25), i.e., (1). Furthermore, from (2.19) and the fact that the
balls B,./19(;) are disjoint, we have

(2.28)
N

NC(n,v)r™ <Y " Vol(B,4(x;))
j=1

N
< Cn,v, 7, )" Y Yoot >, on

7=1 \ BroCBy,—1,(z)) By, CB, 1,(z))

< C(n,v, 7, x)r" " (ZT‘

a

IS
_|_
-1
3
S
~
IN
Q
3
=
Y
=
<
3
3
u??‘

which implies (2).



428 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

For (3), let us consider the covering {Bs,(x;),j =1,...,N} of

sEA U Be(SE NN,
TaZX_lr
By the definition of 2 this is also a covering of

B, | SEN\ U B (SE, nN,)

Tq>T

Thus, we have

Vol (B, (S5, \ Uy, -1, (S5 01N) ) )

(2.29) N
< ZVO](BQT($]')> < C(n,v)Nr" < C(n,v,8,n,7, x)r"*.
j=1
This completes the proof Lemma 2.19. O

Now we can complete the proof of Theorem 1.7 as follows. Fix ~ =
y(n,v,e),n = n(n,v,e) and 6 = d(n,v,e,n),x = x(n,v,€) as in the previ-
ous lemmas. Combining the estimates in (2.21) and (2.29) gives the volume
estimate (2.17), which completes the proof of Theorem 1.7. O

Proof of e-Stratification Theorem. Since S¥ C Sﬁr, the estimate for S*
follows directly from Theorem 1.7. On the other hand, by the Decomposition
Theorem 2.12, for n < n(n,v,€) and § < 6(n,v,e,n), we have S¥ c 8k9m,
where by Theorem 2.12 the set 8597 is k-rectifiable.

For HF-ae. z € Sf, let us show that every tangent cone at x is k-
symmetric. In fact we will show that for any §, there exists a subset S5 C Sf
with H*(S5) = 0 such that every tangent cone of € S¥\Ss is (k, §)-symmetric.
Indeed, we can choose S5 = 8k91 as in Theorem 2.12, which satisfies the de-
sired estimate as a consequence of the definition of a neck region. Now we
consider S = U S, i, where H*(S) = 0. For any = € S¥\ S, we have that
every tangent cone of x is (k,d)-symmetric for any § which, in particular, im-
plies that every tangent cone of x is k-symmetric. This completes the proof of
Theorem 1.9. [l

Proof of Theorem 1.12. The theorem follows directly from Theorem 1.9
and the fact that S*(X) = U;>155_;(X), which is a countable union of recti-
fiable sets. O

Proof of Theorem 1.14. Let us choose S, =S""2. Then for any € X"\ S,
we have for some 7, > 0 that Ba,, () is (n—1, €)symmetric and hence B, (x) is
(n, € )-symmetric for € < e(¢/,n,v). By the Reifenberg Theorem 7.10 (see also
[CCIT7]) it follows that B, jo(x) is bi-Holder to B,,/(0") C R" for ¢ small.
This suffices to complete the proof. ([l
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Proof of Theorem 1.15. As was shown in [CC97], S = S"~2. From Theo-
rem 1.12 we now know that for H"2-a.e. x € $"~2, every tangent cone is (n—2)-
symmetric. For such z, any tangent cone is isometric to R"2 x C (Sé), where
S}; denotes the circle of length 5 < 27. By Theorem 4.2, 3 is determined by the
limiting volume ratio, lim,_,o V,(z). This suffices to complete the proof. [

Proof of Theorem 1.16. The theorem follows from the e-regularity theo-
rem, Theorem 4.35 and the stratification of Theorem 1.9.

To see this, note that if y ¢ S?~*(X), then there exists some 7, > 0 such
that B, (y) is (n — 3, €)-symmetric. According to Theorem 4.35 we then have
the harmonic radius bound 74 (y) > ¢(n)r, > 0 which, in particular, implies
y ¢ S(X). Thus, we have shown that S C S"~* C S"~%. The volume estimates
of B,-(S) N Bi(p) now follow from Theorem 1.9.

The proof of the tangent cone uniqueness result is similar to that of The-
orem 1.15. By Theorem 1.12, there exists an (n — 4)-Hausdorff measure zero
set S C 8" * = §(X) such that every tangent cone at z € X \ S is (n — 4)-
symmetric. In particular, this means that every tangent cone is isometric to
R4 x C(Y3) for some metric space Y. By the main result of [CN15], which
states that the singular set of a noncollapsed limit space with a 2-sided bound
on Ricci curvature has codimension 4, it follows that Y3 is a 3-dimensional
smooth manifold with Ricy = 2¢". This implies that Y3 is a space form S3 /T
for some discrete subgroup I' of O(4) acting freely. By Theorem 4.2, the or-
der of subgroup I' is determined by the volume ratio at x. Since the space of
cross-sections of tangent cones at one point is connected (see Theorem 4.2), it
follows that I' is unique. Thus, the tangent cone at x is unique. This completes
the proof of Theorem 1.16. O

3. Additional examples

This is the first of three sections which constitute the second part of the
paper.

Basic examples of neck regions and the neck decomposition were given in
Examples 2.11, 2.14, and 2.20. In the present brief section, we will provide some
additional examples. They show the sharpness of our results and illustrate how
more naive versions of the statements can fail to hold.

3.1. Example 1: Conical neck region. A key result in this paper states
that the packing measure of a neck region N = Bs(p) \ B, (C) is uniformly
Ahlfors regular; see Example 2.11 and Theorem 2.9. The key technical result
needed to be proved is the statement that if u : Bo(p) — R¥ is a harmonic
splitting function, then for F(*-most points of €. C €, u is a (1+ €)-bi-Lipschitz
map onto its image; see Proposition 9.3. In the simplest example of a neck
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region, Example 2.11, we could take €. = C. The present example shows that
in general, this is not the case.

In fact, the map u can degenerate on parts of a neck region. This explains
the statement of the structural result given in Proposition 9.3. Although it
deals with what at first glance might seem like a relatively minor technical
point, this example is useful to remember when one is faced with traversing
the maze of technical results which come later in the paper. In particular, it
demonstrates why simpler sounding statements just do not hold.

Let Y, := Susp(S!) denote the suspension of a circle of radius 7. Note
that if » = 1, then Y; = S2. For r < 1, the space Y, will have two singular
points p,q € Y at antipodal points. It will look like an American football.
By using a warped product construction, one can easily check that Y, can
be smoothed to obtain Y, ,, which is diffeomorphic to 52, satisfies Y, = Yer
outside of B¢(p) U Be(q) and has sectional curvature > 1.

Let X3 = C(Y.,) denote the cone over Y;,. Note that X3 has a unique
singular point at 0 € X3. Using the techniques of [CN13], one can check that
X3 itself arises as a Ricci limit space. Let Vp, Vq denote the rays in X 3 through
the cross-section points p,q € Y. Though X 3 is smooth along these rays, for
e very small X3 is looking increasingly singular. For each z € Yp U g, let
ry =10 - d(x,0), where 9 > € is fixed and small. Finally let € = {0} U{z;} C
(7p U vq) N Ba(p) be a maximal subset such that B2, (z;) are disjoint. Note
then that for any 6,1 > 0, one can check for ¢ < § that N := Ba(p) \ B, (C)
defines a (1,9, n)-neck region.

Now let u : Ba(p) — R denote a harmonic e-splitting map. By using
separation of variables one can check that |Vu(x)| — 0 as x — 0 approaches
the vertex of the cone. Indeed, this holds for any harmonic function on By(p).
In particular, it is certainly not possible that u defines a (1 4 §)-bi-Lipschitz
map on all of €. One can check that as ¢ — 0, u remains bi-Lipschitz on €
away from an increasingly small ball around 0. This shows the sharpness of
the bi-Lipschitz structure of Proposition 9.3.

3.2. Example 2: Sharpness of k-rectifiable structure. One of the primary
results of this paper is to show that the kth-stratum S*\ S*~! of the singular set
is k-rectifiable. The following example from [LN20] shows that this statement
is sharp in the sense that there need not exist any points in the singular set S
in a neighborhood of which S is a manifold.

In [LN20] the following examples are produced: For each real number
s € [0,n—2], there exists (M7, g;) %% (X, d), with diam (M) < 1, Vol (M) >
v > 0, such that the singular set, S satisfies

dim S = s,

3.1
(3.1) S is a s-Cantor set.
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If s = k € IN is an integer, one can further arrange it so that S = S¥ = S
satisfies the case in which 0 < 3¥(S) < oo is both k-rectifiable and a k-Cantor
set. In particular, we see from these examples that the structure theory of
Theorem 1.12 is sharp, and one cannot hope to do better.

We will briefly explain the example above from [LN20] for the case, 0 <
s < 1. Higher dimensional examples are built in an analogous manner.

Let Z = B1(0%) x [0,1] € R? denote the closed 3-cylinder. Observe
that Z is an Alexandrov space with boundary, and that its singular set is the
codimension 2 circles S(Z) = 0B1(0?) x {0, 1}.

Double Z to obtain an Alexandrov space without boundary Z with codi-
mension 2 singular sets S(Z) = S* x Zy C Z. It is not difficult to see that Z
may be smoothed to obtain a manifold by rounding off the doubled boundary
points. Intuitively, the key point of this example is that these circle singular
sets are sets of infinite positive sectional curvature in every direction, as op-
posed to the easier construction of a codimension 2 singular set built by looking
at R x C(S}) as in the neck example. Note that because of this, the singular
set S (Z ) is not totally geodesic. However, the regular set of Z is convex. In
fact, by [CN12], this must be the case.

Now choose an arbitrary open set U = | J(as, b;) € S(Z). By using the fact
that S(Z) consists of completely convex points of Z C R3, one can construct a
subset Y C R? by (informally speaking) “sanding off” each interval (a;, b;) to
obtain smooth boundary points such that Y is still convex. Hence, after this
procedure has been carried out, Z is still an Alexandrov space.

At this point, we have S(Y) = S(Z) \ U, and we can again double Y
to obtain Alexandrov space without boundary such that S (}7) is isometric to
S(Y). By choosing U as in the standard Cantor constructions, we can make
S(Y) a s-Cantor set for 0 < s < 1, as claimed. Since S(Y) is contained in a
circle, this set is 1-rectifiable.

3.3. Example 3: Sharpness of k-symmetries of tangent cones. One of the
main statements in Theorem 1.12 is that for H*-a.e. € S*, all tangent cones
are k-symmetric. Recall however that we do not assert that tangent cones
are unique. In this example, we show that indeed tangent cones need not be
unique for H*-a.e. x € Sk,

The examples are rather straight forward. For instance, let Y be a non-
collapsed limit space such that there is an isolated singularity at p € Y. As-
sume p € SY(Y) is such that the tangent cone at p is not unique; see, for
instance, [CC97], [CN13] for such examples. Nonetheless, every tangent cone
is 0-symmetric as this is a noncollapsed limit. Put X = R* x Y. Then the sin-
gular set of X satisfies S = S¥(X) = S¥ = R* x {p}. In this case, as claimed,
every tangent cone in S¥(X) is k-symmetric, but none are unique.
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3.4. Example 4: Sharpness of S*-finiteness. Theorem 1.12 states that S*
is k-rectifiable. Theorem 1.9 states that the quantitative stratification S* has
uniformly bounded k-dimensional Hausdorff measure. Well-known examples
demonstrate that this need not hold for S*. Thus, the best one can say is
that S¥(Y) is a countable union of finite measure rectifiable sets, as stated in
Theorem 1.12.

Start with solid regular tetrahedron Z3, centered at the origin. Attach
to each face F? a tetrahedron with very small altitude and base F2. Call the
resulting convex polytope Z;. Proceed inductively in this fashion to obtain a
sequence of convex polytopes Z%, Z§ ..., in such a way that the sequence of
altitudes goes sufficiently rapidly to zero so that the following will hold. The
sequence of convex polytopes converges in the Hausdorff sense to a convex
subset Z3 and 07} G 073, as well. Moreover, 0Z> has a dense set of singular
points, although for all € > 0, only a finite number fail to have a neighborhood
which is e-regular. The polytopes Zf can be “sanded” to produce a sequence

of smooth convex surfaces M? G 0Z3,. Thus, 073, is the GH-limit of a
sequence of smooth manifolds with nonnegative curvature. Of course, higher
dimensional examples can be constructed similarly.

4. Preliminaries

In this section, we will review the technical background material which is
required for the proofs of our main theorems. For the less standard material,
particularly the results concerning entropy, we will give detailed indications of
the proofs. In all cases we will give complete references.

4.1. Almost volume cones are almost metric cones. For any k € R, let the
metric on the unique simply connect n-manifold M with constant curvature
= k be written in geodesic polar coordinates as dr? + f,%gsn_l, where gSn_1
denotes the metric on the unit (n — 1)-sphere. Let Ricpyr > (n — 1)k, and

assume M don x " where X" is noncollapsed. Then if X" is equipped with
n-dimensional Hausdorff measure, the convergence is actually in the measured
Gromov-Hausdorff sense ([CC97]). If we extend the definition of the volume
ratio V() = V%(z) to points z € X™, then as in (2.1), we have -LV%(z) < 0.

Suppose d%\?ﬁ(x) = 0 for some fixed r and suppose the metric on X™ is
smooth in a neighborhood of Y := 9B,.(x), with ¢* the induced metric on Y.
Then in geodesic polar coordinates on B, (x) the Riemannian metric is given by

(4.1) dr? + f2gY¥.
The proof of this fact given in [CC96] uses the characterization of the warped

product metrics as those for which there is a potential function whose Hessian
is a multiple of the metric.
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Notation. Below, the Hessian of f is sometimes denoted by Hess; and
sometimes by V2f.

If Kk = 0, then the warped product is a metric cone, in which case,
(4.2) Hessr? — 2g = 0.

This should be compared to the corresponding formula for the time derivative
of the entropy given in (4.20).

The discussion can be extended to the case in which the smoothness as-
sumption on 0B,(x) := Y is dropped, provided the expression in (4.1) is
replaced by the expression for the distance function d on B,.(z). Let d¥ denote
the distance function on Y. Then for the case k = 0, (B,(z),d) is isometric to
a ball in the metric cone with cross-section (Y, d") with diam(Y) < 7 and d is
given by the law of cosines formula

(4.3) d2((7"1, Y1), (r2,y2)) = r% + 7“% — 27179 - COS dY(yl,yg).

By using Gromov’s compactness theorem, the following “almost volume
cone implies almost metric cone theorem” is easily seen to be equivalent to
what has just been discussed.

THEOREM 4.1 ([CC96]). Let (M",g,p) denote a Riemannian manifold
with Ricpym > —(n—1)d. Given € > 0, if § < d(n,€) and Va(p) > (1 —96)Vi(p),
then Bi(p) is (0, €)-symmetric.

In the proof of tangent cone uniqueness we also used the following well-
known result in which relation (2) below follows from volume convergence;
compare Theorems 1.15 and 4.2.

THEOREM 4.2. Let (M, gi,pi) — (X,d,p) satisfy Ricyp > —(n — 1)
and Vol(Bi(p;)) > v > 0. Then the cross-section space Cy = {(Y,dy) :
C(Y) is a tangent cone at x} of tangent cones at x € X satisfies

(1) (Cy,dgm) is connected,
(2) for every Y € Cy, we have Vol(Y) = lim,_, nVol(B:(z))

Proof. Let us give a brief proof of Theorem 4.2. The second statement
follows directly by volume convergence. It will suffice to prove the first one.
Consider the space M, = {Bi(y.) : y. € C(Y) is the vertex and Y € C, }.
To prove (1), it suffices to prove (M,, dg) is connected. In fact, we will show
(M, dgy) is a compact, connected space. Let Ly :={(B.(z),r d),0<r<1}.
By the definition of tangent cone, for any Bj(z.) € M,, there exists 7; — 0
such that

(4.4) (By,(z),r71d) = By (z).
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By a diagonal argument this implies that any point in the closure of M, is a
limit of (B,,(z),r; *d) for some sequence r; — 0. Therefore, we have proved
(M, dgp) is a closed subset of (M, dgpr), where M is the space of all compact
metric spaces. On the other hand, by volume doubling and by Gromov’s
precompactness theorem (see Chapter 10 in [Pet16] or [Che0l]), (M,,dgm)
is a compact subset of (M,dgg). To prove (Mg, dgpy) is connected, we will
require the following claim for compact metric spaces, which is an easy exercise.

Claim. A compact metric space (Y, d) is connected if for any y1,y2 € Y
and € > 0, there exists an e-curve {21 = y1,...,28 = y2} C Y connecting
Y1,Y2, i.e., for any i that d(z;, zi+1) < e.

Therefore, by the claim it suffices to show that for any ¢ > 0 and any
two balls B (z.), B1(w.) € M, there exists an e-curve connecting them. As-
sume (B,,(z),r; *d) — Bi(z.) and (Bs,(z),s; 'd) — Bi(w.) with r; < s;. For
any € > 0, since v(t) = (B¢(z),t 1d),,<t<s, is a continuous curve connecting
(By,(x),r;'d) and (Bs;(z),s; 'd), choose a subset {’y(t%),...,fy(tﬁvi(e)),t? €

[r;,8i]} such that ! = r;, tfv"(e) =s; and

(4.5) dan(v(19), 7 (7)) < /2,
and such that for any a # 3,

(4.6) dan (19, 7(t]) = e/4.

By (4.6) and the fact that the closure of L, is compact, we have N;(e) <
C(n,e€,v), which is independent of i. Denote N(e€) := limsup N;(e). Then by
Gromov’s precompactness theorem (see [Pet16, Ch. 10] or [Che01]), we have
{7155 Yv(e} C M, such that v = Bl(zc),’yN(e) = Bi(w,) and

(4.7) daa (Yo, Ya+1) < €/2.

Therefore, {71,...,7n(@)} C M is an e-curve connecting vy = Bi(z.) and
YN(e) = Bi(w,). The claim now implies M, is connected. This completes the
proof. O

The following result was proved in [Che01], [CC97], [Col97]. It implies, in
particular, that at a point in the regular set, R := X™ \ S, the tangent cone
is unique and isometric to R™. In fact, since the conclusion applies to all balls
B, (x) C Bs(p), it is actually a kind of quantitative e-regularity theorem.

THEOREM 4.3. Let (M]',gi,pi) — (X,d,p) satisfy Ricpyr > —(n — 1)8
and Vol(Bi(p;)) > v > 0. Let e > 0, § < d§(n,v,€), and assume By(p) is
(n,d)-symmetric. Then each B.(x) C Bs(p) is also (n,€)-symmetric.
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4.2. Quantitative cone-splitting. As recalled in Section 2, if a metric cone
has two distinct vertices, then the cone isometrically splits off a line which con-
tains these two vertices. If there are several independent such cone vertices,
then this statement can be iterated to produce further splittings. A quantita-
tive version of cone-splitting was introduced in [CN13a]. Prior to stating this
theorem, it is convenient to introduce a quantitative notion of k£ + 1 points
xg, ..., being k-independent.

In R" we say that as set of points {xq,...,z;} is k-independent if the
{x;}¥ is not contained in any (k — 1)-plane. Here is a quantitative version of
this notion.

Definition 4.4 ((k,«)-independence). In a metric space (X,d), a set of
points U = {xy, ..., 2} C Bay(x) is (k, a)-independent if for any subset U’ =
{af,...,2,} C R¥1 we have

(4.8) den(U,U') > a-r.

Remark 4.5. Let X C R™. If there exists no (k,a)-independent set in
B.(z) N X, then B.(x) N X C Byar(RF1) for some (k — 1)-plane RF~! ¢ R™.
To see this, if B.(x) N X is not a subset of B3, (RF7!) for any (k — 1)-plane
then, by induction, one can find a (k, «)-independent set in B,(x) N X.

The following Quantitative Cone-Splitting Theorem was introduced in
[CN13al.

THEOREM 4.6 (Cone-Splitting). Let (M", g,p) satisfy Ricym > —(n—1)46.
Let e,7 >0 and 6 < d(n,e,7), and assume the following:

2 18 -symmetric with respect to C By as in Remark 1.4;
(1) Ba(p) is (k,0)-sy jc with resp L’g Bs(p) in R k1.4
there exists x € By i such that Ba(x) 18 -symmetric.

(2) th ) Bi(p)\ B (L]g) h that Ba(x) is (0,0)-sy ]

Then By(p) is (k + 1,€)-symmetric.

Remark 4.7. We can rephrase the above as follows: If U = {zg,...,z} C
By, (z) is (k,a)-independent and each z; is (0, d)-symmetric, by the Cone-
Splitting Theorem 4.6, the ball B, (x¢) is (k, €)-symmetric for § < §(n, o, k, €).

A second version of quantitative cone-splitting theorem is implicit in
[CN13a]. It is a direct consequence of Theorem 4.6. To define it let us de-
fine the notion of the pinching set:

Definition 4.8 (Points with small volume pinching). Let (M™, g, p) satisfy
Ricpym > —(n — 1)&, and put

4.9 V.= inf V,1(zx).
(49) vty Ve (@)



436 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

The set with small volume pinching is
(4.10) Pre(z) :={y € Bar(x) : Ver(y) <V + £}

Note that if 71 is large, then the point in P, ¢(z) is an “almost cone
vertex” for each scale between r and ¢~'. By Theorem 4.1, each point y €
Pre(x) is an “almost cone vertex.” Thus, with Theorem 4.6 we immediately
have the following:

THEOREM 4.9 (Cone-Splitting based on k-content). Let (M™, g,p) satisfy
Vol(Bi(p)) > v > 0 with Ricym > —(n — 1)€. Assume that 0 < 0,¢ < §(n, V),
’y S 7(”7 V’ 6)7 5 S 5(67 6’ ’77 n7 V) and

(4.11) Vol(B, (P1.¢(p))) > e ",
Then there exists ¢ € By(p) such that Bs-1(q) is (k,5%)-symmetric.

The import of Theorem 4.9 is that if the set of pinched points P; ¢ has a
definite amount of k-content, then the ball must be k-symmetric. The scale
invariant version states that if

(4.12) Vol(By (Pre(p))) > ey~ Fr",
then Bs-1,(q) is (k, §%)-symmetric for some ¢ € B,(p).

4.3. Harmonic e-splitting functions. The following definition, which en-
capsulates the technique of [CC96] for obtaining approximate splittings, is
essentially the one formalized in [CN15].

Definition 4.10 (Harmonic d-splitting map). The map u : B,(p) — RF is
a harmonic d-splitting map if
(1) Au=0;
(2) fBT(p) |(Vul, Vud) — 69| < 6;
(3) supp, py IVul <1+4;
(4) 12 f5 ) | V2ul* < 62

For the case of limit spaces, we can define J-splitting maps as follows. If
B.(p;) C M; — B,(p) C X and §;-splitting maps u; : B,(p;) — RF converge
uniformly to u : B,.(p) — R¥ with §; — &, we say u is d-splitting on B,.(p) C X.
By the Wh2-convergence in Proposition 4.29, we have that the d-splitting u
satisfies (1)—(4) in the limit space.

The following is a slight extension of the result in [CC96].

THEOREM 4.11. Let (M™, g,p) satisfy Ricyyn > —(n—1)5. For any e > 0,
if 6 < d(n,e), then the following hold:

(1) If there exists a 0-splitting function wu : By(p) — RF, then By(p) is e-GH
close to RF x X.
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(2) If By(p) is 0-GH close to R* x X, then there exists an e-splitting function
u: Bi(p) — RF.

Remark 4.12. In Cheeger-Colding [CC96], the second result is proved un-
der the assumption that the ball Bs-1(p) is 6-GH close to R¥ x X. This suffices
for the purposes of the present paper. However, the closeness assumption can
actually be weakened to Ba(p) (or indeed Biic(p)) by using a contradiction
argument combined with what is now understood about continuity of limit-
ing harmonic functions and W'2-convergence of harmonic functions, in the
context of GH-convergence; see also some related discussion in Section 4.9.

4.4. A cutoff function with bounded Laplacian. The existence of a cutoff
function which satisfies the standard estimates and has a definite pointwise
bound on its Laplacian is important technical tool. In particular, such a cut-
off function is required for the discussion of the local pointed entropy; see
Section 4.6.4

THEOREM 4.13 ([CC96]). Let (M™,g,p) be a Riemannian manifold with
Ricpyn > —(n — 1)r2. Then there exists cutoff function ¢, : M™ — [0, 1] with
support in B.(p) such that ¢, := 1 in B, 5(p). Moreover,

(4.13) 2|V, |* + r?|A¢.| < C(n).

4.5. Heat kernel estimates and heat kernel convergence. Let py(x,y) de-
note the heat kernel on M™. For each x, we have

/ pe(@,y) duly) = 1.
Define the function fi(x,y) by
(4.14) (@, y) = (dmt) /26T

Next we recall some classical heat kernel estimates for manifolds with
lower Ricci curvature bounds, as well as the heat kernel convergence result for
Gromov-Hausdorff convergence. We summarize the heat kernel estimates in
the following theorem; see [LY86], [SZ06], [SY94], [Ham93], [Kot07], [CY81].

THEOREM 4.14 (Heat Kernel Estimates). Let (M",g,p) satisfy Ricyr >
—(n—1)6% and Vol(B,(p)) > v-r" > 0 forr < §~1. Then for any 0 < t < 1052
and € > 0 with x,y € Bigs-1(p),

2 T 9 .
(1) =Cn,v,0) + G < fi < Clnv, )+ G2

4The original proof of the existence of the required cutoff function employed solutions of
the Poisson equation, Au = 1 and a delicate argument based on the quantitative maximum
principle. One can also give a proof by using heat flow as in [MN19].
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(2) t|Vfi]? < C(n,v,e) + ai(_xsjg;

2(p 2 (s
(3) ~Cln,v,e) — LU <tAf, < C(n,v,e) + HEY.

The estimates in (1) are Li-Yau heat kernel upper and lower bound es-
timates; see, for instance, [LY86], [CY81]. (2) follows from (1) and a local
gradient estimate; see, for instance, [SZ06]. (3) follows from the Li-Yau Har-
nack inequality, (2) and [Ham93], [Kot07].

The following result is well known in the context of Ricci limit spaces
and even for RCD spaces. One direct proof is obtained by using gradient flow
convergence of the Cheeger energy in [AGS14al; see also [AH18], [GMS15].
See [AGS14a|, [AH18], [AHT18], [ZZ19] for more general results in the RCD
setting. In our application the limit space X is a metric cone, in which case
the heat kernel convergence was proved in [Din02].

PROPOSITION 4.15 (Heat kernel convergence). Suppose (M;, gi, i, jt;) —
(X, d, Zoo, p) with Ricpyn > —(n — 1) and p; = Vol(By(z;))~'Vol(-). Then
the heat kernel pi(z,y) converges uniformly to the heat kernel p°(z,y) on any
compact subset of Ry x X x X.

Remark 4.16. By the heat kernel Laplacian estimate in Theorem 4.14 and
W2_convergence in Proposition 4.29, it follows that for any fixed ¢, we have
Pi(xi,-) = P (T, ) in the Wl2-sense as in Definition 4.27.

Remark 4.17. If the limit space is a noncollapsed metric cone Y = C(X)
with cone vertex r, then the heat kernel on Y is
Vol(smfl) efd2 (Too,y) /4t
Vol(X) — (4rt)n/2

P (oo, y) =

where Vol(X) is the (n — 1)-Hausdorff measure of X with respect to the metric
(X,dx). This follows easily by computing the s-derivative of

(4.15)

- ~ - Vol(§n—1) e~ (so) /4t
ot = [ ) (o) = S )

to conclude that n(t,t,z) = n(t,0,z) = 0.

4.6. The local pointed entropy, Wi(z) and its relation to cone structure.
As discussed in Section 4.1, “almost volume cones are almost metric cones,”
previously known results on quantitative cone-splitting were stated in Theo-
rems 4.6 and 4.9. As with the definition of neck regions, the hypotheses of
these results, as well as the definition of neck regions, involve the volume ratio
V,(x). For our purposes, it is crucial to have a sharp version of quantita-
tive cone-splitting. As mentioned in previous sections, it turns out that many
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technical details are simpler if in place of V,.(x), we use a less elementary
monotone quantity, the local pointed entropy Wy(z). Therefore, it is necessary
to have a result stating that (with suitable interpretation) W;(x) and V,(x)
have essentially the same behavior. This is the content of Theorem 4.22, which
also includes the fact that W;(z) is monotone in ¢. The sharp cone-splitting
estimate, the statement of which involves entropy, is given in Theorem 6.1.

In the present subsection, we derive the needed background results on the
local pointed entropy. This quantity is a local version of Perelman’s W-entropy,
generalized in [Ni04] to smooth manifolds. In order to emphasize the basics,
we will first discuss the technically simpler concept of the pointed entropy.

If as in (4.14) we write py(z,dy) = (4nt)~"/2 . e~ 12+ then by defini-
tion the weighted Laplacian Ay is the second order operator associated to the
weighted Dirichlet energy

/ 4ty 2V £ e dugy) = / V2 o, dy)-

Mﬂ,
Then
Ap=A—-(Vf,V-).
Set
(4.16) Wy =2t Asf +t|VF>+ f—n.

The pointed entropy, W(z), is for each = a global quantity defined as
follows.

Definition 4.18 (Pointed entropy).

(4.17) Wy (x) == Wi - pe(x, dy).
Mn

Bochner’s formula states for u € C*°(M) that
1
(4.18) §A\Vu|2 = |V2u|? + (VAu, Vu) + Ric(Vu, Vu).

The following lemma is proved by direct computation. It shows, in partic-
ular, that W, (z) is monotone decreasing if Ricy» > 0. Moreover, if in addition
W, (x) is constant on [0, 7], then the ball B,(z) is isometric to B,(0) C R"; see
(4.2).

LEMMA 4.19.
(419)  OWi(x) = —2t /M (|v2r - %gf +Ric(V £, V) ) i, dy) < 0.

Proof. Equation (4.19) is easily implied by the following computation
(compare (4.2)):

d 12
(4.20) @Wt:Ath—<Vf,VWt>—2t(‘V2f—ﬂg‘ +R10Mn(Vf,Vf)). O
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Next assume (M™",g,p) satisfies Ricpyn > —(n — 1)6% and Vol(B,(p)) >
vr™ > 0 for r < §~!. In this case we will define a local monotone quantity
which will play a role analogous to the one played by pointed entropy.

Let ¢ : M™ — [0,1] be a cutoff function as in (4.13), with support in
Bos-1(p), satisfying ¢ := 1 in Bs-1(p) and |Ap| + |[V|? < C(n)s>.

Set
(4.21)

Weow) = [ Wonte.n)~ [ (15 [ 0= 0519 Pontaa) ds

Then, by direct computation,

(4.22) O] = =2 /M (|v2r - %9‘2 +Ric(V,V])

+2(n—1)52|Vf!2)90-pt(w,dy)+/ WiAp pi(z, dy).
M

By using the heat kernel estimate in Theorem 4.14, we can control the last
term on the right-hand side of (4.22). Namely, for any z € Bs-1,5(p) and
t < 672, we have

(4.23)
(/ WtAso-pt(w,dy)‘ S/ (Wil |Ap| pi(z, dy)
M M
2
<Cu [ (1+ 1) by, ay)
A6,172671(p) 4t

< C(n,v)52 . e~ 1/1006%t
This motivates the following definition of the local W? pointed entropy.

Definition 4.20 (Local W? pointed entropy). Let (M™, g, p) satisfy Ricpsn
> —(n —1)62 and Vol(B,(p)) > vr™ > 0 for r < §~1. For any t < §2 and
T € Bs-1/5(p), the local W? pointed entropy is defined by

t
(4.24) W (z) := Wf#,(x) =Wyo(x) — C(n,v)52/ e 1/1008%s g
0
Remark 4.21 (Scaling). Put g = r~2g. If Ricym > —(n — 1)62%, then
Ricyn > —(n — 1)0%r2. Let W' (z) denote the local W-entropy associated
with g. Then

WO 2 () = W' ().
The following theorem is the main result of this subsection. According to

relation (1), the local W? pointed entropy is monotone. By relation (2), it has
essentially the same behavior as the volume ratio V,(x).
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THEOREM 4.22. Let (M",g,p) denote a pointed Riemannian manifold
with Ricpym > —(n — 1)62 and Vol(B,(p)) > v-r" > 0 for r < §~L. Then for
all x € B(;_1/2(p) and t < 672, the local W) -entropy satisfies the following:

(1) W (@) <=2t [y, (IV2F~ g P+Ric(V £,V f)+2(n=1)0V £ ) o pu(i, dy)

<0.
(2) Given € > 0, assume that § < d(n,v,€), 0 <t <10, and
(4.25) V.1 () = V()] <6
Then

(W) ~log V()] < e.

Proof. Tt suffices to prove (2). Assume (2) does not hold for some ¢y > 0.
Then there exists §; — 0 and there exists (M, g;, p;) satisfying Vol(B,(p;)) >

1
vr® > 0 for r < (5;1, Ricpr > —(n — 1)0? and such that for some x; €

Bs-1,5(pi), we have

Vs, (@) = V-1 g (i) < 0
with 0 < t; < 10, but

Wi (25) = log V. (i) = eo.

The rescaled spaces, (M";, gi, x;) = (M, tz-_lgi, ;), satisfy Ricpr > —(n— 1)62,
and

|\~75i (xl) - {751_—1(1'1')’ < di,
(W' (1) — log V1 ()] > eo.
Denote the heat kernel at time t = 1 of (M™;, x4, g;) by

pi(ei,y) = (4m)~2e ).

By the heat kernel estimate in Theorem 4.14, it follows that for §; sufficiently
small, we have

Wi (i) — WV ()] < e0/4,

where

(4.26) Wi(z;) = /B o (‘Vﬂ? +f- n) p1(zi, dy).
512

Therefore, for §; sufficiently small,
(4.27) (W1 () — log V1 ()| > €0/2.

We will deduce a contradiction to this estimate by letting ¢ — oo.
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Thus by Gromov’s compactness theorem, there exists a subsequence of
(MP,t; ' gi, ;) converging to some metric cone (C(X" 1), d, xo). By the vol-
ume convergence result in [Col97], [Che01] (see also Theorem 4.2) we have

Vol(X) .. =~
Vol(on-1) — s Vi(wi)-

By using the heat kernel convergence in Proposition 4.15, together with Re-
marks 4.17, 4.16 and the heat kernel estimate in Theorem 4.14, we conclude
that

(498)  Tim Wy (z) = /C . (195 + fo = 1) pr (2 ),

1—00

where

Vol(§7—1)

4 —n/2 —dQ(xoo,y)/4‘
Vol(x) im) e

p1(oc, y) = (4m) /2 =
A simple computation gives

/C(x)(|vf°°|2 + foo — n) p1(Zos, dy)

2
= /C » (761 (x;o ) 1og Vzl(zléf_)l) - n) P1(Too, dy)
(4.29) = /0 h rn; : Vol(S™ 1) (4m) "2/ Adr + log vszzlﬁ )1) —
=T+ g)\/'ol(S”_l)w_"/2 + log \m —
(X
= log \M.
Since W (z;) and log V1 (z;) have the same limit, this is a contradiction. [

4.7. (k,a,d)-entropy pinching. Recall that in Definition 4.4, we intro-
duced the notion of a collection of a (k, «)-independent set of points xy, . . ., zf.
We will use a refinement of this notion to define the pinching of the local
pointed entropy W;(x). This will be used in the Sharp Cone-Splitting Theo-
rem 6.1.

Definition 4.23. The (k, o, §)-entropy pinching, Ef’a’é(x), is

(4.30) Rt (z) = [nf, D W (i) — Wi (a4)],
Tifq

where the infimum is taken over all (k, «)-independent subsets and the param-
eter 0 is corresponding to Ricci curvature lower bound.
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From the discussion above, it follows that if Elf’a’é(p) < § = 0(e, @), then
there exists a (k, €)-splitting map u : Bi(p) — R¥. The sharp version of this
relationship is the content of Theorem 6.1, the Sharp Cone-Splitting Theorem.
This theorem states that there exists C'(n, v, a) and a splitting map u for which
the integral of the norm squared of the Hessian has the following sharp linear
bound in terms of the k-pinching:®

(4.31) ][ V2ul? < C(n,v,a) - €77 (p).
Bi(p)

4.8. Poincaré inequalities. We recall various Poincaré inequalities which
hold on manifolds with Ricci lower bound; see also [Bus82], [Che99], [Che01],
[CCO00]. We will need the ones which follow:

THEOREM 4.24 (Poincaré Inequalities). Let (M™,g,x) satisfy Ricpm >
—(n —1). Then for any 0 < r < 10, the following Poincaré inequalities hold:

(1) fp, ) [P < C) 12 f5 ) IV (for all feC5o(Bi(x)));
2
2) f5, 00 f—fBT(m)f‘ <Cn)-12 f o) IVFE (for all f € C%(B,(2)).

The Dirichlet Poincaré inequality (1) follows directly from segment in-
equality in [CC96] and [Che01]. For the Neumann Poincaré inequality (2), by
using segment inequality, we have a weak Poincaré inequality [CCO00]. By the

volume doubling and a covering argument in [HK95] or [Jer86], we can obtain
the Neumann Poincaré inequality (2).

4.9. Wt2_convergence. Below, the notation (Z;, d;, z;) dex (Z,d, z) should
always be understood as convergence in the measured Gromov-Hausdorff sense.
In this subsection, we will assume without explicit mention that the metric
measure space (Z,d, u) is separable and complete and that p is a Borel mea-
sure which is finite on bounded subsets of Z.

Definition 4.25 (Uniform convergence). Let (Z;,d;, z;) dar (Z,d,z). If f;
are Borel functions on Z;, then we say f; — f : Z — R uniformly if for any
compact subset K; C Z; — K C Z and ¢;-GH approximation ¥; : K — K;
with €; — 0, the function f; o ¥; converges to f uniformly on K.

As motivation for what follows, recall that on a fixed metric measure
space, for 1 < p < oo, weak convergence together with convergence of norms
implies strong convergence.

5The proof of (5.2) is one instance in which choosing to use the pointed entropy as our
monotone quantity helps to make the argument run more smoothly than if we had chosen to
work with the volume ratio V,(x).
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Definition 4.26 (Weak LP convergence). Let (Z;, d;, zi, f1;) dan (Z,d,z, ).
If f; are Borel functions on Z;, we say f; — f: Z — R in the weak sense if for
any uniformly converging sequence of compactly supported Lipschitz functions
i — p, we have

(4.32) lim [ fipidu; Z/fCPdM-
1—00

Moreover if f;, f have uniformly bounded LP integrals, then we say f; — f in
the weak LP-sense.

Any uniformly bounded LP sequence f; has a weak limit f. See also
[GMS15] for a definition of the weak convergence by embedding Z;, Z to a
common metric space Y.

Definition 4.27 (LP and WP convergence). Let f; denote Borel functions
on Z;, and let (Z;,d;, z;, ;) dox (Z,d,z,p). For p<oo, wesay fi—f:Z—R
in the LP-sense if f; — f in the weak LP-sense and

/ I | i

If f; = f in the LP-sense and

/| VAP s,

we say f; — f in the W1P-sense.
The following can easily be checked. Thus, the proof will be omitted.

PROPOSITION 4.28.

(1) If fi converges to a constant A in the L?-sense, then ff — A converges in
L' to zero.

(2) If fi and g; converge to f and g in the L?-sense respectively, then fig; — fg
in the L'-sense.

(3) Uniform convergence implies LP convergence for any 0 < p < oo.

The proof of the following Proposition 4.29, on W12-convergence for func-
tions with L? Laplacian bound, depends on the Mosco convergence of the
Cheeger energy; see Theorem 4.4 of [AH18]. In our application the limit X
is a metric cone and w; is Lipschitz, in which case the proposition is simply
proved by using the result in [Din02] without involving RCD notions; for re-
lated discussions in the metric measure space context, see [AHT18], [Che99],
[GMS15], [MN19], [ZZ19].

PROPOSITION 4.29 (W12-convergence). Let (M, g;, xi, j1;) — (X, d, Too, 1)

(2

with Ricyp > —(n —1) and p; = Vol(By(z;))~'Vol. Let u; : Br(z;) — R be
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smooth functions satisfying

f mwﬂf \w%f Au? < C
Br(z;) Br(z;) Br(z;)

for some C. If u; converge in the L?-sense to a Wh2-function us : Br(7oo) —
R, then

(1) u; = Uso in the Wh2-sense over Br(Zoo);

(2) Au; — Aus in the weak L*-sense;

(3) if suPpy(s,) [Vuil < L for some uniform constant, then u; — uxo in the
WP_sense for any 0 < p < oo.

Proof (outline following [AH18], [Din02]). We will argue under a uniform
Lipschitz assumption; the general case is similar but a bit more technical.

In view of the uniform Lipschitz condition supp,,,) [Vui| < L it follows
by an Ascoli type argument that we have uniform convergence, u; — uso. Also,
fi == Aw; converges in the weak L?-sense to some L? function f.,. Consider
the energy

1
Bw)i= [ (5Vul+ ).
Br(zi) \2

By the lower semicontinuity of the Cheeger energy, we have

lim inf F;(u;) > Eoo(teo)-

11— 00

Moreover, using Lemma 10.7 of [Che99] one can construct some Lipschitz se-
quence v; in Br(z;) which converges uniformly to us with v; = u; on OBRr(z;)

and
lim sup/ Vg S/ |Vittoo |2
e Br(w:) Br(zeo)

From the fact that u; minimizes the energy FE;, it then follows that E;(u;) —
FEo (o), which gives us the W12-convergence. The weak convergence of Au;
also follows from the energy convergence. That is, we need to show Aug, = foo,
i.e., for any Lipschitz h with h = us on 0BRr(T), that Eoo(h) > Eoo(Uso).
Assume there exists Lipschitz hoo with hoo = s 0n 0BR (7o) and €y > 0 such
that Eoo(hoo) < Eoo(tao) — €9. Then we can construct by using Lemma 10.7 of
[Che99] a sequence of Lipschitz function h; in Br(x;) with h; = u; on dBg(z;)

and
lim Sup/ |Vh|? g/ |Vheo!?.
im0 Br(z;) Br(zc)

Since F;(u;) = Foo(tso), this implies for large ¢ that
(4.33) El(hl) < Ez(uz) — 60/2,
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which contradicts the fact that w; minimizes F;(u;) over all Lipschitz functions
with the same boundary condition. Hence, we conclude that Aus, = foo. This
completes the (outline of the) proof of Proposition 4.29. O

The following lemma was proved in [Din04] for metric cone limits and in
[AH18] for the general case.

LEMMA 4.30. Let (M, gi, i, i) = (X, d, Too, ) with Ricpyr > —(n — 1)
and p; = Vol(By(x;)) *Vol(-). Let f,F € L*(X) have compact support, and
assume AF = f and that f is Lipschitz. Then for any R > 0, there exist
solutions AF; = f; on Bpg,(z;) with R; — R such that F; and f; converge
uniformly to F' and f in any compact subset of Br(xso) respectively .

Outline of the proof. From a generalized Bochner formula in [EKS15] and
the standard elliptic estimate, it follows that F' is Lipschitz. By Lemma 10.7
of [Che99] one can construct Lipschitz functions Fj, f; on Bg(z;) converging
uniformly and in the W12-sense to F and f respectively.

For € > 0, define Fj . on Bg(z;) such that AF; . = f; on Br_¢(x;) with
Fic= F, on OBRr_c(z;), and F; = F, on Bp \ Br—c(z;). By the definition of
F; ¢ we have

(4.34) / VE. P+ 2fiF, < / VE + 2£. .
Br(z;) Br(x;)

Assume the limit of Fj. is Fi, . whose existence is asserted by Proposi-
tion 4.29. Moreover, Fu, . — F' € W&’Q(BR). By applying the lower semiconti-
nuity of Cheeger energy to fBR(xl) |VF; |, we have

(4.35) lim inf / \VE;|* +2fiF; > / |V Fooe|? + 2f Foo e
Br(z;)

71— 00 BR
Since Foo . — F € Wol’Q(BR) and AF = f on Bg, we have that
(4.36) | VBl v2rFaz [ VEP 4 2sE
Bgr Bpr

On the other hand, noting that (4.34) and fBR(fEi) \VE;]? - fBR(%O) |VE?
we get

(4.37) lim sup / \VE; |? +2fiF;. < / |VF|? + 2fF.
71— 00 BR(IZ‘) BR
Combining (4.35), (4.36) and (4.37), we have that
(4.38) / IVFP+2fF = / |V Fagel? +2f Foo e
Br Bgr

Since AF = fon Bgrand F—F € Wol’Q(BR), this implies that Fi, c = F'. Let
us choose €; — 0 and define F; = F; ;. Therefore, the convergence F; — Fi .
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is pointwise and is in the W1 2-sense. The uniform convergence in any compact
subset of Br(x) follows from the standard interior gradient estimate for
equation AF; = f; in Br_,. Hence the proof of Lemma 4.30 is completed. [

4.10. The Laplacian on a metric cone. Next, we will recall the existence
of the Laplacian operator on metric cones with suitable cross-sections. The
explicit formulas, (4.40), (4.41), in Theorem 4.32, were initially derived in the
context of spaces with iterated conical singularities [Che79], [Che83]. This
context is in certain ways more special and in other ways more general than
that of the present subsection. Theorem 4.32 below was originally proved for
metric measure spaces satisfying a doubling condition and Poincaré inequality
in [Che99] and for Gromov-Hausdorff limits of smooth manifolds in [CCO00]
and [Din02]. It is also understood in the context of RCD spaces [AGS14b],
[AGS14a].

THEOREM 4.31. Let (M, g;,pi) — (X,dx,p) := (C(Y),dx,p) satisfy

7

Ricyp > —6; — 0 and Vol(Bi(p;)) > v > 0. Then

(1) there exists a nonpositive, linear, self-adjoint, Laplacian operator
Ax : Dom(X) c L*(X) — L*(X)

with Domy/—Ax = WH2(X);
(2) for compact supported Lipschitz functions f on X, |V f| = |Lipf|,

/X VLA = (V By S/ Dxf):

(3) there exists a nonpositive, linear, self-adjoint, Laplacian operator Ay :

Dom(Y) C L?(Y) — L*(Y) with Domy/—Ay = W12(Y);

(4) in geodesic polar coordinate © = (r,y), the Laplace operator Ax and Ay
satisfy, in the W42(X) distribution sense,
? n-10 1

Originally, relations (1) and (2) were proved in [CC00] and [Che99]. Re-
lations (3) and (4) were proved in [Din02].

The Sobolev space W12(X) is the closure of Lipschitz functions under a
W2 norm defined in [Che99]; see Section 2 of [Che99] for the precise defini-
tion, which ensures that the W2-norm behaves lower semicontinuously under
L? convergence. It then becomes a highly nontrivial theorem that in actuality,
|V f| = Lip f, the pointwise Lipschitz constant almost everywhere. These re-
sults were proved in [Che99] under the assumption that the measure is doubling

(4.39) Ax =

and a Poincaré inequality holds.
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The cross-section Y may itself be viewed as a space which satisfies the
lower Ricci curvature bound Ricy > n — 2 in a generalized sense. The con-
sequences were initially established directly for cross-sections of limit cones.
Subsequently, it was shown that in the precise formal sense, Y is an RCD
space with Ric > n — 2; see [Ket15], [BS14].

THEOREM 4.32. Let (M, g;,pi) — (X,dx,p) = (C(Y),dx,p) satisfy
Ricyp > —6; — 0 and Vol(Bi1(pi)) > v > 0. Then

(1) (I = Ay) ' L2(Y) — L%(Y) is a compact operator;

(2) Laplacian Ay has discrete spectrum 0 = Ao < A\p < Ag < -+ +;
(3) if ¢; is an eigenfunction associated to \;, then ¢; is Lipschitz;
(4) the following functions are harmonic on X:

(

4.40) u(r,y) = r%¢;,

where

(4.41) ai:—n;2+\/ <n;2)2+)\i;

(5) the harmonic functions v ¢; are Lipschitz on C(Y);
(6) the first nonzero eigenvalue satisfies Ay > n — 1.

Remark 4.33. (1) follows from a Neumann Poincaré inequality on Y, which
is induced from the Neumann Poincare inequality on X. See a proof of Lemma
4.3 in [Din02] and see also [CCO00].

(2) follows from (1). See also Theorem 1.8 of [CC00], which only uses
Neumann Poincare inequality and volume doubling.

(3) follows from the fact that the harmonic function u(r,y) = r*i¢; is
locally Lipschitz, which was proved in [Din02].

(4) follows from the statement (4) of Theorem 4.31.

(5) and (6) were proved in [Din02].

4.11. e-reqularity for 2-sided Ricci bounds.

Definition 4.34. For x € M™, we define the harmonic radius rp(z) > 0
to be the maximum over all » > 0 such that there exists a mapping @ =
(Y1,...,%n) : Br(x) — R™ with the following properties:

(1) AY;=0fori=1,...,n;

(2) v is a diffeomorphism onto its image with B,(0") C ¢(B,(x)), and hence
defines a coordinate chart;

(3) the coordinate metric gi; = (V;, Vib;) on B, (x) satisfies ||gij —di5lco(B, (x)

+ 7119 gijllco s, (z)) <107

The formula for the Ricci tensor in harmonic coordinates can be viewed
as a (nonlinear) elliptic equation on the metric g;; in which the Ricci tensor is
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the inhomogeneous term. If the Ricci curvature is bounded, |Ricpym| < n —1,
then via elliptic regularity we obtain for any p < co and 0 < o < 1 the a priori
estimates for the case r = 1:

(4.42) lgij = dijllcra (B, o)) < Cn, ),

(4.43) 19i5 = Gijllw2e (B, () < C(n, D).

The following e-regularity theorem from [CN15] can be viewed as a con-
sequence of the proof of the codimension 4 conjecture proved in that paper. It
states in quantitative form that if a ball has a sufficient amount of symmetry,
then the ball is in the domain of a harmonic coordinate system in which the
metric satisfies definite bounds.

THEOREM 4.35 ([CN15]). There exists e(n,v) > 0 such that if Vol(B1(p))
> v >0, |Ricym| <n—1 and Ba(p) is (n — 3, €)-symmetric, then ry(p) > 1.

5. Outline of proof of Neck Structure Theorem

The idea of a neck region is derived primarily from [JN21] and is motivated
by ideas from [NV17a]. Given the Neck Structure Theorem 2.9, the proof of
the Neck Decomposition of Theorem 2.12 follows along lines similar to what
was done in a more restricted context in [JN21]. More precisely, much of the
proof of the Neck Decomposition of Theorem 2.12 involves an elaborate and
highly nontrivial covering argument. At a few places, an appeal is made to
Theorem 2.9 to provide sharp estimates; however none of the technology which
goes into the proof of Theorem 2.9 plays a role in the proof of Theorem 2.12.
Thus, the bulk of this paper is focused on proving the Neck Structure Theorem
2.9. This requires a completely new set of ideas and tools, quite distinct
from those of the abovementioned citations. Our purpose in this section is
to introduce these new ideas in order to sketch a clean picture of the proof of
Theorem 2.9. Some of our explanations will be repeated in subsequent sections.

The proof of Theorem 2.9 involves a nonlinear induction scheme. In it, we
will assume a weaker version of the Ahlfors regularity condition (2.7) already
holds, and we will use it to prove the stronger version. Precisely, our main
inductive lemma is the following:

LEMMA 5.1 (Inductive Lemma). Fiz n, B > 0 and 6 < §(n,v,n,B). Let
N = Bs(p) \ By, (C) denote a (k,d,n)-neck region, and assume for each x € €
and Ba,(x) C Ba(p) that

(5.1) B~k < w(B,(z)) < Br*.
Then
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(1) for each z € C and Ba,(z) C Ba(p), we have the improved estimate A(n)~1r¥
< w(Br(2)) < A(m)r®;
(2) Co is k-rectifiable.

Outlining the proof of the inductive lemma will be the main goal of this
section. In Section 9 we rigorously prove Theorem 2.9 from the Inductive
Lemma.

5.1. Harmonic splittings on neck regions. In order to prove the Inductive
Lemma 5.1, and hence Theorem 2.9, let us first make the following observation.
Let @ C By C RF be a closed subset with /. : € — R a radius function
such that {B, . (z)} are all disjoint and By C €\ U J B, (€/), where as
usual € = {r, = 0} and € = {r}, > 0}. Consider the packing measure
W= HFNCH+wy Ze; 756,,. Tt is a straightforward though instructive exercise
to see that p/ automatically satisfies the Ahflors regularity condition (2.7). For
this, one notes that the Lebesgue measure on R* coincides with the Hausdorff
measure. Therefore, the strategy to prove the Inductive Lemma 5.1 will be to
find a mapping u : @ — R¥ which is bi-Hélder onto its image and (1 + ¢)-bi-
Lipschitz on most of €. Then, with ¢’ := «(€) and 7}, := r,, we can turn the
covering {B,, ()} into a well-behaved covering of By(0*) C R¥, and therefore
conclude the asserted Ahlfors regularity. For further discussion of the role of
the Ahlfors regularity of the packing measure, see Remark 2.10.

Remark 5.2 (Digression). At this point, we will digress in order to explain
what will not work in the present context. This will motivate the strategy
used here and relate it to that in the the previous literature. In [NV17a] a
quite similar strategy was implemented in order to study the singular sets of
nonlinear harmonic maps. In that case, the map u was built by hand, us-
ing a Reifenberg construction. Showing that the construction worked required
new estimates on nonlinear harmonic maps and a new rectifiable Reifenberg
theorem. It is natural to examine the possibility of implementing a similar
approach in the present context, by using metric Reifenberg constructions in
the spirit of [CC97]. However, these ideas break down in the context of lower
Ricci curvature bounds. Essentially, this is because the underlying space it-
self is curved. This gives rise to error terms which are quantitatively worse
than those which arise in connection the bi-Lipschitz Reifenberg techniques of
[NV17a]. As a result, those techniques fail in the present context. Therefore,
of necessity, our construction of the map u will be completely different from
that of [NV17a]. Instead of relying on a Reifenberg type construction, our
mapping u will be more canonical in nature. It will solve an equation.

To make the above more precise, recall from Definition 4.10, the notion of
a harmonic splitting function.
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It follows from Theorem 4.11 that if By, (p) is (k, §)-symmetric, then there
exists an e-splitting map u : B, (p) — R¥. In particular, splitting maps exist on
neck regions. In general, splitting functions can degenerate on sets of infinite
codimension 2 content. In particular, the degeneration set of u may in general
be much larger than the center point set C of a neck region. However, as we
will see, something rather miraculous takes place. Namely, if we are on a neck
region, then the map u can degenerate in at most a weak sense on all of €, and
on most of €, it cannot degenerate at all. Precisely, we will prove the following:

THEOREM 5.3 (Harmonic splittings on neck regions). Let B,e,n > 0 with
§ <& (n,v,B,e,n) and § < §(n,v,n, B,€). Let N = By \ B, (C) be a (k,d,n)-
neck region satisfying (5.1) with u : By — R* a §'-splitting map. Then there
exists Cc C CN Bys/g(p) such that

(1) p(CeN Bysss(p)) > (1 —€)p(CN Byss(p));

(2) w is (1 4 €)-bi-Lipschitz on Cc, i.e., (1 + €)' -d(z,y) < |u(z) — u(y)| <
(1+e€)-d(x,y) for any x,y € C¢;

(3) w is (1 + €)-bi-Hélder on C, i.e., (1+ €)1 - d(z,y)'7¢ < |u(z) — u(y)| <
(1+e€)-d(x,y) for any z,y € C.

Theorem 5.3 is an abbreviated version of Proposition 9.3, which is the
result which will be proved in the body of the paper.

The proof of Theorem 5.3 relies on three main new points: The Sharp
Splitting Theorem 6.1, the Geometric Transformation Theorem 7.2, and the
Nondegeneration Theorem of 8.1. The remainder of this outline will discuss
these results and explain how they lead to the proof of Theorem 5.3. For con-
venience, we restate these results below as Theorems 5.4, 5.6, 5.7, respectively.

5.2. Sharp cone-splitting. It is a now classical point that if Ba(p) is (k, d)-
symmetric, then there exists a harmonic (&, €)-splitting function u : By (p) —R¥;
see Theorem 4.11. In this paper, it will be crucial to have a quantitatively sharp
understanding of how good a splitting exists.

Recall that in Definition 4.4 we introduced the notion of a (k,a)-in-
dependent set of points xg,...,xr. Also, in Definition 4.23 we defined the
notion of (k, «, §)-entropy pinching. The following is a slight specialization of
Theorem 6.1. The crucial point is the precise linear relationship between the
k-pinching of a ball and the squared Hessian of a splitting map. This is what,
under appropriate circumstances, eventually allows the result to be summed
over an arbitrary number of scales without having the resulting estimate blow
up uncontrollably.

THEOREM 5.4 (Sharp Cone-Splitting). Given €, > 0 there exist positive
constants d(n,v,a,€) and C(n,v,a) > 0 with the following properties. Let
(M™, g,p) satisfy Ricprn > —(n — 1)62 and Vol(Bs-1(p)) > vé™™ > 0, and
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let Bys—1(p) be (k,82)-symmetric. Then there exists a (k, €)-splitting map u :
Bs(p) — R* satisfying

(5.2) ][ (IV2ul? + Ric(Vu, Vu) + 2(n — 1) §%|Vul?) < C Ef(p).
Ba(p)

5.3. Sharp Transformation Theorem. The results of the last subsection
tell us, in terms of the k-pinching, how good we can expect the best splitting
map to be on a typical ball. The proof of Theorem 5.3 depends on fixing a
single splitting map on the original ball Bs(p) and seeing how it behaves on
smaller balls.

To this end, let us begin by describing a simple situation. If u : By (0") —R¥
is a k-splitting map in R™, then as with any solution of an elliptic PDE, u has
pointwise bounds on the Hessian. Among other things, this implies that if we
restrict to some sub-ball, B,(x) C By, then u : B.(x) — R” is still a splitting
map. More than that, we know by the smoothness estimates that the matrix
Tt := (Vu;, Vu;)(z) is close to &;;. Thus, if we look at the map T o u, so
that (VT'u;, VT'uj)(z) = &;5, then we even know that Tu|p, is becoming an
increasing improved splitting map, as Tu is scaled invariantly converging to an
isometric linear map at a polynomial rate. Unfortunately, on spaces with only
lower Ricci curvature bounds, such statements are highly false. For instance
there could be points where |Vu| = 0, so that u|p, is not even a splitting map
on small balls, much less a better one; see, for instance, Example 3.1.

However, it turns out that although the restriction of u : B,.(x) — R* to
a sub-ball may not be well behaved, if we are on a neck region and x € C, then
u may only degenerate in a very special way. Namely, though u|p, may not be
a splitting map, there is a k x k-matrix T such that Tu = Tz-juj : B.(r) — RF
is a splitting map. What is more important, and as it turns out a lot harder
to prove, is that after transformation Tu is the best splitting map on the ball,
in that it satisfies the estimates from the Sharp Cone-Splitting Theorem 6.1.

Remark 5.5. Note that in comparison to the R™ case above the matrix T
depends on the scale, and not just the point, as 7' = T}, , may blow up in norm.
Additionally, we of course cannot expect that Tu is converging polynomially
to a splitting map, since no such splitting map may exist. All we can hope for
is that Tu is the best splitting map which does exist.

Our precise result is the following, which is a slight specialization of The-
orem 7.2.

THEOREM 5.6 (Geometric Transformation). Given a,n,e > 0, there exists
C =C(n,v,n,a) and v =~v(n,v,n) >0 such that if 6 < §(n,v,n), then the
following holds: Let (M™,g,p) satisfy Ricpm > —(n—1)62, Vol(Bi(p)) >v >0,
and assume the following:
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(i) u: Ba(p) — RF is a (k,6)-splitting function;
(i) for allr < s <071, the ball By(p) is (k,0%)-symmetric but not (k+1,7)-
symmetric.

Then for all s € [r,1], there exists a k x k-matriz T =T, ; such that
(1) (weak estimate) Tu : Bs(p) — RF is a (k, €)-splitting map;
(2) (strong estimate) for rj =277,

gl
(5.3) 52][ IV2Tul? < C Z <> Efj (p) + C6*s7.
Bs(p) s<r<1
First, note that the weak estimate above is the main ingredient in the proof
of the bi-Holder estimate, (3), of Theorem 5.3. To see this, observe that since
the transformation exists on every scale, one can see it must change slowly. In
particular, |T5* o T,| < 1+ ¢ and hence |T,| < r~¢. On the other hand, if one
takes z,y € C and considers r = d(z,y), then by the weak estimate we have

(5.4) |d(Tu(zx), Tru(y)) — d(z,y)| < er.

By using the norm control on 7;. stated above, this exactly gives the bi-Hoélder
estimate; for the details, see Section 8.

The proof of the weak estimate itself is given by a contradiction argument
in the spirit of [CN15]. Roughly, if the result fails at some x € €, then one
looks for the first radius s > r, for which it fails. By blowing up Bs(z) to a
ball of radius 1 and passing to the limit, Thsu — v : R¥ x C(Y) — R¥, one
obtains a harmonic map v which is a (k, €)-splitting map on By(z), but for
which by assumption, there is, in particular, no transformation so that Tw is a
(k, €/2)-splitting map on Bj(z). By using the transformation estimates of the
previous paragraph, one gets that supp (,) Vo[ < 7€ for all 7 > 1. Therefore,
v has slightly faster than linear growth. Then, using that X™ is not (k4 1,7)-
symmetric one can prove a Liouville type theorem stating that the map, v,
must be exactly linear from one of the factors. In that case, it is clear that
after a transformation, v is precisely (k, 0)-symmetric on Bj(z). Therefore, we
get a contradiction. For the precise details, see Section 7.

The proof of the strong estimate in Theorem 5.6 is much more involved.
One again uses a contradiction argument, but this time to prove a more re-
fined estimate. Roughly, if £, : B.(z) — R¥ is the best k-splitting on B, (z),
in the sense of the Sharp Splitting of Theorem 5.4, then one shows that

r? JCB |V2 Tru—£,)|? is decaying polynomially. This involves a careful anal-
ysis and blow up argument; for details, see Section 7.

5.4. Nondegeneration theorem. As was discussed, the weak estimate of
Theorem 5.6 is sufficient to prove the bi-Hélder estimate, (3) of Theorem 5.3.
Next we want to see that the strong estimate of Theorem 5.6 suffices to prove
the bi-Lipschitz estimate, (2) of Theorem 5.3. However, this takes a bit more
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work since there are a couple of additional points to address. To accomplish
this we want to show that at most points « € €, we have for any r, < r < 1 that
|T.» —I| < €. At such points, u : B, () — R¥ remains a (k, 2¢)-splitting on all
scales, even without transformation. By using (5.4) as in the bi-Holder esti-
mate, we conclude that w is a bi-Lipschitz map at such points. It is worth noting
that this estimate does not hold at all points. This can be seen from Exam-
ple 3.1. Thus showing that it holds at most points is the best we can hope for.
To accomplish this, we introduce our Nondegeneration Theorem:

THEOREM 5.7 (Nondegeneration of k-Splittings). Given €,n,«a > 0 there
exists §(n,v,n,a,€) > 0 such that the following holds. Let 6 < §(n,v,n,a,¢€)
with (M™, g,p) satisfying Ricym > —(n — 1)6%, Vol(Bi(p)) > v > 0. Let u :
Bs(p) — R* denote a (k,d)-splitting function. Assume for B.(x) C By(p) that
(1) Bs-14(z) is (k,62)-symmetric but Bs(x) is not (k + 1,n)-symmetric for all

r<s<l1;

(2) er>r Efj’.a(p) < 8, where rj =277,

Then u : By(x) — R¥ is an e-splitting function for every r < s < 1.

The proof of the above comes down to showing that the assumptions imply
that |7, — I| < e. It turns out that the implication

(5.5) > e ar) <6 = |Tup— I <e

Ti>Te
is fairly subtle. It is much easier to show er - Veka(z,r) <6 = [Ty, —I
< €. However, for our applications, the square gain is crucial. The square gain
depends heavily on the fact that u is harmonic; it does not hold for a general
(nonharmonic) splitting function. The proof of (5.5) depends on the more local
estimate:
(5.6) Ty, o T, — 1| < Cr2][ |V2Ty,u)? < C &F(x, 2r),

Bay(z)

where as previously discussed, the last inequality is the main result of the
Transformation Theorem 5.6.

Remark 5.8. The first inequality is where the square gain occurs. As
above, if the right-hand side was the L2-norm instead of the squared L?-norm,
the inequality would be much more standard and would follow from a typical
telescope type argument. That one can control T, o ! by the squared Hes-
sian is a point very much special to harmonic functions. It is crucial to the
whole paper.

The key point is the following monotonicity formula, which holds for any
harmonic function:

(5.7)
d .
pn (Vui, Vuj)pe(x, dy) = 2/ ((V?u;, V?u;) + Ric(Vug, Vi) - pe(z, dy).
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Roughly speaking, since p; is a probability measure which is essentially
supported on B, (), the left-hand side of (5.7) measures the rate of change
of T;j(z,v/t). Given that we want to use this when |Vu| ~ 1 and |V?u| ~ 0, we
find that the left-hand side behaves as a linear quantity, while the right-hand
side behaves as a quadratic quantity. This leads to a a crucial gain in the
analysis. For additional details, see Section 8.

5.5. Completing the outline proof of Theorem 5.3. Completing the outline
proof of Theorem 5.3 requires a brief discussion of why the assumption of (5.5)
holds for most x € C.

Recall that in Theorem 5.3 we are assuming the Ahlfors regularity of (5.1),
so a key point is that one has the estimate

(5.8) eX(e,r) < Cr " / Wy (y) — W, (9)] dpe.
()

This is because the Ahlfors regularity allows us to find k + 1 independently
spaced points, zg,...,x, for which the quantities ]WQr(:Uj) — W,.(z;)| are all
roughly the same as the average drop r~ f B |W2r - W, (y)| dp.

To see this, recall from the definition of a neck reglon that for every xz € C,
we have

(5.9) (Wi(z) = W, (z)| = Z (War, () = W, ()] < 0.

rj=2"1>r,
Then one has

/Bl(p)( >, it / Wy, (y —wTj(y)|du(y)) dp(z)

Tj=2" I>ry

/B /B Yo i War(y) =W r (W) 1B, @) () du(y)dpu(z)

=2 7>7‘z

<c /B | /B . ST W, = W ()15, () (@) dul)dp(y)

=2"7>ry

5.10 T.
(5.10) <cf Z War, () = W, ()] - 2B

rh
rj=2"I>r, J

<CB/BI S W (y) = W ()l dpu(y)

r;=2"I>ry

<CB / Waly) — Wy, ()] duu(y)
B
< C B?s.

It follows from this and (5.8) that most of C satisfies (5.5), as claimed.
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6. Sharp cone-splitting

This is the first of three sections which constitute the third part of the
paper.

In this section, we prove Theorem 6.1, the sharp existence theorem for
e-splitting functions. The hypothesis involves the k-pinching of the local point-
wise entropy; see Definition 4.23. The key point, the one which presents the
real difficulty in the proof, is the linear bound of the squared L?-norm of the
Hessian of the splitting function in terms of the entropy pinching. This is what
we mean by sharp. The main argument is given in the proof of Proposition 6.4.
As explained in Section 5, the form of the bound is crucial for the proof of the
Transformation Theorem 7.2.

THEOREM 6.1 (Sharp Cone-Splitting). Given e, > 0, there exist positive
constants d(n,v,a,€) and C(n,v,a) > 0 with the following properties. Let
(M™, g,p) satisfy Ricyn > —(n — 1)6%r? and Vol(Bs-1(p)) > v~ ™ > 0 with
r <1, and let Bys—1(p) be (k,52)-symmetric. Then there exists a (k, €)-splitting
map u : Ba(p) — R¥ satisfying

(6.1)
][ (IV?ul® + Ric(Vu, Vu) + 2(n — 1)6*r%|Vul?) < C(n,v,a) - Sgk’a’g) (q).
Ba(q)

Remark 6.2 (Sharpness). The example of the 2-dimensional cone C(Sé)
shows that the estimate in Theorem 6.1 is actually sharp. In checking this, it
is useful to employ Theorem 4.22, which states the equivalence between the
volume pinching and the entropy pinching.

6.1. Approzimation of the squared radius with sharp Hessian estimates.
The first step in the proof of Theorem 6.1 is to construct a regularization h of
the squared distance function d?. As in [CC96], the function h will be taken to
satisfy the Poisson equation Ah = 2n. Note that for the case of metric cones,
we have precisely h = d?, V2h = 2g. We will obtain sharp Hessian bounds for h
in terms of the entropy drop. The splitting map u will be constructed explicitly
using functions h; as above corresponding to independent approximate cone
vertices; see Example 6.6 and (6.22). This will lead to an estimate on V2u in
terms of the entropy pinching. Recall that the k-pinching ghad (x) is defined
to be the minimal entropy pinching over all (k,«)-independent points; see
Definition 4.23.

THEOREM 6.3 (Sharp Poisson regularization of d?). Let (M™,g,p) satisfy
Ric > —(n — 1)§2 with Vol(Bs-1(p)) > v6~" > 0. For any € > 0 and B,(z) C
Bs(p), if § < 8(n,v,€) is such that B,s-1(z) is (0,02)-symmetric, then there
exists a function h : By, (x) — R such that
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(1) Ah = 2n;
@) fo, 00 (|v2h — 292 + Ric(Vh, Vh) + 2(n — 1)5% |vm2)
<C(n,v)- ’W(;z (z) — Wgﬂ (z)l;
2
(3) Fi oy [IVA2 = 4] < Ol v)rt - Wi () — W ()]
(4) [Vh| < C(n,v)r;
(5) supPp,, (z) |k — di| < er”.

Proof. Set t =2, and as usual write p;(x,y) = (47t)~™"/2e~/ for the heat
kernel. The Hessian estimates on h will follow from the Hessian estimates on
the function 4t f, which is in turn given by the local W-entropy pinching. Thus,
we will begin by deriving the relevant estimates on V?2f.

By Theorem 4.22, we have

(6.2)
2t
2 /t s / (192~ o + Rie(V 1,V ) + 200~ DIV ) @ pstar dy)

4 1
< (Wi (z) — Way ()]
=
Hence, there exists t < s < 2t such that

(6.3)
2ts /M <|V2f - 2%9!2 + Ric(Vf, Vf) 4 20%(n — 1)|Vf|2) opa(,dy) < 1.

In particular,

[ (9%~ 2] + Rie(V(as), V(49)

(6.4) "
+20(n — 1)V (45f) ) pps(, dy) < 8n.

By using the heat kernel lower bound estimates in Theorem 4.14 and the

volume noncollapsing assumption, we get

][B . (IV2(4sf) = 291 + Rie(V(4s), V(4s)))
(6.5) vl

+2(n = D)3V (4s)?) < Cln,v)n.
Set f :=4sf, and consider the 1-form
VIVF? =4V f =2V2f(Vf,-)—4aVf

6.6 ) )
(%) =2(V2f —29)(Vf, ).
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By using the Poincaré inequality in Theorem 4.24 and the gradient estimate
IV£f? = 1652V f|?, we get

- - ~ ~ 12
f o |vip-ai- (V7 - 4)
(6.7) B4\/§(1’) B4\/§(95)
<Csf Vs - 2PV < st
B4\/§($)
Put )
f=f+- V2 —4f).
4émwa| )

Then
(68) f o vir-ai] < o,

B4\/§($)

(6.9) ][ (1V2F — 20> + Rie(V . V) + 28°(n —~ DIV ) < Cln, ).
34\/3(90)
We now define the function h to be the solution of the Poisson equation,
Ah =2n (on By, s5(x)),
h=f  (on 0B, 5(x)).

We will show that h satisfies the desired estimates.©
By integrating by parts, we have

][ |Vh — V f|?
34\/3(1")

-—f (h— F)(Af —2n)
B4\/§(90)

1/2 1/2
(f m—fﬁ) -(f mf—mw)
B4\/§(x) B4\/§(1)
1/2 1/2
gcwn(f W—fP) ‘(f nﬂf—wﬁ) |
B4\/§(x) B4\/§($)

Since h— f = 0 on 8B, /5(2), by the Poincaré inequality in Theorem 4.24
we have

(6.12) 7{9 " |h— f]? < C(n)s][ IVh — V2.
4./5\%

B4\/§(x)

(6.10)

(6.11)

IN

5To be precise, here we might have to change the domain by an arbitrarily small amount
such that the boundary is smooth and, in particular, satisfies an exterior sphere condition.
This does not affect the argument which follows.
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By combining (6.12) with (6.11), we get

(6.13)
sf  WVR-ViRef e fPcmsf 9l
B4\/§($) B4\/§(1) B4\/§(1)

Choose a cutoff function ¢ as in (4.13) with support in B, ;(z) and ¢ =1 in
Bs /5(x) such that s|A¢| + s|V¢|? < C(n). Then we have

f G|V — Y fP?
B4\/§ x

AG|Vh — V F|?
Z]i; 6|Vh — V|

4\/§($)

(6.14) 2][ SA[Vh — V f2
B4\/§(1)

2][ 2¢(|v2h—v2f|2+Ric(V(h—f),V(h—f))
B4\/E($)

+(V(AR = Af),V(h = f))).

Therefore we have

(6.15)
F o(Vh= VR 4 Rie(V(h - V(- )
34\/5(90)

1 ][
<
2 B4\/§(33)

< C(n) (][ |A|-[Vh—Vf|? +][ $|Af —2n|”
B4\/§(x) B4\/§(9C)

+7[ AF— 20| - |Vh -V \v¢|)
B4\/§(90)

AG||VH— VP - ][ SV (AR — Af), V(b )

B4\/§(37)

<C(n) (]i ( (1A¢] + Vo) - [Vh =V fI?
4,/5\%

+][ (<Z>+1)|Af—2n\2>
B4\/§(x)

< cwé V2 F 2P,

4\/§(5’3)
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where we have used (6.13) in the last inequality and |Af —2n|2 < n|V2f—2g|2.
By using (6.13) and s < 102, we have

(6.16)
][ " (IV2h = V2> + Ric(V(h — ), V(h = f)) +26%(n — 1)|Vh = V f]?)
B3\/§ x
<f o9 VP + Rie(Vh - 1),V - )
B4ﬁ($)
+282(n —1)|Vh — vf|2)

< c<n>f V2F — 242,
B4\/§($)

By the Schwarz inequality and (6.8) we get

(6.17)
][ |V2h — 2g|? + Ric(Vh, Vh) + 26%(n — 1)|Vh|?
By s(x)

< 2][ (IV2h = V2f 2+ Ric(V(h— f), V(h— ) +26%(n — 1)|Vh - V /)
Bs\/g(x)

+2][ (IV2f = 29 + Ric(V £, V) + 26%(n — 1)V f]?)
By s(a)
< C(n,v)n.

This gives (2).

To see (4), note that 2t > s >t = r? and

(6.18) ]é

From this, the gradient estimate on h in (4) follows by a standard Moser
iteration argument.

VR[> <2 sup |Vf*+ 2][ IVh — V2 < C(n,v)s.
1v5(@) By /s(x) By (@)

To prove (3), since 2t > s > t = r2, we can use estimates for f in (6.8) and
the gradient estimates |Vh| + [V f| < C(n,v)\/s in By ;(z). By the Cauchy-
Schwarz inequality, we have
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2
][ V]2 — 4h|
Byys(@)
219 ~12
sC(n)-(][ IV f2 - 4]
B3\/§(I)

AN Y h—fF)
(6.19) By 5 () Bj 5 (@)

< C(n,v)n$2+][ IVh =V f]2-|Vh+ VfJ?
B3\/§($)

SC(R,V)T}S2—|—C(TZ,V)S][ |Vh — Vf?
By /s(2)

35T

< C(n,v)ns>.

This gives (3).

To complete the proof, we need to show (5). First, by the gradient esti-
mates of h, f,d2 and (6.13), if 6 < &(n,v,€), then we get SUpp, (z) If —h| <
er?/4. To get (5) it suffices to prove supp, () |f — d2| < er?/4. For this, we
will use the heat kernel convergence and the W12-convergence of functions as
in Proposition 4.15 and argue by contradiction.

By scaling, we can assume 7 = 1 and Ric > —(n — 1)§2. Therefore
assume there exist ¢g > 0, 6; — 0 and a sequences of (M;,g;, ;) such that
Vol(B(Si-l(:Bi)) > v6; ", Ric > —(n — 1)62 — 0 and the ball B5i_1($i) is (0, 6%)-

symmetric. However the function f; defined as above satisfies

(6.20) sup |fi —d2 | > eo/4
Bio(zi)

Now let i — co. By Gromov’s compactness theorem, there exists a met-
ric cone, (C(Y),d, ), which is the Gromov-Hausdorff-limit of (M;, g;, ;).
By the heat kernel convergence in Proposition 4.15 and Remark 4.17, the
heat kernel p;(z;,-) = (47)~™/2e~fi converges to the heat kernel p;(zo,-) =
(4m)—"/ 2p—di o /4+Ax uniformly on any compact subset, where

Vol(s™1)

Ax =los 0155

From the heat kernel Laplacian estimate and the W'2-convergence in
Proposition 4.29, it follows that the sequence f; converges to foo, = d%oo /A—Ax
uniformly and in the local W?-sense. Thus, fz converges uniformly to a limit
function

foo ::4foo+4]{8 ( )(’vfm’2_f00):dim'
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Since d%i converges to dfcoo uniformly in any compact set, while supp, ) | fi—
d31| > €p/4 for any i, this gives a contradiction. This completes the proof of
Theorem 6.3. g

6.2. The k-splitting associated to k independent points. In this subsection,
we construct a k-splitting map from k-independent points which satisfy the es-
timates of the splitting Theorem 6.1. By rescaling and taking the infimum over
all (k,«a)-independent sets of points we will see that the proof of Theorem 6.1
is a direct consequence of the following main result, Proposition 6.4. The proof
of this proposition will occupy the remainder of this section.

PROPOSITION 6.4. Let (M™, g,p) satisfy Ricpym > —(n — 1)62 with
Vol(Bs-1(p)) > vé~ " > 0.

For e,a > 0 and § < §(n,v,a,¢€), let {xo,x1,...,2} C By(x) C Bio(p) be
(k, a)-independent points with

k

e ({xi}) = Y [Wha o (i) = Wi,a ()| < 6.
=0

Then there exist C(n,v,a) > 0 and a (k, €)-splitting map u=(u', ..., u") :
Bg,(x) — R* such that

(D) 7 fo ) (\v%\? + Ric(Vu, Vu) + 2(n — 1)62 \vu|2) < C-eF({z:});

2
(2) foy () |(Vui, Vug) =835 < C - EF({ai});
(3) [Vl <1+

Remark 6.5. For the estimate (3), we will only prove |Vu| < C(n). Once
we get |Vu| < C(n), the argument in [CN15] will imply (3).

Before giving the proof of Proposition 6.4, let us look at the following
example to see how to build a splitting function from squared distance functions
to distinct vertices of a cone.

Example 6.6 (Cone-splitting; the case R? = C(S')). Cone-splitting, and
more specifically the relation between squared distance functions h+ from dis-
tinct cone points and a splitting function wu, is perhaps most easily illustrated
by the case of R2. Denote the square of the distance functions from the points
(£1,0) by ha(z,y) = (x+1)?+y>. Then the linear function (splitting function)
u = x satisfies

(6.21) w==>(hy —h_).

FSQ
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The expression in (6.21), which builds a linear splitting function from
squared distance functions, will reappear in the general quantitative context
in (6.22) in the proof of Proposition 6.4.

Proof of Proposition 6.4 . 1t follows from Theorem 6.3 that for any € > 0,
there exists dop(n, v, €) such that for 6 < §y and each point x;, there is a map
h; : Bogr(z;) — R such that

(1) Ahz = 271;
(2) fBQOr(m) <|V2hz N 29‘2 t RiC(Vhi’ Vhl) + 2(n B 1)62 |Vhl’2)
< O, )Wy (@) = Woal (@)

2
) Frp (o j|vm|2 - 4hi‘ < O(n, V)P W, (1) — W3 o (a)];
(4) |[Vhi| < C(n,v)r on Bag,(z;);
(5) SupBQOT(x—;) |h'L - dil‘ S 6T2‘
Note that Byo,(z) C Baor(x;). We define the k-splitting functions as in
Example 6.6:

i hi —ho—d(zg,3;)?
.22 b=
(6 ) v Qd(ﬂji,l‘o)

Note that by (1), we have A@’ = 0 in Big,(z). By the Cauchy-Schwartz
inequality we also have:
(a) r? meT(x) (|V2ﬂi\2+Ric(VfLi, Vi) +2(n—1) \Vﬁi|2) <C(n,v,a)-EF({x;});
(b) SupBlgr(m) |val’ < C(?’L,V, Oé);

dii —dio —d(z0,;)2
2d(z;,x0)

ut —

(¢) supg,,, (a)

' < C(a,n) - er.

LEMMA 6.7. There ezists a k X k lower triangle matriz A with |A| <
C(n,v,a) such that v = (u', ... u¥) := A(a',... @) satisfies

][ (Vu', Vul) = 6.
Bgr(x)

Assume provisionally that the lemma holds. Then since |A| < C(n,v,a),
by using estimates (a) and (b) and the Poincaré inequality, it follows easily
that u satisfies (1) and (2) of the proposition. Estimate (3) follows exactly as
in [CN15]. Therefore, to complete the proof of Theorem 6.1 it suffices to prove
Lemma 6.7.

Proof of Lemma 6.7. We will argue by contradiction. By rescaling B, ()
to Bi(z) we can take r = 1. Then we can assume there exist (Mg, gs, 7p)
and (k,a)-independent points {x30,281,...,28k} C Bi(xg) with 63 — 0 as
B — oo. Also, for each 3, we can construct regularized maps hg; and harmonic
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functions g, on Big(xg) as in (6.22), satisfying (a), (b) and (c), with eg — 0
in (c).

Now, assume that either there exists no k£ x k lower triangle matrix Ag
such that

ug = A@(&é, ey )
satisfies

(Vuly, Vul) = 69
][Bg(zﬁ) d g

or, if there exist such matrices Ag, then |Ag| — oco.

By the definition of independent points and the Cone-Splitting Theorem
4.6, there is a Gromov-Hausdorff limit space of the sequence Mg which is a
metric cone R¥ x C(X). Moreover, the set {z5,;} converges to a set of (k, )
independent points {2} C R¥ x {v} where v is the vertex of C(X).

By (c) above, the ﬂfg converge to the linear functions

,ai _ dﬁ%oo,z B d52coo,o - d(xoo,(): xoo,i)2
2d<xoo,ia xoo,())

o0

Recall that {2} C R*¥ x {v} is a collection of (k,)-independent points.
Thus, the linear functions {@’_,i = 1,...,k} form a basis of linear space of R,
and there exists a lower triangular matrix, As with |As| < C(n,v, @), such
that

Uso i= (uly, ... ul ) = A (al,, ... a%)

o0

satisfies
][ (Vaul,, Vul ) = 6.
BS($0<>)

For /3 large enough, the W2-convergence of harmonic functions stated in
Proposition 4.29 implies for some Ag with [Ag — A| — 0, the set of functions

Qg = (ip, ..., 05) = Ag(a, ..., a})

is orthogonal in the integral sense over Bg(xg), as in Lemma 6.7. This leads
to a contradiction. This completes the proof of Lemma 6.7. ([

As we have seen, this also completes the proof of Proposition 6.4 and
hence, of Theorem 6.1. O

7. The Geometric Transformation Theorem

We begin with some motivation. The results of the last section specify how
good the best splitting will be on a sufficiently entropy pinched ball. However,
in the eventual application to the Neck Structure Theorem 2.9, the proof will
depend on fizing a single splitting map on the original ball B2(p) and showing
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that it behaves sufficiently well on most smaller balls. Recall from Section 5.3
the following motivating example:

Ezample 7.1. If u : Bo(0") — R* is a k-splitting map in R, then as with
any solution of an elliptic PDE, u has pointwise bounds on the Hessian. Among
other things, this implies that if we restrict to some sub-ball B,(xz) C Bi(p),
then u : B,(z) — R is still a splitting map. In fact, if 77! := (Vu!, Vi),
then T ou|p, () becomes an increasingly good splitting map, since u converges
to a linear map at a polynomial rate.

As discussed in Section 5.3 we wish to generalize, to the extent possible,
the above example to spaces with lower Ricci curvature bounds. In this case
we cannot hope that u| B, () Témains a splitting map, but we will see that we
can choose a matrix 7" = T'(x,r) such that T o u|p, () is comparable to the
best splitting map on B, (x), in the sense of the last section.

7.1. Statement of the Geometric Transformation Theorem. The result re-
ferred to in [CN15] as the Transformation Theorem is a key component of the
proof of the Codimension 4 Conjecture in that paper. For given ¢ > 0, the
statement of the Transformation Theorem 7.2 concerns an (n—2, §(¢))-splitting
function u : By (z) — R"~2. Namely, although the restriction of u to a smaller
ball B,(x) might not be an (n — 2,¢)-splitting function, the Transformation
Theorem 7.2 gives conditions guaranteeing the existence of a suitable upper
triangular (n — 2) X (n — 2) matrix 7', with positive diagonal entries, such that
Tu : Br(x) — R" % is an (n—2, €)-splitting function. The conditions of [CN15]
are special to the codimension two stratum.

In the present long and somewhat technical section, we show that with a
different hypothesis, the conclusion of the Transformation Theorem of [CN15]
can be sharpened. In particular, our conditions and criteria will hold for any
stratum. Given a (k, €)-splitting function u, we will see that so long as B, (x)
remains k-symmetric, there is a transformed function Tu satisfying the Hessian
estimates given by Theorem 6.1. More precisely, the main result of this section
is the following.”

THEOREM 7.2 (Geometric Transformation). Given a,n,€,6 > 0, there
exists C' = C(n,v,n,«a) and v = y(n,v,n) > 0,0(n,v,n) > 0, such that if § <
§(n,v,n), then the following holds: Let (M™, g,p) satisfy Ricysn > —(n —1)52,
Vol(Bi(p)) > v > 0, and assume

(i) w: Ba(p) — RF is a (k,6)-splitting function;
(i) for allr < s <4671, the ball By(p) is (k,0%)-symmetric but not (k+1,7)-
symmetric.

" As usual, &¥(p) = £5%9(p) denotes the k-pinching; see Definition 4.23.
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Then for all s € [r,1], there exists a k x k-matriz T =T, ; such that
(1) T : Bs(p) — R* is a (k, €)-splitting map;
(2) formrj =277,

s ][ (IV?Tul® + Ric(VTu, VTu) 4 26*(n — 1)|VTul?)
B (p)
(7.1) 8

S

<C- > ()vé’fj(p) +C2

r
s<r;<1 J

7.2. Outline of the proof. Essentially, the kxk matrix T}, s is obtained from
gradients on the given scale. The point is to show that this procedure produces
an e-splitting as in (1) and, what is more challenging, that this splitting satisfies
the sharp estimate in (2).

The statements (1) and (2) are both proved by contradiction arguments, in
which the assumption that the conclusion fails is shown to lead to a statement
about metric cones which, by explicit computation, can be shown to be false.
Before giving a brief description of the arguments, we mention that there
are three technical points which will have to be taken into account when the
arguments are carried out.

The first technical point concerns our being able to pass the assumption
that the conclusion of the theorem fails to a statement about limit cones. For
this, we use W12 convergence result in Proposition 4.29.

The second technical point pertains to checking that the resulting state-
ment which concerns limit cones is actually false. At the formal level, one
can do explicit calculations which employ separation of variables. If we could
assume that the cross section Y"~1 of the limit cone C(Y™!) were smooth,
then the relevant computations would be straightforward exercises, using that
Y™~ is a space with Ricy»—1 > (n — 2). In our context, making this rigorous
will take a fair amount of technical work.

The third technical point concerns the fact that the Hessian of the norm
squared of a harmonic function need not be well defined on a limit cone. How-
ever, the Laplacian is well defined, and it will suffice to state all of our esti-
mates on limit cones which correspond to Hessian estimates on manifolds in
weak form using Bochner’s formula (4.18).

The proof of conclusion (1) of Theorem 7.2 is similar to the proof of the
Transformation Theorem of [CN15]. It is a quantitative implementation of the
following fact. On a metric cone R¥ x C(Z), which is a definite amount away
from splitting off R¥*! a harmonic function which is assumed to grow only
slightly more than linearly must in fact, be linear and have linear growth. The
reason is the following.

Consider a metric cone C(Y') which is a Gromov-Hausdorff limit with the
lower bound on Ricci going to zero. The Laplacian Ay on the cross-section
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has a discrete spectrum and an orthonormal basis of eigenfunctions, ¢;, with
corresponding eigenvalues —Ay¢; = \;¢;, satisfying A\g = 0, \; > n — 1, for
i > 1. It follows from (i) of Theorem 7.2 that in our case, n—1 =X \; = --- = X\
and from (ii) that there exists 7(n, v,n) > 0 such that \gy1 > (n—1)+7(n,v,n);
i.e., there is a definite gap in the spectrum.

Let u(r,z) denote a harmonic function on C(Y) = R¥ x C(Z) which is
normalized to satisfy «(0,2) = 0. Then there is an expansion in terms of
homogeneous harmonic functions (see Proposition 7.4)

(7.2) u(ryx) =Y cir - ¢ily),

(2
where ag=0, a;=---=ay = 1 and a1 >1+60(n,v,n) for some 6(n,v,n) > 0.
From this, it follows that in our case, a harmonic function on R* x C'(Z) which
grows only a bit more than linearly is actually linear. This is the fact about
cones which enables us to prove (1) via a contradiction argument.

Although the idea behind the proof of (2) is equally simple, finding the
right sharp quantitative estimate on cones is more subtle. Intuitively, in this
case we consider the behavior of an arbitrary harmonic function, u(r, z) as in
(7.2). Note that as » — 0, the nonlinear terms in the expansion decay faster
than the linear terms. Thus u(r, z) becomes increasingly linear as » — 0. The
technically precise version of this decay estimate on limit cones is given in
(7.39) of Proposition 7.12. The corresponding decay estimate for manifolds is
given in (7.50) of Proposition 7.15. The latter contains a pinching term on the
right-hand side which compensates for the fact that we are not dealing with
an actual metric cone. In particular, the best we can hope for in general is
that u|p, () looks increasingly like the “best” linear function on B,.(x), in the
sense of Theorem 6.1.

The remainder of this section can be viewed as consisting of five parts.

In Section 7.3, we derive the results on cones needed to prove (1) of The-
orem 7.2. The section is essentially technical and routine.

In Section 7.4 we give the proof of (1).

In Section 7.5, which is brief, we digress to prove a Reifenberg theorem for
which the map is canonical. The proof is an easy consequence of the arguments
in Sections 7.3 and 7.4. While this result is not used elsewhere in the paper,
it is of some interest in and of itself. Moreover, it provides motivation for the
arguments which are used in Section 10 to prove rectifiability of the strata S*
for all k.

In Section 7.6 we state and prove the key decay estimate for cones, (7.39)
of Proposition 7.12.

In Section 7.7 we prove the corresponding decay estimate (7.50) of Propo-
sition 7.15.

In Sections 7.7.3 and 7.8, we complete the proof of (2) of Theorem 7.2.
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7.3. Harmonic functions and eigenvalue estimates on limit cones. Let
(MF, i, 2:) “5% (O(Y), d,700) = R % O(2)

with Ricpr > —d; — 0 and Vol(Bi(z;)) > v > 0. As in Section 4.10 there
exist Laplacians Ag(yy, Ay on the cone and its cross-section.

The cross-section Y is an RCD space with positive Ricci curvature Ricyn—1
> n — 2; see [Ketl5], [BS14]. Spectral results which hold for smooth spaces
with this lower Ricci bound are known to hold for Y?~!. In particular, the
spectrum of Ay is discrete; see Section 4.10 and Theorem 4.32. Denote the
spectrum of Ay by 0 = Ag < A1 < Ay < --- with an associated orthonormal
basis of eigenfunctions ¢y = ———, é1, P2, ... .

\/Vol(Y)’

The main results of this subsection are Propositions 7.3 and 7.4.%

ProprosITION 7.3 (Eigenvalue estimates on limit cone). Let
(M, g, ;) dor (X,d,200) = (C(Y),d,250) = (R¥ x C(Z),d, 200)

satisfy Ricyr > —0; — 0 and Vol(Bi(z;)) > v > 0. If Bi(x;) is not (k+1,n)-
symmetric, then

(73) 0:)\0<n—1:)\1::)\k<)\k+1§)\k+2§
Moreover, there exists T(n,n,v) > 0 such that
)‘k+1 > M+ 7.

PROPOSITION 7.4. Let (M}, gi, x;) doy (C(Y),d,r) satisfy Ricyr >
—0; — 0 and Vol(By(x;)) > v > 0. Then r%¢; is harmonic where \; =
ai(n — 2 + «;) with oy > 0 and —Ay¢; = Nip;. Moreover, any harmonic
function u(r,Y) : Bi(zs) — R satisfies’

oo
U = E birai ¢Z )
1=0

where the convergence is in the W12-sense on By ().

Proof of Proposition 7.4. By Theorem 4.31 and Remark 4.33 the function
r%gp; is harmonic. So let us begin the proof of the second part of the proposi-
tion. Since u is bounded, in particular u € L?(0B1(7s)). Then we have the

8In the case in which the cross-section is smooth, the second of these results is derived
from the first; see [Che79]. Under our assumptions, it will be convenient to derive the first
from the second.

9We mention that on any RCD space, which includes this context, a harmonic function is
automatically Lipschitz; see, for instance ,[AGS14a], [AGS14b]
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expansion in L?(Y),
(7.4) u(l,y) = big,
=0

where b; = [, ¢i(y)u(1,y). On Bi(2s), define the function

K
vi(ry) = Y bir®gi(y).
=0

Denote the limit in L?(B1 (7)) as k — oo of v by v. Since the operator A is
closed, it follows that v is also harmonic. We have

(7.5) o= biri(y) € LX(By).
=0

To finish the whole proof, we need to show the above convergence (7.5) is
in the Wh2-sense and v = u. Denote the annulus 4, 1(z) by

Ar1(20) = B1(20) \ Br(®oo)-

The following Lemma 7.5 will suffice to complete the proof of Proposition 7.4.
The argument will be given after the proof of Lemma 7.5 is completed.

LEMMA 7.5. With the notation above, we have v, — v in W12(B (7))
and

1
7.6 lim/ v—u(l,y)>=0.
(7.6) lim G2 AT’I(%O)! (1L, y)]

Proof. To begin with, we will show that v, converges to v in W2(Bj(zs)).
From the fact that w is Lipschitz it follows that Y, b?\; < co. Namely,

/Y Vu(Ly) — Vor(L,y)?
- /Y Vu(L ) + /Y Vun(Ly)? — 2 /Y (Va(L,y), Vor(1y))
- /Y Vu(L ) + /Y Vun(Ly) +2 /Y u(l, ) Av(1,y)

k
:/ IVu(Ly)* = > A
Y i=0

(7.7)

This implies

St < [ vatf
i=0 Y
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Since a? < \;, we have
(7.8)

Ai +
/Bl|Vvkry ZbZ/ (r* Z n+2aza—2_ Z)\bz.

By applying the same computation to vg — vy we get

k
(7.9) 19 =) < ) 3o A,
1 i=L

Therefore, {v;} is a Cauchy sequence in W12(Bj(r)). Since the space
Wh2(By(xs) is complete, it follows that vy, — v € WH2(Bi(2)). This
concludes the proof of the first part of Lemma 7.5.

To complete the proof of Lemma 7.5, we need to prove (7.6). We will begin
by showing that v = 322 bir®¢;(y) is also in L?(0B, (7)) for 0 <r < 1.

Since Y, b? < oo, it follows that {vj(r,y)} is a Cauchy sequence in
L?*(0B,(2s)). Denote the limit of vi(r,y) in L*(0B,(z)) by o(r,y). By
Fubini’s theorem we have that

(7.10)
1
/B ) oy P / / () — i(r,y)2AY dr

/ lim / (7, y) — v;(r,y) 2dY dr
0 j‘)OO

/Zb@«ZbZ

0

=k

Letting k — oo we get
[l = sp)Pase =0
Bi(zso)

In particular, this implies that v(r,y) = > 2 bir®¢i(y) is in L?(0B,). By
Fubini’s theorem we can compute

1 S s fy (s, y) — (L, y)
(7.11) m ~/AT,I(IOO) ’”(373/) - U(Ly)‘Q N Y(l - 7,)2 .
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Since v(r, y) is the L? limit of vy (r,y) on dB,, we have

1 1N"00 121 2

n- b7 |s% — 114d
oy / o) — (1 |2 = = oW~ 1
(1 =7)%J 4, (o) (1—r)?

(1 —r2) 2
< 62 _
(7.12) Z 1—r

o
Z o +1)? —r),
i=1

where we have used «; > 0 to deduce (1 —r®*) < (a; +1)(1 —r). Since
Y2 bia? < oo, this implies lim, ﬁ fA'r,l(xoo) lv — u(1,y)|> = 0. This
completes the proof of Lemma 7.5. ([l

Now, we can complete the proof of Proposition 7.4. For u, v, as in (7.4),
(7.5), it suffices to prove that u = v. Since u is Lipschitz, Lemma 7.5 implies

1
lim — / v—ul?> = 0.
r—0 (1 — T‘)2 Ar,l(roo) | |

Choose a cutoff function ¢, with support in Bj(zs) and ¢, := 1 in B, (7o)
such that |Vy,| < C(n)/(1 —r). Then

(7.13)
[ a-oPd =2 [ w0V ). ve)
Bi(z0) B1

1
<5 [ N—oPe+cm [ ju-oPIVel,
Bl Ar,l

By letting » — 1 we have that fB1 |V (u —v)[? = 0, which implies u — v is a
constant. Moreover, since ﬁ fAM(%O) |v —ul?> = 0 as r — 1, we have that
u = v. This completes the proof of Proposition 7.4. O

Next we will prove Proposition 7.3. As explained at the beginning of this
section, the idea is the following:

By Theorem 4.32, we know that A\g = 0 and A\; > n — 1. Consider
a harmonic function u = r%¢; on X = C(Y) = R¥ x C(Z), where ¢; is an
eigenfunction of Y with eigenvalue \; and a; > 0 satisfies \; = a;(n—24q;). If
w is a linear function on the R¥ component, then we have o; = 1, or equivalently
A; = n— 1. Therefore, we have \g =0 and A\ = Ao = --- A = n— 1. To finish
the proof, we will need to show that

Mer1 >n—1+7(n,v,n) >n—1.

Consider the harmonic function u=r*+1¢,1 where —A¢g11=N110k+1-
We will use a contradiction argument to show that a1 > 14+ a(n,v,n) > 1,
which implies Ag11 > A\ + 7(n,v,n). The moral is simple. We will show that
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if agyq is close to 1, then u = r*+1¢;, ;1 is close to a new linear splitting
function. Then if ayy is too close to 1, this contradicts the assumption that
Bi(z;) is not (k + 1,n)-symmetric.

Proof of Proposition 7.3. Let u = r®"¢,, denote a harmonic function
in X. By scaling invariance, we have

(7.14) tl_o‘m/|Vu\2pt(xoo,d:U) :sl_o‘m/\Vu]2ps(xoo,dx).

LEMMA 7.6. For any e > 0, we will show that if |a,—1| < § < §(n,v,n,¢€),
then there exist harmonic functions w; : Bi(z;) C M; — R converging in the
Wh2_sense (see Definition 4.27) to u with

(7.15) ][ |V2u;|® <€ fori>i(n,v,emn).
Bi (z;)

Let us assume Lemma 7.6 and finish the proof of Proposition 7.3.
Note that a1 = g = -+ = ap = 1 < ag4q for any € > 0, if |og4 — 1]
< § < d(n,v,m,€). Then by Lemma 7.6, we have k + 1 harmonic func-

tions u%,u?,...,uf“ : Bi(z;) — R which converge in the W!2-sense to
u' =zt u? = 22, 0k = 2k Wkt = g Here 2!, ... 2% are the
coordinate functions of R¥ ¢ R* x C(Z), and u',u?,...,u ™! are mutually
perpendicular with respect to the inner product

(7.16) (u,v) :== ][ (Vu, Vo) for all u,v € WhH2(By).

Bl(fﬂoo)

Moreover, since (uf,u’) =1 for £ = 1,...,k and |(u**1 u**1) — 1] < C(n)s,
and uf — u’ in the Wh2-sense, we have for i > i(n,v,¢,n) that

(7.17) <e foralla,b=1,...,k+ 1.

][ (Vug, Vul) — 52
Bi(xs)

On the other hand, by Lemma 7.6 we have the Hessian estimate

(7.18) ][ IV2ul? <.
By (z;)

It follows that the map
(7.19) w:=(ul, ..., uf*) : By(z;) — RF

is a (k + 1,C(n)e)-splitting map. If ¢ < €(n,v,n), this contradicts the as-
sumption that B (z;) is not (k + 1,7n)-symmetric. This concludes the proof of
Proposition 7.3 under the assumption that Lemma 7.6 holds.
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Proof of Lemma 7.6. This proof requires the result on the heat kernel
convergence of Proposition 4.15 and the harmonic function convergence in
Lemma 4.30.

By (7.14), we have for |, — 1| < J that

| [ 1VuP @ pr(o)ds — [ [Vul?(a) paie, )
(7.20)
< 25/]Vu|2($)p2(azoo,x)d$.

Since u has polynomial growth and the heat kernel p; is exponentially
decaying as in Theorem 4.14, we can choose a big R > R(n,v,J) and a cutoff
function ¢ = v (r?), with support in B and ¢ = 1 in Bp/, such that [Ve|* +
|Agp| < C(n)R™2 and

[ SV @naade— [ Vi@ a)ds
(7.21) Br(ze) BR(zoo)
<46 ©*|Vul*(2) p2 (oo, 2)d.
Br(zc)

By using Lemma 4.30 and Proposition 4.29, we can now construct a se-
quence of harmonic functions, u; : Br(z;) — R, which converge in the W12-
sense to u : Br(zs) — R.

Let ¢ = (h;) with Ah; = 2n, where h; approximates d? pointwise
(see [Che01]).' By the heat kernel convergence in Proposition 4.15, for i >
i(n,v,d), we have

R e I A T e
(7.22) Br(=:) Br(@)

< 85/ ©? |Vl () po (@i, ).
Br(w:)

Since p; is the heat kernel, this gives
2
(7.23) ‘/ /A((pQ\VuiIQ)pt(xi,dx)‘ < 80 O |V () pa (i, dz).
1 Br(z:)
From Bochner’s formula and the Schwartz inequality, we get

2
(7.24) / / P2V 22 a4, d)dt < C(6 + R™2) / Vusl2(2) po, d).
1 Br(wi)

ONote that we are not just applying Theorem 4.13 to produce a cutoff function but are
specifying its construction. This is to ensure ) (h;) converge to the cutoff function ¥ (r?) in
the limit space, which will be important.



474 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

By the mean value theorem and the heat kernel lower bound estimate
Theorem 4.14, we have

(7.25)
][ IV2u;? < C(n,v)(6 + R_2)/ |Vug|? po (s, dz) < C(6 + R72).
B () Br(zi)

By fixing R = R(e, n,v) we conclude that

][ IV2u]? < e.
B (i)

This completes the proof of Lemma 7.6. Hence, the proof of Proposition 7.3 is
complete as well. O

7.4. Part (1) of the Geometric Transformation Theorem. In this subsec-
tion, we will prove estimate (1) of Theorem 7.2. We will see in subsequent sub-
sections that the transformation T satisfies the vastly improved estimate (2).
As we explained, the proof of (1) is based on a contradiction argument:

ProposITION 7.7 (Transformation). Let (M™, g,x) satisfy Ricpym >
—(n —1)8? and Vol(By(x)) >v>0. Let e > 0 and § < &(n,v,n,€). Assume
that

(1) Bs(x) is (k,82)-symmetric but not (k+1,7n) symmetric for each scale ro <
s<1;

(2) w: Ba(x) — RF is a §-splitting map.

Then for each scale rg < s < 1, there exists a k X k lower triangle matriz T

such that

(1) Tou: Bs(x) — RF is a (k, €)-splitting map on Bs(x);
(2) £, () (V(Tsu)*, V(Tyu)b) = 59
(3) [T o T = 1| <.
The proof of Proposition 7.7 will rely on the eigenvalue estimate (7.3) of

Proposition 7.3. The key point is that almost linear growth harmonic function
on the limit cone must be linear. We begin with the following;:

LEMMA 7.8 (Harmonic function with almost linear growth). Let

(M, gi,z;) = (C(Y),d, 20) = (RF x C(Z),d, 25)

2

satisfy Ric > —§; — 0 and Vol(Bi(z;)) > v > 0. Assume Bjo(z;) is not
(k 4+ 1,n)-symmetric. Then there exists e(n,v,n) > 0 such that any harmonic
function u on C(Y) with almost linear growth |u|(y) < Cd(y, 2s0) ¢ + C is a
linear function induced from an R factor.
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Proof. To begin with, it follows from Proposition 7.4 that a harmonic
function on C(Y') has the form

(7.26) w="y bi-r%¢;,
=0

where the convergence is in W12 on compact subsets.
By using the eigenvalue estimate in Proposition 7.3 and noting that =0,
we have

l=ar =" =a, <1+8(n,nVol(Z)) < apy1.

If we put up = u— Zf:o bir®ig;, then we still have |ug|(y) < Cd(y, 700) T+ C.

To finish the proof, it suffices to show that ¢ < /2 implies ug = 0. For
this, we consider the L? integral of ug over Br(7w). Since r% ¢; are orthogonal
in L?(0B,(2)), for each r we have

n

7.27 b2Vol(Y) !
(7.27) Z 7 Vol(Y) 0T o0

RQOzi _][ ’UIO‘Z < C+CR2+2€.
i=k+1 Br(z)

Since R is arbitrary, it follows that b; = 0 for all ¢ > k 4+ 1 if € < 3/2. Indeed,

since aj > 14+ € fori > k+1 and b?Vol(Y)*1 n!;ai R2® < C + CR%**2%¢ for

any R, we have b; = 0 for ¢ > k 4+ 1. This implies ug = 0, which completes the

proof of Lemma, 7.8. O

Proof of Proposition 7.7. We will argue by contradiction. Make the fol-
lowing assumptions:

e There exists ¢g < 1 and (M;, g;, ;) such that Bg;lr(xi) is (k,0?) splitting
but B, (z;) is not (k+ 1,n)-splitting for all r; < r < 1. Let u; : By(x;) — RF
be a (k, §;)-splitting map with ¢; — 0.

e There exists s; > r; — 0 such that for all 1 > r > s;, there exists a lower
triangle matrix 77, , such that T, ,u; is a (k,e€p) splitting on B, (x;) with
fBT(xi)<v(Tx¢,ru)aa V(Txi,r“)b> = 7.

e No such mapping T; = Ty, ,, /10 exists on By, 19(;). (Note that since §; — 0,
we have trivially that s; — 0.)

We will contradict the assumption that s; > r;.

To complete the proof of Proposition 7.7, we will need the following lemma.

It states that as long as they exist, the transformation matrices, Ty, change

slowly.

Let | - | denote the L*°-norm on matrices.

LEMMA 7.9. There exists C(n) such that for all 1 > r > s,

| Tosr 0 Tp oy — 1| < Cv/e0.
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Proof. By volume doubling and noting that Ty, o,u : Bay(z;) — RF is
(k, €0)-splitting, we have

f o V) V(') - 5

(7.28) 7

<O} (VT V(T a)’) - 6] < Co)
B2r(xi)

Thus, there exists a lower triangular matrix As, with |As, — I| < C(n)/€o
such that Ty, o, := A2, T}, o, satisfies

][ (VT 20r1)%, V (T, 20u)?) = 6.
Br (i)

By the normalization, we have fBT(mi)<V(Twi,ru)“, V(Ty, »u)b) = 6.
Define a symmetric bilinear form B(f, h), on C*(Ba,(x;)) by

B(f.h) ::]{9( _)<Vf,wl>.

Denote the associated positive definite symmetric & X k& matrix by B :=
(Ba) := (B(u®,ub)). Thus, we have

T.',Eiﬂ"BT;iyr =1= TmiaQTBT;iQT.

In particular,
—1 -1 R
Txi,T(Txi,T)* =B= Tm,?r(T:Ei,Qr)*‘
Since Ty, » and T z;,2r are lower triangle matrices with positive diagonal entries,
the uniqueness of Cholesky decomposition (see [GVLI6]) implies that T, o ,12r =

T,. }T. Therefore, we have Ao, T}, o = Ty, . In particular,

T o5, — I = |Agp — I| < C(n)y/eo.

zi,2r
This completes the proof of Lemma 7.9. (]
Now we can complete the proof of Proposition 7.7. For k x k matrices

Ajq, Ay and the L°°-norm for matrices, we have by a simple triangle inequality
that

(729) |A1A2 —I‘ < ’Al —I| + |A2—I| —|—k‘|A1 —I| . |A2 —I|
By Lemma 7.9, (7.29) and an induction argument, we have
L
(7.30) Tk 0Ty, o — 1] < (1 +(k+ 1)0\@) _1
Therefore

4
(7.31) T8 0 Ty o] < (1 +(k+ 1)0@) .
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For simplicity we still denote (k + 1)C by C. Hence for all r > s;, we have

@32 mhem. i< (D) ()
o menas(2) ()

Si

S

Define v; = sz._lTx. s; (ui — ui(z;)) on the rescaled space (M; s 2g;, x;). Since

i 77
6 — 0 and Bs-1_ (z;) is (k, 02)-symmetric, we know that (M;, s; %g;, ;) con-
verges to a cone C(Y) = R¥ x C(Z). By the Hélder growth estimate on T,
as in (7.32) and noting that T, ,(u; — u;(z;)) is a (k, €9) splitting map at scale

r, for all x with s;l > d(x,2;) = R > 1, we have
[Vui(z)] < C- ROV = |Vu(a)| < C - d(x, 2;)°Vo + C.

Also, by Proposition 4.29, the sequence v; converges in the local W2-sense
to a harmonic function v in C(Y) with Holder growth on the gradient, i.e.,
|Vo|(z) < CREV< for |z| < R. Therefore, if the €y is small as in Lemma 7.8,
then we have that v : C(Y) — R¥ is actually linear. Moreover, by using the
W12 convergence in Proposition 4.29 and noting that the energy is quadratic,

we have
(7.33) ][ (Vo?, Vo) = 6%,
Bi(ze0)
Hence v = (v!,...,v") forms a basis of linear functions on R¥. Without loss
of generality we can assume v = (z!,...,z*) are the standard coordinates. By

the W2-convergence of v; as in Propositions 4.29 and 4.28, we have

lim 4][ Vo, Vab) — 69|
Bi(z;)

i—00

— lim ‘|vu;1+w§’|2— Vol — Vol |2 — 457
(734) =00 J By (x3)

— lim ‘|W + V2|2 - |V — Va2 — 459

1—00 B1 (moo)

=0.

Here we have used |Vz® + Va2 = |Lip(z® + 2%)|2 = 2 = |Lip(2® — 2%)|? =
|Va® — Vb|2. Hence, v; satisfies
(7.35) lim [(Vu, Val) — 6%°| = 0.
1—00 Bl(xi)
Thus, by Bochner’s formula (4.18), the function v; is a (k, ¢;)-splitting function

on Bj(z;) with ¢; — 0. Hence for each 1/10 < r < 1 and sufficiently large i we
have a rotation A,; such that |A,; — I| <¢; and

(7.36) ][ (V(Arivi) V(A 0:)0) = 590
B'r(xz)
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In particular, this implies for large ¢ that A, ;v; : By(x;) — R” is a (k, €9/100)-
splitting for 1/10 < r < 1 and satisfies the orthonormal condition (2), which
contradicts the existence of a minimal s; > 7;. This finishes the proof of the
existence of transformation matrices. By choosing § small, the matrix estimate
(3) comes from the transformation estimates in Lemma 7.9. This completes
the proof of Proposition 7.7. O

7.5. A canonical Reifenberg theorem. Prior to giving the proof of (2) of
Theorem 7.2, we will make a brief digression to give a non-metric proof of the
Reifenberg Theorem, which was first proved by Cheeger-Colding in [CC97].
Although this result is not used elsewhere in the paper, it seems to be of
independent interest. There is also second reason for including it. Namely,
it is a (much) easier instance of the sort of argument we will give when we
eventually study the singular strata S*: see Theorem 9.12.

THEOREM 7.10 (Canonical Reifenberg Theorem). Let (M™, g,p) satisfy
Ricpym > —(n—1)d and dgr(Ba(p), B4(0™)) < 6 with 0" € R™. For any € > 0,
if 6 < d(n,€), then there exists a harmonic map w : Bi(p) — R™ such that

(1) for any z,y € B1(p), we have
(1= e)d(z, )" < |u(z) — u(y)| < (1 + e)d(z,y);

(2) for any x € Bi(p), we have that du : T, M — R™ is nondegenerate.

In particular, u is a diffeomorphism which is uniformly bi-Hélder onto its image

u(B1(p))-

Remark 7.11. Consider (M, gi, p;) dox (X,d,p) with dgr (Ba(p), B4(0™))
< 0, and a converging sequence of harmonic maps w; : By(p;) — R™. Then by
Theorem 7.10, we get that Bi(p) is bi-Holder to R™.

Proof of Theorem 7.10. Let 6’ > 0. By Theorem 4.3, if § < §(n,d’), then
every sub-ball B,(z) C By5/4(p) is (n,d’)-symmetric. Moreover, there exists a
§’-splitting map wu : Bs(p) — R™.

By the Transformation Proposition 7.7, for any ¢ > 0, z € Bs(p) and
r < 1/2,if & < §'(¢,n), then there exists an n x n lower triangle matrix
Ty, such that Ty ,u : By(x) — R™ is an €-splitting map. Moreover, by the
transformation estimate (3), [T, < r~¢. We will see that these estimates
imply Theorem 7.10.

First, we will prove a Holder estimate on u. Let z,y € B3/, with d(z,y)=r.
Since Ty yu : By(z) — R™ is an ¢-splitting map and, in particular, T, ,u is an
er-GH map if € < €'(e,n), we have

(7.37) Ty ru(x) — Tpru(y)| > (1 —€)d(z,y).
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€

By the matrix growth estimate |Ty.| < 7€ we then have

(@) = uly)] = (1 = d(x,y)'* for d(a,y) = 7.

Since r is arbitrary, by using the gradient bound |Vu| < 14 ¢’ for splitting
maps u, we conclude for that any z,y € Bs/s(p),

(7.38) (1= e)d(z, )" < |u(z) —uy)| < (1 +e)d(z,y).

Therefore u is an injective map. In particular, this implies u is bi-Hélder to
its image.

Next we show that du : T, M — R"™ is nondegenerate, from which it follows
that u is a diffeomorphism. Essentially, this is because du(z) =T, é . In more
detail, let 2r = rp(z) be the harmonic radius at z; see Definition 4.34. Then by
smooth elliptic estimates the splitting map T, ,u satisfies the pointwise bound
(VT u®, VT, ul) — 6% < e. In particular, this gives that det(du)(z) # 0,
as claimed. O

7.6. Hessian decay estimates on limit cones. The main result of this sub-
section is Proposition 7.12; the key Hessian decay estimate for harmonic func-
tions on limit cones. In the next subsection, it will be promoted to the Hessian
decay estimate on manifolds, and after that, to statement (2) of Theorem 7.2.
Since a priori we cannot define the Hessian directly, we employ Bochner’s for-
mula (4.18). This will allow us to work with a weak version.

Notation. Let ¢ : R — R denote a smooth cutoff function such that ¢ =1
if r <1and ¢ =0if r > 2. In Proposition 7.12, we will consider a limit cone
(C(Y),d, 7). We put 7 = d(7, 7o) and ¥s(x) = @(r?/s?).

PROPOSITION 7.12 (Main decay estimate for cones). There ezists [ =
B(n,n,v) > 0 with the following property. Let (M, gi,z;) = (C(Y),d,zs0) =
(RF x C(Y),d, rs) satisfy Ricpyr > —0; — 0 and Vol(By(z;)) > v > 0. Let
u: Bip(re) C C(Y) = R be a harmonic function, and assume Big(xoo) is not

(k + 1,n)-symmetric. Then for all0 < s <t <2,

N
(7.39) 32—”/ |Vul? Ay < <7> t2_”/ |Vu|> Ay,
Rk xC(Y) s RExC(Y)

The proof of Proposition 7.12 is given at the end of this subsection. Ulti-
mately, it is a consequence of the eigenvalue estimates in Section 7.3. We will
begin with some preliminary computations.

According to Proposition 7.4, any harmonic function u can be written as
u =Y bir*¢;, where the convergence is in the W'2-sense. By Theorem 4.31,
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we have

(7.40)
Voil*(ry) = [Lipeil*(r,y) = r*|Lipgil*(y) = 7|V ily,
|Vu]2 = Z bibjaioijaiJrajiZ(;si(z)j + Z bz-bjrai+°‘j’2<v¢i, V¢j>y.
1,J 0,
Let ¢ : R — [0, 1] be a standard cutoff function such that the function 1 :

Bi1o(Zoo) — [0,1] defined by 1(z) = ¢(d?(z, 25,)) satisfies supp ¢ C Big(Tso).
Then

(7.41) Ay = @'(TQ)ATQ + cp"(r2)|Vr2|2 =2ny/(r ) + 4r? o (r 2).

In particular, |Ay| < C(n).

LEMMA 7.13. Let (MP,gi;,z;) — (C(Y),d,700) = (R¥ x C(2),d, 700)
satisfy Ricyn > —0; — 0 and Vol(Bi(z;)) > v > 0. Assume u = ) bir®ig;
is a harmonic function on Big(xs) C C(Y) where the convergence is in the

Wh2_sense. Then

Vul? Ay
)
(7.42) o
= Z <b2oz2 + b2\ )(204@ —2)(n+2a; — 4) / Q(r?)rn 25 gy,
a;>1 0

Proof. Consider uy := Zf:o bir®¢;. By Proposition 7.4, uy converges in
the Wh2-sense to u. Also, since |Ay| < C(n), we have

(7.43) /|Vu|2AdJ:Zlim /\vuﬂmz).
—00

It now suffices to compute [ |Vug|?Arp. We have

(7.44)

/]Vud Arp = / " 1/ | Vg2 Avpdpy-dr
:/ (2n<p( + 4r2o"(
0

[ee]
:/ r”_1(2ng0/( —1—47‘2 (
0

™)
)
= /OO <2n<Pl( )+ 4r2Q”( ) é <b2a2 + b2\ ) P23y
0

=0

/ |Vug|2dpy dr

(b%ﬂ 2N )2y
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Since ag = Ag = 0, we can integrate by parts to get
(7.45)

/\VUg\QAz/J / Z 1720424—1)2 )2n<p’(r2)r”+2°"'_3dr

+ / Z (b?a? + b?/\i>4g0”(r2)rn+2ai*1dr
0 =1
V4

/00 Z <62a2 + b2 )2ngp’(r2)r"+2ar3dr

0

V4
o0
/ Z <b2a2 + b2 > (n+ 20; — 2)@'(T2)r"+2ai_3dr
0

=1

'MN

@
Il
—

(b2a2 + b2\ )(2041 - 2)/ —2¢ (r?)rt2ei =3y
0

(202 +b20:) (201 - 2) / —2¢/(r?)r" 2 dr
1 0

Q

I
.MN

SV

3

o0
= 3 (BRa? +b20) (201 — 2)(n + 20 - 4)/ (r2)H20i5 gy
0

a;>1

In the last integration by parts, we have used the fact that ; > 1 and n > 2
to deduce that lim,_,qr"+2@i—4 = (. O

Now we can complete the proof of Proposition 7.12.

Proof of Proposition 7.12. Let ¢ : R — [0,1] be such that p =1 if r <1,
e =0if r > 2, and |¢| + |¢”| < 100. For any scale s < 1, define 15(z) :=
0s(r?) = o(r?/s?) with r = d(x,2s). Thus ¥, has support contained in
BQS(ZEOO).

By Proposition 7.4 we can write the harmonic function v = > bjr®i¢;,
where the convergence is W12, Applying Lemma 7.13 gives

/ Vg, = (b%ﬂ 02N )(2% —2)(n+ 2a; — 4)

)
[e%S)
. / S0(7,,2/82)Tn+20zi—5d,r
0

= Z (b?a? + 612)\1) (20@ — 2)(71 + 20 — 4)Sn+2aif4

a;>1

(7.46)

o
: / @(r?)r 25y,
0
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Therefore, for any 0 < s <t < 2, we have
(747) 047.'>C1>O
' / p(r?)r 2 ar,
0

$2-n / ’VUPAwt = Z (b?a? + b?)\i) (20; — 2)(n + 200 — 4)t2°"'_2
(748) ai>cl>o
' / p(r?)r" 20y,
0

By the eigenvalue estimates in Proposition 7.3 we have o; > 143(n, v,n) > 1 for
a; # 1. Hence, each of the terms in the sums (7.47) and (7.48) are nonnegative.
It follows that

(7.49)

(o]
§2i—2. (b?a? + b?)\l) (205 —2) - (n+2a; — 4) - / <p(r2)r"+2°‘i_5dr
0

t 2—2(11'
= () P2 (b?a? + b?)\,) (20 —2) - (n+ 20 — 4)

S
[ ettt
0
£\ "2
= <§> 22 (1202 412N - (205~ 2) - (n + 20; — 4)

[eS)
. / ()O(TQ)rnJrQai*Sdr'
0

This gives (7.39); i.e., the conclusion of Proposition 7.12:
t\ P
52—"/|vu12m/)s < <;) t2_"/\Vu|2Awt. O

7.7. The Hessian decay estimate on manifolds. In this subsection, we will
prove Proposition 7.15, which is a Hessian decay estimate for splitting maps.
As explained at the beginning of this section, the proof is obtained by showing
that if the conclusion were to fail, then Proposition 7.12 would be contradicted.
The proof of Proposition 7.15 will be given at the end of this subsection. It
depends on the decay estimates in Sections 7.7.1 and 7.7.2.

Remark 7.14. The constant « in Proposition 7.15 below appears in Defi-
nition 4.23 of &% (z) = X0 ().

PROPOSITION 7.15. Let (M™, g,z) satisfy Ricym > —(n—1)d2, Vol(Bi(z))
>v >0. Let n,a > 0. Let u: Ba(x) — R¥ be a (k,8) splitting map. Assume
(1) Bs-1,(z) is (k,0%)-symmetric for all rg <7 < 1;
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(2) By(z) is not (k+ 1,n)-symmetric for all ro < r < 1.

Then for all, € > 0, there exists §(n,v,e,n,a) > 0 such that the following holds.
If 6 < 6(n,v,e,n, ), then there exists 0 < c¢(n,v,n) < 1, C(n,v) > 0 and a
kx k lower triangular matriz Ty such that Tyu : By(z) — R¥ is a (k, €)-splitting
map. If ro <r <1 with cs/2 <r < cs, then

<

2-n / <|V2Tru\2 + Ric(VTpu, VTu) + 262(n — 1)|VTru|2>
By ()

(7.50) < —g2m / <|V2Tsu\2+Ric(VT5u,VTsu)
Bs(x)

1
2
+282(n — 1) |VTSu\2) + ok ().

7.7.1. The Hessian decay for general harmonic functions. In this subsub-
section, as an essential step in the proof of Proposition 7.15, we will prove a
decay estimate for general harmonic functions. It states that after subtracting
off the linear terms, the L? Hessian has Holder decay. Before giving the result,
we will need some terminology.

Notation. Let v = (v',...,v¥) : Big(z) — R¥ be a (k,d)-splitting map
which was constructed in Theorem 6.1. For harmonic function u : Big(z) — R,
we define

k
(7.51) U=u-— Z ag®
/=1

by stipulating that the coefficients are chosen to minimize

k
(7.52) ][ |Va|> = min ][ Vu - b, Vb2
B () (be)€R* J By () gz:;

After having subtracted off the “linear” term we can prove the following
decay estimate for the harmonic function .

LEMMA 7.16. There exists 0 < c¢(n,v,n) < 1 such that the following
holds. Let § < &(n,v,n), and let (M™, g,x) satisfy Ricpyn > —(n — 1)62 and
Vol(Bi(z)) > v > 0. Assume Bs-1 is (k,6%)-symmetric but that Bi(z) is not
(k+1,n)-symmetric. Then if u : Ba(x) — R denotes a harmonic function with
@ defined as in (7.51) and ¢/2 < r < ¢, the following holds:

7«2—71/ (|v2a|2 + Ric(Vi, Vi) + 20%(n — 1)|Vﬂ!2)
B, (x)

(7.53) )
< / (\vzayz + Ric(Vi, Vi) 4+ 26%(n — 1) yvaF).
4 /B, (@)
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Proof. The constant c¢(n,v,n) will be fixed at the end of the proof. The
existence of d(n,v,n) > 0 will be shown by arguing by contradiction. There-
fore, assume there exist §; — 0 and (M], g;, z;) with Ricyr > —(n — 1)6?
and Vol(Bi(z;)) > v > 0. Assume further that the ball Bs-1(z;) is (k,6?)-
symmetric, Bj(z;) is not (k + 1,7n)-symmetric, and u; : B;(xz) — Ris a
harmonic function with corresponding 4, defined in (7.51) such that for some
c/2<r<e,

r”/ (\vz‘aiﬁ + Ric(Viig, Vi) + 262(n — 1)\vai|2)
By (z;)

(7.54) X

> / (|v2ai|2 + Ric(Vi;, Vi) + 262(n — 1) |vai|2).
4 /By ()

Normalize @; such that fB1 () |Vi;|? = 1 and fBl (z) Ui = 0. Then by the

Poincaré inequality, we have
(7.55) ][ @2 < C(n).
Bi (i)

By the definition of @;, we have fBl(x,)<Vvi7a,Vﬂi> =0 forany a = 1,...,k
and that the v; o are the k splitting maps for Ba(x;). Since Bj(z;) is not
(k + 1,7n)-symmetric, we have

(7.56) f V20> > 0 (n,v,m).
Bi(z;)

Choose a cutoff function ¢; as in Theorem 4.13 with ¢; := 1 on By 4(7;)
and ¢; := 0 away from By 5(7;). By the Bochner formula we have

/ <|V2a,-]2 + Ric(Vii, Vi) + 262 (n — 1)|vai|2)
By ya(zs)

< / (IV2@f2 + Ric(Viis, Viig) + 203 (n — 1)| Vil )

1
(7.57) = 2/ <A|vai|2 + 467 (n — 1)|Vﬂi\2) @i
< 26%(n — 1)/ |V, |* +/ Vi |*| A
Bi(x;) 1(x;

< C(n) / Vil < C(n).
Bi(z;)
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Therefore, from (7.54), we get
(7.58) ][ IVa|? =1,
Bi(z;)
(7.59) ][ iy < C(n),
Bi(z;)
(7.60) / <|V2ﬂi|2 + Ric(Viiy, Vi) + 202 (n — 1)|va,-\2) < C(n),
By a(zs)

(7.61)

/
. vin) 7’2_"/ (\v2a1|2 + Ric(Vi;, Vi) + 202(n — 1) |val-y?)
4 Br(z:)
(for some r with ¢/2 < r < ¢).

To complete the contradiction argument, we will show that one can pass
to the limit and get a contradiction to the decay estimate Proposition 7.12 in
the limit cone.

Choose a cutoff function ¢ : R — [0,1] such that ¢ := 1if ¢t < 1 and
p:=0if t > 2, and |¢| + |¢”| < 100. For any scale ¢/2 < s < 1/8, define
Vsi(z) = p(h;/s?), where Ah; = 2n such that h approximates d(z;,r)? as in
Theorem 6.3 or from [CC96]. Thus 15 ;(z) has support contained in Bas(z;) C
By4(wi) and s ; = 1 on Byjs(wi). Moreover, by the gradient estimates for h;,
we have that s2|Avs ;| + 82| Vs i[> < C(n,v).

Consider the quantity

32_n/\Vﬂi!2A¢s,i = 82_"/A’Vﬁi‘2¢svi
(7.62)

For §; small enough, by using (7.58) we can conclude that
(7.63) C(n) 4 < 7“2_”/ Vi 2 A ; for some ¢/2 <r <e¢,
(7.64) §2n / |Vii;|*Avs,; < C(n) for all 1/16 < s < 1/8.

By letting i — 0o, we obtain a limit cone (C(Y),d, 25) = R¥ x C(Z) and
a harmonic function u in Bj(x). Moreover, by Proposition 4.29, 4; — u in
the W12-sense on Bg;10(70). By Proposition 4.29,

2n Vh;|?
Aws,i_‘:@/82+§01/’ 842‘ )

Also, both uniformly and in W2 we have

hi = d(z,100)% == d(x)?.
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On the limit cone, put ¥s(z) = (d(x)?/s?). Then by Proposition 4.29,
for any ¢/2 < s <1/8, we get

1— 00

lim s> / Vi |2 A ;

:'limsz_n/|Vuz’( (h/s) ¢"(hi/s )’ h!)

(7.65) \Vd( 2P )

s | |Vu\2(so’<d<x>2/52>;§ P (d(x)?/5?)
:32_”/|Vu2A¢S.

In particular, we have

(7.66)  C(n)"'n'(n,v,n) < 7”2"/ (V|2 A, for some ¢/2 <r <c¢,
(7.67) s / [Vu?Avps < C(n) for all 1/16 < s < 1/8.

Now we can fix the value of ¢ = ¢(n,v,n) by choosing ¢ = ¢(n,v,n) =
/ 1
%0 (#) /B, where 3 is the constant in Proposition 7.12 and 7/, C'(n) are in
(7.66). Then by the decay estimates in Proposition 7.12, we obtain a contra-
diction. In fact, applying Proposition 7.12 to s = r € [¢/2,c] and t = 1/8
gives

()~ (n,v,m) < 1277 / VuPAd,
(7.68)

< (8r)78"2 / VU2 Aty s < C(n)(8¢)%,
1

’ 1
which contradicts ¢ = 15 ( C("n)g) /B. This completes the proof of Lemma 7.16.
O

7.7.2. Hessian decay with k-Pinching. In this subsubsection, by combin-
ing the sharp cone-splitting estimates of Theorem 6.1 with the Hessian decay
estimate in Lemma 7.16, we will prove a decay estimate for harmonic functions
which does not require that we subtract off the k-splitting map. For this, we
need to include an error term which is measured by €¥(x). The main result is
the following proposition.

PROPOSITION 7.17. Let (M™, g, z) satisfy Ricym > —(n—1)d2, Vol(B1(z))
>v >0, and let a,n > 0. Assume Bs-1, is (k,0%)-symmetric but By(z) is not
(k 4+ 1,n)-symmetric for some fired s < 1. Let u : Bas(x) — R be a harmonic
function with st(x) |Vul? = 1, and let § < 6(n,v,n,a). Then there exist
constants 0 < ¢(n,v,n) < 1 and C(n,v) > 0 such that for any cs/2 <r < cs,
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(7.69)
7«2—"/ (1Y% + Ric(Vu, V) + 25%(n — 1)|Vu?)
By (x)

1
< 382_n/ (IV2uf? + Rie(Vu, Vu) +26%(n — 1)|Vuf?) + Ceb(a).
B (z)

Proof. By scaling, it suffices to prove the result for s = 1. Let a4 =
u— Y aw' = u—uy as in (7.51). By Lemma 7.16 for § < do(n,v,n) and
¢(n,v,n) small, we have that for any ¢/2 <r <,

r2—n/ (yv%j\? + Ric(Vii, Vi) + 262 (n — 1)\Vﬁ|2>
B, (z)

(7.70) )

< / (\vzaP + Ric(Va, Vi) 4 26%(n — 1)yva\2).
4 /B (x)

By using the Schwartz inequality on the nonnegative inner product Ric +
(n —1)6%g, we get

r2"/ (|V2u|2 + Ric(Vu, Vu) + 262(n — 1)\vu|2)
Br(x)

1001 2— / 2~12 . ~ ~ 2 ~12
< —— |V<u|* 4+ Ric(Va, Vi) + 26%(n — 1)|Va|
1000 Be(2) ( )
(7.71) + Cr“/ (\V%kﬁ + Ric(Vug, Vuy) 4 20%(n — 1)|Vuk|2>
By ()

1001 2—n 2~12 . ~ ~ 2 ~12
< _
< Tooc" /Br(m) (|v @)% + Ric(Va, Va) + 26%(n — 1)| Vil )
+ C’TQ_”/ (\V20|2 + Ric(Vu, Vv) 4 26%(n — 1)|Vuk|2>,
B, (z)

where we have used the fact that |a;| < C(n) from the definition of @ in (7.51).
Similarly, we have

/ (\vza\z + Ric(Vi, Vi) 4 26%(n — 1)yva\2)
Bi(z)

1001 Y o ) )
< 1000 . <\V u|® 4+ Ric(Vu, Vu) + 20%(n — 1)|Vul )
(7.72) wof (1202 + Ric(Vug, Vug) +20%(n — 1)V )
Bi(z
1001 212 | R 2 2
< — _
= 7000 /p, o) (\V ul® + Ric(Vu, Vu) + 26%(n — 1)|Vu| )

+C (]V2v\2+Ric(Vv,Vv) + 20%(n — 1)|Vv\2>.
Bi(z)
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By combining the above with (7.70) we get
7“2_"/ (1Y% + Ric(Vu, V) + 26%(n — 1)|Vul?)
B, ()

L[ (9l R+ 2570 D)

(7.73) Bl

+ Crzn/ (|V2v|2 + Ric(Vv, Vo) + 26°(n — 1)N”’2>
B (z)

+C (’V20’2+R1C(VU,V1}) + 26%(n — 1)\Vv\2).
Bi(x)

Since r > ¢(n,v,n) > 0, we have

7“2"/ (192 + Ric(Vu, V) + 26%(n — 1)|Vul?)
Br(x)

1
(7.74) < / (|v2u\2 + Ric(Vu, Vu) + 26%(n — 1)yvu\2)
3 JBi(x)
+C (yv%\2+Ric(vv,vu) +28%(n — 1)|vv\2).
Bi(x)

On the other hand, the Sharp Cone-splitting Theorem 6.1 gives

(7.75) / (\V2v\2 + Ric(Vu, Vv) + 252(71 — 1)|Vv\2) < C(n,v,a)é’]f(:c).
Bi(x)

Therefore,
7‘2_”/ <\V2u]2 + Ric(Vu, Vu) 4 26%(n — 1)\Vu]2)
By (x)
(7.76) 1
< / (192 + Ric(Vu, Vu) + 26°(n — 1)|Vul?) + el (a)
3 JBy)
This completes the proof of Proposition 7.17 O

7.7.3. The proof of Proposition 7.15. Let € > 0 small be fixed later. By
Proposition 7.7(1), which has been proven at this stage, if 6 < §(n,v,n,€),
then for each rg < r < 1, we have a k X k lower triangle matrix 7). such that
Tru is a (k,e€)-splitting map on B,.(z) with |1, 5 o ;7! — I| < e. Applying
Proposition 7.17 to Tsu, we get that for all ¢s/2 < r < ¢s,

<

2o / (IVZTsu\2 + Ric(VTyu, VTu) 4 26%(n — 1)]VTSu|2)
By (x)

3
+ CEXOk (),

(7.77) < 132”/ (]V2T8u|2 + Ric(VTyu, VTyu) + 26%(n — 1)|VTSu]2>
Bs(z)
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Fix € < €(n, v,n) such that |T, o T;! — I| < 10719, We have

<

2-n / (\VQTru\Q + Ric(VThu, VTu) + 262(n — 1)]VTTu]2>
B (x)

< 37'2_”/ <\V2T5u\2 + Ric(VTsu, VIu) + 26%(n — 1)]VTsu\2)
(7.78) 2 By (x)
1
< 32"/ (|V2Tsu\2 + Ric(VT,u, VTu) 4 26%(n — 1)]VTSu|2)
2 Bs(2)
+ C&k(a).
This completes the proof of Proposition 7.15. O

7.8. Proof of the Geometric Transformation Theorem. For any 0 < ¢’ < e,
if 6 <d(n,v,n,d), then by the Transformation Proposition 7.7 we have for each
scale r < s < 1 a lower triangular matrix Ts such that Tsu : Bs(x) — RF is
a (k,&')-splitting map. In particular, Tyu : Bs(xz) — RF is (k, €)-splitting.
Therefore, it suffices to estimate the Hessian of Tsu.

First we choose §' < ¢'(n,v,n,€) < € small such that Proposition 7.15
holds. Therefore, by (1) of Proposition 7.15, for any r < s < 1, we have

(7.79)
(cs)* ™™ / (|V2Tcsu\2 + Ric(VT.su, VTisu) + 26%(n — 1)|VTcsu|2>
Bes(z

1

< st / (|V2Tsu|2 + Ric(VTyu, V) + 282(n — 1)|VT8u|2> + e (x)
Bs(x)

< c752—“/ (|V2T5u|2 + Ric(VTyu, V) + 262(n — 1)|VT3u|2> + ek (a),
Bs(x)

where we can take ¢ = 27% for some integer ig(n,v,n) and v = ial. Thus, for

sy = ¢!, we have

(7.80)
sgn/ <|V2Tslu\2 + Ric(VTy,u, VT,,u) + 20%(n — 1)|VTseu|2>
BSZ (x)

-y
<(2) 8 [ (9Tl RV T, VL) 42520~ DIV T )
Bs (x)
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where in the last inequality we have used the fact that
sgn/ (|v2TsOu\2 + Ric(VTu, VTsgu) + 26%(n — 1)\VTSOu|2> <52,
Bsq ()

For general s > r with ¢/T1 < s < ¢f, we have
(7.81)

§2n / (|V2T5u\2 + Ric(VTsu, VTgu) + 26%(n — 1)]VTSU|2)
Bs(x)
< Cs* / (\VQTSW\? + Ric(VTy,u, VTs,u) + 26%(n — 1)]VTSeu\2)
Bs(z)

<spm / (!V2Tseu|2 + Ric(VTs,u, VTs,u) + 26%(n — 1)|VTS,£u\2)
sy (z)

ok
< C&,(2),

where we use the estimate |Ts o T, I — J| < € in the first inequality. This
completes the proof of Theorem 7.2, the Geometric Transformation Theorem.
O

8. Nondegeneration of k-Splittings

In this section we state and prove Theorem 8.1, which is our our main
result for k-splitting maps u : Ba(p) — R*. Theorem 8.1 is a crucial ingredient
in the proof of Theorem 2.9.

Essentially Theorem 8.1 is obtained by combining the Sharp Cone-Splitting
Theorem 6.1, the Transformation Theorem 7.2, Proposition 8.4, and a telescope
estimate for harmonic functions which is based on a monotonicity property.
This estimate is much sharper than the corresponding more general telescope
estimate for WP functions. In the proof of Theorem 8.1, this is essential. It
allows us to adequately control the sum over arbitrarily many scales of the
Hessian estimates in Theorem 6.1 and Theorem 7.2.

Recall that £5%9 is the entropy pinching defined in Definition 4.23.

THEOREM 8.1 (Nondegeneration of k-splittings). Given e,n,a > 0 and
§ < 6(n,v,n,a,€), we have the following. Let (M", g,p) satisfy Ricym >
—(n—1)62, Vol(Bi(p)) >v >0, and let u : Ba(p) — R¥ denote a (k,)-splitting
function. Assume
(1) Bs-14(p), is (k,62)-symmetric but Bs(p) is not (k+ 1,n)-symmetric for all
r<s<1;
(2) >,5r Eﬁgé’a(p) < 8, where r; =277,

Then u : Bs(p) — R¥ is an e-splitting function for every r < s < 1.

From the Transformation Theorem 7.2, we know that for some lower
triangular matrix T, = T(p,r), the composition T,u : B,(p) — RF is a
d-splitting function. Our goal then is to show that under the above hypotheses,
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T, remains close to the identity. Proposition 8.4 below provides suitable con-
trol of the difference |7 o T2_7~1 — I|. From this the Nondegeneration Theorem
8.1 will easily follow.

8.1. Hessian estimates with respect to the heat kernel density. The pur-
pose of this subsection is to prove some technical results which convert ball-
average estimates on T'u into estimates with respect to the heat kernel measure,
which is important due to our use of entropy as the monotone quantity.

Notation. Throughout this section ¢ denotes a cutoff function as in (4.13),
with support in By (z) with ¢ = 1 on By j5(z) and such that |Ap|+Ve|? <C(n).

The main result of this subsection is the following technical proposition.

PROPOSITION 8.2. Given a,n > 0 and e > 0 there exist § < d(n,v,n, a,¢€),
v = ~v(n,v,n) > 0, C(n,v,n,«a), C(n,v), with the following properties. Let
(M™, g,z) satisfy Ricpyn > —(n — 1)§%, Vol(By(z)) > v > 0, and let u :
By (z) — RF be a (k,0)- splitting map. Assume

Bs-14(x) is (k,6%)-symmetric and Bs(z) is not (k + 1,n)-symmetric

forallr <s<1.
Then for each r < s; < 1, there exists a k X k lower triangular matriz T, such
that Ts.u : By, (x) — RF is a (k, €)-splitting map such that

(.1) | T VT o e dy) = 5

Additionally, there is the following Hessian estimate on Ty, u:

(8.2)

522/ (]VQTSiu\Q + Ric(VTy,u, VTsu) + 26%(n — I)IVTSiuIQ) ©?pye (2, dy)
M K3

)

<C(n,v)Y e,

J=0

where
(8.3) e =C(n,v,n,« 22 v ( (z) + 057 )

Proof of Proposition 8.2. Note that by Theorem 7.2, for any e, if § <
§(n,v,n,€), then there exists Ty, such that Ty, ou : By, (z) — R¥ is a (k, €)-
splitting map whose Hessian satisfies

7

32_”/ (\VQTSiuIQ + Ric(VTy,u, VT u) + 26%(n — 1)\VTsiu]2>
Bs, (z)

(8.4)
< C(n,v,n,« 227 ( )+5S)
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Set
(8.5) € = C(n,v,n, ) Z 9~7(=7) (EEJ(x) + 53?).
=0

In order to make sure matrix Tsi satisfies (8.1), we may need to do a rotation
as in the following Lemma 8.3. Then we can fix € = ¢/(n,€,v) so that Ty u :
Bs,(z) — R¥ is (K, €)-splitting.

LEMMA 8.3. For any € > 0, if € < €(n,e,v) and 6 < d(n,v,n,a,¢),

<
then there exists a lower triangle matriz A; with |A; — I| < C(n)e such that
T,, = A; o Ts, satisfies

(36) | T V@) Pos ady) = 5

and Ts,u : Bg,(v) — RF is (k, €)-splitting.

Proof. For any €, by the exponential heat kernel decay estimate in The-
orem 4.14 and the matrix estimate in Proposition 7.7, there exists R(n,v,¢€)
such that

(8.7) / (7 (T ), V(o)) — 6% - pa (. dy) < /2.
B1(2)\Bhrs, (2) ‘

Also, by Proposition 7.7, for any ¢ > 0, if 6 < d(¢’,n,v,n), then we have the
matrix growth estimate

/

~ o~ s:\€
i

3

for any s; < s; < 1. Therefore, if 6 < é(€,n,v,n), we have

(8.8) ][ V(T ), ¥ (Tayu)) — 6] < /2.
BRsi (:E)
These two estimates imply

[ | O E0") = 672 g ) <

By using the Gram-Schmidt process, there exists a lower triangle matrix A;
satisfying (8.6). This completes the proof of Lemma 8.3. O

To finish the proof of Proposition 8.2, it suffices to prove (8.2). Since
Ts, = A; o T, with bounded A;, relation (8.4) implies
(8.9)

2 / ( )<|V2Tsju\2+Ric(VTsju, VT, u)+20%(n — 1)|VTsju|2) < C(n)e;.
s. (T

J
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To prove (8.2), we only need to use (8.9) for each scale s; > s;, and the
heat kernel estimates in Theorem 4.14. By the Holder growth estimate for

transformation matrices in Proposition 7.7, if 6 < d(n,v,n) is small, then we
have |TsiTs;1| < 20=9)/100 " Therefore, for s; < s; < 1,

(8.10) /A

In particular, by the heat kernel estimates of Theorem 4.14, we have

/

< C(n,v)s;"e 2% s;-‘_22(i*j)/mej < C(n,v)sj_22(i*j)/106j.

(| V Tslu| + RiC(VTSiu, VTSZU) + 20 (n — 1)| VTSZU’ )
S s(m)
J+1:55

< s;.‘_22(i7j)/wej.

( )(|V2T5iu|2 + Ric(VTyu, VTs,u) + 262(n — 1)|VT5iu\2) a2, dy)
Sj41,55 x

2

Thus,
(8.11)
sf/ <\V2Tsiul2 + Ric(VTs,u, VTs,u) + 262(n — 1)\VTsiu|2> - pus2(, dy)
Bi(z) '

i—1
<# [+
Bsi(x') =0 As

. (|V2Tsiu\2 + Ric(VTs,u, VTs,u) 4+ 262 (n — 1)|VT5iu]2>p48% (z,dy)

i+155 (%)

i—1
< C(n,v)e; + Cn,v) Y 2207020-0/10¢,
7=0

i
< C(n,v) Z ;207"
5=0

This implies (8.2), which completes the proof of Proposition 8.2. O

8.2. A telescope estimate for harmonic functions. In this subsection, we
prove a telescope estimate, Proposition 8.4, for harmonic functions in which the
squared L?-norm of the Hessian linearly controls the difference of the norms
of the gradients on concentric balls; see (8.12). For a function which is not
harmonic, the squared L?-norm would have to be replaced by the L?-norm
itself. This weaker estimate would not suffice for our purposes.

Let ¢ be a cutoff function with support in Bi(z) and ¢ = 1 in By j5(x)
such that |Ap| + |[Ve| < C(n).
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PROPOSITION 8.4. Let (M",g,x) satisfy Ricpym > —(n—1)d82, Vol(Bi(z))
>v>0and0<s<1. Assume uj,uz : Ba(x) — R are two harmonic func-
tions satisfying polynomial growth condition'' supp, (. (|Vu1|(y)—|—\Vu2|(y)> <
K1+ s7Y7) for all0 <r < 2. Then
(8.12)

[V, Vusdpawdy) — [ (Vur, VusPpus o, dy)|
M M

2
< C(n) Z 57 /M (‘Vzui\Q + Ric(Vu;, Vu,) + 2(n — 1)52]Vui]2) ©? pgs2 (2, dy)
i=1

+C(n,v,K)efﬁ.

Remark 8.5. We will apply Proposition 8.4 with w1, uo different compo-
nents of Tyu, Tsu as in Proposition 8.2, which asserts that

(8.13) sup |VT,u| < C(n)(1 + g), for all 0 < r < 2.

Br(x)
Proof. From Bochner’s formula, we get
(8.14)

at/ <Vu1,Vu2><p2pt(x,dy)‘
M

= /(Vm,VUQWZAPt(%dy))
M

= / (A(Vu, Vua)p? + Ap*(Vuy, Vug) + 20(Ve, V(Vur, Vus))) pe(z, dy)‘
M

2
<oy /M (IV2ul? + Rie(Vai, Vug) + 2(n — D82 |Vail?) @ pi(x, dy)
i=1

2
oy /A Vil dy),
=1

1/2,1(1)
where in the last inequality we used
2

(8.15)  |Ric(Vur, Vug)| < C(n) Y (Ric(Vui, Vaug) + 2(n — 1)8%| Vi [?) .

i=1
To see (8.15), since the estimate is pointwise, for each point x € M, one can
view Ric + 6?(n — 1)g as a nonnegative inner product on T,M. Then the
estimate (8.15) follows directly by Cauchy-Schwarz inequality.

L After rescaling Bs(x) to Bi(z), this condition just means that |Vu| has linear growth
in B23_1 (fﬁ)
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The heat kernel estimate in Theorem 4.14 can be used to control the last
term on the right-hand side of the last line of (8.14). Namely, for all t < 1, we
have

(8.16) Z / [Vl ) < Ol v, K)s 727
Aiyaq(z
Therefore,

) / (Vu, Vug)g®pe (z, dy) — / <VU1,Vu2>sD2p4sz(x,dy))
452
= )/2 8t/ <Vu1,VuQ><p2pt(a:,dy)dt’

452 2
<C(n)/2 Z/ (1922 + Ric(Vas, Vai)+2(n — 1)8%Vug|?) 0 prl, dy) e
55 =1/ M

452
+ C(n,v,K)éQ/ 522 w0t dt.

82
Hence

(8.17)
| / (Vuy, Vuz)?p,e(a, dy) — / (Vur, Vuz)o? e (z, dy)|

n

452
/ Z/ |V2u2\2+Rlc(Vuz,Vul)—|—2(n —1)62 ]Vu1|2) o pe(x, dy)dt

1

+C(n,v,K)s "e s0s2
2
n) Z 32/ (V% * +Ric(Vui, V) +2(n — 1)6%|Vu|?) o pge2 (2, dy)
+ C’(n,v,K)e*@,

where we have used the heat kernel estimate in Theorem 4.14 to conclude
that pi(z,y) < C(n,v) - pge2(r,y) for any s? <t < 4s? and y € By(x). This
completes the proof of Proposition 8.4. O

8.3. Proof of Theorem 8.1. By Proposition 8.2, for any ¢, if § <
§(n,v,n,a,€), then for each s; = 277, there exists a lower triangular k x k
matrix T}, such that Ty, u : B, (z) — R” is a (k, ¢)-splitting with
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52 / <‘V2Tsiu|2 + Ric(VTy,u, VTsu)
M

+ 26%(n — 1)]VTsiu\2> g02p4812 (x,dy)

(8.18)
< C(n,v) ZZ:GJQJ'*Z’ = Xi,
=0
(8.19) e = C(n,v,n) i 2~ 7(i=) <8I§j (x) + 55?),
=0
(8.20) [ O Vo o dy) = 5

Here, y(n,v,n) > 0 and ¢ is the cutoff function with support in Bj(x) and
¢ =1on By(x).
By the estimate (8.19), for €; we get

SEETCURR) 95 SERCI CABRRE)

i=0 i=0 j=0

(8.21) -
< Clnvon) Y (&4 (@) +053) < Cln,v,m)e,
§=0
(8.22) > xi <Cn,v) €271 < C(n,v) Y € < C(n,v,1)d.
i=0 i=0 j=0 j=0

LEMMA 8.6. For any €, let § < §(n,v,n,€,a). Then |Ts,, — I| < € for

any m > 1 such that s, > 7.

m

Proof. First note that by Proposition 7.7, |VT,u| satisfies Holder growth
estimates; see also (7.32). Thus, we can apply Proposition 8.4 to obtain

| [ V@ VT ), (o) - 5
1

< C(n)xi+Cn,v)e ™7 = 1.

For any €’, there exists an integer N(€”,n,v) such that if i > N and § <
d(n,v,n,a,€), then we have

7
(8.24) dxi<e
=N

(8.23)

By using the Gram-Schmidt process, there exists a lower triangle matrix A,
with |A; — I| < C(n)x; such that T, = A; o T, satisfies

(8.25) / (V (o), V(o)) (,dy) = 6.
MTL
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Since
(5.26) [ V@) T T )0, (o) = 5

the uniqueness of Cholesky decompositions (see also [GVLI6]) for positive
definite symmetric matrices implies that Ty, = Ty, .
T. oTS:1 = A;. Thus

Sit1

(8.27) T,

In particular, we get
i1 OTs_il - I’ < C(n)fa

Recall that T, is a k x k matrix. Hence for all 7 > N, we have

T o Toy =TI < [T+ (B + 1)C(n)x;) — 1
(8.28) =N

) 7
< 2= FC(M)X; _ 4 < C(n) Z %, < Ccé'.
=N

If 6 <6(e,v,n,n) and €’ < €’(n,v,€), we have for all i < N that

(8.29) Ty, — I| < ¢/10.

Therefore, by (8.28), for any i > N, we have

(8.30) T, — I < €.

This completes the proof of Lemma 8.6. ([

Now we can complete the proof of Theorem 8.1 as follows. Since T, u :
Bs,(z) — R¥ is €-splitting when 6 < 6(n,v,€,n,a), to show u : B, () — RF
is e-splitting, it suffices to prove T, is bounded and then fix € = €'(n,¢,v).
The later has been proven in Lemma 8.6. Therefore we complete the proof of
Theorem 8.1.

9. Proof of the Neck Structure Theorem 2.9

This is the first of the two sections which constitute the fourth and last
part of the paper. In it we give the proof of the Neck Structure Theorem 2.9.
For convenience, we have restated it below. Recall that neck regions are defined
in Definition 2.4.

THEOREM 2.9 RESTATED. Fizn > 0 and § < §(n,v,n). Then if N =
Bs(p) \ B;,(C) is a (k,8,n)-neck region, the following hold:
(1) For each x € C and Ba,(x) C Ba(p), the induced packing measure p is
Ahlfors regular:

(9.1) An)~rF < w(B,(z)) < A(n)r*.
(2) Cq is k-rectifiable.
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Results on rectifiability of singular sets obtained via cone-splitting were
first introduced in [NV17a] in the context of nonlinear harmonic maps, and the
notion of neck regions was first formally introduced and studied in [JN21]. As
was discussed in Sections 2 and 5, in order to conclude the structural results we
will need to build a map from the center points € — R¥. In [NV17a], the rele-
vant splitting map « was built by hand using a Reifenberg construction. This
approach required new estimates on harmonic maps and a new bi-Lipschitz
Reifenberg theorem. As we have emphasized, for the case of lower Ricci cur-
vature bounds, the bi-Lipschitz Reifenberg ideas of [NV17a] do not work. At-
tempting to implement them gives rise to additional error terms which are
not summable over scales. Essentially, this is because approximating a sub-
set W C X" by k-dimensional subspace also involves approximating X" itself
by a splitting. Instead, we rely on the results of Sections 6-8, especially the
Nondegeneration Theorem 8.1.

In [JN21], results on structure and existence of (n — 4)-neck regions were
proved under the assumption of a 2-sided bound on Ricci curvature. In order
to prove the final estimates in [JN21] the authors introduced a new estimate,
which was termed a superconvexity estimate. This estimate definitely requires
a 2-sided bound on the Ricci tensor. The estimates of this paper are entirely
different. As mentioned in the introduction, for limit spaces with [Ricps»| <
(n — 1), we give a new proof of the rectifiability of S = "% and the bound
H"=*(S N Bi(p) < ¢(n,v). This was conjectured in [CC97] and first proved in
[IN21].

We refer the reader to Section 5 for an outline of the strategy for proving
Theorem 2.9.

9.1. The basic assumptions. Below, we will refer to the following standard
assumptions.
Fix 6,¢’,n, B > 0. We will assume the following:

(S1) Vol(Bi(p)) > v > 0 and Ricym > —(n —1)52.

(S2) N = By(p) \ B, (€) is a (k, 8, n)-neck region with the associated packing
measure /L.

(S3) For any = € C and Ba,(x) C Ba(p) with 7 > r;, we have

(9.2) B~k < w(B,(z)) < Br*.
(S4) u : By(p) — R* is a §’-splitting map.

Remark 9.1. Recall from Section 5 that (S3) is connected to our strategy
of proving the theorem by induction. In particular, with B > A(n), we will
eventually show that for ¢ sufficiently small, (S3) automatically implies the
stronger Ahlfors regularity estimate (9.1).
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Remark 9.2. By the definition of neck regions and the Cone-Splitting The-
orem 4.11, we can and will assume that §(n,v,n,d’) > 0 has been chosen suf-
ficiently small so that there exists a ¢’-splitting map u : B4(p) — RF. Then in
actuality, the existence of u as in (S4) is actually a consequence of (S2).

9.2. Bi-Lipschitz structure of the set of centers of a meck region. This
subsection is devoted to proving Proposition 9.3. Given a (k, 0, n)-neck region
N = Bs(p) \ By, (€), Proposition 9.3 implies the existence of a subset €. C C,
which is almost all of €, such that a splitting map u : Bog(x) — RF is (1 + ¢)-
bi-Lipschitz on €.. This is the key step which is used to improve the weak
Ahlfors regularity estimate (S3) to the strong one, (9.1), and to show that the
singular set is rectifiable. The results of the previous sections play a key role
in the proof of Proposition 9.3; compare the outline in Section 5.

PROPOSITION 9.3. For any given positive constants B,e,n > 0, if (S1)—
(S4) hold with §' < 8'(n,v,n,B,€) and 6 < §(n,v,n,0', B,¢), then there exists
Ce C €N Byss(p) such that

(1) p(CeN Bysss(p)) > (1 —€)u(CN Byss(p));
(2) w is (1 + €)-bi-Lipschitz on C, i.e., for any x,y € C,

(L+e)~ - dlw,y) < |u(z) —u(y)] < (1+¢) - d(@,y);

(3) for any x € G and r > r, with Ba.(x) C Ba(p), the map u : By(x) — RF
is a (k,€)-splitting function.
(4) For any z € Cq,

S, V) = Wl duty) <<

re<r;<2-5
(5) u: @—=RF is a bi-Hélder map onto its image, i.e., for all z, y € Bys5(p)NE,

(1 =€) d(z,y)™ < Jule) —uy)| < (1 +¢€) - d(z,y).
Note. In (4), the integral average is taken with respect to p.

Essentially, C. C € consists of those points which satisfy (4). We will see,
as in (1), that most points of € have this property. Then using Theorem 8.1
we will conclude (3). The estimates (2) and (5) will follow almost exactly the
same argument as the one given in Section 7.5

We begin with some technical lemmas which will be used in the proof of
Proposition 9.3. The proof of the proposition will be given at the end of this
subsection, after the proofs of the lemmas have been completed.

The first of these, Lemma 9.4 below, will enable us to conclude that if
Ce C C is defined as indicated above, then (4) holds.
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LEMMA 9.4. Let (M™,g,p) satisfy (S1)—(S4) with 6" > 0 fized. If § <
d(n,v,B,d8") and &' < ' (n,v,B,n), then the local W-entropy satisfies

9.3) ]i .

Proof. Recall that under the assumptions of Theorem 4.22, including § <
d(n, v, €), we have the following relation between the volume ratio and the local

7{9 (W2 () — Wiy 0| da(w) ) () < 6.

7’<r<2 5

pointed entropy:
W (@) — log V()| < e

The proof will utilize this relation together with a Fubini type argument.

Let X|z—y|<r(2,y) be the characteristic function of the set {(z,y) € M™ x
M"™ :d(x,y) <r}, and put r; = 27"

In the following argument we will use Fubini’s theorem to exchange vari-
ables. In order to make the argument easier, let us define Wf( ) = Wf;2 2 4(z)
for any t < r2/4 and Wi(z) = W(z) for t > r2/4. Furthermore, let us
point out that in the following estimate, the term (B, (z)) with r; < r,/4
always multiplies with |[W? 2/2( y) — Wgﬂ (y)| for y € By, (z), which is seen to be
vanishing by noting that Lip r, < ¢: '

(9.4)

wa/g(P)(

ﬁr_( : (W 5(5) = Wi, (1)| dply) ) dpu(a)

re<r;<27°

S][ 2 ][ W o (y) — W,2 ()] dpaly) ) dpal)
Bis/8(p) <n§25 By, (z) 22\ 2r; )
= #Bss(P) Sy N, S5ts #(Bri(2)) Iy 160 {lz—yl<ri} (@,

W2 () = W32 ()l dply) ) dia()
<C(n)- Bz/ / Z 7 X eyl <ri) (2, Y)
Bs1/16(P) / B31/16(P) ;. <95
<

( (
Wia 5 (y) = W2 (y)] dua(y) du(x)
( (

<cw-s*| 17 eyl (@21)
B31/16(p) ¥ B31/16(p) Z Hemvlsrs)

;<275

W3 5 (y) = W2 (y)] dia(y) du(z).
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Applying Fubini’s Theorem gives

][315/8(10) ( ra<r;<2-5

<O B [ S B ) W )~ W) dily)
B31/16(p) /<5 ! ’

<Cm-B [ ST W ()~ Wi ()] du(y)
Bs1/16(p) ¢ ¢

r; <1

<C(n)- B /B W) W)ty
31/16(P

Fo W) = Wha0)| du(w)) du(o)
By, () i/ v

= OB [ Wiy u() - W) duty)
Bs1/16(p) v
< C(n)- B*.

We also used the pointwise estimate |Wi§/4(y) — W(y)(y)| < ¢ (see Theo-
rem 4.22), which follows if we choose § < d§(n,v,€',n) in condition (n2) of
Definition 2.4, the definition of a (k, d,7)-neck.

By fixing € sufficiently small, so that C'(n)B3¢ <§”, the proof of Lemma 9.4
is completed. ([l

The following lemma is a direct consequence of the Nondegeneration The-
orem 8.1 and the assumed Ahlfors regularity with constant B as in (S3).

LEMMA 9.5. Let (M"™,g,p) satisfy (S1)—(S4) with € > 0 fized. Assume
8" < §"(n,v,n,€), & < d'(n,v,n,€), 6 < d(n,v,B,n,€), and for some x €
€N Bis/s(p),

(9.6) S W) - W)l duly) <5
s<ri<a—s ) Bri(@)
Then for any s < r < 1, the map u : B,(z) — R¥ is an e-splitting map.

Proof. By the Nondegeneration Theorem 8.1 it suffices to find a set of
(k, @)-independent points {zg,z1,...,z;} C By, (z) N € for some a(n,B) > 0
such that for each r;, we have the k-pinching estimate

k
ehed (@) < 37 (Wi () — Whya(ay)
(9.7) 3=0
<cmn)f Do) = W )] ).
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In the following argument we will show that (9.7) holds. We will first show
that the existence of such points follows from the assumed Ahlfors regularity
of v in (S3).

First, note that there exists a subset C,, , C €N By, (x) with p(C,, ) >
r¥B/2 such that for any y € €, ., we have

08)  Whoy) = Wi SCoYf W (2) ~ Wha (2] di(z).

r; (L

By using the Ahlfors regularity of u (see (S3)), we will now show that we can
find (k, a)-independent points in €, ; for some small «(n, B). First we note
that for any € > 0, if § < d(n,v,n,€), then C,, » C Bery, ((R¥ x {(yc)})) where
L R¥ x O(X) — B,.(z) is a dr;-GH map.

Comparing the result in Remark 4.5 about the (k, a)-independent points
in R™, if there exist no (k, o)-independent points in C,, , as in Definition 4.4, the
set €, », must be contained in Byqr, (L(Rkil x {(0, yc)})) for some R*~! plane.
Therefore, we have obtained at most C(n)a %! many balls {Bsar, (y;)}, with
y; € Cp, & , which cover C,, ;. Thus, by the Ahlfors regularity of ;1 we have

1(Cr, z) < C(n)aik+1B(8ari)k < C(n, B)ow“f.

Since u(Cy, ) > Brk /2, by choosing a = a(n, B) small we get a contradiction.
Hence there exist (k, a)-independent points in C,, , C B.(x)NC. At this point,
Lemma 9.5 follows directly from the Nondegeneration Theorem 8.1. (]

The following Lemma 9.6 provides a Gromov-Hausdorff-approximation for
e-splitting maps which will be used to prove the bi-Lipschitz estimate for wu.
The proof of Lemma 9.6 depends on Lemma, 9.7. Thus, it will not be completed
until after Lemma 9.7 has been proved.

LEMMA 9.6. Let (M™, g,p) satisfy (S1)—(S4). Assume 8" < §"(n,v,n,€),
§' < &' (n,v,n,€) and § < 6(n,v, B,n,€). Let u: B.(x) — R¥ be a 6"-splitting
map for some x € C and all r, <r < 1. Then for any y € C,

(9.9) [u(z) —u(y)| — d(z,y)| < ed(z,y).

Proof. Pick r > r, so that r/2 < d(z,y) < r. By the definition of a
neck region, we know that Big,(x) is dr-Gromov Hausdorff close to a cone
R* x C(Y). Moreover, by the splitting guaranteed by Theorem 4.11, if § <
§(n,v,n, B,€), then there exists a (k,¢)-splitting map @ : By(z) — RF :=
R* x {y.} € R¥ x C(Y) such that %o : R x {y.} = R* x {y.} is € - r close
to the identity map. Here, ¢ : RF x C(Y) — B,(z) is the 6r-GH map in the
definition of neck region. Since B,(z) is not (k + 1,7n)-symmetric, we must
have CN B,.(z) C Bey(t(B,(0%) x 1.)). Therefore, for any y € €N B,(z), we
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have
(9.10) |a(z) — u(y)| — d(z,y)| < 100€'r.

In order to use (9.10) (which holds for @) to prove (9.9) (which pertains
to u), the following lemma is required.

LEMMA 9.7. For any €, if € < €(e,n,v,n) and §" < §"(n,v,n,¢€), then
there exists a rotation O € O(k) and a vector Z € R¥, such that SUPp, (z) Ol —
u— Z| < er/10.

Proof. The proof of Lemma 9.7 is via a contradiction argument. First we
will show that after composing with a suitable orthogonal transformation if
necessary, the L? gradients are close.

SUBLEMMA 9.8. If ¢ < €(e,n,v,n) and 6" < §"(n,v,n,€), then there
exists O € O(k) such that

(9.11) ][ V(01 —u)|* < 2.
By (x)
Proof. Without loss of generality, assume

][ <vaﬂ',vai>:5ﬁ:][ (Vud, Vu').
By () By (x)

Let us define a k x k matrix A = (a;j) by

(9.12) aij = ][ (Vu', Vid).
Br(z)
We will see for € < €(e,n,v,n) and §" < 6”(n,v,n,€) that
k
(9.13) 1> aiaze — 6| <€ i =1,k
=1

Let us first assume (9.13) and finish the proof of the sublemma. By (9.13)
we have

(9.14) ][ V(AT — u)|? < .
By ()

Moreover, by (9.13) we can use the Gram-Schmidt process to produce a matrix
O € O(k) with |O — A| < C(k)e*". Combining this with (9.14) implies (9.11),
i.e., the sublemma.

Now we begin the proof of (9.13). Since

7[ (Vi , Vi) = 69 = f (Vo , Vu'),
By (x) B,-(x)
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it will suffice to prove

(9.15) ‘Zaigaw—l‘ <o i=1,... k.

(=1
Assume (9.15) does not hold for some i = ip < k and € = ¢ > 0 with
€ — 0 and 6" — 0. C0n51der the following & + 1 harmonic functions v* =
u’ — Zf L Qig W, At . From the definition of a;; in (9.12), we have that

JCBT ( x)<VU , Vi) = 0. Moreover, by the contradiction assumption, we have

k
(9.16) ][ VP =1-) ai; > ™

Normalize v° to @ such that 4° has unit L? gradient norm. Therefore, for ¢
and 6" sufficiently small, the map (@°,a!,...,a"*) : B.(z) — R is a (k +
1,71/10)-splitting map, which contradicts the fact that B,(z) is not (k + 1,7)-
symmetric. This completes the proof of (9.15) and (9.13). Hence, the proof of
Sublemma 9.8 is complete. O

Now by using the Poincaré inequality in Theorem 4.24 we get
(9.17)

2
][ Oii —u —7[ (0 —u)| < C(n)r2][ V(01 — w)[2 < C(n)r2en,
By (x) B (x) Br(x)
Set Z = fBr(x)(Oﬁ —u) € RF. At this point, the proof of Lemma 9.7 follows

now from (9.17) and the gradient estimate supp, (,)|V(Ou —u)| <1+ €. This
completes the proof of Lemma 9.7. O

The proof of Lemma 9.6 can now be completed by observing that for any
y € CN B,(x) with d(x,y) > r/2, we have

(9.18)
u() = u(y)| - d(w,y)| < |[0G(z) - aly)| - d(z,y)|
+ |Oi() - ulw) - 2| + |Oly) —u(y) - 7
< Jala) — ay)| - d(z,y)| + er/5 < er/2 < ed(w, ).
This completes the proof of Lemma 9.6. O

Proof of Proposition 9.3. Now we can finish the proof of Proposition 9.3.
For this, note that for all €’ > 0, there exist ¢’(n, B,v,n,€") and §(n, B,v,n,€")
such that by Lemma 9.4,

o) f " ]fg W W ) ) < €

r<r<2 5
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For all 0" > 0, define the set Cs» C €N By5/5(p) such that x € Csn if

(9.20) > W = Wl 0)dn(s) < 9

re<r;<27°

If € < €’'(n,B,d"), then by the Ahlfors regularity estimate (S3) for u, we
have

p(Csr) = (1= 0")u(€ N Bysss(p))-

Fix ¢ > 0. If 6" < ¢”(n,€’), then by Lemma 9.5, for any = € Cgs» and
ry < r <1, there exists a (k,¢)-splitting map u : B,(z) — R¥. Thus, by
fixing € < €(n,v, B,n,€) and putting Cs» = €., we obtain (1), (3) and (4) of
Proposition 9.3.

To prove the bi-Lipschitz estimate, (2), note that for any x,y € Cgr, if
¢ <é(n,v,n, B,e), then Lemma 9.6 gives (9.9):

[u(z) —u(y)| — d(z,y)| < ed(z,y).

This implies the bi-Lipschitz estimate (2) of Proposition 9.3. By using the
Transformation Proposition 7.7, the proof of the bi-Hélder estimate for u can be
completed in just the same manner as in the proof of the Canonical Reifenberg
Theorem, 7.10. This completes the proof of Proposition 9.3. U

9.3. Abhlfors regularity for the packing measure. In this subsection, we will
show that if a neck region satisfies a weak Ahlfors regularity estimate as in
(S3), then for § sufficiently small, the neck region automatically satisfies a
stronger universal Ahlfors regularity estimate. This is based on the bi-Lipschitz
structure proved in Proposition 9.3. It is the key to the inductive scheme.

PROPOSITION 9.9. Let (M",g,p) satisfy (S1)-(S4) with 6 < é(n,v, B,n)
and &' < &'(n,v,B,n). Then there exists A(n) such that for any x € €N Ba(p),
with r > 14 and Ba,(x) C Ba(p), we have

(9.21) A(n) 4% < (B, (x)) < A(n)r*.

Proof. We can assume without loss of generality that + = p and r = 1.
We will show that p(Bj(p)) satisfies the upper and lower bound in (9.21).

Consider the map u : Ba(p) — R¥. Assume 0¥ = u(p), and recall that
T =17, = 10"10"w,.

We will begin by proving the upper bound for p(Bj(p)). For this, note
that for any ¢, if 6 < d(n,v,¢,B,n), then by the bi-Lipschitz estimate in
Proposition 9.3, the balls {B,s, (u(z)) C RF} are mutually disjoint for = € C..
In addition, €. C €N By5/5(p) satisfies

p(Ce N Bysyg) > (1 —€) - (€N Byss(p))-
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By the Lipschitz bound on u, we have |u(z)| = |u(x) — u(p)| < 4. Let Vol
denote the volume form of R¥. Then

pCNBiss(p) < Y. rh

z€CNBys /s
(922) S C(n) | CﬂeeemZBL’)/S VOlk(BTSTI (U(x)))
< C(n) - Voly,(B5(0%))
< C(n).

By combining the above with the estimate

1(Ce N Bysys(p)) = (1 —€)u(C N Bysys(p))s

this gives the upper bound of u(Bi(p)).

The lower bound for p(Bj(p)) will follow from a covering argument.

The Geometric Transformation Theorem 7.2 implies that for any ¢ > 0
and § < d(n,v,€,m), there exists for x € € and r, < s < 1 a k x k matrix
T, s such that the map T, su : Bs(z) — RF is a (k,e)-splitting map. Since
|Vu| <1+ ¢, we have [T, 5| > 1/2. The lower bound estimate in (9.21) will
follow from the next lemma.

LEMMA 9.10. Let
Tok (Br(u(@)) = u(@) + ;) (B.(0).
Then a covering of Bl/g(Ok) C RF is provided by the collection of ellipsoids:
{Trr, (Br,(u(z))) |z € €N Bi(p) }-

Proof. Assume there exists w € By /S(Ok) not in the covering. For every
x € CN By(p), define

Sy :=1inf{s > ry 1w € T;;Bs(u(a:))}
(9.23) -

S:=38z:= min S,.
x€CNB1(p)

Then 5§ > rz and
w € Ti}lngg(u(i?)).
This implies
T 25w € Bas(Txos5u(x)).
On the other hand, the map, T osu : Bos(Z) — RF is a (k, €)-splitting.
From the covering property (n5) in Definition 2.4 of neck regions, there exists
some y € Boz(x) N € such that

(924) |T55,2§w - T@qu(y” S 3TS.
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By the Holder growth estimate for T} s, with respect to s in the Transfor-
mation Proposition 7.7, we have
Ty 25T5 55 — 1| < C(n)e.
This follows since |Tj72§Tj—7§§ —I| <€ and |Ty,2gT£§§ — I| < € due to the fact
that T ssu : Bas(y) — R¥ is also a Ce-splitting map. Therefore,
(9.25) |Ty.25w — Ty osu(y)| < 475.

Again by the Holder growth estimate for T}, in the Transformation
Proposition 7.7 we have

’Ty,é/Zw - Ty,g/zu(y)\ < 578.

Since w € T;;/2B§ /2(u(y)), this contradicts the definition of 5. This concludes

the proof of Lemma 9.10. O

From Lemma 9.10 we obtain

Clky< Y Vol(T;,, Br, (u(x)))

(9 26) x€CNB1(p)
< Y oehnti<on Y rk=ciuBip).
x€CNB1(p) x€CNB1(p)

By using the estimate |T,} | < 2, this provides a lower bound for u(Bi(p)).
This completes the proof of Proposition 9.9. U

9.4. Proof of the Neck Structure Theorem for smooth manifolds. In the
present subsection, we will prove the Ahlfors regularity estimate for the case of
smooth Riemannian manifolds. The Ahlfors regularity estimate in the general
case will be reduced to this one via a careful approximation argument.

In the case of smooth Riemann manifolds, neck regions satisfy Cy = () and
inf r, > 0. Thus, it suffices to prove the following lemma

LEMMA 9.11 (The smooth case of Theorem 2.9). For alln > 0, there exist
d = d(n,v,n) >0 and A(n) such that if N C Ba(p) C M™ is a (k,0,n)-neck,
then for all s > r, with Bog(z) C Ba(p),
(9.27) A(n)7tsP < pu(By(x)) < A(n)s”.

Proof. We begin by making the following convention.

Terminology. We will say statement (j) holds if the lemma holds for all
neck regions which satisfy infr, > 277 > 0. The proof will be by induction
on j.

We begin with the base step. Note that if j < 10 and § < 10719, then
#C < C(n). In particular, the statement (j) holds for some universal constant

A(] (n)
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Denote the universal constant A(n) in Proposition 9.9 by A;j(n). We will
show that (j) holds for all j when A(n) := Ag(n) + A1(n) and d(n,v,n) =
d(n,v,n, B), where d(n,v,n, B) is the constant in Proposition 9.9 with B =
A(n)C(n). Here C(n) is given by C(n) = Co(n)16*, where Cy(n) is the car-
dinality of the maximal number of disjoint balls {By-s(x;) | 2; € B2(0F)} with
center in By(0¥). Therefore, B = A(n)C(n) is a universal constant.

Note that if we take § < d(n,v, B,n,d’) sufficiently small, then by the
structure of the neck region and cone-splitting theorem 4.9, there exists a
(k,d")-splitting map u : Ba(p) — RF: see also Remark 9.2. Therefore, the
constant ¢'(n,v, B,n) in Proposition 9.9 automatically holds if we choose § <
d(n,v,B,n,d).

Now let us assume statement (j) holds. Then we need to see that (j + 1)
holds. So let N C Ba(p) be a (k,§,n)-neck region with min, r, > 277! and
the associated center points €. By Proposition 9.9, it suffices to obtain a weak
Ahlfors regularity bound for p with B = A(n)C(n).

Let Bos(z) C Ba(p). If s < 1/2, then after rescaling Bas(x) to Ba(x),
the region N N Bag(x) C Bas(x) is a new (k, d,n)-neck which satisfies (j). In
particular, by our inductive hypothesis, we have

A7H(n) < u(Bs(x)) < A(n)s".

If s > 1/2 then, in particular, we have x € Bj/5(p) N € and Bs(x) C By4(p).

Choose a Vitali covering {B/15(7;),z; € €N Byu(p)} of Byu(p) with
cardinality at most Cyp(n). Since Bjg(w;) C Ba(p), by using the inductive
assumption again we have

(9.28) 1675 A7 (n) < u(Byj16(5)) < A(n)167".
From this, it follows easily that
(9.29) 167" A7 (n)s” < u(Bs(z)) < Co(n)16 728 A(n)s*.

Thus, we have proved u satisfies the weak Ahlfors regularity estimate
with constant B = Cpy(n)16*A(n). By Proposition 9.9, if § < d(n,v,n, B) =
§(n,v,n), then in fact we have the stronger estimate Aj(n)~'s* < u(By(z)) <
Ai(n)s®. In particular,

A(n)7tsF < pu(By(x)) < A(n)sk.

This completes the proof of Lemma 9.11, i.e., Ahlfors regularity for the case
of smooth manifolds. O

9.5. Approzimating limit neck regions by smooth neck regions. As men-
tioned in the previous subsection, to prove the neck structure theorem for neck
regions for which €y # (), we will approximate general neck regions N by neck
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regions N; for which inf 7, ; > 0. This will be carried out in the present sub-
section. In the following subsection, we will complete the proof of the Neck
Structure Theorem 2.9.

Our main result in this subsection is the following.

THEOREM 9.12. Let (M]’-‘,gj,pj)d%(X”,d,p) satisfy Vol(Bi(p;)) >v>0
and Ric; > —(n — 1)6% and let N = By(p) \ B, (C) be a (k,d,m)-neck region.
Then there exists a (k,dj,n;)-neck region Nj = By (p;) \ By, ;(€;) such that the
following hold:

(1) 6; = 0 and n; — .

(2) If ¢j : Ba(pj) — Ba(p) are the approximating Gromov-Hausdorff maps,
then ¢;(C;) — € in the Hausdorff sense.

(3) 14 — ry 1 € = Ry uniformly.

(4) Let pj,pn denote the packing measure of Nj, and N, respectively and let

Li = Hoo in measure sense. Then p < C(n)foo.

(5) If €y C C is k-rectifiable, we have po < C(n)p.

Proof. Consider first the case inf r, > 0. This implies that Cy = () and, in
addition, that € is a finite set.

Let v; : Ba(p) — Ba(p;) be the €;-Gromov Hausdorff maps. For j suffi-
ciently large with €; < infry, let C; := {¢;(x), = € €} and r,; = Ty ()
Then it is easy to check that Nj := Ba(p;)\ By, ;(C;) are (k, d;,n;)-neck regions
which satisfy the criteria of the theorem. Actually, in this case, we can prove
Hj = Poo = -

Next, for the case in which inf r, = 0, we construct a (k, d, )-neck region

N, = Ba(p) \ By, (C),

with inf 7, > s > 0. Given s > 0, we define 7, on € by 7, := max{ry, s}. Then
|Lip 7| < 6 and all of the remaining properties of a neck region are satisfied
with € and 7, apart from the Vitali condition (nl).

To fix this, choose a maximal subset €, := {2} C € such that the balls
{Br2; . (zf)} are disjoint. It is easy to check that Ny := Ba(p) \ Bz, (C) is a

(k, d,m)-neck region for which inf 7, > s > 0. If we let s — 0, then N, converges
to N in the Hausdorff sense.

Consider the limit packing measure [is — fico. On C4, we have [ico = p.
If y € Cp, then for all s < r, by the Vitali covering property of Ny, it will follow
that

(9.30) Sk_”V01<Br(y) N BS(€0)> < O(n)jis (BQSM(y) N Bgs(eo)).

To see this, consider the covering {Bg(x}),z; € Cs N Bs(Cp)} of o N By(y).
Since Br24(x]) are disjoint and fis(Bs(z])) > s¥, using the estimate of the
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cardinality of {Bs(x}) |z} € Cs N B,(Co)} by s~ *jis (Bger,n(y) N Bgs(eo)> we
can get (9.30).
By letting s — 0 in (9.30), we get the upper Minkowski &k content bound,

(9.31) M*(Br(y) N €o) < C(n)fice(Br(y) N €o).
In particular, this implies

(B, (y) N €o) = H"(B,(y) N €)

(9.32) < C(k)M* (B, (y) N €y) < C(n)fioo(Br(y) N €o).

Therefore, we get the weaker estimate p < C'(n)fico-
On the other hand, we claim that

(9.33) fis (Br(y) N Bs(€0)> < O(n)s*"Vol (B,+25(y) N Bgs(eo)).

To see this, consider the covering {B,(zf) |25 € €, N Bs(Co)} of € N By(y).
Since B,24(x]) are disjoint and fis(Bs(zf)) < A(n)s*, the estimate (9.33) fol-
lows easily from the estimate of the cardinality of {Bs(x?),z5 € €, N B4(Co)}
by s_”Vol(BHgs(y) N Bgs(eo)). By letting s — 0, it follows that the upper
Minkowski &k content satisfies

(9.34) C(n)M*(B,(y) N Co) > fico(Br(y) N €o).

To prove (5) of Theorem 9.12, we will initially make the assumption that
Cp is k-rectifiable. This will be proved in Lemma 9.14, the proof of which is
completely independent of (5).

By a standard geometric measure theory argument (see Theorem 3.2.39
of [Fed69]), Hausdorff measure and Minkowski content are equivalent. Thus,

(9.35) C(n)u(Br(y) N Co) = fiso(By(y) N Co).

In particular, C(n)u > fico.

Finally, for each Ny, we have the (k, d;,m;)-neck regions Ns’j = Ba(pj) \
B;z’j(éj) approximating N, with ftsj — fis. By a standard diagonal argu-
ment, we can finish the proof by taking a diagonal subsequence of 3~\F8,j to
approximate N. This completes the proof of Theorem 9.12. [l

9.6. Proof of the Neck Structure Theorem 2.9. Given a (k, 0, n)-neck region
N = Bs(p)\ B, (@), we have by the approximation theorem 9.12, a sequence of
(k, 05, mj)-neck regions N; = Ba(p;)\ By, ;(€;) C M;. By the Ahlfors regularity
estimates in Section 9.4 for smooth neck regions, we have for 6 < d(n,v,n)/10
that if By, (x;) C Ba(p;) and z; € C;, then for j sufficiently large,

(9.36) Aln)™r* < (B, (x))) < A(m)rt.
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Thus, by Theorem 9.12 we have for all By,(z) C Ba(p) with € C that the
limit p; — poo satisfies

(9.37) A(n) 4% < oo (B (2)) < A(n)rt.

By Theorem 9.12, since u < C'(n)pso, we directly get the upper bound esti-
mates of u(B,(z)) < A(n)rF for a universal constant A(n) = A(n)C(n).

In order to prove the lower measure bound, we will first prove Cy is
k-rectifiable. Then we can use (5) from Theorem 9.12 to deduce the lower
bound. The main lemma needed for this result is the following.

LEMMA 9.13. For each € > 0, if 6 < d(n,v,€,n), then for any x € Cy and
By, (x) C Ba(p), there exists a closed subset Re(By(z)) C Co N By(z) such that

R is bi-Lipschitz to a subset of R* and ,u(Br(x) N (Co\ iRE)> < erk.
Proof. For each By, (x) C Ba(p) with x € Cy, the set
Ny := B (2) \ By, (Cr)

is a (k, 6, n)-neck region with associated C, = €N Ba,(z) and packing measure
pr = ptle,. By the approximation theorem 9.12, there exists a (k,d;,n;)-neck
region

NT,]' = Bgr(l‘j) \Brzvj(Gm) - Mj

which approximates N,..

By Theorem 4.11, there exist 5}—splitting maps u,j : Bo(x;) — RF with
&; = 0%(n,v,n,0;). Additionally, by the Ahlfors regularity estimate for the
smooth neck N, ; in Section 9.4, we have for any Bas(z,;) C Bar(x;) and
Trj € an that

(9.38) A(n)7's® < pu(Bg(z, ;) < A(n)s”.

By applying Proposition 9.3 with B = A(n) and 6 < d(n,v,€,n), there
exists Cje C C,; such that u.; : C;c — R is (1 + €)-bi-Lipschitz and
i (Br(x5) \ Crje) < €2k, Let j — oo, and denote the Gromov-Hausdorff
limit by €. :=lim €, ;. Let p, o denote the limit measure p,; — i oo-

On the other hand, since B,(x) \ C,. is an open set, a standard measure
convergence argument implies

(9.39) fhroo(Br(x) \ Cre) < liminf i, j(By () \ Crjc) < 2.

Indeed, for any closed set D C BT(ZL‘) C X and D; C M;, with D; ClG—P§ D, we
have by the measure convergence that for any ¢ > 0,

(9.40) lim sup g ;(D;) < fir.oo(Bi(D)).
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Let ¢ — 0. By using the monotone convergence theorem for measures and
the fact that D is a closed set, it follows that

limsup gy, (D;) < piroo(D).
This implies (9.39). Hence we have €, C €, C € and the estimate

(9.41)
1(Br(x) \ Cre) = pr(Br(2) \ Cre) < C(n)piro0(Br(2) \ Cre) < Cn)e*r* < er”.

Here, we have used Theorem 9.12 in the first inequality.

Moreover, since u, ; is Lipschitz, by Ascoli’s theorem, we have a uniform
limit u, : Bo,(z) — R¥ such that u, : Cre — R* is (1 + ¢)-bilipschitz. From the
estimate (9.41), the set Re(By(z)) := €y N C;.¢ is our desired set. This finishes
the proof of Lemma 9.13. O

Now we can prove the rectifiability of Cp.

LEMMA 9.14. Cq is rectifiable.

Proof. Let {z;} C Cy be a countable dense subset of Cy, and for any € > 0,
consider the set

(9.42) R:= U Re(Br(2i).
Bor(z;):1>2r€Q
By definition, we have R C Cp. In addition, since R is a countable union
of rectifiable sets, it is rectifiable. To finish the proof, we only need to choose a
small € and show that u(Co\ R) = H¥(Co\ R) = 0. So assume FH*(Cy\ R) > 0.
Then by a standard geometric measure theory argument, there exist = € Cp\ R,

rq — 0 and a dimensional constant € > 0 (see Theorem 3.6 of [Sim83]) such
that

gk <Bra () N (€ \ R))
(9.43) lim

> e > 0.
rqe—0 ’I“’; k

In particular, there exists s > 0 such that H*(B,(z) N (€ \ R)) > sFey/2.
Since {z;} is dense, there exist some z; and r € Q such that s < r < 2s and
Bs(x) C By(x;). Therefore, we have 3*(B,(z;) N (€ \ R)) > C(k)exr*. By
choosing € = €(n) small, we contradict the definition of R, in Lemma 9.13.
Thus, for § < d(n,v,n,€) = d(n,v,n), the set R C €y has full measure. This
completes the proof of Lemma 9.14. O

At this point we can obtain the lower bound for the packing measure p,
and hence, complete the proof of Theorem 2.9. Since €y is k-rectifiable, by
Theorem 9.12 we have pt > C(n)- oo in (9.37). Therefore, the Ahlfors regularity
estimate for jio in (9.37) gives us the desired lower bound for p. This completes
the proof of the Neck Structure Theorem 2.9. O
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10. Proof of the Neck Decomposition Theorem 2.12

In this section we prove the Neck Decomposition Theorem 2.12. Neck
regions and their associated decomposition theorems were introduced in [JN21],
where the focus was on the top (n—4)-stratum of the singular set for limits with
2-sided Ricci curvature bounds. This was an important ingredient in the proof
of the a priori L? curvature bound for such spaces. This section follows very
closely the constructions of [JN21], relying on the estimates provided by the
Neck Structure Theorem 2.9. The main result of this section is Theorem 2.12,
which for convenience is recalled below.

THEOREM 2.12 RESTATED. Let (M}, g;, pi) — (X", d, p) satisfy Vol(B1(p;))

>v >0 and Ric; > —(n —1). Then for each n >0 and § < d(n,v,n), we can
write

(10.1) Bi(p) € |J (N N By,) U B, () U SO,
a b

(10.2) 8§51 C | ) (Coa N By, ) U8,

such that

(1) for all a, the set Ny = Bay, (z4) \ Br, () is a (k,d,n)-neck region;

(2) the balls Bay, (xp) are (k4 1,2n)-symmetric, and hence xy, ¢ Sécn,m

(3) Sork+ 50,k 4+ HF(8kOm) < C(n,v,68,n);

(4) Co,a € Bay, () is the k-singular set associated to Ng;

(5) 8F91 satisfies H* (gk’5’”) =0;

(6) 8807 js k-rectifiable;

(7) for any e, if n < n(n,v,e) and § < §(n,v,n,¢€), then we have Sk  8&on.

Remark 10.1. As previously mentioned, in the special case of smooth Rie-
mannian manifolds M™ only (1)-(3) carry nontrivial information.

10.1. Proof of Theorem 2.12 modulo Proposition 10.2. The proof of The-
orem 2.12 proceeds via an iterative recovering argument. In Proposition 10.2
of this subsection, we will introduce a rougher decomposition which also in-
cludes a third type of ball, indexed by a subscript denoted by v. By iterating
Proposition 10.2 we obtain a definite decrease in the volume of the v-balls.
Thus, after iterating this recovering argument a definite number of times, the
v-balls will no longer present. This gives the decomposition in Theorem 2.12.

The remaining sections, 10.2-10.5, will be devoted to establishing Propo-
sition 10.2. This is the primary work in the proof. Initially, we will introduce
coverings in which additional specific types of balls indexed by ¢, d, e will ap-
pear. Additional iterative arguments eventually lead to Proposition 10.2 itself.
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In more detail, in Section 10.2, we define balls of types ¢,d,e. In Sec-
tion 10.3, we state Propositions 10.3, 10.5, which are concerned, respectively,
with recovering d-balls and c-balls. We state and prove Lemma 10.7 in Sec-
tion 10.4. Using it, we prove Proposition 10.2 modulo Propositions 10.3 and
10.5. In Section 10.5, we prove Proposition 10.3. In Section 10.6, we prove
Proposition 10.5, thereby completing the proof of Theorem 2.12.

To avoid confusion, we recall that in (10.3) below, the subscript 1 indicates
radius 1. Set

(10.3) V= inf Vi(y)>v>0.
y€Ba(p)

PROPOSITION 10.2 (Induction step decomposition). For all n > 0 and
5 < d(n,v,n), there exists

2 (n,v,8,m) >0

such that if (M, g, pi) dax (X", d, p) satisfies Ricpp > —(n—1), Vol(B1(p:))
> v > 0, then the following exists:

(104)  Bi(p) €| J(€o.a UNa N By, (24)) U By, () U By, (20) USF,
a b v

such that the following hold:

(1) Ng C Bay,(z4) are (k,d,n)-neck regions with the associated singular set of
centers Co q;
) each b-ball Bay, (xp) is (k + 1,2n)-symmetric;
3) ‘:/1, >V 40 (uNJhere Vo = infyep,, (z) Vi, (¥));
4) 8% c S and H*(8F) = 0;
5) S k3, k3 vk <O, v, 6,m).

If we temporarily assume Proposition 10.2, the proof of Theorem 2.12 can
be completed:

(2
(
(
(

Proof of Theorem 2.12. Fix n > 0, 6 < d(n,v,n) as in Theorem 2.9 and
v9(n,v,8,1n) > 0 as in Proposition 10.2.

By applying Proposition 10.2 to the limit ball B;(p), we get the following
decomposition in which the subscript 1 indicates the first step in the inductive
argument below:

(10.5) Bi(p) € 87U J(Co.a UNay N By, (2a,)) U Bry, (w0,) U Br, (@0),

a1l b1 v1

where
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V., = inf V., > V—i—vo,
' yeBun,, (2v)) W)

(10.6) F*(SH =0,
Z j{k(eo,al) + Z(Ttu)k + Z(Th)k + Z(Tvl)k < C(n,v,n,0).
a1 al b1

v1

Next, by applying Proposition 10.2 to each vi-ball B, (xy,) we arrive at

2
Bi(p) < |J | $§ulJ(Coa, UNay N By, (%a;)) U By, (1,
(10.7) Jj=1 aj bo
U U B, (Tv,),
v2
where
Viy 1= inf ruy (Y) = V +2vY,

y€B47“v2 (IU2 )

3e*(8T) + I5(85) = 0,

2
(108) | 209 (Com) + D (rw) + 3 ()"

< C(n,v,n,8) + C(n,v,n,6)%,
S ()t < Clnyv,m,8)°.

v2

Note that V +v? in (10.6) has been replaced by V + 2v” in (10.8), where
as in Proposition 10.2, v° = v%(n, v, §,n). Therefore, this process of recovering
the v-balls can be iterated at most i = i(n,v,d,7n) times before no v-balls
exist; otherwise, we would contradict the noncollapsing assumption (1.2). By
doing the iteration the maximal number of times, we obtain the following
decomposition in which the v-balls are no longer present:

(10.9)  Bi(p) < |J | 85 ulJ(Coa; N, N By, (24,) U By, (w,) |
j=1

a; b]-
where i = i(n, v, d,n) and
(10.10)  FH*(8F) 4 --- 3" (8F) =0,

7

(10.11) Y [ D09 (Coay) + D (ra) D () | < C'(nyvin,6).

j=1 j j b
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Set
i i
(10.12) 8%m:=| | SFnBi(p), "= SfulJCoa, | N BiD).
Jj=1 J=1 aj

Since by the Neck Structure Theorem 2.9, each set Cp,; is k-rectifiable, it
follows that 8% is k-rectifiable and by (10.11) that 3*(8%97) < C(n,v,n,d).
This gives the decomposition whose existence is asserted in Theorem 2.12.
Moreover, from our decomposition, conditions (1)-(6) of that theorem are
satisfied, where the content estimate is in (10.11) and H*(8%%7) = 0.

Finally, we will show that if < n(n,v,€), § < 6(n,v,n,¢), then S¥ C
8k:9m which is the last statement (7) in Theorem 2.12

First, note that if y € Ny, with » = d(y, C,) and § < §(n,v,n,€), then by
the Cone-Splitting Theorem 4.9, the ball B, /5(y) has a (k + 1, 2n)-splitting.
For any € > 0, by the Almost Volume Cone implies Almost Metric Cone
Theorem 4.1, it follows that for some, s = s(e,v) - 7, the ball, Bs(y) is (0, €3)-
symmetric. If in addition, < n(n,v, €), this implies that B,(y) is (k + 1, €)-
symmetric. Hence, y & S*.

Similarly, suppose y € By, (xp) and Bay, (zp) is (k + 1,7)-symmetric. If
in addition, n < n(n,v,e,n’), then it clear that B, (xp) has a (k + 1,7)-
splitting. Then the same argument as above shows that if ' < n'(n, v, €), then
y & SF. Since S* is covered by the union of Ny, By, and 8¥%7 we see that
Sk c 8k9m  This completes the proof of Theorem 2.12, modulo the proof of
Proposition 10.2. O

The remainder of this section will now be devoted to proving Proposi-
tion 10.2.

10.2. Notation: constants and types of balls. Throughout the remainder
of this section we will consider constants &, 6, , €, which will in general satisfy

(10.13) 0<é{<KiI<y<e<e(ln).

We will assume throughout that Ricym > —(n — 1)€. The general case can be
achieved by a standard covering argument and rescaling.'?

As in Definition 4.8, we define the set of points with small volume pinching
by

10.14 V= inf V. )
(10.14) Jnf Ve (@)

Given ¢ < 6, choose a Vitali covering, {Be(yy)}, of Bi(p), such that Be,5(ys) are dis-
joint. By relative volume comparison, the cardinality of such covering is less than C'(n,v,§).
Finding the desired decomposition for Bi(p) is then reduced to finding the corresponding
decomposition for each Be(yy).



RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 517

In what follows, the set with small volume pinching is defined to be
(10.15) Pre(x) :={y € Bay(z) : Ver(y) <V + &5

The constants €, > 0 will denote the constants in the Cone-Splitting
Theorem 4.9 based on k-content. Recall that this theorem states the following:

I VOB, (Prep)) > ex™™* with 0 < b6 < 6(n,v), 7 < 1(n,v,¢), € <
£(8,€,7,m,v), then there exists ¢ € By(p) such that Bs-1(q) is (k,5%)-
symmetric.

Next we introduce the various ball types which appear in the proof. These
are indexed by a, b, ¢, d, e. Every ball B,(x) is one (or more) of these types.
The balls indexed by a, b are of the type as in Proposition 10.2.

(a) A ball B, (z,) is associated to a (k,d,n)-neck region N, C Bay, (z4).
(b) A ball By, () is (k + 1, 2n)-symmetric.
(c) A ball B, (x.) is not a b-ball and satisfies

Vol (Byr (Pr, () ) > 9"

(d) A ball B, (z4) is any ball with P, ¢(z4) # 0 satisfying

Vol(Bw(Trd{(md))) < ey e,

(e) A ball By, (z.) satisfies P, ¢(zc) = 0.

10.3. Statements of Propositions 10.3 and 10.5. The first proposition in
this subsection asserts that a d-ball can be recovered using only balls of type
b,c and e. A key point is that in this covering, the content of the c-balls in the
collection can be taken to be small.

PRrROPOSITION 10.3 (d-ball decomposition). Fiz n > 0, € < €(n,v), v <
v(n,v,€), 6 <6(n,v,n) and§ < &(n,v,€,7v,6,n). Let (M}, gi, pi) dG—Pg (X", d,p)
satisfy Vol(Bi(p;)) > v > 0 and V < inf e p, () Ve-1 (). Assume also Ricpyp >
—(n—1)¢ , Vol(By(P1£(p))) < ey"~*. Then there exists a decomposition

(10.16) Bi(p) € 85U Br,(zs) U By (ze) U Br. (e),

where

(b) each b-ball Bay,(xp) is (k + 1,2n)-symmetric;
(¢) a c-ball By, () is not a b-ball and satisfies VOl( By, Pr. ¢(xc)) > ey krn;
(e) each e-ball By, (x.) satisfies Pr, ¢(xe) = 0
(s)

s S’fl C S and }Ck(gg) =0.
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Furthermore, we have k-content estimates

(10.17) S i+ rk<cn,y),
b e

(10.18) rk < C(n,v)e.
(&
Remark 10.4. In this proposition, the ball types and the pinching set P, ¢
are with respect to the given V < inf e, (p) Ve-1(x) above.

PROPOSITION 10.5 (¢-ball decomposition). Let € < €(n,v), v < y(n,v,€),
6<6(n,v,m), §<&(n, v, €,7,6,n). Let (M, gi, pi) — (X, d, p) satisfy Vol(Bi(p;))
>v>0,andletn >0 and V <inf,ep,p) Ve-1(z). Assume in addition that
Ricyr > —(n = 1)§, Vol(By(P1¢(p))) > ey % and Ba(p) is not (k + 1,2n)-
symmetric. Then there exists a decomposition

Bi(p) C (@0 UNN B1(p)>
Ul By, (20) U Br(2e) U Bry(za) U Br. (ze),
b c e

d

(10.19)

where

(8) N = Ba(p) \ (€0 U U, Bry(w) UU, By () UUy Bralwa) UU, B, () is
a (k,d,n)-neck region;

(b) each b-ball Bay,(xp) is (k + 1,2n)-symmetric;

(c) each c-ball Bay (xc) is not (k+ 1,2n)-symmetric and satisfies

Vol(By,. Py, e(xc)) > eyn_kr"'

c)

(d) each d-ball Bo,,(x4) satisfies Vol(Byy, Py, e(xq)) < efy”*krg;
(e) each e-ball By, (z.) satisfies Py, ¢(ze) = 0.

Furthermore, the following k-content estimates hold:

Z r,’f—i— Z r’j

(10.20) zp€B3/2(p) zq€B3/2(p)
D, et 3 (€ N Bya(p)) < C(n,v),
ze€B3/2(p)
(10.21) Z rk < C(n,v)e.
zc€B3/2(p)

Remark 10.6. In this proposition the ball types and the pinching set P, ¢
are defined with respect to the given V < inf e p,(p) Ve-1 () above.

10.4. Proof of Proposition 10.2 modulo Propositions 10.3 and 10.5. In
this subsection we will state and prove Lemma 10.7. The proof involves using
iteratively the decompositions of Propositions 10.5 and 10.3. Then by using



RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 519

Lemma 10.7 a definite number of times we are able to remove all the ¢-balls and
d-balls, thereby proving Proposition 10.2. This proves Theorem 2.12 modulo
the proofs of Propositions 10.5 and 10.3. These two propositions will be proved
in the remaining two subsections.

LEMMA 10.7. Letn >0, <d(n,v,n) and £ <&(n,v,0,n). Let (M;, gi,pi)
day (X", d,p) satisfy Vol(Bi(p;)) > v >0, V := infep, ) Ve-1(z), Ricyn >
—(n—1)¢. Then

(10.22)  Bi(p) C | Coa UNa N By, (xa) U B, (z6) U Br. () USF,
a b e

where

(1) No C Bay,(z4) are (k,d,n)-neck regions with associated singular set Cp 4;

(2) each b-ball Bay,(xp) is (k + 1,2n)-symmetric;

(3) for each e-ball By, (xe), we have Py ¢(xe) = 0 where Py ¢(xe) = {y €
By, (ze) : Ver, (y) <V +£&h

(4) 8k C S and 3H*(8F) = 0.

Moreover, the following content estimate holds:

(10.23) Sk b+ b <Cn,v).
a b e

Proof. Fix e < ¢e(n,v), v < 7(n,v,e) and 6 < §(n,v,n) such that Proposi-
tions 10.5 and 10.3 hold.

We can assume Bs(p) is not a b-ball or e-ball. Otherwise, there is nothing
to prove.

So assume one of the following two cases holds.

(1) Ba(p) is a c-ball with Vol(B,P1¢(p)) > ey~ *, and with Bs(p) it is not
(k + 1, 2n)-symmetric;
(2) Ba(p) is a d-ball with Vol(B,P;¢(p)) < ey .

It will be evident that up to reversing the order of which decomposition
we apply first, the argument is the same in both cases. Therefore, without
essential loss of generality, we will assume that By(p) is a c-ball.

By the ¢-ball decomposition Proposition 10.5, if £ < &(n,v,d,€,n), then
we have

(10.24)

Bi(p) € (Co UNN By(p)) U U By, () U U B, () U U By, (zq) U U By, ()
b c d e
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and, in addition, the following k-content estimates hold:

(10.25) Db+ kD k43R (C) < C(n),
d e

b
(10.26) > rk < Cn,v)e.

c

By applying the d-ball decomposition of Proposition 10.3 to each d-ball
By, (x4), we arrive at

(10.27)

Bi(p) € 8§ U (€ UNN By(p) U Br,(20) U By (2}) U Br. (o),
b c e

where 8¥ = d S’é is a countable union of k-Hausdorff measure zero sets, and
thus 3*(8%) = 0. Moreover, we have the following content estimates:

(10.28) > (rhF < C(n,v)e+ C(n)C(n,v)e < C(n, v)e,

(10.29) S ok + > rk 4 3M(C) < C(n) + C(n)C(n,v) < C(n, 7).
b e

Next, we repeat the above process verbatim, except that we first apply the
c-ball decomposition of Proposition 10.5 to each c-ball above and then apply
the d-ball decomposition of Proposition 10.3 to each remaining d-ball. The
result is

(10.30)

By (p) - Sg U U(GO,a UXNg N By, (ma)) U U Brb($b) U U Brg (xg) U U B, (xe)’
a b c e

with content estimates H*(8%5) = 0 and

(10.31) rﬁ <14 C(n,v)e, Z(r?)k < (C’(n,v)e)Q,

(10.32) S>3 3 (Coa) < Cni) (1 +C(n, V)e).
b e a

After repeating this process ¢ times we arrive at

(10.33)
Bi(p) € 8F U J(€o.a UNa N By, (a)) U Bry () U By () U By (),
a b c e
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with content estimates 3*(8F) = 0 and

(10.34) S k< Z (C(n,v)e)j AL (é(n,v)e)i,
a §=0

C

i

(10.35) Sk Sk S0t €00 < Cln) Y (Cln. V)e)j .
b e a

=0

Consider the discrete set 8% := {z’}. By the construction, we have

(10.36) By, i+185! C By, (1),

where

(10.37) By (8) := Ue By (a).

Define the set limit by

(10.38) Se =) Bari (L)
i>15>i

It is clear from the construction that 8. C S(X™). Set §; := 2max,r.. Since
Sc C Boyi (8%), by the definition of Hausdorff measure, we have

%)

<2k2 <2k( (n V)E)i,

which implies H*(8.) =0 .

Set 8F := 8§, U U1 8%, Then H*(8%) = 0 and 8¥ C S(X).

Fix € = e(n,v) and y = ~(n, v) such that C'(n,v)e < 1/10. Then by taking
the limit as ¢ — oo, we will arrive at the decomposition

(10.40)  Bi(p) € 8" U| J(Coa UNa N By, (2a)) U By, () U B (e).
a b e

Hfi (S )= inf{ r® where 1, < 8; and S, C UaBr, (ya)}
(10.39)

To see (10.40), if y € By(p) \ 8%, then by (10.38) we must have y ¢ BQ,%(S@)
for some ¢ which, in particular, implies by (10.33) that y belongs to the set on
the right-hand side of (10.40).

By letting i — oo, by (10.35) we have the following content estimates:

(10.41) Y rh<e,
(10.42) SorE+ > k4 HMCoa) < Cln,v).
b e a

This completes the proof of Lemma 10.7. O

Now we can prove the inductive decomposition of Proposition 10.2.
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Proof of Proposition 10.2. For any nand § < d(n,v,n), fix { = &(n,v,6,n)
as in Lemma 10.7. Consider a Vitali covering {Bg2(zf)} of Ba(p) such that
Bezj5(x5) are disjoint. Thus, by volume comparison, the number of such balls
is bounded by a constant L(n,v,&). By scaling the ball Be2(z ) to a unit ball,
we arrive at a unit ball satisfying all the conditions of Lemma 10.7 with

Vii=inf | Ve(y) > inf Vi(y):=V.
17 yeByater) ev) 2 B V)
If we apply the decomposition of Lemma 10.7 to each ball By (xf) in
order, we arrive at the covering

(1043)  Bi(p) € 8" U| J(Coa UNa N By, (24)) U By, () U Br. (e),
a b e

with 74,7, 7e < €2 and
Do Do+ Do £ L v6) < O o),
a b e
3k (8*) = 0.

To finish the proof, it suffices to recover each e-ball by v-balls. In fact,
for each e-ball By, (z.) C Bag(y), consider the Vitali covering { B, (z1)} of
B, (z.) with J € B, (x,) such that Be,, /5(3%) are disjoint. We will show that
Bey, (1) are v-ball for vy = £'3.

Since Py, ¢(ze) := {y € Buar.(xe) : Ver, (y) < Vi + &} = 0, we have for
all y € By, (x.) that Ve, (y) > Vi +£ >V +£. On the other hand, we have
Bugr, (z1) C Bay, (). Therefore, inf Ver, (y) > V +E. Setting vg := &

Bugr, (z2)
we have that Bg,, () is a v-ball as in Proposition 10.2. The content estimate
for v-balls follows easily from the content estimate of e-balls and the Vitali
covering. This completes the proof of Proposition 10.2, modulo the proofs of
Propositions 10.3 and 10.5. U

10.5. Proof of the d-ball covering Proposition 10.3.

Proof of Proposition 10.3. For any 0 < ¢,y < 1/10, let us first consider
a Vitali covering {Bv(x}), x} € Bi(p)} of Bi(p) such that 37/5(1'}) are dis-
joint. Let us separate {Bv(x})} into b-balls, c-balls, d-balls and e-ball’s from
Section 10.2:

N} N} N N}
(1044)  Bip) € |J By(a)u U By u | By u | By ().
b=1 c=1 d=1 e=1

13Recall that v-balls are defined with respect to the background parameter vg
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where Ba, () is (k + 1,2n)-symmetric, Bay(zl) is not (k 1, 2n)-symmetric
and satisfies Vol(B 2P, ¢(z})) > ey" %™, and Vol(B, ¢(w D) < E’y”_k'y”

Pre
and i]’yg( ) = () with P, ¢(z) == {y € Bar(z) : Vye(y ) <V+¢&and Vo
infycp,(p) Ve-1(y). By volume doubling we have
Ny N
(10.45) D AR AR < Cm )t < Cnyr).
b=1 e=1

Let us prove a slightly more refined content estimate for the c-balls and
d-balls. Since By, (), Bay(z}) C Ba(p), we have P, ¢(xc), Py e(4) C Pre(p),
where we should notice that in our setting a d-ball is not an e-ball. The
following content estimates for c-balls and d-balls depend only on the fact that
Py e(xe) and P, ¢(z4) are nonempty. We will only discuss the content estimate
for d-balls, since the case of c-balls is no different from this one. Indeed, for each
ball B, (z}), there exists a point y} € Bay(z}) NP1 ¢(p) which, in particular,
implies B, (y}) C B,P1¢(p). The ball B,(y}) may overlap with other balls
Bw(yé,). Due to the Vitali covering property and volume doubling, the balls
overlap at most C(n) times. By a standard covering argument and noting
Vol(B,(P1£(p))) < ey *, we can now conclude that

Nc Nd
(10.46) d A +) A <Cn,v)e
=1 d=1

For each d-ball B, (x}i), let us repeat this decomposition. We get

Nj N? N N?
(10.47) U By(zy) € | JBye(a) U Bpe(a2) U | Bye(@d) U | Be(a?)
b=1 c=1 d=1 e=1

Furthermore, by the same arguments as above we have the content estimates

Ny NZ Na
(10.48) DY A <) Y AT < Cny)Cn, v)e,
b=1 e=1 d=1
N3 NZ Ni )
(10.49) Z’yzk + Zv% < C’(n,v)eZyk < (C’(n,v)e) .
d=1 c=1 d=1

Therefore, we arrive at the decomposition

(10.50)
2 N} 2 NI 2 NI

N2
cUBeoUU B o U Bs6hoJ U By ).
d=1

Jj=1b=1 j=lc=1 j=le=1
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with content estimates

NG
(10.51) Zv% < (o(n,v)e)z,
2 N 2 NI
Jk n n Ve
(10.5) D23+ 33 < O + Ol
< C(n,7)(1+Cn,v)e),
2
(10.53) ZZ’W’“ < C(n,v)e+ (C( v)e ))2.
j=1c=1

If we repeat this d-ball decomposition for each B.2(x3), then after i iterations
of the decomposition we get

(10.54)

N i N . N i N
cJBeE)ulJUBy@)uJUUBu@EhulJ U B,
d=1

j=1b=1 j=lc=1 j=1e=1

with content estimates

N} ;
(10.55) S A < (C(n,v)e) :
d=1
i—1 .
(10.56) ij+227]k<0n7 Z(C( V) )j,
7=1 b=1 j=le=1 j=0
(10.57) Zzw < Z ( )
j=1c=1

Let € < ¢(n,v) and v < (n,v,€) be such that v and e satisfies Theorem 4.9
and C(n,v)e < 1/10.

Consider the discrete set 8F := {z%}. By construction, we have Sfﬂ C
B,yigf. Additionally,

(10.58)
N;

Né i,
Vol(B,:8f) < 3 Vol(Byi(ah) < Cn) Y 4™ < Cn)(Cln,v)e) 7.
d=1

d=1
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Denote the Hausdorff limit of Sf by S’; = lim;_, 0 Sf Then by (10.58)
and Sf_H C BViSf, for any i > 1, we have

(10.59) Vol(B,:8) < C(n)107 "5~k

This implies 3*(8%) = 0.

We claim that SS C S. To see this, assume there exists = € S g\S . This im-
plies that for any € >0, there exists r, « >0 such that dey (By, , (), By, ,(0"))
< €1y . On the other hand, since z € g’;, we have that P, ¢(z) is nonempty.
Hence, applying the volume convergence in [Col97] and [Che()l] to By, ()
gives V+¢ > 1—¢” providing € < € (n, v, €”). Therefore, we arrive at V > 1—¢,
which implies Bo(p) C P1¢(p). In particular, Vol(B(P1¢(p))) > Vol(Ba(p)) >
v > 0 which contradicts the d-ball assumption if € < v.

On the other hand, since C(n,v)e < 1/10, the content estimate (10.57)
holds. Therefore, we arrive at the desired decomposition. This completes the
proof of Proposition 10.3. O

10.6. Proof of the c-ball covering Proposition 10.5. In this subsection we
prove Proposition 10.5, which is concerned with the decomposition of a c-ball.
We will construct a neck region on Bj(p) which is GH-close to a ball in some
cone RF x C(Y).

Proof of Proposition 10.5. Recall that in the definition of neck region we
have 7 = 7, = 1071%%,. Fix ¢ > 0 and v < v(n,v,e€) such that Theo-
rem 4.9 (cone-splitting based on k-content) holds. By Theorem 4.9 we have
that By -1(q) is (k,8")-symmetric for some ¢ € By(p). In particular, By-1(q)
is 0"2-close to a metric cone R¥ x C(Y).

Consider the §"2-GH map ¢41 : Bs—1(0%,y.) — Bg—1(g) and the approx-
imate singular set £41 := 14,1 (R* x {y.}) N Bs(p). Choose a Vitali covering
{B,2 (m}), x} € Lg1} of L4 such that B, s (:c}) are disjoint.

We denote the different types of balls Bgv(:c}) as follows:

(1) b-balls if Bgv(x}) is (k + 1, 3n/2)-symmetric;
(2) éballs if By, (x}) is not (k + 1,3n/2)-symmetric and Vol(B., P, ¢(x})) >

e:yn—k,yn;
(3) d-balls if Vol(BV_ViP%g(x})) < eynhmn,
We have
(1060)  Lgr €U B (8) WU Brsy (32) U By (52)
b c p

Therefore, we arrive at an approximate neck region N':

(10.61) N = By(p) \ (U Bpay (@) U By (3 U BTQV(Q:«;)).
b c d
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The approximate neck N is not yet the one we are looking for, since c-
ball content is not small. Therefore, we continue to refine the construction by
redecomposing the ¢-balls in the decomposition. Once again, by applying the
Content Cone-Splitting Theorem 4.9 to each ¢é-ball, we have the approximate
singular set Lz1 , := 1 (RF x {y.}) N By, (2}) associated with a §"y-GH map

ng% e B’Y5' I(Ok,yc) — B'Y‘;/ 1( 1)
Consider the Vitali covering {B 2.2 (x f)} of

(10.62) UL\ (UBTsV(:Y:é) U UBTBW(fiz)),
c b d
such that B a2 (x f) are disjoint and
(10.63) 22 e Lo\ (U Brsp (i) ulJ Byas (i) ).

In particular, if v < 107!%, then the balls B a2 (z f) are also mutually disjoint
with B, (Z}) and B, a. (& d).

We denote the ball By, 2 (:c?c) by By.2(%7), Bay2(£2) and By.2(&3) according
to the same scheme as above. Thus, we have

(10.64) N*:=Bo(p)\ | UBy(EHU | (UBW(Q?Z)UUBW(%))
c 1<5<2 b d

After applying this decomposition 4 times in succession to each é-ball, we
get an approximate neck region given by

(1065 N'=Bp)\ [ UBn@Hu U (UBy @) ulJByu())
i b d

Set
€. = {70}
By construction we have éffl - Byl(éé) Therefore, we can define the Haus-
dorff limit:
(10.66) Co := lim €.
1—00

By letting ¢+ — oo, we get

(10.67) N := By(p (GOUUBrb #p) U\ Br, (2 )
d

Set

Cy 1= {&a, &}
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By construction, the balls B,4;_() are disjoint for & € €4 and in addition,

(10.68) z¢  |J B,

Zj€é+,7:g >Tz

Moreover, € := é+ U @ is a closed set.

It is easy to check that N satisfies all the conditions of a (k,d,n)-neck
region except (n5), i.e., Lip 7, < ¢§'. Therefore, our construction requires some
additional refinement.

In the following construction, in which we refine our covering in order to
get the desired (k, 9, 17) neck, we will use zy, 4 € €+ to denote the center of a
b-ball and d-ball of N, and the associated radius rwb and 7z,, respectively.

By the construction of By, (Z) with Z € @, there exists some &ball
17, (Zc) which is (k,8?)-symmetric with respect to £z .-17 such that

(~) C Byy17, (%) and & € Lz 17 . It is easy to see that for any

> 7, the ball B, -1,(Z.) is also (k,&®)-symmetric with respect to a set

. This follows from the volume pinching estimate

W&ﬁz (536) - fol(v%cn <<

and the fact that B.-1,(.) is (k, 6")-splitting since this ball is contained in a
(k, 6")-symmetric ball with comparable radius.

By~
Br,
N>
Lz,

For convenience sake we will introduce the following notation.

(10.69) For any # € C, let Z. denote the center of the &-ball satisfying
' the above properties.

To refine the approximate neck N, let us build a good approximate singular
set 8. We define § to be a subset of UzceBrsi, (%) such that y € § if and only
if one of the following holds:

( ) yE L:EC Rt with d(y7 é) = d(y,j?) < ’Fia
(2) y € Lz, 41, with r:=d(y,C) = d(y,T) > 75.
Now we define a radius function on 8 such that
re = 02747 if d(z, é) =d(z, %) < Tz,

(10.70) N
e := 0%d(z, C) otherwise.

It is obvious that |Lipr,| < §2 and € ¢ 8. Choose a maximal disjoint collection
{B2, (), € 8} such that the center set €, C 8 contains €. This allows us
to build a neck region

(10.71) N = Bg(p)\(éou U Brx(x)).

zeCy
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Notation. In order to make the various notations consistent, we put Cg :=
Co and € := C4 U Cy.

Next, we will check that N is a (k,d,n)-neck if &' < 6’(d,~,n) sufficiently
small.

The Lipschitz condition (n5) and the Vitali condition (nl) in the neck
region are satisfied by the construction. If &' < §(d,v,7), let us check the
volume ratio condition (n2). In fact, for any x € €, let Z € € be such that
d(z, @) = d(z, %). Denote by Z, the associated center point of é-ball such that
Bi, (Z) C By-17,(Z.) . For &' < ¢'(n,v,6) small and y € By, Lz, s5-3,,, we
always have |Vs,.. (z) — Vs, (y)| < 6% since B, (z) and B, (y) are §'r,-close
to the same cone at scale r,. On the other hand, by the definition of a ¢-ball,
there exists

S Bé/TILjC,573TI M 935*37%,5(52'0)-
This implies |Ves-s,, (y) — V| < & Therefore, if € < §2°, we conclude that
Vs, (x) — V| < 6%, By (2.2), the monotonicity of the volume ratio, we finally
get
[Vsr, () = Vs-1(x)| < 6%
Thus, the volume ratio condition (n2) is satisfied.

Next, note that if 6’ < 6’(d,~,n), it follows from the definition of § that if
x € €, then B,(7) is not (k + 1,n)-symmetric and B,(z) is (k, §?)-symmetric
for all 6=1 > 7 > r,. To see this, first observe that B,(x) is (0, ?)-symmetric
by the volume pinching estimate (n2) for &' < §(n,v,n,d). On the other
hand, B, (z) C B,-1,(%.) and these two balls are comparable. Moreover, the
latter ball is (k,8")-symmetric with respect to £z -1, but not (k+1,3n/2)-
symmetric. From this we conclude that B, (x) is not (k + 1, 7)-symmetric and
B,(x) is (k, %)-symmetric. Hence we prove the condition (n3).

The covering condition (n4), which states that the approximate singular
set Ly, with » > r, is covered by B;,(C), is satisfied by the construction
of N and N. To see this, for each x € €, denote the associated Z € C with
d(z,@) = d(#,z). Let . denote the associated center point of &ball such
that B, () C By-17,(%). Since B,-1,(Z.) is a é-ball, and since B,-1,(Z.)
is not (k + 1,3n/2)-symmetric, by the Cone-Splitting Theorem 4.6, we have
LI,T C B‘rr/4(£’a~:c,'y*17")'

On the other hand, by the construction of the approximate neck f\f, we
have that £z -1, C BTT/4(é). Noting from the construction of € that € C €,
we arrive at

(1072) LZL‘,T - BTT/4L5:C,7*1T - BTT/Q(é) - BTT‘/Q(G)7
which proves the condition (n4). Therefore, we have shown that if £ <
&(n,v,7,6,n), then N is a (k, d,n)-neck.

We now focus on the content estimates of Proposition 10.5.
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Notation. Denote the various types of ball B, (x) with « € C by B, (z),
B, (zc), By,(zq) and By (z.), where By, (xp) is (k+1, 2n)-symmetric, Ba, (z.)
is not (k + 1,2n)-symmetric and Vol(By, Py, ¢(zc)) > ey %1, By, (4) satis-
fies Vol(Byr, Py, ¢(7a)) < ey %72, and Bay,, (7.) satisfies P, ¢(ze) = 0.

The content estimates rely on the Neck Structure Theorem 2.9. As men-
tioned prior to the definitions of the various types of balls a, b, ¢, d, e, every
ball is at least one of these types. Therefore, the following is a restatement of
(2.7) of the Neck Structure Theorem (equivalently (9.1)):

H*(Co N Byss(x)) + Z rh

€8 (z)
(10.73) e
CS de Y e X teom
rc€B15/8(x) z4€B15/8() Te€By5/5(7)

In order to finish the proof, it suffices to show that the content of c¢-balls is
small. This is reasonable since the approximate neck N does not contain any
¢-balls at all. Thus, we need to verify that our process of going from N to N
did not create too many c-balls.

Denote the center of the c-balls B, (z.) by a subset C. C €NB3/5(p). From
the construction of the approximate neck N and the definition of 8, it follows
that § C UzeeBrz (T). When considering 1(C)we will restrict attention to
cach By, (%) with # € €. Let us first consider the content of €. in Bz, ().
Since Pz, ¢(Z4) has small volume, we have the following lemma.

LEMMA 10.8. u(ecm U Bgfdﬂ(azd)) < C(n,v)e.
fdéé

Proof. We will see that it suffices to prove that for each d-ball B, (Zq)
with z4 € C, we have

(10.74) #(€e 1 Bysa(ia) ) < Cln,v)ep(Braz, (3a) ).

In fact, since Br4;,(Z4) are disjoint and y is a doubling measure with 7 = 7,
we have by (10.74) that

,u(@c N U Bg,:d/z(id)> < Z M(Gc N B3fd/2(53d))

(10.75) Zq€C Zq€C
< C(n,v)e Z M(Brflfd(fd)) < C(n,v)eu(Byss(p)) < C(n, v)e,
#4€C

MAs usual, let p = 3
(k, ,n)-neck region N.

Ieerﬁéz + H*|e, be the packing measure associated with the
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where in the last inequality, we have used the Neck Structure Theorem 2.9.
Thus, we only need to prove (10.74).

By the definition of r, in (10.70), we have for any z. € C. N Bs;,/2(Za)
that r. < 106?74. Since B, (x.) is a c-ball, there exists y € By, (z.) such
that [Ver,(y) — V| < & In particular, this implies y € Pr, ¢(Z4) N Bsz, /3(Za)
and Bz, 10(y) C ByiyPr,e(E4). On the other hand, since r. < 106%7¢ and
d(y,zc) < dre, we have B, 20(2e) C By, /10(Y) C ByigPrye(Ta)-

Consider a maximal disjoint collection { Bz, 20(2}), ; € CcN Bsg, /9(Zq) }
with cardinality N. We have

(10.76)
NC(n,v)y"rg < ZVOI(BWd/Qo(fU;')) < VOl(Bwfdind,g(fd)) < ey R

Ty

Therefore, we have N < eC(n,v)y™*, and so

#(Ce N1 Bazyyo(ia) ) < 57 (€1 Busys(a)) < Clm)NA*7
(10.77) 2,

< eC(n,v)ik < eC(n, v)u(Braz, (Ta))-

This finishes the proof of (10.74). Thus, the proof of Lemma 10.8 is complete.
(]

Having controlled the content of €. in d-balls in Lemma 10.8, we will now
consider the content of €. in b-balls. However, unlike the case of cz—balls, there
exists no a priori small volume set. Thus, we will need to argue in a different
way from in Lemma 10.8.

Remark 10.9. Prior to beginning the proof proper, we will give a brief
indication of the argument.

Let x. € By, (%3). In the definition of § (see (10.70)) we require that 8 is a
subset of U;_zB;s;, (%). Therefore, we may assume . € B.s; (7). Since each
b-ball is (k+1, 31/2)-symmetric and each c-ball is not (k+1, 2n)-symmetric, this
will force the c-ball B, (x.) C Bas, (Zp) to have small radius 7. < 7. From the
definition of r, in (10.70) there must exist some 7 € € with d(z., Z) = d(z., C)
such that 7z < 7. By (10.68) we have that & ¢ B, (7). Thus, one sees
from the definition of 7, in (10.70) that z. € A.ss (15,37, (Tp); see (10.78)
below for further details. Therefore, the content estimate of C. N By, (&) will
be controlled by the content estimate of C. N A sz (15737, (Zp) which, by a
simple covering argument, is small.

Now we begin the actual proof the content estimate of C. N Bj, (Zp). For
0 < 6 < €, we define a subset of €, by those points with small radius compared
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with a b-ball by
(10.78) = |J {yeCcn By (@) : ry <577}

f,eCy
We will see below that Cs contains all the centers of c-balls inside b-balls.
Indeed, note that if £ < 5(5, d,e,m,v,v) and ry > §47467, with y € €N
By, (Zp), then the ball By, (y) is (k + 1,5n/3)-symmetric which, in particular,
implies that Ba,, (y) is not a c-ball. Therefore, to estimate the content of c-ball
in B—balls, it will suffice to consider the set Cj;.
From the definition of €z, we can see that C;N B(lig)Tgfb (Zp) = 0. In fact,

if y € C;N B(1—8)73fb (Zp), then by the definition of 7, there must exist & € e
such that d(y, #) = d(y, C) with 7z < 7. By (10.68), this implies & ¢ B sz (7).
This contradicts 62d(y, &) = r, < 6*7467, since d(y, &) > 6757,. Therefore, we
have shown that

(10.79) C5 N B35, (Tn) = 0.

Let Bj,(Z4) denote the d-balls with 4 € € in the approximate neck re-
gion N.

By removing the points in d-balls, we have the following content estimate
of Csx:

0

LEMMA 10.10. Let 6 < 6(7,€) < € and £ < £(5,0,n,v,7,¢,1). Then
(10.80) e (UB;d(jd)) <
d

Proof. We will divide the proof into two steps. In the first step, we
consider content of C; N B, sz (Zp) which is actually equal to the content of
CsNAq_§)rs7, 37, (Zp) by (10.79). In the second step, we will consider content
of the remainder Cz N A sz, 7 (%) which is zero after taking out all the points
of de (i‘d> .

The reason for this division of cases based on the radius 737 is that the
construction of the approximate neck N satisfies (10.62) and (10.68).

Step 1. Denote Cj ; := C5N (Uibeé BTsz(i'b)). We will show that u(Gg’l\
(U Biy(2a))) < C(n,~)d. By the Ahlfors regularity of measure y, it will
suffice to prove u(Cz N Bray, (Tp)) < C(n,fy)gu(BT4;b(§:b)) for each By, ().
Since C5 N B _5),37, (%) = 0 in (10.79), we will only need to prove

(1081) (€5 N Ay 5ymsm, (14500, (78)) < C179) -8 1 Bra, (0)).

Let us prove (10.81). In fact, by the construction of N, there exists a éball
Byy-17,(Z¢) as in (10.69) which is not (k+1, 31/2)-symmetric such that Bz, (%)
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C Byy-15,(Zc). Assume the ¢-ball B,
to £z

~17,(Z¢) is (k,d")-symmetric with respect

For £ < 5(5,5, €,V,n,", 77), we must have
eg NA

Teyy Myt

(1-108)737,(14+108) 737, (@)
(10.82) i
C <B62 r3rbLim*1fb N A(17105)T3fb,(1+105)73fb(%))‘

Otherwise, there will be another splitting factor for B, 15, (Z.) which would
contradict the fact that B. -1, (T.) is not (k + 1,37n/2)-symmetric.
Now consider a collection of maximal disjoint balls

(1083) {BSTgfb(xC) $c € e ﬂ A(l 5)7_3,”7 (1+5)T37‘b (ajb)}

Denote this set by {Bjs; (i),i = 1,..., K} with cardinality K. By the
covering property in (10.82), we have K < C(n, 7)51*’“. Therefore, we arrive at

K
N(GS N A §)rsr, (145)r37, (jb)> < Z “(33873%(“))

=1

(10.84) < K- A(n) -3k .6k ¥

< C(“/Y)'fs'lef
< C(n,y) - 0 - p(Braz, (Tn)),

where we have used the Ahlfors regularity of p for (k,d,n)-neck regions in
Theorem 2.9. Thus, we have proved (10.81). Since Bz, (acb) are disjoint and
C5 N B(1_ 5,37, (Zp) = 0, and noting the definition of Cs 1, we have

(10.85)
#(Cs1\ (UBm (s?:d))) < p(Brsg, (8) N C5 < (A gy s, 5, (8) N €;)
d i}béé i‘béé
< C(n,v) 5 Z Bz, (%))
xbee

< C(n,7)6p(Ba(p)) < C(n,7)8.

Step 2. Denote C;, := C; \ C5, to be the centers of c-balls outside
Byar, (). We will show that €, \ (Ud B, (:zd)) = 0. One key ingredient
in what follows is the construction of the approximate neck region satisfying
(10.62) and (10.68). Roughly speaking, this implies there exits no approximat-
ing singular set outside B,s;_(Z) with & € C.

For a given b-ball B, (Z), consider

o= (€N Br@)\ [ U Brp@

r€C, T <Ty
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Let us see that it will suffice to prove C5, = ) for any & € C. Indeed, assume
C5, = 0 for any I, € C. Then we will show that Cso \ (Ud B,:d(fcd)) = (.
Assume there exists y € s, \ (Ud B;d(a?d)> # (0. Let By, (&) be the minimal
sized ball such that y € By, (Z3). Note that 7 > 0 since otherwise y € Cp, which
is not a point in C.. Therefore, we have y € C5,. But this is a contradiction
as Gz, = 0. ]

We will now prove that €z, = (). For a given b-ball Bx(Z;), if there exists

y € C;,, then by the definitions of r,, €5, and Cj; there must exist § € € such
that

(10.86) 86747y > 5 := d(y, §) = d(y, €) > 7y/2.

Here, the last inequality follows from the definition of Cj,, while the first

inequality follows from the definitions of r, and ég.
Let B,-1;,(Yc) be the associated é-ball covering By, (¢) as in (10.69). Then

by the definition of $ we have y € Ly, 15 By the construction of the approx-
imating neck N through (10.62) and s < §v2%7,, we have

(10.87) Lgon-15 C UBT%@) u J Bn@.

zeel ZECFz<iy

Since y ¢ B;s;,(T) by the definition of Cj,, there exists Z € € such that

d(y,z) < 7s < s, which contradicts that d(y,€) = s. Thus, we have finished
Step 2.

Fix 6 < S(n,%e). Since €5 = €5, U C; , by combining Steps 1 and 2, we
complete the proof of Lemma 10.10. U

The bound on the content of c-balls follows easily from Lemmas 10.8 and
10.10. This completes the proof of Proposition 10.5 and hence, of Proposi-
tion 10.2 and Theorem 2.12 as well. U
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