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Abstract

A famous theorem by Reifenberg states that closed subsets of R” that look sufficiently
close to k-dimensional at all scales are actually C%7 equivalent to k-dimensional
subspaces. Since then a variety of generalizations have entered the literature. For a
general measure p in R”, one may introduce the k-dimensional Jones’ S-numbers of
the measure, where ,8,’3 (x, r) quantifies on a given ball B (x) how closely in an integral
sense the support of the measure is to living inside a k-dimensional subspace. Recently,
it has been proven that if these S-numbers satisfy the uniform summability estimate
f02 'Bxli (x, r)Zdr—’ < M, then  must be rectifiable with uniform measure bounds. Note
that one only needs the square of the S-numbers to satisfy the summability estimate,
this power gain has played an important role in the applications, for instance in the
study of singular sets of geometric equations. One may also weaken these pointwise
summability bounds to bounds which are more integral in nature. The aim of this
article is to study these effective Reifenberg theorems for measures in a Hilbert or
Banach space. For Hilbert spaces, we see all the results from R” continue to hold with
no additional restrictions. For a general Banach spaces we will see that the classical
Reifenberg theorem holds, and that a weak version of the effective Reifenberg theorem
holds in that if one assumes a summability estimate foz ﬂl’j (x, r)ldr—r < M without
power gain, then ;v must again be rectifiable with measure estimates. Improving this
estimate in order to obtain a power gain turns out to be a subtle issue. For k = 1 we
will see for a uniformly smooth Banach space that if f02 B }L (x,r)” dr—’ < MY? where o
is the smoothness power of the Banach space, then p is again rectifiable with uniform
measure estimates.
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1 Introduction

A famous theorem by Reifenberg [33] states that a closed subset S of R” that looks
sufficiently close to a k-dimensional plane at all scales is C*” -equivalent to a k-plane.
Easy examples show that in general Holder cannot be improved to Lipschitz. A set
satisfying Reifenberg’s theorem is often called Reifenberg flat.

Reifenberg’s theorem is remarkable but in some ways restrictive. It does not allow
holes in S, i.e., it cannot be applied to sets that are strictly contained in the bi-Holder
image of a k-dimensional plane, and it cannot give information on the Lipschitz struc-
ture of S. There are many applications which require these properties, and there have
been many results which address some variation of the question: given S or a general
measure u satisfying some kind of k-dimensional affine approximation property, then
what measure control or Lipschitz structure does this set/measure admit? Often tech-
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Effective Reifenberg theorems in Hilbert... 1141

niques from these theorems can be adapted to the context of Reifenberg’s theorem,
and vice versa.

One example of such an application is the analyst’s traveling salesman problem. In
[20], Jones provided a quantatitive condition that characterizes when a set in R? can lie
in a connected, rectifiable curve of controlled length, hence giving a “solution” to the
traveling salesman problem. Jones’ result was later extended to arbitrary codimension
by [29], and recently there has been interesting work by [3] which considers gener-
alizations of the analyst traveling salesman problem to higher dimension, for certain
“lower content regular” sets.

Jones [20] and David-Semmes [9,10] (in the context of harmonic analysis) intro-
duced various quantities now called Jones B-numbers, which give a quantitative
LP-notion of how k-dimensional a measure is (in this paper we shall deal almost
exclusively with the L? g-numbers). Let us define them here: given a Borel-regular
measure i on a normed linear space X, the k-dimensional S-number in B, (x) is

Bl (x.r)? = inf r7*2 / d(z, p+V)du(), (1.1)
p+Vk By (x)

where the infimum is taken over all affine k-planes p + V¥. [10] demonstrated

for Ahlfors-regular sets a remarkable connection between the S-numbers, L2-

boundedness of integral operators, and uniform rectifiability.

Toro [39] was the first to give geometric conditions on a Reifenberg flat set S, in
terms of bilateral S-numbers, to guarantee that S be bi-Lipschitz equivalent to a disk.
The work [11] of David-Toro refined Toro’s geometric condition addressing among
other issues the problem of holes in S. The authors showed that a certain “Reifenberg
flat set with holes” S satisfying the summability condition

= gk 2 dr 2 k
/ By s(x.1)"— = M~, forH"-ae.xeS (1.2)
0 - r

is contained in a manifold bi-Lipschitz to a k-plane. Notice that it suffices to assume
summability of the squared f-numbers. This extra power gainin R" isloosely speaking
a consequence of the Pythagorean theorem.

Azzam-Tolsa [4] and Tolsa [38] further generalized Reifenberg’s theorem to say
that a measure u is countably k-rectifiable (in the sense of Definition 2.5) if and only
if

#,k * k 2d_}’
0<®""(u,x) <oo0, ﬂﬂ(x, r) < oo atu-ae.x, (1.3)
0 r

here ®*F being the upper-density. Recently in [37], the author shows that one can
weaken the previous assumption and insist just on bounds on the lower density
@ﬁ (u, x) < oo.

Badger-Schul [5,6] used a modified B-number to characterize rectifiability in the
sense of Federer [14] for 1-dimensional measures. Federer’s notion of rectifiability
is weaker than Mattila’s [25], which is the notion we consider in this paper, and
remarkably different behaviors can occur when using the weaker definition (see for
example [16]).
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1142 N. Edelen et al.

In the recent article [13], we demonstrated effective measure/packing bounds and
Lipschitz structure for (possibly infinite) measures satisfying the condition

<k L dr 2
Bz, 1) - < M~ foru-ae.x, (1.4)
0

without any additional assumption of w. Toy examples show that, in general, one must
split spt u into a “low-density” region of bounded measure, and a rectifiable piece of
“high-density” which admits packing bounds.

There have several generalizations of Reifenberg-type theorems also to infinite-
dimensional spaces. In his thesis [35] Schul proved a direct analogue in Hilbert spaces
of Jones’ original traveling salesman theorem for curves, and Li-Schul [21,22] have
demonstrated the 1-dimensional traveling salesman theorems in the Heisenberg group,
where interestingly in this case the critical power gain is 4. Hahlomaa [17] extended
Jones’ theorem to metric spaces, using Menger curvature in place 8 numbers, and
David-Schul in [12] study the analyst’s travelling salesman problem and quantitative
rectifiability in Laakso spaces. We recommend the survey article [34] for a more
comprehensive exposition of these and other results.

This paper is concerned with studying effective Reifenberg theorems on Banach
spaces. We are particularly interested in when one can expect a power gain in the
summability condition, like in (1.2). We shall demonstrate measure/packing bounds
and Lipschitz structure for a measure p in a Banach space X, under the assumption

* ok wdr a2
A ﬂﬂ(x,r) - <M for p-a.e. x, (1.5)

where « € [1, 2] is some exponent depending on X and k. Clearly, a bigger o will
give a stronger result.

The value of « is intimately tied with the existence of a Pythagorean-type theorem,
and relatedly a good notion of projection. Fundamentally, we need to be able to say
that if a unit vector v is pushed “perpendicularly” by an amount §, then the norm of
v changes by ~ §“. In other words, we need to show that if |[v|| = ||w| = 1 and v
and w are orthogonal in a generalized sense, then ||v 4+ Sw|| ~ 1 4+ ¢§* for § small. In
practice this manifests itself in an improved bi-Lipschitz estimate for graphs, which
says thatif f : V — X is a “graph” over some plane V, with Lip(f) < €, then

x + ) — 5+ FODIP = Ilx = yII*] < ce®llx — yII* Vx,ye L. (1.6)

We will find that in any Hilbert space ¢« = 2, as there are natural notions of
orthogonality and the Pythagorean theorem holds. With this property, essentially the
same proof of the Reifenberg theorem in [13] carries over, although some care must
be taken to ensure that the estimates depend only on &, and not on the dimension of
the ambient space (which can be infinity).

Ina general Banach space we only have « = 1. One can only construct crude notions
of projection, and no Pythagorean-type estimate holds. Indeed, it is easy to construct
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Effective Reifenberg theorems in Hilbert... 1143

examples where the best estimate possible for unit vectors v, w is |[v +tw]|| < 1 + ¢,
i.e. the triangle inequality, see the example in Sect. 5.1.

The situation becomes more interesting when X is a uniformly smooth Banach
space. In general the modulus of smoothness attached to any Banach space, denoted
px (1), roughly measures the regularity of the unit sphere at scale . More precisely,

I+ vl + llx = I
px() = sup ( e Bt B (1.7)
lxl=L. liyll=t

The faster px(¢) decays with t — 0, the more regular the space. The triangle
inequality always gives the crude bound px () < t, while the best bound px () <
A1+ t2 — 1 is achieved only by Hilbert spaces (see [28] and [24, Proposition 1e2 p
61]). In L? spaces we have

pltp (1<p=<2

(p—Dt? 2<p<o0) (1.8)

pLr(t) < {

X is called uniformly smooth if px (t) = o(t). See Sect. 3.5 for details and references.

It turns out that when k£ = 1, and X is uniformly smooth, then we have a good
notion of projection, and a related Pythagorean theorem which says that when v, w
are “orthogonal” unit vectors, then |[v + tw]|| & 1 + px(¢). In this case we can take
a to be the power of smoothness, which is basically the largest number for which
px (1) = O(t%). The example in Sect. 5.1 provides a good intuition for this case.

We shall see in Example 5.5 that even in finite dimensions the power gain of (1.6)
breaks when k > 2 and X is not Hilbert. The lack of an improved estimate (1.6) shows
that the bi-Lipschitz bound of Theorem 2.8 fails when £ > 2, and strongly suggests
that the measure/packing bounds of Theorem 2.1 do not admit a power gain o > 1 for
general uniformly smooth X and k > 2.

2 Main theorems

Our main theorem is a combination measure and packing estimate for u satisfying a
summability condition like (1.5). The theorem effectively splits B (0) into a region
of “low-density” with measure bounds, and a region of “high-density” with packing
bounds. Without further assumptions on u easy examples show this kind of decom-
position is necessary.

Theorem 2.1 Let X be a Banach space, and u be a finite Borel measure with
W(X\B1(0)) = 0. Take S C B1(0) a set of full u-measure, and ry : S — Ry a
radius function satisfying 0 < ry < 1. Assume w satisfies
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1144 N. Edelen et al.

2 dr
/ Bli(s.r)*— <M VseS, 2.1)
Fg r

where « is the critical exponent for our problem. Precisely:

1. if X is a generic Banach space, then o = 1,
ii. if X is a Hilbert space, then a = 2,
iii. if X is a uniformly smooth Banach space, and k = 1, then « is the smoothness
power of the Banach space X.

Then there is a subcollection S C S, so that we have the packing/measure estimate

2 (&(O)\ U Brs,(s/)> <ctkopOM, and Y ik <ctkopx). (22)

s'eS s'eS

Remark 2.2 Note that by standard measure theory arguments, a finite Borel measure
on a metric space is Borel-regular, see [30, theorem II, 1.2, pag 27].

Recall from (1.7) the modulus of smoothness px (¢) and the smoothness power « for
a Banach space X. We will recall the precise definitions of these objects in Sect. 3.5,
here we simply remind the reader that € [1, 2] and its “best” value « = 2 is achieved
by any Hilbert space. For a general Banach space we have & > 1; and for X = L? we
have « = min{p, 2} when 1 < p < 0o, and @ = 1 when p = oo.

Asacorollary, when  is discrete or has a priori density control, we obtain a measure
bound directly. Moreover, we can easily weaken the pointwise assumption (2.1) to an
weak-L! type assumption. Precisely, we have the following theorem.

Corollary 2.3 (Discrete- and Continuous-Reifenberg) Let X be a Banach space, and
let u be a Borel measure with w(X\B1(0)) = 0. Suppose j satisfies

: k «dr a2
w zeBl(O):/ Bh(z.r)*— > M <r, (2.3)
0 r

where « is the critical exponent for our problem as defined in Theorem 2.1.
Suppose additionally one of the following:

A) w is a packing measure of the form

w= asriss 24)
seS

where { B, (xs)}s are a collection of disjoint balls centered in B1(0) witha, € (0, b]
and 0 < ry < 1; or

B) ®§(u, x) < b for p-a.e. x; or

O u< kaLSfOV some subset S.

Then

wn(B1(0)) < c(k, px)(M +b) +T. 2.5
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Effective Reifenberg theorems in Hilbert... 1145

Remark 2.4 Notice that no a priori finiteness of p is necessary in Corollary 2.3.

Similarly to the Euclidean setting, our methods give not just measure/packing
bounds but also a rectifiable structure. Let us first make explicit our notion of rectifi-
ability of a measure. Our definition coincides with [25]. Another common definition,
which we shall not consider here, is due to [14], and does not require p << H’ k,

Definition 2.5 Let p be a Borel-regular measure in a metric space X. We say u is
countably k-rectifiable if there are Lipschitz mappings { f; : B{(0) C RF — X 12, so
that

m (X\ U ns (0») =0, 2.6)

i=1
and p is absolute continuous with respect to . We say a subset S of X is countably
k-rectifiable if H*_S is countably k-rectifiable.

We obtain the following analogue of [4, theorem 1.1] and [27] in the Hilbert-Banach
space setting, see also the recent preprint [37].

Theorem 2.6 Let X be a Banach space, and let i be a Borel measure in X with
W(X\B1(0)) = 0. Suppose for p-a.e. x we have the bounds

2
d
/Oﬂ,’j(x,r>“7r<oo, Ok (1. x) <00, ©°F(u,x) >0, @7

where « is the critical exponent as in Theorem 2.1. Then | is countably k-rectifiable.

In particular, we have the corollary

Corollary 2.7 Let X be a Banach space, and S C B1(0). Suppose we have
2k dr k
/ B (s N— <oo forH-aexes, (2.8)
0 - r
where « is the critical exponent as in Theorem 2.1. Then S is countably k-rectifiable.

2.1 Reifenberg-flat sets

Finally, let us consider the special case when S is a Reifenberg-flat set. In n-dimensional
Euclidean ambient spaces, this problem has been extensively studied in literature. The
main references for this are [11,39] for generic k. For k = 1, this problem is closely
related to the analyst’s traveling salesman problem, and has been studied in [20,29].
A nice generalization of this last result in Hilbert spaces has been recently obtained in
[35]. As mentioned in the introduction, some results on this are available also in the
Heisenberg group setting, see [15,21,22], and in the metric space setting, see [17]. A
recent survey on these results is available in [34]. Our aim is to extend these results,
and in particular [39, main theorem] to the general Hilbert-Banach space setting.
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1146 N. Edelen et al.

For Reifenberg flat sets, as in Reifenberg’s original theorem, we can gain topological
information on S. Let us recall that a set S C X is called (k, §)-Reifenberg flat on
Bj (p) the following holds:

in{dH(S NB(x),x+V)NB.(x)) <ér Vxe SNBy(p) andVO <r <2,
14

(2.9)
where the infimum is taken over all k-dimensional linear subspaces V¥ C X.

Let us further define the S, numbers, which in the case of Reifenberg-flat sets are
perhaps more natural to work with than the L2- numbers above. We set

B (x,7) = inf{8 : SN B (x) C By (x + V)}. (2.10)
’ \%4

When § is sufficiently Reifenberg flat in a Banach space, as a corollary to the proof
of Theorem 2.1, we can deduce the S is bi-Holder to a k-disk. If we additionally
assume a summability condition on the Bo,-numbers like (1.5), then S is bi-Lipschitz
to a k-disk.

Proposition 2.8 Let X be a Banach space, and take y € (0, 1). There is a constant
81(k, y) > Osothatthefollowing holds. Let S be a closed, (k, §)-Reifenberg-flat subset
of X, with 0 € S, and 8 < 81. Then we can find a k-plane V¥ C X, and mapping

¢ : VK > X, so that ¢ = id outside B3,2(0), and S N B1(0) = ¢(V) N B1(0), and ¢
has the bi-Holder bound

(1= c(O®x =y < lpx) —pWMII < A+ c®))||x — yl|” Vx,y e V.
(2.11)

If additionally we have a bound of the form

2 k dr
/ B oox,1)*— < Q0% Vx eS8, (2.12)
0 ’ r

where « is the critical exponent for our problem as in Theorem 2.1, and § < 8, (k, px),
then ¢ is a bi-Lipschitz equivalence with

e PO 1 — 3| < lp(x) — g < e EPOL x —y|l. (213)

3 Preliminaries
In this section, we collect some basic preliminary estimates that will be useful for our

main construction. Throughout this paper X will always denote a Banach space. Any
additional properties that we may assume will be made explicit.
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Effective Reifenberg theorems in Hilbert... 1147

We make repeated use of the following elementary principle. If f : A C X — X
is a mapping satisfying

e =y < If@ = fFOIN < lx =yl Vx,ye A (3.1

for some ¢ > 1, then f is a bijection onto its image, with Lipschitz inverse. We will
refer to f satisfying (3.1) as a bi-Lipschitz equivalence, with bi-Lipschitz constant
bounded by £. We note that, trivially, (3.1) is implied by the much stronger condition

() —x) = (f) = I <ellx =yl (e <1). (3.2)
Given a Lipschitz function f : A C X — X, we write

Lin(F) = sup W= 7O a3
x#yeA [lx = ¥l

Typically script letters like G, B, S, etc. will denote collections of ball centers. We
will generally denote elements of such a G by the corresponding lower-case letter g,
and write r, for the radius function. So, e.g. { B, (s)}scs Will be the balls indexed by
S.

We will reserve x < 1 for the scale parameter, and we shall write v; = x' for
shorthand.

We require the following truncated partition of unity. Its construction is standard
but for the reader’s convenience we detail it here.

Lemma 3.1 There is an absolute constant y so that the following holds. Let
{B3-(xi)}ic1 be a collection of balls in X with overlap bounded by T, i.e., so that
forall x € X:

#{liel:x € B3 (x;)} <T. (3.4)

Then there exist Lipschitz functions ¢; : X — [0, 1] satisfying:

spte C By (xi), Y ¢i=1lon|JBrs(xi), Lip(¢)) <yT/r. (3.5

We may call ¢; the truncated partition of unity subordinate to { B3, (x;)}i.

Proof Letb : Ry — R, be the piece-wise-linear function b(t) = (3 —1), and define
the Lipschitz functions

Vi (x) = b(|lx — xi[|/r). (3.6)
Y; have the following properties:

spty; C B3y (x;), O0=<vy; <3, Lip(yy) <1/r, ;i >1/20n By5,(x;).
3.7
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1148 N. Edelen et al.

These are our local cutoff functions.
Let

s() =) Yi(x). (3.8)

By the finiteness assumption, s is well-defined and Lipschitz, and satisfies

spts C Ui B3, (x;), 0=<s<3I', Lip(s) <T/r, s>1/20n U; By5-(x;).
3.9)

We define the global cut-off. Let 2 : R; — R, be the piece-wise linear function

0 t 0, 1/4]
hty=1{4t—1 te[l/a,1/2] , (3.10)
1 t e[1/2,00)

so that if we set f(x) = h(s(x)), then f satisfies:

sptf C{s>=1/4}, 0=<f <1, Lip(f) <4L'/r, f=1lon U; Bs;;(x;).
G.11)

For each i we now define

$i(x) = f(x)%. (3.12)

Since spt (fvi/s) C {s > 1/4} one can verify directly this satisfies the required
estimates. O

3.1 Beta numbers

Recall Definition (1.1) of the S-numbers for a measure p. We first collate some
standard properties of the § numbers. The proof is elementary.

Lemma 3.2 B is monotone in u, in the sense that if /' < ., then

Bl (x. 1) < Bl (x. 7). (3.13)

Moreover, from the definition it follows immediately that if B, (x) C Bgr(y), then

Bl (x.r) < (R/N2BR (3, R). (3.14)
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As an immediate corollary, we have the inequalities

g 2r
By (x,r) sdk)f Bl (v, 2r)du(y), and Bj(x.r) < c(k) 5,’;(x,s>d—s (3.15)
By (x) r s
In particular, if w(X\B1(0)) = 0, then
© dr 2 X dr
/ B (x,r)— SC(k)/ B, (x,r)— Vx € B1(0). (3.16)
0 ® r 0 ® r

Finally, we point out that B is scale-invariant in the following sense. If we set [iy , =
rku(x +rA), then B (0,1) = B (x,r).

We also record this easy measure-theoretical lemma about integral bounds on beta
number vs pointwise bounds.

Lemma 3.3 Let i be a Borel measure with v (X\ By (0)) = 0 and with upper Ahlfors
bounds

w(Br(x)) <Tr* Vx € B1(0),0 <r <1. (3.17)
For all 81, 8> > 0 fixed, if
2 k ads
Bz, 8)" —du(z) < oo, (3.18)
B1(0) JO s
then for p-a.e. x € B1(0), there exists Ry, > 0 such that
2r
k o« ds k
u{zeBr(x): ﬂﬂ(z,s) — >81} < §r" VYO0 <r < R,. (3.19)
0 N

Proof Let F be the set of points for which (3.19) does not hold. Fixany 0 < R < 1/4
arbitrarily small. By definition, for all x € F, there exists some positive sy < R such
that

1 25+ d
sk< —pulze B (x): Bz, 502 5 s L (3.20)
52 0 w S

Choose a Vitali subcovering { By, (x;)}; of { By, (x)}xeF, so that { By, (x;)}; are pairwise
disjoint and

F < | Bsy (xi) . (3.21)
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1150 N. Edelen et al.

Notice that by (3.20) and the finiteness of u, this covering is at most countable. Then
we calculate

u(F) < Z 1(Bss; (xi)) < 5T Zs

2?,
<c(")_zsl/g( / Bz, ) —du(z)

2R
=< C(k)—/ / ﬂ (z,8)" —dM(Z) (3.22)
3281 J By (0)

By dominated convergence, and since R is arbitrarily small, ©(F) = 0. O

3.2 General position

A concept that will be essential for us is the concept of points/vectors in general
position. This definition, in one form or another, is already present in literature, but
we recall it here for the reader’s convenience.

Given a set of vectors {vy, ..., v}, these vectors are linearly independent if and
only if for all i, v; # 0 and v; ¢ span(vy, ..., vi_1). Here we recall a quantitatively
stable notion of linear independence that will have two main applications: one is to
provide us with a notion of “basis with estimates” in a Banach space, something
resembling an orthonormal basis in the Hilbert case. One other important application
will be given in the definition of good and bad balls in Sect. 3.7.

Definition 3.4 We say that vy, ..., vg are in T-general position if for each i we have
T < vl <t and

Vit1 ¢ Br(span(vy, ..., v;)). (3.23)
Equivalently

d(Vit1, span(vy, ..., v;)) > T. (3.24)

In the following lemma, we see that a choice of basis in general position for a finite
dimensional (sub)space V C X induces a linear isomorphism between V and R with
uniform estimates.

Lemma3.5 Let vy, ..., vx be vectors in t-general position in X, and let V be its
k-dimensional span. Then for any v € V, we can write (uniquely)

v=> A (3.25)
i

where

citk, D7 vl = Y il < ertk D] (3.26)
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Remark 3.6 In this lemma, we are basically saying that if we identify V with R¥ via
the basis v;, then the /! norm in this base is equivalent to the original norm ||-||. It
is clear that, up to enlarging the constant by another c(k), this statement is true also
for all /” norms in R¥. To be more precise, there is a constant c(k, 7) so that if V is
identified with R via the basis v;, then for any p € [1, oo] we have

cte, ) Mlvller < lvllx < ctk, Dllvller Vv € V =RE, (3.27)
Proof The bound ||v|| < 77! > 12i| follows trivially from the triangle inequality.
We prove the other bound.

We proceed by induction. The Lemma is obvious for k = 1. Suppose now the
Lemma holds for kK — 1, and take v € V with

k
v = invi , (3.28)
i=I

and without any loss of generality we can assume ||v|| = 1.
We claim that [Ar| < 2/7. Otherwise, we could write

1 Ai 1
Vg = —0U — —v,=—v+uw, (3.29)
Ak ; Mok
for w € span(vy, ..., vg—1). In particular, we would have
d(og, span(ur. . .., ve_1)) < v — wll < % <72, (3.30)
k
contradicting t-general position of the v;.
Therefore, |A;| < 2/t, and we can write
k—1
V= dvp = Y Aivi s (3.31)
i=1

where ||v — Azvg|| < 1 4 2772, By our inductive hypothesis, we have

k—1
D Il < etk A +217%), (3.32)

i=1

which proves the Lemma for k. In fact, the inductive argument shows that [A;| <
(1 + 2 D)=+ ). u]

Lemma 3.5 implies the following crucial fact: up fo linear transformation with
uniform estimates, any two norms on a finite-dimensional space are equivalent with a
constant depending only on dimension.
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Lemma3.7 Let V be a k-dimensional plane in a Banach space X. Then for any
T € (0, 1), we can find unit vectors v; € V lying in t-general position. In particular,
if we take T = 2/3, and define the linear map ¢ : (V, || -||) — (]Rk, [l - 12) by

$) = ()i, v=) i, (3.33)

(so that ¢ identifies V with R¥ via the basis v;), then ¢ is a bi-Lipschitz equivalence,
with [|¢]] + 119" I| < e (k).

Proof We construct the v;. For v; take any vector in V of length 1. By inductive

hypothesis, suppose we have constructed vy, ..., v;. Now by Riesz lemma [32, Theo-
rem I1.4] we can pick v;4+1 € V with ||v;11]|| = 1, and d(vj+1, span(vy, ..., v;)) > T.
By induction we obtain the required v;. The Lipschitz bound on ¢ follows immediately
from Lemma 3.5. O

Here are some important corollaries of this equivalence. First, almost-disjoint balls
lying close to a k-plane in a Banach space admit a k-dimensional packing bound.

Lemma 3.8 Let p + V be an affine k-dimensional plane in a Banach space X, and
{Br, (xi)}iel be a family of pairwise disjoint balls with r; < R, x; € Br(p), and
dxi,p+ V) <ri/2. Then

> k< eRE (3.34)

Proof We can suppose for convenience that p = 0. For each i, choose x; € V with
[lx! —x;|| < r;i/2.Then By, ;2(x))NV C By, (x;). Take ¢ as in the previous Lemma 3.7.
Then we get

Brjew (00 € RF) € 6 (B2 (x] € V) € Buwrr, () € RY) . (335)

and the Euclidean balls {B;, /cx) (¢ (x{ ) € RF)}ies are pairwise disjoint and all con-
tained in the ball B« g (O € ]Rk). The estimate now follows from standard Euclidean
volume arguments. O

Second, balls in a k-plane in X admit uniform upper and lower Hausdorff bounds.

Lemma 3.9 Let V be a k-dimensional plane in some Banach space X. Then for all
x eV,

ctk) ' < HMNB, (x) N V) < c(k)rk. (3.36)

Proof Direct from the existence of ¢ in Lemma 3.7, and the behavior of Hausdorff
measure under Lipschitz mappings. O

Third, disjoint balls close to a k-plane, and clustered reasonably near a (k— 1)-plane,
admit a (k — 1)-dimensional packing bound.
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Lemma3.10 Let V be a k-plane in the Banach space X, and take L a (k — 1)-plane
inV. Let {xj}ics be a2yr/5-separated set in

B,(0) N By, /10(V*) N Bioyg (L. (3.37)

Then for x < 1 we have that #1 < cp(k)x '~

Proof Foreachi choose x/ € V with ||x; —x/|| < xr/10. Then the balls { B,,/10(x;)};
are disjoint, and contained in V N B,(0) N Byjy,(L). Take ¢ : V — R¥ as in
Lemma 3.7. By the same logic as in the proof of Lemma 3.8, we get that the balls

{er/c(k) (0 € R") }l_ (3.38)
are pairwise disjoint, and contained in set Bk (0 € RF) N Begryyr (¢ (L) C R¥). The
result follows by a standard volume argument. O

We close this section by observing the following stability property for vectors in
T-general position.

Lemma 3.11 Suppose v1, ..., vi are vectors in T-general position, and vectors w; are
chosen so that

lw; —vill <€, (3.39)

then w; are in (t — c(k, t)€)-general position.

Similarly, if xg, . .., xx are points so that {x; —)co}f:1 are in t-general position, and
yi are chosen so that ||x; — y;|| < €, then the vectors {y; —yo}f:1 arein (t—2c(k, 7)€)-
general position.

Proof We need to show that
i
w1 — Y Ajwi| =7 —c(k, 1), (3.40)
j=1

for any collection Ay, ..., A; of real numbers.

There is no loss in assuming € < 27 ek, )7 (e being the constant from
Lemma 3.5), by requiring ¢ > 2c;. First, suppose Zj [Aj] = 2ci1(t + 7~1). Then we
have by Lemma 3.5 and our hypothesis:

v

i k k
wi+1—ijwj Z)»jvj - Z)»j(vj—wj) = [lwi1l]
j=1 Jj=1 Jj=1

v

i
' =a> -t =1 (3.41)
j=1

Now suppose j [Aj] <2c1(t + ™). Then using our hypothesis we obtain
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%

i
wi+1—2kjwj vi+1—z)»jvj — [lwit1 — vig1l]
i=1 j=1

- Z)»j(vj —w)| =1 —e(+2c(r7 +71). (342)
j=1

This establishes the required bound. The second assertion follows directly. O

3.3 Distance to subspaces

Here we recall the notion of Hausdorff distance between sets and Grassmannian dis-
tance between linear subspaces, and prove some basic estimates on these two. We
shall see how effective bases give us good estimates over nearby spaces.

Definition 3.12 Given two sets A, B C X, the Hausdorff distance between dg (A, B)
is defined as

dy(A,B) =inf{§ >0 s.t. AC Bs(B) and B C Bs(A)}. (3.43)
Note that dy (A, B) = dy (A, B), and in particular the Hausdorff distance is a metric
only on closed sets.

It is clear that the Hausdorff distance by itself cannot provide a reasonable notion
of distance between linear subspaces. Indeed, dy (V, W) # oo only if V = W. For
this reason, we introduce the Grassmanian distance in the next definition.

Definition 3.13 Given two linear subspaces L, V C X, we define the Grassmannian
distance between these two as

dg(L,V)=dyg(LNB1(0),VNB1(0) =du(LNB;(0),VNB;(0)), (3.44)

Note that if dim(L) # dim(V), thendg(L, V) = 1.

In the next lemma, we recall a basic fact about linear and affine subspaces. While
for two general sets it is highly non true that A € Bs (B) implies B € B.s (A), for
affine subspaces of the same dimension something similar to that is true.

Lemma3.14 Let p + V and q + W be k-dimensional affine subspaces in X, with
(p + V)N By2(0) # @. Suppose

(p+ V)N B1(0) C Bs(g +W). (3.45)
Then we have
du((p + V)N B1(0), (g + W) N B1(0)) < c(k)é, (3.46)

and in particular, dg(V, W) < c(k)d.
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Proof As it is self-evident, the requirement that V and W have the same dimension
is crucial for the lemma. This suggests that the proof is based on some argument
involving affine basis for p + V and ¢ + W and comparisons between the two. We
can take § < 8¢ (k) by ensuring c(k) > §, I

Let po € p+ V be a point of minimal distance from the origin, so that || po|| < 1/2.
Take p1, ..., pr € (p+ V)N Bys10(0) a sequence of points such that

lpi — poll =1/3 and p; ¢ po+ Bzso (span(py — po, ..., Pi—1 — Po)) -
(3.47)

One can find the p; using the Riesz lemma as in Lemma 3.7. In particular, this implies
that {(p; — po)}f: | are vectors in 2/9-general position in V. By hypothesis, we can
pick g; € g + V such that ||g; — p;|| < 28. From Lemma 3.11 the {g; — qo}fle are in
1/9-general position provided (k) is sufficiently small.

Take some y € (g+ W)N B1(0). Then by Lemma 3.5 there are numbers o; = «; (y)
so that

k
y=qo+ Y aigi—qo), lai| < c(k). (3.48)

i=1

If welet x = x(y) € p + V be the point defined by

k
x=po+ Y ailpi—po), (3.49)

i=1
then
k
ly = xI1 < llgo — poll + Y _ lei| [llpi — qill + [1po — goll] < c(k)8. (3.50)
i=1

Therefore we have (¢ + W) N B1(0) C Begys(p + V).
One can easily check that, since max{||p||, ||¢||} < 3/4, we have

B.((p+ V) N Biye) C Bioe((p + V) N B1(0)) , (3.51)

and the same for g + W. The lemma now follows directly. O

3.4 Almost-projections, graphs

In this section, we recall some basic definition and properties of linear bounded pro-
jections in Banach spaces, and use this notion to define graphs over finite dimensional
subsets. Before beginning, we mention the fact that bounded linear projections over
Banach spaces behave differently than in Hilbert spaces. In a Hilbert space H, all closed
subspaces V have a linear projection ry of norm 1 and such that V @, "0)=H.In
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Banach spaces norm-one linear projections are very rare objects. Indeed, if a Banach
space X of dimension > 3 admits a norm-one linear projection for all of its two dimen-
sional subspaces, then X is a Hilbert space. This is a classical result in Banach spaces,
see the recent survey [31, section 3].

In order to distinguish the nice Hilbert space projections from their rougher Banach
counterparts, we are going to call a linear projection on a Banach space with norm
bounded (but not by 1) “almost projections”.

We start by recalling an easy consequence of Hahn-Banach theorem.

Lemma3.15 Let L : A — V be a continuous linear operator from a linear subspace
A C X to a k-dimensional Banach space V. Then there exists a bounded linear
extension L : X — V satisfying

IILI| < c(®)|L]]. (3.52)
Proof Let {w;} be a unit basis for V lying in 2/3 general position, see Lemma 3.7, and
identify V with R¥ via this basis. By Lemma 3.5, we know that ||| ;oo (gky 1s uniformly
equivalent to the original Banach norm on V. In other words, for all w € V, we have

that the components ¢; : V — R given by ¢; (w) = ¢; (3_; Ajw;) = A; are uniformly
bounded linear maps with

il < c(k). (3.53)
Define ¢; : V — R by setting
Vi(v) = ¢i(L(v)). (3.54)

Then we have [|;]| < c(k) ||L||, and by Hahn-Banach [32, Theorem IIL5], for each i
there exists a norm preserving extension v; of v; to the whole space X. Set

Ly =) ditow;. (3.55)

We have
LWV < ) 1L sy < c®) Iy [1x]ly. (3.56)
a

We can use this lemma to give a trivial proof of the following:

Lemma 3.16 For any linear k-space V, there is a linear map wy : X — V satisfying
the following:

A) ty(v) =vforallveV,
B) [yl < c3(k),
C) given any W with dg(V, W) < €, then ||my (w) — w]|| < c3(k)el|w]].
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Proof If we let L : V — V be the identity operator, then take 7y to be the linear
extension of L from Lemma 3.15.

Now given w € W, where dg(W, V) < €, we can by assumption findav € V
with |[|w — v|| < €||w]||. Then we have

Iy (w) —w|| < ||y (w) — 7wy (W)[| + [l7v (V) — V|| +[[v — w]] (3.57)
= +ct)llv —wl| (3.58)

< c(b)el|w]]. (3.59)

m

Definition 3.17 We shall call any linear map = : X — V satisfying the conditions
A)-B)-C) of Lemma 3.16 an almost-projection for V. Given any almost-projection r,
we abuse notation and write 71 1= Id — 7.

Given an affine k-space p + V, we define mry in terms of the associated linear space
V. An affine space p + V admits a notion of almost-affine-projection

M(x) == p+7avx —p) =7y (p) +7v(x), (3.60)

which is independent of choice of p € p + V.

An important but easy consequence of the definition of almost projections is the
following.

Proposition 3.18 Let V, W be linear k-spaces, with almost-projections wy, wwy. Sup-
pose dg(V, W) < 8. Then

|7y (rw ()| < c3(k)?8]1x]]. (3.61)

Proof We have by Lemma 3.16 part C):
ll7if Grw )| = [lww (x) — 7wy (rw ()| < e38llmw (O] < e38l1x]l. (3.62)
O

Almost projections allow us to define a tractable notion of graph in a Banach space.

Definition 3.19 Given an affine k-space p+ V, and almost-projection 7y, we say a set
G is a graph over (V, my) if there is a domain 2 C p 4 V, and function g : 2 — X,
so that

G={x+gx):x e}, and ny(gx)) =0. (3.63)

For short we will often write G = graphg, ., (8).

Remark 3.20 Lemma 4.2 demonstrates that graphicality is “well-defined,” in the sense
that whenever G is a (small) graph with respect to some almost-projection i, then G
is a graph with respect to any other almost-projection (although with a slightly worse
bound).
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3.5 Modulus of smoothness

The norm in a Banach space is evidently a Lipschitz function, but in general nothing
more can be said. For example in L*°[0, 1] it is easy to see that the sup norm is not
cl.

The modulus of smoothness of a Banach space (X, ||-||) measures in a quantitative
way how smooth the norm of this space is. Here we briefly recall its definition and
main properties, for more on this topic we refer the reader to some standard reference
for Banach spaces (see [23,24]), and to some specific important articles related to this
subject (see [1,2,8,18]). Needless to say, since this topic has been extensively studied
in literature, these references are not exhaustive. Moreover, this notion is intimately
related via duality to the perhaps more standard notion of modulus of convexity.

Definition 3.21 Given a Banach space X, we set py : [0, 00) — [0, c0) to be its
modulus of smoothness, defined by

px(t) = sup <||x +yll+llx — yll) 1 (3.64)
lxll=1llyll=t 2

We say that X is uniformly smooth if lim,_o 7~ !px(f) = 0, and we say that is of
smoothness power-type « € [1, 2] if

limsupt “px (1) < oo. (3.65)

t—0

An easy consequence of the convexity of ||-|| is that py is a convex function.

Remark 3.22 Note that 0 < p(t) < t by the triangle inequality, and that for any Hilbert
space H, py(t) = +/1+ t%2 — 1. In fact Hilbert spaces are the “smoothest” possible
Banach spaces, in the sense that for any Banach space X, we have px (1) > pp (¢) (see
[24,28]).

Example 3.23 As a first example, we recall that when X = L?, we have

p~ P +o(tP) 1<p<2)

(p—D2+01* QR<p<o0)’ (3-66)

pLr(t) < {

This follows from Hanner’s inequality (see [18], [24, pag 63]).

If X is uniformly smooth, then its norm is continuously differentiable away from
the origin. In such a space, the gradient of llx 1% /2 is equal to the functional J(x),
where J is the normalized duality mapping between X and its dual X*. Since this
mapping is going to play an important role in the following, we recall its definition
and some of its properties here.

Definition 3.24 Given any Banach space X, let X* be its dual. A normalized duality
mapping J : X — X* is a mapping satisfying

1Ty = lxlly » (), x) = IIx]I? (3.67)
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where (¢, x) = ¢(x) is the natural pairing between a functional ¢ € X* and an
element x € X.

Example 3.25 The easiest example of mapping J is given in a Hilbert space
(H, (-, -)g), where the Riesz representation theorem states that J(x) = (x, )y is
anormalized duality mapping, and actually it is the unique map with these properties.

For the reader’s convenience, we also recall what the mapping J is in the real
Banach spaces [,,. For p € (1, 00), there exists a unique J determined by

*]7

J((xikis)) = (ZIX:I”) {Ix P2 ]Zl ely =1, (3.68)

On /1, we can write

J (xi}2)) <Z |xi ) {sign(x)}i2, €lf =lw, (3.69)

i=1

where sign(x) is the sign function for x € R\{0}, and it can be any number in [—1, 1]
if x = 0 (thus J is not uniquely determined on /7).

The most important property of J for us is the following effective continuity:

Lemma 3.26 ([1, equation 7.7]) If X is a uniformly smooth Banach space, then

px (@llx = yll/R)
[/ (x) = Tl x §8RW, (3.70)

where R = \/(||x||2—|— [Iy11%)/2.

Asadirect Corollary of Lemma 3.26, and the definition of J, we obtain the following
Pythagorean-type theorems (similar to [1, theorem 7.5], [2, theorem 2.11])

Lemma 3.27 Let X be a uniformly smooth Banach space, then

41yl
1+ I3 = 1xI?] < 20 (Jx, ) |+ 4111 + 1y 1P oex <— :

VI + 11112

(3.71)

In particular, we mark two special cases. Let V¥ be a k-dimensional space in X. If
7 (x) is an almost-projection to V, then for every x:

K1 = 1ol | < 21 (700, 7))+ 8es (01| Ppx (1111
(3.72)
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If f : V — X is a Lipschitz mapping, with Lip(f) < € < 1, then

x4+ F()) = (v + FONI? = llx — yl?
<[ (Jx =), f(x) = FO)) |+ 8pxde)|lx — yII?, (3.73)

foreveryx,y e V.

Proof Let y(t) = x 4 ty. Then we compute

1
[+ ¥112 = 11x17] = '/0 2(7y (). y' (1)) dt (3.74)

1
<2|{Jx,y)| +/ 21{(J(x +ty) — Jx, y)|dt. (3.75)
0

If we define

R =\l + 1912 + 151772 = Il + 1512, (3.76)
then using Lemma 3.26 and the convexity of py, we bound

P @lyll/R(®))

24 G+ 1y) = Jx,y) | £ 2-8RO= e =l (3.77)
= 4R(1)*p(4|y|l/R(1)) (3.78)
< AR 11112+ Y1 PGyl 1X]12 + 11y112) (3.79)
< 4(1x I+ yIP)e@yI/ I+ 1IyI12). (3.80)

This establishes (3.71).
To prove (3.72) replace x with 7 (x) and y with 7+(x) in (3.71), and use the bound
[l]| < c3(k). To prove (3.73), replace x with x + f(x), and y with y + f(y). O

Remark 3.28 Notice that if (J|y, 7) = 0 (so that 7 is an “orthogonal” projection),
then (3.72) becomes

1112 = 117 @)IP| = e lIIPox (I @1/1x1D: (3.81)

3.6 Canonical projections

In certain cases we have a canonical notion of projection, which admits better bounds
than a generic almost-projection.
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3.6.1 Hilbert spaces

If X is aHilbert space, and V is a k-plane, then V admits a unique orthogonal projection
my : X — V, with the property that

v O + [lx — 7y ()12 = [1x]]%. (3.82)

Correspondingly, in a Hilbert space we have a canonical notion of orthogonal com-
plement v+ = ker(my), for which JT‘J/‘ = my L, in the notation of Definition 3.17.
Moreover, from the Pythagorean relation (3.82),

d(x, V) = Iy ()] = [l (0] (3.83)

Finally, let us remark that trivially, the orthogonal projection is an almost-projection.

The fact that projections in Hilbert spaces are canonical allow us to give a different
definition of distance between subspaces. In particular, given V, W to linear subspaces
in H, we could define a distance between V and W by taking the operator norm
lry — wll. As it is not difficult to see, this notion is equivalent to dg(V, W). Here
we recall a standard lemma needed to show this equivalence, that will be stated in
more generality later on in Lemma 3.32.

Lemma3.29 Let V, W be linear subspaces of a Hilbert space. Then dg(V, W) =
dg(V+, wh.

Proof Standard, see e.g. [27, Lemma 4.3]. O

With this easy lemma, we can show as promised that

Lemma3.30 Let V, W be linear subspaces of a Hilbert space H. Then for every
x € H,

Iy (x) — 7w (O < da(V, W)||x]]. (3.84)
In the converse direction we have

dg(V, W) = ”SIHJ_p1 {llry (x) — 7w (O I} - (3.85)

Proof Let x be such that ||x|| = 1, and set x = 7y (x) + 7y 1 (x) := y + z. Then

Iy (x) — 2w O = |y — 2w (3) — 7w @I1? = |y — 7w W II?
+ 2=y =d(y, W) +dz WhH2. (3.86)

Since y € V, then d(y,W) < |lylldg(V,W), and similarly d(z, wt) =
Izl d(VE, Wh). Since ||y[|?> + lIz]I> = 1, by the previous lemma we get
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Iy (x) — 7w I < Iyl? dg(V, W) + [1zII> d(VE, Wh? = dg(V, W)?.
(3.87)

This proves (3.84). (3.85) is an easy consequence of the definition of dg(V, W). O

3.6.2 Curves in smooth Banach spaces

If X is uniformly smooth, then the normalized duality mapping between X and X*
provides us with a canonical (norm one) projection onto one dimensional subspaces,
as described in the next Definition. Moreover, thanks to the results [1, theorem 7.5],
[2, theorem 2.11] we have a generalized Pythagorean theorem in uniformly smooth
Banach spaces that is going to be crucial for the power gain in the Reifenberg theorem.

Definition 3.31 Given a 1-dimensional subspace V of X, spanned by the unit vector
v, we call the map 7y : X — V defined by 7wy (x) = (J(v), x) v the J-projection, or
canonical projection, onto V.

Of course any J-projection is trivially an almost-projection, and it is easy to see that
in a Hilbert space this coincides with the orthogonal projection onto V. Moreover, it
is easy to see that this almost projection has operator norm 1, since [(J (v), x)| < ||x||
for all x and (J (v), v) = 1.

3.6.3 Summary

Let us summarize the two key properties we need of orthogonal and J-projections.

Lemma3.32 Let V, W be two k-spaces in X, with associated almost-projections
wy, ww. Suppose either X is Hilbert, and wy , ww are orthogonal; or X is uniformly
smooth, k = 1, and wy, ww are J-projections.

Ifdg(V, W) <4, then

llmy —mwll < 2px (48)/8. (3.88)

Proof If X is Hilbert, this is a corollary of Lemma 3.30. Suppose now that X is a
uniformly smooth Banach space, k = 1, and that wy, Ty are J-projections. We can
choose unit vectors v, w spanning V, W, with ||[v — w|| < §, and then 7y (x) =
(J(v), x) v, and Tw (x) = (J(w), x) w. We estimate therefore that

llry (x) — 7w (O] < (1T () = J)[| + [[v — wD]|x]|
< (2px(48)/8 + S)lIx|l. (3.89)

In the last inequality we also used the convexity of px (7). O
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Lemma 3.33 Take V a k-plane in X. If either X is Hilbert, and vy is the orthogonal
projection, or X is uniformly smooth, k = 1, and wy is the J-projection, then we have
the following improvements on (3.72), (3.73): for any x,

1112 = 1ol = 8111 ox (e @11/ 111D (3.90)
If f : V — X isa Lipschitz mapping, with Lip(f) < € < 1, then for everyx,y € V,

16+ 7 G = 6+ FODIR =l = 1P|
< 2llx = Yl (f(x) = fFWI] + 8px (de)llx — ylI>. (3.91)
Of course these estimates are far from sharp when X is Hilbert.

Proof By Lemma 3.27, it suffices to show that (J |y, 7r;7) = 0. When X is Hilbert, this
follows immediately from the fact J(x) = (x, -) y. When X is uniformly smooth, and
k =1, we can verify: given unit vector v spanning V, then

<J(v), rr‘J;(x)> — (J(),x — (J(v),x)v) = 0. (3.92)
O

Improved orthogonality estimates like (3.90) give improved Lipschitz bounds on
graph projections, which at a very basic level is why we can expect improved estimates
on the Reifenberg maps.

Proposition 3.34 Take V a k-plane in X. Suppose either X is Hilbert, and wy is the
orthogonal projection, or X is uniformly smooth, k = 1, and my is the J-projection.
Let

G = graphg, ,,(g), Lip(g) <e =<1, QCV. (3.93)

Then we have the estimate

(x +8g(x) — O+ gODIF = llx — yII?| < 8px(de)|lx — y[I* Vx,y € Q.
(3.94)

In particular, my : G — V is a bi-Lipschitz equivalence, with Lipschitz constant
bounded by 1 + 8px (4€).

Proof Immediate from Lemma 3.33 and the definition of graph. O

3.7 Tilting control

We study the tilting between best planes at different scales, and try to control the tilting
using the 8 numbers.
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First of all, we give a definition of “approximate best subspace” for the measure p
on any ball in X.

Definition 3.35 Given a finite measure p in a Banach space X, and given a ball B, (x),
weset p(x, r)+V (x, r) tobe an affine k-dimensional subspace (with p(x, r) € B, (x))
such that

k=2 / d(y, p(e,r) + V(& 1)?dp(y) < 285(e. 1% (3.95)
By (x)

The definition if obviously well-posed if S(x, r) > 0. For f(x, r) = 0, we have the
following easy lemma.

Lemma 3.36 Let ﬂ/]j (x, r) = 0, then there exist a k-dimensional affine subspace p+V
such that the w(By(x)\(p + V)) = 0.

Remark 3.37 Note that we don’t claim simply that the support of the measure p is
contained in p 4+ V. Although this is equivalent to our claim when X is separable (and
thus it has a countable base for the topology), our claim is a priori stronger in general
Banach spaces.

Proof Ininfinite dimensional Banach spaces, we don’t have compactness for the Grass-
mannian of k-dimensional affine subspaces, thus we need a different argument. For
convenience, we assume that x = 0 and » = 1 and that «(X\ B; (0)) = 0 (otherwise
we replace p with LBy (0)). Consider for all i € N a sequence of affine subspaces
pi + Vi such that

/ d(y, pi + Vi)2du(y) <377, (3.96)
B1(0)

so that by Chebyshev inequality

W(X\B;j-1(p; + Vi) <27, (3.97)
Thus we get that for all j:
w | X\ Bj-1(pj+Vp | <27, (3.98)
j=zi
and in turn
| X\UM B+ V| =0, (3.99)
ij=i

We claim that there is an affine k-space ¢ + W so that

(\Bj-1(pj+ V) Cq+W Vi (3.100)

Jj=i
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This would clearly finish the proof.

Now obviously (;.; Bj-1(p;+V;)isaconvex set. Take xo € () ;5; Bj-1(p;+V})
be any point (if no such x( exists then we have nothing to prove), and assume
by contradiction that there exist xi,...,Xx+1 € mjzi Bj-1(pj + Vj) such that
{x1 — x0, ..., Xk+1 — xo} are linearly independent. Fix a t > 0 so these points are in
T-general position.

By Lemma 3.11, there exists j sufficiently large such that if { yi}f.‘;rol are such that
[lyi — xi|| < j~', then {y; — yo}f.‘ill lie in t/2 general position, and in particular are
linearly independent. Thus we can find a k + 1 dimensional affine subspace that is
contained in the k-dimensional affine subspace p; + V;, for j sufficiently large, and
we reach our contradiction. O

Now that we have a Definition 3.35 for the “L2-best plane” p(0, 1) + V (0, 1), we
turn to the tilting control. The idea is the following: given two balls one containing
the other, say for example B; (0) and By 10 (0), we want to be able to say that (0, 1)
controls the distance between V (0, 1) and V (0, 1/10). The following example shows
that in general this is not possible.

Example 3.38 Let k = 1 and p be the sum of 5 Dirac masses in the Euclidean R?
=380+ 81,00 + 81,00 + 80,r) + 80,—1)- (3.101)

For 0 <t < 1/10, it is easy to see that V (0, 1) is the x-axis, while V (0, 1/10) is the
y-axis, and this is independent on the choice of 7.
Moreover, we have

BL(0.1/10)> =0, B.(0,1)* = 21>, (3.102)

As t approaches 0, the beta numbers clearly don’t control the distance between V (0, 1)
and V (0, 1/10) (which is constant in # and equal to 1). So the geometry of the measure
W is essential to obtain the bound we want.

We will see in the following that we have “tilting control” as long as  is sufficiently
spread over something k-dimensional on the small ball. In order to be more precise,
we give the following definition of “good balls”.

Definition 3.39 Take u a finite Borel-regular measure, and x € (0, 1/10). We say a
ball B, (x) is a good ball with respect to the measure p and parameter x if for any
affine subspace g + L of dimension < k — 1, there exists a point z such that

D) (B (2) N By (x)) = 107 ey ! (xr)¥, and

i) z ¢ By (g + L)
Here c; (k) is the constant from Lemma 3.8. If £ = 0 then good is simply the require-

ment that some z exists satisfying i). If B, (x) is not good, we say B, (x) is a bad ball
with respect to u and x.

The next lemma shows that on good balls we have good tilting control.
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Lemma 3.40 Let i be a finite Borel-regular measure, and consider B, (x) C B1,2(0).
If B-(x) is a good ball with respect to |1 and x, then we have

dua([p(x,r) +V(x,r)]1N Bi(0), [p(0, 1) + V (0, H] N B1(0))
<c(k,r, X)ﬂ,’j(o, 1), (3.103)

and in particular
dg(V(x,r), V(0. 1)) < clk.r, x)BL 0, 1). (3.104)

Animmediate corollary is the following comparability between any two good balls.

Lemma 3.41 Suppose B, (x") and B, (x) are good balls with respect to v and . If we
have B, (x) U B, (x) C Br2(y), then

du((p(x,r) +V(x, )10 BrO), [p&', ) + V&', )] N Br(»))
<ck,r/R,r'/R, X)B(y, RIR, (3.105)

and
dg(V(x,r),V(x',r)) <ck,r/R,r/R, X)ﬂﬁ(y, R). (3.106)
Proof of Lemma 3.40 By enlarging ¢ as necessary we can also assume wlog that
BL(O. 1) < 8ok, T, x). (3.107)

In the following ¢ denotes a generic constant depending only on &, r, x, and for ease
of notation, we write 8 in place of ﬁl’j.
We claim we can inductively find points X, ..., Xx € B,(x) such that

(1) the vectors {)?i — )?o}f.(: , are in 5 r-general position
(2) we have the estimates

d@i, p(x,r)+V(x,r)* <O, 1), d(i, p0, D+V (0, 1))* < (0, 1),
(3.108)

Let us see how this claim completes the proof. Choose y; in p(x, r) + V (x, r) with
|£i — yi| < ¢B(0, 1). By the triangle inequality, d(y;, p(0, 1)+ V (0, 1)) < ¢(0, 1)
as well.

Provided 8¢ (k, 7, x) is sufficiently small, by Lemma 3.11 the vectors {y; — yo}f.‘= 1
lie in 3 x r-general position. Now givenany y € (p(x,r)+ V(x, r)) N B1(0), we write
by Lemma 3.5

k
y=yo+ Y ai(yi—yo). lleull <c. (3.109)

i=1
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and thereby deduce
d(y, p(0,1) +V(0,1)) = cp(0, ). (3.110)
The proof of Lemma 3.40 is completed by an application of Lemma 3.14.

We are left to prove the inductive claim. To construct our base case X, in the

following let us set j = —1 and interpret ¢ + L_; = ¢. Otherwise, suppose by

induction that we have a collection {)2,'}{20 with the desired properties for some

J <k —1,and let g + L; be the j dimensional affine subspace given by
q+Lj =)20+span{)?1—)?0,...,)?]-—)20}. (3.111)
By assumption, there exists a point x 1 ¢ B7,,(g + L) such that
1(Byr(xj41) N B (1)) = 107 ey (). (3.112)

Set for simplicity it = uL(By,(xj+1) N By (x)), and define for z € X and s > 0 the
set

Qcs = {y €X st d(y, p(z,5) + V(z, )’
< 3][d(w, p(z,8) + V(z, s))2d/1(w)}. (3.113)
By Chebyshev inequality, we have trivially that

2 2
m(Qx.r) = gﬁ(X), 1(Qo,1) = 5/1(X)~ (3.114)

Thus there exists a point X1 € sptjt N Qx N Qo,1. Since spt it & By, (xj41), by
the triangle inequality we get ;41 ¢ Bs,,(q + L ;). Moreover, we have by (3.112)
and the inclusion B, (x) C B1(0) that

d(Xjr1, pOe,r) + Ve, r)? < 3u(Br(y) N Byy (xj51) K2 B(x, 1) < (0, 1)?,
(3.115)

d(Xjt1, p0, 1) + V(0, 1))? < 3u(B,(y) N Byr(xj11) " B(0, D < cp(0, 1)*.
(3.116)

This complete the proof of the inductive claim, and in turn the proof of the
lemma. o

4 Reifenberg estimates in Banach spaces

Our fundamental tool is the Reifenberg map o, which is essentially an interpolation
of projection mappings. We shall use the Reifenberg maps to construct approximating
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manifolds by “gluing” together nearby planes. This section establishes important basic
estimates on these maps. We are not defining the actual Reifenberg maps we use at
this stage; the estimates require only the basic structure.

In this section we shall suppose we have a fixed k-plane V, with almost-projection
7 as in Definition 3.17, and a point p. Let x; be a 2r /5-separated set in X, and take
pi € B-(x;) with k-planes V; and associated almost-projections ;.

Assume the following tilting and closeness control:

d0,p+V)<r/10, dxi,p+V)<r/10, d(pi,p+V) <dr,
dg(Vi, V) <. “4.1)

4.1 Themap o

Suppose o : B3, — X is a mapping of the form

o(x)=x— Y $i()m(x = pi), (4.2)

where ¢; is the truncated partition of unity subordinate to the Bs.(x;), as per
Lemma 3.1. Notice that, by Lemma 3.8 and our hypothesis on x;, the overlap of
the {B3;(x;)}; is bounded by some uniform constant c(k). So in particular the ¢;
satisfy:

0=<¢i =1, spte C B3 (xi), Lip(¢i) <c(k)/r. (4.3)

We are ready to state and prove the main lemma (the “Banach squash lemma”)
regarding the properties of the map o. This Lemma proves that, provided a set G is
reasonably well-behaved to start with (i.e. is a graph with small Lipschitz norm), then
0| has good Lipschitz bounds (parts A, D), and the image o (G) has good graphical
properties (parts B, C).

There are two subtle points. First, where ), ¢; = 1 the map o is entirely an
interpolation of affine projections, and in these regions the resulting graph geometry
of o (G) depends only on the geometry of affine the planes p + V, p; + V; (and not on
G!). Here is a baby example for illustration: take X = R", the planes p; 4+ V; tobe a
single p1 + V1, and for simplicity set ¢; = 1. Then o becomes to the affine projection
onto p1 + Vi, and 0 (G) = p1 + V) for any graph G over p + V. In general, in part
C) we show that wherever ) ; ¢; = 1, 0 (G) has graphical bounds independent of G.

Outside the region where ) ; ¢; = 1, the map o starts to “remember” the geometry
of G. For example, in the extreme, when ) ; ¢; = 0, the ¢ is simply the identity, and
0(G) = G in there regime. In part B) we show the graphical bounds on o (G) will
generally depend both on bounds for G, and the tilting between the various planes

Second, when we have some reasonable notion of orthogonality (e.g. when X is
Hilbert, or k = 1 and X is uniformly smooth), we get improved estimates on o | . This
is because o is pushes G “almost orthogonally” to G’s plane of graphicality. Part D of
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Lemma 4.1 shows a power gain in the “tangential” movement and Lipschitz bounds
of o.

Various forms of this lemma are present in literature, for example in [11,13,39]. Up
to technical details, the proof of this lemma is standard. However, since this lemma is
crucial for our estimates and we are going to use special properties of the J-projections
on Banach spaces, we write a complete proof of this lemma.

Lemma 4.1 (Banach Squash Lemma) There are constants €1(k), ca(k) so that the
following holds. In the notation above, and with the assumptions (4.1), let G be a
closed set so that

G N B3, = graphg, (), r~'llgll +Lip(g) <€, Bs,nN(p+V)C Q.
4.4)
Then provided § + € < €1(k), we have
A) Forx,y € G N Bz, o is a bi-Lipschitz equivalence between G N Bz, and o (G N

B3,), satisfying the estimates

r o) —x|l < cad+e€), and ||(6(x) —o(y) — (x — )|
=@+ e)llx =yl (4.5)

B) We have

(G) N By, = graphg . (8), r~'l|g|l +Lip(g)
<ca@+e), BypnN(p+V)CQ, (4.6)

C) If Y, ¢i = 1 on Bayc,(s+e))r» then in part B) we in fact have the bound
r~ 1121 + Lip(3) < c4d. (4.7)

D) Suppose either of the following scenarios: X is a Hilbert space, and each r, w;
are orthogonal; or X is a uniformly smooth Banach space, k = 1, and each w, m;
is a J-projection. Then we have the improved estimates: for all x, y € G N Bs,

r (o (x) — 0)|| < capx(ca( +€)), and ||lo(x) —aW|I> —|lx — yI|?
< capx(ca(d + e)llx — yl? (4.8)

Proof In the following ¢ denotes a generic constant depending only on k. We will
assume €1 (k) is chosen sufficiently small so that we always have ce; < 1/100. By
scaling we can assume r = 1.

Given x,y € p + V, for ease of notation we shall write x™ = x 4 g(x), and
y* =y 4 g(x). For each i, choose p; € V sothat ||p; — pi|| < 8. We can without
loss of generality assume || p|| < 8.
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If ¢;(xT) > 0 and x* € B3, then ||x™ — x;|| < 3, and therefore ||x;|| < 6, and
[1pill < 7. For such an i, we have

|7z (x 4+ g(x) — p)ll < |- (x — poll + 1l (g | + i (pi — Pl (4.9)
< c(k)8||x — pill + ck)||g ()| + c(k)$ (4.10)
< c(k)(5 + ©). (4.11)

Remember that x — p; € V.
Since #{i : x; € Be} < c(k) by Lemma 3.8, we obtain

o) =xFll < DI GDIlm ot = pll < ck) G +€).  (4.12)

Similarly, we have
e ™) —x™) = @) —yDIl < Y 1™ = g DIl F = po)l

+ Y 1 OO =y DIl @13)

where the first term on the right is bounded by

Do) = g Ot = poll < elllx — Yl + llg(x) — gMINek) (S + €)

(4.14)
< ck)@+e)(1 +e)llx —yll, (4.15)

and the second term is bounded by

DI HIm et =y DI < el = W+ c)lg(x) — g (4.16)

1

< c(k)dllx — y|l + c(k)ellx — yll. 4.17)
This proves part A).
In order to prove B), we write
o(x+gx) =x+m(@(x+gx) —x)+ 7 (0x +gx)) (4.18)
= x+ex)+nt(0(x+gx)) (4.19)

where we define e : Bs;» N (p+ V) — V by
e(x) =m(@(x +g(x) —x) +7(p) =n(0(x) —xT) (4.20)
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Recall that x™ = x + g(x). Moreover, since €1 (k) < 1/10 we have
(x+gx):xeBspN(p+V)} CGNBs. 4.21)
By part A) and (4.21) we have forany x € Bso N (p + V),

lle@)I| < c()(@+€), lle(x) —eWIl < )@ +ellx™ =yl
= () +e)llx — yll. (4.22)

Therefore, provided § + € < €1 (k), we deduce the map
x—=>x+ex):BspN(p+V)—>U, (4.23)
is a bi-Lipschitz equivalence, with Lipschitz inverse
Q:U— BspN(p+V), [10K) —x[l=ck)(d+e€), Lip(Q)=2. (424)
Moreover, from our bounds (4.22) on e, we have U D B»(0)N(p+ V) provided €1 (k)

is sufficiently small.
If we define

2y =70 (Q0) + 8@, (4.25)
then from (4.19) and the definition of Q we have

o (O +8(QM) =y +8&W»). (4.26)
And so

o({x +g(x):x € BsppNV}) =graphy ,(g), U D B0)N(p+V).
4.27)

Since
g =7"[0(Q() +2(Q() —[Q() + QNI+ g(Q(»), (4.28)
we have from part A) the bounds
gD = c(k)SIIQ(y) + g(QUNII + Ig(QUNII + c(k)é < c(k) (6 +€), (4.29)

and

1E(y) — g@Il < c(k)(S +)(Q() — g(Q()) — (Q(2) — g(Q
+11g(Q () — g(Q2)] (4.30)
forany y,z € U. <ck)S+e)lly—zll, (4.31)
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To finish proving B), it remains to show that

o(fx +g(x):x €Bs5pNVH Do(G)NB(0) D{y+g(y):ye B3NV}

(4.32)
First, suppose o (x 4+ g(x)) € B2(0). Then
x|l = [(x +8(x)) —o(x + gl + [lo(x + g + [1g ()
<clk)(e+d8)+2<5/2. (4.33)

Conversely, if y € B3> NV, then

o (@) +g(QWINII=Ily +8WIl =3/2+clh)(e +68) <2, (4.34)

again provided €1 (k) is small. This completes the proof of part B).

Let us prove part C). For ease of notation write x7+ = Q(x) + g(Q(x)), and
yTT = 0) + g(Q(y)). By estimates (4.24) and part B), x™ € Bayct)5+e)
whenever x € Q. Therefore, we can write

g0 =—7(p)+ ) ¢t (pi + m (T = pi)). (4.35)

1

For any x with ¢; (xT) > 0, we can estimate using Proposition 3.18:

It (i (pi) + i PN < e®mit(pi — pi)ll + )7 (pi)]

+ It () (4.36)
< (k)8 + c(k)8I| pill + c(k)81x | (4.37)
< c(k)s. (4.38)

Using Lemma 3.8, and the definition of x;, we deduce that
I§(x0)]| < c(k)8 forx € Q. (4.39)

Similarly, we can estimate

13 — W = Y 1 ) = g POl (it (pi) + mi (P )|

+ Y 1 O T =y T (4.40)
< cB|Ix T =y 4+ c(ksllx T — y | (4.41)
= c(k)3||Q(x) — Q(y) + g(Q(x)) — g(Q()| (4.42)
< c(k)dllx =yl (4.43)
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using the estimates (4.24). This completes the proof of part C).
Finally, we show D). From part A), we have the coarse bounds

1 N N 1
Sl =yl = llo@™) = (DIl = 2[lx = yll. - Sllx =yl
< I =yl = 20 =yl (4.44)

and
x0T — o (DI < e+ e)llx =yl (4.45)
We claim that
lr(o(x®) —a(y") = (x = P)Il < clpc@+ ) + (6 + e)D)|Ix — y|l. (4.46)
To see this, write
o) —o(T) =@ -y + Z(asi @) = g Nt = pi))

+Y it —yhy) (4.47)

Then, similar to part A), but making use of Lemma 3.32, we can estimate

D (@i = i Tt et — p»)"

< c@®lx* =yl ( sup || — mill]7r; (et — Pi)”) (4.48)

x; €Bg(0)
1)
< c(k) (%4—5) G+e)llx —yll (4.49)
< c®)(p(c+e)+ B +e)Nx —yll. (4.50)

where in the last inequality we used the convexity of px. Similarly,

i Hmrt et =yt

< c(k) ( sup | — |||l (e~ y+>||>
x; €Be(0)

< c()(p(c@+€) + @ +e)D)lx — yll. (4.51)

This establishes our claim. By an essentially verbatim proof, we have also

I (o (x) = x| < cple(d +eDllx — yll. (4.52)
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Using (4.46), and (3.91) with the bounds of part A), we get

lo(x®) —a (DI = [Ixt =y T2 < dpx (e +ellx™ — yTI?

+lme(™) —o () = @ =y NIlIx =yl (4.53)
< epx(e@+ el —yTI. (4.54)
m

4.2 Regraphing

We demonstrate that graphs in the sense of Definition 3.19 (with small norm) over a
given affine plane p 4+ V, can be written as graphs over slightly tilted/shifted affine
planes g + W, with small norm also. This lemma is very intuitive in Euclidean spaces,
although its proof is not so short. Here we present a Banach space version.

Lemma4.2 Let V, W be k-spaces, with almost-projections wy, mww, and take points
P, q € Ba. Suppose we know

d(q,p+V)<ér, dg(V,W) <é. (4.55)
Suppose G is such that

G N By, = graphg, ,,(8). r'lgll +Lip(g) <€, BrsN(p+V)
cQc@p+V). (4.56)

Then provided §+¢€ < e(k), we have aregionU C q+ W, and Lipschitzg : U — X,
so that

G N B, = graphy, ;. (h), r~'[|h]| 4+ Lip(h) < c(k)(e +5),
B3y, ;sN(g+W)CUC (g+W). 4.57)

Remark 4.3 If W = V and p = ¢, then this demonstrates the “well-definition” of
graphicality in the sense of Definition 3.19: if G is a sufficiently small graph with
respect to some almost-projection, then it is a graph with respect to any almost-
projection. Unfortunately, in a general Banach space, regraphing G over a different
almost-projection will always pick up a factor of c(k), even in the special case of
w=V.

Proof In the following we denote by ¢ a generic constant depending only on &, and
always assume €3 (k) is chosen so that e;¢ < ﬁ. Again by scaling we can assume
r=1.

First, there is no loss in assuming ||p — ¢g|| < &. This follows because we can
choose p € V with ||g — p|| < é,and then p+V = (p — p) + V. Let

My (x) = 7ir(p) + v (x), Mwx) = mip(g) + 7w (x) (4.58)
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be the associated almost-affine projections to p + V, g + W (recall that ITy is inde-
pendent of choice of p € p + V). We have

Tyl = c), [Mwll < c). (4.59)
ObservethatITy : (g+W) — (p+V)isabi-Lipschitz equivalence, with estimates

Ty (y) =yl <8+ 1IyID, 1Ty (y) —y) — (v (2) — 2| < Sy —zll,

(4.60)

whenever y, z € g + W. This follows because, using Proposition 3.16,

1My () =yl = ll7y (p = @) + 7 (v = Il < ellp =gl +edlly = qll.
(4.61)
Similarly, we have
Iy (y) —y) — Ty @) — |l = llmy (y — DI < cSlly —zll.  (4.62)
Define the map f : Bg/5s N (g + W) — (¢ + W) by

f ) =HwIy(y) + gy (). (4.63)

Since Iy (Bg/5N(g+W)) C Bg/s1c5NV, we see that f is well-defined and Lipschitz.
We estimate, for y, z € Bg/s N (g + W),

I1FO) =yl = [TMw Iy (y) =y + Ty NIl < c(+¢€), (4.64)

and

1) =) = (f@ = = Ty (T (v — 2) + gy ()
—g(My Il =c@+e)lly —z|l.  (4.65)

Therefore, by our restriction on €3 (k), f has a Lipschitz inverse
fTliUc@+W)— BesnNig+ W), (4.66)

with || £~ + Lip(f ") < 3.
Letus define g : U — X by

20 =7y My (F o) + gy (£~ ) — i (@) (4.67)

Then, for y € U, we have
My (f o) + ey (o)) =y + 80, (4.68)
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and so
{x+g(x):x € v(Beys N (g + W))} = graphy . (8). (4.69)
Let us demonstrate the correct estimates on g. For y, z € U, we have

HEWII < cllGy (F ) — gDl + cligll + clipll
+ellg(My (fF oMl <c@ +e), (4.70)

and

1) — &@II < cllmy (fF ') — £ @)1 + ellg (v (f~ ()

—¢(MMy ('@l 4.71)
<c@E+ollf'o -l (4.72)
<c@+ely—zll (4.73)

Therefore, it remains only to show

{x+gx):x elly(Bg;sN(g+ W)} DGNB(0)
D{y+&():ye€Bsysnig+ W) (4.74)

On the one hand, if x 4+ g(x) € B1(0), then writing 1'[(,1 'V — W we have
||l'[‘_,1(x)|| <{A+cHlx+gkx)—gX)|| <14+cd+ce <6/5.  (4.75)
On the other hand, if y € B3;5 N (¢ + W), then
ly + 8Ol <3/5+c(+e€) <1 (4.76)

This completes the proof of Lemma 4.2. O

5 Power gain: examples

Before moving to the proof in general, we show here some examples illustrating the
behavior we can and cannot expect. In particular, we want to see what kind of estimates
on the bi-Lipschitz constant we can expect in equation (4.8) (or equivalently (1.6)).
The examples that follow illustrate two phenomena: the first is that we cannot improve
(4.8) to

llo(x) —aWMI? = llx — yII?| < caf(@llx — yI? (5.1)

for any f(e) < ce” with o' > a, where « is the power type of the ambient Banach
space X defined in (3.65).
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The second is that in a general Banach space X and for k > 2, the improved
bi-Lipschitz estimate of (4.8) is wrong, and the best one can hope for is (4.5).

5.1 Power gain in R? with Banach norms

Our first example is an easy example of a curve in R? equipped with different /” norms
for 1 < p < 2. Recall that the /? norm on R? is defined by

(1x1? 4+ 1y17)? for p € [1, 00),

(5.2)
max {|x], [y[} for p = oo.

I, = {

We will denote by ey, e; the standard vector basis of R2.
Let y; : [0, 1] — R? be the curve given by y(¢) = te;. For all p, this curve has a
well-defined length, which is

1
/0 lyillp dt = 1. (5.3)

For all |e| < 1, define the curve y» : [0, 1] — R2 by

teg for ¢t € [0, 1/3],
teg +(t —1/3)¢ce for t €[1/3,1/2],
) = 1€ ( /3)€er [1/3,1/2] (5.4)
tey + (2/3 —t)eey for t €[1/2,2/3],
tey for r € [2/3, 1].

For those familiar with fractals, this curve is the first step of a snowflake construction
with step €. Clearly y is a Lipschitz curve whichis C! away from the points (1/3, 2/3).
Its speed as a function of p is given by

1 fort € [0,1/3)
IOl = { (14 1e1?)/? fort e (1/3,2/3), (5.5)
1 for 1 € (2/3, 1].

Consider the projection map 7 : R> — R? given by
m(x,y) = (x,0). (5.6)

This is the standard orthogonal projection in R?, and it is easy to verify that for all
1 < p < 2thisis ageneralized projection with ||r || = 1. Moreover, for | < p < 2this
is the J-projection (recall Definition 3.31 and (3.68)) onto the subspace V = span(ey).
Clearly, forall 1 < p < 2,thecurve y; is a generalized graph (recall Definition 3.19)
over the subspace V with projection r, and this projection 7 (y2(¢)) = y;(¢) is a bi-
Lipschitz equivalence with bi-Lipschitz constant (1 4 |e]) forall 1 < p < 2.
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However, for 1 < p < 2, the bi-Lipschitz constant can be improved to
1 1
(1+1e1”) 7 < 1+ cpma oy (€) ~eo 1+ S lel”. (5.7)

where we used the estimate (3.66) for the modulus of smoothness p (2 ;). In particular,
this implies that for all points z, w € y», we have

(nn(z) —a)|* =z — wl*| < cpz (@) llz — wl*. (5.8)

In the language of the Banach Squash Lemma 4.1, we can rephrase this example
in the following terms. We consider the Banach space X = (R?, [”) and the mapping
o = m. In other words, we have a single 1-dimensional affine space V = span(ey)
and a single projection 7 onto this subspace, thus we do not need any partition of unity
{X;} to define the map o.

G = y» is a generalized graph over the segment ([0, 1] x {0}) C V, and the
graphing function g satisfies

lglloc =€, Lip(g) =€. (5.9
The projection map o = 7 is an explicit bi-Lipschitz equivalence between G and

([0, 1] x {0}) C V, with bi-Lipschitz constant equal to (1 + le|”)V/ P, which shows
that we cannot improve (4.8) to

llo(x) —aWMII* = llx = yII*| < caf(@llx — yII? (5.10)
for any f(€) < ce” fora > p.

5.2 Infinite dimensional snowflake

An instructive example to look at is the classical example of the snowflake. In particu-
lar, we recall the following standard construction in R2 (see for example [7, Exercise
10.16]).

00

The construction of a snowflake of parameter n > 0 is well known (see for example
[25, section 4.13]). Take the unit segment [0, 1] x {0} < R2, and replace the middle part
[1/3,2/3] x {0} with the top part of the isosceles triangle with base [1/3,2/3] x {0}
and of height -lenght([1/3, 2/3] x {0}). In other words, you are replacing the segment
[1/3,2/3] x {0} with the two segments joining (1/3, 0) to (1/2, n/3), and (1/2,n/3)
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to (2/3, 0). Then repeat this construction inductively on each of the 4 straight segments
in the new set. Here on the left hand side you can see the very classical picture of the
first three steps in the construction of the standard snowflake, with n = +/3/2.

It is clear that the length of the curve at step i is equal to the length at step i — 1
times 2/3 ++/1 + n2/3, so the length of the snowflake will be infinity for any n > 0.
This is a simple application of the Pythagorean theorem, and the extra square power
on 7 comes from the fact that at each step we are adding some length 7 to the curve,
but in a direction perpendicular to it.

However, if we replace the fixed parameter n with a variable parameter 7n;, we
see immediately that the length of the limit curve will be finite if and only if
> niz < oo. This suggests that in R? a curve y is of finite length if for all x € y,

fol ,37141”()(, r)z‘lr—r < 00.

Snowflake in L” spaces Here we try to produce a similar example in infinite
dimensions, and we will see that the finiteness of the length of the curve depends on
the summability of ) _ n{, where a depends on the space.

Consider the space L*°[0, 1], and lete; € L*°[0, 1] be the Rademacher’s functions.
In other words, we set e; = 1jo,11 = 1, e2 = 10,121 — 1a2.11- €3 = 1j0,1/4) —
Laya121+ 12,341 — 134,175 - €i (t) = sign[sin(2mwit)].

Now consider the curve y; : [0, 1] — L°°([0, 1]) given by y(¢) = te;. This curve
has a well-defined length, which is

1
/0 1910 di = 1. 5.11)

We build a sequence of curves y,, similar to snowflakes with parameter 7, but devel-
oped over an infinite dimensional space instead of R?. In particular, take y;, split it
into 3 pieces of equal length, and modify the middle piece by “bumping” it in the
direction of e;. In particular:

teq for r € [0, 1/3],
tei + (t —1/3) nie for t € [1/3,1/2],
i) = 11 ( /3)niez [1/3,1/2] (5.12)
te1 + (2/3—t)nmey for te[l/2,2/3],
teq for t € [2/3, 1].

Then we repeat this process inductively on i, and apply the previous construction on
each of the straight segment in y; by bumping it in the direction of e;.

For each i, y; : [0, 1] — L°°[0, 1] is a Lipschitz function which is C 1 away from
the points k - 37, The speed of y» and y3 is given by

1 fort € [0,1/3),
72O llpe = 314+ |m|  fort e[1/3,2/3), (5.13)
1 fort € [2/3, 1].
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1 fort € [0,1/9),
1+ |m| forte[l1/9,2/9),
1 forr € [2/9,1/3),
1+ 1] forz € [1/3,4/9),
3@l = {31+ Iml+n2l  forz €[4/9,5/9), (5.14)
1+ |l forr € [5/9,2/3),
1 fort €[2/3,7/9),
1+ |na| fort e[7/9,8/9),
1 forr € [8/9, 1],

It is easy to see that for a generic i the length of the curve obtained in this fashion is
then

1 i—1
. 1
Lo =/0 ille =1+ 5 3 bl (5.15)
k=1

This implies that the pointwise limit yo, = lim; y; is a curve of finite length if and
only if Y 22 Im| < oo.

Notice that the same family of curves y; seen as curves in L2([O, 1]) behaves in a
different way. Indeed, in order to compute the speed ||y (¢) || notice that in L? we have
the identity

2

e+ Y miei| =1+ 77, (5.16)
i

i>2

since ¢; are orthonormal vectors in L2. Thus it is easy to see that as curves in L2, Vi
have uniformly bounded length if and only if )", 77,~2 < 00. Thus, there is a strong
difference in behaviour between L2 and L from this point of view.

Similar computations can be carried outin L”[0, 1], and using the standard inequal-
ities for L? norms (see Hanner inequality, [18, theorem 1]), it is possible to prove the
following lemma.

Lemma 5.1 The curves in the family y; : [0, 1] — LP?[0, 1] have uniformly bounded
length if sup; |n;| < 1/10 and

d.imil? <oo  for 1<p<2,
Z,‘|’7i|2<00 for 2<p<o0, (5.17)
Y oilnil < o0 for p = ooc.

Note that for p € [2, 00) fixed, the lengths of y; are uniformly bounded if ) _; |n; 1> <
o0, but this bound is not uniform in p.
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Remark 5.2 Given the bounds on the modulus of smoothness for L” given by (3.66),
this behavior suggests a link between the modulus of smoothness of the space X and
the Reifenberg theorem.

5.3 Failure of sharp bi-Lipschitz bound

We give an example demonstrating the failure of the improved bound (1.6) when
k > 2, and X is not Hilbert. In particular, we show that if X is a Banach space, even if
its modulus of smoothness of this space is of power type & > 1, then a Lipschitz graph
over some 2 dimensional space L with Lipschitz constant € need not be (1 + ce®)
bi-Lipschitz equivalent to its base.

We consider the space X = R> with the £* norm

et 22, x ) ps = (x4 12+ 13 H Y4 (5.18)

This space is uniformly smooth, with modulus of smoothness o = 2, so the improved
estimate (1.6) would imply

I(x + fx) = (v + FODIP = Ix — I
<ce|lx — y|I*> Vx,y e LNBi0), (5.19)

for every 2-plane L> C X, and every e-Lipschitz graph function f : L N B1(0) — X.
However, we shall demonstrate the following failure, precluding (5.19) for any
notion of graph.

Proposition 5.3 Ler X = (R3, I-ll4). There is a 2-plane L? C X, and absolute con-
stants c, €q, with the following property: Given any function f : LN B1(0) — X, with
Lip(f) = € < €q, then we can find a pair x, y € L N B1(0) admitting a lower bound

(x4 £()) = (v + FONIE = llx — Yl = €/ellx — yII*. (5.20)

Remark 5.4 In fact, the proof shows (5.20) for an open neighborhood of 2-planes. So
this failure is generic, in the sense that you cannot just “choose a better plane” or
“choose a better notion of graph.”

Remark 5.5 Any finite, n-dimensional Banach space is c(n)-equivalent to a Hilbert
space, and any Hilbert structure does admit an improved bound (5.19). However, in
passing between Banach and Hilbert norms you lose the sharpness of the inequality
(i.e. 1 + ce? would become ¢(n)(1 + c€2)). Moreover, and more importantly, the
comparability between norms depends on the ambient dimension n, so even for non-
sharp estimates like those in 2.1, one cannot hope to use a “comparable” Hilbert
structure to gain a power.

The failure of the improved estimate (5.19) is fundamentally a consequence of the
non-linearity of J : L — X*. We explain. Consider momentarily a general uniformly
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smooth Banach space X, with modulus of smoothness «, a k-space L¥, and an e-
Lipschitz map f : L¥ — X. By the same argument as Lemma 3.27, we have

G+ ) = G+ FONIP = llx = yIF = (Jx —y), &) = £F()
+0(E)||lx — y||*> Vx,yeL. (5.21)

The obstacle to obtaining an improved bi-Lipschitz estimate like (5.19) is then the
quantity

(Jx =y, fx) =) (5.22)

When J| is linear, then L admits an “orthogonal complement” L= satisfying
LeLt =X, and <J|L, Li> —0. (5.23)

For example, if {v;}; is a basis for L, then take Lt = n; ker J(v;). When L1 exists,
we can define graphs over L to be maps into L+, and then (5.22) vanishes for all such
graphs f : L — L. This is the origin of the improved bi-Lipschitz estimate (1.6).

In both exceptional cases (when X is Hilbert or k = 1), J| is linear, and we
correspondingly get both a natural notion of graph and an improved bi-Lipschitz
estimate. When X is Hilbert, the inner product structure gives a natural isomorphism
X = X* andso J : X - X* = X is the just the identity mapping. When k = 1, J
is trivially linear on 1-spaces since J is always 1-homogenous.

In fact, these are the only cases when J |, is linear. A deep theorem of Banach spaces
(see [19, theorem 3.8]) says that X is Hilbert if and only if every closed subspace admits
an orthogonal complement L= satisfying (5.23). If J | 12 were linear for every 2-plane,
then J would be linear on X, and by the argument above we could thereby find an
orthogonal complement to every closed L.

We mention a related, equally remarkable classification, which says that Banach
space is X is Hilbert if and only if every 2-dimensional space admits a norm-one
projection (see for example the recent survey [31, section 3]). However we point out
that nowhere in our paper do we ever explicitly use that a projection has norm-one.
The improved estimate is more directly a consequence of the existence of orthogonal
complements.

In our example space X = (R3, £%), J can be written explicitly as

J) =T 2% = |Ixl2 ), o9 (o)), (5.24)

where we identify X* with (R3, £4/3) via the Euclidean inner product (-, -). On any
2-space L, J|r, is non-linear. Notice that since 1-homogenous functions are linear on
1-spaces, k > 2 is necessary to see the non-linearity.

When J| is non-linear, attempting to satisfy (J(x — y), f(x) — f(y)) = 0 for all
x,y € LN B1(0) should impose “too many” conditions on a non-constant f. Given
N + 1 points {xi}f\':0 C LN B;(0), then
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(i = xj). fi) = f(x))=0 0<i<j<N (5.25)

represents N (N + 1)/2 linear conditions on only N + 1 vectors { f (x,')}lN: 0

We will find that for a generic choice of L and x;, and after fixing the value of f (xq),
the conditions (5.25) are linearly independent, and so force f to be constant. (Some
special 2-planes, like the coordinate planes x; = 0, admit orthogonal complements in
the sense of (5.23), and for these planes conditions (5.25) are degenerate).

We make this precise and quantitative in the following Lemma, which is the key to
proving Proposition 5.3.

Lemma5.6 Let X = (R3,|| - ||4). There is a 2-plane L?> C X, and an absolute
constant ¢, with the following property: Given any Lipschitz f : L N B1(0) — X,
with Lip(f) < 1, then we can find a pair x, y € L N B1(0), so that

cl(J@x —y), ) = f)] = Lip(f)llx — ylI. (5.26)

The idea behind Lemma 5.6 is the following. If we take N = 5, and fix f(x¢) = 0,
then the numbers

(J i = xp)/llxi = xjll, f) = f(xp)) 0<i<j<5 (5.27)

represent 15 separate linear combinations of the 15 (= N x n) various coordinates of
f(x1), ..., f(xs5).Sothe numbers (5.27) can be expressed as a square matrix M times
the vector (f(x1), ..., f(xs5)). We will show that for a good choice of L?, and “most”
X;, this matrix is invertible, and so lower bounds on the differences || f (x;) — f(x;)]]
pass to lower bounds on the numbers (5.27).

First we show how Proposition 5.3 follows from Lemma 5.6, then we shall prove
Lemma 5.6.

Proof of Proposition 5.3 given Lemma 5.6 We claim to have the following inequality,
forany x,y € B1(0) N L:

10+ £ ) = 5+ FODIP =[x = yIP?
> 2 (J(x — y), f(x) = f() | = c€[lx — yII?, (5.28)
for some absolute constant ¢ independent of f. Itis clear that this inequality and (5.26)
prove Proposition 5.3.

In order to prove this claim, recall that since X is smooth, we have J(x) =
grad||x||?/2. Define the curve

y@)=x—y+t(f(x)— f). (5.29)

We can compute
1(x + F(x) — (v + FONIIP = IIx — yI? (5.30)
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1
=/0 20y @), f(x) — ()t
1
=2<J<x—y),f<x)—f<y>>+/0 2 (1) = yO). f(x) = FG))dr. (5.31)

Using Lemma 3.32 and the estimate (3.66) for the modulus of smoothness of
(R2, |I-l4), we have the bound

(@) —y©0), fF&x) — fFON ] <cllfx) — FODIP < ce?llx — vl (5.32)
This establishes (5.28). O

Proof of Lemma 5.6 Take six points xo, x1, ..., x5 € L? N B;(0), off-putting for the
moment our specific choice of L. Since (5.26) is invariant under translations f —
f =+ const, we can and shall assume f(xg) = O.

Let us define X € R'3 to be the vector of components (f(x1),..., f(x5)), and
define Y € R! to be the vector with entries

(Vi = xp)/llxi = xjll, fi) = f(xp) 0<i<j<5. (5.33)

(remember that f(xg) = 0!)

We can write each component Y, as the matrix product ¥, = > 11)52 | Map X, where
Mp is a 15 x 15 matrix. Each entry of M, is some component of £J (x; —x;)/||x; —
x;|l, and permuting the x; has the effect of permuting rows of M. Moreover, observe
that M, depends only on the differences x; —x j, and hence there is no loss in assuming
xo = 0 when calculating det(M).

Fix some choice of norm || - || on R!3. Since each entry |M,;| < 1, we have

Y[l = (|det(M)|/o)[IX]], (5.34)

for some absolute constant c. We wish to pick a good selection of x;, so that: det(M)
is bounded away from 0; |[ f (xo) — f (x|l &~ Lip(f)llxo — x1[; and [|x; — x;[| ~
[lxo — x1]| for every i < j. These properties, combined with (5.34) and our definition
of X, Y, will establish the Lemma.

Towards this goal, we first verify that det(M) is bounded away from O for “most”
choice of x;, in a particular 2-plane. From the formula (5.24), and taking xo = 0, we
see that det(M) is a 0-homogenous function, and can be written

_ D(xy, ..., xs5)
det(M) = —Q(x1, T xs) (5.35)

where D is a 45-homogeneous polynomial in the entries of each x;, and Q is an
analytic function which vanishes only when some x; = x;. Up to sign, each D, Q is
symmetric under permutations of the x;.

Fix L to be the plane spanned by v; = (1, 1,0), and v» = (0, 1, 1). We claim D|,
is not the zero polynomial. This follows by a straightforward but tedious calculation.
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If we let
x0=0, x1=vi+v2, x=2v+3v, (5.36)
x3 = 3v; +4vy, x4 =2v] —v2, X5 = —V]+ 3vy, (5.37)
then one can compute directly that D(x1, ..., x5) # 0.

By writing out

DL =) pa(x1)qu(x2, ..., X), (5.38)

where the p, are polynomials in the coordinates of x| € L, and g, are polynomials
in coordinates of x5, ..., x, € L, we see that

{x1 € L:D(x1,)|L =0} ={x; € L: py(x1) =0 for every o} (5.39)

is a dilation-invariant algebraic variety in L, and hence is a finite union of lines through
the origin. Repeating this, for x», x3, ..., x5, we arrive at the following statement: for
all but finitely many x; € S c L,wecanfindanxs...,xs € S! all distinct so that
D(x1,...,x5) #0,and ||x; — x;|| < 1/100.

An obvious argument then gives the following. There is an absolute constant ¢
(depending only on our choice of plane L), and a finite, 1/100-dense subset I of
S' ¢ L (in the sense that any point in S! is within distance 1/100 of I), so that for
every x| € I, we can find x7, ..., x5 € stcrL, satisfying:

det(M)(xy,...,xs5) > 1/c, and |[[x; —x;|| < 1/100, V2 <i <5. (5.40)

For ease of notation write ¢ = Lip(f). Choose p, g so that || f(p) — f(g)]| >
(e/2)]|p — ql|. By replacing € /2 with € /10, we can assume that

B p—q115(q) C B1(0). (5.41)

Set xo = p, and choose some x| € B)jp—q/50(q) N (p + [|p — ql|1). We then obtain
X2,...,x5 € B1(0) N 3B p—g||(p), so that:

det(M)(xo, x1, ..., x5) = det(M)(x; — xp,...,Xx5 —X0) > 1/c. (5.42)

For this choice of xq, ..., x5, we can form the vectors X, Y as at the start of the
proof, and we get

Y1l = (/ollX]l = A/l f DIl = A/l f(x1) — fF&xo)ll = (e/)llp —qll-
(5.43)

Therefore, for some 0 < i < j <5, we must have have
(7 i = x)/llxi = xjll,xi — x5)| = (€/0)llp — qll = (e/O)||xi — xj1I,  (5.44)

@ Springer



1186 N. Edelen et al.

which is the desired conclusion. O

6 Covering Lemma

In this section we present the main covering Lemma of this paper and use it to prove
the main Theorem, while we postpone the proof of this covering Lemma to Sect. 7.
Before stating the Lemma, we provide some intuition behind its statement and proof
(see Sect. 7.1 for a more detailed outline of the proof).

6.1 Intuition for the Covering Lemma

We will consider a finite, Borel measure satisfying the following Dini bound:

1 dr
/ ,B;Ii(s»r)a— <8% VseS, 6.1)
Ty r

for some § small. A simple scaling argument allows us to reduce to this case. The S
is a set of full w-measure, and the r; : S — [0, 1) is a radius function, which can be
unrelated to p. We break up S = S, U S, where ry|s, = 0, and ry|s, > 0. One
should think of r; and S as a generalized partial covering of Bj(0), consisting of open
balls { By, (s)}ses, and a set S;, with the property that u(B1(0)\S) = 0.!

The objective of the Covering Lemma is to build a new partial covering of B;(0),
of the form

F=S.u ] B, ulJB,®), 6.2)

s'eSly beB

where S’ and S/, are suitable subsets of S; and S respectively, and the new extra balls
inthe covering By, (b),,. 4 are carefully chosen “bad balls™ according to Definition 3.39.

Since our final goal is to control the measure p away from balls with packing
estimates, and obtain rectifiability information for this measure, we require our new
covering to have the following properties:

(1) F need not have full measure, but the discrepancy is controlled:
w(By (0)\F) < 6. (6.3)

(2a) The balls in the covering, {B;, (N}ye S, and {B;, (b)}peg, admit a uniform k-
dimensional packing bound

Dok <esth. (6.4)

s'eS, beB

! We mention that since X is not assumed to be separable, the complement of the support of ; may not
have measure zero, so it’s better to talk about sets of full measure rather than supports.

@ Springer



Effective Reifenberg theorems in Hilbert... 1187

(2b) The set S’ is contained in the image of a (1 4 ¢8%)-Lipschitzmap  : V — X,
where V is a k-dimensional subspace. We will take S. = S, N 7(V), and shall
construct the map t during the proof (see also the outline in Sect. 7.1).

(2) The balls {Brb (b)} peg A€ bad according to Definition 3.39.

The reason F takes this structure is the following. Recall that good balls (according
to Definition 3.39) had “big” measure spread out around a k-plane, and this allowed
us to control the tilting of L2-approximate-best-planes between nearby good balls via
the B-numbers (Sect. 3.7). The vague strategy behind the Covering Lemma is to use
this tilting control, and our Dini condition (6.1), to construct inductively on smaller
and smaller scales a sequence of Lipschitz manifolds that approximate the collection
of good balls at a given scale. Regions which are “far away” from the approximating
manifolds have controlled measure (item 1). We can iterate on smaller and smaller
scales, but must stop if we hit a ball B, (s), or some bad ball B,, (b) (item 3) —in either
case we loose tilting control. On these balls we get packing estimates (items 2a). If in
certain regions we can iterate infinitely far down, we end up with a Lipschitz manifold
covering a piece of S; (item 2b).

Notice the packing estimates in item 2a are not small, regardless of §. This is
best illustrated in the example when p is supported entirely on a k-plane V: then
6 = 0, but we have no control over uiLV. In general, the set F forms a cover of
the “limiting” Lipschitz manifold, which is bi-Lipschitz to a disk, and lives near L>-
approximate-best-planes. F' inherits good k-dimensional packing/measure bounds, but
the B-numbers give us no control over u in this limiting manifold.

To obtain our Main Theorem 2.1, we must refine our cover inside the bad balls
{B;, (b)}pes. By definition of bad balls we know that, up to a set of small measure, w
inside a given bad ball B,, () is concentrated around some k — 1 dimensional subspace.
Thus we can cover most of u. B, (b) with a family of balls

{Byr, (W)} with #{b'} < c(l)x' ™, (6.5)

where x is chosen small. Thus we have small k-dimensional packing estimate on the
balls { By, (b")},r. On each of these new balls By, (b") we can then apply the Covering
Lemma again in an inductive fashion until we reach our final goal (that is, a covering
not involving bad balls). The smallness of the k-dimensional packing bounds in (6.5)
ensures that the global k-dimensional packing estimate of the new covering obtained in
this fashion will remain uniformly controlled in each step of our inductive refinement
(for the details, see Sect. 6.3.3).

We remark that the inductive application of the Covering Lemma is the reason we
must in (6.7) consider the restriction of bad balls B, (b) to {s € S : ry < rp}. We
need to ensure that in every new application of the Covering Lemma at some scale R
(occurring inside a bad ball produced from a previous application of the Lemma), we
only see S with ry < R.

6.2 Covering Lemma

Now we state precisely the main covering lemma.
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Lemma 6.1 (Reifenberg covering) There are constants §o(k, px, x) and c5(k), so that
the following holds. Let | be a finite Borel-regular measure, and S = S; U S a set
of full pu-measure. Take ry : S — R a nonnegative radius function satisfying ry < 1,
rsls, = 0and rgls, > 0. Assume that . satisfies

e k dr
/ B, (s, r)“—<8% Vs eS8, (6.6)
- r

s

where o = a(X) is the power of smoothness of X.

Then provided § < 8y, there is a subcollection S', C Sy, a collection of “bad-
balls” {B,, (b)}pes, and a mapping T : p(0,1) + V(0, 1) — X which is bi-Lipschitz
onto its image, so that the following holds:

A) measure control: if we let

F =[S:Nt(B3©0) N (p0, 1)+ VO, D)H]U | By, (s

7 /
s'eS,

ulJ[B,)NiseS:r <n)]. (6.7)
beB

then
w(B1(O\F) < c(k, )%, (6.8)

B) packing control: t isa (1+c(k, px, x)8%)-bi-Lipschitz equivalence, and we have

Yok rf <esth), (6.9)

s'eS!, beB
C) bad ball structure: for each b € B, the ball B, (b) is bad in the sense of Defini-

tion 3.39 with respect to u, and hence is bad with respect to pui{s € S : ry < rp}
as well.

6.3 Proof of Theorem 2.1 given Lemma 6.1
Before proving the covering lemma, we show that with it we can prove our main

Theorem 2.1. We postpone the proof of Lemma 6.1 to Sect. 7.
We first observe that if suffices to prove Theorem 2.1 when

M =8 = 83 (k). (6.10)

For otherwise, if 0 £ M # 8(2) (k), we can simply replace p with the measure 8(2) w/M,
and use the scaling of B. Of course what secretly happens by scaling is that we are
changing our definition of good/bad balls — instead of scaling © one could instead
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incorporate M into Definition 3.39. Note that the same idea has been used in the
recent article [26].

If M = 0, then Theorem 2.1 is trivial: By Lemma 3.36 we can find an affine k-
plane p + V so that u(X\(p + V)) = 0, and then we define S’ by the condition
that {B,, (s')}ycs covers p-a.e. Bi(0) N (p+ V), while the balls {B;, /5(s")}s'es' are
disjoint. The required measure estimate is vacuous, and the packing estimate follows
from Lemma 3.8.

We observe second that, in the language of Lemma 6.1, we have Sy = S, and
S; =0.

We now demonstrate how the Reifenberg Covering Lemma 6.1 can be used to prove
Theorem 2.1. The basic idea is that we can refine the covering on bad balls by applying
inductively the covering lemma in order to obtain a finer and finer coverings.

6.3.1 Inductive claim

We claim we can find for each i > 0 a collection of bad balls B;, and a subcollection
S; C 8, with the following properties:

A) Measure estimate: if we let

Fr=JB.s)uJ [B,)Nis €S:rs <), (6.11)

SES; beB;

then we have

i
R(BIO\F) <Y 277, (6.12)
j=0
B) Packing estimates:
i . .
ri <3fa) 277, and Y rp<27, (6.13)
SGS,‘ j=0 beB;

C) Wehave S; C S;j11, and Ubegi By, (b) D UbeBH_] By, (D).
D) For each b € B;, we have r, < x' and the ball By, (b) is bad with respect to
uLl{s € S:ry < rpl.

Let us prove this claim by induction. If B;(0) is a bad ball then let By = {0} with
corresponding radius function ro = 1, and let Sp = @J. Conditions A)-D) are vacuous.

Otherwise, if B1(0) is good, we let By = Sg = , and start from i = 1. To get
B1, S1, we apply the Covering Lemma 6.1 to B1(0) and pu, obtaining a Lipschitz
k-manifold 77, a collection of bad balls 81, and original balls S; C S4. Conditions
A)-D) are then immediate, since S; = @.
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6.3.2 Inductive step
Assume by induction our claim is true for i. Take b € B;. We know B,, (b) is bad

for uL{s € S : ry < rp}. Let us first estimate the “bad ball excess.” Set p + V =
p(b,rp) + V (b, rp), so that

14(By, (B\Byr, /30(p + V) < [x75/30]7> /B N dz, p+V)duz)  (6.14)
h

< clk, )y Bl (x.r)? (6.15)
< c(k, x)8%rf (6.16)
where in the last inequality we used the bound (2.1) along with (6.10) and the estimate
(3.15).
By virtue of being bad there is an affine (k — 1)-plane p + L*~! c p + V¥ so that,
forany y € B, (b)\Bioyr, (p + Lk_l), we have
plfs € S:rs <1} N By, (3) N By, (0)) < ' (xrp)/10. (6.17)
If k = 0 then we interpret p + L*~! = ). By choosing a maximal xrj/2-net in
SN By, (b) N Byr,y30(p + VO\Biogr, (p + L), (6.18)

and combining Lemma 3.8 with (6.17), we obtain

p({s € S:rs <rp} N By (B) N Byr,30(p + VEO\Bioyr, (p + LK1 < rf/10.
(6.19)

We need now only estimate “lower-dimensional” neighborhood
{s € S:ry < rp) N By () N Bypy30(p + VE) N Bioys, (p + LK. (6.20)
Let us define S” C S by the conditions that, first:
S’ c{seSn B, (b) N By, 30(p + V¥) such that xrp < rs <rp}; (6.21)

second: the balls { B, (s)}cs» cover
(B, () : 5 € SN By, (b) N Byyyy30(p + V) and xrp < 1 < 13} 3 (6.22)

and third: the balls {B, /5(s) : s € Sb } are disjoint. One can construct SP by the Vitali
covering theorem. By proximity to V and disjointness, we have by Lemma 3.8

>k < dkerbrf. (6.23)

seSh
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Now define J? to be a maximal 2 XTp/S5-netin

S0 By, (b) N Biogr, (L") N By 0(VON L By, (5). (6.24)

seSh

We observe that { B, (x)} ¢ b covers (6.24), that the balls { B, /5(x)} ¢ b are disjoint,
and by Lemma 3.10 that #" b <cplk)x 1-k_ Moreover, it is clear from construction
that if x € J? then

se{s’' €S :ry <rp}N By, (0)\ U By, (s) = ry < x7p. (6.25)

s'eSb
For each x € J°, apply the Covering Lemma 6.1 at scale B, (x) to the measure
u{s € 8 : rg < xrp}, and cover {s € S : rg < xrp} to obtain corresponding

collections Sy, and B,.
Now define

Sn=SulJ|Svls] s8u=U U 8. (6.26)

beB; xejb beBixejb

6.3.3 Packing estimate

For each b € B; we estimate, using our inductive hypothesis,
Z Z rf + Z r;lf/ <cs Z r)’f < C5chrl’f. (6.27)
xegh \seSy b'eBy xeg?

Choose x (k) so that cscpx < 1/2. Then we have

i
Sk <Y e tesesn) Y rf <3y 27, (6.28)
SESiy1 SES; beB; j=0
and
D rh<esepx )y <27l (6.29)
beBiyy beB;

6.3.4 Measure estimate

By the Covering Lemma, and since S, = ¢, foreach b € B; and x € " b we have
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s crg < xrp) O By O\ | U B U U [Br, @) N {s i 15 < r}]
SESy b'eBy

< c8%rf. (6.30)

Therefore, using our inductive hypothesis, bounds (6.14), (6.19), and ensuring
3(k, px, x) is sufficiently small, we obtain:

PBIONFip) < Y 277+ 3 u(By, ()N is i1y <p)\Fiy1)  (631)

j—0 beB;
< Zz T4 (€8 + 1/10)r;
beB;
+ Z D By, () N s 75 < xrpI\Fig) (6.32)
beB; xejh
<22 4275+ )0 Y ey (6.33)
beB; xe gt
< Zz—f +27/5 4 ek, )8 52 (6.34)
j=0
i+1 '
<3 2, (6.35)
6.3.5 Finally
Take S’ = U;S;, and set
Z = ﬂ U [Ba,(b) N {s € S:rg <rp}] . (6.36)

i beB;

Then by the inclusions C) we have

" (Bl<0)\ ( U B, 6Hu z)) <32, 637)
Jj=0

s'eS’
But since Z NS4 = ¥ we have u(Z) = 0.

@ Springer



Effective Reifenberg theorems in Hilbert... 1193

7 Proof of covering Lemma 6.1

We build by induction on i a sequence of k-dimensional Lipschitz manifolds 7;,
Lipschitz mappings o; : X — X, and almost-coverings of S by “good,” “bad,” and
“original” balls, written as G;, B;, S;. We also define a sequence of “remainder sets”
R;, and “excess sets” E;. It will hold that S; C S, and G; U B; C S\(R; U E;).

As opposed to the construction carried out in Sect. 6.3.2, where at every inductive
step bad balls were covered in a finer and finer way, here we will stop our construction
at the bad and original balls, and continue refining the construction inside good balls.

As the measure 1 and dimension k will be fixed, for ease of notation in this section
we will write 8 in place of ,8{2. We shall prove that, for some fixed A = A(k, x), our
manifolds and coverings admit the following properties for every i:

(1) To = p0, 1) + V(O, I).
(2) Graphicality of T;: for any y € T;, there is a k-dimensional affine plane p + V
(depending on y), so that for any choice of almost-projection 7y to V, we have

T; N Bay, (v) = graphg 1, (f),  (2w) "'l fIl + Lip(f) < A8,
Bise(MN(p+V)cQc (p+V). (7.1)

Moreover, if there exists some g € G; N Bjoy, (y), then we can take p + V =

p(g, i)+ V(g t).
(3) Eachmapt; =0;0---007: p(0,1)+V(0,1) - T;isa (1 + c(k, px, x)8%)-
bi-Lipschitz equivalence:

llzi() —nWIl

I I 1l <c(k, px. x)8* Vx,y € p(0,) +V(0,1). (72)
xX=y

(4) Ball control: The balls {B;,/5(s)}ses; U {Br,/5(b)}pes; U {Br;/5(8)}geg; are all
pairwise-disjoint. Moreover if x € 8; U S;, then d(x, T;) < r,/20. Similarly, if
ge@Gjforl <j<i,thend(g, T;) <r;/20.

(5) Radius control: If b € B; and s € SN B,, (b)\(E; U R;), then ry < rp. Similarly,
ifgeGiands € SN By, (9)\(E; UR)), thenry < t;.

(6) Packing control: we have

Db+ i+ Yt <esh. (1.3)

seS;cS beB; g€Gi

(7) Covering control: we have

w| BION [ | [Bu@niseS:ir<wi]u | BoU | [Ba)N(seS:r <nl]
8€Gi seSicS beB;

< ek, 0)5% . (7.4
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An important consequence of G; C S\(E; U R;), item (5) “radius control,” and
lemma 3.2 (and our assumption (6.6)), is that: whenever y € By, (Gi), and r > t;,
then

B(y,r) = c(k)s, and /ooﬂ(y, S)“i—s < c(k)s*. (1.5)

7.1 Sketch of the proof

To aid the reader in navigating the proof and construction of the Covering Lemma,
we give a rough and imprecise outline of how the manifolds 7;1| and new covering
at scale t; 4 are inductively built. The detailed proof is carried out in Sect. 7.

The basic idea is that we want to refine the covering at scale i only on the set of
good balls G;, since only in these balls do we have tilting control. We leave the scale
i bad and original balls 8; and S; untouched.

Given a good ball By, (g), we let p(g,t;) + V(g, t;) be one of its approximate
best subspace according to Definition 3.35, i.e., a k-dimensional subspace almost
minimizing the integral || Be, (9) d(x, p + V)%du. We define the sets

Eip1 = U By (8)\ By, /30(p(g, i) + V (g, 1)), (7.6)
8€Gi
which are set of points that are scale-invariantly far from the approximating planes of
the good balls. Given the bounds on 8 given by (6.6), we can infer that the measure of
these points is small, see (7.67) for precise estimates. We do not refine our covering
in the E i+1 - Neither do we refine our covering over the set of bad and original balls
B; and S;, which for convenience we denote by

Ri = U B,, (b)U U B, (s). (1.7

beB; SES;

Thus we focus on the set

U Bu(@) N By y30(p(g, ) + Vg, w) | \R;. (7.8)
8€Gi

We cover this set by a Vitali collection of balls of radius roughly v, 1, so that the balls
with the same centers and 1/5 of the radius are disjoint (see Sect. 7.2 for the precise
construction). We classify these balls into three types: original balls {B,, (s)}
bad balls {B,, (b)}befml and good balls {B;, (g)}gegm, and set

s€Sit1’

Sit1 =SiUSit1, By =8UBi1, Gyl =Gisl. (7.9)
In other words, we forget about the old good balls, while original and bad balls are

cumulative in i. Original balls are a subset of the original covering, and good and bad
balls are chosen according to Definition 3.39.

@ Springer



Effective Reifenberg theorems in Hilbert... 1195

In this construction, some care is needed to ensure first, we don’t refine inside
original balls (item (5) “radius control” of our inductive hypothesis); and second, the
balls

{Br,/5()}sesisy Y{Br,/5(0)}pesi Y {Br,,/5(8)}gesii (7.10)

are pairwise-disjoint.

Now we define the map o1 and in turn the manifold 7; 1 = o;4+1(7;) using the
constructions and estimates of Sect. 4.

In particular, the map o;41 is going to be an interpolation of projection maps g
onto the approximating planes of By, ,(g) with ¢ € G;i. These maps are glued
together with a partition of unity subordinate to { By, (8)}geg;,,- We do not consider
the planes associated to bad and original balls.

Since all { By, (g)}geg,., are good balls, we can apply Lemma 3.40 to obtain tilting
control over the best planes p(g, vi+1) + V (g, ti+1) with g € G;y1. Plugging these
estimates into the Squash Lemma 4.1, we obtain that o; 4 is a bi-Lipschitz equivalence
between T; and 0;4+1(T;) = Tj41.

By analyzing these estimates carefully, we prove also that the map 7; = o; 001 0
--+007 : To — T;+1 has uniform bi-Lipschitz estimates, thus the limit map t = lim; t;
is still a bi-Lipschitz equivalence and T = 7(7p) is a Lipschitz manifold with uniform
volume bounds.

The importance of the manifold 7; is that it provides a link among all the balls
in the covering, in the sense that all the disjoint balls in (7.10) have quantitatively
nonempty intersection with 7;,; (see item (4) in the construction for a more precise
statement). This allows us to turn the uniform volume estimates into packing estimates
for the covering.

As i — o0, the covering we constructed

U B.yu | B, U [ Bei(2) (7.11)

sES; beB; 8E€Gi

will have three pieces in the limit: the set U;S; of all original balls, the set U; B; of all
bad balls, and the set N;G; of limits of good balls. These pieces become S’+, B, and
S, (respectively) in (6.7). The last part consists of the points where the refinement of
the construction never stops. Since this piece is contained in By, (7;) for all i, its limit
is contained in the manifold 7 = t(7y) (and thus it is rectifiable).

7.2 Construction

Recall that we write t; = x'. By scaling we can assume » = 1 and p = 0. We
can also assume Bj(0) is a good ball with respect to p, as otherwise simply take
G = S/+ = ¥ and B = {0}. Thus we start our inductive process by defining Gy = {0},
and So = By = ¥ (so, no bad/original balls at scale r = 1), Eg = @, Tp = V (0, 1)
and Ry = 0.

Suppose we have defined good/bad/original balls down to scale v;. Let us detail the
i + 1 stage of the construction. Let
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Eivi = | Bo(®)\Bery s0(p(g. ) + Vg, 1) (7.12)
8€Gi

be the “excess set,” and define for convenience the cumulative excess set by E; 1 =
EiUEit).
We define S;41 by the following three conditions: first,

Sit1 € {5 €8N [ [Bise (@) N Beyyys0(p(g, v)
8€Gi

+V(g, uiDI\Riandviy) <ry <7t ¢ ; (7.13)

second, we ask that the balls {B, (s)} cover the set

?63[+1
U B, 5(s):s €SN U [B1.5e;(8) N By, 30(p(g, i)
8E€Gi
+V(g, ti)I\Riand vj1 <715 <7t ; (7.14)
and third, we require that the balls { B, /5(s)}

by taking an appropriate Vitali cover.
In order to define G;+1 and B; 41, let ;41 be a maximal 2t;41/5-net in

€3 be disjoint. One can construct S; 1 |

(Sm B1(0)N | J [Br,(9) N Be,,,30(pg. ti) + Vg, m)]) \ (Ri u J B, (s)) :

8€Gi s€8it1
(7.15)
It is easy to see that
SNBIO\E+UR) C | Bywu | B, (7.16)

XESH_] xeJit1
and the balls { B, /5(x)}re ;. are disjoint.

We split ;41 into Gi+1 and f?l-ﬂ depending on whether B, (x) is good or bad
with respect to u and x according to Definition 3.39. We set also

Riyi=RU () B &)U (] Be, (b)), (7.17)

SE:SH_] bE@,‘+1
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and
Sit1=SiUSiv1, Gis1=Git1, Biy1 =B UBi. (7.18)

Notice again that while the sets S;41, Bi+1, Ri+1 are “cumulative” in i, the set G; 1|
is not. Moreover, it is easy to see that

Bi(0) CE;UR U | Bei(9). (7.19)
8€Gi+1

We define o; 4 as follows. Let {¢g}gcg;,, be the truncated partition of unity
subordinate to {By,,,(g)}geg:,,» as per Lemma 3.1. For a given ¢ € G;1, let
De + Ve = pg,tix1) + V(g, vig1) be the L2-approximate plane for By, (g) of
Definition 3.35.

Letalsom, : X — V, = V(g, vi+1) be a choice of almost-projection. If X is a Hilbert
space, take i, to be the orthogonal projection; if X is uniformly smooth, and k = 1,
take 7, to be the J-projection.

We now set

oip1(X) =x— Y i@y (x — pg), (7.20)

8€Gi+

and let 7; 11 = 0i41(T).

This completes the inductive construction. In the following subsections we prove
the inductive properties asserted in 1)-7). On can easily check that all properties hold
trivially wheni = 0, and therefore in the rest of this section we can assume by inductive
hypothesis that properties 1)-7) hold for all scales between to and v;.

7.3 Item 2: Graphicality

Fix y € Ti11. If y ¢ Bior,,(Git1), then by construction o; is the identity on
B, (), and item 2 follows by induction. We can assume that y € Bjor,,(g) for
some g € G;+1. In the following ¢ denotes a generic constant depending only on
(k, x), and which is independent of A, and we shall assume §o(k, x, A) is small
enough so that c(1 + A)§p < €] (the constant from the squash Lemma 4.1).

First suppose i = 0, so that so that 7; = Ty = p(0,1) + V(0, 1) = po + V. By
the tilting Lemma 3.41, and by construction, we have for any ¢ € G1 N By, (g) the
estimates

d(g, po+ Vo) < r1/10, r{'d(pg, po+ Vo) +dg(V (g, 1), Vo)
< c(k, x)B(0,5) < cé, (7.21)

where po+ Vo = p(0, 1)+ V (0, 1) is an approximating subspace on B (0). Set 5 to
be a projection onto p(g, v1) + V (g, v1), and observe that if x € Be,, (y), then o7 (x)
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takes the form

o) =x— Y $eme(x — py). (7.22)

F€G1NBoy, (v)

In light of (7.21) and (7.22), 01| Bery () satisfies the hypotheses of the squash lemma
atscale By, (y). Since Tp = po+ Vo, we can apply the squash lemma part B) to deduce

T1 N Bay, (y) = graphg 1 (f) .t ' f|l +Lip(f) < c(k. x)B(0.5)
B3y (y) N (po + Vo) C €2. (7.23)

Finally, using estimates (7.21) we apply the regraphing Lemma 4.2 to (7.23) at scale
By, (y) to deduce item 2 when i = 0. Let us mention also that the squash lemma part
A) gives the bound

[lo1(x) — x]|| < c(k, x)ér1 Vx € Tp. (7.24)

Now suppose i > 1. By construction there is a g’ € G; so that g € B, (g'), and a
g" € Gi—1sothat g’ € B, ,(g"). Let us fix almost-projections 7, 7', and 7" to V,,
Vg, and V,r respectively.

We have by induction d(g’, T;—1) < t;/30 + Adr;—1 < t;—1/10, and by construc-
tion B3, (g") C Bi.1v;_,(g”), and therefore we can write

Ti—1 N Bsy, (g') = graphg ().t '|IfIl +Lip(f) < cAS8,
Byse; (8) N (pgr + Vgr) C Q. (7.25)

From tilting Lemma 3.41 and construction we have for any ¢ € Bg;(g') N G; the
estimates:

d(g, pgr + Ver) <1 /30 + cp(g”, 3t < /10, (7.26)
and
v ' d(pg, per + Vo) +dG(V(Z, 1), Vgr) < cB(g”,3tin) <cs.  (1.27)
And similarly, for any g € Bo,,, (y) N Giy1:

d(Z. pgr + Vo) < tis1/10, v\ d(pg. pgr + Vo) +da(V(Z. tiz1). Ver)
<cB(g".3ti-1) < cb. (7.28)

We now observe that for x € B3, (g") we have

@ Springer



Effective Reifenberg theorems in Hilbert... 1199

oi(x) =x — Z ¢g,n§‘(x — pz) and Z ¢z = 1 on Bys; (g).
8€GiNBer; (") 8€GiNBer; (8')
(7.29)

Therefore, by estimates (7.26) and (7.27), o;| By, (g) satisfies the hypothesis of the
squash Lemma 4.1 at scale By, (g). We are justified in applying the squash lemma
parts B), C) to deduce

T; N By, (¢)) = graphg . (f). v '|IfIl+Lip(f) < ctk, x)B(". 3ri-1).,
Bise,(8) N (pgr + Vgr) C Q, (7.30)

with ¢ independent of A.
Since Bgy,, (¥) C Bi.1y,(g") we can use (7.30) to write

T; N Bov,,, (y) = graphg o (f), v ILf 11+ Lip(f) < ek, x)B(g", 3ri-1),
Bse () N (pgr + Vyr) C Q. (7.31)

As above, by construction for x € By, (y), the map o;1 takes the form

o) =x— Y gme(x — pp). (732)

8€Gi+1NBo; | (¥)

though notice we do not anymore have equality > Pz = 1 in the partition of unity.
By estimates (7.28) we can apply the squash lemma part B) at scale By, () to obtain

’Ti+1 n B4ti+1 ()’) = grath,n”(‘f)s t;|_11||f‘|| + Llp(f) = C(k’ X),B(g//’ 3ti71)’
B3t () N (pgr + Vo) C Q. (7.33)
Finally, again from estimates (7.28) we can apply the regraphing Lemma 4.2 at scale
By, ., (y) to prove item 2.

Let us observe further that, by applying the squash lemma part A) to (7.30) at scale
Bay;,, (y) we can obtain the estimate

lloit1(x) — x|| < clk, x)dvit1 Vx € T;. (7.34)

7.4 Item 3: bi-Lipschitz estimates
The bi-Lipschitz estimates are the core of the covering lemma, and they basically

follow from the corresponding estimates in the squash lemma. First, let us remark that
from the uniform estimate (7.34), we immediately obtain

llze(y) = il = clk, x)or; VO <j<t=<i+1, Vyep@0,1)+V(QO,1D.
(7.35)
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Fix any x, y € B3(0) N (p(0, 1) + V(0, 1)). Note that wlog we can suppose x €
B3(0) since every o; is the identity outside B3(0).

Choose a maximal, non-negative m < i + 1 so that 6t; > |[|7;(x) — 7; ()|
for all j < m, and 7;(x) € B]ot_m(gj“) for all j < m — 1. Notice that when

T (x) € Biov,y, (Gm+1), then since necessarily ||y 1(X) — Tur1 ()] = 6tym41, We
have for & (k, x) sufficiently small that

T (x) — T (V)| = 6Tmy1 — C8Tpp1 = Xt (7.36)

If no such non-negative m exists, take m = 0, and then (7.36) trivially holds.
We claim that for each j < m — 1, we have

17410 =71 DI !
llTj(x) — ;W

< c(k, px, Y)B(Tj(x), 5t (7.37)

It will then follow, by (7.5) and for § (k, px, x) sufficiently small, thatforany j < m
we have the bounds

J
lTj(x) — ;I = 1_[(1 +cB(zj(x), 10te—1)*)[|x — yl|
=1

10 dr
<exp|c ﬂ(fj(X),r)“T llx —yll, and (7.38)

J

J
ll7j () = ;I = [ = eB(rx). 10t 1)) [x — vl

=1

r
J

10 dr
zexp|—¢ | B(tj(x), nN*—|llx = yll (7.39)

for ¢ = c(k, px, x) independent of j and m.

We shall see that claim (7.37) is a direct consequence of the graphical estimates
from Sect. 7.3, and the squash Lemma 4.1. Take j < m — 1. Like in the proof of item
2,wecanfindag” € Gj_1 with 7;(x) € By, (g"), and

Tj N B, (1 (x)) = graphg ., (). €5 I£Il+Lip(f) < c(k, )", 3tj1).
By 5 (Tj(x) N (pgr + Ver) C 2, (7.40)

for some choice of almost-projection 7 to V,» (if j = 0, then (7.40) vacuously holds
with g” = 0). Using estimates (7.28) and relation (7.32) (respectively (7.21), (7.22)
when j = 0), 0| Boe 1 (1;() satisfies the hypotheses of the squash Lemma 4.1 at scale

By, (tj(y)). Therefore, since 7;(y) € Bex,,,(7j(x)) by definition of m, we can
apply the squash Lemma 4.1 part D) if X is uniformly smooth, or part A) for general
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X, in order to deduce

lojr1 (@) = oj @ OGDIE
llzj(x) = ;DI

’ <cB(g”, 3"
<clk, Y)B(rj(x),5c;—%.  (7.41)

This proves (7.37).
We now prove the following estimate: for any j > m, we have

e — 5ol
Tm (x) — T (W)

1' <c(k, px, x)8%, (7.42)

with ¢ independent of j,m, as before. This clearly completes the bi-Lipschitz estimates.
First, we notice that if 7, (x) ¢ Bio,,,, (Gm+1), then o; is the identity on 7, (x),
T, (y) for all j > m + 1, and hence there is nothing to show. We henceforth assume
that (7.36) holds.
For o =1 (i.e., if X is a generic Banach space), the estimate is straightforward.
Indeed, using (7.35) and (7.36) we get:

1z () = ;DI = NTm () = T DII| = [17j(0) = T (O[] + {17 (¥) — T (V)]

(7.43)
< ¢ty (7.44)
< ctk, )8lltm(x) = T (WII. (7.45)

For o > 1 we proceed as follows. Let us fix p,, + V,, and m,, a choice of plane and
almost-projection so that, as per (7.40), we have

Tn N Ber,, (T (x)) = graphg . (), ry |LfIl +Lip(f) < c(k, x)8.
(Pm + V)N BZ.Srm (T (%)) C Q. (7.46)
We first prove the auxiliary estimate

Lemma 7.1 Forany z € Bey, (T (x)) N Ty, and j > m, we have
17mm (7 (2) — DI < clk, px, x)8%tm. (7.47)

Proof If o = 1 then this follows trivially from (7.34). Let us assume o > 1. We can
assume wlog that 7;(z) € Bsy,,, (G41) forall t < j.

For each r withm < t < j, choose a plane p; + V;, and almost-projection m; to V;,
so that 7; N By, (1:(2)) is graphical over p; + V; as per item (2). Moreover, we can
choose V; = V(g;, v;) for some g; € G N By, (1:(2)).

From the squash lemma part D) we have

It (01 (ti-1(2)) — -1 @D < ek, px, x)8%% (7.48)
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and by the tilting Lemma 3.41 and Lemma 3.32, we have
I = 7l < ek, px, 08" (7.49)
Now for each such + we compute

77m (7 (2) = Tr—1@DI| =< |71 (01 (71 -1(2)) — T -1 (2))|

!
+< >l - ﬂz—lll) llor(ti-1(2)) = -1 (2

L=m+1
(7.50)

< 8%, + ct8%, , (7.51)

and therefore
J J
Yo llmmm@ =@l < Y 8% <clk, px, )8, (7.52)
t=m+1 t=m+1

This proves (7.47). O

We proceed to prove (7.42). We use Lemma 7.1 to bound

[170m (xj () = T O = 170 (T (X) = T YD

< 7m (T (%) = T QO 4 [172m (7 (¥) = T (YD) (7.53)
< 8%y, (7.54)
< e8|t (x) — T W, (7.55)

and Proposition 3.34 and (7.36) to bound
17T (T () = T O = [T () — T DI]| < 8% [T (X) — T (7.56)

These together imply

17 (7 () = TODIP = N7 () = T (W2
< ek, px, 08 [T () = T I (7.57)

By (7.35) and our choice of m, we have the coarse bound
17 (x) = 2 ()I] < 10t (7.58)
for small §(k, x). Therefore, by the Pythagorean theorem 3.33, we obtain

17 (x) — T I = 17w (7 (x) — 7, )
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< c(k, px. Oy (rj (x) = TN %60 @ (7.59)
Finally, using (7.46), and estimates (7.36), (7.34), we have

|17t (7 () = T O]t < (117 () = Tw (O] + [177:(x) — Tu ()]

17t (g (x) — rm(y>)||)“ Lo (7.60)
< c(k, x)8%% (7.61)
< clk, )8 |1Tm (x) — T (M2, (7.62)

which completes the proof of 7.42, and thus the proof of item 3.

7.5 Item 4: Ball control

It is clear that {B,/5(s)} U {By,,,/5(xX)}xeg;,, are pairwise-disjoint, since for

s€8it1
each such s we have ry > ;1. Now take some x € Si+1 UYJirrandy € §; U B;.
By construction we have (S;+1 U Ji+1) N B (y) =¥, and ry > v;, and ry < v;. Itis
then immediate that B, /5(x) N B,y ;5(0) = @.

Let us prove the second assertion. Given x € B ;U S i UG, for j > 1, then
by construction and item 2 “graphicality” there exists an x’(x) € T;_; so that
Hx’(x) — x|| < r;/30 + c(k, px, x)dt;j_1. The uniform estimates (7.34) on the o;
imply thatx” = ;10070 - -00;(x') € Tiy satisfies Hx”(x) — xH <t;/304+cbrj_.
Therefore, for §(k, px, x) sufficiently small we obtain d(x, T;1+1) < t;/20 < ry/20.

7.6 Item 5: Radius control

Since R; U E; C R;j4+1 U E;41, by our inductive hypothesis it suffices to prove “radius
control” when r, = t;y1. Suppose s € SN B, (b) and ry > r, = viy1. If rg > 1y,
then by induction s € E; U R; and we are done. Otherwise, ti+1 < ry < tj, and we
can without loss of generality assume s ¢ E; .

By construction, b € By, (g) for some g € G, and therefore s € By, (b) C
B\ 5, (g). Therefore by definition (7.14) and our assumptions on s, we must have
s € Us/eS,*.H Brs/ (s") C Riy1.

This establishes item (5), since the proof for good balls is verbatim.

7.7 Item 6: Packing control

For the packing control, we are going to use the bi-Lipschitz estimates on the manifolds
T; and the disjointness properties of balls in our construction. In particular, we know
that 741 is (1 + c(k, px, x)8%) bi-Lipschitz to V (0, 1). Moreover, since we have the
uniform estimates (7.34), we also know that 7; | N By (0) is bi-Lipschitz to a subset
of V(0, 1) N B> (0).

Forall s € S;41, let s'(s) € T;1| be a point satisfying ||s’(s) — sH < ry/20, and
in a similar way b’(b) € T;y| satisfies Hb’ - bH < rp/20, and g'(g) € T;4 satisfies
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Hg’ - gH < t;4+1/20. By construction, all the balls in the collection

{Bro7 (")} es U ABr 0" )} e, Y {Briis1 (8'))}geg,, (7:63)

are pairwise disjoint.
Using the map rl.jrll and its bi-Lipschitz estimates, we obtain that all the balls in the
collection

iBrS/IO (r;ll (S/(S)))}ses u {be/lo (tijrll (b/(b))> }begi

i

UfBem (i@ @) (7.64)

are pairwise disjoint inside the k-dimensional affine ball 7o N B3(0), and now the

desired packing control is a corollary of Lemma 3.8.

7.8 Item 7: Covering control
It is clear from item “radius control” that

Bi(0)NSC E;UR; U U [Be,(9) N s 1y <ti}]. (7.65)
8E€Gi

To prove item “covering control” it will therefore suffice to establish
w(E;) < c(k, x)8%. (7.66)

First of all, note that by definition (1.1) of 8, we get that for all j > 0:

i (E,-+1) <k, 0% > Blg. ™ (7.67)

g€gG;

We want to control the RHS with an integral by the H* Hausdorff measure on
T;i41. For each fixed 0 < j < i, using item 4 “ball control” we know the balls
{Bt,/5(8)}geg; are pairwise disjoint, and for each g € G; we have a g () € Ty
with ||g/(g) —g || < t;/20. Therefore, the collection {Bt,./7 (g/(g))} are pairwise
disjoint also.

Since Tj4q is (1 + ¢8%)-bi-Lipschitz to a k-dimensional plane, and by Lemma 3.9,
we have that for all g € G;

8€G;

(b)) < HE (Beyy7 (¢'(9)) N Tigr) < el (7.68)
Moreover, by (3.14), we know that for all y € By, /7 (g’(g)) C By;5(8)
B(g.tj) = c(k)B(y, 2t;). (7.69)
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Summing up all of these estimates, we get that

i (Epn) = e By, 2t/ dH (y)
Ugeg; Bej/1(8' @M T4

< c(k, x) By, 2t )2 dH* (y). (7.70)
Box; G)NTi+1

Take a y € B>(0), and let m be the maximal integer < i for which y € By, (Gn)-
Since By, (Go) = B2(0), m > 0. Then from (7.5) and our assumption (6.6) we have

ZlBhJ.(g,)(Y)ﬂ(y,th) < C(k,X)/ B(y,s) <
j:O Tm

o0 d
SC(k,x)/ ﬁ(y,s)“TSSc(k,x)a“. (7.71)

We can use (7.71) to sum contributions to E;| over scales, and end up with

m(Eit1) < zl:M (Ej+1>

j=0
< (k. ) / D L, 6) NBG. 26)* | dH () (7.72)
Ti+lmBZ(0) j=0
< ¢k, )8 H (Tr+1 0 B2 (0)). (7.73)

Using that Tj41 is (1 4+ ¢§%)-bi-Lipschitz to V (0, 1), and Lemma 3.9, we conclude
(7.66). This establishes item “covering control.”

7.9 Finishing the proof of Lemma 6.1

The proof of the lemma is now just a corollary of the inductive covering. We can
define

o0 o0
S, =Jsi. 8=8. T =limg, (7.74)
=0 i=0

where the last limit exists as the 7; are uniformly Cauchy (by e.g. (7.35)). We obtain that
7 is a bi-Lipschitz map with the desired estimates because the bi-Lipschitz estimates
in item (3) are independent of i, and packing control of (6.9) follows directly from
the estimate (7.3) of item (6). The bad ball structure is simply the definition of a bad
ball in 3.39.

@ Springer



1206 N. Edelen et al.

We just need to establish the measure bound (6.7). By “ball control” (item (4)), we
know that for all i,

U [Bt,.(g) N{iseS:rg < ti}] C By, (THyN{seS:ry <t} (7.75)
g€Gi

Therefore, by “covering control” (item (7)), we get for every i:

w| BiO\ [ [Bar () N s € S:rs <wl]U | B (9)U
SGS,'CS

U [Bo®)niseSir <n)]| | < etk x)8*. (7.76)
beB;CB

Since this estimate is independent of i, and

o0 o0

[ B2, (T1) C T(B30) N[p(O, D+ VO, D), [Ys€S:r <tu}=S.,
i=0 i=0

(7.77)

we get the desired result.

8 Corollaries

In this section we complete the proofs of the various corollaries of the Main Theo-
rem 2.1.

We start with Corollary 2.3. Here we basically choose the radius function ry for the
covering S+ in a clever way and apply the Main Theorem.

Proof of Corollary 2.3 Fix an 7 € (0, 1). For case A) define S5 = {s : ry > 7} and
wr = uLS,. We claim that w7 is finite. From the definition of ﬂ,’i we have a k-plane

p + V¥ 5o that
ur(B1(O\Bro0(p + V) < c(r,k)M. 8.1
On the other hand, using the definition of S we have by Lemma 3.8 that

ur(B1(0) N Brpo(p+ V) < Y {rf :s € Srand d(s, p+ V) < rs/10} < c(k).
(8.2)

So us is finite, and thus Borel regular (see for example [30, theorem II, 1.2, pag
27]). This and the monotonicity of B, in p imply that we can find a Borel set U so
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that
: k dr 2
/ Bl (x.1)*— < M** VxeU, (8.3)
0 r

and 7 (B1(O\U) <T.
By monotonicity of B, ur U and Sr satisfy the requirements of Theorem 2.1.
Therefore we have some S so that

ur(Bi(0) <b Y rh 4 ek, p)M +T <k, px)(M +b)+T.  (8.4)

s’ES;T

Since Uy~ oSr covers p-a.e., the required bound follows taking ¥ — 0.
Similarly, in case B) define

S={x:0%5u, x) <b}, (8.5)
and set ry € (0, 1) to be any choice of radius for which p(Bs,, (s)) < 20kbrf . Take
p + V., Sr, and pr as in part A). By assumption, we have UrSy covers p-a.e.

We must demonstrate ur is finite. Let { B, (s)} s be a Vitali cover of {B,,(s) : s €
SN B1(0) N Br/20(p + V)}. Then, using the definition of r; and Lemma 3.8, we have

ur(B1(0) N Brjao(p + V) < ) u(Bsr () < ) 20°brf < c(k)b.  (8.6)

SE:S? N E:S?

By the same argument as in (8.1) we have ur(B1(0)) < oo, and thus Borel-regular.
So, as in part A), we can find a set U with (8.3) and uz (B1(0)\U) <T.

So uFLU and S5 satisfy the requirements of Theorem 2.1, by an analogous compu-
tation to (8.4) we deduce the required bound for 7. Since this bound is independent
of ¥ and uy / w, we obtain the claim.

We prove case C). Fix p + V as above, and now in this case define

wr = pe(BIO)\Br(p + V)) < bH*L(S\Br(p + V). (8.7

From (8.1) each ur is finite, and hence Borel-regular. A standard argument (see e.g.
chapter 1 in [36]) shows that if

A= {x: 0" (ur, x) > 1}, (8.8)
then rH¥(A) < ur(A). Therefore we must have the density bounds
O (ur, x) <b for pur-ae. x, (8.9)
Using part B), then taking ¥ — 0, we deduce

n(B1(O\(p + V) =< c(k, px)(b + M). (8.10)
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Since from Lemma 3.9 we have u(B1 (0)N(p+V)) < bH*(B1(0)N(p+V)) < c(k)b,
we conclude the desired estimate (2.5). m]

8.1 Rectifiability

Now we are ready to prove Theorem 2.6 about rectifiability criteria for the measure p.
This proof follows from the Covering Lemma and some considerations. First of all,
fix any B, (x) C Bj (0). We can consider the trivial covering S = S, = B, (x) for
this ball, and the Covering Lemma 6.1 tells us that if we define (6.7):

F=(S.ne(B:0) ugg[z;,b(b) NseS:ir<nl]. &1

this set covers most all of B, (x) up to a set of small u measure.

The point now is to make sure that a fixed portion of the measure  in By (0) will
be covered by the first part of the covering, i.e., by the set 7 (B3(0%)), which is clearly
rectifiable. In other words, we need to make sure that the “bad balls” B,, (b) and the
set not covered by F do not carry much portion of the measure. This is the main part
of this proof, and it requires lower density bounds to ensure that we can pick balls
B, (x) that have enough measure p. Once this is done a standard inductive procedure
can be used to cover a set of full measure with countably many Lipschitz images.

This is the only place where the lower bound on the upper density @* (11, x) > 0
plays arole. Notice that this assumption is necessary to ensure rectifiability, and in fact
it’s easy to see that positivity of the lower density @{‘k (m, x) > 0 is necessary (even
for other definitions of rectifiable, seee e.g. [5, Lemma 2.7]).

The following example is instructive. Consider the n-dimensional Lebesgue mea-
sure A" in R". For k < n, this measure clearly satisfies

2
d
/ AL r? S <00, ©KOM x) < 00 (8.12)
0 r

for all x € R". Indeed for all x, (A", x) = @K, x) = OF(\W",x) = 0, but
clearly A" is not k-rectifiable.
Proof of Theorem 2.6 The argument is very similar to the ones in [13, section 10]. For

the reader’s convenience we sketch the argument here.
First, we prove our theorem under the stronger assumptions that u is finite and

2
d
/Oﬁ,’i(x,r)"’TrSM"’/z, Ofn.x) <b, O F(u.x)=a., (813

with a, b, M positive and finite. We will turn to the general case afterwards.
Applying Corollary 2.3 at every scale we deduce

w(By(x)) < c(k, px)(M + b)r* = Tr* Vx and Vr < 1. (8.14)
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Note this implies 1 < H*.
By Lemma 3.3, given any § > 0, then for p-a.e. x there is a scale R, so that

© d
m (z € By (x): / :3;]2._3 (x)(z,s)“—s > 8) <8rf YO<r <R,. (8.15)
0 " s

Let us take any such x and r < Ry, and by the above we can find a Borel set
A C B, (x) so that

<k o ds k
/ Bua(z, 9)— <38, (B (x)\A) <ér'. (8.16)
0 N

Ensuring § < 8o(k, px, x), we can apply the Covering Lemma 6.1 to uL A, with cover
S, = A, 84 = (J, to obtain a Lipschitz mapping t : B3 — X and a family of bad
balls B, so that

m |:A\ <r(33) U U B, (b)>i| <ck, x, px)8, and Zr,’j <c(k). (8.17)

beB beB

For each bad ball B, (b), we can follow the argument from Sect. 6.3.2, and use
upper bound (8.14), to obtain

((By, (b)) < (c(k, px, x)8% + 1/10 + cp(k)x D)ry. (8.18)

Choose x = min(1/100, 1/T"), then taking §(k, px, x) sufficiently small, we can
combine (8.17) with (8.18) and our definition of A to obtain

1(Br()\T(B3)) < cs(k)r* (8.19)

for some constant cg (k) which is independent of M, b, a.

In particular, by scaling © and correspondingly readjusting y, §, we can assume
a > 10ce. Then a straightforward argument using the above conclusions shows that,
for any closed set C, we can find finitely many Lipschitz mappings 1, ..., Ty :
B3(0) ¢ R¥ — X, so that

1
HBIUONC Ui (B3) U - - Uty (B3))) = S1u(BIONC). (8.20)

Rectifiability for u satisfying (8.13) now follows directly.

In order to conclude the proof, we show that the assumptions that u is finite and
(8.13) holds instead of (2.7) are not restrictive.

First, we show that we can assume wlog that u is finite, and thus also Borel-regular
since X is a metric space. Indeed, let x € Bj (0) be such that

Bl (x,2)* < 00, (8.21)
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and consider a k-dimensional affine plane p + V with
/ diy, p+V)* = / d(y, p+V)* < 0. (8.22)
By (x) B1(0)

Then automatically for all 7 > O the measure w restricted to the open set OfF =

B: (p + V)C has finite mass. Moreover, by monotonicity of 8 in u and since O is
open, uL O; satisfies all the assumptions of (2.7) and it is finite.
Note also that the measure u(p + V) is rectifiable. Indeed, let

A = {@)’;(u,x) < i] N(p+V)NB (0), w=p(p+V)NA,. (823)

We claim that w; (B, (x)) < cirk for all x, r, and thus ur(p +V) = lim; u; <

'7-{k|_(p + V). In order to show that u; (B, (x)) < cirk, let By, (xj) be a covering of

B, (x) N A; with xj € A, i (Br; (x7)) < Zwkirl’/‘ and B,,/5 (x;) pairwise disjoint.

Since x; € (p+ V) N B (0), X ;(r;/5)* < ¢, and so i (B, (x)) < cir* as wanted.
Thus we can write

w=p(p+V)+ lim u.O0;-1, (8.24)
1—> 00

and so if the finite measure p. Oy is rectifiable for all 7 > 0, we obtain that the original
W is countably rectifiable also.

As for the stronger hypothesis (8.13), we have the following. Given a finite p, for
any integer i, define

2 d
U, = {x € B1(0) : / ﬂﬁ(x,r)"‘—r <i, ®]§<(M,x) <i, ®*’k(M,X) > i_l}.
0 r
(8.25)

By assumption, U; U; covers p-a.e. x. Moreover, i U; obviously satisfies

: k «dr . k .
A By, (X, 1) - <i, O,(uU,x)<i. (8.26)

We claim that @ (uLU;, x) > 107%i ! for u-a.e. x € U;. Given this claim and the
previous bounds (8.26), our initial proof will show that each p U; is k-rectifiable, and
hence u is k-rectifiable also.

Let us prove our claim. The proof is standard, but we include it for the reader’s
convenience. When k = 0 the claim is trivial. Otherwise, set

A={xeU : 0% uLU;, x) < 10751, (8.27)
Suppose, towards a contradiction, that (A) > 0. Since u is finite Borel-regular,

we can choose an open V O A so that u(V) < (11/10)u(A). For p-a.e. x € A, pick
a radius r, so that:
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w(Br () NA) _ 10—k~ (B, 5(x))

ok LTS > (9/10)i "', (8.28)

B, (x)CV,

Let {B,Xi (x;)}i be a Vitali cover of { B, (x)}rea, so that the ry, /5-balls are disjoint.
This collection is countable, since each ball has a positive amount of measure. Then
we have the contradiction

pA)= Y 10745 e <274(10/9) Y 7 i(Br, y5(xi)) =275 (10/9 (V) < u(A).

(8.29)

Therefore we must have w(A) = 0.
This completes the proof of our claim, and in turn the proof of Theorem 2.6. O

Now we turn our attention to Corollary 2.7, which is just a special case of the
previous Theorem 2.6.

Proof of Corollary 2.7 Take ¥ > 0. By our assumption there is an affine k-plane p + V
so that

H*(S\Br(p + V)) < oo. (8.30)

Define
— 0 k dr —
Sr=3xe€ B1(0):d(x,p+V)>7 and / Bu(x,r)— < 1/r¢. (8.31)
0 r

Then H¥_Sy is finite, and hence we have density bounds
27 < @K (H LSr, x) <1 for HF-ae. x € Sy (8.32)

By construction and monotonicity of 8, H*_S- satisfies the requirements of Theo-
rem 2.6, and so we deduce Sy is k-rectifiable.

From our hypotheses U-Sr = S\ (p + V) up to a set of H¥-measure 0. Since p + V
is trivially k-rectifiable, we finish the proof taking ¥ — 0. O

8.2 Proof of Proposition 2.8

Now we turn to Proposition 2.8, which is a corollary of the proof of the main Theorem.
Actually, the construction is much simplified in this case.

Remark 8.1 Before we sketch the proof of this result, it is worth noticing that up to
making sure that the constants involved in the estimates are independent of the ambient
dimension n, and up to using the notion of almost projections/canonical projections on
Banach spaces and the relative estimates studied in Sect. 3, the proof of this theorem
is very similar to the proof of [39, main theorem], [11]. In the language of our proofs,
the Reifenberg flat condition allows us to completely skip the good balls - bad balls
construction and makes the inductive covering of Lemma 6.1 technically less involved.
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For this entire section, let us fix S to be a (k, §)-Reifenberg flat set having 0 € S, as
per Theorem 2.8. The proof is essentially standard. For ease of notation, in this section
we shall write B in place of 5§, o

Let us review some basic properties of the B. First, we trivially have Boo(x,7) < 6
for any x € S, by the Reifenberg-flat assumption. Second, if B,(x) C Bgr(y), then
Boo(x,7) < (R/r)Bso(y, R). In particular, we have

2r dS
Boolx,r) < ck) [ BL(x, )= (8.33)

Definition 8.2 Given x € S, let us define Vi (x, ) to be any k-plane for which
SN By(x) C B2,Boc(x,r)r(x + Vol(x, 1)) . (8.34)

Similar to how the L2-8-numbers control tilting between nearby good balls, the L>°-
B-numbers control tilting between nearby Reifenberg-flat balls. The proof is identical,
except we use the Reifenberg-flat condition to obtain points in § in general position,
and require no lower mass bounds.

Lemma8.3 Let x,x’, y € S, and suppose B,(x) U B, (x") C Br2(y), and Br(y) C
B>(0). Then we have

dp ((x + Voo (x, 1) N Br(Y), (x" + Voo (x', 1)) N Br(y))
<c(k,r/R. 7' /R)Bc(y, R)R (8.35)

and
dG (Vao(x, 1), Vo', ') < c(k, /R, ¥ /R)Boo(y, R). (8.36)

Similarly, we have
dp((x + Vo (x, 7)) N Br(y), SN Br(y)) < c(k,r/R)SR. (8.37)

Remark 8.4 Although phrased differently, a similar lemma is present in the proof of
[39, lemma 3.1].

Proof Provided §(k) is sufficiently small, the Reifenberg-flat condition and stability

Lemma 3.11 imply we can find points xo = x and x1, ..., x¢ € SN By, /10(x) so that
the vectors {x; — xo};‘:1 lie in r /2-general position.
Foreachi =0, ..., k we have

d(xi, (x + Voo (x, 7)) = Boo(xi, r)r, and d(xi, (y + Voo (¥, R))) < Boo(y, R)R.
(8.38)

Therefore, ensuring §(k) is sufficiently small, we can use the stability Lemma 3.11

to find z; € (x + Voo(x, 7)) N B,(x) such that ||x; — z;|| < 26r, and the vectors

{zi — Zo}fz | lie in r /4-general position. Lemma 3.5 implies that
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d(z,y + Voo (y, R)) < c(k,7/R)Boo(y, R)R Vz € (x + Voo(x,7)) N Br(y).
(8.39)

Now use Lemma 3.14, and repeat the argument with B, (x”), and the desired estimates
(8.35), (8.36) follow from the triangle inequality.

Letus prove (8.37). Fix ak-plane W sothatdy ((y+W)NBg(y), SNBr(y)) < 26R.
We have by our choice of z; that

d(zi,y+ W) <45R i=0,...,k. (8.40)
Therefore, as above, lemmas 3.5 and 3.14 imply that
dr((x + Veo(x, 1)) N Br(y), (y + W) N Br(y)) < c(k,r/R)SR,  (8.41)
and (8.37) follows by the triangle inequality. O
8.2.1 Construction

We build the map t as a limit of maps 7;, constructed in a very similar manner to Sect. 7.
The proof that each t; has the required bi-Holder/bi-Lipschitz bounds is essentially
verbatim to items 2 and 3 in Sect. 7.

We shall inductively define a sequence of mappings t; : V (0, 1) — X, and mani-
folds 7; = 7;(V (0, 1)), which admit the following properties:
(1) To = V (0, 1).
(2) Graphicality of 7;: for any y € T;, there is an k-dimensional affine plane p 4+ V

(depending on y), so that for any choice of almost-projection 7wy to V, we have

T; N By, (y) = graphg , (f),  2w)~'||f]| + Lip(f) < A8,
Bisu,(MN(p+V)ycQc(p+V), (8.42)

where A = A (k). Moreover, if there exists some g € G; N Bioy, (), then we can
take p +V = p(g,vi) + V(g, v).

(3) Eachmap t; : V(0,1) — T; is a (1 4+ c(k, x)5)-bi-Holder equivalence.

(4) Given summability condition (2.12), then in fact each 7; is a bi-Lipschitz equiv-
alence, with bound

e PO |y — vl < [lt() — G| < EPI e —yll. (843)

(5) Covering control: We have dy (S N By, 2, Ti N Bigy;/2) < v

Given items (1))—(5)), the Reifenberg Theorem 2.8 will follows directly.

Let us detail the construction of the 7; and 7;. Recall that t; = Xi , where here we
shall fix x = 1/100.

For each i define G; to be a maximal 2v;/5-net in S N B1(0), so that the balls
{B+;(8)}geg; cover SN B1(0), and the balls { B, /5(g)}¢eg; are disjoint. Given g € G,
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let Vo = Vio(g, v), and 7, be a choice of almost-projection to V. Let {¢,}ceg,; be
the truncated partition of unity subordinate to {B;(g)}¢eg;  as per Lemma 3.1.
We now define

oi=x— Y ¢(X)me(x —g), (8.44)

8€Gi

andsett; = o;0---o001,and T; = 7;(Tp) = 7 (Vo (0, 1)).

This completes the construction of the 7; and 7;. In the following subsections we
prove by induction the properties 2)-5). We can assume by inductive hypotheses that
items 2)-5) hold for scales ro, ..., t;.

8.2.2 Item 2: Graphicality

The proof is the same as Sect. 7.3, except we use the B, instead of S, and tilting
Lemma 8.3 in place of Lemma 3.41. Let us sketch the proof. In this section ¢ denotes
a constant depending on k, but independent of A, and we assume § (k) is sufficiently
small so that c(1 + A)§ < €1 (k).

Fix y € T;, and we can assume y € Bjoy,,, (g) for some g € G, 1, since otherwise
041 is the identity on By, (y). If i = 0, then we have for any g € G N By, (y) the
estimates

d(g, Vo (0, 1)) <58(0,5), dc(Ve(g,71), Voo(0, 1)) < c(k)Bo(0,5).
(8.45)

Since Ty = Vo (0, 1), we can apply the squash lemma at scale By, (y), then the
regraphing lemma at scale B, (y), to deduce item (2).

Suppose i > 1. By construction there is a g’ € G; so that g € By, (g'), and a
g" € Gi—1sothat g’ € By,_ (g"). Let us fix almost-projection " to V.

By tilting Lemma 8.3 and by construction, we have for any g € Bgq, (g) the esti-
mates

d(@, 8"+ Vo) < cBoo(8”.3ti—D)ti . dG(Voo(&. 1i), Vgr) < cBoo(8”, 3ti—1),
(8.46)

and similarly, for any g € Giy1 N Boy,,, (),

d(ga g/, + Vg”) 5 C,Boo(g//» 3tl—1)tl+1 ’ dG(VOO(ga tl-‘rl)’ Vg”) S Cﬂoo(g//a 3tl—1)'
(8.47)

We can then use our inductive hypothesis, the structure of o;, and the squash lemma
part C) at scale By, (g'), to obtain

T; N Bag; (¢') = graphg »(f), © 'If1l +Lip(f) < cBoo(g”. 3ri 1),
Bise (9)N(g" +Vy) CQ, (8.48)
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where ¢ is independent of A. Since Ber;,, (y) C Briy (g"), we can now use the
squash lemma part B) at scale By, (), then the regraphing lemma at scale By, (y),
to deduce item (2).

As before, we can apply the squash lemma part A) to obtain the estimate

lloir1(x) — x|| < c(k)driy1 Vx €T. (8.49)
Moreover, part A) also gives the estimate
[l(oit1(x) —0ir1 (V) — (x = Wl = c(K)éllx —yl| Vx,y eTi.  (8.50)

We explain. When ||x — y|| < 2t;, then we can use (8.48) and the squash lemma to
obtain (8.50). Otherwise, when ||x — y|| > 2t;, then we can use (8.49) to get

[1(oir1(x) — 0i+1(¥)) — (x — Y| < 2¢éviq1 < c(k)S||x — y||. (8.51)
8.2.3 Item 3: bi-Holder estimates

Letus fix an x, y € B3 N Vi (0, 1). Set m be the maximal integer so that ||7;(x) —
7; (y)|| < 6v; for alli < m. We have by estimate (8.50) the bound

Tm () = T = (1 = c(k)8)"|1x — ylI, (8.52)
and so, provided 1 — c(k)é > 1/2, we have m < a(10log(6) — log(||x — y||)) for
some absolute constant a.

Therefore, using (8.50), we have for any i < m the bounds

17 () — I < (14 c8)[|x — y|| < (1 + c(k)d)||x — y||i7loel+e®d) = apq
(8.53)

7 () — I = (1= c8)™[lx — yl| = (1 — c(k)8)||x — y||I 7@ logd=c®),
(8.54)

As in Sect. 7.4, we can use (8.49) deduce for any i > m the bound

[7i (x) — I = NTm (x) — T WI]| < c(k)orm < c(k)S||Tm (X) — T (W)II.
(8.55)

Combining this with (8.53), (8.54), and ensuring §(k, y) is sufficiently small, we
obtain the required bi-Holder estimate.

8.2.4 Item 4: bi-Lipschitz estimates
Let us assume the summability condition (2.12). The proof is identical to Sect. 7.4.

Fix x, y € B3 N V«(0, 1), and choose m maximal so that ||7; (x) — 7; (¥)|| < 6v; for
all i < m. Using (8.48) and the squash Lemma 4.1 part D), we obtain
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|[Ti1(0) — T 1 O
17 () — T ()

1 < ek, px)Boo(Ti(x), Stim)® Vi <m —1. (8.56)

By the same computation as (7.38), (7.39), we deduce, ensuring § (k, pyx) is sufficiently
small,

e ®PO 1y — y)| < |l (x) — (| < e EPOLx — y|| Vi <m. (8.57)

On the other hand, again by the same argument as in Sect. 7.4, we have

[lTi (x) = T = lTm (x) — T (W)
<ck, px)8%|ltm(x) — T (W Vi = m. (8.58)

Since we can clearly assume § < Q, this establishes the required bi-Lipschitz bound.

8.2.5 Item 5: covering control
By inductive hypothesis we have
dp(T; N Bigr; 2, SN Bigy;2) <1, (8.59)
and therefore by item “graphicality” and estimate (8.37), we have
dy(T; N Biyv; 2, S N Bryy; 2) < c(k)dr;. (8.60)

We elaborate. Given any y € T; N By, 2, by (8.59) and construction we can find
a g € Gi N Bey,/5(y). Graphicality and estimate (8.37) imply that

d(y,S) <d(y,g+Vg) +du((g + Vg) N Bs, (), SN Bsy; ()
< A8t + c(k)dr;. (8.61)

Conversely, givenz € SN By 4,2, wecanpickag € G; N By;(z) and y € T; N By, (2).
Then using graphicality an the definition of B, we obtain

d(z,Ti) = d(z, 8+ Vg) +du((g + V) N Bay; (), Ti N Bay; ()
< 28t; + Adv;. (8.62)

This establishes (8.60).
Now using the C 0 estimate (8.49) with (8.60) we deduce

du(Tiv1 N Bige/2, SN Bl 2) < c(k)dv < viqq, (8.63)
provided & (k) is sufficiently small. This proves item (5).
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