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Abstract—Frequency-domain analysis is important for small-
signal dynamic studies of power electronics-based power systems.
However, the frequency-domain model of power electronic system
needs to be linearized around a specific operating condition.
Conventional analysis hence requires measurement or
identification of these frequency-domain models repeatedly at
many operating points due to the wide operation range of the
power systems, which brings significant computation and data
burden. This paper addresses this challenge by developing a deep
learning approach using multilayer feedforward neural networks
(FNNs) for frequency-domain modeling of power electronic
systems, and particularly, focusing on the impedance modeling. It
can train converter impedance models that are continuous across
certain ranges of operating points. Distinguished from the prior
neural network designs relying on trials and errors, this article
proposes to design the FNN based on latent features of power
electronic systems, i.e., the number of system poles and zeros. To
further investigate the impacts of data quantity and quality,
learning procedures from a small dataset are developed, and
clustering is used to reveal insights into multivariable sensitivity,
which helps to improve the data quality. The proposed approaches
for the FNN design and learning are finally validated by case
studies on a power electronic converter.

Index Terms—Multilayer perceptron, deep learning, power
electronics, frequency-domain model, latent features, clustering.

I. INTRODUCTION

YNAMIC modeling and analysis is of primary

importance for stable operation of electric power

systems. In recent years, with the increased penetration
of renewable energy sources and the diversity of loads, more
power electronic converters are integrated in modern power
systems for flexible and efficient power generation,
transmission, and utilization [1], [2]. Compared to legacy power
systems, the control of power electronic systems is more
distributed and less transparent, which poses more challenges
to the dynamic modeling and control of modern power systems
[3].

Frequency-domain analysis is an important approach to
studying the small-signal dynamics of large-scale networked
power electronic systems. Frequency-domain analysis enables
black-box modeling of a subsystem at its connection terminals
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and provides more efficient and insightful analysis compared to
time-domain simulations [4]-[6]. However, frequency-domain
models are linearized around specific operating conditions [7].
To assure reliable operation of power systems, dynamic
analysis under a wide range of operating conditions are needed,
which requires the frequency-domain models under various
operating conditions. Methods for identifying black-box
frequency-domain models based on measurement have been
reported [8]; however, they can only be implemented at a single
operating condition each time. Whenever the system operating
condition is changed, the measurement needs to be repeated.
Therefore, it is desired to obtain a frequency-domain model that
can cover multiple operating conditions, in order to accelerate
the dynamic analysis of power systems. Although it is possible
to acquire such a model through analytical modeling [9], [10],
it requires detailed and accurate control information, which is
practically impossible because control algorithms of power
electronic systems are usually kept confidential by their
manufacturers.

Data-driven approaches provide a suitable solution to this
type of problems. It is worth noting that although parametric
identification [11] is also a data-driven approach that can derive
an analytical transfer function model for frequency-domain
analysis, the identified model is only an s-domain function,
where s is the Laplace variable, which does not characterize the
dependence of system operating conditions. The system
operating conditions are determined by multiple variables; thus,
the desired model is essentially a multivariable nonlinear
function. Since the model expression in relation to operating
conditions is often unknown, there is no deterministic method
to select a specific parametric nonlinear model for regression
analysis. In contrast, with sufficiently large network size and
dataset, neural networks can approximate any continuous
function [12], which thus provide a promising approach to
solving this problem.

There have been recent attempts to apply neural networks
for frequency-domain modeling of power electronic systems.
Some studies have developed neural networks to train time-
domain surrogate models and then transform them into the
frequency domain for further studies; examples include

L. Nordstrom and X. Wang are with Division of Electric Power and Energy
Systems, KTH Royal Institute of Technology, Stockholm 10044, Sweden. (e-
mail: {larsno, xiongfei}@kth.se)

Y. Li, M. Chen, P. Mittal, and H. V. Poor are with Department of Electrical
and Computer Engineering, Princeton University, New Jersey 08544, USA. (e-
mail: {yl5385, minjie, pmittal, poor}@princeton.edu).



recurrent neural networks [13] and nonlinear autoregressive
models with exogenous inputs (NARX) [14], [15]. Such models
show good training performance for time series data, yet the
time-domain data still needs to be designed carefully to capture
sufficient frequency-domain dynamics, which makes the model
training and parameter design more difficult. Another work
directly considers training the model in the frequency domain
using feedforward neural networks (FNNs) [16]. However, this
study oversimplifies the power electronic systems by
considering the operating-point dependence only related to a
single variable. The operating points of actual systems are
generally dependent on multiple variables. Using a single-layer
FNN requires significant amount of data and the optimal design
of FNN needs to be found based on trials and errors, which also
brings much design and training effort. Thus, it is very
challenging to apply the single-layer FNNs in practical
applications.

To deal with the challenges, this work focuses on the
frequency-domain model training of power electronic systems
using FNNs. Differing from [16], this work utilizes the
multilayer FNNs and develops a deep learning approach that
can be generally applied to any converter system. The unique
contributions of this work include

e Designing a multi-layer FNN to train converter impedance
models based on the system’s latent features. The number
of layers is determined by the transfer function calculation
properties, and the number of neurons can be designed
according to pole and zero numbers, which is much more
easier than designing a single-layer FNN.

e Developing learning procedures that can be implemented
with small datasets, which is also a significant advantage
compared with using a single-layer FNN.

¢ Investigating the benefit of using clustering to improve the
data quality.

Section II formulates the learning problem. A method for
designing the multi-layer FNN based on latent features of the
converter system is proposed in Section III. Section IV details
the application of the multi-layer FNN, by developing learning
procedures based on small datasets and proposing to use
clustering approach for data quality improvement. Section V
presents the case studies by training an example converter
system, to verify the proposed methods. Section VI finally
concludes this paper.

II. PROBLEM FORMULATION

A. Impedance-Based Analysis

Fig. 1 shows a typical diagram of a modern power system,
where power electronic converters are pervasive as interfaces
for various types of energy conversion and energy utilization.
Power electronic converters can be controlled flexibly, yet their
control algorithms are in general confidential. To analyze the
small-signal stability of large-scale power electronics-based
power systems, frequency-domain modeling by using
impedance or admittance models, i.e., Z(s) or Y(s), has become
a trend [17]. Since these models can be rapidly obtained by
frequency-scan measurement at the points of connection (PoCs)

of converter systems, they are suitable to analyze such black-
box systems. The admittance model can be calculated by the
inverse of the impedance model; and thus, the following model
elaboration will use the impedance model for clarity.

B. Learning Problem and Assumptions

The impedance model of a converter system is a linearized
description of the system under a certain operating condition. A
power converter can operate under a wide range of operating
conditions. If the impedance model that covers the range of
operating conditions can be rapidly estimated with sufficient
accuracy, the efficiency of system-level stability analysis can
be improved significantly.
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Fig. 1. Power electronics-based power systems.

The impedance model of a converter system can take
different forms depending on modeling assumptions and
modeling reference frames [9]. In this work, it is assumed that
the impedance model is represented at the AC interface of three-
phase converter systems under balanced grid conditions. For
AC converter systems, the operating condition involves the
voltage magnitude (V), the active and reactive power flows (P
and Q) at the PoC. Thus, a general impedance model can be
represented in the synchronous reference (dg) frame using a
multi-input multi-output model [7], i.e.,

[2u(s7.P.0) 2, (s7.P.0)
Z(s,V,P,Q){zqd(S,V,p,Q) Z,(s.V.P,Q)

Us=jw (1)

Z, (jo.v,P,0) Z, (jo, V,P,Q)}
Z,(jo,V,P,Q) Z,(jo,V,P,Q)
where s is the Laplace variable, and V, P, Q are operating points
under a certain operating condition. s represents the frequency
dependence because it can be substituted by s=jw to derive the
frequency-domain model [18].

It is worth noting that although (1) only gives an example
using AC impedance representation, the model order and its

Z(ja),V,P,Q){



dependence of operating points can be easily modified to
characterize DC systems [19]. Moreover, the frequency domain
model can also be represented by other transfer functions if
other input-output relationships are of interest.

Eq. (1) indicates that the impedance model is essentially a
multivariable nonlinear model, and thus, neural networks can
be used for learning approximations to this model.

III. NEURAL NETWORK DESIGN BASED ON LATENT FEATURES

A neural network design guideline for the converter impedance
modeling is now proposed based on latent features of the converter
system.

A. Input and Output Definition

To realize a learning task, it is important to define first the
input and output data. It is known from (1) that the impedance
model is related to w, V, P, Q. Thus, these variables can be
chosen as the input variables, which are real numbers. The
output is the impedance value, which is a complex number. We
can define the output to have two dimensions, using real and
imaginary parts of the impedance value, i.e., the resistance and
reactance of the electric system, or the magnitude and phase of
the impedance through a polar transformation. We use the real
and imaginary parts of the impedance as the data output for the
following reasons:

e The frequency-domain analysis is conducted based on
complex numbers. A learned neural network that can
predict the real and imaginary parts of impedance models
is adequate for system stability analysis.

e The polar transformation from real and imaginary parts into
magnitude and phase is only for easier visualization of the
model on a Bode diagram. This transformation involves
additional nonlinear calculations, which can increase the
complexity of neural network design and the effort of
training.

e The real and imaginary parts of the complex impedance
values represent the resistance and reactance of the power
converter system, which shed clear physical insight in
electromagnetic simulations.

B. Neural Network Selection and Design

The converter’s impedance can be uniquely determined by a
set of input variables, which follows a forward calculation
process. Further, the input variables are independent of each
other. Hence, FNN is chosen in this work.

In principle, a neural network with one hidden layer can
sufficiently represent any continuous function [12]. However,
it requires the use of a sufficiently large number of neurons in
the hidden layer, potentially as large as the number of training
samples [20], which incurs substantial computation burden in
training. In contrast, neural networks consisting of more hidden
layers but smaller number of neurons can achieve better training
performance with much smaller amount of data, but the
structure of deep neural networks needs to be properly
designed.

Designing optimal FNNs is a non-trivial task and it requires
complicated sensitivity analysis [21]. It has been realized in

recent years that if the domain knowledge of the physical
system can be utilized in the neural network design, we may
end up with a better designed network, which requires less data
requirement yet achieves better training performance [22], [23].
Since physical systems can usually be decomposed into
sequential steps, neural networks can achieve good training
performance if they can be designed following such sequential
steps [24]. Therefore, the FNN is designed by decomposing the
learning problem into multiple sequential steps.

The impedance model is essentially a frequency-domain
model. Its transfer function order is related to the differential
equation order of the time-domain model; therefore, the
frequency-domain model also includes information of the
physical system. The sequential decomposition is directly
considered based on transfer function calculation process in the
frequency domain.

It is known that any element in the impedance model of (1)
can be represented by the following general form:
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Fig. 2. FNN design based on latent features. (a) impedance
calculation process decomposed into sequential steps; (b) FNN
design based on decomposed steps and numbers of latent
features.
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where the polynomial coefficients {ax}, {ht} in the numerator
and denominator are determined by the operating points
through unknown nonlinear relationships. By substituting s=jw,
the impedance value can be calculated by several sequential
steps, as decomposed in Fig. 2(a). Step 1 calculates all the terms
in the numerator and denominator regarding different power of
angular frequency, which is a nonlinear process. Step 2 further
divides the numerator terms by the denominator (den) and then
calculates the real and imaginary parts, which is another
nonlinear process. Step 3 finally calculates the real and
imaginary parts of the impedance, which is only a linear
calculation based on the output of Step 2. By decomposing the
entire process into these sequential steps, the number of latent
features in the middle of calculations can be determined by the
number of poles (7) and the number of zeros (m) of the system.
Step 1 yields (m+n+2) latent features, and Step 2 yields (2m+2)
latent features.

Based on the decomposed simple steps and the number of
latent features, a multilayer FNN can be design as shown in Fig.
2(b). Although the FNN does not calculate in the same way as
the original model, as it calculates through weighted sums,
biases and activation functions, the number of latent features
can be used as an indicator for designing the number of neurons
in hidden layers [25]. There are two decomposed nonlinear
steps, thus, two hidden layers are designed accordingly. In each
nonlinear step, the number of latent features is no more than

N =2max {m,n{+2. 3)

Thus, two hidden layers can be simply designed with N neurons
in each layer. Here, designing both hidden layers with N
neurons results in more hyper parameters in the FNN, but it in
turn simplifies the structure design. In actual applications, the
exact numbers of poles and zeros are unknown because the
converters are usually black-box systems, which needs a
“guess”. Considering only one parameter N in the FNN design
makes it easier to apply this approach for black-box systems.
Since the two hidden layers represent two nonlinear steps, and
this is a regression problem where the calculated result in each
step can be both positive and negative, the hyperbolic tangent
sigmoid (tan-sig) function is used for activation in hidden
layers. Step 3 is a linear step, thus the output layer in the neural
network is designed as a linear layer.

It is noted that although the number of poles and zeros is
usually unknown for a black-box converter system, the possible
range of the pole and zero numbers is limited. A typical
converter system usually has at most three cascaded control
loops: outer loop — voltage loop — current loop, and each control
loop has at most one integrator. The plant of the converter
system usually has the differential order no more than three.
Although there can be different combinations of control loops

Z(jo,V,P,0)=

and converter plant, the numbers of system poles and zeros are
still within a certain range. Then, by comparing training
performance with different values of N within a certain range
based on trial and error, an optimal N per layer that achieves the
best training performance can be found for learning a specific
system.

C. Optimization Algorithm

Training a neural network is essentially an optimization
problem that minimizes the model error, and this in turn can be
solved by different optimization algorithms. The commonly
used optimization algorithms for training neural networks can
generally be classified into two categories which are based on
gradient descent and Newton’s method, respectively [26], [27].
The former is a first-order iterative algorithm, which can find
the local optimum in the steepest-descent direction. However,
it requires a careful tuning of learning rate and momentum
constant throughout the training process for certain problems in
order to find the global optimum. Moreover, training with the
gradient descent-based algorithm converges relatively slowly.
Newton’s method considers both first- and second-order
derivatives to find the optimum using a quadratic
approximation, which can better find the global optimum for
nonlinear problems, but its computational burden is much
higher.

The Levenberg-Marquardt algorithm is a method that
combines features of gradient descent and Newton’s method. It
acts more like a gradient-descent method when the parameters
are far from optima and acts more like the Newton’s method
when the parameters are close to optima [27]. Thus, this
algorithm can achieve faster convergence than gradient descent,
but incurs a lower computational burden than Newton’s
method. It is suitable for learning small-scale systems whose
neural networks only have a few hundred weights. Therefore,
the Levenberg-Marquardt algorithm is selected as a candidate
for optimization in our problem, since the studied system (a
single converter system) is a small-scale system.

D. Loss Function

The mean squared error is used as loss function in this work
to train the neural network. If the mean square error bound is
defined as MSE, its relation to the impedance magnitude error
can be interpreted as follows:

Error‘Re{ZH <+MSE, Error‘lm{z}‘ <+ MSE @

= Error‘z‘ <2MSE

For the learning of the impedance model, MSE can be
defined based on the minimum required magnitude of the
impedance model for a certain case, to ensure that the error of
the trained neural network is smaller than an acceptable
threshold.

IV. LEARNING PROCEDURES WITH SMALL DATASET

Effective learning relies on having sufficient data. Learning
from a sufficiently large dataset is always desirable; however,
obtaining such a dataset is often difficult in practice. This
section discusses the data size problem for learning the



impedance model of converter systems, by considering as small
dataset as possible.

A. Learning Procedure

The challenge in frequency-domain modeling of converter
impedances mainly lies in the dependence of operating points,
thus, impedance data under multiple operating points needs to
be obtained for learning. However, the amount of data that is
sufficient for learning a problem is usually unknown before
learning. Therefore, a learning procedure starting from a dataset
under a small number of operating points (OPs) is proposed in
Fig. 3.

To ensure a good training performance, the total dataset needs
to be split into a training set, a validation set and a test set [28].
The training set is used to train the neural network based on the
training loss, which is calculated as the MSE of the model. The
validation set is used to calculate the validation loss, which is
monitored during the learning process and compared with the
training loss, to assess whether the training is successful and
whether the dataset is sufficient. If the validation loss is
significantly increased during the learning process, it is an
indication that the training is unstable and the data is
insufficient. If the training finally ends when reaching the goal
of MSE, yet the validation loss is much higher than the training
loss, it is also an indication that the dataset is insufficient and
needs to be enlarged. Therefore, a threshold ¢ can be set for the
ratio of validation loss to training loss, to check whether the
dataset is sufficient or not, as shown in Fig. 3.

It is worth noting that although the flowchart in Fig. 3 mainly
focuses on the dataset regarding change of OPs, it works also
for the dataset regarding change of frequencies. Here, the
frequency resolution is not focused upon, since the impedance
measurement usually scans sufficient frequency points to
ensure that the frequency dependence is characterized
sufficiently [8], [16].
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A4
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training, validation and test sets

Y
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Fig. 3 Flowchart for learning from a small dataset of operating
points.

B. Clustering for Improving Data Quality

Since the operating points are determined by multiple
variables, how to establish a dataset with higher quality
considering different samples of multiple variables is unclear.
Thus, the clustering of impedance models is used to identify the
sensitivity of impedance model to different OP variables.

Since the impedance model is a frequency-domain model
represented by data points in a frequency series, which is
analogous to a time series, the dynamic time wrapping approach
[29] is used to estimate the distance between two frequency
series for clustering.

Moreover, the impedance model is represented by multiple
elements in a matrix, which include both real and imaginary
parts. The data used for clustering can be reformulated by the
frequency series in the following form:

Zosr (@) =[ -+ Re{Z,} (@) Im{Z, } (@) ---] for Vi, j.(5)

where Re{Z} denotes the real part and Im{Z} denotes the
imaginary part. The real and imaginary data of each impedance



element need to be normalized before being put into Zecuster, to
ensure they are equally considered.

Then, clustered labels of the impedance data can be shown in
the multi-dimensional OP space, to compare the sensitivity of
impedance models to different OP variables. If the impedance
data is clustered into more clusters in one dimension, it is
indicated that the impedance is more sensitive to this variable.
Finally, the data quality can be improved by selecting more
samples in more sensitive variables and less samples in less
sensitive variables.

V. CASE STUDIES

The proposed FNN design has been tested on a grid-
connected converter system. The impedance data can be
obtained through virtual measurement in electronic transient
(EMT) simulation software [16] or calculated analytically if the
analytical model is available [7]. Since actual impedance
measurement under a large number of operating points in an
EMT simulation environment is very time consuming, and the
measured models have been verified in good agreement with
the analytical models even through experiments [8], this work
forms the FNN training based on data obtained from analytical
calculations.

The training is conducted in Matlab running on Intel(TM) i7-
12700K CPU @ 4.6 GHz, with parallel computing enabled.

A. Description of Studied System and the Data Range

The studied converter system is shown in Fig. 4 with a single-
line representation for the three-phase system. It adopts the
typical grid-following control, with a phase-locked loop (PLL)
for voltage synchronization and a current control loop (CCL)
for current regulation [3]. The electrical system and control
parameters are listed in Table I.

Grid PoC L
ri o > 223
Vg v i JG } Ve
I I [dqref
Phase- Current
locked > control | PWM
loop loop

Fig. 4 Studied three-phase converter system with a single-line
representation.

Table I: System circuit and control parameters

Parameter Value Parameter Value
Ve 400V Ve 700V
fo 50 Hz fs 10 kHz
L 5.1 mH So 3kVA

PLL CCL
pandwidth | 2°°H% | pandwian | 'KHZ

The frequency points are defined within [1, 5000] Hz, because
the impedance model is only valid up to half of the switching
frequency [9]. 100 frequency samples linearly distributed in the
logarithmic coordinate are considered, because the impedance
model is calculated based on the power of w.

The operating points for the converter system are defined in
the following ranges, according to the power system operation
requirement [30].

V 6[0.9, 1.1] p-u
Pe[—l, l] p.u.
Oe[-1, 1] pu.
s.t. 0 pu<|/|<1.l1pu. and |V, <0.5V,

where p.u. denotes per unit as determined by using the
converter ratings, |/| represents the converter current magnitude,
| Vmod| denotes the converter modulation voltage magnitude, and
Vac is the DC-link voltage of the converter. Due to physical
limitations of the converter system, the operating current cannot
exceed 1.1 p.u., and the modulation voltage cannot exceed
0.5V, i.e., the modulation index does not exceed one.

Since the grid-following converter is usually represented in
admittance form, the following analysis uses admittance data
for training. The dg-frame admittance has four elements, which
can be trained using the same approach, thus, the following
verification mainly takes one element as an example for
illustration, i.e., Ya/(w, V, P, Q).

B. Verification of FNN Design

To verify the FNN design, a sufficiently large dataset is first
considered. The OPs are sampled with stepsize 0.02 p.u. for V'
and stepsize 0.2 p.u. for both P and Q. In total, the dataset has
823 OPs. The total set is then randomly split, 70% of which is
the training set, 15% of which is the validation set and the rest
is the test set. Fig. 5 shows the distribution of OPs in the 3-
dimension (3-D) space of V, P, and Q. The FNN design is
verified in two aspects: 1) FNN structure and optimizer
comparison; and 2) proposed design compared with trial-and-
error design.

) (6)

1) FNN structure and optimizer comparison

To verify the effectiveness of the FNN structure and the
optimizer, it is first assumed that the analytical model is known,
thus the latent features can be used to design N. In this case, the
analytical model of Yu(s, V, P, Q) indicates the highest
pole/zero order of 12, if assuming a third-order Pade
approximation for the time delay modeling, which is
sufficiently adequate to model a converter’s dynamics in the
frequency range of interest [31]. Thus, according to (3), NV can
be selected as 26.

The training is conducted in Matlab. Several optimizers using
the following algorithms are considered and compared [32].

e Variable Learning Rate Gradient Descent (traingdx)

e BFGS Quasi-Newton (trainbfg)

e Scaled Conjugate Gradient (trainscg)

e Levenberg-Marquardt (trainlm)

The Matlab train function names of these algorithms are
denoted in the above brackets. These algorithms are compared
by training the dataset in Fig. 5. The training goal is set to
achieve the same MSE of 107!, which means that the absolute
error of Re{Ya,} or Im{Ya,} is less than 107> (=100 dB).

Fig. 6 shows the training performances with epoch and time
using the above algorithms, where the right figures are the
zoomed-in plots of the left figures. The epoch denotes the
number of iterations that indicates the convergence rate. Time



reflects the efficiency of training. For easier comparison, the
training performance is only displayed within 10000 epochs or
150 minutes. The gdx algorithm (blue line) converges slowly
since it is based on the gradient descent. Even with variable
learning rate and momentum, it can hardly scape from local
minimum to achieve the training goal. The bfg algorithm (red
line) considers the Newton’s method, which thus converges
much faster. However, it may also confront the local-minimum
problem when the error becomes small. The scg algorithm
(yellow line) converges slightly slower than the bfg algorithm,
yet it reduces training time a lot, because it avoids the time-
consuming line search used in the bfg algorithm by scaling the
step size with a Levenberg-Marquardt based algorithm [33]. It
reaches the goal after around 144 minutes. However, the scg
algorithm is still based on the gradient, which also escapes from
local minima slowly, thus the training becomes more time-
consuming when the error becomes smaller. The /m algorithm
(purple line) is the fastest, which achieves the goal only at
Epoch 287 within 6 minutes. Compared with the scg algorithm,
the /m algorithm can escape from local minima more easily, as
shown by its stair-like performance curve. The comparison
results verify the optimizer selection discussed in Section III-C.
The training, validation and test performance with the /m
algorithm is shown in Fig. 7. It can be seen that the validation
performance is very close to the training performance along
epochs, indicating that the training is effective. The test
performance also shows a good prediction. It is also noted that
the validation check is considered during the training process,
in order to identify the best fitting point in case it is present
before the training goal is achieved. However, it can be seen
that the performance curves are converging until the MSE goal
is achieved, indicating that the designed multilayer FNN
structure works successfully in learning this problem.
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Fig. 5 Operating point distribution based on a random split of
the dataset: training data — 70%, validation data — 15%, test data
—15%.
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Fig. 7 Training, validation and test performance with the /m
algorithm for training Y.

2) Proposed design compared with trial-and-error design

Although the effectiveness of the proposed FNN design has
been preliminary verified, it is still unclear if this approach
really achieves a good design. Therefore, the proposed design
is also compared with the trial-and-error design. In practice, the
latent features of pole/zero numbers can be unknown, thus a
trial-and-error approach by searching N in a certain range can
also give an optimal design of FNN.

To indicate a reasonable range of N for the trial-and-error
design, the pole/zero orders of analytical models are listed in
the left column of Table II, considering different orders of Pade
approximation ranging from 0 to 3. The designed N based on
these latent features are called as Nimeory in the table. In contrast,
the trial-and-error design searches the FNN’s N around the
possible range of Nieory, 1.€. [14, 28]. The training stops as MSE
reaches 107'°, and the training results including end epoch and
end time are listed in the right column of Table II.

To clearly show the optimal FNN design based on the trial-
and-error method, the end epoch and end time against the
FNN’s N changing is plotted in Fig. 8. A smaller end epoch
indicates that the FNN structure works better in terms of
convergence. It can be seen that when N is larger than 22, the
end epoch becomes closer, but the end time becomes longer
because the increased complexity of FNN also increases the
computational burden. Thus, considering the tradeoff between
convergence and training efficiency, an optimal value can be
found around N=22 in this case. Existing analytical model-
based studies also show that usually a third-order Pade
approximation is adequate for modeling time delay [31].



Although the optimal N is found slightly lower than the Neory
indicated by the analytical model based on a third-order Pade
approximation, this is reasonable, because when we design
Nieory using (3), we use more latent features, which may lead to
more conservative design and end up with a more complex
FNN. But the resulting optimal N is still very close to the
suggested order based on the analytical model with a third-order
Pade approximation, which can verify that the proposed FNN
design based on latent features almost achieves an optimal
design.
Table II Training results with different N

Analytical model Training results

Pade Highest Niheory FNN | End End
approx. | pole/zero N epoch | time
order order (min)
0 6 14 14*14 | 814 1:31

- - - 16*¥16 | 474 1:15

1 8 18 18*18 | 958 3:31

- - - 20*20 | 606 3:02

2 10 22 22*%22 | 256 1:57

- - - 24*24 | 363 4:27

3 12 26 26%26 | 287 5:29

- - - 28*28 | 298 7:26

It is worth noting that although the exact pole/zero order of
the transfer function may be unknown in practice, a reasonable
range of the zero/pole order can also be estimated. Then, an
optimal N for the FNN design can still be searched for within
this range.

C. Verification of Learning Flowchart from Small Dataset

To verify the learning flowchart in Fig. 3, three datasets are
used to train Yu,, by varying number of samples in operating
points, as shown in Fig. 9. These datasets are listed as follows:

e Dataset A considers a stepsize of 0.05 p.u. in ¥ and a

stepsize of 0.5 p.u. in P/Q, resulting in 49 OPs.

e Dataset B considers a stepsize of 0.04 p.u. in V and a

stepsize of 0.4 p.u. in P/Q, resulting in 106 OPs.

e Dataset C considers a stepsize of 0.03 p.u. in V and a

stepsize of 0.3 p.u. in P/Q, resulting in 244 OPs.

The performance of Y4, with the three datasets is displayed in
Fig. 10. From the very large ratio of validation loss to training
loss, it can be seen that Dataset A is not sufficient to train a
good model. If the data is increased to 106 OPs, the validation
loss becomes much closer to training loss, resulting in a ratio
around 1.26 at the end of training. Even though the test loss is
a bit higher, these loss performance curves show a similar trend
of convergence, indicating that the training is effective. The
slight error difference in the test performance can be easily
compensated by setting a smaller training goal in MSE. When
the dataset is further increased to 244 OPs, the validation loss
becomes smaller than the training loss with a ratio of 0.88,
which implies that the data is more sufficient for training.
Therefore, the ratio of validation loss over training loss can be
used as an indicator for dataset selection. In this case, if
considering a threshold of & = 1.5 for the ratio of validation loss
over training loss, it can be found that using a dataset around
100 OPs is already acceptable for training Ya,.

D. Verification of Clustering for Improving Data Quality

The dataset increasement in Fig. 9 considers the sample
increasement in each dimension equally. However, this may not
lead to the best data quality. How clustering can help improve
the data quality is verified in this part.

It is worth noting that to conduct an effective clustering, a
sufficient amount of data is still needed. Thus, such clustering
analysis can be done when data can be more easily acquired
from analytical models or simulation models. Then, the
sensitivity conclusion drawn from the clustering can still be
helpful for guiding data collection from actual measurements.
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Fig. 8 Training results of Y4, based on trial-and-error design of

FNN considering different N.
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Fig. 9 Datasets considering different samples of operating
points. (a) Dataset A with 49 OPs; (b) Dataset B with 106 OPs;
(¢) Dataset C with 244 OPs.
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Fig. 10 Training, validation and test performance for training
Ya, with different datasets. (a) Dataset A with 49 OPs; (b)
Dataset B with 106 OPs; (c¢) Dataset C with 244 OPs.

The clustering is applied based the dataset of 823 OPs shown
in Fig. 5. Since the OPs can influence all the elements in the
admittance matrix, the clustering is implemented based on Yuu,
Yaq, Y4a, and Yqq. The number of clusters is taken to be 20 for
clustering, which is sufficiently large to compare the
multivariable sensitivity relationship. Fig. 11 shows the
clustered Bode diagrams using Y4, as an example and the
clusters in the 3-D OP space. Each cluster is denoted by one
color. It can be seen from Fig. 11(b) that the admittance data is
clustered into more clusters in the dimension of Q and fewer
clusters in the dimension of V, indicating the variable sensitivity
ranking from high to low as: Q> P> V.

Thereafter, the dataset is increased based on Dataset A, by
selecting different samples in V, P, and Q. Four new datasets
that have close numbers of OPs are compared, which are listed
as follows:

e Dataset D only increases the stepsize in 7 to 0.03 p.u. and
keeps the same stepsizes in P and Q as Dataset A, resulting
in 89 OPs.

e Dataset E only increases the stepsize in P to 0.3 p.u. and
keeps the same stepsizes in / and Q as Dataset A, resulting
in 91 OPs.

e Dataset F only increases the stepsize in Q to 0.3 p.u. and
keeps the same stepsizes in V' and P as Dataset A, resulting
in 92 OPs.

e Dataset G considers a stepsize of 0.07 p.u. in V, a stepsize
of 0.4 p.u. in P and a stepsize of 0.3 p.u. in Q, resulting in
86 OPs. This data selection is based on the variable
sensitivity ranking from clustering analysis.
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Fig. 11 Admittance clustering results. (a) Clustered Bode
diagrams of Yug; (b) Clusters in the 3-D OP space.

The performance results of training Y4, with Datasets D-G are
compared in Fig. 12. It can be seen that by increasing the OPs,
the ratios of validation loss to training loss have all been
reduced compared with Fig. 10(a). Increasing O samples
achieves better training performance than increasing V or P
samples, because it reduces the ratio of validation loss over
training loss more. This verifies the variable sensitivity ranking
result concluded from clustering. Furthermore, when Dataset G
takes the variable sensitivity ranking into account to select the
OP samples, the data has the highest quality, which results in
the lowest ratio of validation loss over training loss as 0.824. It
is thus verified that the clustering can facilitate data selection
with higher quality.
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Fig. 12 Training, validation and test performance for training
Yay with different datasets with similar sizes. (a) Dataset D by
increasing V' samples; (b) Dataset E by increasing P samples;
(c) Dataset F by increasing Q samples; (d) Dataset G by
selecting samples in V, P, O based on variable sensitivity
ranking.

E. Summary and Discussion

According to the above studies, the suggested procedures for
FNN design of converter admittance model training are listed
as follows:

e The optimal number of hidden neurons of the FNN can be
found first based on searching over N within a reasonable
range, which is found as N=22 for this studied case.

e The sufficient number of OPs for effective training can be
found based on the flowchart of Fig. 3, which is around 100
OPs in this case.

e The clustering may further help improve the data quality by
selecting the number of variable samples based on the
variable sensitivity ranking, which is O>P>V for this case.

Considering the above findings, all the admittance elements
of the converter are finally trained based on a dataset of 116
OPs, with a stepsize of 0.05 p.u. in V, a stepsize of 0.4 p.u. in P
and a stepsize of 0.3 p.u. in Q. The training goal of each
admittance element is MSE<107'2. The trained FNN model is
compared with the analytical model in Fig. 13 using two
randomly selected OPs, which are not included in the dataset.
The good agreement shows that the trained FNN model can
well predict the features of admittance models under a wide
range of OPs through learning from a limited dataset.



—— FNN model = — = Analytical model OP:V=1.005,P=0.53,Q=0.44
Ydd Yd
20 1

20 /_/\
0 4’_—\—/\
-80

-100

Phase(deg) Magnitude(dB)

360
180
0 \_’ _\
-180
-360
Yqd Yqq

20
40 —/__/\.

-60
-80

-100

Phase(deg) Magnitude(dB)

360
180
0 \
-180
-360
10! 10 10° 10 10 10°
Frequency(Hz) Frequency(Hz)
(a)
——FNN model = = = Analytical model OP:V=0.956,P=0.83,Q0=-0.17
e Ydd Ydq
m -20
=
5 -40 /_/\
=]
Z
5 -80 —__\/\,
<
S -100
~ 360
2 180
=
3 0 \’
2
£ -180 _—\/_\/
Ay
-360
Yqd Yqq

20
-40 —/_/\

-60
-80

Phase(deg) Magnitude(dB)

-100
360
180
0 \
-180
-360
10! 10° 10° 10! 107 10°
Frequency(Hz) Frequency(Hz)
(b)

Fig. 13 Verification of FNN models for all the admittance
elements on Bode diagrams. (a) First randomly selected OP; (b)
Second randomly selected OP.

Through the case study, it has been shown that to train an
accurate impedance model for a converter system does not
requires huge amount of data (OPs to hundred level can be
sufficient). This makes it feasible for power system operators to
apply this approach for model identification of black-box
converter systems.

It is worth mentioning that the trained FNN impedance model
is only valid for the certain converter with fixed control
structure and parameters. Although in reality, the power system
may be integrated by a large number of power converters,
usually for a single application, e.g., in a wind or solar power
plant, the converters are manufactured by the same vendor,
thus, the converter control structure and parameters are the
same. It enables to aggregate a large power plant using one
equivalent power converter at its point of connection to the
power system. This is also how transmission system operators
require converter models from vendors for the system-level
dynamic studies [34]. Therefore, the developed FNN

impedance model for a single converter system is readily
applicable for transmission-level converter system modeling
and dynamic analysis.

VI. CONCLUSION

This paper has introduced a deep learning approach based on
multilayer FNNs for the frequency-domain modeling of power
electronic systems. In addition to basic implementations, it has
addressed several important concerns for practical applications,
including

e How to design and optimize the structure of FNN based on

the latent features of the system;

e How to select a small yet high-quality dataset that achieves

good learning performance.

Although this work has primarily developed the modeling
approach at the converter level, the method establishes a
knowledge base for applying deep learning in frequency-
domain dynamic studies of converter-based power systems.
Case studies have confirmed the effectiveness of proposed
methods and design procedures for practical scenarios.
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