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Rectifiability of singular sets of
noncollapsed limit spaces with Ricci

curvature bounded below

By Jeff Cheeger, Wenshuai Jiang, and Aaron Naber

Abstract

This paper is concerned with the structure of Gromov-Hausdorff limit

spaces (Mn
i , gi, pi)

dGH−→ (Xn, d, p) of Riemannian manifolds satisfying a

uniform lower Ricci curvature bound RicMn
i
≥ −(n − 1) as well as the

noncollapsing assumption Vol(B1(pi)) > v > 0. In such cases, there is a

filtration of the singular set, S0 ⊂ S1 · · ·Sn−1 := S, where Sk := {x ∈ X :

no tangent cone at x is (k + 1)-symmetric}. Equivalently, Sk is the set of

points such that no tangent cone splits off a Euclidean factor Rk+1. It is

classical from Cheeger-Colding that the Hausdorff dimension of Sk satisfies

dimSk ≤ k and S = Sn−2, i.e., Sn−1 \ Sn−2 = ∅. However, little else has

been understood about the structure of the singular set S.

Our first result for such limit spaces Xn states that Sk is k-rectifiable

for all k. In fact, we will show for Hk-a.e. x ∈ Sk that every tangent

cone Xx at x is k-symmetric, i.e., that Xx = Rk × C(Y ) where C(Y )

might depend on the particular Xx. Here Hk denotes the k-dimensional

Hausdorff measure. As an application we show for all 0 < ε < ε(n, v) there

exists an (n− 2)-rectifiable closed set Sn−2
ε with Hn−2(Sn−2

ε ) < C(n, v, ε),

such that Xn \ Sn−2
ε is ε-bi-Hölder equivalent to a smooth Riemannian

manifold. Moreover, S =
⋃
ε S

n−2
ε . As another application, we show that

tangent cones are unique Hn−2-a.e.

In the case of limit spaces Xn satisfying a 2-sided Ricci curvature bound

|RicMn
i
| ≤ n− 1, we can use these structural results to give a new proof of

a conjecture from Cheeger-Colding stating that S is (n−4)-rectifiable with

uniformly bounded measure. We can also conclude from this structure that

tangent cones are unique Hn−4-a.e.

Our analysis builds on the notion of quantitative stratification intro-

duced by Cheeger-Naber, and the neck region analysis developed by Jiang-

Naber-Valtorta. Several new ideas and new estimates are required, includ-

ing a sharp cone-splitting theorem and a geometric transformation theorem,

which will allow us to control the degeneration of harmonic functions on

these neck regions.
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1. Introduction and statement of results

This paper is concerned with the structure of noncollapsed limit spaces

with a lower bound on Ricci curvature:

RicMn
i
≥ −(n− 1),(1.1)

Vol(B1(pi)) > v > 0.(1.2)

Our results represent both a qualitative and quantitative improvement over

what was previously known about noncollapsed Gromov Hausdorff limit spaces
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with Ricci curvature bounded below. For 2-sided Ricci curvature bounds,

|RicMn
i
| ≤ n− 1,(1.3)

we are able to combine our techniques with the Codimension 4 Conjecture,

proved in [CN15], in order to give a new proof that the singular set is recti-

fiable with a definite bound on its (n − 4)-dimensional Hausdorff measure, a

result originally proved by the second and third named authors of this article

in [JN21].

1.1. The classical stratification. Let C(Y ) denote the metric cone on the

metric space Y . We begin by recalling the following definition.

Definition 1.1. The metric space X is called k-symmetric if X is isometric

to Rk × C(Z) for some Z.

Remark 1.2. We say X is k-symmetric at x ∈ X if there is an isometry of

X with Rk × C(Z) which carries x to a vertex of the cone Rk × C(Z).

In [CC97] a filtration on the singular set S was defined. Namely,

∅ ⊂ S0 ⊆ · · · ⊆ Sn−1 := S ⊆ Xn,(1.4)

where

Sk := {x ∈ X : no tangent cone at x is (k + 1)-symmetric}.(1.5)

The set Sk \ Sk−1 is called the kth stratum of the singular set. A key result of

[CC97] is the Hausdorff dimension bound

dim Sk ≤ k for all k.(1.6)

In [CC97], [CN15], by showing that Sn−1 \Sn−2 = ∅, respectively Sn−1 \Sn−4

= ∅, the following sharper estimates were proved:

dim S ≤ n− 2 if RicMn
i
≥ −(n− 1),(1.7)

dim S ≤ n− 4 if |RicMn
i
| ≤ (n− 1).(1.8)

Note that for noncollapsed limit spaces satisfying the lower Ricci bound

(1.1), the singular set can be dense and one can have Hn−2(S∩B1(p)) =∞; see

Example 3.4. For general strata, essentially nothing else beyond the dimension

estimate in (1.6) was previously known about the structure of the sets Sk.

In the present paper, we will show that Sk is k-rectifiable for all k and in

addition, that for Hk-a.e. x ∈ Sk, every tangent cone at x is k-symmetric; see

Theorems 1.9 and 1.12.1

1At the above-mentioned points, uniqueness of tangent cones can actually fail to hold for

k < n− 2; see Example 3.3. Namely, the non-Euclidean factor need not be unique. However,

as a consequence of Theorem 1.12, it will follow that the tangent cones are unique Hn−2-a.e..
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For the case in which the lower Ricci bound (1.1) is strengthened to the

2-sided Ricci bound (1.3), the singular set is closed. In this case, we will

give new proofs of conjectures stated in [CC97]. Specifically, the singular set

S = Sn−4 is (n− 4)-rectifiable and has an a priori bound on its (n − 4)-

dimensional Hausdorff measure:

Hn−4(S ∩B1(p)) ≤ C(n, v).

The first proofs of those conjectures were given by W. Jiang and A. Naber

in [JN21], who even proved a priori L2 curvature estimates on Mn; for ear-

lier results in which integral bounds on curvature were assumed, see [Che03],

[CCT02]. The proofs in the present paper are based on new estimates, which

assume only a lower bound on Ricci. In that case, the stronger estimates

proved [JN21], which require assuming a 2-sided bound, can fail to hold.

1.2. The quantitative stratification. The quantitative stratification involves

sets Skε,r, whose definition will be recalled below. The quantitative stratifica-

tion was introduced in [CN13a] in the context of Ricci curvature, in order to

state and prove new effective estimates on noncollapsed manifolds with Ricci

curvature bounded below and, in particular, Einstein manifolds. These quan-

titative stratification ideas have been since used in a variety contexts (see

[CN13b], [CHN13], [CHN15], [CNV15], [NV17b], [BL15], [Chu16], [Wan16],

[NV19], [EE19]) to prove similar results in other areas including minimal sub-

manifolds, harmonic maps, mean curvature flow, harmonic map flow, critical

sets of linear elliptic PDE’s, bi-harmonic maps, stationary Yang-Mills and free

boundary problems.

Next, we recall some relevant definitions; compare (1.4). Let X denote a

metric space.

Definition 1.3. Given ε > 0 we say a ball Br(x) ⊂ X is (k, ε)-symmetric

if there exists a k-symmetric metric cone X ′ = Rk ×C(Z), with x′ a vertex of

Rk × C(Z), such that dGH(Br(x), Br(x
′)) < εr.

Remark 1.4. If ι : Br(x
′)→Br(x) is the εr-GH map and Lx,r := ι(Rk×{x′}

∩Br(x′)), then we say Br(x) is (k, ε)-symmetric with respect to Lx,r.

Definition 1.5.

(1) For ε, r > 0, we define the kth (ε, r)-stratum to be Skε,r \ Sk−1
ε,r , where

S−1 :=∅ and for k≥0,

(1.9)

Skε,r := {x ∈ B1(p) : for no r ≤ s < 1 is Bs(x) a (k + 1, ε)-symmetric ball}.

This should be seen as a first step toward a conjecture of [CN13], [Nab14], stating that

tangent cones are unique away from a set of codimension three. Theorems 1.9 and 1.12 give

the precise results in this context.
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(2) For ε > 0, we define the kth ε-stratum to be Skε \ Sk−1
ε , where S−1 := ∅

and for k ≥ 0,

Skε :=
⋂
r>0

Skε,r(X)

:= {x ∈ B1(p) : for no 0 < r < 1 is Br(x) a (k + 1, ε)-symmetric ball}.

(1.10)

Remark 1.6. The standard and quantitative stratification are related as

follows:

Sk =
⋃
ε>0

Skε .(1.11)

One can see this through a simple, instructive (though not a priori obvious)

contradiction argument.

To summarize,

• The sets Sk are defined by grouping together all points x ∈ X , all of whose

tangent cones fail to have k + 1 independent translational symmetries.

• The sets Skε are defined by grouping together all points x ∈ X such that all

balls fail by a definite amount to have at most k+1 independent translational

symmetries.

• The sets Skε,r are defined by grouping together points of x ∈ X such that all

balls Bs(x) of radius at least r fail by a definite amoun to have at most k+ 1

translational symmetries.

1.3. Significance of the quantitative stratification. According to (1.10),

(1.11), the quantitative stratification carries more information than the stan-

dard stratification. Thus, estimates proved for the quantitative stratification

have immediate consequences for the standard stratification. The latter, how-

ever, are significantly weaker. In order to illustrate this, we introduce the

following notation.

Notation. Let Br(A) =
⋃
a∈ABr(a) denote tubular neighborhood of A ⊂

X with radius r.

In [CN13a], the Hausdorff dimension estimates (1.6) on Sk were improved

to the Minkowski type estimate,

Vol(Br(S
k
ε,r ∩B1(p))) ≤ c(n, v, ε, η) · rn−k−η (for all η > 0).(1.12)

This is further sharpened in the present paper; see Theorem 1.7, where the η

in (1.12) is removed.

A complementary point to (1.12), which is crucial for various applications,

accounts for much of the significance of the quantitative stratification. Namely,

for solutions of various geometric equations, we have on the complement of the
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tubular neighborhood (1.12) that the solution has a definite amount of regu-

larity, as measured by the so called regularity scale; see also Theorem 1.7 for

the improved version. Essentially, this means that if x lies in the complement

of Br(S
k
ε,r ∩B1(p)), then on Br/2(x) the solution satisfies uniform scale invari-

ant estimates on its derivatives. A key element of this is the existence of an

ε-regularity theorem, stated in scale invariant form. For balls of radius 2, the

ε-regularity theorem typically states the following: There exists k (whose value

depends on the particular equation being considered) such that

If B2(x) is (k, ε)-symmetric, then B1(x) has bounded regularity.

In the context of the present paper, see Theorem 4.35 for the appropriate

ε-regularity theorem for spaces with 2-sided Ricci curvature bounds. Such

results allow us to turn estimates on the quantitative stratification into classical

regularity estimates on the solution itself. See Theorem 1.16, as well as the Lp

estimates proved in [CN13a], [CN15].

1.4. Main results on the quantitative stratification. In this subsection, we

give our main results on the quantitative stratification for limit spaces satis-

fying the lower Ricci bound (1.1) and the noncollapsing condition (1.2). Our

first result gives us k-dimensional Minkowski estimates on the quantitative

stratification. That is, we can remove the constant η > 0 in (1.12).

Theorem 1.7 (Measure bound for Skε,r). For each ε > 0, there exists

Cε = Cε(n, v, ε) such that the following holds. Let (Mn
i , gi, pi)

dGH−→ (X, d, p)

satisfy Vol(B1(pi)) ≥ v > 0 and RicMn
i
≥ −(n− 1). Then

Vol
(
Br
(
Skε,r
)
∩B1(p)

)
≤ c(n, v, ε) · rn−k.(1.13)

Showing that one can replace (n − k − η) in (1.12) by n − k in (1.13)

requires techniques which are fundamentally different from those used to es-

tablish (1.12) and arguments which are significantly harder. This is because

such estimates are tied in with the underlying structure of the singular set

itself. On the other hand, the new techniques enable us to prove much more.

Our next result states that the set Skε is rectifiable. Let us recall the definition

of rectifiablity for our context.

Definition 1.8. A metric space Z is k-rectifiable if there exists a countable

collection of Hk-measurable subsets Zi ⊂ Z, and bi-Lipschitz maps φi : Zi →
Rk such that Hk(Z \

⋃
i Zi) = 0.

For further details on rectifiability, especially for subsets of Euclidean

space, see [Fed69]. Our main theorem on the structure of the quantitative

stratification Skε is now the following:
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Theorem 1.9 (ε-Stratification). There exists Cε = Cε(n, v, ε) for each

ε > 0 such that the following holds. Let (Mn
i , gi, pi)

dGH−→ (X, d, p) satisfy

Vol(B1(pi)) ≥ v > 0 and RicMn
i
≥ −(n− 1). Then

(1.14) Vol
(
Br
(
Skε (X)

)
∩B1(p)

)
≤ Cε · rn−k.

In particular,

Hk(Skε ∩B1(p)) ≤ Cε.(1.15)

Moreover, the set Skε is k-rectifiable, and for Hk-a.e. x ∈ Skε , every tangent

cone at x is k-symmetric.

Remark 1.10. The techniques used in proving the above results provide

an even stronger estimate than the Minkowski estimate of (1.14). Namely,

they lead to a uniform k-dimensional packing content estimate: Let {Bri(xi)}
denote any collection of disjoint balls such that xi ∈ Skε . Then∑

rki ≤ Cε.(1.16)

Remark 1.11. The structural results above are actually sharp. In Exam-

ple 3.2 we will explain a construction from [LN20] of a noncollapsed limit space

Xn such that

S = Sk = Skε ,

0 < Hk(S) <∞,

for which Skε is both k-rectifiable and bi-Lipschitz to a k-dimensional (fat)

Cantor set. In particular, the singular set has no manifold points. However,

it is still an open question to show that in the presence of a 2-sided bound on

Ricci curvature, the singular set must contain manifold points.2

1.5. Results for the classical stratification. We now state our main results

for the classical stratification Sk. They follow as special cases of the preceding

results on the quantitative stratification.

Since Sk =
⋃
ε S

k
ε , the following theorem is essentially an immediate con-

sequence of Theorem 1.9.

Theorem 1.12 (Stratification). Let (Mn
i , gi, pi)

dGH−→ (Xn, d, p) satisfy

Vol(B1(pi)) ≥ v > 0 and RicMn
i
≥ −(n − 1). Then Sk is k-rectifiable and

for Hk-a.e. x ∈ Sk, every tangent cone at x is k-symmetric.

2If Mn is Kähler with a polarization, then it has been shown in [DS14], [Tia13] that

the singular set is topologically a variety. However, the smoothness or even the bi-Lipschitz

structure of the singular set is still unknown even in this case.
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Remark 1.13. Note that unlike in the Hausdorff measure bound on Skε ⊂
Sk given in (1.15), we are not asserting a finite measure bound on all of Sk.

Example 3.4 shows that such a bound need not hold. However, as will become

clear in the proof of Theorem 1.12, to prove results which concern the structure

of the sets Sk, it is crucial to be able to break the stratification into the well-

behaved finite measure subsets Skε .

We end this subsection with two results which are essentially direct appli-

cations of Theorems 1.9 and 1.12.

Theorem 1.14 (Manifold structure). Let (Mn
i , gi, pi)

dGH−→ (Xn, d, p) sat-

isfy Vol(B1(pi)) ≥ v > 0 and RicMn
i
≥ −(n − 1). Then there exists a subset

Sε ⊆ Xn which is (n − 2)-rectifiable with Hn−2
(
Sε ∩ B1(p)

)
≤ C(n, v, ε) and

such that Xn\Sε is bi-Hölder homeomorphic to a smooth Riemannian manifold.

Theorem 1.15 (Tangent uniqueness). Let (Mn
i , gi, pi)

dGH−→ (Xn, d, p) sat-

isfy Vol(B1(pi)) ≥ v > 0 and RicMn
i
≥ −(n − 1). Then there exists a subset

S̃ ⊆ X with Hn−2(S̃) = 0 such that for each x ∈ X \ S̃, the tangent cones are

unique and isometric to Rn−2 × C(S1
r ) for some 0 < r ≤ 1.

1.6. 2-sided bounds on Ricci curvature. In this subsection, we state a re-

sult for noncollapsed limit spaces with a 2-sided bound on Ricci curvature,

Theorem 1.16. Recall that under the assumption of a 2-sided bound, the sin-

gular set S is closed and can be described as the set of points no neighborhood

of which is diffeomorphic to an open subset of Rn. Our result follows quickly by

combining the quantitative stratification results of for limit spaces satisfying

(1.1) with the ε-regularity theorem of [CN15]; see Section 4.11 for a review of

this material. A stronger version of Theorem 1.16 was first proved in [JN21],

where additionally L2 bounds on the curvature were produced, but by using

estimates and techniques which definitely require a 2-sided bound on Ricci

curvature:

Theorem 1.16 (Two sided Ricci). Let (Mn
i , gi, pi)

dGH−→ (Xn, d, p) satisfy

Vol(B1(pi)) ≥ v > 0 and |RicMn
i
| ≤ (n− 1). Then S is (n− 4)-rectifiable and

there exists C = C(n, v) such that

Vol
(
Br
(
S ∩B1(p)

))
≤ Cr4.(1.17)

In particular, Hn−4(S ∩ B1) ≤ C . Furthermore, for Hn−4-a.e. x ∈ S, the

tangent cone at x is unique and isometric to Rn−4×C(S3/Γ), where Γ ⊆ O(4)

acts freely.

1.7. The remainder of the paper. The paper can be viewed as having four

parts. The first part consists of the present section and Section 2; the second
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consists of Sections 3–5; the third part consists of Sections 6–8; the fourth part

consists of Sections 9 and 10.

Section 2 contains the definition and concept of “neck region,” including

an explanation of the role played by each of the conditions in the definition, the

statements of the Neck Structure Theorem 2.9 and the Neck Decomposition

Theorem 2.12, and some basic examples. In addition, this section contains

the proofs of our main results on the quantitative stratification, under the

assumption that the Neck Structure Theorem 2.9 and the Neck Decomposition

Theorem 2.12 hold. Part three of the paper is devoted to developing the new

tools which are needed for the proofs the neck theorems, while the proofs

themselves are given in part four.

The second part of the paper begins with Section 3, in which we give

some examples beyond those given in Section 2. One of these concerns neck

regions. The remaining examples illustrate the sharpness of our results on the

quantitative stratification.

In Section 4, we collect background results which are needed in parts three

and four. Some of these results are by now rather standard in the smooth Rie-

mannian geometry context (as opposed to the context of synthetic lower Ricci

bounds). In such cases, we will just give references. For the more technical

results which are less well known, we will give the proofs or at least outlines.

In Section 5, we give a brief outline of part three (Sections 6–8) and of

part four (Sections 9 and 10).

In Sections 6–8, which form the third part of the paper, we prove sharp

estimates on quantitative cone-splitting. The statements of these theorems

involve the local pointed entropy. Like harmonic splitting maps and heat kernel

estimates, the entropy can be viewed as analytical tool which, once it has been

controlled by the geometry, enables one to draw additional (and in this case

sharp) geometrical conclusions from the original geometric hypotheses. The

results on necks, especially the Neck Structure Theorem 2.9, depend on the

new sharp estimates. The estimates enable us to take full advantage of the

behavior of the geometry over an arbitrary number of consecutive scales. This

is crucial for the proofs of the neck theorems.

Sections 9 and Section 10 constitute the fourth part of the paper. In

Section 9 we prove the Neck Structure Theorem 2.9. The proof depends on

the results of Sections 6–8. In Section 10, via an induction argument, we

prove the Neck Decomposition Theorem 2.12. Remarkably, for the most part

the proof only involves (highly nontrivial) covering arguments, and only at a

certain point is an appeal to Theorem 2.9 made.

Remark 1.17 (Future directions). Although in the present paper we have

stated our results for fixed k, the complete description of the geometry should
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include simultaneously all k = 0, 1, . . . , n − 1. In the general case, it should

also involve behavior on multiple scales, thereby generalizing the bubble tree

decompositions in [AC91], [Ban90] and Section 4 of [CN15].

1.8. Acknowledgements. The first author was supported by NSF Grant

DMS-1406407 and a Simons Foundation Fellowship. The second author was

supported by NSFC (No. 11701507 and No. 12071425) and EPSRC grant

EP/K00865X/1. The third author was supported by NSF grant DMS-1406259.

2. Proofs of the stratification theorems

modulo results on neck regions

In this section we will begin by introducing the notion of neck regions and

stating our main theorems for them: namely the Neck Structure Theorem 2.9

and the Decomposition Theorem 2.12. Proving these results will constitute

the bulk of this paper. The proofs are outlined in Section 5. In the last

subsection of this section, assuming that the Neck Structure Theorem and the

Decomposition Theorem hold, we will prove all of the results on quantitative

and classical stratifications. In a few places, we will appeal to results which

are reviewed in Section 4.

2.1. Background and motivation. Let Volκ(Br) denote the volume of an

r-ball in a simply connected space Mn
κ of constant curvature ≡ κ. Define the

volume ratio by

Vκr (x) :=
Vol(Br(x))

Volκ(Br)
.(2.1)

The Bishop-Gromov inequality states that if RicMn ≥ −(n− 1)κ, then Vκr (x)

is monotone nonincreasing in r:

d

dr
Vκr (x) ≤ 0.(2.2)

In addition to being monotone, the quantity Vr(x) coercive in the following

sense. Given ε > 0, there exists 0 < δ = δ(ε, n, κ), such that if r2κ < δ and∣∣Vκr (x)− Vκr/2(x)
∣∣ < δ,(2.3)

then Br(x) is ε-Gromov Hausdorff close to a ball Br(y
∗) ⊂ C(Y ) for some

metric cone with cross-section Y and vertex y∗. This statement is the “almost

volume cone implies almost metric cone theorem” of [ChCo2]; see Section 4.1

for a more complete review.

Remark 2.1. Whenever we have specified a definite lower bound, say

RicMn ≥ −(n − 1)κ, we will write Vr(x) for Vκr (x). Similarly, for a sequence

Mn
i
dGH−→ Xn, if lim inf i→∞RicMn

i
≥ 0, we will write Vr(x) for V0

r(x).
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The noncollapsing assumption (1.2) and the monotonicity (2.2) of Vr(x)

directly imply

(2.4)
∑
i

|Vδ2−i(x)− Vδ−12−(i+1)(x)| ≤ C(n, v, δ).

As an immediate consequence, for any δ > 0,

(2.5) lim
r→0
|Vδr(x)− Vδ−1r(x)| = 0.

This, together with the “almost volume cone implies almost metric cone” the-

orem, was used in [CC97] to prove that for noncollapsed limit spaces satisfying

(1.1), (1.2), every tangent cone is a metric cone.

For applications which concern Sk, the “cone-splitting principle” is also

crucial. In abstract form, where we are using Definition 1.1, it can be stated

as follows:

The cone-splitting principle. Let X be a metric space which is 0-sym-

metric with respect to two distinct points x0, x1 ∈ X . Then X is 1-symmetric

with respect to these points.

The estimate (2.4), together with the cone-splitting principle, was used in

[CN13a] to prove the weak Minkowski estimate (1.12).

Notation. A scale is just a number of the form rj = 2−j . Note then that

(2.4) actually yields the following:

Effective version of (2.5). Given ε > 0, on all but a definite number Nε

of scales, relation (2.3) will hold and Br(x) will be (0, ε)-symmetric.

Remark 2.2 (Lack of sharpness). The effective version of (2.5), together

with a quantitative version of cone-splitting, was used in [CN13a] to obtain

effective estimates on the sets Skε , notably (1.12). Clearly this makes use of

more information than the classical dimension reduction arguments of [CC97],

which require only (2.5). Nonetheless, a lot of information is being disregarded

when passing from (2.4) to the above effective version of (2.5). The ability to

take full advantage of (2.4) eventually leads to the main volume and rectifia-

bility estimates of this paper. However, this requires a number of new ideas in

order to not lose any information, all of which turns out to be essential.

2.2. Neck regions. As explained in Section 1, our results on the classical

stratification Sk follow from structural results for the quantitative stratifica-

tion Skε , and these results follow from results on neck regions and neck decom-

positions. Neck decompositions of the type employed here were first introduced

in [JN21] and [NV19], where they played a key role in the proofs of the a priori

L2 curvature bound for spaces with a 2-sided bound on Ricci curvature and
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the energy identity, respectively;3 compare also [NV17a]. As these papers il-

lustrate, neck decompositions are of interest in their own right. In particular,

their uses go beyond applications to structural results on singular sets, which

are the main focus of the present paper.

We will need the following notion of a tubular neighborhood of variable

radius.

Definition 2.3 (Tube of variable radius). If D ⊆ X is a closed subset and

x → rx (the radius function) is a nonnegative continuous function defined

on D, then the corresponding tube of variable radius is

Brx(D) :=
⋃
x∈D

Brx(x).

Recall Definition 1.3 and Remark 1.4 the notion of (k, ε)-symmetry with

respect to a subspace. We now give our definition of a neck region:

Definition 2.4 (Neck Regions). Let (Mn
i , gi, pi)

dGH−→ (X, d, p) satisfy RicMn
i

≥ −(n − 1)δ2, Vol(B1(pi)) > v > 0, and let η > 0. Let C = C0 ∪ C+ ⊆ B2(p)

denote a closed subset with p ∈ C, and let rx : C→ R+ be continuous such that

rx := 0 on C0 and rx > 0 on C+. The set N = B2(p) \Brx(C) is a (k, δ, η)-neck

region if for all x ∈ C, the following hold:

(n1) {Bτ2nrx(x)} ⊆ B2(p) are pairwise disjoint, where τn = 10−10nωn;

(n2) |Vδ−1(x)− Vδrx(x)| < δ2;

(n3) for each rx ≤ r ≤ δ−1, the ball Br(x) is (k, δ2)-symmetric, wrt Lx,r, but

not (k + 1, η)-symmetric;

(n4) for each r ≥ rx with B2r(x) ⊆ B2(p), we have Lx,r ⊆ Bτnr(C) and

C ∩Br(x) ⊆ Bτnr(Lx,r).
(n5) |Lip rx| ≤ δ.

Remark 2.5 (Vitali covering terminology). Throughout the paper a cov-

ering as in (n1), but possibly with some other constant γ < 1/6 in place of τn,

will be referred to as a Vitali covering.

Remark 2.6. The set C will be referred to as the set of centers of N.

Below we provide some explanation for the various conditions, (n1)–(n5), in

Definition 2.4.

(1) The effective disjointness property of (n1) guarantees that we do not overly

cover, which would prevent property (3) of the Neck Structure Theorem

2.12 from holding. The center set C is used not solely as approximation

3In those papers, only the top stratum of the neck regions could be controlled, and only

under much more restrictive hypotheses.
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to the singular set but also as an approximation to the relevant Haus-

dorff measure; see the packing measure defined in Definition 2.8. Without

(n1) we would have no hope of controlling this packing measure; see The-

orem 2.9. Another simple consequence is that the set C+ consists of a

discrete set of points.

(2) Condition (n2) has the consequence that even if the neck region involves

infinitely many scales, there is a summable energy condition over the whole

region. This summable energy is key for both the rectifiability and measure

estimates of Theorem 2.9.

(3) One consequence of (n3) is that if x ∈ C, then x ∈ Skη,rx ; in particular,

C0 ⊆ Skη . Both the assumed k-symmetry and the assumed lack of (k + 1)-

symmetry play a key role in the Geometric Transformation Theorem 5.6.

These conditions act as a form of rigidity which stops harmonic splitting

maps from degenerating in uncontrollable ways.

(4) Condition (n4) plays the role of a Reifenberg condition on the singular set.

It is strong enough to prove bi-Hölder control on C, but not bi-Lipschitz

control, which requires in addition (n2), and is the main goal of this paper.

(5) Condition (n5) says that if x ∈ C, then rx looks roughly constant on

B104rx(x). It turns out that constructing neck regions with this condition

is quite painful, but it is especially important for the Nondegeneration

Theorem 8.1. It allows us to take integral estimates on neck regions and

use them to control the behavior of the center points themselves.

(6) If N is a neck region in a smooth Riemannian manifold Mn, then C0 = ∅.
(7) If N ⊆ B2(p) is a (k, δ, η)-neck region and B2s(q) ⊆ B2(p) with q ∈ C, then

N ∩B2s(q) ⊆ B2s(q) defines a (k, δ, η)-neck region.

Remark 2.7 (Important convention). Often throughout the paper we will

state a result for balls of radius 1 and use it (often without comment) for balls

of radius r < 1, where the more general case follows immediately from the

special case by scaling.

We will want to view C as a discrete approximation of a k-dimensional

set. Similarly, we want to associate to it a measure which is a discrete approx-

imation of the k-dimensional Hausdorff measure on C:

Definition 2.8. Let N := B2(p) \ Brx(C) denote a k-neck region. The

associated packing measure is the measure

(2.6) µ := µN :=
∑
x∈C+

rkxδx + Hk|C0 ,

where Hk|C0 denotes the k-dimensional Hausdorff measure restricted to C0.
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Our main result on the structure of k-neck regions is the following. The

proof, which will be outlined in Section 5, depends on several new ideas. It

constitutes the bulk of the paper:

Theorem 2.9 (Neck Structure Theorem). Fix η > 0 and δ ≤ δ(n, v, η).

Then if N = B2(p) \Brx(C) is a (k, δ, η)-neck region, the following hold :

(1) For each x ∈ C and B2r(x) ⊂ B2(p), the induced packing measure µ is

Ahlfors regular:

(2.7) A(n)−1rk < µ(Br(x)) < A(n)rk.

(2) C0 is k-rectifiable.

Remark 2.10. One can view the Ahlfors regularity condition (2.7) as an ef-

fective consequence of rectifiability. Indeed, for simplicity, imagine that u(C0)∪
{Brx(u(x))} is contained in B2(0k) for a bi-Lipschitz map u : B2(p)∩ C→ Rk.
It is a simple but highly instructive exercise to see that (2.7) would follow

immediately. Conversely, much of the work of this paper will be devoted to

showing that if (2.7) holds, then such a mapping u exists. More precisely, the

mapping u will be taken to be a harmonic splitting function. If (2.7) holds,

then we will see that u is automatically bi-Lipschitz, at least on most of C. One

must do this carefully in order to close the loop. Thus, we will show essentially

simultaneously through an inductive argument that (2.7) holds and that u is

bi-Lipschitz. The proof of this, which is quite involved, takes up most of the

paper; see Section 5 for a detailed outline.

Before continuing let us mention the simplest example of a k-neck region:

Example 2.11 (Simplest). Consider the metric cone space X = Rk×C(S1
r ),

where S1
r is a circle of radius r < 1. Denote by 0 ∈ C(S1

r ) the cone point, so

that L := Rk×{0} is the singular set of X. Choose any function rx : B2(0k) ⊆
L → R+ such that |∇rx| ≤ δ, and let C ⊆ B2(0k) × {0} be any closed subset

such that {Bτ2nrx(x)} is a maximal disjoint set. Then for r < 1 − C(n)η, it

is an easy but instructive exercise to check that B2 \Brx(C) is a (k, δ, η)-neck

region. Note that it is trivial that C0 is k-rectifiable, as C0 ⊆ Rk canonically.

Similarly, the Ahlfors regularity condition (2.7) may be verified as {Brx(x)}
forms a Vitali covering of B2(0k).

For additional and more complicated examples, see Section 3.

2.3. Neck decompositions. In order to prove our theorems on stratifica-

tions, we also need to suitably control the part of Xn which does not consist

of neck regions. This is provided by the following result.

Theorem 2.12 (Neck Decomposition). Let (Mn
i , gi, pi)

dGH−→ (Xn, d, p)

satisfy Vol(B1(pi)) > v > 0 and RicMn
i
≥ −(n − 1). Then for each η > 0
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and δ ≤ δ(n, v, η), we can write

B1(p) ⊆
⋃
a

(
Na ∩Bra

)
∪
⋃
b

Brb(xb) ∪ Sk,δ,η,(2.8)

Sk,δ,η ⊆
⋃
a

(
C0,a ∩Bra

)
∪ S̃k,δ,η,(2.9)

where

(1) for all a, the set Na = B2ra(xa) \Brx(C) is a (k, δ, η)-neck region ;

(2) the balls B2rb(xb) are (k + 1, 2η)-symmetric; hence xb 6∈ Sk2η,rb ;
(3)

∑
a r

k
a +

∑
b r

k
b + Hk

(
Sk,δ,η

)
≤ C(n, v, δ, η);

(4) C0,a ⊆ B2ra(xa) is the k-singular set associated to Na;

(5) S̃k,δ,η satisfies Hk
(
S̃k,δ,η

)
= 0;

(6) Sk,δ,η is k-rectifiable;

(7) for any ε, if η ≤ η(n, v, ε) and δ ≤ δ(n, v, η, ε), we have Skε ⊂ Sk,δ,η .

Remark 2.13. In the case of a smooth manifold Mn, we have Sk,δ,η = ∅;
compare (6) of Remark 2.6. In that case, Mn decomposes into only two types

of regions, k-neck regions and the k + 1-symmetric balls Brb .

The following two examples illustrate the Decomposition Theorem.

Example 2.14 (k-Symmetric symmetric example). Let Sn−s−1/Γ denote a

compact manifold of curvature ≡ 1. The space Xn := C(Sn−s−1/Γ) × Rs is

s-symmetric with 0 ≤ s ≤ n − 2. Consider B1(p) ⊂ Xn, where p = (yc, 0
s) is

the cone vertex. For each integer 0 ≤ k ≤ n− 2 and η ≤ η0 and δ = 0, we are

able to choose a decomposition as in Theorem 2.12. To see this, we will divide

it into three cases:

Case 1: 0 ≤ k ≤ s− 1. We can choose our decomposition to be the single

ball Brb(xb) = B2(p), which is k + 1-symmetric.

Case 2: k = s. We can choose Bra(xa) = B2(p) with Na = Bra(xa) \
{yc} × Rs and Sk,0,η = ({yc} × Rs) ∩B2(p). Then

B1(p) ⊆ Na ∪ Sk,0,η,(2.10)

and Sk,0,η is k-rectifiable. In this case, Na is a (k, 0, η)-neck region with C =

C0 = Sk,0,η.

Case 3: k ≥ s + 1. For each r > 0, let us consider a Vitali covering

{Bε0r(xr,j), j = 1, . . . , Nr} of B2(p) ∩ B2r({yc} × Rs) \ Br({yc} × Rs), where

ε0 ≤ ε0(n,Γ) so that B2ε0r(xr,j) is n-symmetric. Then the cardinality satisfies

Nr ≤ C(n,Γ)r−s. Each B2ε0r(xr,j) is n-symmetric, and we will belong to the

b-ball in the decomposition. Let us define Sk,0,η = S̃k,0,η = {yc}×Rs. Then we
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have

B1(p) ⊆
⋃

1≥rb=2−b>0

Nrb⋃
i=1

Bε0rb(xrb,i) ∪ Sk,0,η.(2.11)

We have Hk(S̃k,0,η) = 0, and the k-content of b-balls satisfies

∑
1≥rb>0

Nrb∑
i=1

rkb ≤
∑

1≥rb>0

C(n,Γ)rk−sb ≤ C(n,Γ).(2.12)

Hence (2.11) is the desired decomposition.

Example 2.15 (The boundary of a simplex). Let Xn := ∂σn+1 denote

the boundary of the standard (n + 1)-simplex in Rn+1 normalized so that all

edges have length 1. Let Σk denote the closed k-skeleton of Xn. By ap-

propriately smoothing the sequence of boundaries ∂Bri(σ
n+1), of the tubular

neighborhoods, Bri(σ
n+1), and letting ri → 0, one see that Xn is a limit space

with RicMn
i
≥ 0, indeed secMn

i
≥ 0. Note that Sk = Σk is k-rectifiable and

Hk(Sk ∩B1(p)) < c(n) for all 0 ≤ k ≤ n− 2.

For each 0 ≤ k ≤ n−2 and 0 < δ, η ≤ η(n), we will build a decomposition

for Xn as in Theorem 2.12. The idea is similar to Case 3 of Example 2.14. The

decomposition consists of two parts, corresponding to the a-balls and b-balls

of 2.12, respectively.

(1) Neck regions. We will construct neck regions with center in Sk \Sk−1.

For each 0 < r ≤ 1, consider a Vitali covering {Bδ2r(xa,r), xa,r ∈ Sk \Sk−1} of

the annuli Ar,2r(S
k−1)∩Bδ3r(Sk). One checks that Na,r = Bδ2r(xa,r) \ Sk is a

(k, δ, η)-neck region for η ≤ η(n). The neck regions {Na,ri , ri = 2−i, i = 1, . . .}
are the desired neck regions of the decomposition. Moreover, by noting that

Hk(Sk) ≤ C(n), we obtain the k-content estimate∑
a

∑
i

rka,i ≤ C(n, δ).(2.13)

(2) (k+ 1)-symmetric balls. Consider a Vitali covering {Bδ4r(xd,r), xd,r ∈
Ar,2r(S

k−1)\Bδ3r(Sk)} of Ar,2r(S
k−1)\Bδ3r(Sk). The cardinality of this cover-

ing is less than C(n, δ)r−k+1. From the construction we have that Bδ4r(xd,r)∩
Sk = ∅, which implies that Bδ4r(xd,r) is (k + 1)-splitting. For each η > 0, by

the Almost Volume Cone Implies Almost Metric Cone Theorem, we have that

for each y ∈ Bδ4r(xd,r), the ball Bγδ4r(y) would be (0, η2)-symmetric for some

γ(n, δ, η) ≤ 1. Therefore, Bγδ4r(y) is (k+1, η/2)-symmetric, which implies that

each Bδ4r(xd,r) can be covered by finitely many (k + 1, η/2)-symmetric balls.

Hence, we can choose at most Nr = C(n, δ, η)r−k+1 (k + 1, η/2)-symmetric

balls Bγδ4r, whose union covers Ar,2r(S
k−1) \ Bδ3r(Sk). By combining them
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all for r = ri = 2−i ≤ 1, we get the desired b-balls in our decomposition which

satisfy the following content estimate:

∑
0<ri=2−i≤1

Nri∑
j=1

(γδ4ri)
k ≤

∑
0<ri=2−i≤1

C(n, η, δ)ri ≤ C(n, η, δ).(2.14)

Define S̃k,δ,η := Sk−1, then

Xn ⊆
⋃
a

(
Na ∩Bra

)
∪
⋃
b

Brb(xb) ∪ Sk,δ,η,(2.15)

Sk,δ,η ⊆
⋃
a

(
C0,a ∩Bra

)
∪ S̃k,δ,η,(2.16)

with C0,a = Bra ∩ Sk. This completes the description of the decomposition for

Xn = ∂σn+1.

Remark 2.16 (Role of the
∑

b r
k
b bound). In light of the fact that the b-balls

are approximately (k+ 1)-symmetric, the crucial role of the a priori bound on∑
b r

k
b in the Neck Decomposition Theorem 2.12 might not be immediately ob-

vious if one thinks only of the application to Hk(Skε ∩B1(x)). Recall, however,

that our volume bounds for the quantitative stratification pertain to tubes of

fixed radius r, while the function rx of the a-balls, goes to zero as x → Sk−1.

This suggests that it should not suffice to consider only a-balls in obtaining

the applications to the volumes of the tubes around the quantitative strata on

neck regions, particularly, the Neck Decomposition Theorem 2.12. This should

be kept in mind when reading the details of the proofs which are given in the

next subsection.

2.4. Proofs of the stratification theorems assuming the neck theorems. In

this subsection we will prove the main stratification Theorems 1.7, 1.9 and the

classical stratification Theorems 1.12, 1.14, 1.16, under the assumption that

the Neck Structure and Decompositions of Theorems 2.9, 2.12 hold. We will

outline the proof of the Neck Structure Theorem in Section 5.

The main result concerns the (ε, r)-stratification of Theorem 1.7. The

other theorems follow fairly quickly from it and the Decomposition Theorem

2.12.

Proof of Theorem 1.7. From (6) and (7) of the Neck Decomposition The-

orem it follows that Sε is rectifiable. Thus, it remains to prove estimate (1.13)

in Theorem 1.7, which states

Vol
(
Br

(
Skε,r ∩B1(p)

))
≤ Cεrn−k.(2.17)
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By the Volume Convergence Theorem of [Col97], [Che01] and the defini-

tion of the sets Skε,r, to obtain the estimate in (2.17) for the case of limit spaces,

it easily suffices to prove (2.17) for the case of manifolds Mn. We will now give

the proof in that case.

Given ε > 0, let η ≤ η(n, v, ε) and δ ≤ δ(n, v, ε, η) be chosen sufficiently

small, to be fixed later. Recall that for the case of manifolds, the Decomposi-

tion Theorem 2.12 states

B1(p) ⊂
⋃
a

(
Na ∩Bra(xa)

)
∪
⋃
b

Brb(xb),(2.18)

where Na ⊂ B2ra(xa) is a (k, δ, η)-neck and B2rb(xb) is (k + 1, 2η)-symmetric.

In addition, Theorem 2.12 provides the k-content estimate:∑
a

rka +
∑
b

rkb ≤ C(n, v, δ, η).(2.19)

The proof of Theorem 1.7 amounts to combining the estimates of Lem-

mas 2.17 and 2.19 below. The proof of Lemma 2.17 relies on the Ahlfors

regularity of the packing measures µa on the balls Bra(xa); see (2.7) of Theo-

rem 2.9.

Lemma 2.17. Let η ≤ η(n, v, ε), δ ≤ δ(n, v, ε) and χ ≤ χ(ε, n, v). If the

neck region Na satisfies ra ≥ χ−1r, then

Vol
(
Br
Ä
Skε,r ∩Na

ä)
≤ C(n, v, χ)rka · rn−k,(2.20)

Vol

Ñ
Br

Ñ
Skε,r ∩

⋃
ra≥χ−1r

Na

éé
≤ C(n, v, δ, η, χ)rn−k.(2.21)

Proof. First we will prove (2.20). Let Ca ⊂ B2ra(xa) be the associated

center points of the neck region Na, and let µa be the associated packing

measure.

Claim. If y ∈ Skε,r ∩Na, then d(y,Ca) ≤ χ−1r.

Let us prove the claim. We will show that if y ∈ Na with d(y,Ca) ≥ χ−1r,

then there exists Bs(y) with s ≥ 2r such that Bs(y) is (k + 1, ε/2)-symmetric,

which implies that y /∈ Skε,r. Hence it will prove the claim.

For y ∈ Na with d(y,Ca) ≥ χ−1r and for any ε′ > 0 if χ ≤ χ(n, ε′, v),

we have by the “almost volume cone implies almost metric cone” Theorem 4.1

that Bs(y) is (0, ε′)-symmetric for some s > 2r. On the other hand, by the

almost splitting Theorem 4.11 and almost splitting Theorem 9.25 in [Che01]

along geodesic , if δ ≤ δ(n, v, ε′) and χ ≤ χ(n, ε′, v), then B2s(y) is ε′s-close to

a product space Rk+1 × Z. These imply that Bs(y) is (k + 1, ε/2)-symmetric
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if ε′ = ε′(n, v, ε) is sufficiently small. Hence y /∈ Skε,r. Thus, the proof of the

claim is completed.

Now choose a maximal disjoint collection of balls {Br(xj), xj ∈ Ca, j =

1, . . . ,Ka} with centers in Ca. By the Ahlfors regularity for µa, (2.7) of Theo-

rem 2.9, we have

KaC(n, χ)rk ≤
Ka∑
j=1

µa(B2χ−1r(xj)) ≤ C(n, χ)

Ka∑
j=1

µa(Br(xj))

≤ C(n, χ)µa(B2ra(xa)) ≤ C(n, χ)rka .

(2.22)

Thus, Ka ≤ C(n, χ)r−krka , which, by using the claim, clearly implies (2.20).

Relation (2.21) follows by summing (2.20) over all neck regions and using

(2.19). Namely,

Vol

(
Br

(
Skε,r ∩

⋃
a

Na

))
≤
∑
a

Vol
(
Br
Ä
Skε,r ∩Na

ä)
≤ C(n, v, χ)

∑
rkar

n−k ≤ C(n, v, δ, η, χ)rn−k.

(2.23)

This completes the proof of of Lemma 2.17. �

Lemma 2.18. Let γ ≤ γ(n, v, ε), η ≤ η(n, v, ε). If the b-ball Brb(xb)

satisfies r ≤ γ · rb, then

Skε,r ∩B3rb/2(xb) = ∅.(2.24)

Proof. It suffices to show that for y∈B3rb/2(xb), the ball Bs(y) is (k+1,

ε/2)-symmetric for some s ≥ γrb. To see this, fix η′ = η′(n, v, ε) > 0 and

ε′ = ε′(n, ε, v) to be chosen below. If η ≤ η(η′, n, v), then since B2rb(xb) is

(k + 1, 2η)-symmetric, it follows that Brb/4(y) is (k + 1, η′)-splitting. Also,

by the Almost Volume Cone Implies Almost Metric Cone Theorem and (2.3),

(2.4), (2.5), it follows that for some γ = γ(n, v, ε′), the ball Bγrb(y) is (0, ε′)-

symmetric. For η′(n, v, ε) and ε′(n, v, ε) sufficiently small, this implies that

Bγrb(y) is (k+ 1, ε/2)-symmetric. This completes the proof of (2.24) and thus

of Lemma 2.18. �

Lemma 2.19. Let Ω := {x1, . . . , xN} denote a minimal r/4-dense subset

of Skε,r \ ∪ra≥χ−1rBr
(
Skε,r ∩Na

)
for χ the constant in Lemma 2.17. Then for

γ the constant in Lemma 2.18, the following hold :

(1) Any ball Br/4(xj) satisfies∑
Bra⊂B4χ−1r(xj)

rka +
∑

Brb⊂B4γ−1r(xj)

rkb ≥ C(n, v, γ, χ)rk.(2.25)

(2) The cardinality of Ω satisfies N ≤ r−kC(n, v, δ, η, γ, χ).
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(3) The measure estimate:

Vol
(
Br
Ä
Skε,r \ ∪ra≥χ−1rBr

Ä
Skε,r ∩Na

ää)
≤ C(n, v, δ, η, γ, χ)rn−k.

Proof. First we will prove (1). Since xj ∈ Skε,r \ ∪ra≥χ−1rBr
(
Skε,r ∩Na

)
,

we have Br(xj) ∩ Na = ∅ for any ra ≥ χ−1r. In addition, for any ra < rχ−1,

if Br/4(xj) ∩Na 6= ∅, then we have Bra(xa) ⊂ B4χ−1r(xj). If Br/4(xj) ∩Brb 6=
∅, by Lemma 2.18 we have rb ≤ γ−1r, which implies Brb(xb) ⊂ B4γ−1r(xj).

Therefore, by (2.18) of the Decomposition Theorem, we have

Br/4(xj) ⊂
( ⋃
Bra⊂B4χ−1r(xj)

Bra(xa)
)
∪
( ⋃
Brb⊂B4γ−1r(xj)

Brb(xb)
)
.(2.26)

Thus,

C(n, v)rn ≤ Vol(Br/4(xj))

≤
∑

Bra⊂B4χ−1r(xj)

Vol(Bra(xa)) +
∑

Brb⊂B4γ−1r(xj)

Vol(Brb(xb))

≤ C(n, v)

Ñ ∑
Bra⊂B4χ−1r(xj)

rna +
∑

Brb⊂B4γ−1r(xj)

rnb

é
≤ C(n, v, γ, χ)rn−k

Ñ ∑
Bra⊂B4χ−1r(xj)

rka +
∑

Brb⊂B4γ−1r(xj)

rkb

é
.

(2.27)

This implies (2.25), i.e., (1). Furthermore, from (2.19) and the fact that the

balls Br/10(xj) are disjoint, we have

NC(n, v)rn ≤
N∑
j=1

Vol(Br/4(xj))

≤ C(n, v, γ, χ)rn−k
N∑
j=1

Ñ ∑
Bra⊂B4χ−1r(xj)

rka +
∑

Brb⊂B4γ−1r(xj)

rkb

é
≤ C(n, v, γ, χ)rn−k

(∑
a

rka +
∑
b

rkb

)
≤ C(n, v, δ, γ, χ)rn−k,

(2.28)

which implies (2).
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For (3), let us consider the covering {B2r(xj), j = 1, . . . , N} of

Skε,r \
⋃

ra≥χ−1r

Br
Ä
Skε,r ∩Na

ä
.

By the definition of Ω this is also a covering of

Br

Ñ
Skε,r \

⋃
ra≥r

Br
Ä
Skε,r ∩Na

äé
.

Thus, we have

Vol
(
Br
Ä
Skε,r \ ∪ra≥χ−1rBr

Ä
Skε,r ∩Na

ää)
≤

N∑
j=1

Vol
(
B2r(xj)

)
≤ C(n, v)Nrn ≤ C(n, v, δ, η, γ, χ)rn−k.

(2.29)

This completes the proof Lemma 2.19. �

Now we can complete the proof of Theorem 1.7 as follows. Fix γ =

γ(n, v, ε), η = η(n, v, ε) and δ = δ(n, v, ε, η), χ = χ(n, v, ε) as in the previ-

ous lemmas. Combining the estimates in (2.21) and (2.29) gives the volume

estimate (2.17), which completes the proof of Theorem 1.7. �

Proof of ε-Stratification Theorem. Since Skε ⊂ Skε,r, the estimate for Skε
follows directly from Theorem 1.7. On the other hand, by the Decomposition

Theorem 2.12, for η ≤ η(n, v, ε) and δ ≤ δ(n, v, ε, η), we have Skε ⊂ Sk,δ,η,

where by Theorem 2.12 the set Sk,δ,η is k-rectifiable.

For Hk-a.e. x ∈ Skε , let us show that every tangent cone at x is k-

symmetric. In fact we will show that for any δ, there exists a subset S̃δ ⊂ Skε
with Hk(S̃δ) = 0 such that every tangent cone of x ∈ Skε \S̃δ is (k, δ)-symmetric.

Indeed, we can choose S̃δ = S̃k,δ,η as in Theorem 2.12, which satisfies the de-

sired estimate as a consequence of the definition of a neck region. Now we

consider S̃ = ∪∞i=1S̃2−i , where Hk(S̃) = 0. For any x ∈ Skε \ S̃, we have that

every tangent cone of x is (k, δ)-symmetric for any δ which, in particular, im-

plies that every tangent cone of x is k-symmetric. This completes the proof of

Theorem 1.9. �

Proof of Theorem 1.12. The theorem follows directly from Theorem 1.9

and the fact that Sk(X) = ∪j≥1S
k
2−j (X), which is a countable union of recti-

fiable sets. �

Proof of Theorem 1.14. Let us choose Sε=Sn−2
ε . Then for any x∈Xn\Sε,

we have for some rx > 0 that B2rx(x) is (n−1, ε)symmetric and hence Brx(x) is

(n, ε′)-symmetric for ε ≤ ε(ε′, n, v). By the Reifenberg Theorem 7.10 (see also

[CC97]) it follows that Brx/2(x) is bi-Hölder to Br2/2(0n) ⊂ Rn for ε′ small.

This suffices to complete the proof. �
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Proof of Theorem 1.15. As was shown in [CC97], S = Sn−2. From Theo-

rem 1.12 we now know that for Hn−2-a.e. x∈Sn−2, every tangent cone is (n−2)-

symmetric. For such x, any tangent cone is isometric to Rn−2 ×C(S1
β), where

S1
β denotes the circle of length β < 2π. By Theorem 4.2, β is determined by the

limiting volume ratio, limr→0 Vr(x). This suffices to complete the proof. �

Proof of Theorem 1.16. The theorem follows from the ε-regularity theo-

rem, Theorem 4.35 and the stratification of Theorem 1.9.

To see this, note that if y /∈ Sn−4
ε (X), then there exists some ry > 0 such

that Bry(y) is (n− 3, ε)-symmetric. According to Theorem 4.35 we then have

the harmonic radius bound rh(y) ≥ c(n)ry > 0 which, in particular, implies

y /∈ S(X). Thus, we have shown that S ⊆ Sn−4 ⊂ Sn−4
ε . The volume estimates

of Br
(
S
)
∩B1(p) now follow from Theorem 1.9.

The proof of the tangent cone uniqueness result is similar to that of The-

orem 1.15. By Theorem 1.12, there exists an (n − 4)-Hausdorff measure zero

set S̃ ⊂ Sn−4 = S(X) such that every tangent cone at x ∈ X \ S̃ is (n − 4)-

symmetric. In particular, this means that every tangent cone is isometric to

Rn−4×C(Y 3) for some metric space Y 3. By the main result of [CN15], which

states that the singular set of a noncollapsed limit space with a 2-sided bound

on Ricci curvature has codimension 4, it follows that Y 3 is a 3-dimensional

smooth manifold with RicY = 2gY . This implies that Y 3 is a space form S3/Γ

for some discrete subgroup Γ of O(4) acting freely. By Theorem 4.2, the or-

der of subgroup Γ is determined by the volume ratio at x. Since the space of

cross-sections of tangent cones at one point is connected (see Theorem 4.2), it

follows that Γ is unique. Thus, the tangent cone at x is unique. This completes

the proof of Theorem 1.16. �

3. Additional examples

This is the first of three sections which constitute the second part of the

paper.

Basic examples of neck regions and the neck decomposition were given in

Examples 2.11, 2.14, and 2.20. In the present brief section, we will provide some

additional examples. They show the sharpness of our results and illustrate how

more naive versions of the statements can fail to hold.

3.1. Example 1: Conical neck region. A key result in this paper states

that the packing measure of a neck region N = B2(p) \ Brx(C) is uniformly

Ahlfors regular; see Example 2.11 and Theorem 2.9. The key technical result

needed to be proved is the statement that if u : B2(p) → Rk is a harmonic

splitting function, then for Hk-most points of Cε ⊆ C, u is a (1+ε)-bi-Lipschitz

map onto its image; see Proposition 9.3. In the simplest example of a neck
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region, Example 2.11, we could take Cε = C. The present example shows that

in general, this is not the case.

In fact, the map u can degenerate on parts of a neck region. This explains

the statement of the structural result given in Proposition 9.3. Although it

deals with what at first glance might seem like a relatively minor technical

point, this example is useful to remember when one is faced with traversing

the maze of technical results which come later in the paper. In particular, it

demonstrates why simpler sounding statements just do not hold.

Let Yr := Susp(S1
r ) denote the suspension of a circle of radius r. Note

that if r = 1, then Y1 = S2. For r < 1, the space Yr will have two singular

points p, q ∈ Y at antipodal points. It will look like an American football.

By using a warped product construction, one can easily check that Yr can

be smoothed to obtain Yε,r, which is diffeomorphic to S2, satisfies Yε = Yε,r
outside of Bε(p) ∪Bε(q) and has sectional curvature ≥ 1.

Let X3 = C(Yε,r) denote the cone over Yε,r. Note that X3 has a unique

singular point at 0 ∈ X3. Using the techniques of [CN13], one can check that

X3 itself arises as a Ricci limit space. Let γp, γq denote the rays in X3 through

the cross-section points p, q ∈ Yε,r. Though X3 is smooth along these rays, for

ε very small X3 is looking increasingly singular. For each x ∈ γp ∪ γq, let

rx = r0 · d(x, 0), where r0 � ε is fixed and small. Finally let C = {0} ∪ {xi} ⊆
(γp ∪ γq) ∩ B2(p) be a maximal subset such that Bτ2ri(xi) are disjoint. Note

then that for any δ, η > 0, one can check for ε � δ that N := B2(p) \ Brx(C)

defines a (1, δ, η)-neck region.

Now let u : B2(p) → R denote a harmonic ε-splitting map. By using

separation of variables one can check that |∇u(x)| → 0 as x → 0 approaches

the vertex of the cone. Indeed, this holds for any harmonic function on B2(p).

In particular, it is certainly not possible that u defines a (1 + δ)-bi-Lipschitz

map on all of C. One can check that as ε → 0, u remains bi-Lipschitz on C

away from an increasingly small ball around 0. This shows the sharpness of

the bi-Lipschitz structure of Proposition 9.3.

3.2. Example 2: Sharpness of k-rectifiable structure. One of the primary

results of this paper is to show that the kth-stratum Sk\Sk−1 of the singular set

is k-rectifiable. The following example from [LN20] shows that this statement

is sharp in the sense that there need not exist any points in the singular set S

in a neighborhood of which S is a manifold.

In [LN20] the following examples are produced: For each real number

s ∈ [0, n−2], there exists (Mn
j , gj)

dGH−→ (X, d), with diam (Mn
j ) ≤ 1, Vol (Mn

j ) >

v > 0, such that the singular set, S satisfies

dim S = s,

S is a s-Cantor set.
(3.1)
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If s = k ∈ N is an integer, one can further arrange it so that S = Sk = Skε
satisfies the case in which 0 < Hk(S) <∞ is both k-rectifiable and a k-Cantor

set. In particular, we see from these examples that the structure theory of

Theorem 1.12 is sharp, and one cannot hope to do better.

We will briefly explain the example above from [LN20] for the case, 0 ≤
s ≤ 1. Higher dimensional examples are built in an analogous manner.

Let Z = B1(02) × [0, 1] ⊆ R3 denote the closed 3-cylinder. Observe

that Z is an Alexandrov space with boundary, and that its singular set is the

codimension 2 circles S(Z) = ∂B1(02)× {0, 1}.
Double Z to obtain an Alexandrov space without boundary Z̃ with codi-

mension 2 singular sets S(Z̃) = S1 × Z2 ⊆ Z̃. It is not difficult to see that Z̃

may be smoothed to obtain a manifold by rounding off the doubled boundary

points. Intuitively, the key point of this example is that these circle singular

sets are sets of infinite positive sectional curvature in every direction, as op-

posed to the easier construction of a codimension 2 singular set built by looking

at R × C(S1
r ) as in the neck example. Note that because of this, the singular

set S(Z̃) is not totally geodesic. However, the regular set of Z̃ is convex. In

fact, by [CN12], this must be the case.

Now choose an arbitrary open set U =
⋃

(ai, bi) ⊆ S(Z). By using the fact

that S(Z) consists of completely convex points of Z ⊆ R3, one can construct a

subset Y ⊆ R3 by (informally speaking) “sanding off” each interval (ai, bi) to

obtain smooth boundary points such that Y is still convex. Hence, after this

procedure has been carried out, Z is still an Alexandrov space.

At this point, we have S(Y ) = S(Z) \ U , and we can again double Ỹ

to obtain Alexandrov space without boundary such that S(Ỹ ) is isometric to

S(Y ). By choosing U as in the standard Cantor constructions, we can make

S(Ỹ ) a s-Cantor set for 0 ≤ s ≤ 1, as claimed. Since S(Y ) is contained in a

circle, this set is 1-rectifiable.

3.3. Example 3: Sharpness of k-symmetries of tangent cones. One of the

main statements in Theorem 1.12 is that for Hk-a.e. x ∈ Sk, all tangent cones

are k-symmetric. Recall however that we do not assert that tangent cones

are unique. In this example, we show that indeed tangent cones need not be

unique for Hk-a.e. x ∈ Sk.
The examples are rather straight forward. For instance, let Y be a non-

collapsed limit space such that there is an isolated singularity at p ∈ Y . As-

sume p ∈ S0
ε (Y ) is such that the tangent cone at p is not unique; see, for

instance, [CC97], [CN13] for such examples. Nonetheless, every tangent cone

is 0-symmetric as this is a noncollapsed limit. Put X = Rk×Y . Then the sin-

gular set of X satisfies S = Sk(X) = Skε = Rk × {p}. In this case, as claimed,

every tangent cone in Sk(X) is k-symmetric, but none are unique.
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3.4. Example 4: Sharpness of Skε -finiteness. Theorem 1.12 states that Sk

is k-rectifiable. Theorem 1.9 states that the quantitative stratification Skε has

uniformly bounded k-dimensional Hausdorff measure. Well-known examples

demonstrate that this need not hold for Sk. Thus, the best one can say is

that Sk(Y ) is a countable union of finite measure rectifiable sets, as stated in

Theorem 1.12.

Start with solid regular tetrahedron Z3
0 , centered at the origin. Attach

to each face F 2
i a tetrahedron with very small altitude and base F 2

i . Call the

resulting convex polytope Z3
1 . Proceed inductively in this fashion to obtain a

sequence of convex polytopes Z3
2 , Z3

3 . . ., in such a way that the sequence of

altitudes goes sufficiently rapidly to zero so that the following will hold. The

sequence of convex polytopes converges in the Hausdorff sense to a convex

subset Z3
∞ and ∂Z3

i
GH−→ ∂Z3

∞ as well. Moreover, ∂Z3 has a dense set of singular

points, although for all ε > 0, only a finite number fail to have a neighborhood

which is ε-regular. The polytopes Z3
i can be “sanded” to produce a sequence

of smooth convex surfaces M2
i

GH−→ ∂Z3
∞. Thus, ∂Z3

∞ is the GH-limit of a

sequence of smooth manifolds with nonnegative curvature. Of course, higher

dimensional examples can be constructed similarly.

4. Preliminaries

In this section, we will review the technical background material which is

required for the proofs of our main theorems. For the less standard material,

particularly the results concerning entropy, we will give detailed indications of

the proofs. In all cases we will give complete references.

4.1. Almost volume cones are almost metric cones. For any κ ∈ R, let the

metric on the unique simply connect n-manifold Mn
κ with constant curvature

≡ κ be written in geodesic polar coordinates as dr2 + f2
κg

Sn−1
, where gS

n−1

denotes the metric on the unit (n − 1)-sphere. Let RicMn
i
≥ (n − 1)κ, and

assume Mn
i
dGH−→ Xn, where Xn is noncollapsed. Then if Xn is equipped with

n-dimensional Hausdorff measure, the convergence is actually in the measured

Gromov-Hausdorff sense ([CC97]). If we extend the definition of the volume

ratio Vr(x) = Vκr (x) to points x ∈ Xn, then as in (2.1), we have d
drV

κ
r (x) ≤ 0.

Suppose d
drV

κ
r (x) = 0 for some fixed r and suppose the metric on Xn is

smooth in a neighborhood of Y := ∂Br(x), with gY the induced metric on Y .

Then in geodesic polar coordinates on Br(x) the Riemannian metric is given by

(4.1) dr2 + f2
κg

Y .

The proof of this fact given in [CC96] uses the characterization of the warped

product metrics as those for which there is a potential function whose Hessian

is a multiple of the metric.



RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 433

Notation. Below, the Hessian of f is sometimes denoted by Hessf and

sometimes by ∇2f .

If κ = 0, then the warped product is a metric cone, in which case,

Hess r2 − 2g = 0.(4.2)

This should be compared to the corresponding formula for the time derivative

of the entropy given in (4.20).

The discussion can be extended to the case in which the smoothness as-

sumption on ∂Br(x) := Y is dropped, provided the expression in (4.1) is

replaced by the expression for the distance function d on Br(x). Let dY denote

the distance function on Y . Then for the case κ = 0, (Br(x), d) is isometric to

a ball in the metric cone with cross-section (Y, dY ) with diam(Y ) ≤ π and d is

given by the law of cosines formula

d2((r1, y1), (r2, y2)) = r2
1 + r2

2 − 2r1r2 · cos dY (y1, y2).(4.3)

By using Gromov’s compactness theorem, the following “almost volume

cone implies almost metric cone theorem” is easily seen to be equivalent to

what has just been discussed.

Theorem 4.1 ([CC96]). Let (Mn, g, p) denote a Riemannian manifold

with RicMn ≥ −(n− 1)δ. Given ε > 0, if δ ≤ δ(n, ε) and V2(p) ≥ (1− δ)V1(p),

then B1(p) is (0, ε)-symmetric.

In the proof of tangent cone uniqueness we also used the following well-

known result in which relation (2) below follows from volume convergence;

compare Theorems 1.15 and 4.2.

Theorem 4.2. Let (Mn
i , gi, pi) → (X, d, p) satisfy RicMn

i
≥ −(n − 1)

and Vol(B1(pi)) ≥ v > 0. Then the cross-section space Cx := {(Y, dY ) :

C(Y ) is a tangent cone at x} of tangent cones at x ∈ X satisfies

(1) (Cx, dGH) is connected ;

(2) for every Y ∈ Cx, we have Vol(Y ) = limr→0
nVol(Br(x))

rn .

Proof. Let us give a brief proof of Theorem 4.2. The second statement

follows directly by volume convergence. It will suffice to prove the first one.

Consider the space Mx = {B̄1(yc) : yc ∈ C(Y ) is the vertex and Y ∈ Cx }.
To prove (1), it suffices to prove (Mx, dGH) is connected. In fact, we will show

(Mx, dGH) is a compact, connected space. Let Lx :={(B̄r(x), r−1d), 0<r≤1}.
By the definition of tangent cone, for any B̄1(zc) ∈ Mx, there exists ri → 0

such that

(B̄ri(x), r−1
i d)→ B̄1(zc).(4.4)
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By a diagonal argument this implies that any point in the closure of Mx is a

limit of (B̄ri(x), r−1
i d) for some sequence ri → 0. Therefore, we have proved

(Mx, dGH) is a closed subset of (M, dGH), where M is the space of all compact

metric spaces. On the other hand, by volume doubling and by Gromov’s

precompactness theorem (see Chapter 10 in [Pet16] or [Che01]), (Mx, dGH)

is a compact subset of (M, dGH). To prove (Mx, dGH) is connected, we will

require the following claim for compact metric spaces, which is an easy exercise.

Claim. A compact metric space (Y, d) is connected if for any y1, y2 ∈ Y
and ε > 0, there exists an ε-curve {z1 = y1, . . . , zN = y2} ⊂ Y connecting

y1, y2, i.e., for any i that d(zi, zi+1) ≤ ε.

Therefore, by the claim it suffices to show that for any ε > 0 and any

two balls B̄1(zc), B̄1(wc) ∈ Mx, there exists an ε-curve connecting them. As-

sume (B̄ri(x), r−1
i d) → B̄1(zc) and (B̄si(x), s−1

i d) → B̄1(wc) with ri < si. For

any ε > 0, since γ(t) = (B̄t(x), t−1d)ri≤t≤si is a continuous curve connecting

(B̄ri(x), r−1
i d) and (B̄si(x), s−1

i d), choose a subset {γ(t1i ), . . . , γ(t
Ni(ε)
i ), tαi ∈

[ri, si]} such that t1i = ri, t
Ni(ε)
i = si and

dGH(γ(tαi ), γ(tα+1
i )) ≤ ε/2,(4.5)

and such that for any α 6= β,

dGH(γ(tαi ), γ(tβi )) ≥ ε/4.(4.6)

By (4.6) and the fact that the closure of Lx is compact, we have Ni(ε) ≤
C(n, ε, v), which is independent of i. Denote N(ε) := lim supNi(ε). Then by

Gromov’s precompactness theorem (see [Pet16, Ch. 10] or [Che01]), we have

{γ1, . . . , γN(ε)} ⊂Mx such that γ1 = B̄1(zc), γN(ε) = B̄1(wc) and

dGH(γα, γα+1) ≤ ε/2.(4.7)

Therefore, {γ1, . . . , γN(ε)} ⊂ Mx is an ε-curve connecting γ1 = B̄1(zc) and

γN(ε) = B̄1(wc). The claim now implies Mx is connected. This completes the

proof. �

The following result was proved in [Che01], [CC97], [Col97]. It implies, in

particular, that at a point in the regular set, R := Xn \ S, the tangent cone

is unique and isometric to Rn. In fact, since the conclusion applies to all balls

Br(x) ⊂ B3(p), it is actually a kind of quantitative ε-regularity theorem.

Theorem 4.3. Let (Mn
i , gi, pi) → (X, d, p) satisfy RicMn

i
≥ −(n − 1)δ

and Vol(B1(pi)) ≥ v > 0. Let ε > 0, δ ≤ δ(n, v, ε), and assume B4(p) is

(n, δ)-symmetric. Then each Br(x) ⊂ B3(p) is also (n, ε)-symmetric.
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4.2. Quantitative cone-splitting. As recalled in Section 2, if a metric cone

has two distinct vertices, then the cone isometrically splits off a line which con-

tains these two vertices. If there are several independent such cone vertices,

then this statement can be iterated to produce further splittings. A quantita-

tive version of cone-splitting was introduced in [CN13a]. Prior to stating this

theorem, it is convenient to introduce a quantitative notion of k + 1 points

x0, . . . , xk being k-independent.

In Rn we say that as set of points {x0, . . . , xk} is k-independent if the

{xi}k0 is not contained in any (k − 1)-plane. Here is a quantitative version of

this notion.

Definition 4.4 ((k, α)-independence). In a metric space (X, d), a set of

points U = {x0, . . . , xk} ⊂ B2r(x) is (k, α)-independent if for any subset U ′ =

{x′0, . . . , x′k} ⊂ Rk−1, we have

dGH(U,U ′) ≥ α · r.(4.8)

Remark 4.5. Let X ⊂ Rn. If there exists no (k, α)-independent set in

Br(x) ∩X, then Br(x) ∩X ⊂ B4αr(Rk−1) for some (k − 1)-plane Rk−1 ⊂ Rn.

To see this, if Br(x) ∩X is not a subset of B3αr(Rk−1) for any (k − 1)-plane

then, by induction, one can find a (k, α)-independent set in Br(x) ∩X.

The following Quantitative Cone-Splitting Theorem was introduced in

[CN13a].

Theorem 4.6 (Cone-Splitting). Let (Mn, g, p) satisfy RicMn ≥ −(n−1)δ.

Let ε, τ > 0 and δ ≤ δ(n, ε, τ ), and assume the following :

(1) B2(p) is (k, δ)-symmetric with respect to Lkδ ⊆ B2(p) as in Remark 1.4;

(2) there exists x ∈ B1(p) \Bτ (Lkδ ) such that B2(x) is (0, δ)-symmetric.

Then B1(p) is (k + 1, ε)-symmetric.

Remark 4.7. We can rephrase the above as follows: If U = {x0, . . . , xk} ⊂
B2r(x) is (k, α)-independent and each xi is (0, δ)-symmetric, by the Cone-

Splitting Theorem 4.6, the ball B2r(x0) is (k, ε)-symmetric for δ ≤ δ(n, α, k, ε).

A second version of quantitative cone-splitting theorem is implicit in

[CN13a]. It is a direct consequence of Theorem 4.6. To define it let us de-

fine the notion of the pinching set:

Definition 4.8 (Points with small volume pinching). Let (Mn, g, p) satisfy

RicMn ≥ −(n− 1)ξ, and put

V̄ := inf
x∈B1(p)

Vξ−1(x).(4.9)
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The set with small volume pinching is

Pr,ξ(x) := {y ∈ B4r(x) : Vξr(y) ≤ V̄ + ξ}.(4.10)

Note that if ξ−1 is large, then the point in Pr,ξ(x) is an “almost cone

vertex” for each scale between r and ξ−1. By Theorem 4.1, each point y ∈
Pr,ξ(x) is an “almost cone vertex.” Thus, with Theorem 4.6 we immediately

have the following:

Theorem 4.9 (Cone-Splitting based on k-content). Let (Mn, g, p) satisfy

Vol(B1(p)) ≥ v > 0 with RicMn ≥ −(n − 1)ξ. Assume that 0 < δ, ε ≤ δ(n, v),

γ ≤ γ(n, v, ε), ξ ≤ ξ(δ, ε, γ, n, v) and

Vol(Bγ(P1,ξ(p))) ≥ εγn−k.(4.11)

Then there exists q ∈ B4(p) such that Bδ−1(q) is (k, δ2)-symmetric.

The import of Theorem 4.9 is that if the set of pinched points P1,ξ has a

definite amount of k-content, then the ball must be k-symmetric. The scale

invariant version states that if

Vol(Bγr(Pr,ξ(p))) ≥ εγn−krn,(4.12)

then Bδ−1r(q) is (k, δ2)-symmetric for some q ∈ Br(p).

4.3. Harmonic ε-splitting functions. The following definition, which en-

capsulates the technique of [CC96] for obtaining approximate splittings, is

essentially the one formalized in [CN15].

Definition 4.10 (Harmonic δ-splitting map). The map u : Br(p) → Rk is

a harmonic δ-splitting map if

(1) ∆u = 0;

(2)
ffl
Br(p)

∣∣〈∇ui,∇uj〉 − δij∣∣ < δ;

(3) supBr(p) |∇u| ≤ 1 + δ;

(4) r2
ffl
Br(p)

∣∣∇2u
∣∣2 < δ2.

For the case of limit spaces, we can define δ-splitting maps as follows. If

Br(pi) ⊂ Mi → Br(p) ⊂ X and δi-splitting maps ui : Br(pi) → Rk converge

uniformly to u : Br(p)→ Rk with δi → δ, we say u is δ-splitting on Br(p) ⊂ X.

By the W 1,2-convergence in Proposition 4.29, we have that the δ-splitting u

satisfies (1)–(4) in the limit space.

The following is a slight extension of the result in [CC96].

Theorem 4.11. Let (Mn, g, p) satisfy RicMn ≥ −(n−1)δ. For any ε > 0,

if δ ≤ δ(n, ε), then the following hold :

(1) If there exists a δ-splitting function u : B2(p) → Rk, then B1(p) is ε-GH

close to Rk ×X .
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(2) If B2(p) is δ-GH close to Rk ×X , then there exists an ε-splitting function

u : B1(p)→ Rk.

Remark 4.12. In Cheeger-Colding [CC96], the second result is proved un-

der the assumption that the ball Bδ−1(p) is δ-GH close to Rk×X. This suffices

for the purposes of the present paper. However, the closeness assumption can

actually be weakened to B2(p) (or indeed B1+ε(p)) by using a contradiction

argument combined with what is now understood about continuity of limit-

ing harmonic functions and W 1,2-convergence of harmonic functions, in the

context of GH-convergence; see also some related discussion in Section 4.9.

4.4. A cutoff function with bounded Laplacian. The existence of a cutoff

function which satisfies the standard estimates and has a definite pointwise

bound on its Laplacian is important technical tool. In particular, such a cut-

off function is required for the discussion of the local pointed entropy; see

Section 4.6.4

Theorem 4.13 ([CC96]). Let (Mn, g, p) be a Riemannian manifold with

RicMn ≥ −(n − 1)r2. Then there exists cutoff function φr : Mn → [0, 1] with

support in Br(p) such that φr := 1 in Br/2(p). Moreover,

r2|∇φr|2 + r2|∆φr| ≤ C(n).(4.13)

4.5. Heat kernel estimates and heat kernel convergence. Let ρt(x, y) de-

note the heat kernel on Mn. For each x, we haveˆ
Mn

ρt(x, y) dµ(y) = 1.

Define the function ft(x, y) by

ρt(x, y) = (4πt)−n/2e−ft(x,y).(4.14)

Next we recall some classical heat kernel estimates for manifolds with

lower Ricci curvature bounds, as well as the heat kernel convergence result for

Gromov-Hausdorff convergence. We summarize the heat kernel estimates in

the following theorem; see [LY86], [SZ06], [SY94], [Ham93], [Kot07], [CY81].

Theorem 4.14 (Heat Kernel Estimates). Let (Mn, g, p) satisfy RicMn
i
≥

−(n−1)δ2 and Vol(Br(p)) ≥ v·rn > 0 for r ≤ δ−1. Then for any 0 < t ≤ 10δ−2

and ε > 0 with x, y ∈ B10δ−1(p),

(1) −C(n, v, ε) + d2(x,y)
(4+ε)t ≤ ft ≤ C(n, v, ε) + d2(x,y)

(4−ε)t ;

4The original proof of the existence of the required cutoff function employed solutions of

the Poisson equation, ∆u = 1 and a delicate argument based on the quantitative maximum

principle. One can also give a proof by using heat flow as in [MN19].
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(2) t|∇ft|2 ≤ C(n, v, ε) + d2(x,y)
(4−ε)t ;

(3) −C(n, v, ε)− d2(x,y)
(4+ε)t ≤ t∆ft ≤ C(n, v, ε) + d2(x,y)

(4−ε)t .

The estimates in (1) are Li-Yau heat kernel upper and lower bound es-

timates; see, for instance, [LY86], [CY81]. (2) follows from (1) and a local

gradient estimate; see, for instance, [SZ06]. (3) follows from the Li-Yau Har-

nack inequality, (2) and [Ham93], [Kot07].

The following result is well known in the context of Ricci limit spaces

and even for RCD spaces. One direct proof is obtained by using gradient flow

convergence of the Cheeger energy in [AGS14a]; see also [AH18], [GMS15].

See [AGS14a], [AH18], [AHT18], [ZZ19] for more general results in the RCD

setting. In our application the limit space X is a metric cone, in which case

the heat kernel convergence was proved in [Din02].

Proposition 4.15 (Heat kernel convergence). Suppose (Mi, gi, xi, µi)→
(X, d, x∞, µ) with RicMn

i
≥ −(n − 1) and µi = Vol(B1(xi))

−1Vol( · ). Then

the heat kernel ρit(x, y) converges uniformly to the heat kernel ρ∞t (x, y) on any

compact subset of R+ ×X ×X .

Remark 4.16. By the heat kernel Laplacian estimate in Theorem 4.14 and

W 1,2-convergence in Proposition 4.29, it follows that for any fixed t, we have

ρit(xi, ·)→ ρ∞t (x∞, ·) in the W 1,2-sense as in Definition 4.27.

Remark 4.17. If the limit space is a noncollapsed metric cone Y = C(X)

with cone vertex x∞, then the heat kernel on Y is

ρ∞t (x∞, y) =
Vol(Sn−1)

Vol(X)
· e
−d2(x∞,y)/4t

(4πt)n/2
,

where Vol(X) is the (n−1)-Hausdorff measure of X with respect to the metric

(X, dX). This follows easily by computing the s-derivative of

η(t, s, x) :=

ˆ
C(X)

ρ∞t−s(x, y) ·
(
ρ∞s (x∞, y)− Vol(Sn−1)

Vol(X)
· e
−d2(x∞,y)/4t

(4πt)n/2

)
dy

(4.15)

to conclude that η(t, t, x) = η(t, 0, x) = 0.

4.6. The local pointed entropy, Wt(x) and its relation to cone structure.

As discussed in Section 4.1, “almost volume cones are almost metric cones,”

previously known results on quantitative cone-splitting were stated in Theo-

rems 4.6 and 4.9. As with the definition of neck regions, the hypotheses of

these results, as well as the definition of neck regions, involve the volume ratio

Vr(x). For our purposes, it is crucial to have a sharp version of quantita-

tive cone-splitting. As mentioned in previous sections, it turns out that many
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technical details are simpler if in place of Vr(x), we use a less elementary

monotone quantity, the local pointed entropy Wt(x). Therefore, it is necessary

to have a result stating that (with suitable interpretation) Wt(x) and Vr(x)

have essentially the same behavior. This is the content of Theorem 4.22, which

also includes the fact that Wt(x) is monotone in t. The sharp cone-splitting

estimate, the statement of which involves entropy, is given in Theorem 6.1.

In the present subsection, we derive the needed background results on the

local pointed entropy. This quantity is a local version of Perelman’s W-entropy,

generalized in [Ni04] to smooth manifolds. In order to emphasize the basics,

we will first discuss the technically simpler concept of the pointed entropy.

If as in (4.14) we write ρt(x, dy) = (4πt)−n/2 · e−fx,t(y), then by defini-

tion the weighted Laplacian ∆f is the second order operator associated to the

weighted Dirichlet energyˆ
Mn

(4πt)−n/2|∇f |2 e−f dvg(y) =

ˆ
|∇f |2 ρt(x, dy).

Then

∆f = ∆− 〈∇f,∇ · 〉.
Set

Wt = 2t∆ff + t|∇f |2 + f − n.(4.16)

The pointed entropy, Wt(x), is for each x a global quantity defined as

follows.

Definition 4.18 (Pointed entropy).

Wt(x) :=

ˆ
Mn

Wt · ρt(x, dy).(4.17)

Bochner’s formula states for u ∈ C∞(M) that

1

2
∆|∇u|2 = |∇2u|2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u).(4.18)

The following lemma is proved by direct computation. It shows, in partic-

ular, that Wt(x) is monotone decreasing if RicMn ≥ 0. Moreover, if in addition

Wt(x) is constant on [0, r], then the ball Br(x) is isometric to Br(0) ⊂ Rn; see

(4.2).

Lemma 4.19.

∂tWt(x) = −2t

ˆ
M

(∣∣∣∇2f − 1

2t
g
∣∣∣2 + Ric(∇f,∇f)

)
ρt(x, dy) ≤ 0.(4.19)

Proof. Equation (4.19) is easily implied by the following computation

(compare (4.2)):

�(4.20)
d

dt
Wt = ∆fWt−〈∇f,∇Wt〉−2t

(∣∣∣∇2f− 1

2t
g
∣∣∣2 +RicMn(∇f,∇f)

)
.
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Next assume (Mn, g, p) satisfies RicMn ≥ −(n − 1)δ2 and Vol(Br(p)) ≥
vrn > 0 for r ≤ δ−1. In this case we will define a local monotone quantity

which will play a role analogous to the one played by pointed entropy.

Let ϕ : Mn → [0, 1] be a cutoff function as in (4.13), with support in

B2δ−1(p), satisfying ϕ := 1 in Bδ−1(p) and |∆ϕ|+ |∇ϕ|2 ≤ C(n)δ2.

Set

Wt,ϕ(x) :=

ˆ
Mn

Wtϕρt(x, dy)−
ˆ t

0

Å
4s

ˆ
M

(n− 1)δ2|∇f |2ϕρs(x, dy)

ã
ds.

(4.21)

Then, by direct computation,

∂tWt,ϕ(x) = −2t

ˆ
M

(∣∣∣∇2f − 1

2t
g
∣∣∣2 + Ric(∇f,∇f)

+ 2(n− 1)δ2|∇f |2
)
ϕ · ρt(x, dy) +

ˆ
M
Wt∆ϕρt(x, dy).

(4.22)

By using the heat kernel estimate in Theorem 4.14, we can control the last

term on the right-hand side of (4.22). Namely, for any x ∈ Bδ−1/2(p) and

t ≤ δ−2, we have

∣∣∣ ˆ
M
Wt∆ϕ · ρt(x, dy)

∣∣∣ ≤ ˆ
M
|Wt| |∆ϕ| ρt(x, dy)

≤ C(n, v)δ2

ˆ
Aδ−1,2δ−1 (p)

Å
1 +

d2(x, y)

4t

ã
ρt(x, dy)

≤ C(n, v)δ2 · e−1/100δ2t.

(4.23)

This motivates the following definition of the local Wδ
t pointed entropy.

Definition 4.20 (Local Wδ
t pointed entropy). Let (Mn, g, p) satisfy RicMn

≥ −(n − 1)δ2 and Vol(Br(p)) ≥ vrn > 0 for r ≤ δ−1. For any t ≤ δ−2 and

x ∈ Bδ−1/2(p), the local Wδ
t pointed entropy is defined by

Wδ
t (x) := Wδ

t,ϕ(x) := Wt,ϕ(x)− C(n, v)δ2

ˆ t

0
e−1/100δ2s ds.(4.24)

Remark 4.21 (Scaling). Put g̃ = r−2g. If RicMn ≥ −(n − 1)δ2, then

RicM̃n ≥ −(n − 1)δ2r2. Let ‹Wδr
t (x) denote the local W-entropy associated

with g̃. Then

Wδ
tr2(x) = ‹Wδr

t (x).

The following theorem is the main result of this subsection. According to

relation (1), the local Wδ
t pointed entropy is monotone. By relation (2), it has

essentially the same behavior as the volume ratio Vr(x).
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Theorem 4.22. Let (Mn, g, p) denote a pointed Riemannian manifold

with RicMn ≥ −(n − 1)δ2 and Vol(Br(p)) ≥ v · rn > 0 for r ≤ δ−1. Then for

all x ∈ Bδ−1/2(p) and t ≤ δ−2, the local Wδ
t -entropy satisfies the following :

(1) ∂tW
δ
t (x)≤−2t

´
M

(
|∇2f− 1

2tg|
2+Ric(∇f,∇f)+2(n−1)δ2|∇f |2

)
ϕρt(x, dy)

≤ 0.

(2) Given ε > 0, assume that δ ≤ δ(n, v, ε), 0 < t ≤ 10, and

|V√tδ−1(x)− V√tδ(x)| ≤ δ.(4.25)

Then

|Wδ
t (x)− logVδ

2√
t
(x)| ≤ ε.

Proof. It suffices to prove (2). Assume (2) does not hold for some ε0 > 0.

Then there exists δi → 0 and there exists (Mn
i , gi, pi) satisfying Vol(Br(pi)) ≥

vrn > 0 for r ≤ δ−1
i , RicMn

i
≥ −(n − 1)δ2

i and such that for some xi ∈
Bδ−1/2(pi), we have

|V√tiδi(xi)− Vδ−1
√
ti

(xi)| ≤ δi
with 0 < ti ≤ 10, but

|Wδi
ti

(xi)− logV√ti(xi)| ≥ ε0.

The rescaled spaces, (Mn
i, g̃i, xi)=(Mn

i , t
−1
i gi, xi), satisfy RicMn

i
≥−(n−1)δ2

i ,

and

|Ṽδi(xi)− Ṽδ−1
i

(xi)| ≤ δi,

|W̃δi
√
ti

1 (xi)− log Ṽ1(xi)| ≥ ε0.

Denote the heat kernel at time t = 1 of (Mn
i, xi, g̃i) by

ρ̃1(xi, y) = (4π)−n/2e−f̃ .

By the heat kernel estimate in Theorem 4.14, it follows that for δi sufficiently

small, we have

|W̃1(xi)− W̃
δi
√
ti

1 (xi)| < ε0/4,

where

W̃1(xi) =

ˆ
B
δ−1
i

/2
(xi)

(
|∇f̃ |2 + f̃ − n

)
ρ̃1(xi, dy).(4.26)

Therefore, for δi sufficiently small,

|W̃1(xi)− log Ṽ1(xi)| ≥ ε0/2.(4.27)

We will deduce a contradiction to this estimate by letting i→∞.
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Thus by Gromov’s compactness theorem, there exists a subsequence of

(Mn
i , t
−1
i gi, xi) converging to some metric cone (C(Xn−1), d, x∞). By the vol-

ume convergence result in [Col97], [Che01] (see also Theorem 4.2) we have

Vol(X)

Vol(Sn−1)
= lim

i→∞
Ṽ1(xi).

By using the heat kernel convergence in Proposition 4.15, together with Re-

marks 4.17, 4.16 and the heat kernel estimate in Theorem 4.14, we conclude

that

lim
i→∞

W̃1(xi) =

ˆ
C(X)

(
|∇f∞|2 + f∞ − n

)
ρ1(x∞, dy),(4.28)

where

ρ1(x∞, y) = (4π)−n/2e−f∞ =
Vol(Sn−1)

Vol(X)
(4π)−n/2e−d

2(x∞,y)/4.

A simple computation givesˆ
C(X)

(
|∇f∞|2 + f∞ − n

)
ρ1(x∞, dy)

=

ˆ
C(X)

(d2(x∞, y)

2
+ log

Vol(X)

Vol(Sn−1)
− n

)
ρ1(x∞, dy)

=

ˆ ∞
0

rn+1

2
Vol(Sn−1)(4π)−n/2e−r

2/4dr + log
Vol(X)

Vol(Sn−1)
− n

= Γ(1 +
n

2
)Vol(Sn−1)π−n/2 + log

Vol(X)

Vol(Sn−1)
− n

= log
Vol(X)

Vol(Sn−1)
.

(4.29)

Since W̃1(xi) and log Ṽ1(xi) have the same limit, this is a contradiction. �

4.7. (k, α, δ)-entropy pinching. Recall that in Definition 4.4, we intro-

duced the notion of a collection of a (k, α)-independent set of points x0, . . . , xk.

We will use a refinement of this notion to define the pinching of the local

pointed entropy Wt(x). This will be used in the Sharp Cone-Splitting Theo-

rem 6.1.

Definition 4.23. The (k, α, δ)-entropy pinching, Ek,α,δr (x), is

Ek,α,δr (x) := inf
{xi}k0

∑∣∣Wδ
2r2(xi)−Wδ

r2(xi)
∣∣,(4.30)

where the infimum is taken over all (k, α)-independent subsets and the param-

eter δ is corresponding to Ricci curvature lower bound.
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From the discussion above, it follows that if Ek,α,δ1 (p) < δ = δ(ε, α), then

there exists a (k, ε)-splitting map u : B1(p) → Rk. The sharp version of this

relationship is the content of Theorem 6.1, the Sharp Cone-Splitting Theorem.

This theorem states that there exists C(n, v, α) and a splitting map u for which

the integral of the norm squared of the Hessian has the following sharp linear

bound in terms of the k-pinching:5

 
B1(p)

|∇2u|2 ≤ C(n, v, α) · Ek,α,δ1 (p).(4.31)

4.8. Poincaré inequalities. We recall various Poincaré inequalities which

hold on manifolds with Ricci lower bound; see also [Bus82], [Che99], [Che01],

[CC00]. We will need the ones which follow:

Theorem 4.24 (Poincaré Inequalities). Let (Mn, g, x) satisfy RicMn ≥
−(n− 1). Then for any 0 < r ≤ 10, the following Poincaré inequalities hold :

(1)
ffl
Br(x) f

2 ≤ C(n) · r2
ffl
Br(x) |∇f |

2 (for all f ∈ C∞0 (Br(x)));

(2)
ffl
Br(x)

∣∣∣f − ffl
Br(x) f

∣∣∣2 ≤ C(n) · r2
ffl
Br(x) |∇f |

2 (for all f ∈ C∞(Br(x)).

The Dirichlet Poincaré inequality (1) follows directly from segment in-

equality in [CC96] and [Che01]. For the Neumann Poincaré inequality (2), by

using segment inequality, we have a weak Poincaré inequality [CC00]. By the

volume doubling and a covering argument in [HK95] or [Jer86], we can obtain

the Neumann Poincaré inequality (2).

4.9. W 1,2-convergence. Below, the notation (Zi, di, zi)
dGH−→ (Z, d, z) should

always be understood as convergence in the measured Gromov-Hausdorff sense.

In this subsection, we will assume without explicit mention that the metric

measure space (Z, d, µ) is separable and complete and that µ is a Borel mea-

sure which is finite on bounded subsets of Z.

Definition 4.25 (Uniform convergence). Let (Zi, di, zi)
dGH−→ (Z, d, z). If fi

are Borel functions on Zi, then we say fi → f : Z → R uniformly if for any

compact subset Ki ⊂ Zi → K ⊂ Z and εi-GH approximation Ψi : K → Ki

with εi → 0, the function fi ◦Ψi converges to f uniformly on K.

As motivation for what follows, recall that on a fixed metric measure

space, for 1 < p < ∞, weak convergence together with convergence of norms

implies strong convergence.

5The proof of (5.2) is one instance in which choosing to use the pointed entropy as our

monotone quantity helps to make the argument run more smoothly than if we had chosen to

work with the volume ratio Vr(x).
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Definition 4.26 (Weak Lp convergence). Let (Zi, di, zi, µi)
dGH−→ (Z, d, z, µ).

If fi are Borel functions on Zi, we say fi → f : Z → R in the weak sense if for

any uniformly converging sequence of compactly supported Lipschitz functions

ϕi → ϕ, we have

lim
i→∞

ˆ
fiϕidµi =

ˆ
fϕdµ.(4.32)

Moreover if fi, f have uniformly bounded Lp integrals, then we say fi → f in

the weak Lp-sense.

Any uniformly bounded Lp sequence fi has a weak limit f . See also

[GMS15] for a definition of the weak convergence by embedding Zi, Z to a

common metric space Y .

Definition 4.27 (Lp and W 1,p convergence). Let fi denote Borel functions

on Zi, and let (Zi, di, zi, µi)
dGH−→ (Z, d, z, µ). For p<∞, we say fi→f : Z→R

in the Lp-sense if fi → f in the weak Lp-sense andˆ
Zi

|fi|p →
ˆ
Z
|f |p.

If fi → f in the Lp-sense andˆ
Zi

|∇fi|p →
ˆ
Z
|∇f |p,

we say fi → f in the W 1,p-sense.

The following can easily be checked. Thus, the proof will be omitted.

Proposition 4.28.

(1) If fi converges to a constant A in the L2-sense, then f2
i − A converges in

L1 to zero.

(2) If fi and gi converge to f and g in the L2-sense respectively, then figi → fg

in the L1-sense.

(3) Uniform convergence implies Lp convergence for any 0 < p <∞.

The proof of the following Proposition 4.29, on W 1,2-convergence for func-

tions with L2 Laplacian bound, depends on the Mosco convergence of the

Cheeger energy; see Theorem 4.4 of [AH18]. In our application the limit X

is a metric cone and ui is Lipschitz, in which case the proposition is simply

proved by using the result in [Din02] without involving RCD notions; for re-

lated discussions in the metric measure space context, see [AHT18], [Che99],

[GMS15], [MN19], [ZZ19].

Proposition 4.29 (W 1,2-convergence). Let (Mn
i , gi, xi, µi)→(X, d, x∞, µ)

with RicMn
i
≥ −(n − 1) and µi = Vol(B1(xi))

−1Vol. Let ui : BR(xi) → R be
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smooth functions satisfying 
BR(xi)

|ui|2 +

 
BR(xi)

|∇ui|2 +

 
BR(xi)

|∆ui|2 ≤ C

for some C . If ui converge in the L2-sense to a W 1,2-function u∞ : BR(x∞)→
R, then

(1) ui → u∞ in the W 1,2-sense over BR(x∞);

(2) ∆ui → ∆u∞ in the weak L2-sense;

(3) if supBR(xi) |∇ui| ≤ L for some uniform constant, then ui → u∞ in the

W 1,p-sense for any 0 < p <∞.

Proof (outline following [AH18], [Din02]). We will argue under a uniform

Lipschitz assumption; the general case is similar but a bit more technical.

In view of the uniform Lipschitz condition supBR(xi) |∇ui| ≤ L it follows

by an Ascoli type argument that we have uniform convergence, ui → u∞. Also,

fi := ∆ui converges in the weak L2-sense to some L2 function f∞. Consider

the energy

Ei(ui) :=

ˆ
BR(xi)

(1

2
|∇ui|2 + uifi

)
.

By the lower semicontinuity of the Cheeger energy, we have

lim
i→∞

inf Ei(ui) ≥ E∞(u∞).

Moreover, using Lemma 10.7 of [Che99] one can construct some Lipschitz se-

quence vi in BR(xi) which converges uniformly to u∞ with vi = ui on ∂BR(xi)

and

lim
i→∞

sup

ˆ
BR(xi)

|∇vi|2 ≤
ˆ
BR(x∞)

|∇u∞|2.

From the fact that ui minimizes the energy Ei, it then follows that Ei(ui) →
E∞(u∞), which gives us the W 1,2-convergence. The weak convergence of ∆ui
also follows from the energy convergence. That is, we need to show ∆u∞ = f∞,

i.e., for any Lipschitz h with h = u∞ on ∂BR(x∞), that E∞(h) ≥ E∞(u∞).

Assume there exists Lipschitz h∞ with h∞ = u∞ on ∂BR(x∞) and ε0 > 0 such

that E∞(h∞) < E∞(u∞)− ε0. Then we can construct by using Lemma 10.7 of

[Che99] a sequence of Lipschitz function hi in BR(xi) with hi = ui on ∂BR(xi)

and

lim
i→∞

sup

ˆ
BR(xi)

|∇hi|2 ≤
ˆ
BR(x∞)

|∇h∞|2.

Since Ei(ui)→ E∞(u∞), this implies for large i that

Ei(hi) < Ei(ui)− ε0/2,(4.33)
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which contradicts the fact that ui minimizes Ei(ui) over all Lipschitz functions

with the same boundary condition. Hence, we conclude that ∆u∞ = f∞. This

completes the (outline of the) proof of Proposition 4.29. �

The following lemma was proved in [Din04] for metric cone limits and in

[AH18] for the general case.

Lemma 4.30. Let (Mi, gi, xi, µi) → (X, d, x∞, µ) with RicMn
i
≥ −(n− 1)

and µi = Vol(B1(xi))
−1Vol( · ). Let f, F ∈ L2(X) have compact support, and

assume ∆F = f and that f is Lipschitz. Then for any R > 0, there exist

solutions ∆Fi = fi on BRi(xi) with Ri → R such that Fi and fi converge

uniformly to F and f in any compact subset of BR(x∞) respectively .

Outline of the proof. From a generalized Bochner formula in [EKS15] and

the standard elliptic estimate, it follows that F is Lipschitz. By Lemma 10.7

of [Che99] one can construct Lipschitz functions F̂i, fi on BR(xi) converging

uniformly and in the W 1,2-sense to F and f respectively.

For ε > 0, define Fi,ε on BR(xi) such that ∆Fi,ε = fi on BR−ε(xi) with

Fi,ε = F̂i on ∂BR−ε(xi), and Fi,ε = F̂i on BR \ BR−ε(xi). By the definition of

Fi,ε we have ˆ
BR(xi)

|∇Fi,ε|2 + 2fiFi,ε ≤
ˆ
BR(xi)

|∇F̂i|2 + 2fiF̂i.(4.34)

Assume the limit of Fi,ε is F∞,ε whose existence is asserted by Proposi-

tion 4.29. Moreover, F∞,ε − F ∈ W 1,2
0 (BR). By applying the lower semiconti-

nuity of Cheeger energy to
´
BR(xi)

|∇Fi,ε|2, we have

lim
i→∞

inf

ˆ
BR(xi)

|∇Fi,ε|2 + 2fiFi,ε ≥
ˆ
BR

|∇F∞,ε|2 + 2fF∞,ε.(4.35)

Since F∞,ε − F ∈W 1,2
0 (BR) and ∆F = f on BR, we have thatˆ

BR

|∇F∞,ε|2 + 2fF∞,ε ≥
ˆ
BR

|∇F |2 + 2fF.(4.36)

On the other hand, noting that (4.34) and
´
BR(xi)

|∇F̂i|2 →
´
BR(x∞) |∇F |

2,

we get

lim
i→∞

sup

ˆ
BR(xi)

|∇Fi,ε|2 + 2fiFi,ε ≤
ˆ
BR

|∇F |2 + 2fF.(4.37)

Combining (4.35), (4.36) and (4.37), we have thatˆ
BR

|∇F |2 + 2fF =

ˆ
BR

|∇F∞,ε|2 + 2fF∞,ε.(4.38)

Since ∆F = f on BR and F −F∞,ε ∈W 1,2
0 (BR), this implies that F∞,ε =F . Let

us choose εi → 0 and define Fi = Fi,εi . Therefore, the convergence Fi → F∞,ε
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is pointwise and is in the W 1,2-sense. The uniform convergence in any compact

subset of BR(x∞) follows from the standard interior gradient estimate for

equation ∆Fi = fi in BR−εi . Hence the proof of Lemma 4.30 is completed. �

4.10. The Laplacian on a metric cone. Next, we will recall the existence

of the Laplacian operator on metric cones with suitable cross-sections. The

explicit formulas, (4.40), (4.41), in Theorem 4.32, were initially derived in the

context of spaces with iterated conical singularities [Che79], [Che83]. This

context is in certain ways more special and in other ways more general than

that of the present subsection. Theorem 4.32 below was originally proved for

metric measure spaces satisfying a doubling condition and Poincaré inequality

in [Che99] and for Gromov-Hausdorff limits of smooth manifolds in [CC00]

and [Din02]. It is also understood in the context of RCD spaces [AGS14b],

[AGS14a].

Theorem 4.31. Let (Mn
i , gi, pi) → (X, dX , p) := (C(Y ), dX , p) satisfy

RicMn
i
≥ −δi → 0 and Vol(B1(pi)) ≥ v > 0. Then

(1) there exists a nonpositive, linear, self-adjoint, Laplacian operator

∆X : Dom(X) ⊂ L2(X)→ L2(X)

with Dom
√
−∆X = W 1,2(X);

(2) for compact supported Lipschitz functions f on X , |∇f | = |Lipf |,
ˆ
X
|∇f |2dHn = 〈

√
−∆Xf,

√
−∆Xf〉;

(3) there exists a nonpositive, linear, self-adjoint, Laplacian operator ∆Y :

Dom(Y ) ⊂ L2(Y )→ L2(Y ) with Dom
√
−∆Y = W 1,2(Y );

(4) in geodesic polar coordinate x = (r, y), the Laplace operator ∆X and ∆Y

satisfy, in the W 1,2(X) distribution sense,

∆X =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Y .(4.39)

Originally, relations (1) and (2) were proved in [CC00] and [Che99]. Re-

lations (3) and (4) were proved in [Din02].

The Sobolev space W 1,2(X) is the closure of Lipschitz functions under a

W 1,2-norm defined in [Che99]; see Section 2 of [Che99] for the precise defini-

tion, which ensures that the W 1,2-norm behaves lower semicontinuously under

L2 convergence. It then becomes a highly nontrivial theorem that in actuality,

|∇f | = Lip f , the pointwise Lipschitz constant almost everywhere. These re-

sults were proved in [Che99] under the assumption that the measure is doubling

and a Poincaré inequality holds.
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The cross-section Y may itself be viewed as a space which satisfies the

lower Ricci curvature bound RicY ≥ n − 2 in a generalized sense. The con-

sequences were initially established directly for cross-sections of limit cones.

Subsequently, it was shown that in the precise formal sense, Y is an RCD

space with Ric ≥ n− 2; see [Ket15], [BS14].

Theorem 4.32. Let (Mn
i , gi, pi) → (X, dX , p) = (C(Y ), dX , p) satisfy

RicMn
i
≥ −δi → 0 and Vol(B1(pi)) ≥ v > 0. Then

(1) (I −∆Y )−1 : L2(Y )→ L2(Y ) is a compact operator;

(2) Laplacian ∆Y has discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ · · · ;
(3) if φi is an eigenfunction associated to λi, then φi is Lipschitz ;

(4) the following functions are harmonic on X :

u(r, y) = rαiφi,(4.40)

where

αi = −n− 2

2
+

…(n− 2

2

)2
+ λi;(4.41)

(5) the harmonic functions rαiφi are Lipschitz on C(Y );

(6) the first nonzero eigenvalue satisfies λ1 ≥ n− 1.

Remark 4.33. (1) follows from a Neumann Poincaré inequality on Y , which

is induced from the Neumann Poincare inequality on X. See a proof of Lemma

4.3 in [Din02] and see also [CC00].

(2) follows from (1). See also Theorem 1.8 of [CC00], which only uses

Neumann Poincare inequality and volume doubling.

(3) follows from the fact that the harmonic function u(r, y) = rαiφi is

locally Lipschitz, which was proved in [Din02].

(4) follows from the statement (4) of Theorem 4.31.

(5) and (6) were proved in [Din02].

4.11. ε-regularity for 2-sided Ricci bounds.

Definition 4.34. For x ∈ Mn, we define the harmonic radius rh(x) > 0

to be the maximum over all r > 0 such that there exists a mapping ψ =

(ψ1, . . . , ψn) : Br(x)→ Rn with the following properties:

(1) ∆ψi = 0 for i = 1, . . . , n;

(2) ψ is a diffeomorphism onto its image with Br(0
n) ⊆ ψ(Br(x)), and hence

defines a coordinate chart;

(3) the coordinate metric gij =〈∇ψi,∇ψj〉 on Br(x) satisfies ||gij−δij ||C0(Br(x))

+ r · ||∂ gij ||C0(Br(x)) < 10−n.

The formula for the Ricci tensor in harmonic coordinates can be viewed

as a (nonlinear) elliptic equation on the metric gij in which the Ricci tensor is
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the inhomogeneous term. If the Ricci curvature is bounded, |RicMn | ≤ n− 1,

then via elliptic regularity we obtain for any p <∞ and 0 < α < 1 the a priori

estimates for the case r = 1:

||gij − δij ||C1,α(B1/2(x)) ≤ C(n, α),(4.42)

||gij − δij ||W 2,p(B1/2(x)) < C(n, p).(4.43)

The following ε-regularity theorem from [CN15] can be viewed as a con-

sequence of the proof of the codimension 4 conjecture proved in that paper. It

states in quantitative form that if a ball has a sufficient amount of symmetry,

then the ball is in the domain of a harmonic coordinate system in which the

metric satisfies definite bounds.

Theorem 4.35 ([CN15]). There exists ε(n, v) > 0 such that if Vol(B1(p))

> v > 0, |RicMn | ≤ n− 1 and B2(p) is (n− 3, ε)-symmetric, then rh(p) > 1.

5. Outline of proof of Neck Structure Theorem

The idea of a neck region is derived primarily from [JN21] and is motivated

by ideas from [NV17a]. Given the Neck Structure Theorem 2.9, the proof of

the Neck Decomposition of Theorem 2.12 follows along lines similar to what

was done in a more restricted context in [JN21]. More precisely, much of the

proof of the Neck Decomposition of Theorem 2.12 involves an elaborate and

highly nontrivial covering argument. At a few places, an appeal is made to

Theorem 2.9 to provide sharp estimates; however none of the technology which

goes into the proof of Theorem 2.9 plays a role in the proof of Theorem 2.12.

Thus, the bulk of this paper is focused on proving the Neck Structure Theorem

2.9. This requires a completely new set of ideas and tools, quite distinct

from those of the abovementioned citations. Our purpose in this section is

to introduce these new ideas in order to sketch a clean picture of the proof of

Theorem 2.9. Some of our explanations will be repeated in subsequent sections.

The proof of Theorem 2.9 involves a nonlinear induction scheme. In it, we

will assume a weaker version of the Ahlfors regularity condition (2.7) already

holds, and we will use it to prove the stronger version. Precisely, our main

inductive lemma is the following:

Lemma 5.1 (Inductive Lemma). Fix η,B > 0 and δ ≤ δ(n, v, η, B). Let

N = B2(p) \ Brx(C) denote a (k, δ, η)-neck region, and assume for each x ∈ C

and B2r(x) ⊂ B2(p) that

B−1rk < µ(Br(x)) < B rk.(5.1)

Then
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(1) for each x∈C and B2r(x)⊂B2(p), we have the improved estimate A(n)−1rk

< µ(Br(x)) < A(n)rk;

(2) C0 is k-rectifiable.

Outlining the proof of the inductive lemma will be the main goal of this

section. In Section 9 we rigorously prove Theorem 2.9 from the Inductive

Lemma.

5.1. Harmonic splittings on neck regions. In order to prove the Inductive

Lemma 5.1, and hence Theorem 2.9, let us first make the following observation.

Let C′ ⊆ B2 ⊆ Rk be a closed subset with r′x : C′ → R a radius function

such that {Bτnr′x(x)} are all disjoint and B2 ⊆ C′0 ∪
⋃
Br′x(C′+), where as

usual C′0 = {r′x = 0} and C′+ = {r′x > 0}. Consider the packing measure

µ′ = Hk∩C′0+ωk
∑

C′+
rki δxi . It is a straightforward though instructive exercise

to see that µ′ automatically satisfies the Ahflors regularity condition (2.7). For

this, one notes that the Lebesgue measure on Rk coincides with the Hausdorff

measure. Therefore, the strategy to prove the Inductive Lemma 5.1 will be to

find a mapping u : C → Rk which is bi-Hölder onto its image and (1 + ε)-bi-

Lipschitz on most of C. Then, with C′ := u(C) and r′x := rx, we can turn the

covering {Br′x(C)} into a well-behaved covering of B2(0k) ⊆ Rk, and therefore

conclude the asserted Ahlfors regularity. For further discussion of the role of

the Ahlfors regularity of the packing measure, see Remark 2.10.

Remark 5.2 (Digression). At this point, we will digress in order to explain

what will not work in the present context. This will motivate the strategy

used here and relate it to that in the the previous literature. In [NV17a] a

quite similar strategy was implemented in order to study the singular sets of

nonlinear harmonic maps. In that case, the map u was built by hand, us-

ing a Reifenberg construction. Showing that the construction worked required

new estimates on nonlinear harmonic maps and a new rectifiable Reifenberg

theorem. It is natural to examine the possibility of implementing a similar

approach in the present context, by using metric Reifenberg constructions in

the spirit of [CC97]. However, these ideas break down in the context of lower

Ricci curvature bounds. Essentially, this is because the underlying space it-

self is curved. This gives rise to error terms which are quantitatively worse

than those which arise in connection the bi-Lipschitz Reifenberg techniques of

[NV17a]. As a result, those techniques fail in the present context. Therefore,

of necessity, our construction of the map u will be completely different from

that of [NV17a]. Instead of relying on a Reifenberg type construction, our

mapping u will be more canonical in nature. It will solve an equation.

To make the above more precise, recall from Definition 4.10, the notion of

a harmonic splitting function.
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It follows from Theorem 4.11 that if B2r(p) is (k, δ)-symmetric, then there

exists an ε-splitting map u : Br(p)→ Rk. In particular, splitting maps exist on

neck regions. In general, splitting functions can degenerate on sets of infinite

codimension 2 content. In particular, the degeneration set of u may in general

be much larger than the center point set C of a neck region. However, as we

will see, something rather miraculous takes place. Namely, if we are on a neck

region, then the map u can degenerate in at most a weak sense on all of C, and

on most of C, it cannot degenerate at all. Precisely, we will prove the following:

Theorem 5.3 (Harmonic splittings on neck regions). Let B, ε, η > 0 with

δ′ ≤ δ′(n, v, B, ε, η) and δ ≤ δ(n, v, η, B, ε). Let N = B2 \Brx(C) be a (k, δ, η)-

neck region satisfying (5.1) with u : B4 → Rk a δ′-splitting map. Then there

exists Cε ⊂ C ∩B15/8(p) such that

(1) µ
(
Cε ∩B15/8(p)

)
≥ (1− ε)µ

(
C ∩B15/8(p)

)
;

(2) u is (1 + ε)-bi-Lipschitz on Cε, i.e., (1 + ε)−1 · d(x, y) ≤ |u(x) − u(y)| ≤
(1 + ε) · d(x, y) for any x, y ∈ Cε;

(3) u is (1 + ε)-bi-Hölder on C, i.e., (1 + ε)−1 · d(x, y)1−ε ≤ |u(x) − u(y)| ≤
(1 + ε) · d(x, y) for any x, y ∈ C.

Theorem 5.3 is an abbreviated version of Proposition 9.3, which is the

result which will be proved in the body of the paper.

The proof of Theorem 5.3 relies on three main new points: The Sharp

Splitting Theorem 6.1, the Geometric Transformation Theorem 7.2, and the

Nondegeneration Theorem of 8.1. The remainder of this outline will discuss

these results and explain how they lead to the proof of Theorem 5.3. For con-

venience, we restate these results below as Theorems 5.4, 5.6, 5.7, respectively.

5.2. Sharp cone-splitting. It is a now classical point that if B2(p) is (k, δ)-

symmetric, then there exists a harmonic (k, ε)-splitting function u : B1(p)→Rk;
see Theorem 4.11. In this paper, it will be crucial to have a quantitatively sharp

understanding of how good a splitting exists.

Recall that in Definition 4.4 we introduced the notion of a (k, α)-in-

dependent set of points x0, . . . , xk. Also, in Definition 4.23 we defined the

notion of (k, α, δ)-entropy pinching. The following is a slight specialization of

Theorem 6.1. The crucial point is the precise linear relationship between the

k-pinching of a ball and the squared Hessian of a splitting map. This is what,

under appropriate circumstances, eventually allows the result to be summed

over an arbitrary number of scales without having the resulting estimate blow

up uncontrollably.

Theorem 5.4 (Sharp Cone-Splitting). Given ε, α > 0 there exist positive

constants δ(n, v, α, ε) and C(n, v, α) > 0 with the following properties. Let

(Mn, g, p) satisfy RicMn ≥ −(n − 1)δ2 and Vol(Bδ−1(p)) > vδ−n > 0, and
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let B4δ−1(p) be (k, δ2)-symmetric. Then there exists a (k, ε)-splitting map u :

B2(p)→ Rk satisfying
 
B2(p)

(
|∇2u|2 + Ric(∇u,∇u) + 2(n− 1) δ2|∇u|2

)
≤ C Ek1(p).(5.2)

5.3. Sharp Transformation Theorem. The results of the last subsection

tell us, in terms of the k-pinching, how good we can expect the best splitting

map to be on a typical ball. The proof of Theorem 5.3 depends on fixing a

single splitting map on the original ball B2(p) and seeing how it behaves on

smaller balls.

To this end, let us begin by describing a simple situation. If u : B2(0n)→Rk
is a k-splitting map in Rn, then as with any solution of an elliptic PDE, u has

pointwise bounds on the Hessian. Among other things, this implies that if we

restrict to some sub-ball, Br(x) ⊆ B1, then u : Br(x) → Rk is still a splitting

map. More than that, we know by the smoothness estimates that the matrix

T−1 := 〈∇ui,∇uj〉(x) is close to δij . Thus, if we look at the map T ◦ u, so

that 〈∇Tui,∇Tuj〉(x) = δij , then we even know that Tu|Br is becoming an

increasing improved splitting map, as Tu is scaled invariantly converging to an

isometric linear map at a polynomial rate. Unfortunately, on spaces with only

lower Ricci curvature bounds, such statements are highly false. For instance

there could be points where |∇u| = 0, so that u|Br is not even a splitting map

on small balls, much less a better one; see, for instance, Example 3.1.

However, it turns out that although the restriction of u : Br(x) → Rk to

a sub-ball may not be well behaved, if we are on a neck region and x ∈ C, then

u may only degenerate in a very special way. Namely, though u|Br may not be

a splitting map, there is a k × k-matrix T such that Tu = T ji uj : Br(x)→ Rk
is a splitting map. What is more important, and as it turns out a lot harder

to prove, is that after transformation Tu is the best splitting map on the ball,

in that it satisfies the estimates from the Sharp Cone-Splitting Theorem 6.1.

Remark 5.5. Note that in comparison to the Rn case above the matrix T

depends on the scale, and not just the point, as T = Tx,r may blow up in norm.

Additionally, we of course cannot expect that Tu is converging polynomially

to a splitting map, since no such splitting map may exist. All we can hope for

is that Tu is the best splitting map which does exist.

Our precise result is the following, which is a slight specialization of The-

orem 7.2.

Theorem 5.6 (Geometric Transformation). Given α, η, ε > 0, there exists

C = C(n, v, η, α) and γ = γ(n, v, η) > 0 such that if δ < δ(n, v, η), then the

following holds : Let (Mn, g, p) satisfy RicMn ≥−(n−1)δ2, Vol(B1(p))> v> 0,

and assume the following :
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(i) u : B2(p)→ Rk is a (k, δ)-splitting function ;

(ii) for all r ≤ s ≤ δ−1, the ball Bs(p) is (k, δ2)-symmetric but not (k+ 1, η)-

symmetric.

Then for all s ∈ [r, 1], there exists a k × k-matrix T = Tp,s such that

(1) (weak estimate) Tu : Bs(p)→ Rk is a (k, ε)-splitting map;

(2) (strong estimate) for rj := 2−j ,

(5.3) s2

 
Bs(p)

|∇2Tu|2 ≤ C
∑

s≤rj≤1

Å
s

rj

ãγ
Ekrj (p) + Cδ2 sγ .

First, note that the weak estimate above is the main ingredient in the proof

of the bi-Hölder estimate, (3), of Theorem 5.3. To see this, observe that since

the transformation exists on every scale, one can see it must change slowly. In

particular, |T−1
2r ◦ Tr| ≤ 1 + ε and hence |Tr| ≤ r−ε. On the other hand, if one

takes x, y ∈ C and considers r = d(x, y), then by the weak estimate we have

(5.4) |d(Tru(x), Tru(y))− d(x, y)| < εr.

By using the norm control on Tr stated above, this exactly gives the bi-Hölder

estimate; for the details, see Section 8.

The proof of the weak estimate itself is given by a contradiction argument

in the spirit of [CN15]. Roughly, if the result fails at some x ∈ C, then one

looks for the first radius s > rx for which it fails. By blowing up Bs(x) to a

ball of radius 1 and passing to the limit, T2su → v : Rk × C(Y ) → Rk, one

obtains a harmonic map v which is a (k, ε)-splitting map on B2(x), but for

which by assumption, there is, in particular, no transformation so that Tv is a

(k, ε/2)-splitting map on B1(x). By using the transformation estimates of the

previous paragraph, one gets that supBr(x) |∇v| ≤ rε for all r ≥ 1. Therefore,

v has slightly faster than linear growth. Then, using that Xn is not (k+ 1, η)-

symmetric one can prove a Liouville type theorem stating that the map, v,

must be exactly linear from one of the factors. In that case, it is clear that

after a transformation, v is precisely (k, 0)-symmetric on B1(x). Therefore, we

get a contradiction. For the precise details, see Section 7.

The proof of the strong estimate in Theorem 5.6 is much more involved.

One again uses a contradiction argument, but this time to prove a more re-

fined estimate. Roughly, if `r : Br(x) → Rk is the best k-splitting on Br(x),

in the sense of the Sharp Splitting of Theorem 5.4, then one shows that

r2
ffl
Br(x) |∇

2(Tru− `r)|2 is decaying polynomially. This involves a careful anal-

ysis and blow up argument; for details, see Section 7.

5.4. Nondegeneration theorem. As was discussed, the weak estimate of

Theorem 5.6 is sufficient to prove the bi-Hölder estimate, (3) of Theorem 5.3.

Next we want to see that the strong estimate of Theorem 5.6 suffices to prove

the bi-Lipschitz estimate, (2) of Theorem 5.3. However, this takes a bit more
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work since there are a couple of additional points to address. To accomplish

this we want to show that at most points x ∈ C, we have for any rx < r < 1 that

|Tx,r− I| < ε. At such points, u : Br(x)→ Rk remains a (k, 2ε)-splitting on all

scales, even without transformation. By using (5.4) as in the bi-Hölder esti-

mate, we conclude that u is a bi-Lipschitz map at such points. It is worth noting

that this estimate does not hold at all points. This can be seen from Exam-

ple 3.1. Thus showing that it holds at most points is the best we can hope for.

To accomplish this, we introduce our Nondegeneration Theorem:

Theorem 5.7 (Nondegeneration of k-Splittings). Given ε, η, α > 0 there

exists δ(n, v, η, α, ε) > 0 such that the following holds. Let δ < δ(n, v, η, α, ε)

with (Mn, g, p) satisfying RicMn ≥ −(n − 1)δ2, Vol(B1(p)) > v > 0. Let u :

B2(p)→ Rk denote a (k, δ)-splitting function. Assume for Br(x) ⊆ B1(p) that

(1) Bδ−1s(x) is (k, δ2)-symmetric but Bs(x) is not (k+ 1, η)-symmetric for all

r ≤ s ≤ 1;

(2)
∑

rj≥r E
k,α
rj (p) < δ, where rj = 2−j .

Then u : Bs(x)→ Rk is an ε-splitting function for every r ≤ s ≤ 1.

The proof of the above comes down to showing that the assumptions imply

that |Tx,r − I| < ε. It turns out that the implication

(5.5)
∑
rj>rx

Ek,α(x, rj) < δ =⇒ |Tx,r − I| < ε

is fairly subtle. It is much easier to show
∑

rj>rx

√
Ek,α(x, rj) < δ =⇒ |Tx,r−I|

< ε. However, for our applications, the square gain is crucial. The square gain

depends heavily on the fact that u is harmonic; it does not hold for a general

(nonharmonic) splitting function. The proof of (5.5) depends on the more local

estimate:

(5.6) |T2r ◦ T−1
r − I| < Cr2

 
B2r(x)

|∇2T2ru|2 ≤ C Ek(x, 2r),

where as previously discussed, the last inequality is the main result of the

Transformation Theorem 5.6.

Remark 5.8. The first inequality is where the square gain occurs. As

above, if the right-hand side was the L2-norm instead of the squared L2-norm,

the inequality would be much more standard and would follow from a typical

telescope type argument. That one can control T2r ◦ T−1
r by the squared Hes-

sian is a point very much special to harmonic functions. It is crucial to the

whole paper.

The key point is the following monotonicity formula, which holds for any

harmonic function:
(5.7)
d

dt

ˆ
〈∇ui,∇uj〉ρt(x, dy) = 2

ˆ (
〈∇2ui,∇2uj〉+ Ric(∇ui,∇uj)

)
· ρt(x, dy).
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Roughly speaking, since ρt is a probability measure which is essentially

supported on B√t(x), the left-hand side of (5.7) measures the rate of change

of Tij(x,
√
t). Given that we want to use this when |∇u| ≈ 1 and |∇2u| ≈ 0, we

find that the left-hand side behaves as a linear quantity, while the right-hand

side behaves as a quadratic quantity. This leads to a a crucial gain in the

analysis. For additional details, see Section 8.

5.5. Completing the outline proof of Theorem 5.3. Completing the outline

proof of Theorem 5.3 requires a brief discussion of why the assumption of (5.5)

holds for most x ∈ C.

Recall that in Theorem 5.3 we are assuming the Ahlfors regularity of (5.1),

so a key point is that one has the estimate

(5.8) Ek(x, r) ≤ Cr−k
ˆ
Br(x)

|W2r(y)−Wr(y)| dµ.

This is because the Ahlfors regularity allows us to find k + 1 independently

spaced points, x0, . . . , xk, for which the quantities |W2r(xj) −Wr(xj)| are all

roughly the same as the average drop r−k
´
Br(x) |W2r(y)−Wr(y)| dµ.

To see this, recall from the definition of a neck region that for every x ∈ C,

we have

(5.9) |W1(x)−Wrx(x)| =
∑

rj=2−j≥rx

|W2rj (x)−Wrj (x)| < δ.

Then one hasˆ
B1(p)

( ∑
rj=2−j>rx

r−kj

ˆ
Brj (x)

|W2rj (y)−Wrj (y)|dµ(y)
)
dµ(x)

=

ˆ
B1

ˆ
B1

∑
rj=2−j>rx

r−kj |W2rj (y)−Wrj (y)| 1Brj (x)(y) dµ(y)dµ(x)

≤ C
ˆ
B1

ˆ
B1

∑
rj=2−j>ry

r−kj |W2rj −Wrj |(y)1Brj (y)(x) dµ(x)dµ(y)

≤ C
ˆ
B1

∑
rj=2−j>ry

|W2rj (y)−Wrj (y)| ·
µ(Brj (y))

rkj
dµ(y)

≤ C B
ˆ
B1

∑
rj=2−j>ry

|W2rj (y)−Wrj (y)| dµ(y)

≤ C B
ˆ
B1

|W2(y)−Wry(y)| dµ(y)

≤ C B2 δ.

(5.10)

It follows from this and (5.8) that most of C satisfies (5.5), as claimed.
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6. Sharp cone-splitting

This is the first of three sections which constitute the third part of the

paper.

In this section, we prove Theorem 6.1, the sharp existence theorem for

ε-splitting functions. The hypothesis involves the k-pinching of the local point-

wise entropy; see Definition 4.23. The key point, the one which presents the

real difficulty in the proof, is the linear bound of the squared L2-norm of the

Hessian of the splitting function in terms of the entropy pinching. This is what

we mean by sharp. The main argument is given in the proof of Proposition 6.4.

As explained in Section 5, the form of the bound is crucial for the proof of the

Transformation Theorem 7.2.

Theorem 6.1 (Sharp Cone-Splitting). Given ε, α > 0, there exist positive

constants δ(n, v, α, ε) and C(n, v, α) > 0 with the following properties. Let

(Mn, g, p) satisfy RicMn ≥ −(n − 1)δ2r2 and Vol(Bδ−1(p)) > vδ−n > 0 with

r ≤ 1, and let B4δ−1(p) be (k, δ2)-symmetric. Then there exists a (k, ε)-splitting

map u : B2(p)→ Rk satisfying

 
B2(q)

(
|∇2u|2 + Ric(∇u,∇u) + 2(n− 1)δ2r2|∇u|2

)
≤ C(n, v, α) · E(k,α,δ)

1 (q).

(6.1)

Remark 6.2 (Sharpness). The example of the 2-dimensional cone C(S1
β)

shows that the estimate in Theorem 6.1 is actually sharp. In checking this, it

is useful to employ Theorem 4.22, which states the equivalence between the

volume pinching and the entropy pinching.

6.1. Approximation of the squared radius with sharp Hessian estimates.

The first step in the proof of Theorem 6.1 is to construct a regularization h of

the squared distance function d2. As in [CC96], the function h will be taken to

satisfy the Poisson equation ∆h = 2n. Note that for the case of metric cones,

we have precisely h = d2, ∇2h = 2g. We will obtain sharp Hessian bounds for h

in terms of the entropy drop. The splitting map u will be constructed explicitly

using functions hi as above corresponding to independent approximate cone

vertices; see Example 6.6 and (6.22). This will lead to an estimate on ∇2u in

terms of the entropy pinching. Recall that the k-pinching E
k,α,δ
r (x) is defined

to be the minimal entropy pinching over all (k, α)-independent points; see

Definition 4.23.

Theorem 6.3 (Sharp Poisson regularization of d2). Let (Mn, g, p) satisfy

Ric ≥ −(n− 1)δ2 with Vol(Bδ−1(p)) > vδ−n > 0. For any ε > 0 and Br(x) ⊆
B5(p), if δ ≤ δ(n, v, ε) is such that Brδ−1(x) is (0, δ2)-symmetric, then there

exists a function h : B2r(x)→ R such that
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(1) ∆h = 2n;

(2)
ffl
B2r(x)

(
|∇2h− 2g|2 + Ric(∇h,∇h) + 2(n− 1)δ2 · |∇h|2

)
≤ C(n, v) · |Wδ

r2(x)−Wδ
2r2(x)|;

(3)
ffl
B2r(x)

∣∣∣|∇h|2 − 4h
∣∣∣2 ≤ C(n, v)r4 · |Wδ

r2(x)−Wδ
2r2(x)|;

(4) |∇h| ≤ C(n, v)r;

(5) supB2r(x) |h− d2
x| ≤ εr2.

Proof. Set t = r2, and as usual write ρt(x, y) = (4πt)−n/2e−f for the heat

kernel. The Hessian estimates on h will follow from the Hessian estimates on

the function 4tf , which is in turn given by the local W-entropy pinching. Thus,

we will begin by deriving the relevant estimates on ∇2f .

By Theorem 4.22, we have

2

ˆ 2t

t
s

ˆ
Mn

(
|∇2f − 1

2s
g|2 + Ric(∇f,∇f) + 2(n− 1)δ2|∇f |2

)
ϕρs(x, dy)

≤ |Wδ
t (x)−Wδ

2t(x)|
:= η.

(6.2)

Hence, there exists t ≤ s ≤ 2t such that

2ts

ˆ
M

(
|∇2f − 1

2s
g|2 + Ric(∇f,∇f) + 2δ2(n− 1)|∇f |2

)
ϕρs(x, dy) ≤ η.

(6.3)

In particular,ˆ
Mn

(
|∇2(4sf)− 2g|2 + Ric(∇(4sf),∇(4sf))

+ 2δ2(n− 1)|∇(4sf)|2
)
ϕρs(x, dy) ≤ 8η.

(6.4)

By using the heat kernel lower bound estimates in Theorem 4.14 and the

volume noncollapsing assumption, we get 
B5
√
s(x)

(
|∇2(4sf)− 2g|2 + Ric(∇(4sf),∇(4sf))

+ 2(n− 1)δ2|∇(4sf)|2
)
≤ C(n, v)η.

(6.5)

Set f̃ := 4sf , and consider the 1-form

∇|∇f̃ |2 − 4∇f̃ = 2∇2f̃(∇f̃ , · )− 4∇f̃

= 2(∇2f̃ − 2g)(∇f̃ , · ).
(6.6)
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By using the Poincaré inequality in Theorem 4.24 and the gradient estimate

|∇f̃ |2 = 16s2|∇f |2, we get 
B4
√
s(x)

∣∣∣|∇f̃ |2 − 4f̃ −
 
B4
√
s(x)

(|∇f̃ |2 − 4f̃)
∣∣∣2

≤ C(n)s

 
B4
√
s(x)
|∇2(4sf)− 2g|2|∇f̃ |2 ≤ C(n, v)ηs2.

(6.7)

Put

f̂ := f̃ +
1

4

 
B4
√
s(x)

(|∇f̃ |2 − 4f̃).

Then  
B4
√
s(x)

∣∣∣|∇f̂ |2 − 4f̂
∣∣∣2 ≤ C(n, v)ηs2,(6.8)

 
B4
√
s(x)

(
|∇2f̂ − 2g|2 + Ric(∇f̂ ,∇f̂) + 2δ2(n− 1)|∇f̂ |2

)
≤ C(n, v)η.(6.9)

We now define the function h to be the solution of the Poisson equation,

∆h =2n (on B4
√
s(x)),

h =f̂ (on ∂B4
√
s(x)).

(6.10)

We will show that h satisfies the desired estimates.6

By integrating by parts, we have 
B4
√
s(x)
|∇h−∇f̂ |2

=

 
B4
√
s(x)

(h− f̂)(∆f̂ − 2n)

≤
Ç 

B4
√
s(x)
|h− f̂ |2

å1/2

·
Ç 

B4
√
s(x)
|∆f̂ − 2n|2

å1/2

≤ C(n)

Ç 
B4
√
s(x)
|h− f̂ |2

å1/2

·
Ç 

B4
√
s(x)
|∇2f̂ − 2g|2

å1/2

.

(6.11)

Since h− f̂ = 0 on ∂B4
√
s(x), by the Poincaré inequality in Theorem 4.24

we have  
B4
√
s(x)
|h− f̂ |2 ≤ C(n)s

 
B4
√
s(x)
|∇h−∇f̂ |2.(6.12)

6To be precise, here we might have to change the domain by an arbitrarily small amount

such that the boundary is smooth and, in particular, satisfies an exterior sphere condition.

This does not affect the argument which follows.
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By combining (6.12) with (6.11), we get

s

 
B4
√
s(x)
|∇h−∇f̂ |2 +

 
B4
√
s(x)
|h− f̂ |2 ≤ C(n)s2

 
B4
√
s(x)
|∇2f̂ − 2g|2.

(6.13)

Choose a cutoff function φ as in (4.13) with support in B4
√
s(x) and φ ≡ 1 in

B3
√
s(x) such that s|∆φ|+ s|∇φ|2 ≤ C(n). Then we have

 
B4
√
s(x)
|∆φ||∇h−∇f̂ |2

≥
 
B4
√
s(x)

∆φ|∇h−∇f̂ |2

≥
 
B4
√
s(x)

φ∆|∇h−∇f̂ |2

≥
 
B4
√
s(x)

2φ
(
|∇2h−∇2f̂ |2 + Ric(∇(h− f̂),∇(h− f̂))

+ 〈∇(∆h−∆f̂),∇(h− f̂)〉
)
.

(6.14)

Therefore we have

 
B4
√
s(x)

φ
Ä
|∇2h−∇2f̂ |2 + Ric(∇(h− f̂),∇(h− f̂))

ä
≤ 1

2

 
B4
√
s(x)
|∆φ||∇h−∇f̂ |2 −

 
B4
√
s(x)

φ〈∇(∆h−∆f̂),∇(h− f̂)〉

≤ C(n)

Ç 
B4
√
s(x)
|∆φ| · |∇h−∇f̂ |2 +

 
B4
√
s(x)

φ|∆f̂ − 2n|2

+

 
B4
√
s(x)
|∆f̂ − 2n| · |∇h−∇f̂ | · |∇φ|

å
≤ C(n)

Ç 
B4
√
s(x)

(|∆φ|+ |∇φ|2) · |∇h−∇f̂ |2

+

 
B4
√
s(x)

(φ+ 1)|∆f̂ − 2n|2
å

≤ C(n)

 
B4
√
s(x)
|∇2f̂ − 2g|2,

(6.15)
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where we have used (6.13) in the last inequality and |∆f̂−2n|2 ≤ n|∇2f̂−2g|2.

By using (6.13) and s ≤ 102, we have

 
B3
√
s(x)

Ä
|∇2h−∇2f̂ |2 + Ric(∇(h− f̂),∇(h− f̂)) + 2δ2(n− 1)|∇h−∇f̂ |2

ä
≤
 
B4
√
s(x)

φ
(
|∇2h−∇2f̂ |2 + Ric(∇(h− f̂),∇(h− f̂))

+ 2δ2(n− 1)|∇h−∇f̂ |2
)

≤ C(n)

 
B4
√
s(x)
|∇2f̂ − 2g|2.

(6.16)

By the Schwarz inequality and (6.8) we get

 
B3
√
s(x)
|∇2h− 2g|2 + Ric(∇h,∇h) + 2δ2(n− 1)|∇h|2

≤ 2

 
B3
√
s(x)

(
|∇2h−∇2f̂ |2 +Ric(∇(h− f̂),∇(h− f̂))+2δ2(n− 1)|∇h−∇f̂ |2

)
+ 2

 
B3
√
s(x)

Ä
|∇2f̂ − 2g|2 + Ric(∇f̂ ,∇f̂) + 2δ2(n− 1)|∇f̂ |2

ä
≤ C(n, v)η.

(6.17)

This gives (2).

To see (4), note that 2t ≥ s ≥ t = r2 and

 
B4
√
s(x)
|∇h|2 ≤ 2 sup

B4
√
s(x)

|∇f |2 + 2

 
B4
√
s(x)
|∇h−∇f̂ |2 ≤ C(n, v)s.(6.18)

From this, the gradient estimate on h in (4) follows by a standard Moser

iteration argument.

To prove (3), since 2t ≥ s ≥ t = r2, we can use estimates for f̂ in (6.8) and

the gradient estimates |∇h| + |∇f̂ | ≤ C(n, v)
√
s in B3

√
s(x). By the Cauchy-

Schwarz inequality, we have



RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 461

 
B3
√
s(x)

∣∣∣|∇h|2 − 4h
∣∣∣2

≤ C(n) ·
Ç 

B3
√
s(x)

∣∣∣|∇f̂ |2 − 4f̂
∣∣∣2

+

 
B3
√
s(x)

∣∣∣|∇h|2 − |∇f̂ |2∣∣∣2 +

 
B3
√
s(x)
|h− f̂ |2

å
≤ C(n, v)ηs2 +

 
B3
√
s(x)
|∇h−∇f̂ |2 · |∇h+∇f̂ |2

≤ C(n, v)ηs2 + C(n, v)s

 
B3
√
s(x)
|∇h−∇f̂ |2

≤ C(n, v)ηs2.

(6.19)

This gives (3).

To complete the proof, we need to show (5). First, by the gradient esti-

mates of h, f̂ , d2
x and (6.13), if δ ≤ δ(n, v, ε), then we get supB2r(x) |f̂ − h| ≤

εr2/4. To get (5) it suffices to prove supB2r(x) |f̂ − d2
x| ≤ εr2/4. For this, we

will use the heat kernel convergence and the W 1,2-convergence of functions as

in Proposition 4.15 and argue by contradiction.

By scaling, we can assume r = 1 and Ric ≥ −(n − 1)δ2. Therefore

assume there exist ε0 > 0, δi → 0 and a sequences of (Mi, gi, xi) such that

Vol(Bδ−1
i

(xi)) ≥ vδ−ni , Ric ≥ −(n− 1)δ2
i → 0 and the ball Bδ−1

i
(xi) is (0, δ2

i )-

symmetric. However the function f̂i defined as above satisfies

sup
B10(xi)

|f̂i − d2
xi | ≥ ε0/4.(6.20)

Now let i → ∞. By Gromov’s compactness theorem, there exists a met-

ric cone, (C(Y ), d, x∞), which is the Gromov-Hausdorff-limit of (Mi, gi, xi).

By the heat kernel convergence in Proposition 4.15 and Remark 4.17, the

heat kernel ρ1(xi, ·) = (4π)−n/2e−fi converges to the heat kernel ρ1(x∞, ·) =

(4π)−n/2e−d
2
x∞/4+AX uniformly on any compact subset, where

AX = log
Vol(Sn−1)

Vol(X)
.

From the heat kernel Laplacian estimate and the W 1,2-convergence in

Proposition 4.29, it follows that the sequence fi converges to f∞ = d2
x∞/4−AX

uniformly and in the local W 1,2-sense. Thus, f̂i converges uniformly to a limit

function

f̃∞ := 4f∞ + 4

 
B10(x∞)

(|∇f∞|2 − f∞) = d2
x∞ .
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Since d2
xi converges to d2

x∞ uniformly in any compact set, while supB10(xi) |f̂i−
d2
xi | ≥ ε0/4 for any i, this gives a contradiction. This completes the proof of

Theorem 6.3. �

6.2. The k-splitting associated to k independent points. In this subsection,

we construct a k-splitting map from k-independent points which satisfy the es-

timates of the splitting Theorem 6.1. By rescaling and taking the infimum over

all (k, α)-independent sets of points we will see that the proof of Theorem 6.1

is a direct consequence of the following main result, Proposition 6.4. The proof

of this proposition will occupy the remainder of this section.

Proposition 6.4. Let (Mn, g, p) satisfy RicMn ≥ −(n− 1)δ2 with

Vol(Bδ−1(p)) ≥ vδ−n > 0.

For ε, α > 0 and δ ≤ δ(n, v, α, ε), let {x0, x1, . . . , xk} ⊂ Br(x) ⊂ B10(p) be

(k, α)-independent points with

Ek,δr ({xi}) :=
k∑
i=0

|Wδ
r2/2(xi)−Wδ

2r2(xi)| < δ.

Then there exist C(n, v, α) > 0 and a (k, ε)-splitting map u=(u1, . . . , uk) :

B8r(x)→ Rk such that

(1) r2
ffl
B8r(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2(n− 1)δ2 |∇u|2

)
≤ C · Ekr ({xi});

(2)
ffl
B8r(x)

∣∣∣〈∇ui,∇uj〉 − δij∣∣∣2 ≤ C · Ekr ({xi});
(3) |∇u| ≤ 1 + ε .

Remark 6.5. For the estimate (3), we will only prove |∇u| ≤ C(n). Once

we get |∇u| ≤ C(n), the argument in [CN15] will imply (3).

Before giving the proof of Proposition 6.4, let us look at the following

example to see how to build a splitting function from squared distance functions

to distinct vertices of a cone.

Example 6.6 (Cone-splitting; the case R2 = C(S1)). Cone-splitting, and

more specifically the relation between squared distance functions h± from dis-

tinct cone points and a splitting function u, is perhaps most easily illustrated

by the case of R2. Denote the square of the distance functions from the points

(±1, 0) by h±(x, y) = (x±1)2+y2. Then the linear function (splitting function)

u = x satisfies

u =
1

4
· (h+ − h−).(6.21)
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The expression in (6.21), which builds a linear splitting function from

squared distance functions, will reappear in the general quantitative context

in (6.22) in the proof of Proposition 6.4.

Proof of Proposition 6.4 . It follows from Theorem 6.3 that for any ε > 0,

there exists δ0(n, v, ε) such that for δ ≤ δ0 and each point xi, there is a map

hi : B20r(xi)→ R such that

(1) ∆hi = 2n;

(2)
ffl
B20r(xi)

(
|∇2hi − 2g|2 + Ric(∇hi,∇hi) + 2(n− 1)δ2 |∇hi|2

)
≤ C(n, v)|Wδ

r2/2(xi)−Wδ
2r2 |(xi)|;

(3)
ffl
B20r(xi)

∣∣∣|∇hi|2 − 4hi

∣∣∣2 ≤ C(n, v)r4|Wδ
r2/2(xi)−Wδ

2r2(xi)|;
(4) |∇hi| ≤ C(n, v)r on B20r(xi);

(5) supB20r(xi) |hi − d
2
xi | ≤ εr

2.

Note that B10r(x) ⊂ B20r(xi). We define the k-splitting functions as in

Example 6.6:

ũi :=
hi − h0 − d(x0, xi)

2

2d(xi, x0)
.(6.22)

Note that by (1), we have ∆ũi = 0 in B10r(x). By the Cauchy-Schwartz

inequality we also have:

(a) r2
ffl
B10r(x)

(
|∇2ũi|2+Ric(∇ũi,∇ũi)+2(n−1) |∇ũi|2

)
≤C(n, v, α)·Ekr ({xi});

(b) supB10r(x) |∇ũi| ≤ C(n, v, α);

(c) supB10r(x)

∣∣∣∣ũi − d2xi−d
2
x0
−d(x0,xi)

2

2d(xi,x0)

∣∣∣∣ ≤ C(α, n) · εr.

Lemma 6.7. There exists a k × k lower triangle matrix A with |A| ≤
C(n, v, α) such that u := (u1, . . . , uk) := A(ũ1, . . . , ũk) satisfies 

B8r(x)
〈∇ui,∇uj〉 = δij .

Assume provisionally that the lemma holds. Then since |A| ≤ C(n, v, α),

by using estimates (a) and (b) and the Poincaré inequality, it follows easily

that u satisfies (1) and (2) of the proposition. Estimate (3) follows exactly as

in [CN15]. Therefore, to complete the proof of Theorem 6.1 it suffices to prove

Lemma 6.7.

Proof of Lemma 6.7. We will argue by contradiction. By rescaling Br(x)

to B1(x) we can take r = 1. Then we can assume there exist (Mn
β , gβ , xβ)

and (k, α)-independent points {xβ,0, xβ,1, . . . , xβ,k} ⊂ B1(xβ) with δβ → 0 as

β →∞. Also, for each β, we can construct regularized maps hβ,i and harmonic
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functions ũβ,i on B10(xβ) as in (6.22), satisfying (a), (b) and (c), with εβ → 0

in (c).

Now, assume that either there exists no k × k lower triangle matrix Aβ
such that

uβ := Aβ(ũ1
β , . . . , ũ

k
β)

satisfies  
B8(xβ)

〈∇uiβ ,∇u
j
β〉 = δij

or, if there exist such matrices Aβ , then |Aβ | → ∞.

By the definition of independent points and the Cone-Splitting Theorem

4.6, there is a Gromov-Hausdorff limit space of the sequence Mn
β which is a

metric cone Rk × C(X). Moreover, the set {xβ,i} converges to a set of (k, α)

independent points {x∞,i} ⊂ Rk × {v} where v is the vertex of C(X).

By (c) above, the ũiβ converge to the linear functions

ũi∞ =
d2
x∞,i − d

2
x∞,0 − d(x∞,0, x∞,i)

2

2d(x∞,i, x∞,0)
.

Recall that {x∞,i} ⊂ Rk × {v} is a collection of (k, α)-independent points.

Thus, the linear functions {ũi∞, i = 1, . . . , k} form a basis of linear space of Rk,
and there exists a lower triangular matrix, A∞ with |A∞| ≤ C(n, v, α), such

that

u∞ := (u1
∞, . . . , u

k
∞) := A∞(ũ1

∞, . . . , ũ
k
∞)

satisfies  
B8(x∞)

〈∇ui∞,∇uj∞〉 = δij .

For β large enough, the W 1,2-convergence of harmonic functions stated in

Proposition 4.29 implies for some Aβ with |Aβ −A∞| → 0, the set of functions

ûβ := (û1
β , . . . , û

k
β) := Aβ(ũ1

β , . . . , ũ
k
β)

is orthogonal in the integral sense over B8(xβ), as in Lemma 6.7. This leads

to a contradiction. This completes the proof of Lemma 6.7. �

As we have seen, this also completes the proof of Proposition 6.4 and

hence, of Theorem 6.1. �

7. The Geometric Transformation Theorem

We begin with some motivation. The results of the last section specify how

good the best splitting will be on a sufficiently entropy pinched ball. However,

in the eventual application to the Neck Structure Theorem 2.9, the proof will

depend on fixing a single splitting map on the original ball B2(p) and showing
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that it behaves sufficiently well on most smaller balls. Recall from Section 5.3

the following motivating example:

Example 7.1. If u : B2(0n)→ Rk is a k-splitting map in Rn, then as with

any solution of an elliptic PDE, u has pointwise bounds on the Hessian. Among

other things, this implies that if we restrict to some sub-ball Br(x) ⊆ B1(p),

then u : Br(x) → Rk is still a splitting map. In fact, if T−1 := 〈∇ui,∇uj〉,
then T ◦u|Br(x) becomes an increasingly good splitting map, since u converges

to a linear map at a polynomial rate.

As discussed in Section 5.3 we wish to generalize, to the extent possible,

the above example to spaces with lower Ricci curvature bounds. In this case

we cannot hope that u|Br(x) remains a splitting map, but we will see that we

can choose a matrix T = T (x, r) such that T ◦ u|Br(x) is comparable to the

best splitting map on Br(x), in the sense of the last section.

7.1. Statement of the Geometric Transformation Theorem. The result re-

ferred to in [CN15] as the Transformation Theorem is a key component of the

proof of the Codimension 4 Conjecture in that paper. For given ε > 0, the

statement of the Transformation Theorem 7.2 concerns an (n−2, δ(ε))-splitting

function u : B1(x)→ Rn−2. Namely, although the restriction of u to a smaller

ball Br(x) might not be an (n − 2, ε)-splitting function, the Transformation

Theorem 7.2 gives conditions guaranteeing the existence of a suitable upper

triangular (n− 2)× (n− 2) matrix T , with positive diagonal entries, such that

Tu : Br(x)→ Rn−2 is an (n−2, ε)-splitting function. The conditions of [CN15]

are special to the codimension two stratum.

In the present long and somewhat technical section, we show that with a

different hypothesis, the conclusion of the Transformation Theorem of [CN15]

can be sharpened. In particular, our conditions and criteria will hold for any

stratum. Given a (k, ε)-splitting function u, we will see that so long as Br(x)

remains k-symmetric, there is a transformed function Tu satisfying the Hessian

estimates given by Theorem 6.1. More precisely, the main result of this section

is the following.7

Theorem 7.2 (Geometric Transformation). Given α, η, ε, δ > 0, there

exists C = C(n, v, η, α) and γ = γ(n, v, η) > 0, δ(n, v, η) > 0, such that if δ <

δ(n, v, η), then the following holds : Let (Mn, g, p) satisfy RicMn ≥ −(n−1)δ2,

Vol(B1(p)) > v > 0, and assume

(i) u : B2(p)→ Rk is a (k, δ)-splitting function ;

(ii) for all r ≤ s ≤ δ−1, the ball Bs(p) is (k, δ2)-symmetric but not (k+ 1, η)-

symmetric.

7As usual, Eks (p) = Ek,α,δs (p) denotes the k-pinching; see Definition 4.23.
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Then for all s ∈ [r, 1], there exists a k × k-matrix T = Tp,s such that

(1) Tu : Bs(p)→ Rk is a (k, ε)-splitting map;

(2) for rj := 2−j ,

s2

 
Bs(p)

(
|∇2Tu|2 + Ric(∇Tu,∇Tu) + 2δ2(n− 1)|∇Tu|2

)
≤ C ·

∑
s≤rj≤1

Å
s

rj

ãγ
Ekrj (p) + C δ2.

(7.1)

7.2. Outline of the proof. Essentially, the k×k matrix Tp,s is obtained from

gradients on the given scale. The point is to show that this procedure produces

an ε-splitting as in (1) and, what is more challenging, that this splitting satisfies

the sharp estimate in (2).

The statements (1) and (2) are both proved by contradiction arguments, in

which the assumption that the conclusion fails is shown to lead to a statement

about metric cones which, by explicit computation, can be shown to be false.

Before giving a brief description of the arguments, we mention that there

are three technical points which will have to be taken into account when the

arguments are carried out.

The first technical point concerns our being able to pass the assumption

that the conclusion of the theorem fails to a statement about limit cones. For

this, we use W 1,2 convergence result in Proposition 4.29.

The second technical point pertains to checking that the resulting state-

ment which concerns limit cones is actually false. At the formal level, one

can do explicit calculations which employ separation of variables. If we could

assume that the cross section Y n−1 of the limit cone C(Y n−1) were smooth,

then the relevant computations would be straightforward exercises, using that

Y n−1 is a space with RicY n−1 ≥ (n− 2). In our context, making this rigorous

will take a fair amount of technical work.

The third technical point concerns the fact that the Hessian of the norm

squared of a harmonic function need not be well defined on a limit cone. How-

ever, the Laplacian is well defined, and it will suffice to state all of our esti-

mates on limit cones which correspond to Hessian estimates on manifolds in

weak form using Bochner’s formula (4.18).

The proof of conclusion (1) of Theorem 7.2 is similar to the proof of the

Transformation Theorem of [CN15]. It is a quantitative implementation of the

following fact. On a metric cone Rk × C(Z), which is a definite amount away

from splitting off Rk+1, a harmonic function which is assumed to grow only

slightly more than linearly must in fact, be linear and have linear growth. The

reason is the following.

Consider a metric cone C(Y ) which is a Gromov-Hausdorff limit with the

lower bound on Ricci going to zero. The Laplacian ∆Y on the cross-section
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has a discrete spectrum and an orthonormal basis of eigenfunctions, φi, with

corresponding eigenvalues −∆Y φi = λiφi, satisfying λ0 = 0, λi ≥ n − 1, for

i ≥ 1. It follows from (i) of Theorem 7.2 that in our case, n−1 = λ1 = · · · = λk
and from (ii) that there exists τ(n, v, η) > 0 such that λk+1 ≥ (n−1)+τ(n, v, η);

i.e., there is a definite gap in the spectrum.

Let u(r, x) denote a harmonic function on C(Y ) = Rk × C(Z) which is

normalized to satisfy u(0, x) = 0. Then there is an expansion in terms of

homogeneous harmonic functions (see Proposition 7.4)

(7.2) u(r, x) =
∑
i

cir
ai · φi(y),

where a0 =0, a1 = · · ·= ak = 1 and ak+1≥1+θ(n, v, η) for some θ(n, v, η) > 0.

From this, it follows that in our case, a harmonic function on Rk×C(Z) which

grows only a bit more than linearly is actually linear. This is the fact about

cones which enables us to prove (1) via a contradiction argument.

Although the idea behind the proof of (2) is equally simple, finding the

right sharp quantitative estimate on cones is more subtle. Intuitively, in this

case we consider the behavior of an arbitrary harmonic function, u(r, z) as in

(7.2). Note that as r → 0, the nonlinear terms in the expansion decay faster

than the linear terms. Thus u(r, z) becomes increasingly linear as r → 0. The

technically precise version of this decay estimate on limit cones is given in

(7.39) of Proposition 7.12. The corresponding decay estimate for manifolds is

given in (7.50) of Proposition 7.15. The latter contains a pinching term on the

right-hand side which compensates for the fact that we are not dealing with

an actual metric cone. In particular, the best we can hope for in general is

that u|Br(x) looks increasingly like the “best” linear function on Br(x), in the

sense of Theorem 6.1.

The remainder of this section can be viewed as consisting of five parts.

In Section 7.3, we derive the results on cones needed to prove (1) of The-

orem 7.2. The section is essentially technical and routine.

In Section 7.4 we give the proof of (1).

In Section 7.5, which is brief, we digress to prove a Reifenberg theorem for

which the map is canonical. The proof is an easy consequence of the arguments

in Sections 7.3 and 7.4. While this result is not used elsewhere in the paper,

it is of some interest in and of itself. Moreover, it provides motivation for the

arguments which are used in Section 10 to prove rectifiability of the strata Sk

for all k.

In Section 7.6 we state and prove the key decay estimate for cones, (7.39)

of Proposition 7.12.

In Section 7.7 we prove the corresponding decay estimate (7.50) of Propo-

sition 7.15.

In Sections 7.7.3 and 7.8, we complete the proof of (2) of Theorem 7.2.
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7.3. Harmonic functions and eigenvalue estimates on limit cones. Let

(Mn
i , gi, xi)

dGH−→ (C(Y ), d, x∞) = Rk × C(Z)

with RicMn
i
≥ −δi → 0 and Vol(B1(xi)) ≥ v > 0. As in Section 4.10 there

exist Laplacians ∆C(Y ), ∆Y on the cone and its cross-section.

The cross-section Y is an RCD space with positive Ricci curvature RicY n−1

≥ n − 2; see [Ket15], [BS14]. Spectral results which hold for smooth spaces

with this lower Ricci bound are known to hold for Y n−1. In particular, the

spectrum of ∆Y is discrete; see Section 4.10 and Theorem 4.32. Denote the

spectrum of ∆Y by 0 = λ0 < λ1 ≤ λ2 ≤ · · · with an associated orthonormal

basis of eigenfunctions φ0 = 1√
Vol(Y )

, φ1, φ2, . . . .

The main results of this subsection are Propositions 7.3 and 7.4.8

Proposition 7.3 (Eigenvalue estimates on limit cone). Let

(Mn
i , gi, xi)

dGH−→ (X, d, x∞) = (C(Y ), d, x∞) = (Rk × C(Z), d, x∞)

satisfy RicMn
i
≥ −δi → 0 and Vol(B1(xi)) ≥ v > 0. If B1(xi) is not (k+ 1, η)-

symmetric, then

0 = λ0 < n− 1 = λ1 = · · · = λk < λk+1 ≤ λk+2 ≤ · · · .(7.3)

Moreover, there exists τ(η, n, v) > 0 such that

λk+1 > λk + τ .

Proposition 7.4. Let (Mn
i , gi, xi)

dGH−→ (C(Y ), d, x∞) satisfy RicMn
i
≥

−δi → 0 and Vol(B1(xi)) ≥ v > 0. Then rαiφi is harmonic where λi =

αi(n − 2 + αi) with αi ≥ 0 and −∆Y φi = λiφi. Moreover, any harmonic

function u(r, Y ) : B1(x∞)→ R satisfies9

u =

∞∑
i=0

bir
αiφi,

where the convergence is in the W 1,2-sense on B1(x∞).

Proof of Proposition 7.4. By Theorem 4.31 and Remark 4.33 the function

rαiφi is harmonic. So let us begin the proof of the second part of the proposi-

tion. Since u is bounded, in particular u ∈ L2(∂B1(x∞)). Then we have the

8In the case in which the cross-section is smooth, the second of these results is derived

from the first; see [Che79]. Under our assumptions, it will be convenient to derive the first

from the second.
9We mention that on any RCD space, which includes this context, a harmonic function is

automatically Lipschitz; see, for instance ,[AGS14a], [AGS14b]
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expansion in L2(Y ),

u(1, y) =
∞∑
i=0

biφi,(7.4)

where bi =
´
Y φi(y)u(1, y). On B1(x∞), define the function

vk(r, y) :=

k∑
i=0

bir
αiφi(y).

Denote the limit in L2(B1(x∞)) as k →∞ of vk by v. Since the operator ∆ is

closed, it follows that v is also harmonic. We have

v =
∞∑
i=0

bir
αiφi(y) ∈ L2(B1).(7.5)

To finish the whole proof, we need to show the above convergence (7.5) is

in the W 1,2-sense and v = u. Denote the annulus Ar,1(x∞) by

Ar,1(x∞) := B1(x∞) \ B̄r(x∞).

The following Lemma 7.5 will suffice to complete the proof of Proposition 7.4.

The argument will be given after the proof of Lemma 7.5 is completed.

Lemma 7.5. With the notation above, we have vk → v in W 1,2(B1(x∞))

and

(7.6) lim
r→1

1

(1− r)2

ˆ
Ar,1(x∞)

|v − u(1, y)|2 = 0.

Proof. To begin with, we will show that vk converges to v inW 1,2(B1(x∞)).

From the fact that u is Lipschitz it follows that
∑

i b
2
iλi <∞. Namely,

ˆ
Y
|∇u(1, y)−∇vk(1, y)|2

=

ˆ
Y
|∇u(1, y)|2 +

ˆ
Y
|∇vk(1, y)|2 − 2

ˆ
Y
〈∇u(1, y),∇vk(1, y)〉

=

ˆ
Y
|∇u(1, y)|2 +

ˆ
Y
|∇vk(1, y)|2 + 2

ˆ
Y
u(1, y)∆vk(1, y)

=

ˆ
Y
|∇u(1, y)|2 −

k∑
i=0

λib
2
i .

(7.7)

This implies
∞∑
i=0

λib
2
i ≤

ˆ
Y
|∇u(1, y)|2.
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Since α2
i ≤ λi, we have

ˆ
B1

|∇vk(r, y)|2 =

k∑
i=0

b2i

ˆ
B1

|∇(rαiφi)|2 =

k∑
i=0

b2i
λi + α2

i

n+ 2αi − 2
≤ C(n)

k∑
i=0

λib
2
i .

(7.8)

By applying the same computation to vk − v` we get

ˆ
B1

|∇(vk − v`)(r, y)|2 ≤ C(n)

k∑
i=`

λib
2
i .(7.9)

Therefore, {vk} is a Cauchy sequence in W 1,2(B1(x∞)). Since the space

W 1,2(B1(x∞) is complete, it follows that vk → v ∈ W 1,2(B1(x∞)). This

concludes the proof of the first part of Lemma 7.5.

To complete the proof of Lemma 7.5, we need to prove (7.6). We will begin

by showing that v =
∑∞

i=0 bir
αiφi(y) is also in L2(∂Br(x∞)) for 0 < r < 1.

Since
∑

i b
2
i < ∞, it follows that {vk(r, y)} is a Cauchy sequence in

L2(∂Br(x∞)). Denote the limit of vk(r, y) in L2(∂Br(x∞)) by ṽ(r, y). By

Fubini’s theorem we have that

ˆ
B1(x∞)

|vk(r, y)− ṽ(r, y)|2dHn =

ˆ 1

0

ˆ
Y
|vk(r, y)− ṽ(r, y)|2dY dr

=

ˆ 1

0
lim
j→∞

ˆ
Y
|vk(r, y)− vj(r, y)|2dY dr

≤
ˆ 1

0

∞∑
`=k

b2`dr ≤
∞∑
`=k

b2` .

(7.10)

Letting k →∞ we get

ˆ
B1(x∞)

|v(r, y)− ṽ(r, y)|2dHn = 0.

In particular, this implies that v(r, y) =
∑∞

i=0 bir
αiφi(y) is in L2(∂Br). By

Fubini’s theorem we can compute

1

(1− r)2

ˆ
Ar,1(x∞)

|v(s, y)− u(1, y)|2 =

´ 1
r s

n−1
´
Y |v(s, y)− u(1, y)|2

(1− r)2
.(7.11)
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Since v(r, y) is the L2 limit of vk(r, y) on ∂Br, we have

1

(1− r)2

ˆ
Ar,1(x∞)

|v(r, y)− u(1, y)|2 =

´ 1
r s

n−1
∑∞

i=0 b
2
i |sαi − 1|2ds

(1− r)2

≤
∞∑
i=1

b2i ·
(1− rαi)2

1− r

≤ C(n)
∞∑
i=1

(αi + 1)2b2i (1− r),

(7.12)

where we have used αi ≥ 0 to deduce (1− rαi) ≤ (αi + 1) (1− r). Since∑∞
i=0 b

2
iα

2
i < ∞, this implies limr→1

1
(1−r)2

´
Ar,1(x∞) |v − u(1, y)|2 = 0. This

completes the proof of Lemma 7.5. �

Now, we can complete the proof of Proposition 7.4. For u, v, as in (7.4),

(7.5), it suffices to prove that u = v. Since u is Lipschitz, Lemma 7.5 implies

lim
r→0

1

(1− r)2

ˆ
Ar,1(x∞)

|v − u|2 → 0.

Choose a cutoff function ϕr with support in B1(x∞) and ϕr := 1 in Br(x∞)

such that |∇ϕr| ≤ C(n)/(1− r). Then

ˆ
B1(x∞)

|∇(u− v)|2ϕ2
r = −2

ˆ
B1

(u− v)ϕr〈∇(u− v),∇ϕr〉

≤ 1

2

ˆ
B1

|∇(u− v)|2ϕ2
r + C(n)

ˆ
Ar,1

|u− v|2|∇ϕr|2.

(7.13)

By letting r → 1 we have that
´
B1
|∇(u − v)|2 = 0, which implies u − v is a

constant. Moreover, since 1
(1−r)2

´
Ar,1(x∞) |v − u|

2 → 0 as r → 1, we have that

u = v. This completes the proof of Proposition 7.4. �

Next we will prove Proposition 7.3. As explained at the beginning of this

section, the idea is the following:

By Theorem 4.32, we know that λ0 = 0 and λ1 ≥ n − 1. Consider

a harmonic function u = rαiφi on X = C(Y ) = Rk × C(Z), where φi is an

eigenfunction of Y with eigenvalue λi and αi ≥ 0 satisfies λi = αi(n−2+αi). If

u is a linear function on the Rk component, then we have αi = 1, or equivalently

λi = n− 1. Therefore, we have λ0 = 0 and λ1 = λ2 = · · ·λk = n− 1. To finish

the proof, we will need to show that

λk+1 > n− 1 + τ(n, v, η) > n− 1.

Consider the harmonic function u=rαk+1φk+1 where −∆φk+1 =λk+1φk+1.

We will use a contradiction argument to show that αk+1 > 1 + α(n, v, η) > 1,

which implies λk+1 > λk + τ(n, v, η). The moral is simple. We will show that
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if αk+1 is close to 1, then u = rαk+1φk+1 is close to a new linear splitting

function. Then if αk+1 is too close to 1, this contradicts the assumption that

B1(xi) is not (k + 1, η)-symmetric.

Proof of Proposition 7.3. Let u = rαmφm denote a harmonic function

in X. By scaling invariance, we have

t1−αm
ˆ
|∇u|2ρt(x∞, dx) = s1−αm

ˆ
|∇u|2ρs(x∞, dx).(7.14)

Lemma 7.6. For any ε > 0, we will show that if |αm−1| ≤ δ ≤ δ(n, v, η, ε),
then there exist harmonic functions ui : B1(xi) ⊂ Mi → R converging in the

W 1,2-sense (see Definition 4.27) to u with

 
B1(xi)

|∇2ui|2 ≤ ε for i ≥ i(n, v, ε, η).(7.15)

Let us assume Lemma 7.6 and finish the proof of Proposition 7.3.

Note that α1 = α2 = · · · = αk = 1 < αk+1 for any ε > 0, if |αk+1 − 1|
≤ δ ≤ δ(n, v, η, ε). Then by Lemma 7.6, we have k + 1 harmonic func-

tions u1
i , u

2
i , . . . , u

k+1
i : B1(xi) → R which converge in the W 1,2-sense to

u1 = x1, u2 = x2, . . . , uk = xk, uk+1 = rαk+1φk+1. Here x1, . . . , xk are the

coordinate functions of Rk ⊂ Rk × C(Z), and u1, u2, . . . , uk+1 are mutually

perpendicular with respect to the inner product

(u, v) :=

 
B1(x∞)

〈∇u,∇v〉 for all u, v ∈W 1,2(B1).(7.16)

Moreover, since (u`, u`) = 1 for ` = 1, . . . , k and |(uk+1, uk+1) − 1| ≤ C(n)δ,

and u`i → u` in the W 1,2-sense, we have for i ≥ i(n, v, ε, η) that∣∣∣∣∣
 
B1(xi)

〈∇uai ,∇ubi〉 − δab
∣∣∣∣∣ ≤ ε, for all a, b = 1, . . . , k + 1.(7.17)

On the other hand, by Lemma 7.6 we have the Hessian estimate
 
B1(xi)

|∇2uai |2 ≤ ε.(7.18)

It follows that the map

u := (u1
i , . . . , u

k+1
i ) : B1(xi)→ Rk+1(7.19)

is a (k + 1, C(n)ε)-splitting map. If ε ≤ ε(n, v, η), this contradicts the as-

sumption that B1(xi) is not (k + 1, η)-symmetric. This concludes the proof of

Proposition 7.3 under the assumption that Lemma 7.6 holds.
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Proof of Lemma 7.6. This proof requires the result on the heat kernel

convergence of Proposition 4.15 and the harmonic function convergence in

Lemma 4.30.

By (7.14), we have for |αm − 1| ≤ δ that∣∣∣ ˆ |∇u|2(x) ρ1(x∞, x)dx−
ˆ
|∇u|2(x) ρ2(x∞, x)dx

∣∣∣
≤ 2δ

ˆ
|∇u|2(x) ρ2(x∞, x)dx.

(7.20)

Since u has polynomial growth and the heat kernel ρt is exponentially

decaying as in Theorem 4.14, we can choose a big R ≥ R(n, v, δ) and a cutoff

function ϕ = ψ(r2), with support in BR and ϕ ≡ 1 in BR/2, such that |∇ϕ|2 +

|∆ϕ| ≤ C(n)R−2 and∣∣∣ ˆ
BR(x∞)

ϕ2|∇u|2(x)ρ1(x∞, x)dx−
ˆ
BR(x∞)

ϕ2|∇u|2(x)ρ2(x∞, x)dx
∣∣∣

≤ 4δ

ˆ
BR(x∞)

ϕ2|∇u|2(x)ρ2(x∞, x)dx.

(7.21)

By using Lemma 4.30 and Proposition 4.29, we can now construct a se-

quence of harmonic functions, ui : BR(xi) → R, which converge in the W 1,2-

sense to u : BR(x∞)→ R.

Let ϕ = ψ(hi) with ∆hi = 2n, where hi approximates d2 pointwise

(see [Che01]).10 By the heat kernel convergence in Proposition 4.15, for i ≥
i(n, v, δ), we have∣∣∣ ˆ

BR(xi)
ϕ2|∇ui|2(x)ρ1(xi, x)dx−

ˆ
BR(xi)

ϕ2|∇ui|2(x)ρ2(xi, x)dx
∣∣∣

≤ 8δ

ˆ
BR(xi)

ϕ2|∇ui|2(x)ρ2(xi, x)dx.

(7.22)

Since ρt is the heat kernel, this gives∣∣∣ ˆ 2

1

ˆ
∆(ϕ2|∇ui|2)ρt(xi, dx)

∣∣∣ ≤ 8δ

ˆ
BR(xi)

ϕ2|∇ui|2(x)ρ2(xi, dx).(7.23)

From Bochner’s formula and the Schwartz inequality, we get

ˆ 2

1

ˆ
ϕ2|∇2ui|2ρt(xi, dx)dt ≤ C(δ +R−2)

ˆ
BR(xi)

|∇ui|2(x)ρ2(xi, dx).(7.24)

10Note that we are not just applying Theorem 4.13 to produce a cutoff function but are

specifying its construction. This is to ensure ψ(hi) converge to the cutoff function ψ(r2) in

the limit space, which will be important.
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By the mean value theorem and the heat kernel lower bound estimate

Theorem 4.14, we have

 
B1(xi)

|∇2ui|2 ≤ C(n, v)(δ +R−2)

ˆ
BR(xi)

|∇ui|2ρ2(xi, dx) ≤ C(δ +R−2).

(7.25)

By fixing R = R(ε, n, v) we conclude that

 
B1(xi)

|∇2ui|2 ≤ ε.

This completes the proof of Lemma 7.6. Hence, the proof of Proposition 7.3 is

complete as well. �

7.4. Part (1) of the Geometric Transformation Theorem. In this subsec-

tion, we will prove estimate (1) of Theorem 7.2. We will see in subsequent sub-

sections that the transformation T satisfies the vastly improved estimate (2).

As we explained, the proof of (1) is based on a contradiction argument:

Proposition 7.7 (Transformation). Let (Mn, g, x) satisfy RicMn ≥
−(n − 1)δ2 and Vol(B1(x))≥ v> 0. Let ε > 0 and δ ≤ δ(n, v, η, ε). Assume

that

(1) Bs(x) is (k, δ2)-symmetric but not (k+1, η) symmetric for each scale r0 ≤
s ≤ 1;

(2) u : B2(x)→ Rk is a δ-splitting map.

Then for each scale r0 ≤ s ≤ 1, there exists a k × k lower triangle matrix Ts
such that

(1) Tsu : Bs(x)→ Rk is a (k, ε)-splitting map on Bs(x);

(2)
ffl
Bs(x)〈∇(Tsu)a,∇(Tsu)b〉 = δab;

(3) |Ts ◦ T−1
2s − I| ≤ ε.

The proof of Proposition 7.7 will rely on the eigenvalue estimate (7.3) of

Proposition 7.3. The key point is that almost linear growth harmonic function

on the limit cone must be linear. We begin with the following:

Lemma 7.8 (Harmonic function with almost linear growth). Let

(Mn
i , gi, xi)→ (C(Y ), d, x∞) = (Rk × C(Z), d, x∞)

satisfy Ric ≥ −δi → 0 and Vol(B1(xi)) ≥ v > 0. Assume B10(xi) is not

(k + 1, η)-symmetric. Then there exists ε(n, v, η) > 0 such that any harmonic

function u on C(Y ) with almost linear growth |u|(y) ≤ Cd(y, x∞)1+ε + C is a

linear function induced from an R factor.
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Proof. To begin with, it follows from Proposition 7.4 that a harmonic

function on C(Y ) has the form

u =

∞∑
i=0

bi · rαiφi,(7.26)

where the convergence is in W 1,2 on compact subsets.

By using the eigenvalue estimate in Proposition 7.3 and noting that α0 =0,

we have

1 = α1 = · · · = αk < 1 + β(n, η,Vol(Z)) ≤ αk+1.

If we put u0 = u−
∑k

i=0 bir
αiφi, then we still have |u0|(y) ≤ Cd(y, x∞)1+ε+C.

To finish the proof, it suffices to show that ε ≤ β/2 implies u0 = 0. For

this, we consider the L2 integral of u0 over BR(x∞). Since rαiφi are orthogonal

in L2(∂Br(x∞)), for each r we have

∞∑
i=k+1

b2iVol(Y )−1 n

n+ 2αi
R2αi =

 
BR(x∞)

|u0|2 ≤ C + CR2+2ε.(7.27)

Since R is arbitrary, it follows that bi = 0 for all i ≥ k + 1 if ε ≤ β/2. Indeed,

since αi > 1 + ε for i ≥ k + 1 and b2iVol(Y )−1 n
n+2αi

R2αi ≤ C + CR2+2ε for

any R, we have bi = 0 for i ≥ k+ 1. This implies u0 = 0, which completes the

proof of Lemma 7.8. �

Proof of Proposition 7.7. We will argue by contradiction. Make the fol-

lowing assumptions:

• There exists ε0 � 1 and (Mi, gi, xi) such that Bδ−1
i r(xi) is (k, δ2

i ) splitting

but Br(xi) is not (k+ 1, η)-splitting for all ri ≤ r ≤ 1. Let ui : B2(xi)→ Rk
be a (k, δi)-splitting map with δi → 0.

• There exists si > ri → 0 such that for all 1 ≥ r ≥ si, there exists a lower

triangle matrix Txi,r such that Txi,rui is a (k, ε0) splitting on Br(xi) withffl
Br(xi)

〈∇(Txi,ru)a,∇(Txi,ru)b〉 = δab.

• No such mapping Ti = Txi,si/10 exists on Bsi/10(xi). (Note that since δi → 0,

we have trivially that si → 0.)

We will contradict the assumption that si > ri.

To complete the proof of Proposition 7.7, we will need the following lemma.

It states that as long as they exist, the transformation matrices, Ts, change

slowly.

Let | · | denote the L∞-norm on matrices.

Lemma 7.9. There exists C(n) such that for all 1 ≥ r ≥ si,

|Txi,r ◦ T−1
xi,2r
− I| ≤ C

√
ε0.



476 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

Proof. By volume doubling and noting that Txi,2ru : B2r(xi) → Rk is

(k, ε0)-splitting, we have 
Br(xi)

∣∣∣〈∇(Txi,2ru)a,∇(Txi,2ru)b〉 − δab
∣∣∣

≤ C(n)

 
B2r(xi)

∣∣∣〈∇(Txi,2ru)a,∇(Txi,2ru)b〉 − δab
∣∣∣ ≤ C(n)

√
ε0.

(7.28)

Thus, there exists a lower triangular matrix A2r with |A2r − I| ≤ C(n)
√
ε0

such that T̃xi,2r := A2rTxi,2r satisfies 
Br(xi)

〈∇(T̃xi,2ru)a,∇(T̃xi,2ru)b〉 = δab.

By the normalization, we have
ffl
Br(xi)

〈∇(Txi,ru)a,∇(Txi,ru)b〉 = δab.

Define a symmetric bilinear form B(f, h), on C∞(B2r(xi)) by

B(f, h) :=

 
Br(xi)

〈∇f,∇h〉.

Denote the associated positive definite symmetric k × k matrix by B :=

(Bab) := (B(ua, ub)). Thus, we have

Txi,rBT
∗
xi,r = I = T̃xi,2rBT̃

∗
xi,2r.

In particular,

T−1
xi,r(T

−1
xi,r)

∗ = B = T̃−1
xi,2r

(T̃−1
xi,2r

)∗.

Since Txi,r and T̃xi,2r are lower triangle matrices with positive diagonal entries,

the uniqueness of Cholesky decomposition (see [GVL96]) implies that T̃−1
xi,2r

=

T−1
xi,r. Therefore, we have A2rTxi,2r = Txi,r. In particular,

|Txi,rT−1
xi,2r
− I| = |A2r − I| ≤ C(n)

√
ε0.

This completes the proof of Lemma 7.9. �

Now we can complete the proof of Proposition 7.7. For k × k matrices

A1, A2 and the L∞-norm for matrices, we have by a simple triangle inequality

that

|A1A2 − I| ≤ |A1 − I|+ |A2 − I|+ k|A1 − I| · |A2 − I|.(7.29)

By Lemma 7.9, (7.29) and an induction argument, we have

|T−1
xi,r ◦ Txi,r/2` − I| ≤

(
1 + (k + 1)C

√
ε0

)`
− 1.(7.30)

Therefore

|T−1
xi,r ◦ Txi,r/2` | ≤

(
1 + (k + 1)C

√
ε0

)`
.(7.31)
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For simplicity we still denote (k + 1)C by C. Hence for all r ≥ si, we have

|T−1
xi,r ◦ Txi,si | ≤

Å
r

si

ãlog(1+C
√
ε0)/ log 2

≤
Å
r

si

ãC√ε0
.(7.32)

Define vi = s−1
i Txi,si(ui − ui(xi)) on the rescaled space (Mi, s

−2
i gi, xi). Since

δi → 0 and Bδ−1
i si

(xi) is (k, δ2
i )-symmetric, we know that (Mi, s

−2
i gi, xi) con-

verges to a cone C(Y ) = Rk × C(Z). By the Hölder growth estimate on T−1
xi,r

as in (7.32) and noting that Txi,r(ui−ui(xi)) is a (k, ε0) splitting map at scale

r, for all x with s−1
i ≥ d(x, xi) = R > 1, we have

|∇vi(x)| ≤ C ·RC
√
ε0 =⇒ |∇vi(x)| ≤ C · d(x, xi)

C
√
ε0 + C.

Also, by Proposition 4.29, the sequence vi converges in the local W 1,2-sense

to a harmonic function v in C(Y ) with Hölder growth on the gradient, i.e.,

|∇v|(x) ≤ CRC
√
ε0 for |x| ≤ R. Therefore, if the ε0 is small as in Lemma 7.8,

then we have that v : C(Y ) → Rk is actually linear. Moreover, by using the

W 1,2 convergence in Proposition 4.29 and noting that the energy is quadratic,

we have  
B1(x∞)

〈∇va,∇vb〉 = δab.(7.33)

Hence v = (v1, . . . , vk) forms a basis of linear functions on Rk. Without loss

of generality we can assume v = (x1, . . . , xk) are the standard coordinates. By

the W 1,2-convergence of vi as in Propositions 4.29 and 4.28, we have

lim
i→∞

4

 
B1(xi)

|〈∇vai ,∇vbi 〉 − δab|

= lim
i→∞

 
B1(xi)

∣∣∣|∇vai +∇vbi |2 − |∇vai −∇vbi |2 − 4δab
∣∣∣

= lim
i→∞

 
B1(x∞)

∣∣∣|∇xa +∇xb|2 − |∇xa −∇xb|2 − 4δab
∣∣∣

= 0.

(7.34)

Here we have used |∇xa + ∇xb|2 = |Lip(xa + xb)|2 = 2 = |Lip(xa − xb)|2 =

|∇xa −∇xb|2. Hence, vi satisfies

lim
i→∞

 
B1(xi)

|〈∇vai ,∇vbi 〉 − δab| = 0.(7.35)

Thus, by Bochner’s formula (4.18), the function vi is a (k, εi)-splitting function

on B1(xi) with εi → 0. Hence for each 1/10 ≤ r ≤ 1 and sufficiently large i we

have a rotation Ar,i such that |Ar,i − I| ≤ εi and 
Br(xi)

〈∇(Ar,ivi)
a,∇(Ar,ivi)

b〉 = δab.(7.36)
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In particular, this implies for large i that Ar,ivi : Br(xi)→ Rk is a (k, ε0/100)-

splitting for 1/10 ≤ r ≤ 1 and satisfies the orthonormal condition (2), which

contradicts the existence of a minimal si > ri. This finishes the proof of the

existence of transformation matrices. By choosing δ small, the matrix estimate

(3) comes from the transformation estimates in Lemma 7.9. This completes

the proof of Proposition 7.7. �

7.5. A canonical Reifenberg theorem. Prior to giving the proof of (2) of

Theorem 7.2, we will make a brief digression to give a non-metric proof of the

Reifenberg Theorem, which was first proved by Cheeger-Colding in [CC97].

Although this result is not used elsewhere in the paper, it seems to be of

independent interest. There is also second reason for including it. Namely,

it is a (much) easier instance of the sort of argument we will give when we

eventually study the singular strata Sk; see Theorem 9.12.

Theorem 7.10 (Canonical Reifenberg Theorem). Let (Mn, g, p) satisfy

RicMn ≥ −(n− 1)δ and dGH(B4(p), B4(0n)) ≤ δ with 0n ∈ Rn. For any ε > 0,

if δ ≤ δ(n, ε), then there exists a harmonic map u : B1(p)→ Rn such that

(1) for any x, y ∈ B1(p), we have

(1− ε)d(x, y)1+ε ≤ |u(x)− u(y)| ≤ (1 + ε)d(x, y);

(2) for any x ∈ B1(p), we have that du : TxM → Rn is nondegenerate.

In particular, u is a diffeomorphism which is uniformly bi-Hölder onto its image

u(B1(p)).

Remark 7.11. Consider (Mn
i , gi, pi)

dGH−→ (X, d, p) with dGH(B4(p), B4(0n))

≤ δ, and a converging sequence of harmonic maps ui : B1(pi)→ Rn. Then by

Theorem 7.10, we get that B1(p) is bi-Hölder to Rn.

Proof of Theorem 7.10. Let δ′ > 0. By Theorem 4.3, if δ ≤ δ(n, δ′), then

every sub-ball Br(x) ⊂ B15/4(p) is (n, δ′)-symmetric. Moreover, there exists a

δ′-splitting map u : B3(p)→ Rn.

By the Transformation Proposition 7.7, for any ε′ > 0, x ∈ B3(p) and

r ≤ 1/2, if δ′ ≤ δ′(ε′, n), then there exists an n × n lower triangle matrix

Tx,r, such that Tx,ru : Br(x) → Rn is an ε′-splitting map. Moreover, by the

transformation estimate (3), |Tx,r| ≤ r−ε
′
. We will see that these estimates

imply Theorem 7.10.

First, we will prove a Hölder estimate on u. Let x, y∈B3/2 with d(x, y)=r.

Since Tx,ru : Br(x)→ Rn is an ε′-splitting map and, in particular, Tx,ru is an

εr-GH map if ε′ ≤ ε′(ε, n), we have

|Tx,ru(x)− Tx,ru(y)| ≥ (1− ε)d(x, y).(7.37)
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By the matrix growth estimate |Tx,r| ≤ r−ε
′

we then have

|u(x)− u(y)| ≥ (1− ε)d(x, y)1+ε for d(x, y) = r.

Since r is arbitrary, by using the gradient bound |∇u| ≤ 1 + δ′ for splitting

maps u, we conclude for that any x, y ∈ B3/2(p),

(1− ε)d(x, y)1+ε ≤ |u(x)− u(y)| ≤ (1 + ε)d(x, y).(7.38)

Therefore u is an injective map. In particular, this implies u is bi-Hölder to

its image.

Next we show that du : TxM → Rn is nondegenerate, from which it follows

that u is a diffeomorphism. Essentially, this is because du(x) = T−1
x,0 . In more

detail, let 2r = rh(x) be the harmonic radius at x; see Definition 4.34. Then by

smooth elliptic estimates the splitting map Tx,ru satisfies the pointwise bound

|〈∇Tx,rua,∇Tx,rub〉 − δab| < ε. In particular, this gives that det(du)(x) 6= 0,

as claimed. �

7.6. Hessian decay estimates on limit cones. The main result of this sub-

section is Proposition 7.12, the key Hessian decay estimate for harmonic func-

tions on limit cones. In the next subsection, it will be promoted to the Hessian

decay estimate on manifolds, and after that, to statement (2) of Theorem 7.2.

Since a priori we cannot define the Hessian directly, we employ Bochner’s for-

mula (4.18). This will allow us to work with a weak version.

Notation. Let ϕ : R→ R denote a smooth cutoff function such that ϕ ≡ 1

if r ≤ 1 and ϕ ≡ 0 if r ≥ 2. In Proposition 7.12, we will consider a limit cone

(C(Y ), d, x∞). We put r = d(x, x∞) and ψs(x) = ϕ(r2/s2).

Proposition 7.12 (Main decay estimate for cones). There exists β =

β(n, η, v) > 0 with the following property. Let (Mn
i , gi, xi) → (C(Y ), d, x∞) =

(Rk × C(Y ), d, x∞) satisfy RicMn
i
≥ −δi → 0 and Vol(B1(xi)) ≥ v > 0. Let

u : B10(x∞) ⊂ C(Y )→ R be a harmonic function, and assume B10(x∞) is not

(k + 1, η)-symmetric. Then for all 0 < s ≤ t ≤ 2,

s2−n
ˆ
Rk×C(Y )

|∇u|2∆ψs ≤
Å
t

s

ã−β
t2−n

ˆ
Rk×C(Y )

|∇u|2∆ψt.(7.39)

The proof of Proposition 7.12 is given at the end of this subsection. Ulti-

mately, it is a consequence of the eigenvalue estimates in Section 7.3. We will

begin with some preliminary computations.

According to Proposition 7.4, any harmonic function u can be written as

u =
∑
bir

αiφi, where the convergence is in the W 1,2-sense. By Theorem 4.31,
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we have

|∇φi|2(r, y) = |Lipφi|2(r, y) = r−2|Lipφi|2(y) = r−2|∇φi|2Y ,

|∇u|2 =
∑
i,j

bibjαiαjr
αi+αj−2φiφj +

∑
i,j

bibjr
αi+αj−2〈∇φi,∇φj〉Y .

(7.40)

Let ϕ : R→ [0, 1] be a standard cutoff function such that the function ψ :

B10(x∞) → [0, 1] defined by ψ(x) = ϕ(d2(x, x∞)) satisfies suppψ ⊂ B10(x∞).

Then

∆ψ = ϕ′(r2)∆r2 + ϕ′′(r2)|∇r2|2 = 2nϕ′(r2) + 4r2ϕ′′(r2).(7.41)

In particular, |∆ψ| ≤ C(n).

Lemma 7.13. Let (Mn
i , gi, xi) → (C(Y ), d, x∞) = (Rk × C(Z), d, x∞)

satisfy RicMn
i
≥ −δi → 0 and Vol(B1(xi)) ≥ v > 0. Assume u =

∑
bir

αiφi
is a harmonic function on B10(x∞) ⊂ C(Y ) where the convergence is in the

W 1,2-sense. Then
ˆ
C(Y )

|∇u|2∆ψ

=
∑
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)

ˆ ∞
0

ϕ(r2)rn+2αi−5dr.
(7.42)

Proof. Consider u` :=
∑`

i=0 bir
αiφi. By Proposition 7.4, u` converges in

the W 1,2-sense to u. Also, since |∆ψ| ≤ C(n), we have

ˆ
|∇u|2∆ψ = lim

`→∞

ˆ
|∇u`|2∆ψ.(7.43)

It now suffices to compute
´
|∇u`|2∆ψ. We have

ˆ
|∇u`|2∆ψ =

ˆ ∞
0

rn−1

ˆ
Y
|∇u`|2∆ψdµY dr

=

ˆ ∞
0

rn−1
(

2nϕ′(r2) + 4r2ϕ′′(r2)
) ˆ

Y
|∇u`|2dµY dr

=

ˆ ∞
0

rn−1
(

2nϕ′(r2) + 4r2ϕ′′(r2)
)∑̀
i=0

(
b2iα

2
i + b2iλi

)
r2αi−2dr

=

ˆ ∞
0

(
2nϕ′(r2) + 4r2ϕ′′(r2)

)∑̀
i=0

(
b2iα

2
i + b2iλi

)
rn+2αi−3dr.

(7.44)
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Since α0 = λ0 = 0, we can integrate by parts to get

ˆ
|∇u`|2∆ψ =

ˆ ∞
0

∑̀
i=1

(
b2iα

2
i + b2iλi

)
2nϕ′(r2)rn+2αi−3dr

+

ˆ ∞
0

∑̀
i=1

(
b2iα

2
i + b2iλi

)
4ϕ′′(r2)rn+2αi−1dr

=

ˆ ∞
0

∑̀
i=1

(
b2iα

2
i + b2iλi

)
2nϕ′(r2)rn+2αi−3dr

−
ˆ ∞

0

∑̀
i=1

(
b2iα

2
i + b2iλi

)
2(n+ 2αi − 2)ϕ′(r2)rn+2αi−3dr

=
∑̀
i=1

(
b2iα

2
i + b2iλi

)
(2αi − 2)

ˆ ∞
0
−2ϕ′(r2)rn+2αi−3dr

=
∑̀
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)

ˆ ∞
0
−2ϕ′(r2)rn+2αi−3dr

=
∑̀
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)

ˆ ∞
0

ϕ(r2)rn+2αi−5dr.

(7.45)

In the last integration by parts, we have used the fact that αi > 1 and n ≥ 2

to deduce that limr→0 r
n+2αi−4 = 0. �

Now we can complete the proof of Proposition 7.12.

Proof of Proposition 7.12. Let ϕ : R→ [0, 1] be such that ϕ ≡ 1 if r ≤ 1,

ϕ ≡ 0 if r ≥ 2, and |ϕ′| + |ϕ′′| ≤ 100. For any scale s ≤ 1, define ψs(x) :=

ϕs(r
2) := ϕ(r2/s2) with r = d(x, x∞). Thus ψs has support contained in

B2s(x∞).

By Proposition 7.4 we can write the harmonic function u =
∑
bir

αiφi,

where the convergence is W 1,2. Applying Lemma 7.13 givesˆ
|∇u|2∆ψs =

∑
i

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)

·
ˆ ∞

0
ϕ(r2/s2)rn+2αi−5dr

=
∑
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)sn+2αi−4

·
ˆ ∞

0
ϕ(r2)rn+2αi−5dr.

(7.46)
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Therefore, for any 0 < s ≤ t ≤ 2, we have

s2−n
ˆ
|∇u|2∆ψs =

∑
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)s2αi−2

·
ˆ ∞

0
ϕ(r2)rn+2αi−5dr,

(7.47)

t2−n
ˆ
|∇u|2∆ψt =

∑
αi>1

(
b2iα

2
i + b2iλi

)
(2αi − 2)(n+ 2αi − 4)t2αi−2

·
ˆ ∞

0
ϕ(r2)rn+2αi−5dr.

(7.48)

By the eigenvalue estimates in Proposition 7.3 we have αi> 1+β(n, v, η)> 1 for

αi 6= 1. Hence, each of the terms in the sums (7.47) and (7.48) are nonnegative.

It follows that

s2αi−2 ·
(
b2iα

2
i + b2iλi

)
· (2αi − 2) · (n+ 2αi − 4) ·

ˆ ∞
0

ϕ(r2)rn+2αi−5dr

=

Å
t

s

ã2−2αi

· t2αi−2 ·
(
b2iα

2
i + b2iλi

)
· (2αi − 2) · (n+ 2αi − 4)

·
ˆ ∞

0
ϕ(r2)rn+2αi−5dr

≤
Å
t

s

ã−2β

· t2αi−2 ·
(
b2iα

2
i + b2iλi

)
· (2αi − 2) · (n+ 2αi − 4)

·
ˆ ∞

0
ϕ(r2)rn+2αi−5dr.

(7.49)

This gives (7.39); i.e., the conclusion of Proposition 7.12:

s2−n
ˆ
|∇u|2∆ψs ≤

Å
t

s

ã−β
t2−n

ˆ
|∇u|2∆ψt. �

7.7. The Hessian decay estimate on manifolds. In this subsection, we will

prove Proposition 7.15, which is a Hessian decay estimate for splitting maps.

As explained at the beginning of this section, the proof is obtained by showing

that if the conclusion were to fail, then Proposition 7.12 would be contradicted.

The proof of Proposition 7.15 will be given at the end of this subsection. It

depends on the decay estimates in Sections 7.7.1 and 7.7.2.

Remark 7.14. The constant α in Proposition 7.15 below appears in Defi-

nition 4.23 of Eks(x) = E
k,α,δ
s (x).

Proposition 7.15. Let (Mn, g, x) satisfy RicMn≥−(n−1)δ2, Vol(B1(x))

≥ v > 0. Let η, α > 0. Let u : B2(x)→ Rk be a (k, δ) splitting map. Assume

(1) Bδ−1r(x) is (k, δ2)-symmetric for all r0 ≤ r ≤ 1;
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(2) Br(x) is not (k + 1, η)-symmetric for all r0 ≤ r ≤ 1.

Then for all, ε > 0, there exists δ(n, v, ε, η, α) > 0 such that the following holds.

If δ ≤ δ(n, v, ε, η, α), then there exists 0 < c(n, v, η) < 1, C(n, v) > 0 and a

k×k lower triangular matrix Tr such that Tru : Br(x)→ Rk is a (k, ε)-splitting

map. If r0 ≤ r ≤ 1 with cs/2 ≤ r ≤ cs, then

r2−n
ˆ
Br(x)

(
|∇2Tru|2 + Ric(∇Tru,∇Tru) + 2δ2(n− 1)|∇Tru|2

)
≤ 1

2
s2−n

ˆ
Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu)

+ 2δ2(n− 1) |∇Tsu|2
)

+ CEks(x).

(7.50)

7.7.1. The Hessian decay for general harmonic functions. In this subsub-

section, as an essential step in the proof of Proposition 7.15, we will prove a

decay estimate for general harmonic functions. It states that after subtracting

off the linear terms, the L2 Hessian has Hölder decay. Before giving the result,

we will need some terminology.

Notation. Let v = (v1, . . . , vk) : B10(x) → Rk be a (k, δ)-splitting map

which was constructed in Theorem 6.1. For harmonic function u : B10(x)→ R,

we define

ũ = u−
k∑
`=1

a`v
`(7.51)

by stipulating that the coefficients are chosen to minimize

 
B1(x)

|∇ũ|2 = min
(b`)∈Rk

 
B1(x)

|∇u−
k∑
`=1

b`∇v`|2.(7.52)

After having subtracted off the “linear” term we can prove the following

decay estimate for the harmonic function ũ.

Lemma 7.16. There exists 0 < c(n, v, η) < 1 such that the following

holds. Let δ < δ(n, v, η), and let (Mn, g, x) satisfy RicMn ≥ −(n − 1)δ2 and

Vol(B1(x)) ≥ v > 0. Assume Bδ−1 is (k, δ2)-symmetric but that B1(x) is not

(k+1, η)-symmetric. Then if u : B2(x)→ R denotes a harmonic function with

ũ defined as in (7.51) and c/2 ≤ r ≤ c, the following holds :

r2−n
ˆ
Br(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
≤ 1

4

ˆ
B1(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1) |∇ũ|2

)
.

(7.53)
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Proof. The constant c(n, v, η) will be fixed at the end of the proof. The

existence of δ(n, v, η) > 0 will be shown by arguing by contradiction. There-

fore, assume there exist δi → 0 and (Mn
i , gi, xi) with RicMn

i
≥ −(n − 1)δ2

i

and Vol(B1(xi)) ≥ v > 0. Assume further that the ball Bδ−1
i

(xi) is (k, δ2
i )-

symmetric, B1(xi) is not (k + 1, η)-symmetric, and ui : B2(xi) → R is a

harmonic function with corresponding ũi defined in (7.51) such that for some

c/2 ≤ r ≤ c,

r2−n
ˆ
Br(xi)

(
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1)|∇ũi|2
)

>
1

4

ˆ
B1(xi)

(
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1) |∇ũi|2
)
.

(7.54)

Normalize ũi such that
ffl
B1(xi)

|∇ũi|2 = 1 and
ffl
B1(xi)

ũi = 0. Then by the

Poincaré inequality, we have

 
B1(xi)

ũ2
i ≤ C(n).(7.55)

By the definition of ũi, we have
ffl
B1(xi)

〈∇vi,α,∇ũi〉 = 0 for any α = 1, . . . , k

and that the vi,α are the k splitting maps for B2(xi). Since B1(xi) is not

(k + 1, η)-symmetric, we have

 
B1(xi)

|∇2ũi|2 ≥ η′(n, v, η).(7.56)

Choose a cutoff function ϕi as in Theorem 4.13 with ϕi := 1 on B1/4(xi)

and ϕi := 0 away from B1/2(xi). By the Bochner formula we have

ˆ
B1/4(xi)

(
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1)|∇ũi|2
)

≤
ˆ (
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1)|∇ũi|2
)
ϕi

=
1

2

ˆ (
∆|∇ũi|2 + 4δ2

i (n− 1)|∇ũi|2
)
ϕi

≤ 2δ2
i (n− 1)

ˆ
B1(xi)

|∇ũi|2 +

ˆ
B1(xi)

|∇ũi|2|∆ϕi|

≤ C(n)

ˆ
B1(xi)

|∇ũi|2 ≤ C(n).

(7.57)
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Therefore, from (7.54), we get 
B1(xi)

|∇ũi|2 = 1,(7.58)

 
B1(xi)

ũ2
i ≤ C(n),(7.59)

ˆ
B1/4(xi)

(
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1)|∇ũi|2
)
≤ C(n),(7.60)

η′(n, v, η)

4
≤ r2−n

ˆ
Br(xi)

(
|∇2ũi|2 + Ric(∇ũi,∇ũi) + 2δ2

i (n− 1) |∇ũi|2
)(7.61)

(for some r with c/2 ≤ r ≤ c).

To complete the contradiction argument, we will show that one can pass

to the limit and get a contradiction to the decay estimate Proposition 7.12 in

the limit cone.

Choose a cutoff function ϕ : R → [0, 1] such that ϕ := 1 if t ≤ 1 and

ϕ := 0 if t ≥ 2, and |ϕ′| + |ϕ′′| ≤ 100. For any scale c/2 ≤ s ≤ 1/8, define

ψs,i(x) := ϕ(hi/s
2), where ∆hi = 2n such that h approximates d(xi, x)2 as in

Theorem 6.3 or from [CC96]. Thus ψs,i(x) has support contained in B2s(xi) ⊂
B1/4(xi) and ψs,i ≡ 1 on Bs/2(xi). Moreover, by the gradient estimates for hi,

we have that s2|∆ψs,i|+ s2|∇ψs,i|2 ≤ C(n, v).

Consider the quantity

s2−n
ˆ
|∇ũi|2∆ψs,i = s2−n

ˆ
∆|∇ũi|2ψs,i

= s2−n
ˆ

2
(
|∇2ũi|2 + Ric(∇ũi,∇ũi)

)
ψs,i.

(7.62)

For δi small enough, by using (7.58) we can conclude that

C(n)−1η′ ≤ r2−n
ˆ
|∇ũi|2∆ψr,i for some c/2 ≤ r ≤ c,(7.63)

s2−n
ˆ
|∇ũi|2∆ψs,i ≤ C(n) for all 1/16 ≤ s ≤ 1/8.(7.64)

By letting i→∞, we obtain a limit cone (C(Y ), d, x∞) = Rk ×C(Z) and

a harmonic function u in B1(x∞). Moreover, by Proposition 4.29, ũi → u in

the W 1,2-sense on B9/10(x∞). By Proposition 4.29,

∆ψs,i = ϕ′
2n

s2
+ ϕ′′

|∇hi|2

s4
.

Also, both uniformly and in W 1,2 we have

hi → d(x, x∞)2 := d(x)2.
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On the limit cone, put ψs(x) = ϕ(d(x)2/s2). Then by Proposition 4.29,

for any c/2 ≤ s ≤ 1/8, we get

lim
i→∞

s2−n
ˆ
|∇ũi|2∆ψs,i

= lim
i→∞

s2−n
ˆ
|∇ũi|2

(
ϕ′(hi/s

2)
2n

s2
+ ϕ′′(hi/s

2)
|∇hi|2

s4

)
= s2−n

ˆ
|∇u|2

(
ϕ′(d(x)2/s2)

2n

s2
+ ϕ′′(d(x)2/s2)

|∇d(x)2|2

s4

)
= s2−n

ˆ
|∇u|2∆ψs.

(7.65)

In particular, we have

C(n)−1η′(n, v, η) ≤ r2−n
ˆ
|∇u|2∆ψr for some c/2 ≤ r ≤ c,(7.66)

s2−n
ˆ
|∇u|2∆ψs ≤ C(n) for all 1/16 ≤ s ≤ 1/8.(7.67)

Now we can fix the value of c = c(n, v, η) by choosing c = c(n, v, η) =
1
10

Ä
η′

C(n)2

ä1/β
, where β is the constant in Proposition 7.12 and η′, C(n) are in

(7.66). Then by the decay estimates in Proposition 7.12, we obtain a contra-

diction. In fact, applying Proposition 7.12 to s = r ∈ [c/2, c] and t = 1/8

gives

C(n)−1η′(n, v, η) ≤ r2−n
ˆ
|∇u|2∆ψr

≤ (8r)β8n−2

ˆ
|∇u|2∆ψ1/8 ≤ C(n)(8c)β ,

(7.68)

which contradicts c = 1
10

Ä
η′

C(n)2

ä1/β
. This completes the proof of Lemma 7.16.

�

7.7.2. Hessian decay with k-Pinching. In this subsubsection, by combin-

ing the sharp cone-splitting estimates of Theorem 6.1 with the Hessian decay

estimate in Lemma 7.16, we will prove a decay estimate for harmonic functions

which does not require that we subtract off the k-splitting map. For this, we

need to include an error term which is measured by Eks(x). The main result is

the following proposition.

Proposition 7.17. Let (Mn, g, x) satisfy RicMn≥−(n−1)δ2, Vol(B1(x))

≥ v > 0, and let α, η > 0. Assume Bδ−1s is (k, δ2)-symmetric but Bs(x) is not

(k + 1, η)-symmetric for some fixed s ≤ 1. Let u : B2s(x) → R be a harmonic

function with
ffl
Bs(x) |∇u|

2 = 1, and let δ ≤ δ(n, v, η, α). Then there exist

constants 0 < c(n, v, η) < 1 and C(n, v) > 0 such that for any cs/2 ≤ r ≤ cs,
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r2−n
ˆ
Br(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
≤ 1

3
s2−n

ˆ
Bs(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ CEks(x).

(7.69)

Proof. By scaling, it suffices to prove the result for s = 1. Let ũ =

u −
∑
aiv

i := u − uk as in (7.51). By Lemma 7.16 for δ ≤ δ0(n, v, η) and

c(n, v, η) small, we have that for any c/2 ≤ r ≤ c,

r2−n
ˆ
Br(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
≤ 1

4

ˆ
B1(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
.

(7.70)

By using the Schwartz inequality on the nonnegative inner product Ric +

(n− 1)δ2g, we get

r2−n
ˆ
Br(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
≤ 1001

1000
r2−n

ˆ
Br(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
+ Cr2−n

ˆ
Br(x)

(
|∇2uk|2 + Ric(∇uk,∇uk) + 2δ2(n− 1)|∇uk|2

)
≤ 1001

1000
r2−n

ˆ
Br(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
+ Cr2−n

ˆ
Br(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇uk|2

)
,

(7.71)

where we have used the fact that |ai| ≤ C(n) from the definition of ũ in (7.51).

Similarly, we haveˆ
B1(x)

(
|∇2ũ|2 + Ric(∇ũ,∇ũ) + 2δ2(n− 1)|∇ũ|2

)
≤ 1001

1000

ˆ
B1(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ C

ˆ
B1(x)

(
|∇2uk|2 + Ric(∇uk,∇uk) + 2δ2(n− 1)|∇uk|2

)
≤ 1001

1000

ˆ
B1(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ C

ˆ
B1(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇v|2

)
.

(7.72)
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By combining the above with (7.70) we get

r2−n
ˆ
Br(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
≤ 1

3

ˆ
B1(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ Cr2−n

ˆ
Br(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇v|2

)
+ C

ˆ
B1(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇v|2

)
.

(7.73)

Since r ≥ c(n, v, η) > 0, we have

r2−n
ˆ
Br(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
≤ 1

3

ˆ
B1(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ C

ˆ
B1(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇v|2

)
.

(7.74)

On the other hand, the Sharp Cone-splitting Theorem 6.1 givesˆ
B1(x)

(
|∇2v|2 + Ric(∇v,∇v) + 2δ2(n− 1)|∇v|2

)
≤ C(n, v, α)Ek1(x).(7.75)

Therefore,

r2−n
ˆ
Br(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
≤ 1

3

ˆ
B1(x)

(
|∇2u|2 + Ric(∇u,∇u) + 2δ2(n− 1)|∇u|2

)
+ CEk1(x).

(7.76)

This completes the proof of Proposition 7.17 �

7.7.3. The proof of Proposition 7.15. Let ε > 0 small be fixed later. By

Proposition 7.7(1), which has been proven at this stage, if δ ≤ δ(n, v, η, ε),

then for each r0 ≤ r ≤ 1, we have a k × k lower triangle matrix Tr such that

Tru is a (k, ε)-splitting map on Br(x) with |Tr/2 ◦ T−1
r − I| ≤ ε. Applying

Proposition 7.17 to Tsu, we get that for all cs/2 ≤ r ≤ cs,

r2−n
ˆ
Br(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
≤ 1

3
s2−n

ˆ
Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
+ CEα,δ,ks (x).

(7.77)
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Fix ε ≤ ε(n, v, η) such that |Tr ◦ T−1
s − I| ≤ 10−10n. We have

r2−n
ˆ
Br(x)

(
|∇2Tru|2 + Ric(∇Tru,∇Tru) + 2δ2(n− 1)|∇Tru|2

)
≤ 3

2
r2−n

ˆ
Br(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
≤ 1

2
s2−n

ˆ
Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
+ CEks(x).

(7.78)

This completes the proof of Proposition 7.15. �

7.8. Proof of the Geometric Transformation Theorem. For any 0 < δ′ < ε,

if δ ≤ δ(n, v, η, δ′), then by the Transformation Proposition 7.7 we have for each

scale r ≤ s ≤ 1 a lower triangular matrix Ts such that Tsu : Bs(x) → Rk is

a (k, δ′)-splitting map. In particular, Tsu : Bs(x) → Rk is (k, ε)-splitting.

Therefore, it suffices to estimate the Hessian of Tsu.

First we choose δ′ ≤ δ′(n, v, η, ε) < ε small such that Proposition 7.15

holds. Therefore, by (1) of Proposition 7.15, for any r ≤ s ≤ 1, we have

(cs)2−n̂

Bcs(x)

(
|∇2Tcsu|2 + Ric(∇Tcsu,∇Tcsu) + 2δ2(n− 1)|∇Tcsu|2

)
≤ 1

2
s2−n

ˆ
Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
+ CEks(x)

≤ cγs2−n̂

Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
+ CEks(x),

(7.79)

where we can take c = 2−i0 for some integer i0(n, v, η) and γ = i−1
0 . Thus, for

s` = c`, we have

s2−n
`

ˆ
Bs` (x)

(
|∇2Ts`u|

2 + Ric(∇Ts`u,∇Ts`u) + 2δ2(n− 1)|∇Ts`u|
2
)

≤
Å
s0

s`

ã−γ
s2−n

0

ˆ
Bs0 (x)

(
|∇2Ts0u|2 +Ric(∇Ts0u,∇Ts0u)+2δ2(n− 1)|∇Ts0u|2

)
+ C

`−1∑
j=0

Å
sj+1

s`

ã−γ
Eksj (x)

≤ C
`−1∑
j=0

cγ(`−j))
(
Eksj (x) + s2

jδ
2
)

:= Ẽks`(x),

(7.80)
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where in the last inequality we have used the fact that

s2−n
0

ˆ
Bs0 (x)

(
|∇2Ts0u|2 + Ric(∇Ts0u,∇Ts0u) + 2δ2(n− 1)|∇Ts0u|2

)
≤ δ2 .

For general s > r with c`+1 < s ≤ c`, we have

s2−n
ˆ
Bs(x)

(
|∇2Tsu|2 + Ric(∇Tsu,∇Tsu) + 2δ2(n− 1)|∇Tsu|2

)
≤ Cs2−n

ˆ
Bs(x)

(
|∇2Ts`u|

2 + Ric(∇Ts`u,∇Ts`u) + 2δ2(n− 1)|∇Ts`u|
2
)

≤ s2−n
`

ˆ
Bs` (x)

(
|∇2Ts`u|

2 + Ric(∇Ts`u,∇Ts`u) + 2δ2(n− 1)|∇Ts`u|
2
)

≤ CẼks`(x),

(7.81)

where we use the estimate |Ts ◦ T−1
s`
− I| ≤ ε in the first inequality. This

completes the proof of Theorem 7.2, the Geometric Transformation Theorem.

�

8. Nondegeneration of k-Splittings

In this section we state and prove Theorem 8.1, which is our our main

result for k-splitting maps u : B2(p)→ Rk. Theorem 8.1 is a crucial ingredient

in the proof of Theorem 2.9.

Essentially Theorem 8.1 is obtained by combining the Sharp Cone-Splitting

Theorem 6.1, the Transformation Theorem 7.2, Proposition 8.4, and a telescope

estimate for harmonic functions which is based on a monotonicity property.

This estimate is much sharper than the corresponding more general telescope

estimate for W 1,p functions. In the proof of Theorem 8.1, this is essential. It

allows us to adequately control the sum over arbitrarily many scales of the

Hessian estimates in Theorem 6.1 and Theorem 7.2.

Recall that Ek,α,δ is the entropy pinching defined in Definition 4.23.

Theorem 8.1 (Nondegeneration of k-splittings). Given ε, η, α > 0 and

δ < δ(n, v, η, α, ε), we have the following. Let (Mn, g, p) satisfy RicMn ≥
−(n− 1)δ2, Vol(B1(p))>v>0, and let u : B2(p)→ Rk denote a (k, δ)-splitting

function. Assume

(1) Bδ−1s(p), is (k, δ2)-symmetric but Bs(p) is not (k+ 1, η)-symmetric for all

r ≤ s ≤ 1;

(2)
∑

rj≥r E
k,δ,α
rj (p) < δ, where rj = 2−j .

Then u : Bs(p)→ Rk is an ε-splitting function for every r ≤ s ≤ 1.

From the Transformation Theorem 7.2, we know that for some lower

triangular matrix Tr = T (p, r), the composition Tru : Br(p) → Rk is a

δ-splitting function. Our goal then is to show that under the above hypotheses,
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Tr remains close to the identity. Proposition 8.4 below provides suitable con-

trol of the difference |Tr ◦ T−1
2r − I|. From this the Nondegeneration Theorem

8.1 will easily follow.

8.1. Hessian estimates with respect to the heat kernel density. The pur-

pose of this subsection is to prove some technical results which convert ball-

average estimates on Tu into estimates with respect to the heat kernel measure,

which is important due to our use of entropy as the monotone quantity.

Notation. Throughout this section ϕ denotes a cutoff function as in (4.13),

with support in B1(x) with ϕ ≡ 1 on B1/2(x) and such that |∆ϕ|+|∇ϕ|2≤C(n).

The main result of this subsection is the following technical proposition.

Proposition 8.2. Given α, η > 0 and ε > 0 there exist δ ≤ δ(n, v, η, α, ε),
γ = γ(n, v, η) > 0, C(n, v, η, α), C(n, v), with the following properties. Let

(Mn, g, x) satisfy RicMn ≥ −(n − 1)δ2, Vol(B1(x)) ≥ v > 0, and let u :

B2(x)→ Rk be a (k, δ)- splitting map. Assume

Bδ−1s(x) is (k, δ2)-symmetric and Bs(x) is not (k + 1, η)-symmetric

for all r ≤ s ≤ 1.

Then for each r ≤ si ≤ 1, there exists a k× k lower triangular matrix Tsi such

that Tsiu : Bsi(x)→ Rk is a (k, ε)-splitting map such that

(8.1)

ˆ
Mn

〈∇(Tsiu)a,∇(Tsiu)b〉ϕ2ρs2i
(x, dy) = δab.

Additionally, there is the following Hessian estimate on Tsiu:

s2
i

ˆ
M

(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu) + 2δ2(n− 1)|∇Tsiu|2

)
ϕ2ρ4s2i

(x, dy)

≤ C(n, v)
i∑

j=0

εj2
j−i,

(8.2)

where

εi = C(n, v, η, α) ·
i∑

j=0

2−γ(i−j)
(
Eksj (x) + δs2

j

)
.(8.3)

Proof of Proposition 8.2. Note that by Theorem 7.2, for any ε′, if δ ≤
δ(n, v, η, ε′), then there exists T̃si such that T̃si ◦ u : Bsi(x) → Rk is a (k, ε′)-

splitting map whose Hessian satisfies

s2−n
i

ˆ
Bsi (x)

(
|∇2T̃siu|2 + Ric(∇T̃siu,∇T̃siu) + 2δ2(n− 1)|∇T̃siu|2

)
≤ C(n, v, η, α)

i∑
j=0

2−γ(i−j)
(
Eksj (x) + δs2

j

)
.

(8.4)
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Set

εi := C(n, v, η, α)

i∑
j=0

2−γ(i−j)
(
Eksj (x) + δs2

j

)
.(8.5)

In order to make sure matrix T̃si satisfies (8.1), we may need to do a rotation

as in the following Lemma 8.3. Then we can fix ε′ = ε′(n, ε, v) so that Tsiu :

Bsi(x)→ Rk is (k, ε)-splitting.

Lemma 8.3. For any ε > 0, if ε′ ≤ ε′(n, ε, v) and δ ≤ δ(n, v, η, α, ε),

then there exists a lower triangle matrix Ai with |Ai − I| ≤ C(n)ε such that

Tsi = Ai ◦ T̃si satisfiesˆ
Mn

〈∇(Tsiu)a,∇(Tsiu)b〉ϕ2ρs2i
(x, dy) = δab,(8.6)

and Tsiu : Bsi(x)→ Rk is (k, ε)-splitting.

Proof. For any ε, by the exponential heat kernel decay estimate in The-

orem 4.14 and the matrix estimate in Proposition 7.7, there exists R(n, v, ε)

such that ˆ
B1(x)\BRsi (x)

|〈∇(T̃siu)a,∇(T̃siu)b〉 − δab| · ρs2i (x, dy) < ε/2.(8.7)

Also, by Proposition 7.7, for any ε′ > 0, if δ ≤ δ(ε′, n, v, η), then we have the

matrix growth estimate

|T̃si T̃−1
sj − I| ≤

Å
sj
si

ãε′
− 1

for any si ≤ sj ≤ 1. Therefore, if δ ≤ δ(ε, n, v, η), we have 
BRsi (x)

|〈∇(T̃siu)a,∇(T̃siu)b〉 − δab| < ε/2.(8.8)

These two estimates implyˆ
M

∣∣∣〈∇(T̃siu)a,∇(T̃siu)b〉 − δab
∣∣∣ϕ2 · ρs2i (x, dy) ≤ ε.

By using the Gram-Schmidt process, there exists a lower triangle matrix Ai
satisfying (8.6). This completes the proof of Lemma 8.3. �

To finish the proof of Proposition 8.2, it suffices to prove (8.2). Since

Tsi = Ai ◦ T̃si with bounded Ai, relation (8.4) implies

s2−n
j

ˆ
Bsj (x)

(
|∇2Tsju|2+Ric(∇Tsju,∇Tsju)+2δ2(n− 1)|∇Tsju|2

)
≤ C(n)εj .

(8.9)
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To prove (8.2), we only need to use (8.9) for each scale sj ≥ si, and the

heat kernel estimates in Theorem 4.14. By the Hölder growth estimate for

transformation matrices in Proposition 7.7, if δ ≤ δ(n, v, η) is small, then we

have |TsiT−1
sj | ≤ 2(i−j)/100. Therefore, for si ≤ sj ≤ 1,

ˆ
Asj+1,sj (x)

(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu) + 2δ2(n− 1)|∇Tsiu|2

)
≤ sn−2

j 2(i−j)/10εj .

(8.10)

In particular, by the heat kernel estimates of Theorem 4.14, we have
ˆ
Asj+1,sj (x)

(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu) + 2δ2(n− 1)|∇Tsiu|2

)
· ρ4s2i

(x, dy)

≤ C(n, v)s−ni e
−

s2j

20s2
i sn−2
j 2(i−j)/10εj ≤ C(n, v)s−2

j 2(i−j)/10εj .

Thus,

s2
i

ˆ
B1(x)

(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu) + 2δ2(n− 1)|∇Tsiu|2

)
· ρ4s2i

(x, dy)

≤ s2
i

Ñˆ
Bsi (xi)

+

i−1∑
j=0

ˆ
Asj+1,sj (x)

é
·
(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu) + 2δ2(n− 1)|∇Tsiu|2

)
ρ4s2i

(x, dy)

≤ C(n, v)εi + C(n, v)
i−1∑
j=0

22(j−i)2(i−j)/10εj

≤ C(n, v)
i∑

j=0

εj2
j−i.

(8.11)

This implies (8.2), which completes the proof of Proposition 8.2. �

8.2. A telescope estimate for harmonic functions. In this subsection, we

prove a telescope estimate, Proposition 8.4, for harmonic functions in which the

squared L2-norm of the Hessian linearly controls the difference of the norms

of the gradients on concentric balls; see (8.12). For a function which is not

harmonic, the squared L2-norm would have to be replaced by the L2-norm

itself. This weaker estimate would not suffice for our purposes.

Let ϕ be a cutoff function with support in B1(x) and ϕ ≡ 1 in B1/2(x)

such that |∆ϕ|+ |∇ϕ| ≤ C(n).
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Proposition 8.4. Let (Mn, g, x) satisfy RicMn ≥ −(n−1)δ2, Vol(B1(x))

≥ v > 0 and 0 < s < 1. Assume u1, u2 : B2(x) → R are two harmonic func-

tions satisfying polynomial growth condition11 supBr(x)

(
|∇u1|(y)+|∇u2|(y)

)
≤

K(1 + s−1r) for all 0 < r ≤ 2. Then

∣∣∣ ˆ
M
〈∇u1,∇u2〉ϕ2ρs2(x, dy)−

ˆ
M
〈∇u1,∇u2〉ϕ2ρ4s2(x, dy)

∣∣∣
≤ C(n)

2∑
i=1

s2

ˆ
M

(
|∇2ui|2 + Ric(∇ui,∇ui) + 2(n− 1)δ2|∇ui|2

)
ϕ2ρ8s2(x, dy)

+ C(n, v,K)e−
1

100s2 .

(8.12)

Remark 8.5. We will apply Proposition 8.4 with u1, u2 different compo-

nents of Tsu, Tsu as in Proposition 8.2, which asserts that

sup
Br(x)

|∇Tsu| ≤ C(n)(1 +
r

s
), for all 0 < r ≤ 2.(8.13)

Proof. From Bochner’s formula, we get

∣∣∣∂t ˆ
M
〈∇u1,∇u2〉ϕ2ρt(x, dy)

∣∣∣
=
∣∣∣ ˆ

M
〈∇u1,∇u2〉ϕ2∆ρt(x, dy)

∣∣∣
=
∣∣∣ ˆ

M

(
∆〈∇u1,∇u2〉ϕ2 + ∆ϕ2〈∇u1,∇u2〉+ 2ϕ〈∇ϕ,∇〈∇u1,∇u2〉〉

)
ρt(x, dy)

∣∣∣
≤ C(n)

2∑
i=1

ˆ
M

(
|∇2ui|2 + Ric(∇ui,∇ui) + 2(n− 1)δ2|∇ui|2

)
ϕ2ρt(x, dy)

+ C(n)
2∑
i=1

ˆ
A1/2,1(x)

|∇ui|2ρt(x, dy),

(8.14)

where in the last inequality we used

|Ric(∇u1,∇u2)| ≤ C(n)

2∑
i=1

(
Ric(∇ui,∇ui) + 2(n− 1)δ2|∇ui|2

)
.(8.15)

To see (8.15), since the estimate is pointwise, for each point x ∈ M , one can

view Ric + δ2(n − 1)g as a nonnegative inner product on TxM . Then the

estimate (8.15) follows directly by Cauchy-Schwarz inequality.

11After rescaling Bs(x) to B1(x), this condition just means that |∇u| has linear growth

in B2s−1(x).
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The heat kernel estimate in Theorem 4.14 can be used to control the last

term on the right-hand side of the last line of (8.14). Namely, for all t ≤ 1, we

have

2∑
i=1

ˆ
A1/2,1(x)

|∇ui|2ρt(x, dy) ≤ C(n, v,K)s−2t−n/2e−
1

20t .(8.16)

Therefore,

∣∣∣ ˆ
Mn

〈∇u1,∇u2〉ϕ2ρs2(x, dy)−
ˆ
Mn

〈∇u1,∇u2〉ϕ2ρ4s2(x, dy)
∣∣∣

=
∣∣∣ ˆ 4s2

s2
∂t

ˆ
Mn

〈∇u1,∇u2〉ϕ2ρt(x, dy)dt
∣∣∣

≤ C(n)

ˆ 4s2

s2

2∑
i=1

ˆ
Mn

(
|∇2ui|2+Ric(∇ui,∇ui)+2(n− 1)δ2|∇ui|2

)
ϕ2ρt(x, dy)dt

+ C(n, v,K)δ2

ˆ 4s2

s2
s−2t−n/2e−

1
20tdt.

Hence

∣∣∣ ˆ
Mn

〈∇u1,∇u2〉ϕ2ρs2(x, dy)−
ˆ
Mn

〈∇u1,∇u2〉ϕ2ρ4s2(x, dy)
∣∣∣

≤ C(n)

ˆ 4s2

s2

2∑
i=1

ˆ
M

(
|∇2ui|2+Ric(∇ui,∇ui)+2(n− 1)δ2|∇ui|2

)
ϕ2ρt(x, dy)dt

+ C(n, v,K)s−ne−
1

80s2

≤ C(n)
2∑
i=1

s2

ˆ
Mn

(
|∇2ui|2+Ric(∇ui,∇ui)+2(n− 1)δ2|∇ui|2

)
ϕ2ρ8s2(x, dy)

+ C(n, v,K)e−
1

100s2 ,

(8.17)

where we have used the heat kernel estimate in Theorem 4.14 to conclude

that ρt(x, y) ≤ C(n, v) · ρ8s2(x, y) for any s2 ≤ t ≤ 4s2 and y ∈ B1(x). This

completes the proof of Proposition 8.4. �

8.3. Proof of Theorem 8.1. By Proposition 8.2, for any ε′, if δ ≤
δ(n, v, η, α, ε′), then for each si = 2−i, there exists a lower triangular k × k
matrix Tsi such that Tsiu : Bsi(x)→ Rk is a (k, ε′)-splitting with



496 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

s2
i

ˆ
M

(
|∇2Tsiu|2 + Ric(∇Tsiu,∇Tsiu)

+ 2δ2(n− 1)|∇Tsiu|2
)
ϕ2ρ4s2i

(x, dy)

≤ C(n, v)

i∑
j=0

εj2
j−i := χi,

(8.18)

εi = C(n, v, η)

i∑
j=0

2−γ(i−j)
(
Eksj (x) + δs2

j

)
,(8.19)

ˆ
M
〈∇(Tsiu)a,∇(Tsiu)b〉ϕ2ρs2i

(x, dy) = δab.(8.20)

Here, γ(n, v, η) > 0 and ϕ is the cutoff function with support in B1(x) and

ϕ ≡ 1 on B1/2(x).

By the estimate (8.19), for εi we get

m∑
i=0

εi ≤ C(n, v, η)
m∑
i=0

i∑
j=0

2−γ(i−j)
(
Eksj (x) + δs2

j

)
≤ C(n, v, η)

m∑
j=0

(
Eksj (x) + δs2

j

)
≤ C(n, v, η)δ,

(8.21)

m∑
i=0

χi ≤ C(n, v)

m∑
i=0

i∑
j=0

εj2
j−i ≤ C(n, v)

m∑
j=0

εj ≤ C(n, v, η)δ.(8.22)

Lemma 8.6. For any ε′, let δ ≤ δ(n, v, η, ε′, α). Then |Tsm − I| ≤ ε′ for

any m ≥ 1 such that sm ≥ r.

Proof. First note that by Proposition 7.7, |∇Tsiu| satisfies Hölder growth

estimates; see also (7.32). Thus, we can apply Proposition 8.4 to obtain∣∣∣ ˆ
M
〈∇(Tsiu)a,∇(Tsiu)b〉ϕ2ρs2i+1

(x, dy)− δab
∣∣∣

≤ C(n)χi + C(n, v)e
− 1

100s2
i := χ̃i.

(8.23)

For any ε′′, there exists an integer N(ε′′, n, v) such that if i ≥ N and δ ≤
δ(n, v, η, α, ε′), then we have

(8.24)

i∑
j=N

χ̃j ≤ ε′′.

By using the Gram-Schmidt process, there exists a lower triangle matrix Ãi
with |Ãi − I| ≤ C(n)χ̃i such that T̂si = Ãi ◦ Tsi satisfies

(8.25)

ˆ
Mn

〈∇(T̂siu)a,∇(T̂siu)b〉ϕ2ρs2i+1
(x, dy) = δab.
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Since ˆ
M
〈∇(Tsi+1u)a,∇(Tsi+1u)b〉ϕ2ρs2i+1

(x, dy) = δab,(8.26)

the uniqueness of Cholesky decompositions (see also [GVL96]) for positive

definite symmetric matrices implies that T̂si = Tsi+1 . In particular, we get

Tsi+1 ◦ T−1
si = Ãi. Thus

|Tsi+1 ◦ T−1
si − I| ≤ C(n)χ̃i.(8.27)

Recall that Tsi is a k × k matrix. Hence for all i ≥ N , we have

|Tsi+1 ◦ T−1
sN
− I| ≤

i∏
j=N

(1 + (k + 1)C(n)χ̃j)− 1

≤ e
∑i
j=` kC(n)χ̃j − 1 ≤ C(n)

i∑
j=N

χ̃j ≤ Cε′′.

(8.28)

If δ ≤ δ(ε′, v, n, η) and ε′′ ≤ ε′′(n, v, ε′), we have for all i ≤ N that

|Tsi − I| ≤ ε′/10.(8.29)

Therefore, by (8.28), for any i ≥ N , we have

|Tsi − I| ≤ ε′.(8.30)

This completes the proof of Lemma 8.6. �

Now we can complete the proof of Theorem 8.1 as follows. Since Tsiu :

Bsi(x) → Rk is ε′-splitting when δ ≤ δ(n, v, ε′, η, α), to show u : Bsi(x) → Rk
is ε-splitting, it suffices to prove Tsi is bounded and then fix ε′ = ε′(n, ε, v).

The later has been proven in Lemma 8.6. Therefore we complete the proof of

Theorem 8.1.

9. Proof of the Neck Structure Theorem 2.9

This is the first of the two sections which constitute the fourth and last

part of the paper. In it we give the proof of the Neck Structure Theorem 2.9.

For convenience, we have restated it below. Recall that neck regions are defined

in Definition 2.4.

Theorem 2.9 restated. Fix η > 0 and δ ≤ δ(n, v, η). Then if N =

B2(p) \Brx(C) is a (k, δ, η)-neck region, the following hold :

(1) For each x ∈ C and B2r(x) ⊂ B2(p), the induced packing measure µ is

Ahlfors regular:

A(n)−1rk < µ(Br(x)) < A(n)rk.(9.1)

(2) C0 is k-rectifiable.
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Results on rectifiability of singular sets obtained via cone-splitting were

first introduced in [NV17a] in the context of nonlinear harmonic maps, and the

notion of neck regions was first formally introduced and studied in [JN21]. As

was discussed in Sections 2 and 5, in order to conclude the structural results we

will need to build a map from the center points C→ Rk. In [NV17a], the rele-

vant splitting map u was built by hand using a Reifenberg construction. This

approach required new estimates on harmonic maps and a new bi-Lipschitz

Reifenberg theorem. As we have emphasized, for the case of lower Ricci cur-

vature bounds, the bi-Lipschitz Reifenberg ideas of [NV17a] do not work. At-

tempting to implement them gives rise to additional error terms which are

not summable over scales. Essentially, this is because approximating a sub-

set W ⊆ Xn by k-dimensional subspace also involves approximating Xn itself

by a splitting. Instead, we rely on the results of Sections 6–8, especially the

Nondegeneration Theorem 8.1.

In [JN21], results on structure and existence of (n− 4)-neck regions were

proved under the assumption of a 2-sided bound on Ricci curvature. In order

to prove the final estimates in [JN21] the authors introduced a new estimate,

which was termed a superconvexity estimate. This estimate definitely requires

a 2-sided bound on the Ricci tensor. The estimates of this paper are entirely

different. As mentioned in the introduction, for limit spaces with |RicMn
i
| ≤

(n − 1), we give a new proof of the rectifiability of S = Sn−4 and the bound

Hn−4(S ∩B1(p) ≤ c(n, v). This was conjectured in [CC97] and first proved in

[JN21].

We refer the reader to Section 5 for an outline of the strategy for proving

Theorem 2.9.

9.1. The basic assumptions. Below, we will refer to the following standard

assumptions.

Fix δ, δ′, η, B > 0. We will assume the following:

(S1) Vol(B1(p)) > v > 0 and RicMn ≥ −(n− 1)δ2.

(S2) N = B2(p) \ B̄rx(C) is a (k, δ, η)-neck region with the associated packing

measure µ.

(S3) For any x ∈ C and B2r(x) ⊂ B2(p) with r ≥ rx, we have

B−1rk ≤ µ(Br(x)) ≤ Brk.(9.2)

(S4) u : B4(p)→ Rk is a δ′-splitting map.

Remark 9.1. Recall from Section 5 that (S3) is connected to our strategy

of proving the theorem by induction. In particular, with B � A(n), we will

eventually show that for δ sufficiently small, (S3) automatically implies the

stronger Ahlfors regularity estimate (9.1).
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Remark 9.2. By the definition of neck regions and the Cone-Splitting The-

orem 4.11, we can and will assume that δ(n, v, η, δ′) > 0 has been chosen suf-

ficiently small so that there exists a δ′-splitting map u : B4(p)→ Rk. Then in

actuality, the existence of u as in (S4) is actually a consequence of (S2).

9.2. Bi-Lipschitz structure of the set of centers of a neck region. This

subsection is devoted to proving Proposition 9.3. Given a (k, δ, η)-neck region

N = B2(p) \ Brx(C), Proposition 9.3 implies the existence of a subset Cε ⊂ C,

which is almost all of C, such that a splitting map u : B2s(x)→ Rk is (1 + ε)-

bi-Lipschitz on Cε. This is the key step which is used to improve the weak

Ahlfors regularity estimate (S3) to the strong one, (9.1), and to show that the

singular set is rectifiable. The results of the previous sections play a key role

in the proof of Proposition 9.3; compare the outline in Section 5.

Proposition 9.3. For any given positive constants B, ε, η > 0, if (S1)–

(S4) hold with δ′ ≤ δ′(n, v, η, B, ε) and δ ≤ δ(n, v, η, δ′, B, ε), then there exists

Cε ⊂ C ∩B15/8(p) such that

(1) µ
(
Cε ∩B15/8(p)

)
≥ (1− ε)µ

(
C ∩B15/8(p)

)
;

(2) u is (1 + ε)-bi-Lipschitz on Cε, i.e., for any x, y ∈ Cε,

(1 + ε)−1 · d(x, y) ≤ |u(x)− u(y)| ≤ (1 + ε) · d(x, y);

(3) for any x ∈ Cε and r ≥ rx with B2r(x) ⊂ B2(p), the map u : Br(x) → Rk
is a (k, ε)-splitting function.

(4) For any x ∈ Cε,∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| dµ(y) ≤ ε.

(5) u : C→Rk is a bi-Hölder map onto its image, i.e., for all x, y∈B15/8(p)∩C,

(1− ε) · d(x, y)1+ε ≤ |u(x)− u(y)| ≤ (1 + ε) · d(x, y).

Note. In (4), the integral average is taken with respect to µ.

Essentially, Cε ⊂ C consists of those points which satisfy (4). We will see,

as in (1), that most points of C have this property. Then using Theorem 8.1

we will conclude (3). The estimates (2) and (5) will follow almost exactly the

same argument as the one given in Section 7.5

We begin with some technical lemmas which will be used in the proof of

Proposition 9.3. The proof of the proposition will be given at the end of this

subsection, after the proofs of the lemmas have been completed.

The first of these, Lemma 9.4 below, will enable us to conclude that if

Cε ⊂ C is defined as indicated above, then (4) holds.
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Lemma 9.4. Let (Mn, g, p) satisfy (S1)–(S4) with δ′′ > 0 fixed. If δ ≤
δ(n, v, B, δ′′) and δ′ ≤ δ′(n, v, B, η), then the local W-entropy satisfies

 
B15/8(p)

( ∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| dµ(y)
)
dµ(x) ≤ δ′′.(9.3)

Proof. Recall that under the assumptions of Theorem 4.22, including δ ≤
δ(n, v, ε), we have the following relation between the volume ratio and the local

pointed entropy:

|Wδ
t (x)− logVδ

2√
t
(x)| ≤ ε.

The proof will utilize this relation together with a Fubini type argument.

Let χ|x−y|≤r(x, y) be the characteristic function of the set {(x, y) ∈Mn×
Mn : d(x, y) ≤ r}, and put ri = 2−i.

In the following argument we will use Fubini’s theorem to exchange vari-

ables. In order to make the argument easier, let us define Ŵδ
t (x) = Wδ

r2x/4
(x)

for any t ≤ r2
x/4 and Ŵδ

t (x) = Wδ
t (x) for t > r2

x/4. Furthermore, let us

point out that in the following estimate, the term µ(Bri(x)) with ri < rx/4

always multiplies with |Ŵδ
r2i /2

(y)−Ŵδ
2r2i

(y)| for y ∈ Bri(x), which is seen to be

vanishing by noting that Lip rx ≤ δ:

 
B15/8(p)

( ∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| dµ(y)
)
dµ(x)

≤
 
B15/8(p)

( ∑
ri≤2−5

 
Bri (x)

|Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)| dµ(y)
)
dµ(x)

≤ 1

µ(B15/8(p))

ˆ
B15/8(p)

( ∑
ri≤2−5

1

µ(Bri(x))

ˆ
B31/16(p)

χ{|x−y|≤ri}(x, y)

· |Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)|dµ(y)
)
dµ(x)

≤ C(n) ·B2

ˆ
B31/16(p)

ˆ
B31/16(p)

∑
ri≤2−5

r−ki χ{|x−y|≤ri}(x, y)

· |Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)| dµ(y) dµ(x)

≤ C(n) ·B2

ˆ
B31/16(p)

ˆ
B31/16(p)

∑
ri≤2−5

r−ki χ{|x−y|≤ri}(x, y)

· |Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)| dµ(y) dµ(x).

(9.4)
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Applying Fubini’s Theorem gives
 
B15/8(p)

( ∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| dµ(y)
)
dµ(x)

≤ C(n) ·B2

ˆ
B31/16(p)

∑
ri≤2−5

r−ki µ(Bri(y)) · |Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)| dµ(y)

≤ C(n) ·B3

ˆ
B31/16(p)

∑
ri≤1

|Ŵδ
r2i /2

(y)− Ŵδ
2r2i

(y)| dµ(y)

≤ C(n) ·B3

ˆ
B31/16(p)

|Ŵδ
0(y)− Ŵδ

2(y)| dµ(y)

= C(n) ·B3

ˆ
B31/16(p)

|Wδ
r2y/4

(y)−Wδ
2(y)| dµ(y)

≤ C(n) ·B4ε′.

(9.5)

We also used the pointwise estimate |Wδ
r2y/4

(y)−Wδ
2(y)(y)| ≤ ε′ (see Theo-

rem 4.22), which follows if we choose δ < δ(n, v, ε′, η) in condition (n2) of

Definition 2.4, the definition of a (k, δ, η)-neck.

By fixing ε′ sufficiently small, so that C(n)B3ε′≤δ′′, the proof of Lemma 9.4

is completed. �

The following lemma is a direct consequence of the Nondegeneration The-

orem 8.1 and the assumed Ahlfors regularity with constant B as in (S3).

Lemma 9.5. Let (Mn, g, p) satisfy (S1)–(S4) with ε > 0 fixed. Assume

δ′′ ≤ δ′′(n, v, η, ε), δ′ ≤ δ′(n, v, η, ε), δ ≤ δ(n, v, B, η, ε), and for some x ∈
C ∩B15/8(p), ∑

s≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| dµ(y) ≤ δ′′.(9.6)

Then for any s ≤ r ≤ 1, the map u : Br(x)→ Rk is an ε-splitting map.

Proof. By the Nondegeneration Theorem 8.1 it suffices to find a set of

(k, α)-independent points {x0, x1, . . . , xk} ⊂ Bri(x) ∩ C for some α(n,B) > 0

such that for each ri, we have the k-pinching estimate

Ek,α,δri (x) ≤
k∑
j=0

|Wδ
r2i /2

(xj)−Wδ
2r2i

(xj)|

≤ C(n,B)

 
Bri (x)

|Wδ
r2i /2

(y)−Wδ
2r2i
|(y)| dµ(y).

(9.7)
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In the following argument we will show that (9.7) holds. We will first show

that the existence of such points follows from the assumed Ahlfors regularity

of µ in (S3).

First, note that there exists a subset Cri,x ⊂ C ∩ Bri(x) with µ(Cri,x) ≥
rki B/2 such that for any y ∈ Cri,x, we have

|Wδ
r2i /2

(y)−Wδ
2r2i

(y)| ≤ C(n)

 
Bri (x)

|Wδ
r2i /2

(z)−Wδ
2r2i

(z)| dµ(z).(9.8)

By using the Ahlfors regularity of µ (see (S3)), we will now show that we can

find (k, α)-independent points in Cri,x for some small α(n,B). First we note

that for any ε′ > 0, if δ ≤ δ(n, v, η, ε′), then Cri,x ⊂ Bε′ri
(
ι(Rk×{(yc)})

)
where

ι : Rk × C(X)→ Bri(x) is a δri-GH map.

Comparing the result in Remark 4.5 about the (k, α)-independent points

in Rn, if there exist no (k, α)-independent points in Cri,x as in Definition 4.4, the

set Cri,x must be contained in B4αri

(
ι(Rk−1×{(0, yc)})

)
for some Rk−1 plane.

Therefore, we have obtained at most C(n)α−k+1 many balls {B8αri(yj)}, with

yj ∈ Cri,x , which cover Cri,x. Thus, by the Ahlfors regularity of µ we have

µ(Cri,x) ≤ C(n)α−k+1B(8αri)
k ≤ C(n,B)αrki .

Since µ(Cri,x) ≥ Brki /2, by choosing α = α(n,B) small we get a contradiction.

Hence there exist (k, α)-independent points in Cri,x ⊂ Br(x)∩C. At this point,

Lemma 9.5 follows directly from the Nondegeneration Theorem 8.1. �

The following Lemma 9.6 provides a Gromov-Hausdorff-approximation for

ε-splitting maps which will be used to prove the bi-Lipschitz estimate for u.

The proof of Lemma 9.6 depends on Lemma 9.7. Thus, it will not be completed

until after Lemma 9.7 has been proved.

Lemma 9.6. Let (Mn, g, p) satisfy (S1)–(S4). Assume δ′′ ≤ δ′′(n, v, η, ε),

δ′ ≤ δ′(n, v, η, ε) and δ ≤ δ(n, v, B, η, ε). Let u : Br(x) → Rk be a δ′′-splitting

map for some x ∈ C and all rx ≤ r ≤ 1. Then for any y ∈ C,∣∣∣ |u(x)− u(y)| − d(x, y)
∣∣∣ ≤ εd(x, y).(9.9)

Proof. Pick r ≥ rx so that r/2 ≤ d(x, y) ≤ r. By the definition of a

neck region, we know that B10r(x) is δr-Gromov Hausdorff close to a cone

Rk × C(Y ). Moreover, by the splitting guaranteed by Theorem 4.11, if δ ≤
δ(n, v, η, B, ε′), then there exists a (k, ε′)-splitting map ũ : Br(x) → Rk :=

Rk × {yc} ⊂ Rk × C(Y ) such that ũ ◦ ι : Rk × {yc} → Rk × {yc} is ε′ · r close

to the identity map. Here, ι : Rk × C(Y ) → Br(x) is the δr-GH map in the

definition of neck region. Since Br(x) is not (k + 1, η)-symmetric, we must

have C ∩ Br(x) ⊂ Bε′r(ι(Br(0
k) × yc)). Therefore, for any y ∈ C ∩ Br(x), we
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have ∣∣∣ |ũ(x)− ũ(y)| − d(x, y)
∣∣∣ ≤ 100ε′r.(9.10)

In order to use (9.10) (which holds for ũ) to prove (9.9) (which pertains

to u), the following lemma is required.

Lemma 9.7. For any ε, if ε′ ≤ ε′(ε, n, v, η) and δ′′ ≤ δ′′(n, v, η, ε), then

there exists a rotation O ∈ O(k) and a vector Z ∈ Rk, such that supBr(x) |Oũ−
u− Z| ≤ εr/10.

Proof. The proof of Lemma 9.7 is via a contradiction argument. First we

will show that after composing with a suitable orthogonal transformation if

necessary, the L2 gradients are close.

Sublemma 9.8. If ε′ ≤ ε′(ε, n, v, η) and δ′′ ≤ δ′′(n, v, η, ε), then there

exists O ∈ O(k) such that 
Br(x)

|∇(Oũ− u)|2 ≤ ε2n.(9.11)

Proof. Without loss of generality, assume 
Br(x)

〈∇ũj ,∇ũi〉 = δij =

 
Br(x)

〈∇uj ,∇ui〉.

Let us define a k × k matrix A = (aij) by

aij =

 
Br(x)

〈∇ui,∇ũj〉.(9.12)

We will see for ε′ ≤ ε′(ε, n, v, η) and δ′′ ≤ δ′′(n, v, η, ε) that

|
k∑
`=1

ai`aj` − δij | ≤ ε7n, i, j = 1, . . . , k.(9.13)

Let us first assume (9.13) and finish the proof of the sublemma. By (9.13)

we have  
Br(x)

|∇(Aũ− u)|2 ≤ ε3n.(9.14)

Moreover, by (9.13) we can use the Gram-Schmidt process to produce a matrix

O ∈ O(k) with |O −A| ≤ C(k)ε4n. Combining this with (9.14) implies (9.11),

i.e., the sublemma.

Now we begin the proof of (9.13). Since 
Br(x)

〈∇ũj ,∇ũi〉 = δij =

 
Br(x)

〈∇uj ,∇ui〉,
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it will suffice to prove∣∣∣ k∑
`=1

ai`ai` − 1
∣∣∣ ≤ ε10n, i = 1, . . . , k.(9.15)

Assume (9.15) does not hold for some i = i0 ≤ k and ε = ε0 > 0 with

ε′ → 0 and δ′′ → 0. Consider the following k + 1 harmonic functions v0 =

ui0−
∑k

j=1 ai0j ũ
j , ũ1, . . . , ũk. From the definition of aij in (9.12), we have thatffl

Br(x)〈∇v
0,∇ũj〉 = 0. Moreover, by the contradiction assumption, we have

 
Br(x)

|∇v0|2 = 1−
k∑
j=1

a2
i0j ≥ ε

10n
0 .(9.16)

Normalize v0 to ũ0 such that ũ0 has unit L2 gradient norm. Therefore, for ε′

and δ′′ sufficiently small, the map (ũ0, ũ1, . . . , ũk) : Br(x) → Rk+1 is a (k +

1, η/10)-splitting map, which contradicts the fact that Br(x) is not (k + 1, η)-

symmetric. This completes the proof of (9.15) and (9.13). Hence, the proof of

Sublemma 9.8 is complete. �

Now by using the Poincaré inequality in Theorem 4.24 we get

 
Br(x)

∣∣∣Oũ− u−  
Br(x)

(Oũ− u)
∣∣∣2 ≤ C(n)r2

 
Br(x)

|∇(Oũ− u)|2 ≤ C(n)r2ε2n.

(9.17)

Set Z =
ffl
Br(x)(Oũ − u) ∈ Rk. At this point, the proof of Lemma 9.7 follows

now from (9.17) and the gradient estimate supBr(x) |∇(Oũ− u)| ≤ 1 + ε. This

completes the proof of Lemma 9.7. �

The proof of Lemma 9.6 can now be completed by observing that for any

y ∈ C ∩Br(x) with d(x, y) ≥ r/2, we have

∣∣∣u(x)− u(y)| − d(x, y)
∣∣∣ ≤ ∣∣∣|O(ũ(x)− ũ(y))| − d(x, y)

∣∣∣
+
∣∣∣Oũ(x)− u(x)− Z

∣∣∣+
∣∣∣Oũ(y)− u(y)− Z

∣∣∣
≤
∣∣∣ũ(x)− ũ(y)| − d(x, y)

∣∣∣+ εr/5 ≤ εr/2 ≤ εd(x, y).

(9.18)

This completes the proof of Lemma 9.6. �

Proof of Proposition 9.3. Now we can finish the proof of Proposition 9.3.

For this, note that for all ε′′ > 0, there exist δ′(n,B, v, η, ε′′) and δ(n,B, v, η, ε′′)

such that by Lemma 9.4, 
B15/8(p)

( ∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2
−Wδ

2r2i
|(y)dµ(y)

)
dµ(x) ≤ ε′′.(9.19)
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For all δ′′ > 0, define the set Cδ′′ ⊂ C ∩B15/8(p) such that x ∈ Cδ′′ if∑
rx≤ri≤2−5

 
Bri (x)

|Wδ
r2i /2
−Wδ

2r2i
|(y)dµ(y) ≤ δ′′.(9.20)

If ε′′ ≤ ε′′(n,B, δ′′), then by the Ahlfors regularity estimate (S3) for µ, we

have

µ(Cδ′′) ≥ (1− δ′′)µ(C ∩B15/8(p)).

Fix ε′ > 0. If δ′′ ≤ δ′′(n, ε′), then by Lemma 9.5, for any x ∈ Cδ′′ and

rx ≤ r ≤ 1, there exists a (k, ε′)-splitting map u : Br(x) → Rk. Thus, by

fixing ε′ ≤ ε′(n, v, B, η, ε) and putting Cδ′′ = Cε, we obtain (1), (3) and (4) of

Proposition 9.3.

To prove the bi-Lipschitz estimate, (2), note that for any x, y ∈ Cδ′′ , if

ε′ ≤ ε′(n, v, η, B, ε), then Lemma 9.6 gives (9.9):∣∣∣ |u(x)− u(y)| − d(x, y)
∣∣∣ ≤ εd(x, y).

This implies the bi-Lipschitz estimate (2) of Proposition 9.3. By using the

Transformation Proposition 7.7, the proof of the bi-Hölder estimate for u can be

completed in just the same manner as in the proof of the Canonical Reifenberg

Theorem, 7.10. This completes the proof of Proposition 9.3. �

9.3. Ahlfors regularity for the packing measure. In this subsection, we will

show that if a neck region satisfies a weak Ahlfors regularity estimate as in

(S3), then for δ sufficiently small, the neck region automatically satisfies a

stronger universal Ahlfors regularity estimate. This is based on the bi-Lipschitz

structure proved in Proposition 9.3. It is the key to the inductive scheme.

Proposition 9.9. Let (Mn, g, p) satisfy (S1)–(S4) with δ ≤ δ(n, v, B, η)

and δ′ ≤ δ′(n, v, B, η). Then there exists A(n) such that for any x ∈ C∩B2(p),

with r ≥ rx and B2r(x) ⊂ B2(p), we have

A(n)−1rk ≤ µ(Br(x)) ≤ A(n)rk.(9.21)

Proof. We can assume without loss of generality that x = p and r = 1.

We will show that µ(B1(p)) satisfies the upper and lower bound in (9.21).

Consider the map u : B2(p) → Rk. Assume 0k = u(p), and recall that

τ = τn := 10−10nωn.

We will begin by proving the upper bound for µ(B1(p)). For this, note

that for any ε, if δ ≤ δ(n, v, ε, B, η), then by the bi-Lipschitz estimate in

Proposition 9.3, the balls {Bτ3rx(u(x)) ⊂ Rk} are mutually disjoint for x ∈ Cε.

In addition, Cε ⊂ C ∩B15/8(p) satisfies

µ(Cε ∩B15/8) ≥ (1− ε) · µ(C ∩B15/8(p)).
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By the Lipschitz bound on u, we have |u(x)| = |u(x) − u(p)| ≤ 4. Let Volk
denote the volume form of Rk. Then

µ(Cε ∩B15/8(p)) ≤
∑

x∈Cε∩B15/8

rkx

≤ C(n) ·
∑

x∈Cε∩B15/8

Volk(Bτ3rx(u(x)))

≤ C(n) ·Volk(B5(0k))

≤ C(n).

(9.22)

By combining the above with the estimate

µ(Cε ∩B15/8(p)) ≥ (1− ε)µ(C ∩B15/8(p)),

this gives the upper bound of µ(B1(p)).

The lower bound for µ(B1(p)) will follow from a covering argument.

The Geometric Transformation Theorem 7.2 implies that for any ε > 0

and δ ≤ δ(n, v, ε, η), there exists for x ∈ C and rx ≤ s ≤ 1 a k × k matrix

Tx,s such that the map Tx,su : Bs(x) → Rk is a (k, ε)-splitting map. Since

|∇u| ≤ 1 + δ′, we have |Tx,s| ≥ 1/2. The lower bound estimate in (9.21) will

follow from the next lemma.

Lemma 9.10. Let

T−1
x,rx(Brx(u(x))) := u(x) + T−1

x,rx

(
Brx(0k)

)
.

Then a covering of B1/8(0k) ⊂ Rk is provided by the collection of ellipsoids :{
T−1
x,rx(Brx(u(x))) |x ∈ C ∩B1(p)

}
.

Proof. Assume there exists w ∈ B1/8(0k) not in the covering. For every

x ∈ C ∩B1(p), define

sx := inf{s ≥ rx : w ∈ T−1
x,sBs(u(x))}

s̄ := sx̄ := min
x∈C∩B1(p)

sx.
(9.23)

Then s̄ > rx̄ and

w ∈ T−1
x̄,2s̄B2s̄(u(x̄)).

This implies

Tx̄,2s̄w ∈ B2s̄(Tx̄,2s̄u(x)).

On the other hand, the map, Tx̄,2s̄u : B2s̄(x̄) → Rk is a (k, ε)-splitting.

From the covering property (n5) in Definition 2.4 of neck regions, there exists

some y ∈ B2s̄(x̄) ∩ C such that

|Tx̄,2s̄w − Tx̄,2s̄u(y)| ≤ 3τ s̄.(9.24)
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By the Hölder growth estimate for Tx,s, with respect to s in the Transfor-

mation Proposition 7.7, we have

|Ty,2s̄T−1
x̄,2s̄ − I| ≤ C(n)ε.

This follows since |Tx̄,2s̄T−1
x̄,5s̄ − I| ≤ ε and |Ty,2s̄T−1

x̄,5s̄ − I| ≤ ε due to the fact

that Tx̄,5s̄u : B2s̄(y)→ Rk is also a Cε-splitting map. Therefore,

|Ty,2s̄w − Ty,2s̄u(y)| ≤ 4τ s̄.(9.25)

Again by the Hölder growth estimate for Ty,s, in the Transformation

Proposition 7.7 we have

|Ty,s̄/2w − Ty,s̄/2u(y)| ≤ 5τ s̄.

Since w ∈ T−1
y,s̄/2Bs̄/2(u(y)), this contradicts the definition of s̄. This concludes

the proof of Lemma 9.10. �

From Lemma 9.10 we obtain

C(k) ≤
∑

x∈C∩B1(p)

Volk(T
−1
x,rxBrx(u(x)))

≤
∑

x∈C∩B1(p)

Ckr
k
x|T−1

x,rx | ≤ Ck
∑

x∈C∩B1(p)

rkx = Ck µ(B1(p)).
(9.26)

By using the estimate |T−1
x,rx | ≤ 2, this provides a lower bound for µ(B1(p)).

This completes the proof of Proposition 9.9. �

9.4. Proof of the Neck Structure Theorem for smooth manifolds. In the

present subsection, we will prove the Ahlfors regularity estimate for the case of

smooth Riemannian manifolds. The Ahlfors regularity estimate in the general

case will be reduced to this one via a careful approximation argument.

In the case of smooth Riemann manifolds, neck regions satisfy C0 = ∅ and

inf rx > 0. Thus, it suffices to prove the following lemma

Lemma 9.11 (The smooth case of Theorem 2.9). For all η > 0, there exist

δ = δ(n, v, η) > 0 and A(n) such that if N ⊂ B2(p) ⊂ Mn is a (k, δ, η)-neck,

then for all s ≥ rx with B2s(x) ⊂ B2(p),

A(n)−1sk ≤ µ(Bs(x)) ≤ A(n)sk.(9.27)

Proof. We begin by making the following convention.

Terminology. We will say statement (j) holds if the lemma holds for all

neck regions which satisfy inf rx ≥ 2−j > 0. The proof will be by induction

on j.

We begin with the base step. Note that if j ≤ 10 and δ ≤ 10−10n, then

#C ≤ C(n). In particular, the statement (j) holds for some universal constant

A0(n).
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Denote the universal constant A(n) in Proposition 9.9 by A1(n). We will

show that (j) holds for all j when A(n) := A0(n) + A1(n) and δ(n, v, η) =

δ(n, v, η, B), where δ(n, v, η, B) is the constant in Proposition 9.9 with B =

A(n)C(n). Here C(n) is given by C(n) = C0(n)16k, where C0(n) is the car-

dinality of the maximal number of disjoint balls {B2−5(xi) |xi ∈ B2(0k)} with

center in B2(0k). Therefore, B = A(n)C(n) is a universal constant.

Note that if we take δ ≤ δ(n, v, B, η, δ′) sufficiently small, then by the

structure of the neck region and cone-splitting theorem 4.9, there exists a

(k, δ′)-splitting map u : B2(p) → Rk; see also Remark 9.2. Therefore, the

constant δ′(n, v, B, η) in Proposition 9.9 automatically holds if we choose δ ≤
δ(n, v, B, η, δ′).

Now let us assume statement (j) holds. Then we need to see that (j + 1)

holds. So let N ⊂ B2(p) be a (k, δ, η)-neck region with minx rx ≥ 2−j−1 and

the associated center points C. By Proposition 9.9, it suffices to obtain a weak

Ahlfors regularity bound for µ with B = A(n)C(n).

Let B2s(x) ⊂ B2(p). If s ≤ 1/2, then after rescaling B2s(x) to B2(x),

the region N ∩ B2s(x) ⊂ B2s(x) is a new (k, δ, η)-neck which satisfies (j). In

particular, by our inductive hypothesis, we have

A−1(n) ≤ µ(Bs(x)) ≤ A(n)sk.

If s > 1/2 then, in particular, we have x ∈ B3/2(p) ∩ C and Bs(x) ⊂ B7/4(p).

Choose a Vitali covering {B1/16(xj), xj ∈ C ∩ B7/4(p)} of B7/4(p) with

cardinality at most C0(n). Since B1/8(xj) ⊂ B2(p), by using the inductive

assumption again we have

16−kA−1(n) ≤ µ(B1/16(xj)) ≤ A(n)16−k.(9.28)

From this, it follows easily that

16−kA−1(n)sk ≤ µ(Bs(x)) ≤ C0(n)16−k2kA(n)sk.(9.29)

Thus, we have proved µ satisfies the weak Ahlfors regularity estimate

with constant B = C0(n)16kA(n). By Proposition 9.9, if δ ≤ δ(n, v, η, B) =

δ(n, v, η), then in fact we have the stronger estimate A1(n)−1sk ≤ µ(Bs(x)) ≤
A1(n)sk. In particular,

A(n)−1sk ≤ µ(Bs(x)) ≤ A(n)sk.

This completes the proof of Lemma 9.11, i.e., Ahlfors regularity for the case

of smooth manifolds. �

9.5. Approximating limit neck regions by smooth neck regions. As men-

tioned in the previous subsection, to prove the neck structure theorem for neck

regions for which C0 6= ∅, we will approximate general neck regions N by neck
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regions Nj for which inf rx,j > 0. This will be carried out in the present sub-

section. In the following subsection, we will complete the proof of the Neck

Structure Theorem 2.9.

Our main result in this subsection is the following.

Theorem 9.12. Let (Mn
j , gj , pj)

dGH−→(Xn, d, p) satisfy Vol(B1(pj))>v>0

and Rici ≥ −(n − 1)δ2 and let N = B2(p) \ Brx(C) be a (k, δ, η)-neck region.

Then there exists a (k, δj , ηj)-neck region Nj = B2(pj)\Brx,j (Cj) such that the

following hold :

(1) δj → δ and ηj → η.

(2) If φj : B2(pj) → B2(p) are the approximating Gromov-Hausdorff maps,

then φj(Cj)→ C in the Hausdorff sense.

(3) rx,j → rx : C→ R+ uniformly.

(4) Let µj , µ denote the packing measure of Nj , and N, respectively and let

µj → µ∞ in measure sense. Then µ ≤ C(n)µ∞.

(5) If C0 ⊂ C is k-rectifiable, we have µ∞ ≤ C(n)µ.

Proof. Consider first the case inf rx > 0. This implies that C0 = ∅ and, in

addition, that C is a finite set.

Let ψj : B2(p) → B2(pj) be the εj-Gromov Hausdorff maps. For j suffi-

ciently large with εj � inf rx, let Cj := {ψj(x), x ∈ C} and rx,j := rψ−1
j (x).

Then it is easy to check that Nj := B2(pj)\B̄rx,j (Cj) are (k, δj , ηj)-neck regions

which satisfy the criteria of the theorem. Actually, in this case, we can prove

µj → µ∞ = µ.

Next, for the case in which inf rx = 0, we construct a (k, δ, η)-neck region

Ñs = B2(p) \ B̄r̃x(C̃),

with inf r̃x ≥ s > 0. Given s > 0, we define r̃x on C by r̃x := max{rx, s}. Then

|Lip r̃x| ≤ δ and all of the remaining properties of a neck region are satisfied

with C and r̃x, apart from the Vitali condition (n1).

To fix this, choose a maximal subset C̃s := {xsi} ⊂ C such that the balls

{Bτ2r̃xs
i
(xsi )} are disjoint. It is easy to check that Ñs := B2(p) \ B̄r̃x(C̃) is a

(k, δ, η)-neck region for which inf r̃x ≥ s > 0. If we let s→ 0, then Ñs converges

to N in the Hausdorff sense.

Consider the limit packing measure µ̃s → µ̃∞. On C+, we have µ̃∞ = µ.

If y ∈ C0, then for all s < r, by the Vitali covering property of Ñs, it will follow

that

sk−nVol
(
B̄r(y) ∩Bs(C0)

)
≤ C(n)µ̃s

(
B̄2s+r(y) ∩B3s(C0)

)
.(9.30)

To see this, consider the covering {Bs(xsi ), xsi ∈ C̃s ∩ Bs(C0)} of C0 ∩ Br(y).

Since Bτ2ns(x
s
i ) are disjoint and µ̃s(Bs(x

s
i )) ≥ sk, using the estimate of the
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cardinality of {Bs(xsi ) |xsi ∈ C̃s ∩ Bs(C0)} by s−kµ̃s

(
B2s+r(y) ∩ B3s(C0)

)
we

can get (9.30).

By letting s→ 0 in (9.30), we get the upper Minkowski k content bound,

Mk(B̄r(y) ∩ C0) ≤ C(n)µ̃∞(B̄r(y) ∩ C0).(9.31)

In particular, this implies

µ(B̄r(y) ∩ C0) = Hk(B̄r(y) ∩ C0)

≤ C(k)Mk(B̄r(y) ∩ C0) ≤ C(n)µ̃∞(B̄r(y) ∩ C0).
(9.32)

Therefore, we get the weaker estimate µ ≤ C(n)µ̃∞.

On the other hand, we claim that

µ̃s

(
Br(y) ∩Bs(C0)

)
≤ C(n)sk−nVol

(
Br+2s(y) ∩B3s(C0)

)
.(9.33)

To see this, consider the covering {Bs(xsi ) |xsi ∈ C̃s ∩ Bs(C0)} of C0 ∩ Br(y).

Since Bτ2ns(x
s
i ) are disjoint and µ̃s(Bs(x

s
i )) ≤ A(n)sk, the estimate (9.33) fol-

lows easily from the estimate of the cardinality of {Bs(xsi ), xsi ∈ C̃s ∩ Bs(C0)}
by s−nVol

(
Br+2s(y) ∩ B3s(C0)

)
. By letting s → 0, it follows that the upper

Minkowski k content satisfies

C(n)Mk(Br(y) ∩ C0) ≥ µ̃∞(Br(y) ∩ C0).(9.34)

To prove (5) of Theorem 9.12, we will initially make the assumption that

C0 is k-rectifiable. This will be proved in Lemma 9.14, the proof of which is

completely independent of (5).

By a standard geometric measure theory argument (see Theorem 3.2.39

of [Fed69]), Hausdorff measure and Minkowski content are equivalent. Thus,

C(n)µ(Br(y) ∩ C0) ≥ µ̃∞(Br(y) ∩ C0).(9.35)

In particular, C(n)µ ≥ µ̃∞.

Finally, for each Ñs, we have the (k, δj , ηj)-neck regions Ñs,j = B2(pj) \
B̄r̃x,j (C̃j) approximating Ñs with µ̃s,j → µ̃s. By a standard diagonal argu-

ment, we can finish the proof by taking a diagonal subsequence of Ñs,j to

approximate N. This completes the proof of Theorem 9.12. �

9.6. Proof of the Neck Structure Theorem 2.9. Given a (k, δ, η)-neck region

N = B2(p)\B̄rx(C), we have by the approximation theorem 9.12, a sequence of

(k, δj , ηj)-neck regions Nj = B2(pj)\B̄rx,j (Cj) ⊂Mj . By the Ahlfors regularity

estimates in Section 9.4 for smooth neck regions, we have for δ ≤ δ(n, v, η)/10

that if B2r(xj) ⊂ B2(pj) and xj ∈ Cj , then for j sufficiently large,

A(n)−1rk ≤ µj(Br(xj)) ≤ A(n)rk.(9.36)
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Thus, by Theorem 9.12 we have for all B2r(x) ⊂ B2(p) with x ∈ C that the

limit µj → µ∞ satisfies

A(n)−1rk ≤ µ∞(Br(x)) ≤ A(n)rk.(9.37)

By Theorem 9.12, since µ ≤ C(n)µ∞, we directly get the upper bound esti-

mates of µ(Br(x)) ≤ Ã(n)rk for a universal constant Ã(n) = A(n)C(n).

In order to prove the lower measure bound, we will first prove C0 is

k-rectifiable. Then we can use (5) from Theorem 9.12 to deduce the lower

bound. The main lemma needed for this result is the following.

Lemma 9.13. For each ε > 0, if δ ≤ δ(n, v, ε, η), then for any x ∈ C0 and

B2r(x) ⊂ B2(p), there exists a closed subset Rε(Br(x)) ⊂ C0 ∩Br(x) such that

Rε is bi-Lipschitz to a subset of Rk and µ
(
Br(x) ∩ (C0 \ Rε)

)
< εrk.

Proof. For each B2r(x) ⊂ B2(p) with x ∈ C0, the set

Nr := B2r(x) \ B̄rx(Cr)

is a (k, δ, η)-neck region with associated Cr = C∩B2r(x) and packing measure

µr := µ|Cr . By the approximation theorem 9.12, there exists a (k, δj , ηj)-neck

region

Nr,j := B2r(xj) \ B̄rx,j (Cr,j) ⊂Mj

which approximates Nr.

By Theorem 4.11, there exist δ′j-splitting maps ur,j : B2r(xj) → Rk with

δ′j = δ′j(n, v, η, δj). Additionally, by the Ahlfors regularity estimate for the

smooth neck Nr,j in Section 9.4, we have for any B2s(xr,j) ⊂ B2r(xj) and

xr,j ∈ Cr,j that

A(n)−1sk ≤ µ(Bs(xr,j)) ≤ A(n)sk.(9.38)

By applying Proposition 9.3 with B = A(n) and δ ≤ δ(n, v, ε, η), there

exists Cr,j,ε ⊂ Cr,j such that ur,j : Cr,j,ε → Rk is (1 + ε)-bi-Lipschitz and

µr,j(Br(xj) \ Cr,j,ε) ≤ ε2rk. Let j → ∞, and denote the Gromov-Hausdorff

limit by Cr,ε := limCr,ε,j . Let µr,∞ denote the limit measure µr,j → µr,∞.

On the other hand, since Br(x) \ Cr,ε is an open set, a standard measure

convergence argument implies

µr,∞(Br(x) \ Cr,ε) ≤ lim inf µr,j(Br(xj) \ Cr,j,ε) ≤ ε2rk.(9.39)

Indeed, for any closed set D ⊂ B̄r(x) ⊂ X and Di ⊂ Mi, with Di
dGH−→ D, we

have by the measure convergence that for any t > 0,

lim supµr,j(Di) ≤ µr,∞(Bt(D)).(9.40)
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Let t→ 0. By using the monotone convergence theorem for measures and

the fact that D is a closed set, it follows that

lim supµr,j(Di) ≤ µr,∞(D).

This implies (9.39). Hence we have Cr,ε ⊂ Cr ⊂ C and the estimate

µ(Br(x) \ Cr,ε) = µr(Br(x) \ Cr,ε) ≤ C(n)µr,∞(Br(x) \ Cr,ε) ≤ C(n)ε2rk ≤ εrk.
(9.41)

Here, we have used Theorem 9.12 in the first inequality.

Moreover, since ur,j is Lipschitz, by Ascoli’s theorem, we have a uniform

limit ur : B2r(x)→ Rk such that ur : Cr,ε → Rk is (1 + ε)-bilipschitz. From the

estimate (9.41), the set Rε(Br(x)) := C0 ∩ Cr,ε is our desired set. This finishes

the proof of Lemma 9.13. �
Now we can prove the rectifiability of C0.

Lemma 9.14. C0 is rectifiable.

Proof. Let {xi} ⊂ C0 be a countable dense subset of C0, and for any ε > 0,

consider the set

R :=
⋃

B2r(xi):1≥r∈Q

Rε(Br(xi)).(9.42)

By definition, we have R ⊂ C0. In addition, since R is a countable union

of rectifiable sets, it is rectifiable. To finish the proof, we only need to choose a

small ε and show that µ(C0 \R) = Hk(C0 \R) = 0. So assume Hk(C0 \R) > 0.

Then by a standard geometric measure theory argument, there exist x ∈ C0\R,

ra → 0 and a dimensional constant εk > 0 (see Theorem 3.6 of [Sim83]) such

that

lim
ra→0

Hk
(
Bra(x) ∩ (C0 \ R)

)
rka

> εk > 0.(9.43)

In particular, there exists s > 0 such that Hk
(
Bs(x) ∩ (C0 \ R)

)
≥ skεk/2.

Since {xi} is dense, there exist some xi and r ∈ Q such that s ≤ r ≤ 2s and

Bs(x) ⊂ Br(xi). Therefore, we have Hk(Br(xi) ∩ (C0 \ R)) ≥ C(k)εkr
k. By

choosing ε = ε(n) small, we contradict the definition of Rε in Lemma 9.13.

Thus, for δ ≤ δ(n, v, η, ε) = δ(n, v, η), the set R ⊂ C0 has full measure. This

completes the proof of Lemma 9.14. �

At this point we can obtain the lower bound for the packing measure µ,

and hence, complete the proof of Theorem 2.9. Since C0 is k-rectifiable, by

Theorem 9.12 we have µ ≥ C(n)·µ∞ in (9.37). Therefore, the Ahlfors regularity

estimate for µ∞ in (9.37) gives us the desired lower bound for µ. This completes

the proof of the Neck Structure Theorem 2.9. �
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10. Proof of the Neck Decomposition Theorem 2.12

In this section we prove the Neck Decomposition Theorem 2.12. Neck

regions and their associated decomposition theorems were introduced in [JN21],

where the focus was on the top (n−4)-stratum of the singular set for limits with

2-sided Ricci curvature bounds. This was an important ingredient in the proof

of the a priori L2 curvature bound for such spaces. This section follows very

closely the constructions of [JN21], relying on the estimates provided by the

Neck Structure Theorem 2.9. The main result of this section is Theorem 2.12,

which for convenience is recalled below.

Theorem 2.12 restated. Let (Mn
i , gi, pi)→(Xn, d, p) satisfy Vol(B1(pi))

> v > 0 and Rici ≥ −(n− 1). Then for each η > 0 and δ ≤ δ(n, v, η), we can

write

B1(p) ⊆
⋃
a

(
Na ∩Bra

)
∪
⋃
b

Brb(xb) ∪ Sk,δ,η,(10.1)

Sk,δ,η ⊆
⋃
a

(
C0,a ∩Bra

)
∪ S̃k,δ,η,(10.2)

such that

(1) for all a, the set Na = B2ra(xa) \Brx(C) is a (k, δ, η)-neck region ;

(2) the balls B2rb(xb) are (k + 1, 2η)-symmetric, and hence xb 6∈ Sk2η,rb ;
(3)

∑
a r

k
a +

∑
b r

k
b + Hk

(
Sk,δ,η

)
≤ C(n, v, δ, η);

(4) C0,a ⊆ B2ra(xa) is the k-singular set associated to Na;

(5) S̃k,δ,η satisfies Hk
(
S̃k,δ,η

)
= 0;

(6) Sk,δ,η is k-rectifiable;

(7) for any ε, if η ≤ η(n, v, ε) and δ ≤ δ(n, v, η, ε), then we have Skε ⊂ Sk,δ,η .

Remark 10.1. As previously mentioned, in the special case of smooth Rie-

mannian manifolds Mn only (1)–(3) carry nontrivial information.

10.1. Proof of Theorem 2.12 modulo Proposition 10.2. The proof of The-

orem 2.12 proceeds via an iterative recovering argument. In Proposition 10.2

of this subsection, we will introduce a rougher decomposition which also in-

cludes a third type of ball, indexed by a subscript denoted by v. By iterating

Proposition 10.2 we obtain a definite decrease in the volume of the v-balls.

Thus, after iterating this recovering argument a definite number of times, the

v-balls will no longer present. This gives the decomposition in Theorem 2.12.

The remaining sections, 10.2–10.5, will be devoted to establishing Propo-

sition 10.2. This is the primary work in the proof. Initially, we will introduce

coverings in which additional specific types of balls indexed by c, d, e will ap-

pear. Additional iterative arguments eventually lead to Proposition 10.2 itself.
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In more detail, in Section 10.2, we define balls of types c, d, e. In Sec-

tion 10.3, we state Propositions 10.3, 10.5, which are concerned, respectively,

with recovering d-balls and c-balls. We state and prove Lemma 10.7 in Sec-

tion 10.4. Using it, we prove Proposition 10.2 modulo Propositions 10.3 and

10.5. In Section 10.5, we prove Proposition 10.3. In Section 10.6, we prove

Proposition 10.5, thereby completing the proof of Theorem 2.12.

To avoid confusion, we recall that in (10.3) below, the subscript 1 indicates

radius 1. Set

V̄ := inf
y∈B4(p)

V1(y) ≥ v > 0.(10.3)

Proposition 10.2 (Induction step decomposition). For all η > 0 and

δ ≤ δ(n, v, η), there exists

v0(n, v, δ, η) > 0

such that if (Mn
i , gi, pi)

dGH−→ (Xn, d, p) satisfies RicMn
i
≥ −(n− 1), Vol(B1(pi))

> v > 0, then the following exists :

B1(p) ⊂
⋃
a

(C0,a ∪Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
v

Brv(xv) ∪ S̃k,(10.4)

such that the following hold :

(1) Na ⊂ B2ra(xa) are (k, δ, η)-neck regions with the associated singular set of

centers C0,a;

(2) each b-ball B2rb(xb) is (k + 1, 2η)-symmetric;

(3) V̄v ≥ V̄ + v0 (where V̄v := infy∈B4rv (xv) Vrv(y));

(4) S̃k ⊂ S and Hk(S̃k) = 0;

(5)
∑

a r
k
a +

∑
b r

k
b +

∑
v r

k
v ≤ C(n, v, δ, η).

If we temporarily assume Proposition 10.2, the proof of Theorem 2.12 can

be completed:

Proof of Theorem 2.12. Fix η > 0, δ ≤ δ(n, v, η) as in Theorem 2.9 and

v0(n, v, δ, η) > 0 as in Proposition 10.2.

By applying Proposition 10.2 to the limit ball B1(p), we get the following

decomposition in which the subscript 1 indicates the first step in the inductive

argument below:

(10.5) B1(p) ⊂ S̃k1 ∪
⋃
a1

(C0,a1 ∪Na1 ∩Bra1 (xa1))∪
⋃
b1

Brb1 (xb1)∪
⋃
v1

Brv1 (xv1),

where
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V̄v1 := inf
y∈B4rv1

(xv1 )
Vrv1 (y) ≥ V̄ + v0,

Hk(S̃k1) = 0,∑
a1

Hk(C0,a1) +
∑
a1

(ra1)k +
∑
b1

(rb1)k +
∑
v1

(rv1)k ≤ C(n, v, η, δ).

(10.6)

Next, by applying Proposition 10.2 to each v1-ball Brv1 (xv1) we arrive at

B1(p) ⊂
2⋃
j=1

Ñ
S̃kj ∪

⋃
aj

(C0,aj ∪Na2 ∩Braj (xaj ))
⋃
b2

Brbj (xbj )

é
∪
⋃
v2

Brv2 (xv2),

(10.7)

where

V̄v2 := inf
y∈B4rv2

(xv2 )
Vrv2 (y) ≥ V̄ + 2v0,

Hk(S̃k1) + Hk(S̃k2) = 0,

2∑
j=1

Ñ∑
a2

Hk(C0,a2) +
∑
a2

(ra2)k +
∑
b2

(rb2)k

é
≤ C(n, v, η, δ) + C(n, v, η, δ)2,∑

v2

(rv2)k ≤ C(n, v, η, δ)2.

(10.8)

Note that V̄ + v0 in (10.6) has been replaced by V̄ + 2v0 in (10.8), where

as in Proposition 10.2, v0 = v0(n, v, δ, η). Therefore, this process of recovering

the v-balls can be iterated at most i = i(n, v, δ, η) times before no v-balls

exist; otherwise, we would contradict the noncollapsing assumption (1.2). By

doing the iteration the maximal number of times, we obtain the following

decomposition in which the v-balls are no longer present:

B1(p) ⊂
i⋃

j=1

Ñ
S̃kj ∪

⋃
aj

(C0,aj ∪Naj ∩Braj (xaj )) ∪
⋃
bj

Brbj (xbj )

é
,(10.9)

where i = i(n, v, δ, η) and

Hk(S̃k1) + · · ·Hk(S̃ki ) = 0,(10.10)

i∑
j=1

Ñ∑
aj

Hk(C0,aj ) +
∑
aj

(raj )
k +

∑
bj

(rbj )
k

é
≤ C ′(n, v, η, δ).(10.11)
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Set

S̃k,δ,η :=
i⋃

j=1

S̃kj ∩B1(p), Sk,δ,η :=
i⋃

j=1

Ñ
S̃kj ∪

⋃
aj

C0,aj

é
∩B1(p).(10.12)

Since by the Neck Structure Theorem 2.9, each set C0,aj is k-rectifiable, it

follows that Sk,δ,η is k-rectifiable and by (10.11) that Hk(Sk,δ,η) ≤ C(n, v, η, δ).

This gives the decomposition whose existence is asserted in Theorem 2.12.

Moreover, from our decomposition, conditions (1)–(6) of that theorem are

satisfied, where the content estimate is in (10.11) and Hk(S̃k,δ,η) = 0.

Finally, we will show that if η ≤ η(n, v, ε), δ ≤ δ(n, v, η, ε), then Skε ⊂
Sk,δ,η, which is the last statement (7) in Theorem 2.12

First, note that if y ∈ Na, with r = d(y,Ca) and δ ≤ δ(n, v, η, ε), then by

the Cone-Splitting Theorem 4.9, the ball Br/2(y) has a (k + 1, 2η)-splitting.

For any ε > 0, by the Almost Volume Cone implies Almost Metric Cone

Theorem 4.1, it follows that for some, s = s(ε, v) · r, the ball, Bs(y) is (0, ε3)-

symmetric. If in addition, η ≤ η(n, v, ε), this implies that Bs(y) is (k + 1, ε2)-

symmetric. Hence, y 6∈ Skε .

Similarly, suppose y ∈ Brb(xb) and B2rb(xb) is (k + 1, η)-symmetric. If

in addition, η ≤ η(n, v, ε, η′), then it clear that Brb(xb) has a (k + 1, η′)-

splitting. Then the same argument as above shows that if η′ ≤ η′(n, v, ε), then

y 6∈ Skε . Since Skε is covered by the union of Na, Brb and Sk,δ,η, we see that

Skε ⊂ Sk,δ,η. This completes the proof of Theorem 2.12, modulo the proof of

Proposition 10.2. �

The remainder of this section will now be devoted to proving Proposi-

tion 10.2.

10.2. Notation : constants and types of balls. Throughout the remainder

of this section we will consider constants ξ, δ, γ, ε, which will in general satisfy

0 < ξ � δ < γ < ε < ε(n).(10.13)

We will assume throughout that RicMn ≥ −(n− 1)ξ. The general case can be

achieved by a standard covering argument and rescaling.12

As in Definition 4.8, we define the set of points with small volume pinching

by

V̄ := inf
x∈B4(p)

Vξ−1(x)).(10.14)

12Given ξ � δ, choose a Vitali covering, {Bξ(yf )}, of B1(p), such that Bξ/5(yf ) are dis-

joint. By relative volume comparison, the cardinality of such covering is less than C(n, v, ξ).

Finding the desired decomposition for B1(p) is then reduced to finding the corresponding

decomposition for each Bξ(yf ).
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In what follows, the set with small volume pinching is defined to be

Pr,ξ(x) := {y ∈ B4r(x) : Vξr(y) ≤ V̄ + ξ}.(10.15)

The constants ε, γ > 0 will denote the constants in the Cone-Splitting

Theorem 4.9 based on k-content. Recall that this theorem states the following:

If Vol(Bγ(P1,ξ(p))) ≥ εγn−k with 0 < δ, ε ≤ δ(n, v), γ ≤ γ(n, v, ε), ξ ≤
ξ(δ, ε, γ, n, v), then there exists q ∈ B4(p) such that Bδ−1(q) is (k, δ2)-

symmetric.

Next we introduce the various ball types which appear in the proof. These

are indexed by a, b, c, d, e. Every ball Br(x) is one (or more) of these types.

The balls indexed by a, b are of the type as in Proposition 10.2.

(a) A ball Bra(xa) is associated to a (k, δ, η)-neck region Na ⊂ B2ra(xa).

(b) A ball Brb(xb) is (k + 1, 2η)-symmetric.

(c) A ball Brc(xc) is not a b-ball and satisfies

Vol
(
Bγrc(Prc,ξ(xc))

)
≥ εγn−krnc .

(d) A ball Brd(xd) is any ball with Prd,ξ(xd) 6= ∅ satisfying

Vol
(
Bγrd(Prd,ξ(xd))

)
< εγn−krnd .

(e) A ball Bre(xe) satisfies Pre,ξ(xe) = ∅.

10.3. Statements of Propositions 10.3 and 10.5. The first proposition in

this subsection asserts that a d-ball can be recovered using only balls of type

b, c and e. A key point is that in this covering, the content of the c-balls in the

collection can be taken to be small.

Proposition 10.3 (d-ball decomposition). Fix η > 0, ε ≤ ε(n, v), γ ≤
γ(n, v, ε), δ ≤ δ(n, v, η) and ξ ≤ ξ(n, v, ε, γ, δ, η). Let (Mn

i , gi, pi)
dGH−→ (Xn, d, p)

satisfy Vol(B1(pi)) ≥ v > 0 and V̄ ≤ infx∈B4(p) Vξ−1(x). Assume also RicMn
i
≥

−(n− 1)ξ , Vol(Bγ(P1,ξ(p))) < εγn−k. Then there exists a decomposition

B1(p) ⊆ S̃kd ∪
⋃
Brb(xb) ∪

⋃
Brc(xc) ∪

⋃
Bre(xe),(10.16)

where

(b) each b-ball B2rb(xb) is (k + 1, 2η)-symmetric;

(c) a c-ball B2rc(xc) is not a b-ball and satisfies Vol(BγrcPrc,ξ(xc)) ≥ εγn−krnc ;

(e) each e-ball B2re(xe) satisfies Pre,ξ(xe) = ∅;
(s) S̃kd ⊂ S and Hk(S̃kd) = 0.
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Furthermore, we have k-content estimates∑
b

rkb +
∑
e

rke ≤ C(n, γ),(10.17) ∑
c

rkc ≤ C(n, v)ε.(10.18)

Remark 10.4. In this proposition, the ball types and the pinching set Pr,ξ
are with respect to the given V̄ ≤ infx∈B4(p) Vξ−1(x) above.

Proposition 10.5 (c-ball decomposition). Let ε ≤ ε(n, v), γ ≤ γ(n, v, ε),

δ≤δ(n, v, η), ξ≤ξ(n, v, ε, γ, δ, η). Let (Mn
i , gi, pi)→(X, d, p) satisfy Vol(B1(pi))

≥ v > 0, and let η > 0 and V̄ ≤ infx∈B4(p) Vξ−1(x). Assume in addition that

RicMn
i
≥ −(n − 1)ξ, Vol(Bγ(P1,ξ(p))) ≥ εγn−k and B2(p) is not (k + 1, 2η)-

symmetric. Then there exists a decomposition

B1(p) ⊂
(
C0 ∪N ∩B1(p)

)
∪
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
d

Brd(xd) ∪
⋃
e

Bre(xe),
(10.19)

where

(a) N = B2(p) \
(
C0 ∪

⋃
bBrb(xb) ∪

⋃
cBrc(xc) ∪

⋃
dBrd(xd) ∪

⋃
eBre(xe)

)
is

a (k, δ, η)-neck region ;

(b) each b-ball B2rb(xb) is (k + 1, 2η)-symmetric;

(c) each c-ball B2rc(xc) is not (k + 1, 2η)-symmetric and satisfies

Vol(BγrcPrc,ξ(xc)) ≥ εγn−krnc ;

(d) each d-ball B2rd(xd) satisfies Vol(BγrdPrd,ξ(xd)) < εγn−krnd ;

(e) each e-ball B2re(xe) satisfies Pre,ξ(xe) = ∅.
Furthermore, the following k-content estimates hold :∑

xb∈B3/2(p)

rkb +
∑

xd∈B3/2(p)

rkd

+
∑

xe∈B3/2(p)

rke t+ Hk(C0 ∩B3/2(p)) ≤ C(n, v),
(10.20)

∑
xc∈B3/2(p)

rkc ≤ C(n, v)ε.(10.21)

Remark 10.6. In this proposition the ball types and the pinching set Pr,ξ
are defined with respect to the given V̄ ≤ infx∈B4(p) Vξ−1(x) above.

10.4. Proof of Proposition 10.2 modulo Propositions 10.3 and 10.5. In

this subsection we will state and prove Lemma 10.7. The proof involves using

iteratively the decompositions of Propositions 10.5 and 10.3. Then by using
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Lemma 10.7 a definite number of times we are able to remove all the c-balls and

d-balls, thereby proving Proposition 10.2. This proves Theorem 2.12 modulo

the proofs of Propositions 10.5 and 10.3. These two propositions will be proved

in the remaining two subsections.

Lemma 10.7. Let η > 0, δ ≤ δ(n, v, η) and ξ ≤ ξ(n, v, δ, η). Let (Mi, gi, pi)
dGH−→ (Xn, d, p) satisfy Vol(B1(pi)) ≥ v > 0, V̄ := infx∈B4(p) Vξ−1(x), RicMn

i
≥

−(n− 1)ξ. Then

B1(p) ⊂
⋃
a

C0,a ∪Na ∩Bra(xa) ∪
⋃
b

Brb(xb) ∪
⋃
e

Bre(xe) ∪ S̃k,(10.22)

where

(1) Na ⊂ B2ra(xa) are (k, δ, η)-neck regions with associated singular set C0,a;

(2) each b-ball B2rb(xb) is (k + 1, 2η)-symmetric;

(3) for each e-ball B2re(xe), we have Pre,ξ(xe) = ∅ where Pre,ξ(xe) := {y ∈
B4re(xe) : Vξre(y) ≤ V̄ + ξ};

(4) S̃k ⊂ S and Hk(S̃k) = 0.

Moreover, the following content estimate holds :∑
a

rka +
∑
b

rkb +
∑
e

rke ≤ C(n, v).(10.23)

Proof. Fix ε ≤ ε(n, v), γ ≤ γ(n, v, ε) and δ ≤ δ(n, v, η) such that Proposi-

tions 10.5 and 10.3 hold.

We can assume B2(p) is not a b-ball or e-ball. Otherwise, there is nothing

to prove.

So assume one of the following two cases holds.

(1) B2(p) is a c-ball with Vol(BγP1,ξ(p)) ≥ εγn−k, and with B2(p) it is not

(k + 1, 2η)-symmetric;

(2) B2(p) is a d-ball with Vol(BγP1,ξ(p)) < εγn−k.

It will be evident that up to reversing the order of which decomposition

we apply first, the argument is the same in both cases. Therefore, without

essential loss of generality, we will assume that B2(p) is a c-ball.

By the c-ball decomposition Proposition 10.5, if ξ ≤ ξ(n, v, δ, ε, η), then

we have

B1(p) ⊆ (C0 ∪N ∩B1(p)) ∪
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
d

Brd(xd) ∪
⋃
e

Bre(xe)

(10.24)
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and, in addition, the following k-content estimates hold:∑
b

rkb +
∑
d

rkd +
∑
e

rke + Hk(C0) ≤ C(n),(10.25) ∑
c

rkc ≤ C(n, v)ε.(10.26)

By applying the d-ball decomposition of Proposition 10.3 to each d-ball

B2rd(xd), we arrive at

B1(p) ⊆ S̃k1 ∪ (C0 ∪N ∩B1(p)) ∪
⋃
b

Brb(xb) ∪
⋃
c

Br1c (x
1
c) ∪

⋃
e

Bre(xe),

(10.27)

where S̃k1 =
⋃
d S̃

k
d is a countable union of k-Hausdorff measure zero sets, and

thus Hk(S̃k1) = 0. Moreover, we have the following content estimates:∑
c

(r1
c )
k ≤ C(n, v)ε+ C(n)C(n, v)ε ≤ C̄(n, v)ε,(10.28) ∑

b

rkb +
∑
e

rke + Hk(C0) ≤ C(n) + C(n)C(n, γ) ≤ C̄(n, γ).(10.29)

Next, we repeat the above process verbatim, except that we first apply the

c-ball decomposition of Proposition 10.5 to each c-ball above and then apply

the d-ball decomposition of Proposition 10.3 to each remaining d-ball. The

result is

B1(p) ⊆ S̃k2 ∪
⋃
a

(C0,a ∪Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
c

Br2c (x
2
c) ∪

⋃
e

Bre(xe),

(10.30)

with content estimates Hk(S̃k2) = 0 and

∑
a

rka ≤ 1 + C̄(n, v)ε,
∑
c

(r2
c )
k ≤

(
C̄(n, v)ε

)2
,(10.31)

∑
b

rkb +
∑
e

rke +
∑
a

Hk(C0,a) ≤ C̄(n, γ)
(

1 + C̄(n, v)ε
)
.(10.32)

After repeating this process i times we arrive at

B1(p) ⊆ S̃ki ∪
⋃
a

(C0,a ∪Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
c

Bric(x
i
c) ∪

⋃
e

Bre(xe),

(10.33)
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with content estimates Hk(S̃ki ) = 0 and∑
a

rka ≤
i∑

j=0

(
C̄(n, v)ε

)j
,
∑
c

(ric)
k ≤

(
C̄(n, v)ε

)i
,(10.34)

∑
b

rkb +
∑
e

rke +
∑
a

Hk(C0,a) ≤ C̄(n, γ)
i∑

j=0

(
C̄(n, v)ε

)j
.(10.35)

Consider the discrete set S̃ic := {xic}. By the construction, we have

B2ri+1
c

S̃i+1
c ⊂ B2ric

(S̃ic),(10.36)

where

B2ric
(S̃ic) := ∪cB2ric

(xic).(10.37)

Define the set limit by

S̃c :=
⋂
i≥1

⋃
j≥i

B2ric
(S̃ic).(10.38)

It is clear from the construction that S̃c ⊂ S(Xn). Set δi := 2 maxc r
i
c. Since

S̃c ⊂ B2ric
(S̃ic), by the definition of Hausdorff measure, we have

Hk
δi

(S̃c) := inf
{∑

α

rkα, where rα ≤ δi and S̃c ⊂ ∪αBrα(yα)
}

≤ 2k
∑
c

(ric)
k ≤ 2k

(
C̄(n, v)ε

)i
,

(10.39)

which implies Hk(S̃c) = 0 .

Set S̃k := S̃c ∪
⋃
i≥1 S̃

k
i . Then Hk(S̃k) = 0 and S̃k ⊂ S(X).

Fix ε = ε(n, v) and γ = γ(n, v) such that C̄(n, v)ε ≤ 1/10. Then by taking

the limit as i→∞, we will arrive at the decomposition

B1(p) ⊂ S̃k ∪
⋃
a

(C0,a ∪Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
e

Bre(xe).(10.40)

To see (10.40), if y ∈ B1(p) \ S̃k, then by (10.38) we must have y /∈ B2ric
(S̃ic)

for some i which, in particular, implies by (10.33) that y belongs to the set on

the right-hand side of (10.40).

By letting i→∞, by (10.35) we have the following content estimates:∑
a

rka ≤ 2,(10.41) ∑
b

rkb +
∑
e

rke +
∑
a

Hk(C0,a) ≤ C(n, v).(10.42)

This completes the proof of Lemma 10.7. �

Now we can prove the inductive decomposition of Proposition 10.2.
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Proof of Proposition 10.2. For any η and δ ≤ δ(n, v, η), fix ξ = ξ(n, v, δ, η)

as in Lemma 10.7. Consider a Vitali covering {Bξ2(xf )} of B2(p) such that

Bξ2/5(xf ) are disjoint. Thus, by volume comparison, the number of such balls

is bounded by a constant L(n, v, ξ). By scaling the ball Bξ2(xf ) to a unit ball,

we arrive at a unit ball satisfying all the conditions of Lemma 10.7 with

V̄f := inf
y∈B4ξ2 (xf )

, Vξ(y) ≥ inf
y∈B4(p)

V1(y) := V̄ .

If we apply the decomposition of Lemma 10.7 to each ball Bξ2(xf ) in

order, we arrive at the covering

B1(p) ⊂ S̃k ∪
⋃
a

(C0,a ∪Na ∩Bra(xa)) ∪
⋃
b

Brb(xb) ∪
⋃
e

Bre(xe),(10.43)

with ra, rb, re ≤ ξ2 and∑
a

rka +
∑
b

rkb +
∑
e

rke ≤ C(n, v)L(n, v, ξ) ≤ C(n, v, δ),

Hk(S̃k) = 0.

To finish the proof, it suffices to recover each e-ball by v-balls. In fact,

for each e-ball Bre(xe) ⊂ B2ξ2(xf ), consider the Vitali covering {Bξre(x
j
e)} of

Bre(xe) with xje ∈ Bre(xe) such that Bξre/5(xje) are disjoint. We will show that

Bξre(x
j
e) are v-ball for v0 = ξ13.

Since Pre,ξ(xe) := {y ∈ B4re(xe) : Vξre(y) ≤ V̄f + ξ} = ∅, we have for

all y ∈ B4re(xe) that Vξre(y) ≥ V̄f + ξ ≥ V̄ + ξ. On the other hand, we have

B4ξre(x
j
e) ⊂ B2re(xe). Therefore, inf

y∈B4ξre (xje)
Vξre(y) ≥ V̄ +ξ. Setting v0 := ξ

we have that Bξre(x
j
e) is a v-ball as in Proposition 10.2. The content estimate

for v-balls follows easily from the content estimate of e-balls and the Vitali

covering. This completes the proof of Proposition 10.2, modulo the proofs of

Propositions 10.3 and 10.5. �

10.5. Proof of the d-ball covering Proposition 10.3.

Proof of Proposition 10.3. For any 0 < ε, γ ≤ 1/10, let us first consider

a Vitali covering {Bγ(x1
f ), x1

f ∈ B1(p)} of B1(p) such that Bγ/5(x1
f ) are dis-

joint. Let us separate {Bγ(x1
f )} into b-balls, c-balls, d-balls and e-ball’s from

Section 10.2:

B1(p) ⊆
N1
b⋃

b=1

Bγ(x1
b) ∪

N1
c⋃

c=1

Bγ(x1
c) ∪

N1
d⋃

d=1

Bγ(x1
d) ∪

N1
e⋃

e=1

Bγ(x1
e),(10.44)

13Recall that v-balls are defined with respect to the background parameter v0
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where B2γ(x1
b) is (k + 1, 2η)-symmetric, B2γ(x1

c) is not (k + 1, 2η)-symmetric

and satisfies Vol(Bγ2Pγ,ξ(x
1
c)) ≥ εγn−kγn, and Vol(Bγ2Pγ,ξ(x

1
d)) < εγn−kγn,

and Pγ,ξ(x
1
e) = ∅ with Pr,ξ(x) := {y ∈ B4r(x) : Vrξ(y) ≤ V̄ + ξ} and V̄ :=

infy∈B4(p) Vξ−1(y). By volume doubling we have

N1
b∑

b=1

γk +

N1
e∑

e=1

γk ≤ C(n, γ)γk ≤ C(n, γ).(10.45)

Let us prove a slightly more refined content estimate for the c-balls and

d-balls. Since B2γ(x1
c), B2γ(x1

d) ⊂ B2(p), we have Pγ,ξ(xc),Pγ,ξ(xd) ⊂ P1,ξ(p),

where we should notice that in our setting a d-ball is not an e-ball. The

following content estimates for c-balls and d-balls depend only on the fact that

Pγ,ξ(xc) and Pγ,ξ(xd) are nonempty. We will only discuss the content estimate

for d-balls, since the case of c-balls is no different from this one. Indeed, for each

ball Bγ(x1
d), there exists a point y1

d ∈ B2γ(x1
d) ∩ P1,ξ(p) which, in particular,

implies Bγ(y1
d) ⊂ BγP1,ξ(p). The ball Bγ(y1

d) may overlap with other balls

Bγ(y1
d′). Due to the Vitali covering property and volume doubling, the balls

overlap at most C(n) times. By a standard covering argument and noting

Vol(Bγ(P1,ξ(p))) < εγn−k, we can now conclude that

N1
c∑

c=1

γk +

N1
d∑

d=1

γk ≤ C(n, v)ε.(10.46)

For each d-ball Bγ(x1
d), let us repeat this decomposition. We get

N1
d⋃

d=1

Bγ(x1
d) ⊂

N2
b⋃

b=1

Bγ2(x2
b) ∪

N2
c⋃

c=1

Bγ2(x2
c) ∪

N2
d⋃

d=1

Bγ2(x2
d) ∪

N2
e⋃

e=1

Bγ2(x2
e).(10.47)

Furthermore, by the same arguments as above we have the content estimates

N2
b∑

b=1

γ2k +

N2
e∑

e=1

γ2k ≤ C(n, γ)

N1
d∑

d=1

γk ≤ C(n, γ)C(n, v)ε,(10.48)

N2
d∑

d=1

γ2k +

N2
c∑

c=1

γ2k ≤ C(n, v)ε

N1
d∑

d=1

γk ≤
(
C(n, v)ε

)2
.(10.49)

Therefore, we arrive at the decomposition

B1(p) ⊂
N2
d⋃

d=1

Bγ2(x2
d) ∪

2⋃
j=1

Nj
b⋃

b=1

Bγj (x
j
b) ∪

2⋃
j=1

Nj
c⋃

c=1

Bγj (x
j
c) ∪

2⋃
j=1

Nj
e⋃

e=1

Bγj (x
j
e),

(10.50)
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with content estimates

N2
d∑

d=1

γ2k ≤
(
C(n, v)ε

)2
,(10.51)

2∑
j=1

Nj
b∑

b=1

γjk +
2∑
j=1

Nj
e∑

e=1

γjk ≤ C(n, γ) + C(n, γ)C(n, v)ε

≤ C(n, γ)
(

1 + C(n, v)ε
)
,

(10.52)

2∑
j=1

Nj
c∑

c=1

γjk ≤ C(n, v)ε+
(
C(n, v)ε)

)2
.(10.53)

If we repeat this d-ball decomposition for each Bγ2(x2
d), then after i iterations

of the decomposition we get

B1(p) ⊂
N i
d⋃

d=1

Bγ2(x2
d) ∪

i⋃
j=1

Nj
b⋃

b=1

Bγj (x
j
b) ∪

i⋃
j=1

Nj
c⋃

c=1

Bγj (x
j
c) ∪

i⋃
j=1

Nj
e⋃

e=1

Bγj (x
j
e),

(10.54)

with content estimates

N i
d∑

d=1

γik ≤
(
C(n, v)ε

)i
,(10.55)

i∑
j=1

Nj
b∑

b=1

γjk +

i∑
j=1

Nj
e∑

e=1

γjk ≤ C(n, γ)

i−1∑
j=0

(
C(n, v)ε

)j
,(10.56)

i∑
j=1

Nj
c∑

c=1

γjk ≤
i∑

j=1

(
C(n, v)ε)

)j
.(10.57)

Let ε ≤ ε(n, v) and γ ≤ γ(n, v, ε) be such that γ and ε satisfies Theorem 4.9

and C(n, v)ε ≤ 1/10.

Consider the discrete set S̃ki := {xid}. By construction, we have S̃ki+1 ⊂
Bγi S̃

k
i . Additionally,

Vol(Bγi S̃
k
i ) ≤

N i
d∑

d=1

Vol(Bγi(x
i
d)) ≤ C(n)

N i
d∑

d=1

γin ≤ C(n)
(
C(n, v)ε

)i
γi(n−k).

(10.58)
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Denote the Hausdorff limit of S̃ki by S̃kd := limi→∞ S̃ki . Then by (10.58)

and S̃ki+1 ⊂ Bγi S̃ki , for any i ≥ 1, we have

Vol(Bγi S̃
k
d) ≤ C(n)10−iγi(n−k).(10.59)

This implies Hk(S̃kd) = 0.

We claim that S̃kd ⊂ S. To see this, assume there exists x ∈ S̃kd \S. This im-

plies that for any ε′>0, there exists rx,ε′>0 such that dGH(Brx,ε′ (x), Brx,ε′ (0
n))

≤ ε′rx,ε′ . On the other hand, since x ∈ S̃kd, we have that Prx,ε′ ,ξ(x) is nonempty.

Hence, applying the volume convergence in [Col97] and [Che01] to Brx,ε′ (x)

gives V̄ +ξ ≥ 1−ε′′ providing ε′ ≤ ε′(n, v, ε′′). Therefore, we arrive at V̄ ≥ 1−ξ,
which implies B2(p) ⊂ P1,ξ(p). In particular, Vol(Bγ(P1,ξ(p))) ≥ Vol(B2(p)) ≥
v > 0 which contradicts the d-ball assumption if ε ≤ v.

On the other hand, since C(n, v)ε ≤ 1/10, the content estimate (10.57)

holds. Therefore, we arrive at the desired decomposition. This completes the

proof of Proposition 10.3. �

10.6. Proof of the c-ball covering Proposition 10.5. In this subsection we

prove Proposition 10.5, which is concerned with the decomposition of a c-ball.

We will construct a neck region on B1(p) which is GH-close to a ball in some

cone Rk × C(Y ).

Proof of Proposition 10.5. Recall that in the definition of neck region we

have τ = τn = 10−10nωn. Fix ε > 0 and γ ≤ γ(n, v, ε) such that Theo-

rem 4.9 (cone-splitting based on k-content) holds. By Theorem 4.9 we have

that Bδ′−1(q) is (k, δ′2)-symmetric for some q ∈ B4(p). In particular, Bδ′−1(q)

is δ′2-close to a metric cone Rk × C(Y ).

Consider the δ′2-GH map ιq,1 : Bδ′−1(0k, yc) → Bδ′−1(q) and the approx-

imate singular set Lq,1 := ιq,1(Rk × {yc}) ∩ B4(p). Choose a Vitali covering

{Bγτ2(x1
f ), x1

f ∈ Lq,1} of Lq,1 such that Bγτ3(x1
f ) are disjoint.

We denote the different types of balls B2γ(x1
f ) as follows:

(1) b̃-balls if B2γ(x1
f ) is (k + 1, 3η/2)-symmetric;

(2) c̃-balls if B2γ(x1
f ) is not (k + 1, 3η/2)-symmetric and Vol(Bγ·γPγ,ξ(x

1
f )) ≥

εγn−kγn;

(3) d̃-balls if Vol(Bγ·γPγ,ξ(x
1
f )) < εγn−kγn.

We have

Lq,1 ⊂
⋃
b

Bτ2γ(x̃1
b) ∪

⋃
c

Bτ2γ(x̃1
c) ∪

⋃
d

Bτ2γ(x̃1
d).(10.60)

Therefore, we arrive at an approximate neck region Ñ1:

Ñ1 := B2(p) \
(⋃

b

Bτ2γ(x̃1
b) ∪

⋃
c

Bτ2γ(x̃1
c) ∪

⋃
d

Bτ2γ(x̃1
d)
)
.(10.61)
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The approximate neck Ñ1 is not yet the one we are looking for, since c-

ball content is not small. Therefore, we continue to refine the construction by

redecomposing the c̃-balls in the decomposition. Once again, by applying the

Content Cone-Splitting Theorem 4.9 to each c̃-ball, we have the approximate

singular set Lx̃1c ,γ := ιx̃1c ,γ(Rk×{yc})∩B4γ(x̃1
c) associated with a δ′2γ-GH map

ιx̃1c ,γ : Bγδ′−1(0k, yc)→ Bγδ′−1(x̃1
c).

Consider the Vitali covering {Bτ2γ2(x2
f )} of⋃

c

Lx̃1c ,γ \
(⋃

b

Bτ3γ(x̃1
b) ∪

⋃
d

Bτ3γ(x̃1
d)
)
,(10.62)

such that Bτ4γ2(x2
f ) are disjoint and

x2
f ∈

⋃
c

Lx̃1c ,γ \
(⋃

b

Bτ3γ(x̃1
b) ∪

⋃
d

Bτ3γ(x̃1
d)
)
.(10.63)

In particular, if γ ≤ 10−10, then the balls Bτ4γ2(x2
f ) are also mutually disjoint

with Bτ4γ(x̃1
b) and Bτ4γ(x̃1

d).

We denote the ball B2γ2(x2
f ) by B2γ2(x̃2

b), B2γ2(x̃2
c) and B2γ2(x̃2

d) according

to the same scheme as above. Thus, we have

Ñ2 := B2(p) \

Ñ⋃
c

B̄γi(x̃
i
c) ∪

⋃
1≤j≤2

(⋃
b

B̄γj (x̃
j
b) ∪

⋃
d

B̄γj (x̃
j
d)
)é

.(10.64)

After applying this decomposition i times in succession to each c̃-ball, we

get an approximate neck region given by

Ñi := B2(p) \

Ñ⋃
c

B̄γi(x̃
i
c) ∪

⋃
1≤j≤i

(⋃
b

B̄γj (x̃
j
b) ∪

⋃
d

B̄γj (x̃
j
d)
)é

.(10.65)

Set

C̃ic := {x̃ic}.

By construction we have C̃i+1
c ⊂ Bγi(C̃

i
c). Therefore, we can define the Haus-

dorff limit:

C̃0 := lim
i→∞

C̃ic.(10.66)

By letting i→∞, we get

Ñ := B2(p) \

(
C̃0 ∪

⋃
b

B̄r̃b(x̃b) ∪
⋃
d

B̄r̃d(x̃d)

)
.(10.67)

Set

C̃+ := {x̃d, x̃b}.
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By construction, the balls Bτ4r̃x̃(x̃) are disjoint for x̃ ∈ C̃+ and in addition,

x̃ /∈
⋃

ỹ∈C̃+,r̃ỹ>r̃x̃

Bτ3r̃ỹ(ỹ).(10.68)

Moreover, C̃ := C̃+ ∪ C̃0 is a closed set.

It is easy to check that Ñ satisfies all the conditions of a (k, δ′, η)-neck

region except (n5), i.e., Lip r̃x ≤ δ′. Therefore, our construction requires some

additional refinement.

In the following construction, in which we refine our covering in order to

get the desired (k, δ, η)-neck, we will use x̃b, x̃d ∈ C̃+ to denote the center of a

b̃-ball and d̃-ball of Ñ, and the associated radius r̃x̃b and r̃x̃d , respectively.

By the construction of Br̃x̃(x̃) with x̃ ∈ C̃, there exists some c̃-ball

Bγ−1r̃x̃(x̃c) which is (k, δ′2)-symmetric with respect to Lx̃c,γ−1r̃x̃ such that

Br̃x̃(x̃) ⊂ B2γ−1r̃x̃(x̃c) and x̃ ∈ Lx̃c,γ−1r̃x̃ . It is easy to see that for any

γ > r ≥ r̃x̃, the ball Bγ−1r(x̃c) is also (k, δ′2)-symmetric with respect to a set

Lx̃c,γ−1r. This follows from the volume pinching estimate

|Vξr̃x̃(x̃c)− Vξ−1(x̃c)| ≤ ξ

and the fact that Bγ−1r(x̃c) is (k, δ′3)-splitting since this ball is contained in a

(k, δ′3)-symmetric ball with comparable radius.

For convenience sake we will introduce the following notation.

(10.69)
For any x̃ ∈ C̃, let x̃c denote the center of the c̃-ball satisfying

the above properties.

To refine the approximate neck Ñ, let us build a good approximate singular

set S̃. We define S̃ to be a subset of ∪x̃∈C̃Bτ3r̃x̃(x̃) such that y ∈ S̃ if and only

if one of the following holds:

(1) y ∈ Lx̃c,γ−1r̃x̃ with d(y, C̃) = d(y, x̃) ≤ r̃x̃;

(2) y ∈ Lx̃c,γ−1r with r := d(y, C̃) = d(y, x̃) > r̃x̃.

Now we define a radius function on S̃ such that

rx := δ2τ4r̃x̃ if d(x, C̃) = d(x, x̃) ≤ τ4r̃x̃,

rx := δ2d(x, C̃) otherwise.
(10.70)

It is obvious that |Liprx| ≤ δ2 and C̃ ⊂ S̃. Choose a maximal disjoint collection

{Bτ2rx(x), x ∈ S̃} such that the center set C+ ⊂ S̃ contains C̃. This allows us

to build a neck region

N := B2(p) \
(
C̃0 ∪

⋃
x∈C+

B̄rx(x)
)
.(10.71)
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Notation. In order to make the various notations consistent, we put C0 :=

C̃0 and C := C+ ∪ C0.

Next, we will check that N is a (k, δ, η)-neck if δ′ ≤ δ′(δ, γ, η) sufficiently

small.

The Lipschitz condition (n5) and the Vitali condition (n1) in the neck

region are satisfied by the construction. If δ′ ≤ δ′(δ, γ, η), let us check the

volume ratio condition (n2). In fact, for any x ∈ C, let x̃ ∈ C̃ be such that

d(x, C̃) = d(x, x̃). Denote by x̃c the associated center point of c̃-ball such that

Br̃x̃(x̃) ⊂ Bγ−1r̃x̃(x̃c) . For δ′ ≤ δ′(n, v, δ) small and y ∈ Bδ′rxLx̃c,δ−3rx , we

always have |Vδrx(x) − Vδrx(y)| ≤ δ100 since Brx(x) and Brx(y) are δ′rx-close

to the same cone at scale rx. On the other hand, by the definition of a c̃-ball,

there exists

y ∈ Bδ′rxLx̃c,δ−3rx ∩ Pδ−3rx,ξ(x̃c).

This implies |Vξδ−3rx(y) − V̄ | ≤ ξ. Therefore, if ξ ≤ δ20, we conclude that

|Vδrx(x)− V̄ | ≤ δ15. By (2.2), the monotonicity of the volume ratio, we finally

get

|Vδrx(x)− Vδ−1(x)| ≤ δ10.

Thus, the volume ratio condition (n2) is satisfied.

Next, note that if δ′ ≤ δ′(δ, γ, η), it follows from the definition of S̃ that if

x ∈ C, then Br(x) is not (k + 1, η)-symmetric and Br(x) is (k, δ2)-symmetric

for all δ−1 ≥ r ≥ rx. To see this, first observe that Br(x) is (0, δ3)-symmetric

by the volume pinching estimate (n2) for δ′ ≤ δ′(n, v, η, δ). On the other

hand, Br(x) ⊂ Bγ−1r(x̃c) and these two balls are comparable. Moreover, the

latter ball is (k, δ′2)-symmetric with respect to Lx̃c,γ−1r but not (k + 1, 3η/2)-

symmetric. From this we conclude that Br(x) is not (k + 1, η)-symmetric and

Br(x) is (k, δ2)-symmetric. Hence we prove the condition (n3).

The covering condition (n4), which states that the approximate singular

set Lx,r with r ≥ rx is covered by Bτr(C), is satisfied by the construction

of Ñ and N. To see this, for each x ∈ C, denote the associated x̃ ∈ C̃ with

d(x, C̃) = d(x̃, x). Let x̃c denote the associated center point of c̃-ball such

that Br̃x̃(x̃) ⊂ Bγ−1r̃x̃(x̃c). Since Bγ−1r(x̃c) is a c̃-ball, and since Bγ−1r(x̃c)

is not (k + 1, 3η/2)-symmetric, by the Cone-Splitting Theorem 4.6, we have

Lx,r ⊂ Bτr/4(Lx̃c,γ−1r).

On the other hand, by the construction of the approximate neck Ñ, we

have that Lx̃c,γ−1r ⊂ Bτr/4(C̃). Noting from the construction of C that C̃ ⊂ C,

we arrive at

Lx,r ⊂ Bτr/4Lx̃c,γ−1r ⊂ Bτr/2(C̃) ⊂ Bτr/2(C),(10.72)

which proves the condition (n4). Therefore, we have shown that if ξ ≤
ξ(n, v, γ, δ, η), then N is a (k, δ, η)-neck.

We now focus on the content estimates of Proposition 10.5.
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Notation. Denote the various types of ball Brx(x) with x ∈ C by Brb(xb),

Brc(xc), Brd(xd) and Bre(xe), where B2rb(xb) is (k+1, 2η)-symmetric, B2rc(xc)

is not (k+ 1, 2η)-symmetric and Vol(BγrcPrc,ξ(xc)) ≥ εγn−krnc , B2rd(xd) satis-

fies Vol(BγrdPrd,ξ(xd)) < εγn−krnd , and B2re(xe) satisfies Pre,ξ(xe) = ∅.

The content estimates rely on the Neck Structure Theorem 2.9. As men-

tioned prior to the definitions of the various types of balls a, b, c, d, e, every

ball is at least one of these types. Therefore, the following is a restatement of

(2.7) of the Neck Structure Theorem (equivalently (9.1)):

Hk(C0 ∩B15/8(x)) +
∑

xb∈B15/8(x)

rkb

+
∑

xc∈B15/8(x)

rkc +
∑

xd∈B15/8(x)

rkd +
∑

xe∈B15/8(x)

rke ≤ C(n).
(10.73)

In order to finish the proof, it suffices to show that the content of c-balls is

small. This is reasonable since the approximate neck Ñ does not contain any

c̃-balls at all. Thus, we need to verify that our process of going from Ñ to N

did not create too many c-balls.

Denote the center of the c-balls Brc(xc) by a subset Cc ⊂ C∩B3/2(p). From

the construction of the approximate neck Ñ and the definition of S̃, it follows

that S̃ ⊂ ∪x̃∈C̃Bτ r̃x̃(x̃). When considering µ(Cc)
14we will restrict attention to

each Br̃x̃(x̃) with x̃ ∈ C̃. Let us first consider the content of Cc in Br̃d(x̃d).

Since Pr̃d,ξ(x̃d) has small volume, we have the following lemma.

Lemma 10.8. µ
(
Cc ∩

⋃
x̃d∈C̃

B3r̃d/2(x̃d)
)
≤ C(n, v)ε.

Proof. We will see that it suffices to prove that for each d̃-ball Br̃d(x̃d)

with x̃d ∈ C̃, we have

µ
(
Cc ∩B3r̃d/2(x̃d)

)
≤ C(n, v)ε µ

(
Bτ4r̃d(x̃d)

)
.(10.74)

In fact, since Bτ4r̃d(x̃d) are disjoint and µ is a doubling measure with τ = τn,

we have by (10.74) that

µ
(
Cc ∩

⋃
x̃d∈C̃

B3r̃d/2(x̃d)
)
≤
∑
x̃d∈C̃

µ
(
Cc ∩B3r̃d/2(x̃d)

)
≤ C(n, v)ε

∑
x̃d∈C̃

µ
(
Bτ4r̃d(x̃d)

)
≤ C(n, v)εµ(B15/8(p)) ≤ C(n, v)ε,

(10.75)

14As usual, let µ =
∑
x∈C r

k
xδx + Hk|C0 be the packing measure associated with the

(k, δ, η)-neck region N.
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where in the last inequality, we have used the Neck Structure Theorem 2.9.

Thus, we only need to prove (10.74).

By the definition of ry in (10.70), we have for any xc ∈ Cc ∩ B3r̃d/2(x̃d)

that rc ≤ 10δ2r̃d. Since Brc(xc) is a c-ball, there exists y ∈ B4rc(xc) such

that |Vξrc(y) − V̄ | ≤ ξ. In particular, this implies y ∈ Pr̃d,ξ(x̃d) ∩ B5r̃d/3(x̃d)

and Bγr̃d/10(y) ⊂ Bγr̃dPr̃d,ξ(x̃d). On the other hand, since rc ≤ 10δ2r̃d and

d(y, xc) ≤ 4rc, we have Bγr̃d/20(xc) ⊂ Bγr̃d/10(y) ⊂ Bγr̃dPr̃d,ξ(x̃d).
Consider a maximal disjoint collection {Bγr̃d/20(x′i), x

′
i ∈ Cc∩B3r̃d/2(x̃d)}

with cardinality N . We have

NC(n, v)γnr̃nd ≤
∑
x′i

Vol(Bγr̃d/20(x′i)) ≤ Vol
(
Bγr̃dPr̃d,ξ(x̃d)

)
< εγn−kr̃nd .

(10.76)

Therefore, we have N ≤ εC(n, v)γ−k, and so

µ
(
Cc ∩B3r̃d/2(x̃d)

)
≤
∑
x′i

µ
(
Cc ∩Bγr̃d/5(x′i)

)
≤ C(n)Nγkr̃kd

≤ εC(n, v)r̃kd ≤ εC(n, v)µ(Bτ4r̃d(x̃d)).

(10.77)

This finishes the proof of (10.74). Thus, the proof of Lemma 10.8 is complete.

�

Having controlled the content of Cc in d̃-balls in Lemma 10.8, we will now

consider the content of Cc in b̃-balls. However, unlike the case of d̃-balls, there

exists no a priori small volume set. Thus, we will need to argue in a different

way from in Lemma 10.8.

Remark 10.9. Prior to beginning the proof proper, we will give a brief

indication of the argument.

Let xc ∈ Br̃b(x̃b). In the definition of S̃ (see (10.70)) we require that S̃ is a

subset of ∪x̃∈C̃Bτ3r̃x̃(x̃). Therefore, we may assume xc ∈ Bτ3r̃b(x̃b). Since each

b̃-ball is (k+1, 3η/2)-symmetric and each c-ball is not (k+1, 2η)-symmetric, this

will force the c-ball Brc(xc) ⊂ B2r̃b(x̃b) to have small radius rc � r̃b. From the

definition of rx in (10.70) there must exist some x̃ ∈ C̃ with d(xc, x̃) = d(xc, C̃)

such that r̃x̃ � r̃b. By (10.68) we have that x̃ /∈ Bτ3r̃b(x̃b). Thus, one sees

from the definition of rx in (10.70) that xc ∈ Aτ3r̃b(1−δ),τ3r̃b(x̃b); see (10.78)

below for further details. Therefore, the content estimate of Cc ∩ Br̃b(x̃b) will

be controlled by the content estimate of Cc ∩ Aτ3r̃b(1−δ),τ3r̃b(x̃b) which, by a

simple covering argument, is small.

Now we begin the actual proof the content estimate of Cc ∩ Br̃b(x̃b). For

0 < δ̃ < ε3, we define a subset of Cc by those points with small radius compared
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with a b̃-ball by

Cδ̃ :=
⋃

x̃b∈C̃+

{y ∈ Cc ∩Br̃b(x̃b) : ry ≤ δ4δ̃τ4r̃b}.(10.78)

We will see below that Cδ̃ contains all the centers of c-balls inside b̃-balls.

Indeed, note that if ξ ≤ ξ(δ̃, δ, ε, n, v, γ) and ry ≥ δ4τ4δ̃r̃b with y ∈ C ∩
Br̃b(x̃b), then the ball B2ry(y) is (k + 1, 5η/3)-symmetric which, in particular,

implies that B2ry(y) is not a c-ball. Therefore, to estimate the content of c-ball

in b̃-balls, it will suffice to consider the set Cδ̃.

From the definition of Cδ̃, we can see that Cδ̃ ∩B(1−δ̃)τ3r̃b(x̃b) = ∅. In fact,

if y ∈ Cδ̃ ∩ B(1−δ̃)τ3r̃b(x̃b), then by the definition of ry there must exist x̃ ∈ C̃

such that d(y, x̃) = d(y, C̃) with r̃x̃ < r̃b. By (10.68), this implies x̃ /∈ Bτ3r̃b(x̃b).
This contradicts δ2d(y, x̃) = ry ≤ δ4τ4δ̃r̃b since d(y, x̃) ≥ δ̃τ3r̃b. Therefore, we

have shown that

Cδ̃ ∩B(1−δ̃)τ3r̃b(x̃b) = ∅.(10.79)

Let Br̃d(x̃d) denote the d̃-balls with x̃d ∈ C̃ in the approximate neck re-

gion Ñ.

By removing the points in d̃-balls, we have the following content estimate

of Cδ̃:

Lemma 10.10. Let δ̃ ≤ δ̃(γ, ε) ≤ ε3 and ξ ≤ ξ(δ̃, δ, n, v, γ, ε, η). Then

µ(Cδ̃ \
(⋃

d

Br̃d(x̃d)
)
≤ ε2.(10.80)

Proof. We will divide the proof into two steps. In the first step, we

consider content of Cδ̃ ∩ Bτ3r̃b(x̃b) which is actually equal to the content of

Cδ̃ ∩A(1−δ̃)τ3r̃b,τ3r̃b(x̃b) by (10.79). In the second step, we will consider content

of the remainder Cδ̃ ∩Aτ3r̃b,r̃b(x̃b) which is zero after taking out all the points

of Br̃d(x̃d).

The reason for this division of cases based on the radius τ3r̃b is that the

construction of the approximate neck Ñ satisfies (10.62) and (10.68).

Step 1. Denote Cδ̃,1 := Cδ̃∩
Ä⋃

x̃b∈C̃Bτ3r̃b(x̃b)
ä
. We will show that µ

(
Cδ̃,1 \(⋃

dBr̃d(x̃d)
))
≤ C(n, γ)δ̃. By the Ahlfors regularity of measure µ, it will

suffice to prove µ(Cδ̃ ∩ Bτ3r̃b(x̃b)) ≤ C(n, γ)δ̃µ(Bτ4r̃b(x̃b)) for each Br̃b(x̃b).

Since Cδ̃ ∩B(1−δ̃)τ3r̃b(x̃b) = ∅ in (10.79), we will only need to prove

µ
(
Cδ̃ ∩A(1−δ̃)τ3r̃b,(1+δ̃)τ3r̃b

(x̃b)
)
≤ C(n, γ) · δ̃ · µ(Bτ4r̃b(x̃b)).(10.81)

Let us prove (10.81). In fact, by the construction of Ñ, there exists a c̃-ball

B2γ−1r̃b(x̃c) as in (10.69) which is not (k+1, 3η/2)-symmetric such that Br̃b(x̃b)
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⊂ B2γ−1r̃b(x̃c). Assume the c̃-ball Bγ−1r̃b(x̃c) is (k, δ′)-symmetric with respect

to Lx̃c,γ−1r̃b . For ξ ≤ ξ(δ̃, δ, ε, v, n, γ, η), we must have

Cδ̃ ∩A(1−10δ̃)τ3r̃b,(1+10δ̃)τ3r̃b
(x̃b)

⊂
(
Bδ̃2γ−1τ3r̃b

Lx̃c,γ−1r̃b ∩A(1−10δ̃)τ3r̃b,(1+10δ̃)τ3r̃b
(x̃b)

)
.

(10.82)

Otherwise, there will be another splitting factor for Bγ−1r̃b(x̃c) which would

contradict the fact that Bγ−1r̃b(x̃c) is not (k + 1, 3η/2)-symmetric.

Now consider a collection of maximal disjoint balls

{Bδ̃τ3r̃b(xc), xc ∈ Cδ̃ ∩A(1−δ̃)τ3r̃b,(1+δ̃)τ3r̃b
(x̃b)}.(10.83)

Denote this set by {Bδ̃τ3r̃b(xi), i = 1, . . . ,K} with cardinality K. By the

covering property in (10.82), we have K ≤ C(n, γ)δ̃1−k. Therefore, we arrive at

µ
(
Cδ̃ ∩A(1−δ̃)τ3r̃b,(1+δ̃)τ3r̃b

(x̃b)
)
≤

K∑
i=1

µ
(
B3δ̃τ3r̃b

(xi)
)

≤ K ·A(n) · τ3k · δ̃k · r̃kb
≤ C(n, γ) · δ̃ · r̃kb
≤ C(n, γ) · δ̃ · µ(Bτ4r̃b(x̃b)),

(10.84)

where we have used the Ahlfors regularity of µ for (k, δ, η)-neck regions in

Theorem 2.9. Thus, we have proved (10.81). Since Bτ4r̃b(x̃b) are disjoint and

Cδ̃ ∩B(1−δ̃)τ3r̃b(x̃b) = ∅, and noting the definition of Cδ̃,1, we have

µ(Cδ̃,1 \
(⋃

d

Br̃d(x̃d)
)

) ≤
∑
x̃b∈C̃

µ(Bτ3r̃b(x̃b) ∩ Cδ̃ ≤
∑
x̃b∈C̃

µ(A(1−δ̃)τ3r̃b,r̃b(x̃b) ∩ Cδ̃)

≤ C(n, γ)δ̃
∑
x̃b∈C̃

µ(Bτ4r̃b(x̃b)))

≤ C(n, γ)δ̃µ(B2(p)) ≤ C(n, γ)δ̃.

(10.85)

Step 2. Denote Cδ̃,2 := Cδ̃ \ Cδ̃,1 to be the centers of c-balls outside

Bτ3r̃b(x̃b). We will show that Cδ̃,2 \
(⋃

dBr̃d(x̃d)
)

= ∅. One key ingredient

in what follows is the construction of the approximate neck region satisfying

(10.62) and (10.68). Roughly speaking, this implies there exits no approximat-

ing singular set outside Bτ3r̃x̃(x̃) with x̃ ∈ C̃.

For a given b̃-ball Br̃b(x̃b), consider

Cδ̃,b :=
(
Cδ̃,2 ∩Br̃b(x̃b)

)
\

Ñ ⋃
x∈C̃,r̃x<r̃b

Br̃x/2(x̃)

é
.



RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 533

Let us see that it will suffice to prove Cδ̃,b = ∅ for any x̃b ∈ C̃. Indeed, assume

Cδ̃,b = ∅ for any x̃b ∈ C̃. Then we will show that Cδ̃,2 \
(⋃

dBr̃d(x̃d)
)

= ∅.

Assume there exists y ∈ Cδ̃,2 \
(⋃

dBr̃d(x̃d)
)
6= ∅. Let Br̃b(x̃b) be the minimal

sized ball such that y ∈ Br̃b(x̃b). Note that r̃b > 0 since otherwise y ∈ C̃0, which

is not a point in Cc. Therefore, we have y ∈ Cδ̃,b. But this is a contradiction

as Cδ̃,b = ∅.
We will now prove that Cδ̃,b = ∅. For a given b̃-ball Br̃(x̃b), if there exists

y ∈ Cδ̃,b, then by the definitions of ry, Cδ̃,b and Cδ̃ there must exist ỹ ∈ C̃ such

that

δδ̃τ4r̃b > s := d(y, ỹ) = d(y, C̃) ≥ r̃ỹ/2.(10.86)

Here, the last inequality follows from the definition of Cδ̃,b, while the first

inequality follows from the definitions of ry and C̃δ̃.

Let Bγ−1r̃ỹ(ỹc) be the associated c̃-ball covering Br̃ỹ(ỹ) as in (10.69). Then

by the definition of S̃ we have y ∈ Lỹc,γ−1s. By the construction of the approx-

imating neck Ñ through (10.62) and s ≤ δγ2r̃b, we have

Lỹc,γ−1s ⊂
⋃
x̃∈C̃

Bτ3r̃x̃(x̃) ∪
⋃

x̃∈C̃,r̃x̃<r̃b

Bτs(x̃).(10.87)

Since y /∈ Bτ3r̃x̃(x̃) by the definition of Cδ̃,2, there exists x̃ ∈ C̃ such that

d(y, x̃) ≤ τs < s, which contradicts that d(y, C̃) = s. Thus, we have finished

Step 2.

Fix δ̃ ≤ δ̃(n, γ, ε). Since Cδ̃ = Cδ̃,1 ∪ Cδ̃,2 by combining Steps 1 and 2, we

complete the proof of Lemma 10.10. �

The bound on the content of c-balls follows easily from Lemmas 10.8 and

10.10. This completes the proof of Proposition 10.5 and hence, of Proposi-

tion 10.2 and Theorem 2.12 as well. �
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Riemannian Ricci curvature bounded from below, Duke Math. J. 163

no. 7 (2014), 1405–1490. MR 3205729. Zbl 1304.35310. https://doi.org/

10.1215/00127094-2681605.

http://www.ams.org/mathscinet-getitem?mr=3152751
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1312.53056
https://doi.org/10.1007/s00222-013-0456-1
http://www.ams.org/mathscinet-getitem?mr=3205729
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1304.35310
https://doi.org/10.1215/00127094-2681605
https://doi.org/10.1215/00127094-2681605


534 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

[AH18] L. Ambrosio and S. Honda, Local spectral convergence in RCD∗(K,N)

spaces, Nonlinear Anal. 177 no. part A (2018), 1–23. MR 3865185.

Zbl 1402.53034. https://doi.org/10.1016/j.na.2017.04.003.

[AHT18] L. Ambrosio, S. Honda, and D. Tewodrose, Short-time behavior of

the heat kernel and Weyl’s law on RCD∗(K,N) spaces, Ann. Global Anal.

Geom. 53 no. 1 (2018), 97–119. MR 3746517. Zbl 1390.58015. https://

doi.org/10.1007/s10455-017-9569-x.

[AC91] M. T. Anderson and J. Cheeger, Diffeomorphism finiteness for man-

ifolds with Ricci curvature and Ln/2-norm of curvature bounded, Geom.

Funct. Anal. 1 no. 3 (1991), 231–252. MR 1118730. Zbl 0764.53026.

https://doi.org/10.1007/BF01896203.

[BS14] K. Bacher and K.-T. Sturm, Ricci bounds for Euclidean and spher-

ical cones, in Singular Phenomena and Scaling in Mathematical Models,

Springer, Cham, 2014, pp. 3–23. MR 3205034. Zbl 1328.53050. https:

//doi.org/10.1007/978-3-319-00786-1 1.

[Ban90] S. Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2) 42

no. 2 (1990), 205–216. MR 1053949. Zbl 0719.53025. https://doi.org/10.

2748/tmj/1178227654.

[BL15] C. Breiner and T. Lamm, Quantitative stratification and higher

regularity for biharmonic maps, Manuscripta Math. 148 no. 3-4

(2015), 379–398. MR 3414482. Zbl 1327.53079. https://doi.org/10.1007/

s00229-015-0750-x.

[Bus82] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm.
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ing Hörmander’s condition, Duke Math. J. 53 no. 2 (1986),

503–523. MR 0850547. Zbl 0614.35066. https://doi.org/10.1215/

S0012-7094-86-05329-9.

[JN21] W. Jiang and A. Naber, L2 curvature bounds on manifolds with bounded

Ricci curvature, Ann. of Math. (2) 193 no. 1 (2021), 107–222. MR 4199730.

https://doi.org/10.4007/annals.2021.193.1.2.

http://www.ams.org/mathscinet-getitem?mr=3037899
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1271.53042
https://doi.org/10.1007/s00039-012-0202-7
https://doi.org/10.1007/s00039-012-0202-7
http://www.ams.org/mathscinet-getitem?mr=1912256
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1018.58013
https://doi.org/10.4310/CAG.2002.v10.n3.a3
https://doi.org/10.4310/CAG.2002.v10.n3.a3
http://www.ams.org/mathscinet-getitem?mr=2022380
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1046.53023
https://doi.org/10.1090/S0002-9939-03-07060-6
http://www.ams.org/mathscinet-getitem?mr=3261011
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1318.53037
https://doi.org/10.1007/s11511-014-0116-3
http://www.ams.org/mathscinet-getitem?mr=3894044
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1404.35489
https://doi.org/10.1090/tran/7401
http://www.ams.org/mathscinet-getitem?mr=3385639
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1329.53059
https://doi.org/10.1007/s00222-014-0563-7
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0176.00801
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0176.00801
http://www.ams.org/mathscinet-getitem?mr=3477230
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1398.53044
https://doi.org/10.1112/plms/pdv047
http://www.ams.org/mathscinet-getitem?mr=1417720
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0865.65009
http://www.ams.org/mathscinet-getitem?mr=1336257
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0837.46024
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0837.46024
http://www.ams.org/mathscinet-getitem?mr=1230276
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0799.53048
https://doi.org/10.4310/CAG.1993.v1.n1.a6
https://doi.org/10.4310/CAG.1993.v1.n1.a6
http://www.ams.org/mathscinet-getitem?mr=0850547
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0614.35066
https://doi.org/10.1215/S0012-7094-86-05329-9
https://doi.org/10.1215/S0012-7094-86-05329-9
http://www.ams.org/mathscinet-getitem?mr=4199730
https://doi.org/10.4007/annals.2021.193.1.2


RECTIFIABILITY OF SINGULAR SETS OF NONCOLLAPSED LIMIT SPACES 537

[Ket15] C. Ketterer, Cones over metric measure spaces and the maximal di-

ameter theorem, J. Math. Pures Appl. (9) 103 no. 5 (2015), 1228–1275.

MR 3333056. Zbl 1317.53064. https://doi.org/10.1016/j.matpur.2014.10.

011.

[Kot07] B. L. Kotschwar, Hamilton’s gradient estimate for the heat ker-

nel on complete manifolds, Proc. Amer. Math. Soc. 135 no. 9 (2007),

3013–3019. MR 2317980. Zbl 1127.58021. https://doi.org/10.1090/

S0002-9939-07-08837-5.

[LN20] N. Li and A. Naber, Quantitative estimates on the singular sets of

Alexandrov spaces, Peking Math. J. 3 no. 2 (2020), 203–234. MR 4171913.

Zbl 07290709. https://doi.org/10.1007/s42543-020-00026-2.

[LY86] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator,

Acta Math. 156 no. 3-4 (1986), 153–201. MR 0834612. Zbl 0611.58045.

https://doi.org/10.1007/BF02399203.

[MN19] A. Mondino and A. Naber, Structure theory of metric measure spaces

with lower Ricci curvature bounds, J. Eur. Math. Soc. (JEMS) 21 no. 6

(2019), 1809–1854. MR 3945743. Zbl 07060417. https://doi.org/10.4171/

JEMS/874.

[Nab14] A. Naber, The geometry of Ricci curvature, in Proceedings of the Interna-

tional Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa,

Seoul, 2014, pp. 911–937. MR 3728645. Zbl 1376.53003.

[NV17a] A. Naber and D. Valtorta, Rectifiable-Reifenberg and the regularity of

stationary and minimizing harmonic maps, Ann. of Math. (2) 185 no. 1

(2017), 131–227. MR 3583353. Zbl 1393.58009. https://doi.org/10.4007/

annals.2017.185.1.3.

[NV17b] A. Naber and D. Valtorta, Volume estimates on the critical sets of

solutions to elliptic PDEs, Comm. Pure Appl. Math. 70 no. 10 (2017), 1835–

1897. MR 3688031. Zbl 1376.35021. https://doi.org/10.1002/cpa.21708.

[NV19] A. Naber and D. Valtorta, Energy identity for stationary Yang Mills,

Invent. Math. 216 no. 3 (2019), 847–925. MR 3955711. Zbl 07066470.

https://doi.org/10.1007/s00222-019-00854-9.

[Ni04] L. Ni, The entropy formula for linear heat equation, J. Geom. Anal. 14

no. 1 (2004), 87–100. MR 2030576. Zbl 1044.58030. https://doi.org/10.

1007/BF02921867.

[Pet16] P. Petersen, Riemannian Geometry, third ed., Graduate Texts in Math.

171, Springer, Cham, 2016. MR 3469435. Zbl 1417.53001. https://doi.

org/10.1007/978-3-319-26654-1.

[SY94] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, Conference

Proceedings and Lecture Notes in Geometry and Topology, I, International

Press, Cambridge, MA, 1994, Lecture notes prepared by Wei Yue Ding,

Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu;

translated from the Chinese by Ding and S. Y. Cheng; with a preface trans-

lated from the Chinese by Kaising Tso. MR 1333601. Zbl 0830.53001.

http://www.ams.org/mathscinet-getitem?mr=3333056
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1317.53064
https://doi.org/10.1016/j.matpur.2014.10.011
https://doi.org/10.1016/j.matpur.2014.10.011
http://www.ams.org/mathscinet-getitem?mr=2317980
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1127.58021
https://doi.org/10.1090/S0002-9939-07-08837-5
https://doi.org/10.1090/S0002-9939-07-08837-5
http://www.ams.org/mathscinet-getitem?mr=4171913
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07290709
https://doi.org/10.1007/s42543-020-00026-2
http://www.ams.org/mathscinet-getitem?mr=0834612
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0611.58045
https://doi.org/10.1007/BF02399203
http://www.ams.org/mathscinet-getitem?mr=3945743
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07060417
https://doi.org/10.4171/JEMS/874
https://doi.org/10.4171/JEMS/874
http://www.ams.org/mathscinet-getitem?mr=3728645
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1376.53003
http://www.ams.org/mathscinet-getitem?mr=3583353
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1393.58009
https://doi.org/10.4007/annals.2017.185.1.3
https://doi.org/10.4007/annals.2017.185.1.3
http://www.ams.org/mathscinet-getitem?mr=3688031
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1376.35021
https://doi.org/10.1002/cpa.21708
http://www.ams.org/mathscinet-getitem?mr=3955711
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07066470
https://doi.org/10.1007/s00222-019-00854-9
http://www.ams.org/mathscinet-getitem?mr=2030576
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1044.58030
https://doi.org/10.1007/BF02921867
https://doi.org/10.1007/BF02921867
http://www.ams.org/mathscinet-getitem?mr=3469435
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1417.53001
https://doi.org/10.1007/978-3-319-26654-1
https://doi.org/10.1007/978-3-319-26654-1
http://www.ams.org/mathscinet-getitem?mr=1333601
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0830.53001


538 JEFF CHEEGER, WENSHUAI JIANG, and AARON NABER

[Sim83] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre for

Mathematical Analysis, Australian National Univ. 3, Australian National

Univ., Centre for Mathematical Analysis, Canberra, 1983. MR 0756417.

Zbl 0546.49019.

[SZ06] P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau’s Liou-

ville theorem for the heat equation on noncompact manifolds, Bull. Lon-

don Math. Soc. 38 no. 6 (2006), 1045–1053. MR 2285258. Zbl 1109.58025.

https://doi.org/10.1112/S0024609306018947.

[Tia13] G. Tian, Partial C0-estimate for Kähler-Einstein metrics, Commun. Math.

Stat. 1 no. 2 (2013), 105–113. MR 3197855. Zbl 1280.32014. https://doi.

org/10.1007/s40304-013-0011-9.

[Wan16] Y. Wang, Quantitative stratification of stationary Yang-Mills fields, 2016,

preprint. arXiv 1610.00351.

[ZZ19] H.-C. Zhang and X.-P. Zhu, Weyl’s law on RCD∗(K,N) metric measure

spaces, Comm. Anal. Geom. 27 no. 8 (2019), 1869–1914. MR 4060869.

Zbl 07157609. https://doi.org/10.4310/CAG.2019.v27.n8.a8.

(Received: June 6, 2018)

(Revised: September 21, 2020)

Courant Institute, New York, NY

E-mail : cheeger@cims.nyu.edu

School of Mathematical Sciences, Zhejiang University, Hangzhou, China

E-mail : wsjiang@zju.edu.cn

Northwestern University, Evanston, IL

E-mail : anaber@math.northwestern.edu

http://www.ams.org/mathscinet-getitem?mr=0756417
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0546.49019
http://www.ams.org/mathscinet-getitem?mr=2285258
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1109.58025
https://doi.org/10.1112/S0024609306018947
http://www.ams.org/mathscinet-getitem?mr=3197855
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1280.32014
https://doi.org/10.1007/s40304-013-0011-9
https://doi.org/10.1007/s40304-013-0011-9
http://www.arxiv.org/abs/1610.00351
http://www.ams.org/mathscinet-getitem?mr=4060869
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07157609
https://doi.org/10.4310/CAG.2019.v27.n8.a8
mailto:cheeger@cims.nyu.edu
mailto:wsjiang@zju.edu.cn
mailto:anaber@math.northwestern.edu

	1. Introduction and statement of results
	1.1. The classical stratification.
	1.2. The quantitative stratification
	1.3. Significance of the quantitative stratification
	1.4. Main results on the quantitative stratification
	1.5. Results for the classical stratification
	1.6. 2-sided bounds on Ricci curvature
	1.7. The remainder of the paper
	1.8. Acknowledgements

	2. Proofs of the stratification theorems modulo results on neck regions
	2.1. Background and motivation
	2.2. Neck regions
	2.3. Neck decompositions
	2.4. Proofs of the stratification theorems assuming the neck theorems

	3. Additional examples
	3.1. Example 1: Conical neck region
	3.2. Example 2: Sharpness of k-rectifiable structure
	3.3. Example 3: Sharpness of k-symmetries of tangent cones
	3.4. Example 4: Sharpness of Sk-finiteness

	4. Preliminaries
	4.1. Almost volume cones are almost metric cones
	4.2. Quantitative cone-splitting
	4.3. Harmonic -splitting functions
	4.4. A cutoff function with bounded Laplacian
	4.5. Heat kernel estimates and heat kernel convergence
	4.6. The local pointed entropy, Wt(x) and its relation to cone structure
	4.7. (k,,)-entropy pinching
	4.8. Poincaré inequalities
	4.9. W1,2-convergence
	4.10. The Laplacian on a metric cone
	4.11. -regularity for 2-sided Ricci bounds

	5. Outline of proof of Neck Structure Theorem
	5.1. Harmonic splittings on neck regions
	5.2. Sharp cone-splitting
	5.3. Sharp Transformation Theorem
	5.4. Nondegeneration theorem
	5.5.  Completing the outline proof of [t:harmonicsplittingneckregion]Theorem 5.3 

	6. Sharp cone-splitting
	6.1. Approximation of the squared radius with sharp Hessian estimates
	6.2. The k-splitting associated to k independent points

	7. The Geometric Transformation Theorem
	7.1. Statement of the Geometric Transformation Theorem
	7.2. Outline of the proof
	7.3. Harmonic functions and eigenvalue estimates on limit cones
	7.4. Part (1) of the Geometric Transformation Theorem
	7.5. A canonical Reifenberg theorem
	7.6. Hessian decay estimates on limit cones
	7.7. The Hessian decay estimate on manifolds
	7.8. Proof of the Geometric Transformation Theorem

	8. Nondegeneration of k-Splittings
	8.1. Hessian estimates with respect to the heat kernel density
	8.2. A telescope estimate for harmonic functions
	8.3. Proof of Theorem 8.1

	9. Proof of the Neck Structure Theorem 2.9
	9.1. The basic assumptions
	9.2. Bi-Lipschitz structure of the set of centers of a neck region
	9.3. Ahlfors regularity for the packing measure
	9.4. Proof of the Neck Structure Theorem for smooth manifolds
	9.5. Approximating limit neck regions by smooth neck regions
	9.6. Proof of the Neck Structure Theorem 2.9

	10. Proof of the Neck Decomposition Theorem 2.12
	10.1. Proof of Theorem 2.12 modulo Proposition 10.2
	10.2. Notation: constants and types of balls
	10.3. Statements of Propositions 10.3 and 10.5
	10.4. Proof of Proposition 10.2 modulo Propositions 10.3 and 10.5
	10.5. Proof of the d-ball covering Proposition 10.3
	10.6. Proof of the c-ball covering Proposition 10.5

	References

