QUANTITATIVE ESTIMATES ON THE SINGULAR SETS OF ALEXANDROV SPACES

NAN LI AND AARON NABER

ABSTRACT. Let X € Alex"(—1) be an n-dimensional Alexandrov space with curvature > —1. Let the r-scale
(k, €)-singular set S’E‘,,(X) be the collection of x € X so that B,(x) is not er-close to a ball in any splitting space
R¥! x Z. We show that there exists C(n, €) > 0 and B(n, €) > 0, independent of the volume, so that for any
disjoint collection {B,,(x;) : x; € S’; s (XN By, 1 < 1}, the packing estimate ¥, 7 < C holds. Consequently,
we obtain the Hausdorff measure estimates H*(85(X) N By) < C and H"(B.(8* (X)) N Bi(p)) < Cr"*. This

answers an open question in [8]. We also show that the k-singular set 8¥(X) = U0 ( ﬂOS’g r) is k-rectifiable and
€> > -

construct examples to show that such a structure is sharp. For instance, in the k = 1 case we can build for any
closed set T C $' and € > 0 a space ¥ € Alex*(0) with 8!(Y) = ¢(T), where ¢: $' — Y is a bi-Lipschitz
embedding. Taking T to be a Cantor set it gives rise to an example where the singular set is a 1-rectifiable,
1-Cantor set with positive 1-Hausdorff measure.
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1. INTRODUCTION

Let Alex "(k) be the collection of n-dimensional Alexandrov spaces with (sectional) curvature > «. The
aim of this paper is to study the quantitative stratifications of X € Alex"(x). Given X € Alex "(«), it is known
that the tangent cone T,(X) at every point p € X is a metric cone C(X), where X € Alex "~1(1) and it is
unique. The singular set $(X) is the collection of points whose tangent cones are not isometric to R”. It has
a natural stratification

$SX)=8"1X)28?*X)2---28'X)28°X),
where

Sk(X) ={p € X : T,(X) is not isometric to RM! x C(X) for any metric space X} . (1.1)

We may omit the X and write for example 8¢ = 8¥(X) if it doesn’t cause any ambiguity. Let us first state
a notion of strong quantitative singular sets. We will then compare it with those used for the Ricci cases.

Definition 1.1 (Quantitative splitting).

(1) Given a metric space Y and k € IN, we say that Y is k-splitting if Y is isometric to R¥ x Z for some
metric space Z.

(2) Given a metric space X we say that a metric ball B,.(x) C X is (k, €)-splitting if there exists a k-
splitting space Y and y € Y such that dgy(B,(x), B (y)) < er.

Definition 1.2 (Strong quantitative singular sets). Given k, €, r > 0 and metric space X.

(1) The r-scale (k, €)-singular set
S];’r(X) = {x € X : B.(x) is not (k + 1, e)-splitting} . (1.2)
(2) The (k, €)-singular set

816c = 0081;, ={x € X : B,(x)is not (k + 1, €)-splitting forevery 0 < r < 1 }. (1.3)
r>

It’s easy to see that 8% = LJOSIEC = UO( ﬂOSIE‘ r). A weaker notion of quantitative singular sets, which we
€> e>0 \r> ’

will denote by WSel_f - was introduced in [5] for manifolds with lower Ricci curvature bounds, see (5.10)
for a definition. A significance for (1.2) is that it requires B;(x) to be (k, €)-non-splitting only at the scale
s = r, but not for all r < s < 1 as required in (5.10). It is worth pointing out that notion (1.2) is strictly
stronger than (5.10) on manifolds with Ricci curvature bounds, while they are equivalent in some sense
on Alexandrov spaces (see Section 5.2). The singular sets defined as in (1.2) are not known to satisfy the

estimates established in [4], [5] or [6] for the Ricci cases.

It was proved in [3] that if X is a Gromov-Hausdorff limit of n-dimensional, v-noncollapsed Riemannian
manifolds with Ric > —(n— 1), then the Hausdorff dimension dims(WS8¥) < k. Under the same assumptions,
it was proved in [4] that for any O < r, € < 1, there exists a constant C(n, v, €) > 0 such that for any p € X, it
holds that

vol(B,(WS! (X)) N B12(p)) < C(n,v, )r" ¥, (1.4)
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It was also proved in [4] that WSE"(X) is k-rectifiable. For X € Alex"(k), it is proved in [2] that the Hausdorff
dimension dimg¢(8¥(X)) < k, and it was asked in [8] wether the (n — 2)-dimensional packing estimate holds
for 8"72(X). In this paper, we prove the k-packing estimates and the k-rectifiability of 8¥(X) for every
0 < k < n. Moreover, all of our estimate are independent on the volume of unit balls in X. Note that
it is crucial to have a positive lower volume bound in [4], [5] and [6], to obtain estimates such as (1.4)
for manifolds with lower Ricci curvature bounds. It is not known whether the volume dependence can be
removed for the Ricci cases.

Theorem 1.3 (Packing estimate). For any n € IN and € > 0 there exists C = C(n,€) > 0 and B = B(n,€) > 0
such that the following hold for any (X, p) € Alex"(—1). If x; € S’é ,Br,-(X) N Bi(p) and {B,,(x;)} are disjoint
withr; < 1 foralli €1, then

Z *<cC (1.5)

i€l
In particular, if x; € S’;,(X) N B1(p) and {B,(x;)} are disjoint with r < 1, then |I| < Ccrk.

Example 1.1. There exists Alexandrov spaces (in fact non-collapsed Gromov-Hausdorff limits of manifolds
with sec > 0) whose singular set is dense. Such a space was constructed in [10]. Begin with a regular
tetrahedron X; in R>. Suppose convex polyhedra X; with triangular faces A;, i = 1,2...,4 - 3*"! has been
constructed. Let x; be the centroid of face A;. Let y; € R3 so that d(y;, X)) = d(y;, x;) = d,f > 0. Let Y; be the
tetrahedron formed by y' and A;. Define Xi+1 = X U (U;Y;). The constants d,é = d,é(Xk) can be chosen small
enough so that X; is convex. We have that 0X; € Alex %(0) for all k. Thus Y = lllglo 0X; € Alex 2(0). It’s

easy to see that if all X are convex, then max{d;;} — 0ask — oo.
l
The set of singular points $O(y) 2 Ui,k{xli} is dense in Y. However, |82| < N(e), asserted by Theorem
1.3. For this example, we can get an explicit estimate using Gauss-Bonnet formula. For each p € Y, we
have that the tangent cone T,(Y) = C (S,é) with 0 < 8 < 1. Let 6, = 2nf3 be the cone angle. Then we have

80 = {p €Y:0,<2m- E}. Note that for any p € Y the Gaussian curvature K, > 0 and K, = 27 — 6,,)5,, if
pE 82, where 6, is the Dirac delta function at p. By Gauss-Bonnet formula, we have for ¢ = 27

4n=fy1(zi > (2ﬂ—9p)2§(;ei+1|82’,+|\82|.

i=0 pes? \32,_ i

i+l

In particular, we have the estimate ISSI < 4?”. O

The statement (1.5) doesn’t hold without a quantitative control of 8 = B(n, €), if inf{r;} = 0. See the
following example.

Example 1.2. Let X = C(S [1)) be a metric cone over a circle with radius p = 2—10. Let p be the cone point and
choose points x; € X, so that d(p, x;) = 37 i=0,1,2,.... Consider disjoint collection C = {B,,(x;) : ri =
% .37 }. By the cone structure, we have dgr(By, (X)), ZX [-r;, ri]) > %ri sin(mp) > llmr,- for any metric space
Z. Thus x; € Sg,,[(X) forany 0 < € < ﬁ. However, |G| = 0.

By a standard covering technique, Theorem 1.3 implies the following Hausdorff measure estimate.
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Corollary 1.4 (Hausdorff measure estimate). For any n € IN and € > 0 there exists C = C(n, €) > 0 such
that for any X € Alex"(—1) and p € X, we have the Hausdorff measure estimate

F* (S5 (X) N Bi(p)) < C(n, €. (1.6)

We also have the following conjectural form of the constant in the above theorem:

Conjecture 1.1. For any (X, p) € Alex"(—1), we have
H* (8K N Bi(p)) < Cm)e! =P,

Indeed, we may even have the following stronger summable form, see Example 1.1:

Conjecture 1.2. For any (X, p) € Alex"(-1) and let ; = 27, then we have

(o8]

e O HY((SE,, \ 8E) N Bi(p)) < C(m).

i+1 €irl
i=0
Now let {B,(x;)}Y | be a Vitali covering of B.(8% .(X) N Bi(p)) with x; € 8¢ (X). By Theorem 1.3, we
have that N < C(n, €) r*. Combining it with H"(B,(x)) < C(n) r" for every x € X and r < 1, we have the
following estimate, which only matters in the noncollapsing setting:

Corollary 1.5 (Volume estimate). For any n € IN and € > 0 there exists C = C(n,€) > 0 such that the
following estimate holds for any X € Alex"(—1) and p € X.

H"(BAS* (X)) N Bi(p)) < Cr'*. (1.7)

We also show that 8 is k-rectifiable.

Theorem 1.6 (k-rectifiability). For any X € Alex"(=1) and 0 < k < n we have that 8(X) is k-rectifiable.

In [9], similar results as Corollary 1.4 and Theorem 1.6 are also proved for geodesically complete spaces
with upper curvature bounds.

It was asked for both Ricci and Alexandrov cases wether ¥ carries with a k-manifold structure, away
from a zero H{*-measure subset. It was proved in [2] that for any X € Alex"(x), if p € X \ 8""!, then there
exists r > 0 so that B,(p) is bi-Lipschitz to B,(0) ¢ R". If p € 8"~ \ 8772, then there exists > 0 so that
B.(p) is bi-Lipschitz to a ball centered at the origin in the half space R"*~! x Rs(. For 82‘2, we construct
examples X € Alex "(k) to show that it may contain no manifold point.

Theorem 1.7. For any closed subset T C $' and € > 0, there exists a sequence of 3-dimensional manifolds
M; with secy, > 0 and M; — Y € Alex>(0), for which Si(Y) = ¢(T), where ¢: S' — Y is a bi-Lipschitz
embedding.

In particular, Sl(Y ) can be a Cantor set with H-C](SL(Y)) > 0, which contains no manifold points. Let
Y, = Y x R"3 e Alex"(0). We have that 8’61‘2(Yn) contains no (n — 2)-dimensional manifold point. This
shows that the rectifiable structure in Theorem 1.6 is sharp. Examples for which 8% contains no k-manifold
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point, where n > 4 and 1 < k < n — 3, can be similarly constructed, with a good amount of extra technical
work.

2. OUTLINE OF THE PROOF

We begin with the notion of bad scales Bad¢(p). Fix a point p € X and € > 0, then we define a Z,-
valued function T;(r, R) to describe the symmetry of metric balls By(p) over scales 0 < r < s < R. Define
T;(r, R) = 0 if there exists a cone space C(X), depending on p, r, R, € but not on s € [r, R], so that

don(Bs(p), Bi(p")) < es, @.1)

for every s € [r, R], where p* € C(X) is the cone point. Otherwise we define T;(r, R) = 1. In the case that
Tf,(r, R) = 0, we say that the metric ball Bs(p) is uniformly (0, €)-symmetric for r < s < R. It is clear that
if [ay,az] C [r,R] and T;(r, R) = 0, then T;(al,az) = 0. Contrapositively, if we have [r, R] C [b}, by] with
T;(r, R) = 1, then we also have T;(bl ,bry) =1.

Definition 2.1 (Bad scales). Let r, = 27, where @ € IN. The e-bad scales {rg ,} € {ro, @ € IN} of p,

denoted by Bad “(p), are defined recursively as follows. Let 7, = ro = 1 and

. TBw+ts  AE Tp(rge+1:784) = 1
B+ =
Tos if there exists & > B ) + 1 such that T;(ra, g4) = 0 but T;(rm,l, Tgg) = 1.

Note that if R > 2r and [r, R] contains no e-bad scale of p, then Bs(p) is uniformly (0, €)-symmetric
for r < s < R. This definition is strictly stronger than the corresponding definitions in the Ricci curvature
context.

The following is a key lemma to build up our covering techniques.

Lemma 2.2 (Finiteness of the number of bad scales). For any n € IN and € > 0, there exists N(n,e) > 0
such that for any (X, p) € Alex"(—1), the number of €-bad scales satisfies |Bad(p)| < N(n, €).

The proof of this lemma is based on various point-wise monotonic properties of Alexandrov spaces. In
particular, we prove Lemma 4.3, which we call “almost packing cone implies almost metric cone”. It is
an analogy of “almost volume cone implies almost metric cone”, which is the monotonic formula used for
manifolds with lower Ricci curvature bound. Note that both our monotonicity and the corresponding rigidity
are strictly stronger than in the Ricci curvature context.

In order to state and prove our rigidity results we will need a splitting theory for Alexandrov spaces.

Definition 2.3 (Strong splitting maps). Let ui,u,...,ur: Brp(p) — R be e-concave functions. The map
u=(u,...,ux): Br(p) = RFis called a (k, €)-splitting map if the following are satisfied.

(1) KVui, Vuj) —6;jl < e.
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(ii) For any x,y € Bg(p) and any minimizing geodesic y connecting x and y, it holds that
(Mo Ve + (15, Vywi) < €.
Here 75, and Ty denote the unit tangent directions of  at x and y respectively.

Remark 2.1. If X is a smooth Riemannian manifold, the condition (ii) in the above definition says that on
each geodesic, u has a lower integral hessian bound.

By the definition, we have that if u: Bg(p) — R¥ is a (k, €)-splitting map, then u|p, is also a (k, €)-splitting
map for any B, C Bgr(p). This restriction property of splitting maps is false in the context of manifolds with
lower Ricci curvature bounds. The existence and the properties of the strong splitting maps are discussed in
Section 5.1.

As in the standard dimension reduction, let us observe that for a metric cone C(Z), the tangent cone of
any point away from the cone tip splits off an extra R-factor comparing to C(Z). We prove an effective
version of this property in Lemma 5.7.

The monotonic property and the splitting theory lead to Theorem 6.2. It says that there exist 6(n, €) and
B(n,e) > 0 so that if u: Bsp(p) — R¥ is a (k, 0)-splitting function, and {B,,(x;)} is a disjoint collection with

x,-eSk

€. pr then for any z € R, we have

(i € T: By (i) 0 u' @) # of| < Nn o). 2.2)

In particular, this Theorem implies that if we look at the associated collection of balls {Bg;,/4(u(x;))} < R¥
then its intersection number is at most N(n,€). That is, given any ball B/gr/. ja(u(x;)) € {Bgya(u(x;))} it
intersects at most N — 1 other balls from the collection. This shows that Theorem 1.3 holds if B(p) is
(k, €)-splitting. We will then complete the proof by an induction on k.

In Section 7 we construct examples to prove Theorem 1.7. Let us explain the moral of the construction
below. The technical details will be added to make it rigorous in Section 7.

Let Z = B; c R? be a closed unit disk and Xy = Z x [0, 1] € Alex3(0) be a solid cylinder. For € > 0
small, we have 8°(X,) = @ and 8 é(Xo) = 0Z x {0, 1} is a union of two unit circles.

Now let T C 9Z be a closed subset, and thus Z \ T = U,U, is a collection of disjoint open intervals.
Let p be the center of Z and define C; = Uycy,¥px, Where v, denotes a line connecting x and y, be the
collection of sectors associated to the open sets U,. Let us observe for any x € JZ that the curvature at
(x,1) € X is +oo along the normal direction of 9Z x {1} and strictly positive along its tangential direction.
This will allow us to smoothly “sand off” each of U, x {1} inside its convex hull C; x [0, 1], so that both
the convexity of Xy and the tangent cones at points in X \ (UC X [0, 1]) are preserved. Let X; € Alex 3(O)
be the resulted space. In particular, the tangent cones at the points of 7' x {1} are preserved, and thus we
have that SL(X 1) = (T x{1}) U (0Z x {0}). Similarly, we can smooth near 9Z x {0} in order to construct X,
with Sé(Xz) = T x {1}. Now let ¥, be the doubling of X,, which is now a boundary free Alexandrov space
Y, € Alex 3(0) for which 8(Y5) = 8L(Y2) = T and 8%(Y») = @.
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3. MONOTONICITY AND PACKING NUMBERS

In this section we describe a monotone formula which plays an important role in the constructions of
subsequent sections.

Definition 3.1 (Packing). Let X be a metric space and S C X with diam(S) < co. For € > 0, we say that a
subset x = {x;} C S is an e-subpacking if

d(x;, x;) > ediam(S) for every i # j. 3.1
An e-subpacking X is said to be a packing if it is also e diam($ )-dense in S .

We write [x| = N as the number of elements in x if it is finite. If we want to signify the set in question we
may write X = X(S). We define the e-packing number P.(S) by

Pc(S) = sup{|x| : xis an e-subpacking for S'}. 3.2)

A packing x is called a maximal e-packing of S if [x| = P¢(S) < co.

In the case that S = B,(p) is a metric ball we may write x(p, r) = x(B,(p)) and the e-packing number
Pc(p,r) = P.B,(p)). Let us record some easy but useful properties which hold for general metric spaces.

Lemma 3.2. Let X be a metric space with € > 0 fixed. Then the following hold:

(i) (Enlargement) If X is an e-subpacking of B,(x), then either X is an e-packing or there exists X' € B.(x)
such that X’ = x U {x’} is also an e-subpacking.
(ii) (Maximal subpacking — packing) If X is an e-subpacking of B,(x) with |X| = P¢(x,r) < oo, then X
is an e-packing.
(iii) (e-monotonicity) If X is an e-subpacking and € < €, then X is an € -subpacking. In particular, for
each r > 0 we have that P (x,r) > P.(x,r).

We wish to now discuss some more refined properties of e-packings and packing numbers for Alexandrov
spaces. To do this let us introduce the induced subpacking. Indeed, this notation makes sense for any locally
compact length metric space, but it is not so useful in general.

Definition 3.3 (Induced subpacking). Let p € X, R > 0 and for each x € Br(p) \ {p} we fix a geodesic
Ypx = yllfx connecting p and x. Given 0 < r < R, we define the inducting function ¢X: Br(p) — B.(p),
X — X, where x € yllfx is the point with d(p, X) = % - d(p, x). Now let {x,-}f\i1 be an e-subpacking of Br(p)
and 0 < r < R, then we call the collection of points {gorR(xi)}fi , the induced subpacking in B,(p) of {xi}f\; |-

Note that the choice of geodesic y,, in the definition of @R is certainly not unique. However in the above
definition of @&, such a choice is fixed for a given R > 0 while independent of 0 < r < R. If no confusion
arises one may write yllfx = Ypx-

The proof of the following propositions are easy exercises based on the Toponogov comparisons.

Proposition 3.4. Let 0 < €, R < 1. The following hold for any (X, p) € Alex"(—€) with 1 > ¢ > 1 — R, If
(X, p) € Alex"(0), then ¢ = 1 can be chosen as a constant.
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(i) (Induced Packing) Let {x;} be an e-subpacking of Bg(p). For any 0 < r < R, the induced subpacking
in B,(p) is a ce-subpacking.
(ii) (Monotonicity) If r < R, then the packing number P.(x,r) > P(x, R).
(iii) (Bounds) If x = {x;} is an e-subpacking for B,(p) with 0 < r < 1, then 1 < x| £ C(n)e™". In
particular, we have 1 < P(p,r) < C(n)e™".
(iv) (Density) There exists a limit li_r}r(l) P(p,r) = P(p) < C(n)e ", which we call the e-density at x. In
fact, Pe(p) = P(p*, 1), where rp* is the cone point in the tangent cone at p.

4. BAD SCALES

This section is dedicated to proving Lemma 2.2. It says that there are at most a finite number of bad scales
at each point, and our space has a fixed cone structure which persists over all good scales. Let us begin with
an easy proposition.

Proposition 4.1. Forany0 <r <R/2 <R <1, if (r,R) N Bad®(x) = @, then T(r,R) = 0.

Proof. The proof is almost taulogical. Let rg,, = inf{rg € Bad(x) : rz > R} and rg,,, be the next e-bad
scale. Because (r,R) N Bad“(x) = @ we have that 7, < r < R/2 <R < rg,,. Therefore, g, /73,.,, > 2
and B k+1) — Bk = 2. By the definition T(rg, . 5,,) = 0. Note that [, R] C [rg,,,» 54,] and so we have
that 75(r,R) = 0. o

To prove Lemma 2.2, we need a result of the form “almost packing cone implies almost metric cone”.
We begin with the following proposition. It follows directly from the definitions of e-packing and Hausdorff
distance.

Proposition 4.2. Let X and Y be metric spaces whose diameters are both no more than 1. Let {xi}ﬁll be an
€e-packing of X and {y,-}Nz1 be an e-packing of Y. If N\ = N, = N and

i=

ld(xi, x;) —d(yi, yj)| < €
forevery1 <i,j<N, thendgy(X,Y) < 4e.

The first main result of this section is the following:

Lemma 4.3 (Almost packing cone implies almost metric cone). There is a universal constant ¢ > 0 such
that the following holds for any n € N and € € (0,¢). Let (X, p) € Alex"(—€) and 0 < r < %R < c. Let
x(p,R) = {x,-}?il be an e-packing of Br(p). We have

TS (nR) =0 4.1

if both of the following are satisfied.

(i) Pe(p,r) = N = P<(p,R).
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(i) ¥ d(eR(x:), oR(xj)) < R7'd(xi, x)) + € forevery 1 < i, j < N.

Here R : Br(p) — B,(p) is the inducing function defined as in Definition 3.3.

Proof of Lemma 4.3. Let us introduce the notation (1) By = (B, Ad) to denote the rescaled space. The proof
consists of two points. First, we will see that it is almost immediate from the assumed conditions that the
mapping ¢ : Br(p) — (R/s)Bs(p) is a GH map. Second, we will show that Bz(p) is GH-close to a ball in
a cone space C(), centered at the cone point. The combination of these two points prove the Lemma.

Let us discuss these points more carefully. For simplicity, we will only prove the result for X € Alex"(0).
The general case is similar with a modification on ¢, which are just used to estimate the law of cosine
formula in (4.17). Now by the assumptions and the monotonic property, the induced subpacking {¢®(x;) :
x; € x(p, R)} is a packing of B,(p) and

R'd(xi, x)) < s7 (@R (), oR(x)) < R7'd(xi, x)) + €, 4.2)
forevery s € [,R)and every 1l <i# j < N.
By Proposition 4.2, for all s € [r, R), we therefore have that
don(Br(p), (R/5)B(p)) < 4eR, 4.3)

where (psR: Br(p) — (R/5)B,(p) is a 8eR-isometry. To prove (4.1) it therefore suffices to construct a metric
cone C(2) and show that

_ _ 1
deu(Br(p), Br(p")) < EGO'IR’ (4.4)

where p* € C(Z) is the cone point. Let us prove this by first assuming the following lemma, which we will
prove later. Let t;: By — (1)Bj be the identity map.

Lemmad4.4. LetS, ={x€ Br(p) : d(p, x) = p} be the p-cross section in X.

(i) Foranyt € [€9,1), the restricted map {10 <P5Q|SR : Sg = (tHS g is €%*R-onto.
(ii) Forevery x,y € Sgpand t;,t; € [€93, 1), we have

R
~( x ~ [ %™
Cosz(py)—cosé(png(y) <€

04, 4.5)

(iii) For any x,y € S, geodesic triangle Apxy is €3 R-close to a geodesic triangle in R?, equipped with
the extrinsic metrics.

Using the above we now construct a metric cone C(Z) and define a GH-map f: Bg(p*) — Bg(p), where
p* € C(X) is the cone point. Define a distance function ds,, on the R-cross section Sg = {x € X : d(p, x) = R}
by

L
dsp(x,y)= inf {Z dx(Wae1,Wa): Wo = X, w, = ¥, dx(Wa1, Wa) < 60'1R}. (4.6)
X0, -y XLES R o

Note that this is an approximation of the induced length space distance function on a subset. It’s clear that
ds,(x,y) > dx(x,y), and thus if dg . (x,y) = 0 then x = y. To verify the triangle inequality, we let x,y,z € Sg.
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By the definition we have for any n > O that there exists w, € Sg with wg = x, wy, = y, wy, = 2,
dx(Wa—1,wa) < €'R, s0 that ds(x,y) = £0| dx(Wa-1,Wa) = nand ds,(y,2) = T2, dx(Wa-1,Wa) = 11
Then we have

N
s (6,3) + dsy(0,2) 2 ) dx(Wa1,Wa) = 27 = ds o (x,2) = 211, @.7)
i=1

Letting 7 — O we then obtain the triangle inequality.

Now let (Z,ds) = (Sg, %ds ») and C(Z) be the metric cone over X and p* is the cone point. Let Sk, ds,) =
(Z,Rds) be the R-cross section in C(X). Let IT: C(X) — Sz by a = (@,d(p*, a)) — a be the projection
mapping. Identify Sz with S and let us define

[+ Br(p") = Br(p)by a = ¢y, , o Tl(@). (4.8)

We first show that f is e**R-onto. Let x € Br(p). Note that for any y € S = S, we have (y, dx(p, x)) €
C®) and f((y,dx(p,x)) = ¢ f(p x)(y). Thus the €%*R-onto property of f follows from Lemma 4.4 (i).

Now we show that f is %EO'IR-distance preserving. Let a,b € C(X), x = f(a), y = f(b) and y,,
be a geodesic connecting x and y. By Lemma 4.4 (i), for any partition {u;} of v, ,, there exist w; € Sg
and s; > 0 such that dx(gofi rWi), ui) < €%*R. Note that for any two points x’,y’ € Sg we have that
ds(x',y") = dx(x',y) if dx(x',y") < €*'R. By Lemma 4.4 (iii), the points u; and w;, i = 1,...,N can
be chosen so that %eO'IR > dx(wi—1,wi) = ds,(Wi—1,w;) = }‘eo'lR. Thus for this partition we have that

N < 28 1001,

Now let ¢ be the inducting function on C(X) defined in the same way as ¢. By the cone metric, we have

dce) (@ﬁ,lR(Wi—l), ‘fo,.R(Wi)) = \/ si18idg (Wimt, wi) + (siz1 — 5;)2R2. 4.9)

By Lemma 4.4 (iii), we have

dx (@F  rwic1), @ pwi)) - \/s,-_ls,- dy (Wi, wi) + (si1 = $)*R? | < 10e™°R. (4.10)
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Therefore,

dx(x,y) = Z dx(ui-1, u;)

N
= Z (dX (gofi—lR(wi_l)’ QDQR(Wi)) - 260'4R)
=1

1

N
> —12N - €"3R + Z \/si_lsl- d}Z((W,'_l, w;) + (821 — S,')2R2
i=1

N
> —120€*?R + Z \/s,-_l S ng(Wi—l, w;) + (si—1 — $;)?R?

i=1

N
= —120€"*R + Z dcs) (@iflR(Wi—l), @iR(Wi))
i=1

> —122€"?R + dcsy(a, b). (4.11)

The last inequality follows from the triangle inequality since w and wy can be chosen so that d(a, gbfl 1)) <
€"*R and d(b, @fN rWN)) < €"4R. Starting from a partition of 7, and apply the same arguments. We get

dx(x,y) < dcesy(a, b) + 122€%2R. 4.12)

Combining (4.11), (4.12) and the definition of f, we get the desired result. O
Now let us finish the proof of Lemma 4.4:

Proof of Lemma 4.4. (i) By (4.3), forany A € [r/R,1) 2 [1/2,1) we have that
Ly-1 0 <pr|Sp S, — (ﬂ_l)SAp is a 24eR-isometry for any p € (0, R]. 4.13)
This in particular proves (i) for ¢ € [r/R, 1). For the case t < r/R, we need to inductively apply tplf/z.

For any ¢ € [€93,1), there is an integer K = K(t) < e %1 such that 2=&+D < ¢ < 27X Since in X
geodesics do not bifurcate and in the definition of induced packing, the choices of geodesics are a priori
fixed in terms of p and R, we can write

Ok = Prkyp © PR OO PRy (4.14)
R S—
K
Note that 2X¢ € [1/2,1) C [r/R, 1). Thus (4.13) applies to p = R and 1 = 2X¢. Combining (4.13) and (4.14),

we get that¢,-1 o 905% is 24(K + 1)eR-onto. Then the result follows since K < e 0!,

(ii) We first show that (4.5) is true for ; = 1, = t. Fix r € [€%7,1). Let xg = x, x; = gog/z(x,'_l) for
1 <i<Kandxgy = ‘prtR(xK) = ¢R(x), where K = K(t) < € *! is defined as in (i). The sequence {y;} is

defined similarly in terms of y. By (4.13) and because 257 € [1/2, 1), for 1 <i < K we have

1
Ed(xi,yi) —d(xi-1,yi-1)| < 24€R (4.15)
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and

|25t d(xcor, yiea) - dlxk, yio)| < 24eR. (4.16)

Note that d(p, xi-1) = d(p,yi-1) = 3d(p,x;) = 3d(p,y;) and d(p,xg) = d(p,yx) = 2Kt - d(p,xgs1) =
2K¢. d(p,yk+1)- By law of cosine, we have
1

Xi-1

’cos Z (p;cl’) —cos Z (pyH)’ =

(d(xi, yi))2 B (d(xi—l, yi—l))z‘

2\ d(p,x) d(p, xi-1)
50eR 50eR

< <
dip,x;)) — R

< 507, 4.17)

Summing up (4.17) fori =1,2,...,K + 1, we get
~( x ~ (R 05 _ 04
CosA(py)—cosA(pwéz(y))‘ < 50(K + 1)e® < €94, (4.18)

Suppose #; < t,. By Topnogov comparison, we have

- [ R o R
X\ < 1 < 1 . )
2(py) < A(png(y)) < A(p¢ﬁR(y)) (4.19)
Then (4.5) follows from (4.18) and (4.19).
The statement (iii) is a direct consequence of (ii). O

Lemma 4.3 implies that when passing an e-bad scale, either the packing number, or the rescaled distance
distortion is increased by at least a definite amount, depending on €.

Corollary 4.5. For any € > 0, there is § = 5(€) > 0 such that the following holds. Let (X, p) € Alex"(—6) be
an Alexandrov space with rg,,, 1p,.,, €-bad scales of p. Let {x;} be a maximal 6-packing of Brﬂ@ (p) and {y;}

be the induced subpacking in B (p). Then one of the following holds:

"B (k+1)*1

(l) Pﬁ(p9 rﬁ(k+1)+l) Z P5(p9 rﬁ(k)) + 1;
(ii) there existi # j such that r,bj(1k+1>+1d(yl")’j) > rg(lk)d(x,-, Xj) +0.

Proof. By the definition of bad scales, we have that T;(rg., +1,7g,4) = 1. Then the result follows from
Lemma 4.3 with § = €'°. O

Now we give a proof of Lemma 2.2 using the above monotone property.

Proof of Lemma 2.2. We will only prove for X € Alex”(0) to keep notation simple, the general case is
similar. Letr, = 27%, a € N and K > J > 0 be integers. Let Ny = Ps(p, ry) be the maximum ¢J-packing
number of B,,(p). LetI = {Bu) € N : rg,, € Bad(p) N [rk, r;1}. We claim that if |I] > 10N3 6™, then
Ps(p,rx) = Ps(p,ry) + 1. If this is not true, then Ps(p, rx) = Ps(p,re) = Ps(p, ry) for every a € [J, K] N Z.
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Let {xi}f\ifl be a maximal 6-packing of B,,(p) and {x} be the induced subpacking in B, (p). By Corollary
4.5, for every B ) € I, there exist i and j, depending on S ), such that

- B+l Burn+1 -1 Bwy B
"B +140; X ) > g, dx ", xT) + 6. (4.20)

Given a pair of indices (i, j), let I; ;) be the collection of B € I such that (4.20) holds. Because
|| > 10N§ 571, there exist 1 < i0, jo < Ny, such that |, ;)| > 10 5!, Furthermore, there is a subset
Tiojoy € Liio.jo) with [T joyl > 5671, so that the intervals {(B ), Bu+1) + 1) : Bw € Ty} are disjoint.
Note that by the monotonic property, we have

Fad(, x0) 2 rghd(x, X1, 4.21)
for every @y > a>. Summing up (4.20) for B € J,j,) and taking in account (4.21), we get

2> g dif ) > tdod Y 6, (4.22)

Bw&Jig.jo)
a contradiction.
Note now that for every r > 0 we have that Ps(p, r) < C(n, ). Thus it follows from the above claim that
|Bad€(p)| < (C(n,8) + 1)(10C(n, 8)*6~ ' + 1). (4.23)

O

For any A € (0, 1/4), it follows from Lemma 2.2 that for any x € X, there is at least one of the intervals
[P0 2P0, A%, [, %, 1A 1]
containing no e-bad scale. Thus we have

Lemma 4.6. Foranyn € IN, 1/4 > A > 0 and 6 > 0, there exists n = n(n,8,1) > 0 such that for any
x € X € Alex"(—1) and any 0 < R < 1, there exists ry > 1R, such that Bad®(x) N [Ary, ry] = @ and thus
TS (Ary, ry) = 0.

5. SPLITTING THEORY AND DIMENSION REDUCTION

5.1. Splitting theory. In this subsection, we discuss the splitting theory in Alexandrov geometry. Proposi-
tion 5.1 is a key geometric property for spaces with lower sectional curvature bounds that distinguishes them
from spaces with lesser geometric constraints, such as lower Ricci curvature bounds. In words, it says that
if some ball almost-splits off a Euclidean factor, then all sub-balls continue to almost-split off this factor.

Proposition 5.1. For any n,e > 0, there exist 6 = d(n,€) > 0 so that the following holds for any X €
Alex"(—6) and R € (0, 1].
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(i) Letu = (uy,...,ux): Bsg(p) — R* be a (k, 0)-splitting map. For any B, C Bgr(p) and any ¢ € u(B,),
there exists a map ¢: B, — u~' (&) so that

(u,$): B, > RF xu™'(&)

is er-isometry.

(ii) If f: Bsg(p) — Bsg(z), where 7 € Rfx Z, isa OR-isometry, then there exists a (k, €)-splitting map
u: Br(p) — RK.

(iii) If there is a (k, 0)-strainer {(a;, b;)} with d(p, a;), d(p,b;) = SR for every 1 < i < k, then there exists
a (k, €)-splitting map u: Br(p) — R-.

The above splitting theory in Alexandrov geometry is well understood. For completeness we outline the
proof.

Proof. We argue (i) by contradiction. This argument can be made effective with some extra work. Note
that if X; € Alex"(x) with X; —» X and §; — 6, then the limit of (k, &;)-splitting functions on X; is a
(k, 0)-splitting function on X. Thus passing to a limit of contradictive rescalled sub-balls, it suffices to show
that if (X, p) € Alex"(0) and there is a O-splitting function u = (uy,...,ur): Bs(p) — R, then for any
& € u(B1(p)), there exists a map ¢: Bi(p) — u‘l(f) so that

(u,¢): Bi(p) » RExu™'(&)

is an isometric embedding. For such a 0-splitting function u, the following hold for every i and j:

(1) u; is O-concave.
(2) (Vu;, Vuj) = 6;;.
(3) For any x,y € Br(p) and any minimizing geodesic y connecting x and y, it holds that

<T,yv’ Vx Mi> + <Tx, Vy I/li> = O

We now prove the result by induction on k. Start with the base case k = 1. Let o(¢) be a u-gradient flow
with 0,(0) = x. If no confusion arises one may write x;, = o,(f). Because u is O-concave and |Vu| = 1, we
have u(x;) — u(x) = t and d(u(x,), u(x;s)) = |t — s|. In particular, o .(¢) is a geodesic from x. It’s clear that the
directed tangent vectors o (t) = V, uand o~ (¢) = -V, u.

Let T, be the time so that o(Ty) € u~'(¢) and define ¢(x) = o(T,) € u~'(&). We will show that

(u,¢) |,: B1 » Rxu'(&)

is an isometric embedding. This follows from the following statements for arbitrary & € u(B;(p)) and
t,s €[0,1].

(A) [Tyl = d(x,u™'(£)).
(B) For any two u-gradient curves a and 8, we have d(a(?), 5(¢)) = d(a(s), B(s)).
(C) The Pythagorean Theorem d*(x;,y) = d*(x,y) + 2.
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We first prove (A). It’s clear that |T,| > d(x,u"'(¢)). Recall that if X € Alex"(0) and f: X —» Risa
A-concave function, then

A
dp.q) 15V, ) 2 @) = [(p) = 5 - d*(p.q). 5.1)
Thus if u: X — R is a O-concave function, then
d(p,q) = d(p,q) - (15, Y, u) > u(g) - u(p). (5.2)

Let y € u~!(¢) so that d(x, y) = d(x, u~'(£)), then we have
d(x,y) 2 |u(x) — u(y)| = lu(o(0)) = &l = u(ox(0)) — u(o(Tx)| = |T4.

ot +n)— €t
To prove (B), we let x; = a(?), y, = B(¢) and £(t) = d(x;, y;). Assume t > 5. Let £*(f) = lir(r)l w

n—0*
(it —n) - 1)
n

and (1) = lir(r)l+ be the one-sided derivatives. By the first variation formula and because u is
T]—)

0-concave, we have

u(y) — ulx) _ u(x) —uly) _

) <~ Vo uy = (13, Vy, 1) < — 0 G 0. (5.3)
Thus we get £(t) < {(s). Since (T4, a* () + (13,87 (1)) = (T, Vs u) + (131, V,, u) < 0, we have
(1) <=1, a” @) = 1y, 87 @) = (1, " () + (13, B7(1)) < 0. (5.4)
Thus £(7) > £(s).
Now we prove (C). By Toponogov comparison and (5.2), we get that
d*(x,y) < d*(x,y) + 17 = 2t - d(x,y) - (1% Vieu)
< d*(x,y) + 12 = 2t - (u(y) — u(x)). (5.5)
Start with x,y € u~'(£). Fix y and flow x by time 7. By (5.5), we get
d*(x;,y) < d*(x,y) + 2. (5.6)

Fix x; and flow y by time ¢. That is, in (5.5), substitute y by x;, x by y and x; by y,. We get
d* (e xp) < d* (v, x2) + 17 = 2t - (u(x,) — u(y))
< d*(xy) + 2 =2t (u(x;) — u(x))
= d*(x;,y) - 1°. (5.7)
Combine (5.6) and (5.7). We have
d>(x, y1) < d*(x,,y) — 12 < d(x, ).
By (B), we have d(x;,y;) = d(x,y). Thus the Pythagorean Theorem d*(x;,y) = d?(x, y) + 72 follows.

Suppose that the statement has been proved for k. Apply the previous argument on the O-splitting function
ur+1: Bs(p) — R, we have that B(p) is isometric to a ball in Z X IR € Alex "(0), and it splits off R! along
the direction Vug,;. Note that Z x R € Alex"(0) if and only if Z € Alex "_1(0). Thus restricted on
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Z x {0} € Alex""1(0), the map (uyg,...,ux) is (k,0)-splitting. Then the result follows from the inductive
hypothesis on k.

Assertion (ii) is a consequence of (iii). The proof of (iii) is standard, for instance if u;(x) = d(a;, x),
then by the arguments used in Sections 5.6 — 5.7 in [2] we have that u = (uy, ..., uy) is a (k, 1006)-splitting
function on Bsg(p), if 6 = 6(n) is chosen sufficiently small. O

The following statement is an easy consequence of Proposition 5.1.

Corollary 5.2. For any n,k € IN and € > 0, there exists § = 6(n, €) > 0 so that if X € Alex"(—8) and Bs(p)
is (k,0)-splitting, then B,.(x) is (k, €)-splitting for every x € Bi(p) and every r € (0, 1].

5.2. Strong and weak singularity. In this Subsection we discuss the relations between the strong and weak
quantitative singular sets. In fact, they are equivalent in some sense for Alexandrov spaces.

Define weak singular sets
gek AX) ={x e X : By(x)is not (k + 1, e)-splitting for every s € (r, 1]}. (5.8)
It’s clear that gf AX) C Sﬁ,,(X).
By Corollary 5.2, we have

Proposition 5.3. For any n,e > 0, there exists 6(n, €) > 0 such that for any X € Alex"(=6) and 0 < r < 1,
we have

8&,(X) € 88 (X)) € 85,(0. (5.9)
The quantitative singular sets defined for the Ricci cases in [5] is as follows. Note that we do not use it in
this paper and it may be skipped. We are presenting this for comparison sake to the Ricci curvature context.

Definition 5.4 (Quantitative symmetric).

(1) Given a metric space Y and k € IN, we say that Y is k-symmetric if ¥ = R* x C(Z) for some metric
space X.
(2) Given x € X we say that B,(x) is (k, €)-symmetric if there exists a k-symmetric space Y such that
dcu(B,(x), B,(y)) < er, where y € Y is a cone point.
Define
WS!",(X) = {x € X : Bs(x) is not (k + 1, €)-symmetric, for every s € (r, 1]}. (5.10)
It’s clear that 85 ,(X) € WSE ,(X).
The following is an easy lemma, by a standard contradiction argument.

Lemma 5.5. For each n € IN and € > O there exists 6(n, €) > 0 such that the following holds for any metric
space (X, p). If B.(p) is both (0, 8)-symmetric and (k, 5)-splitting, then B,(p) is (k, €)-symmetric.
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Proposition 5.6. For any € > 0, there exist n(n, €) and 5(n, €) > 0 such that for any X € Alex"(-6) and
0<r<1, wehave

WSk, .(X) € 85.(X) C WSS, (X). (5.11)
Proof. If x ¢ Fggyr(X), then B(x) is (k + 1, 6)-splitting for some s > r. By Corollary 5.2, we have that B,(x)
is (k + 1,01)-splitting for all ¢ € (0, ér]. On the other hand, by Lemma 4.6, there exists n(n, ;) > 0 and
ry € [nr, %r] such that B, (x) is (0, 61)-symmetric. Due to Lemma 5.5, with appropriately selected ¢ and J;,
we have that B, (x) is (k + 1, €)-symmetric. Therefore, x ¢ WSEI‘, o (X). O

Remark 5.1. Our notion of quantitative splitting for Alexandrov spaces is also equivalent to those defined
using strainers. In particular, there exists 0 < §1(n, €) < d2(n, €) so that

8£r/5(X) C {x € X : x does not admit any (k + 1, §»)-strainer with size > r} C 8§|,r(X) (5.12)
for any X € Alex"(—d1)and 0 < r < 1.

Remark 5.2. By a similar argument, one can show that if X is a v-non-collapsed limit of n-dimensional
manifolds with Ric > —1, then there exist 1;(n, €,v) > 0, i = 1,2, such that

Wsk, (X) c8k (0 c 8k (X

€,nr

However, the statement in the form 8¥  (X) € W8X (X) doesn’t hold for the Ricci case.
n.r

€mr

5.3. Dimension reduction. Note that in a metric cone C(X), the tangent cone at any point p € C(X) away
from the cone point splits off an extra IR-factor in comparison to C(X). This is the basis of Federer dimension
reduction. The following lemma is a quantitative version of this on Alexandrov spaces.

Lemma 5.7. For any n,k € IN and € > 0, there exists 6 = 6(n, €) and 8 = B(n, €) > 0 such that the following
holds for any (X, p) € Alex"(—6) and (k, 6)-splitting function u = (uy, ..., ur): Bso(p) — RX. Let x € Bi(p)
andy € X withd(x,y) =r > 0.

(i) IfT)f(r, 2r) = 0 and d(x,y) — d(u(x), u(y)) > er, then Bs(y) is (k + 1, €)-splitting for every 0 < s < Sr.
(ii) Ifo(r, 2r) = 0 and By(y) is not (k + 1, €)-splitting for some 0 < s < Br, then
|d(u(x), u(y) = d(x,y)| < ed(x, ). (5.13)

Proof. We only need to prove (i) since it is equivalent to (ii), taking in account that |[Vu| < 1 + 6. Let
0 =0(n,e),0; =0i(n,e) be constants with0 < 6 < d1 < <--- < €.

Let us take z = u(y). Choosing d6(n, €) > 0 small we have by Proposition 5.1 that there exists ¢: Bjg,(x) —
u~'(2) such that (u, ¢): Bios(x) = RFxu~!(z)is a orr-isometry. Let x; = ¢(x) € u(z) and p = d(x1,y).
See Figure 1.

We first find a splitting function along the slice u~!(z), using that y is away from the cone point x;.
Because T)f(r, 2r) = 0, there exists y’ € X so that

ld(y,y") — r| < 61, ld(x,y") = 2r| < 67 (5.14)
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FIGURE 1.

Let x» = ¢(y') € u~'(z). Combine (5.14), d(x,y) = r and the or-splitting structure on Bjg,(x). We have
ld(x2,y) — pl < 41, ld(x1, x2) — 2p| < 46,7 (5.15)

To see the maximal scales that Bg(y) splits, we need a lower bound of p. Because (u, ¢) is a §;r-isometry
and by the assumptions, we have

p =d(x1,y) 2 d(x,y) —d(x, x1)

> d(x,y) - d((u, $)(x), (u, §)(x1)) = 617

= d(x,y) — d(((x), $(x)), (), $(x))) = 617

= d(x,y) - d(u(x), u(y)) - 617

> (e —opr. (5.16)
Choosing 01 small and by (5.15), we have that {x|, x} forms a (1, 6,)-strainer. Thus u,1(q) = d(g, x1) is a
(1, 83)-splitting map on B%ﬂ(y).

By the ¢;-almost splitting structure of Bjo(p) and the Toponogov comparison using (5.15), we have
KV qitr, Yot} < 6. (5.17)

for any g € Béer(y) and every i = 1,2,...k. Thus the function (u, uk+1)|3%g(y) is a (k + 1, 03)-splitting map.

By Proposition 5.1 (i), By(y) is e-splitting for every 0 < s < %EF. O

Using Lemma 5.7, we can prove the rectifiability.

Proof of Theorem 1.6. Note that (S’; \ 8’(;‘1) N By can be covered by countably many balls {Bs,,(x;)} with
X & S’;’SOH. That is, Bso.,(x;) is (k, 6)-splitting. By Proposition 5.1, for each of Bs,,(x;), there exists a 01-
splitting map u;: Bsosr, (X;) — R¥. Note that dimg{(Slg‘l) < k — 1. Thus it suffices to prove the following
statement. There exists § = 8(n, €) > 0, such that if there is a (k, §)-splitting map u: Bso(p) — RF, then

S’g N Bi(p) is k-rectifiable.

Let 6(n, €) > 0 be determined later. Recall that by Lemma 2.2, for every point x € X, the number of J-bad
scales is at most N(n, ). For each x € B{(p), let s, € (0, 1] be the minimum of 1 and the smallest §-bad
scale at x. PutT'Z = B;jp(x) N S’; N{y € Bi(p) : sy > 2t}. We claim that for any 7 > 0, the map ur: : r: - R¥
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is bi-Lipschitz onto its image. Once the claim is proved, we have that SN {y € B(p) : Sy > 2t} = Uyep, (I}
is k-rectifiable. Therefore,

SEnBi(p) = (SEnty e Bi(p) : 5, > 21))
>0
is rectifiable.

Now we prove the claim. Let x;,y; € I'j. Then d(x1,y1) <t < 54, /2. Because Bad‘s(xl) N[0, sy,) = @,
by Proposition 4.1, we have Tfl 0,2¢) = Tj?l (0, sx,) = 0. Note that y; € 8’6‘ and thus B,(y1) is not (k + 1, €)-
splitting for every p € (0, 1]. By Lemma 5.7 (ii), we have

|d(u(xn), u(y1)) = d(xi,y1)| < €d(xr,yy). (5.18)

O

6. PACKING ESTIMATES

We prove Theorem 1.3 in this section. The following is the key lemma.

Lemma 6.1. For any n € IN and € > 0, there exist 6(n, €) > 0 and S(n, €) > 0 so that the following holds for
any (X, p) € Alex"(=6). Suppose u: Bso(p) — R¥ is a (k, 0)-splitting function, and let {B,,(x;)} with i € Il be
a disjoint collection of balls living on a fixed level set x; € u™'(z) N B1(p) for some z € R¥. Then if x; € S’;’ pri
we have the estimate [I| < N(n, €).

Proof. We will construct a sequence Vitali coverings of u~'(2)N B1(p), which “converges” to {B,,(x;), i € II}.
The constants d(n, €), n(n, €) > 0 and A > 0 will be determined later.

(Step 1.) Let Bp be an arbitrary closed ball with W C Bp be a closed subset and I(W) = {i e I : x; € W}.
For x € Wand O < €, s < 1, define function

inf {r: T€(rs,25) =0}, if T&(s,25)=0;

o(x,e,5) = (6.1)

1, otherwise.

By Lemma 4.6, for each 0 < 1 < 47! there exists n = n(n, €, ) > 0 such that for any x € W, there exists
ry € [np, p] such that T$(Ary, 2ry) = 0. Therefore, we have

Ay =0(x, 6, 1) < A (6.2)

Define F(W) ={i e I(W) : r; > %np} and F(W) = I(W) \ F(W). It is clear that |F(W)| < N(n,n), since
ri > %np and W C Bp. Now because r; < %np < 11_0’”xi for every i € F°(W), we have that {B%“i(xi),i €
F(W)} is a covering of Ujegew)B,,(x;). Let G(W) C F¢(W) be a collection of indices so that {B%rxj (xj), j€
G(W)} covers Ujegew) By, (x;), while {B rx_(xj), J € G(W)} are disjoint. It’s clear that |§(W)| < N(n, ), since
ry, = np. Now we have '

1
50

(W) € F(W) U (je Ul (BT.WJ_ (x j))), 6.3)
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where |F(W)| + |S(W)| < N(n, n).
Note that function o (x, €, s) is semi-continuous in x. That is, liminf o (z, €, ry) > o(y, €, r,). For each
-y

Jj € G(W), there exists y; € Bﬂxﬂj (xj) N W so that
oy, =0y, € ry) = inflo(x, e, ry)  x € B/lxjrxj(xj)} <Ay <A (6.4)
We claim that F(W) and G(W) satisfy the following properties.

(1) [FW) + [S(W)| < N(n,n).
(2) (W) =FWwW)u (/'ESL{W)]I (B/lxjrxj (X)) N Bo, r,, (yj)))-
(3) If oy, > 0, then for every z € B Ay () 0 B(,yj ry O7)

[Bad“(2) 1 ey, 1] = |Bad ) 1, 1] + 1. 6.5)

Statement (1) has been proved in the construction. To prove (2), we start with an obvious inclusion formula:
By, (x)¢ ( ) U A:;’ i <yj>) U (B, (X)) N Bory 1 ()

y (Bﬁx‘frx‘,. &)\ By, ) U (Bor i, 0\ By, (3)): (6.6)

Let A < % be a constant. Note that d(x;,y;) < o7y, ry; < Ay;7x; < 7y;/10. Thus we have B/lxjrx,(xj) C B,X/(yj)
and B”Yf’*i (vj) < Brx, (x;). In particular we then have the better inclusion

By, ()€ ( o ) U A:;i . (y») U (B, 6 0 Bory 1 3)) ©6.7)
It remains to show that

( v *’( ,)) ( J;j o (y]) (6.8)

er_
Suppose ]I(AA10 ) (xj)) # @. That is, there exists i € F(W), so that A,,r,, < d(x;, xj) < 757, Then from
xjTxj
the definition of ry; we have
T (d(xi, xj), 2d(xi x;)) = 0. (6.9)
Now let 6 = 6(n,€) > 0 and 8 = B(n, €) > 0 be the constants determined in Lemma 5.7. Because Bg,,(x;) is
not (k + 1, e)-splitting and r; < d(x;, x;), the restricted map Ul(x;.x;) is (1 £ 4€)-bi-Lipschitz. This contradicts

to the assumption u(x;) = u(x;) = z. The proof for ]I( 0 \’ (yj)) = @ is similar.

To prove (3), let z € Bﬁﬂx‘(xj) N B(Ty_,x.(yj) € D(W,). By the definition of o, we have o(z, €, ry;) >

oy; > 0. Thus TE( Ty Txjs Ty ) = 1. By the definition of bad scales, this implies |Bad “(z) N [0y, 7, ;]| 2 1.
Then (3) follows since [0y, 7y, y;] € [07y;7x;, 1
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(Step 2.) In this step we construct a covering of I inductively. Let the decomposition functions F and G
be defined in Step 1. Begin with W = B(p). Let C; = F(W) and D; = G(W). Suppose C; and Dy have
been constructed and satisfy the following (Ax) — (Cy):

(Ar) 1€l < kN, n), | Dyl < N(n,p)*.
(Bk) I= ek U (je%kll (B/lxjrxj (xj) N BO'yerj ()’J)))
(Co) |Bad(z) N [0y, 1]

>kforany je Dyandz e B/l.x, e (xp)nN Bgyj ., (v;), provided oy, > 0.

For each j € Dy and W; = B/lx, re () 0 Bgyj r.;(¥;), using the construction of Step 1 let

Ci+1 = Cr U (UjeﬂJk?(Wj))
and
Dis1 = Ujen, G(W)).

Now we prove (Ag+1) — (Ci+1) for Cry1 and Dyyq. By (1) in Step 1, we have [F(W))| + [G(W))| < N(n,n).
Thus
1Crs1] < 1Ckl + NIDy| < kN* + N1 < (k + 1)NF!

and
|Dis1] < NIDy| < NFHL

Statements (By+1) and (Cy+1) follow from (2) and (3) respectively.

(Step 3.) By Lemma 2.2, the number of e-bad scales is at most K = K(n, €). Thus due to (Cy), we have
Dy = @ if k > K. Therefore, I = Ck and |I| = |Cx| < KNX. O

Furthermore, we have the following theorem.

Theorem 6.2. For anyn € IN, € > 0 and A > 1, there exist 5(n, €) > 0 and B(n, €) > 0 so that the following
holds for any (X, p) € Alex"(—1). Suppose that there is a (k,)-splitting function u: Bso(p) — RF. If

{B,(x)} are disjoint and Bgp,,(x;) N Slé,ﬁAr,- # @ for all i € 1, then for any z € R¥, we have

|{i e T: Bpp,(x) N (2) # @}| < N(n, e, A). (6.10)

Additionally, if r; = r with Ba,(x;) N S’; A, * @ and {B,(x))} are disjoint for all i € 1, then for any z € R, we

have

|{i eL: Ba(x) Nul(2) # @}] < N(n, &, A). 6.11)
Proof. Let X; € Bgp,(x;)N ul(z)andy; € Bgar,(xi)N SI;,BAr,-‘ There exists n(n, €) > 0 such that x; € Sf;,loﬁAr,-’
since Biogar, (Xi) 2 Bgar,(yi) and Bga,,(yi) is not (k, €)-splitting. Moreover, we have that B,, >(X;) are disjoint,
because B, /2(X;) C B, (x;). Estimate (6.10) follows by applying Lemma 6.1 to the collection {B,,/2(X;)}.

To prove (6.11), one can go through the proof of Lemma 6.1 and (6.10) with small modifications, or
use the following re-covering arguments. Let r’ = r/B. Then we have Bga,(x;) = Ba,(x;). The given

conditions B, (x;) N S’;’ Ay F @ and Bo(x;) N ul(z) # @ are equivalent to Bga,(x;) N 8';’ BAY # © and
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Bgar (X)) N u~'(z) # @, respectively. The collection {B,-(x;)} is not disjoint, so we can’t use (6.10) directly.
However, note that if B,/ (x;) N By (x;) # @, then B,(x;) € By (x;). Because {B,(x;)} are disjoint, for every i,
there are at most N(n, r’/r) = N(n,f) balls B, (x;) such that B (x;) N B,-(x;) # @. Therefore, the collection
{B,+(x;)} can be written as the union of N(n, 8) disjoint collections. Then the result follows from (6.10). O

Let us now remark on a standard covering argument. Let B be a collection of sets. The intersection
number N(B) of B is the minimum number k so that By "By N--- N Byy; = @ for any By, By, ..., B € B.
In particular, if N(B) = 1, then B is a disjoint collection. We have the following easy lemma:

Lemma 6.3. Let Br(0) € R* and B = {By,(x;) € Br(0)} be a collection of balls. If the intersection number
N(B) < N < eo, then 3, rf < N - C(k)R.

Now let us prove a local version of Theorem 1.3.

Lemma 6.4 (Local packing estimate). Foranyn € IN, €e > 0, R < 1 and A > 1, there exists 6(n, €) > 0 and
B, €) > 0 so that the following hold for any (X, p) € Alex"(=1), provided that Bspor(p) is (k, 6)-splitting.

(i) If x; € 81;/3” N Bgr(p) with r; < R and {B,,(x;)} are disjoint for all i € 1, then Z r{‘ < C(n, E)Rk.
iel

(ii) If x; € S’; A, N Br(p) with r < R and {B,(x;)} are disjoint for all i € 1, then |I| < C(n, €, A)R/r) .

Proof. We prove (i) only and the proof of (ii) is similar, modulo (6.11). By Proposition 5.1, there is a
81-splitting map u: Bsor(p) — RX. Assume u(p) = 0F € R¥.

Consider the collection of balls B = {B 1 ﬁri(u(x[)),i e T} in R*. Because u is 1-Lipschitz, we have that
B%Bri(u(x,’)) C Bor(0X). Givenz e R¥, letI, = {iel: z¢€ B%Bri(u(x,'))}. By Proposition 5.1 again, we have
(N Bg,,(x;) # @. It follows from (6.10) that |I,| < N(n, €). This shows that the intersection number
N(B) < N(n, €). Then the desired result follows from Lemma 6.3. O

Now we prove Theorem 1.3 by showing the following stronger statement.

Theorem 6.5 (Packing estimate). Lemma 6.4 still holds if the splitting assumption is dropped.

Proof. We prove by induction on k. Let 0 < §'(n,€) < 6(n,€) < 61(n,€) < € be determined latter. The
constant C may vary line by line. Lemma 6.4 proves the case for k = 0 as well as the case that Bsoor(p) is
(k + 1,01)-splitting. Assume that (i) and (ii) are true for k < n. We will prove them for k + 1, assuming that
Bspor(p) is not (k + 1, 51)-splitting.

Not losing generality, assume R = ﬁ. That is, Bj(p) is not (k + 1,01)-splitting. We begin with a
decomposition of Bi(p). Let R, = 27%, @ € Z. Recall the definition of the weak (k, 6)-singular set 8§r in
(5.8). By Proposition 5.3, we have B(p) C g’; 10° Thus

Bip)\ S5 S\ S | (Skp, \ Sk, )- (6.12)
a=—4
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For each a, let
{Bo, 01, j € Taf < {B%Ra(y), yeskp\ 8k RM.} (6.13)

be a Vitali covering of (8 R \S ), for which {B 1 an ;)} are disjoint but {B, (y;)} is a covering. A
useful property for this decomposmon is that for each y € {y}‘."}, we have that By, (y) = Bg,(y) is not
(k + 1, 0)-splitting, but By, (y) = B%Ra(y) is (k + 1, 0)-splitting.

We first prove (ii), which will be needed in the proof of (i). By the inductive hypothesis, we only need to

consider the collection of balls { (X)) x; € Sﬁlr but x; ¢ Slg, r}, where ¢’ = §’(n,0) > 0 will be determined

latter. For each j € J,, because y" € Sk . C S'g &, DY the inductive hypothesis, we have an upper bound on
the number of these balls:

1To| < C(n, ©RF. (6.14)

Recall that x; € 8" » N Byso0(p) with r < 1/500 and {B,(x;)} are disjoint. Given j € J,, let ]I“ ={i:
(y“)} We clalm that if p, < /1000, then ]I" = @ for every j. Suppose p, < r/1000 but there is
i€ ]I“ for some j. Note then that R, = 20p, < Or we have B,/5(x;) 2 Bzop,(ya) Because Bzopa(y“) 1s not

(k+ 1 0)-splitting, we have x; € 8k for some & (n, 8) > 0. This contradicts to the assumptions.

6/ i

Now for each i € ]I]?‘, we have x; € S’:r/{r, r < 1000p, = 50R,, and Bmpa(y;’) = B%Ra(y) is (k + 1,0)-
splitting. By Lemma 6.4 (ii) we have

7| < C(n, €, A)(Ra/r)* . (6.15)

Because Uy>-4{Bp, (y{)} is a covering of Bi(p) \ Sk 2 Bi(p)\ 8k 2 {x; : i € I}, by (6.14) and (6.15), we

have
ms< > > W

&1 <R, <10 Jj€Jo

< Z C(n, €, MR (R /) ! < C(n, e, A)yr *D,

a=-4

We prove (i) in a similar way. By the inductive hypothesis, we only need to consider the balls {Brl. (x) :

X; € Sk“ but x; ¢ S’g,’ﬁr[_}, for some &’ (n,6) > 0. Given j € J,, let ]I]‘.’ ={i:x € Bpa(yj‘.’)}. We claim that
for every i € ]Ij‘.’ , we have r; < 1%)0;)0 If this is not true, then Bg;,/5(x;) 2 BzOpH(‘/;-’). Because Bzopa(y;?)
is not (k + 1, 6)-splitting, we have that Bg,,(x;) is not (k + 1,6")-splitting for some ¢’ = ¢'(n,6) > 0. Thus

x; € 8k which contradicts to the assumptions.

& pri?

Note that x; € Sk” and By, (yj‘?‘) =B 1R, () is (k + 1, 0)-splitting. We can apply Lemma 6.4 (i) and get

r

Yol < e eplt = Cn, R (6.16)

el
J
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Note that (6.14), which was proved in the course of proving (ii), still holds. Combine (6.14) and (6.16). We
have

[Se]
PRI

el a=-4 jel, ie]I;.'

< i Z C(n, €)R**!

a=—4 jel,

< Y C, OR;RE

a=-4

< Z C(n, e)R, < C(n, €. (6.17)
a=—4

7. SHARPNESS OF THE RECTIFIABILITY

In this section we prove Theorem 1.7. Let us begin with a smoothing lemma.

Lemma 7.1. Let U c R" be a compact convex subset and f: U — R be a strictly convex function. Let
Q = U2, Q;, where Q; are disjoint open convex subsets in U. For any 6 > 0, there exists a strictly convex
function F: U — R such that the following hold.

(i) Flgis C*.
(it) Flone = floyg and |[F = fl <6 on Q,
(iii) For any x ¢ Q and any vector v, it holds that

. F(x+tv)-F() . fx+) - f(x)
m = lim .

1 1 7.1
t—1>0+ t zi0+ t 7.1
In particular, if Df(x) exists at x ¢ Q, then DF(x) = Df(x).
Proof. Let
€(x) = ¢ TwIm (7.2)

be an error function defined on Q. By Theorem 1.1 in [7], for each i, there exists a strictly C* convex
function g;: Q; — R such that for any x € Q;, we have

If(x) = gi(0)] < €(x). (7.3)
Let F: U — R be the gluing of all of g; and f|iq. That is,

gi(x), if xeQy
F(x) = (7.4)

f), if x¢Q.
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It is obvious that (i) and (ii) are satisfied. The following estimates (7.5) and (7.6) imply (iii). If x,y ¢ Q, it
is obvious that

IF() = F)l = |f(0) = f0)] = 0. (1.5)

For any x ¢ Q and y € Q, we have y € Q; for some i and thus

[F(x) = F)l = 1f(x) - f(y)I’ = ‘If(X) =&l = 1f(x) = fO
<lgi(y) = fO)

)
< e .0

< T, (7.6)

It’s clear that F is strictly convex on each of Q;. It remains to show that F is strictly convex, moving out
from Q;. We need the following two lemmas which we will outline the proof latter. They are well known to
the experts.

Lemma 7.2. A Lipschitz function h: [a,b] — R is convex if and only if for any non-negative smooth function
¢: [a,b] — R, it holds that

b
f h (@) ¢' () dt < h_(b) $(b) — I, (a) p(a). (1.7)
Here I, denote the one-sided derivatives.

Lemma 7.3. Let h: [a,c] — R be a Lipschitz function and b € [a, c]. If hljap) and hljp ) are both convex
functions and h’_(b) < I (D), then h is a convex function over |a, c].

Now we show that F is a convex function. It is obvious that F' is locally convex for any x ¢ 0€Q;. For
x € 0Q;, we show that F is convex along each line passing through x in U. Let y(s) = x + sv, s € (=€, €) be
a unit speed geodesic in U and A(s) = F(x + sv). By (7.1) and the fact that f is convex, we have

Fx+tv)—-F(x)
t

KO- Jin

_ o S+ - f) Jx+1) - f(x)
=lim ——"—><lim —-——-
t—0~ t t—0* t
Fx+w)-F
= lim @M= FO _ o), (7.8)
t—0*
Then the convexity of F follows from Lemma 7.3. By (iii), F is also strictly convex. O

Proof of Lemma 7.2. The necessity is obvious. To prove the sufficiency it is sufficient to verify

h(ty) = h(t1)  h(13) — h(tp) <0
Hh—n 3—1 -
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for every a < t; < tp < t3 < b. This can be proved by a direct computation with ¢(¢) chosen as a smooth
approximation to

0, if <1,
o) = % if 1 <t<t,
t’;_‘é, it Hh<t<ts,
0, if 1>t
O
Proof of Lemma 7.3. By Lemma 7.2, for any non-negative smooth function ¢ : [a, b] — [0, c0), we have
b
[ s war < @160 - @ o, 19)
c
f W () ¢’ (1) dt < h'(c) $(c) — h..(D) $(D). (7.10)
b
Sum up the two inequalities and apply Lemma 7.2 again, we get the desired result. O

Proof of Theorem 1.7. Let Z = B1(0) c R? be a closed unit disk centered at p. Fix 0 < § < 1 and define a
strictly concave function on Z:

Vd(z,0Z) if d(z,0Z) <
§-Vdz dZ)y+(1-96)-3 if d(z02)> 1.
Let Z, = {z € Z : fy(z) > t} be the sub-level set. We denote the subgraph of f: Z — R* by

Joz) = (7.11)

Grr={@neZxR:0<1< fQ).

Because fj is strictly concave, we have Xo = Gz, € Alex 3(0) with boundary. See Figure 2 below. For
¢ > 0 small the following hold:

(1) 8(Xo) = dXo,
(2) 8L(Xo) \ 8°(Xo) = (9Z1/2 X {3}) U (9Z x {0})
(3) 8°%Xo) = (P} = {(0. 1(1 + 6))} is the tip of the graph.

Not losing generality, let T C 0Z;» be any closed subset. Then 0Z, \ T = U2, U; is a union of
disjoint open intervals. Let €; be the open sectors in Z corresponding to the arc U;. That is, Q; = {x €
Z°:ray A - Ox N U; # @}, as the shaded region in Figure 2. Clearly, {€);} is a collection of disjoint open
convex sets.

Now apply Lemma 7.1 to fo : Z — R on U;2, Q; to obtain a strictly convex function f; : Z — R which is
smooth on U2, Q); and fi = fo away from U €;. Now consider the new subgraph X; = Gz 4, € Alex? (0).
Note that if fi is smooth at a point x € Z°, then the tangent cone of X; at (x, fi(x)) € 0X; is a three
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FIGURE 2. Xj = Gz, € Alex>(0)

dimensional half space. If x € 9Z;;; \ U2, = T, then the tangent cone at (x, f1(x)) € 0X, which is
isometric to the tangent cone of Xy at (x, fy(x)), splits off only R!. Therefore we have

(4) 8(Xy1) = 0X,
(5) SLX\ 8°(X)) = (T x (1)) U (9Z x (o)),
(6) 8°(X;) = {P} is the tip of the graph.

A similar, but less involved, smoothing procedure can be performed in a small neighborhood of 9Z x {0} and
P so that the resulting space X, € Alex >(0) satisfies

(7) 8(X2) = 0X»,
(8) 81(X2) =T x {1},
9) 8°(X,) = 2.

Finally, we double X> and arrive at a boundary free space Y € Alex *(0) which satisfies

(10) 8(Y) =8L(Y) =T x {3};
(11) 8%Y) = @.

Let us sketch a smoothing procedure to approximate Y by a sequence of non-collapsed manifolds with
sec > 0. By performing similar smoothing procedures, we can approximate X, by a sequence of smooth
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convex bodies in R3. Thus now it’s sufficient to smooth the double, denoted by ¥, of a compact smooth
convex body X c R”.

Let ue: [0, €] — R be a strictly concave function that satisfies:

(1) pe is smooth in the open interval (0, €);
(2) pe(0) =0 and pe(e) = €
k,,—1 k

(3) the limits of derivatives lim B 0 and lim il 0 for every k > 1.
1—0+ dl‘k t—e” tk

Define
He(d(x,0X)), if d(x,0X)<e
he(x) =
€, if  d(x,0X) > e.

Then he(x): X — TR is a smooth concave function away from 6X. Let us denote the graphs X* =
{(x, +h(x)) € X x IR}, equipped with the intrinsic metrics. It’s clear that the subgraph of 4. is a convex
body in R"*! by the concavity of &, and has smooth boundary away from 60X x {0}. Because the boundary
of a convex body in Euclidean space is an Alexandrov space with curvature > 0, we have that the sectional
curvature, with respect to the intrinsic metric of X, is non-negative on the interior of X=.

Note that the doubling of X is isometric to the union ¥, = X} U XZ in R"*!. By conditions (1), (2) and
(3) for p,, we have that Y. is a smooth manifold. Moreover, Y, is non-negatively curved because it is smooth
and non-negatively curved on the interior of X and X-. Note that 4.(x) — 0 as € — 0. Thus X* — X as
€ — 0, and ¥, Gromov-Hausdorff converges to Y.
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