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Abstract
A famous theorem by Reifenberg states that closed subsets ofRn that look sufficiently
close to k-dimensional at all scales are actually C0,γ equivalent to k-dimensional
subspaces. Since then a variety of generalizations have entered the literature. For a
general measure μ in Rn , one may introduce the k-dimensional Jones’ β-numbers of
themeasure, where βk

μ(x, r) quantifies on a given ball Br (x) how closely in an integral
sense the support of themeasure is to living inside a k-dimensional subspace. Recently,
it has been proven that if these β-numbers satisfy the uniform summability estimate´ 2
0 βk

μ(x, r)2 drr < M , then μ must be rectifiable with uniform measure bounds. Note
that one only needs the square of the β-numbers to satisfy the summability estimate,
this power gain has played an important role in the applications, for instance in the
study of singular sets of geometric equations. One may also weaken these pointwise
summability bounds to bounds which are more integral in nature. The aim of this
article is to study these effective Reifenberg theorems for measures in a Hilbert or
Banach space. For Hilbert spaces, we see all the results fromR

n continue to hold with
no additional restrictions. For a general Banach spaces we will see that the classical
Reifenberg theorem holds, and that a weak version of the effective Reifenberg theorem
holds in that if one assumes a summability estimate

´ 2
0 βk

μ(x, r)1 drr < M without
power gain, then μ must again be rectifiable with measure estimates. Improving this
estimate in order to obtain a power gain turns out to be a subtle issue. For k = 1 we
will see for a uniformly smoothBanach space that if

´ 2
0 β1

μ(x, r)α dr
r < Mα/2, where α

is the smoothness power of the Banach space, then μ is again rectifiable with uniform
measure estimates.
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1 Introduction

A famous theorem by Reifenberg [33] states that a closed subset S of Rn that looks
sufficiently close to a k-dimensional plane at all scales isC0,γ -equivalent to a k-plane.
Easy examples show that in general Hölder cannot be improved to Lipschitz. A set
satisfying Reifenberg’s theorem is often called Reifenberg flat.

Reifenberg’s theorem is remarkable but in some ways restrictive. It does not allow
holes in S, i.e., it cannot be applied to sets that are strictly contained in the bi-Hölder
image of a k-dimensional plane, and it cannot give information on the Lipschitz struc-
ture of S. There are many applications which require these properties, and there have
been many results which address some variation of the question: given S or a general
measure μ satisfying some kind of k-dimensional affine approximation property, then
what measure control or Lipschitz structure does this set/measure admit? Often tech-
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niques from these theorems can be adapted to the context of Reifenberg’s theorem,
and vice versa.

One example of such an application is the analyst’s traveling salesman problem. In
[20], Jones provided a quantatitive condition that characterizes when a set inR2 can lie
in a connected, rectifiable curve of controlled length, hence giving a “solution” to the
traveling salesman problem. Jones’ result was later extended to arbitrary codimension
by [29], and recently there has been interesting work by [3] which considers gener-
alizations of the analyst traveling salesman problem to higher dimension, for certain
“lower content regular” sets.

Jones [20] and David-Semmes [9,10] (in the context of harmonic analysis) intro-
duced various quantities now called Jones β-numbers, which give a quantitative
L p-notion of how k-dimensional a measure is (in this paper we shall deal almost
exclusively with the L2 β-numbers). Let us define them here: given a Borel-regular
measure μ on a normed linear space X , the k-dimensional β-number in Br (x) is

βk
μ(x, r)2 = inf

p+V k
r−k−2

ˆ

Br (x)
d(z, p + V )2dμ(z) , (1.1)

where the infimum is taken over all affine k-planes p + V k . [10] demonstrated
for Ahlfors-regular sets a remarkable connection between the β-numbers, L2-
boundedness of integral operators, and uniform rectifiability.

Toro [39] was the first to give geometric conditions on a Reifenberg flat set S, in
terms of bilateral β-numbers, to guarantee that S be bi-Lipschitz equivalent to a disk.
The work [11] of David-Toro refined Toro’s geometric condition addressing among
other issues the problem of holes in S. The authors showed that a certain “Reifenberg
flat set with holes” S satisfying the summability condition

ˆ ∞

0
βk
Hk�S(x, r)

2 dr

r
≤ M2 , forHk-a.e. x ∈ S (1.2)

is contained in a manifold bi-Lipschitz to a k-plane. Notice that it suffices to assume
summability of the squared β-numbers. This extra power gain inRn is loosely speaking
a consequence of the Pythagorean theorem.

Azzam-Tolsa [4] and Tolsa [38] further generalized Reifenberg’s theorem to say
that a measure μ is countably k-rectifiable (in the sense of Definition 2.5) if and only
if

0 < �∗,k(μ, x) < ∞ ,

ˆ ∞

0
βk

μ(x, r)2
dr

r
< ∞ at μ-a.e. x , (1.3)

here �∗,k being the upper-density. Recently in [37], the author shows that one can
weaken the previous assumption and insist just on bounds on the lower density
�k∗(μ, x) < ∞.

Badger-Schul [5,6] used a modified β-number to characterize rectifiability in the
sense of Federer [14] for 1-dimensional measures. Federer’s notion of rectifiability
is weaker than Mattila’s [25], which is the notion we consider in this paper, and
remarkably different behaviors can occur when using the weaker definition (see for
example [16]).
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In the recent article [13], we demonstrated effective measure/packing bounds and
Lipschitz structure for (possibly infinite) measures satisfying the condition

ˆ ∞

0
βk

μ(z, r)2
dr

r
≤ M2 for μ-a.e. x , (1.4)

without any additional assumption ofμ. Toy examples show that, in general, one must
split sptμ into a “low-density” region of bounded measure, and a rectifiable piece of
“high-density” which admits packing bounds.

There have several generalizations of Reifenberg-type theorems also to infinite-
dimensional spaces. In his thesis [35] Schul proved a direct analogue in Hilbert spaces
of Jones’ original traveling salesman theorem for curves, and Li-Schul [21,22] have
demonstrated the 1-dimensional traveling salesman theorems in theHeisenberg group,
where interestingly in this case the critical power gain is 4. Hahlomaa [17] extended
Jones’ theorem to metric spaces, using Menger curvature in place β numbers, and
David-Schul in [12] study the analyst’s travelling salesman problem and quantitative
rectifiability in Laakso spaces. We recommend the survey article [34] for a more
comprehensive exposition of these and other results.

This paper is concerned with studying effective Reifenberg theorems on Banach
spaces. We are particularly interested in when one can expect a power gain in the
summability condition, like in (1.2). We shall demonstrate measure/packing bounds
and Lipschitz structure for a measure μ in a Banach space X , under the assumption

ˆ ∞

0
βk

μ(x, r)α
dr

r
≤ Mα/2 for μ-a.e. x , (1.5)

where α ∈ [1, 2] is some exponent depending on X and k. Clearly, a bigger α will
give a stronger result.

The value of α is intimately tied with the existence of a Pythagorean-type theorem,
and relatedly a good notion of projection. Fundamentally, we need to be able to say
that if a unit vector v is pushed “perpendicularly” by an amount δ, then the norm of
v changes by ≈ δα . In other words, we need to show that if ‖v‖ = ‖w‖ = 1 and v

and w are orthogonal in a generalized sense, then ‖v + δw‖ ∼ 1+ cδα for δ small. In
practice this manifests itself in an improved bi-Lipschitz estimate for graphs, which
says that if f : V → X is a “graph” over some plane V , with Lip( f ) ≤ ε, then

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣ ≤ cεα||x − y||2 ∀x, y ∈ L. (1.6)

We will find that in any Hilbert space α = 2, as there are natural notions of
orthogonality and the Pythagorean theorem holds. With this property, essentially the
same proof of the Reifenberg theorem in [13] carries over, although some care must
be taken to ensure that the estimates depend only on k, and not on the dimension of
the ambient space (which can be infinity).

In a generalBanach spaceweonly haveα = 1.One can only construct crude notions
of projection, and no Pythagorean-type estimate holds. Indeed, it is easy to construct
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examples where the best estimate possible for unit vectors v,w is ||v + tw|| ≤ 1+ t ,
i.e. the triangle inequality, see the example in Sect. 5.1.

The situation becomes more interesting when X is a uniformly smooth Banach
space. In general the modulus of smoothness attached to any Banach space, denoted
ρX (t), roughly measures the regularity of the unit sphere at scale t . More precisely,

ρX (t) = sup
‖x‖=1, ‖y‖=t

(‖x + y‖ + ‖x − y‖
2

)

− 1. (1.7)

The faster ρX (t) decays with t → 0, the more regular the space. The triangle
inequality always gives the crude bound ρX (t) ≤ t , while the best bound ρX (t) ≤√
1 + t2 − 1 is achieved only by Hilbert spaces (see [28] and [24, Proposition 1e2 p

61]). In L p spaces we have

ρL p (t) ≤
{

p−1t p (1 < p ≤ 2)
(p − 1)t2 (2 < p < ∞)

(1.8)

X is called uniformly smooth if ρX (t) = o(t). See Sect. 3.5 for details and references.
It turns out that when k = 1, and X is uniformly smooth, then we have a good

notion of projection, and a related Pythagorean theorem which says that when v, w

are “orthogonal” unit vectors, then ||v + tw|| ≈ 1 + ρX (t). In this case we can take
α to be the power of smoothness, which is basically the largest number for which
ρX (t) = O(tα). The example in Sect. 5.1 provides a good intuition for this case.

We shall see in Example 5.5 that even in finite dimensions the power gain of (1.6)
breakswhen k ≥ 2 and X is not Hilbert. The lack of an improved estimate (1.6) shows
that the bi-Lipschitz bound of Theorem 2.8 fails when k ≥ 2, and strongly suggests
that the measure/packing bounds of Theorem 2.1 do not admit a power gain α > 1 for
general uniformly smooth X and k ≥ 2.

2 Main theorems

Our main theorem is a combination measure and packing estimate for μ satisfying a
summability condition like (1.5). The theorem effectively splits B1(0) into a region
of “low-density” with measure bounds, and a region of “high-density” with packing
bounds. Without further assumptions on μ easy examples show this kind of decom-
position is necessary.

Theorem 2.1 Let X be a Banach space, and μ be a finite Borel measure with
μ(X\B1(0)) = 0. Take S ⊂ B1(0) a set of full μ-measure, and rs : S → R+ a
radius function satisfying 0 < rs < 1. Assume μ satisfies
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ˆ 2

rs
βk

μ(s, r)α
dr

r
≤ Mα/2 ∀s ∈ S , (2.1)

where α is the critical exponent for our problem. Precisely:

i. if X is a generic Banach space, then α = 1,
ii. if X is a Hilbert space, then α = 2,
iii. if X is a uniformly smooth Banach space, and k = 1, then α is the smoothness

power of the Banach space X.

Then there is a subcollectionS′ ⊂ S, so that we have the packing/measure estimate

μ

(

B1(0)\
⋃

s′∈S′
Brs′ (s

′)
)

≤ c(k, ρX )M , and
∑

s′∈S′
rks′ ≤ c(k, ρX ). (2.2)

Remark 2.2 Note that by standard measure theory arguments, a finite Borel measure
on a metric space is Borel-regular, see [30, theorem II, 1.2, pag 27].

Recall from (1.7) themodulus of smoothness ρX (t) and the smoothness power α for
a Banach space X . We will recall the precise definitions of these objects in Sect. 3.5,
here we simply remind the reader that α ∈ [1, 2] and its “best” value α = 2 is achieved
by any Hilbert space. For a general Banach space we have α ≥ 1; and for X = L p we
have α = min{p, 2} when 1 ≤ p < ∞, and α = 1 when p = ∞.

As a corollary,whenμ is discrete or has a priori density control, we obtain ameasure
bound directly. Moreover, we can easily weaken the pointwise assumption (2.1) to an
weak-L1 type assumption. Precisely, we have the following theorem.

Corollary 2.3 (Discrete- and Continuous-Reifenberg) Let X be a Banach space, and
let μ be a Borel measure with μ(X\B1(0)) = 0. Suppose μ satisfies

μ

(

z ∈ B1(0) :
ˆ 2

0
βk

μ(z, r)α
dr

r
> Mα/2

)

≤ 
 , (2.3)

where α is the critical exponent for our problem as defined in Theorem 2.1.
Suppose additionally one of the following:

A) μ is a packing measure of the form

μ =
∑

s∈S
asr

k
s δs , (2.4)

where {Brs (xs)}s are a collection of disjoint balls centered in B1(0)with as ∈ (0, b]
and 0 < rs < 1; or

B) �k∗(μ, x) ≤ b for μ-a.e. x; or
C) μ ≤ bHk�S for some subset S.

Then

μ(B1(0)) ≤ c(k, ρX )(M + b) + 
. (2.5)
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Remark 2.4 Notice that no a priori finiteness of μ is necessary in Corollary 2.3.

Similarly to the Euclidean setting, our methods give not just measure/packing
bounds but also a rectifiable structure. Let us first make explicit our notion of rectifi-
ability of a measure. Our definition coincides with [25]. Another common definition,
which we shall not consider here, is due to [14], and does not require μ � Hk .

Definition 2.5 Let μ be a Borel-regular measure in a metric space X . We say μ is
countably k-rectifiable if there are Lipschitz mappings { fi : B1(0) ⊂ R

k → X}∞i=1 so
that

μ

(

X\
∞
⋃

i=1

fi (B1(0))

)

= 0 , (2.6)

and μ is absolute continuous with respect toHk . We say a subset S of X is countably
k-rectifiable ifHk�S is countably k-rectifiable.

We obtain the following analogue of [4, theorem 1.1] and [27] in theHilbert-Banach
space setting, see also the recent preprint [37].

Theorem 2.6 Let X be a Banach space, and let μ be a Borel measure in X with
μ(X\B1(0)) = 0. Suppose for μ-a.e. x we have the bounds

ˆ 2

0
βk

μ(x, r)α
dr

r
< ∞ , �k∗(μ, x) < ∞ , �∗,k(μ, x) > 0 , (2.7)

where α is the critical exponent as in Theorem 2.1. Then μ is countably k-rectifiable.

In particular, we have the corollary

Corollary 2.7 Let X be a Banach space, and S ⊂ B1(0). Suppose we have

ˆ 2

0
βk
Hk�S(x, r)

α dr

r
< ∞ forHk-a.e. x ∈ S , (2.8)

where α is the critical exponent as in Theorem 2.1. Then S is countably k-rectifiable.

2.1 Reifenberg-flat sets

Finally, let us consider the special casewhen S is aReifenberg-flat set. Inn-dimensional
Euclidean ambient spaces, this problem has been extensively studied in literature. The
main references for this are [11,39] for generic k. For k = 1, this problem is closely
related to the analyst’s traveling salesman problem, and has been studied in [20,29].
A nice generalization of this last result in Hilbert spaces has been recently obtained in
[35]. As mentioned in the introduction, some results on this are available also in the
Heisenberg group setting, see [15,21,22], and in the metric space setting, see [17]. A
recent survey on these results is available in [34]. Our aim is to extend these results,
and in particular [39, main theorem] to the general Hilbert-Banach space setting.
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1146 N. Edelen et al.

ForReifenbergflat sets, as inReifenberg’s original theorem,we can gain topological
information on S. Let us recall that a set S ⊂ X is called (k, δ)-Reifenberg flat on
B1 (p) the following holds:

inf
V k

dH (S ∩ Br (x), (x + V ) ∩ Br (x)) ≤ δr ∀x ∈ S ∩ B2 (p) and ∀0 < r ≤ 2 ,

(2.9)

where the infimum is taken over all k-dimensional linear subspaces V k ⊂ X .
Let us further define the β∞ numbers, which in the case of Reifenberg-flat sets are

perhaps more natural to work with than the L2-β numbers above. We set

βk
S,∞(x, r) = inf

V k
{δ : S ∩ Br (x) ⊂ Bδr (x + V )}. (2.10)

When S is sufficiently Reifenberg flat in a Banach space, as a corollary to the proof
of Theorem 2.1, we can deduce the S is bi-Hölder to a k-disk. If we additionally
assume a summability condition on the β∞-numbers like (1.5), then S is bi-Lipschitz
to a k-disk.

Proposition 2.8 Let X be a Banach space, and take γ ∈ (0, 1). There is a constant
δ1(k, γ ) > 0 so that the followingholds. Let S be a closed, (k, δ)-Reifenberg-flat subset
of X, with 0 ∈ S, and δ ≤ δ1. Then we can find a k-plane V k ⊂ X, and mapping
φ : V k → X, so that φ ≡ id outside B3/2(0), and S ∩ B1(0) = φ(V ) ∩ B1(0), and φ

has the bi-Hölder bound

(1 − c(k)δ)||x − y||1/γ ≤ ||φ(x) − φ(y)|| ≤ (1 + c(k)δ)||x − y||γ ∀x, y ∈ V .

(2.11)

If additionally we have a bound of the form

ˆ 2

0
βk
S,∞(x, r)α

dr

r
≤ Qα ∀x ∈ S , (2.12)

where α is the critical exponent for our problem as in Theorem 2.1, and δ ≤ δ2(k, ρX ),
then φ is a bi-Lipschitz equivalence with

e−c(k,ρX )Qα ||x − y|| ≤ ||φ(x) − φ(y)|| ≤ ec(k,ρX )Qα ||x − y||. (2.13)

3 Preliminaries

In this section, we collect some basic preliminary estimates that will be useful for our
main construction. Throughout this paper X will always denote a Banach space. Any
additional properties that we may assume will be made explicit.
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We make repeated use of the following elementary principle. If f : A ⊂ X → X
is a mapping satisfying

�−1||x − y|| ≤ || f (x) − f (y)|| ≤ �||x − y|| ∀x, y ∈ A (3.1)

for some � ≥ 1, then f is a bijection onto its image, with Lipschitz inverse. We will
refer to f satisfying (3.1) as a bi-Lipschitz equivalence, with bi-Lipschitz constant
bounded by �. We note that, trivially, (3.1) is implied by the much stronger condition

||( f (x) − x) − ( f (y) − y)|| ≤ ε||x − y|| (ε < 1). (3.2)

Given a Lipschitz function f : A ⊂ X → X , we write

Lip( f ) = sup
x �=y∈A

|| f (x) − f (y)||
||x − y|| . (3.3)

Typically script letters like G, B, S, etc. will denote collections of ball centers. We
will generally denote elements of such a G by the corresponding lower-case letter g,
and write rg for the radius function. So, e.g. {Brs (s)}s∈S will be the balls indexed by
S.

We will reserve χ < 1 for the scale parameter, and we shall write ri = χ i for
shorthand.

We require the following truncated partition of unity. Its construction is standard
but for the reader’s convenience we detail it here.

Lemma 3.1 There is an absolute constant γ so that the following holds. Let
{B3r (xi )}i∈I be a collection of balls in X with overlap bounded by 
, i.e., so that
for all x ∈ X:

#{i ∈ I : x ∈ B3r (xi )} ≤ 
. (3.4)

Then there exist Lipschitz functions φi : X → [0, 1] satisfying:

spt φi ⊂ B3r (xi ) ,
∑

i

φi = 1 on
⋃

i

B2.5r (xi ) , Lip(φi ) ≤ γ
/r . (3.5)

We may call φi the truncated partition of unity subordinate to {B3r (xi )}i .
Proof Let b : R+ → R+ be the piece-wise-linear function b(t) = (3− t)+, and define
the Lipschitz functions

ψi (x) = b(||x − xi ||/r). (3.6)

ψi have the following properties:

sptψi ⊂ B3r (xi ) , 0 ≤ ψi ≤ 3 , Lip(ψi ) ≤ 1/r , ψi ≥ 1/2 on B2.5r (xi ).

(3.7)
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1148 N. Edelen et al.

These are our local cutoff functions.
Let

s(x) =
∑

i

ψi (x). (3.8)

By the finiteness assumption, s is well-defined and Lipschitz, and satisfies

spt s ⊂ ∪i B3r (xi ) , 0 ≤ s ≤ 3
 , Lip(s) ≤ 
/r , s ≥ 1/2 on ∪i B2.5r (xi ).

(3.9)

We define the global cut-off. Let h : R+ → R+ be the piece-wise linear function

h(t) =
⎧

⎨

⎩

0 t ∈ [0, 1/4]
4t − 1 t ∈ [1/4, 1/2]
1 t ∈ [1/2,∞)

, (3.10)

so that if we set f (x) = h(s(x)), then f satisfies:

spt f ⊂ {s ≥ 1/4}, 0 ≤ f ≤ 1 , Lip( f ) ≤ 4
/r , f ≡ 1 on ∪i B5r/2(xi ).

(3.11)

For each i we now define

φi (x) = f (x)
ψi (x)

s(x)
. (3.12)

Since spt ( f ψi/s) ⊂ {s ≥ 1/4} one can verify directly this satisfies the required
estimates. ��

3.1 Beta numbers

Recall Definition (1.1) of the β-numbers for a measure μ. We first collate some
standard properties of the β numbers. The proof is elementary.

Lemma 3.2 β is monotone in μ, in the sense that if μ′ ≤ μ, then

βk
μ′(x, r) ≤ βk

μ(x, r). (3.13)

Moreover, from the definition it follows immediately that if Br (x) ⊂ BR(y), then

βk
μ(x, r) ≤ (R/r)k+2βk

μ(y, R). (3.14)
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As an immediate corollary, we have the inequalities

βk
μ(x, r) ≤ c(k)

 

Br (x)
βk

μ(y, 2r)dμ(y), and βk
μ(x, r) ≤ c(k)

ˆ 2r

r
βk

μ(x, s)
ds

s
. (3.15)

In particular, if μ(X\B1(0)) = 0, then

ˆ ∞

0
βk

μ(x, r)
dr

r
≤ c(k)

ˆ 2

0
βk

μ(x, r)
dr

r
∀x ∈ B1(0). (3.16)

Finally, we point out that β is scale-invariant in the following sense. If we set μx,r =
r−kμ(x + r A), then βk

μx,r
(0, 1) = βk

μ(x, r).

We also record this easy measure-theoretical lemma about integral bounds on beta
number vs pointwise bounds.

Lemma 3.3 Let μ be a Borel measure with μ (X\B1 (0)) = 0 and with upper Ahlfors
bounds

μ(Br (x)) ≤ 
rk ∀x ∈ B1(0), 0 < r < 1 . (3.17)

For all δ1, δ2 > 0 fixed, if

ˆ

B1(0)

ˆ 2

0
βk

μ(z, s)α
ds

s
dμ(z) < ∞ , (3.18)

then for μ-a.e. x ∈ B1(0), there exists Rx > 0 such that

μ

{

z ∈ Br (x) :
ˆ 2r

0
βk

μ(z, s)α
ds

s
> δ1

}

≤ δ2r
k ∀0 < r < Rx . (3.19)

Proof Let F be the set of points for which (3.19) does not hold. Fix any 0 < R < 1/4
arbitrarily small. By definition, for all x ∈ F , there exists some positive sx < R such
that

skx <
1

δ2
μ

{

z ∈ Bsx (x) :
ˆ 2sx

0
βk

μ(z, s)α
ds

s
> δ1

}

. (3.20)

Choose a Vitali subcovering {Bsi (xi )}i of {Bsx (x)}x∈F , so that {Bsi (xi )}i are pairwise
disjoint and

F ⊆
⋃

i

B5si (xi ) . (3.21)
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Notice that by (3.20) and the finiteness of μ, this covering is at most countable. Then
we calculate

μ(F) ≤
∑

i

μ(B5si (xi )) ≤ 5k

∑

i

ski

≤ c(k)



δ2

∑

i

1

δ1

ˆ

Bsi (xi )

ˆ 2si

0
βk

μ(z, s)α
ds

s
dμ(z)

≤ c(k)



δ2δ1

ˆ

B1(0)

ˆ 2R

0
βk

μ(z, s)α
ds

s
dμ(z). (3.22)

By dominated convergence, and since R is arbitrarily small, μ(F) = 0. ��

3.2 General position

A concept that will be essential for us is the concept of points/vectors in general
position. This definition, in one form or another, is already present in literature, but
we recall it here for the reader’s convenience.

Given a set of vectors {v1, . . . , vk}, these vectors are linearly independent if and
only if for all i , vi �= 0 and vi /∈ span(v1, . . . , vi−1). Here we recall a quantitatively
stable notion of linear independence that will have two main applications: one is to
provide us with a notion of “basis with estimates” in a Banach space, something
resembling an orthonormal basis in the Hilbert case. One other important application
will be given in the definition of good and bad balls in Sect. 3.7.

Definition 3.4 We say that v1, . . . , vk are in τ -general position if for each i we have
τ ≤ ‖vi‖ ≤ τ−1, and

vi+1 /∈ Bτ (span(v1, . . . , vi )). (3.23)

Equivalently

d(vi+1, span(v1, . . . , vi )) ≥ τ. (3.24)

In the following lemma, we see that a choice of basis in general position for a finite
dimensional (sub)space V ⊂ X induces a linear isomorphism between V andRk with
uniform estimates.

Lemma 3.5 Let v1, . . . , vk be vectors in τ -general position in X, and let V be its
k-dimensional span. Then for any v ∈ V , we can write (uniquely)

v =
∑

i

λivi , (3.25)

where

c1(k, τ )−1||v|| ≤
∑

i

|λi | ≤ c1(k, τ )||v||. (3.26)
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Remark 3.6 In this lemma, we are basically saying that if we identify V with R
k via

the basis vi , then the l1 norm in this base is equivalent to the original norm ‖·‖. It
is clear that, up to enlarging the constant by another c(k), this statement is true also
for all l p norms in R

k . To be more precise, there is a constant c(k, τ ) so that if V is
identified with Rk via the basis vi , then for any p ∈ [1,∞] we have

c(k, τ )−1||v||�p ≤ ||v||X ≤ c(k, τ )||v||�p ∀v ∈ V ∼= R
k . (3.27)

Proof The bound ||v|| ≤ τ−1∑
i |λi | follows trivially from the triangle inequality.

We prove the other bound.
We proceed by induction. The Lemma is obvious for k = 1. Suppose now the

Lemma holds for k − 1, and take v ∈ V with

v =
k
∑

i=1

λivi , (3.28)

and without any loss of generality we can assume ||v|| = 1.
We claim that |λk | ≤ 2/τ . Otherwise, we could write

vk = 1

λk
v −

k−1
∑

i=1

λi

λk
vi ≡ 1

λk
v + w , (3.29)

for w ∈ span(v1, . . . , vk−1). In particular, we would have

d(vk, span(v1, . . . , vk−1)) ≤ ||vk − w|| ≤ ||v||
|λk | ≤ τ/2 , (3.30)

contradicting τ -general position of the vi .
Therefore, |λk | ≤ 2/τ , and we can write

v − λkvk =
k−1
∑

i=1

λivi , (3.31)

where ||v − λkvk || ≤ 1 + 2τ−2. By our inductive hypothesis, we have

k−1
∑

i=1

|λi | ≤ c(k, τ )(1 + 2τ−2) , (3.32)

which proves the Lemma for k. In fact, the inductive argument shows that |λi | ≤
(1 + 2τ−2)k−i+1||v||. ��

Lemma 3.5 implies the following crucial fact: up to linear transformation with
uniform estimates, any two norms on a finite-dimensional space are equivalent with a
constant depending only on dimension.
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Lemma 3.7 Let V be a k-dimensional plane in a Banach space X. Then for any
τ ∈ (0, 1), we can find unit vectors vi ∈ V lying in τ -general position. In particular,
if we take τ = 2/3, and define the linear map φ : (V , || · ||) → (Rk, || · ||2) by

φ(v) = (λi )i , v =
∑

i

λivi , (3.33)

(so that φ identifies V with R
k via the basis vi ), then φ is a bi-Lipschitz equivalence,

with ||φ|| + ||φ−1|| ≤ c(k).

Proof We construct the vi . For v1 take any vector in V of length 1. By inductive
hypothesis, suppose we have constructed v1, . . . , vi . Now by Riesz lemma [32, Theo-
rem II.4] we can pick vi+1 ∈ V with ||vi+1|| = 1, and d(vi+1, span(v1, . . . , vi )) > τ .
By inductionwe obtain the required vi . The Lipschitz bound onφ follows immediately
from Lemma 3.5. ��

Here are some important corollaries of this equivalence. First, almost-disjoint balls
lying close to a k-plane in a Banach space admit a k-dimensional packing bound.

Lemma 3.8 Let p + V be an affine k-dimensional plane in a Banach space X, and
{

Bri (xi )
}

i∈I be a family of pairwise disjoint balls with ri ≤ R, xi ∈ BR(p), and
d(xi , p + V ) < ri/2. Then

∑

i

r ki ≤ c2(k)R
k . (3.34)

Proof We can suppose for convenience that p = 0. For each i , choose x ′
i ∈ V with

||x ′
i −xi || < ri/2. Then Bri /2(x

′
i )∩V ⊂ Bri (xi ). Take φ as in the previous Lemma 3.7.

Then we get

Bri /c(k)
(

φ(x ′
i ) ∈ R

k
)

⊆ φ
(

Bri /2
(

x ′
i ∈ V
)) ⊆ Bc(k)ri

(

φ(x ′
i ) ∈ R

k
)

, (3.35)

and the Euclidean balls {Bri /c(k)(φ(x ′
i ) ∈ R

k)}i∈I are pairwise disjoint and all con-
tained in the ball Bc(k)R

(

0 ∈ R
k
)

. The estimate now follows from standard Euclidean
volume arguments. ��

Second, balls in a k-plane in X admit uniform upper and lower Hausdorff bounds.

Lemma 3.9 Let V be a k-dimensional plane in some Banach space X. Then for all
x ∈ V ,

c(k)−1rk ≤ Hk(Br (x) ∩ V ) ≤ c(k)rk . (3.36)

Proof Direct from the existence of φ in Lemma 3.7, and the behavior of Hausdorff
measure under Lipschitz mappings. ��

Third, disjoint balls close to a k-plane, and clustered reasonably near a (k−1)-plane,
admit a (k − 1)-dimensional packing bound.
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Lemma 3.10 Let V be a k-plane in the Banach space X, and take L a (k − 1)-plane
in V . Let {xi }i∈I be a 2χr/5-separated set in

Br (0) ∩ Bχr/10(V
k) ∩ B10χr (L

k−1). (3.37)

Then for χ ≤ 1 we have that #I ≤ cB(k)χ1−k .

Proof For each i choose x ′
i ∈ V with ||xi −x ′

i || < χr/10. Then the balls {Bχr/10(x ′
i )}i

are disjoint, and contained in V ∩ B2r (0) ∩ B11χr (L). Take φ : V → R
k as in

Lemma 3.7. By the same logic as in the proof of Lemma 3.8, we get that the balls

{

Bχr/c(k)

(

φ(x ′
i ) ∈ R

k
)}

i
(3.38)

are pairwise disjoint, and contained in set Bc(k)r
(

0 ∈ R
k
)∩Bc(k)χr

(

φ(L) ⊂ R
k
)

. The
result follows by a standard volume argument. ��

We close this section by observing the following stability property for vectors in
τ -general position.

Lemma 3.11 Suppose v1, . . . , vk are vectors in τ -general position, and vectorswi are
chosen so that

‖wi − vi‖ < ε , (3.39)

then wi are in (τ − c(k, τ )ε)-general position.
Similarly, if x0, . . . , xk are points so that {xi −x0}ki=1 are in τ -general position, and

yi are chosen so that ||xi−yi || < ε, then the vectors {yi−y0}ki=1 are in (τ−2c(k, τ )ε)-
general position.

Proof We need to show that
∥
∥
∥
∥
∥
∥

wi+1 −
i
∑

j=1

λ jw j

∥
∥
∥
∥
∥
∥

≥ τ − c(k, τ )ε , (3.40)

for any collection λ1, . . . , λi of real numbers.
There is no loss in assuming ε ≤ 2−1c1(k, τ )−1 (c1 being the constant from

Lemma 3.5), by requiring c ≥ 2c1. First, suppose
∑

j |λ j | ≥ 2c1(τ + τ−1). Then we
have by Lemma 3.5 and our hypothesis:

∥
∥
∥
∥
∥
∥

wi+1 −
i
∑

j=1

λ jw j

∥
∥
∥
∥
∥
∥

≥
∥
∥
∥
∥
∥
∥

k
∑

j=1

λ jv j

∥
∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥
∥

k
∑

j=1

λ j (v j − w j )

∥
∥
∥
∥
∥
∥

− ||wi+1||

≥ (c−1
1 − ε)

i
∑

j=1

|λ j | − τ−1 ≥ τ. (3.41)

Now suppose
∑

j |λ j | ≤ 2c1(τ + τ−1). Then using our hypothesis we obtain
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∥
∥
∥
∥
∥
∥

wi+1 −
i
∑

j=1

λ jw j

∥
∥
∥
∥
∥
∥

≥
∥
∥
∥
∥
∥
∥

vi+1 −
i
∑

j=1

λ jv j

∥
∥
∥
∥
∥
∥

− ||wi+1 − vi+1||

−
∥
∥
∥
∥
∥
∥

i
∑

j=1

λ j (v j − w j )

∥
∥
∥
∥
∥
∥

≥ τ − ε(1 + 2c1(τ
−1 + τ)). (3.42)

This establishes the required bound. The second assertion follows directly. ��

3.3 Distance to subspaces

Here we recall the notion of Hausdorff distance between sets and Grassmannian dis-
tance between linear subspaces, and prove some basic estimates on these two. We
shall see how effective bases give us good estimates over nearby spaces.

Definition 3.12 Given two sets A, B ⊂ X , the Hausdorff distance between dH (A, B)

is defined as

dH (A, B) = inf {δ ≥ 0 s.t . A ⊆ Bδ (B) and B ⊆ Bδ (A)} . (3.43)

Note that dH (A, B) = dH (A, B), and in particular the Hausdorff distance is a metric
only on closed sets.

It is clear that the Hausdorff distance by itself cannot provide a reasonable notion
of distance between linear subspaces. Indeed, dH (V ,W ) �= ∞ only if V = W . For
this reason, we introduce the Grassmanian distance in the next definition.

Definition 3.13 Given two linear subspaces L, V ⊆ X , we define the Grassmannian
distance between these two as

dG(L, V ) = dH (L ∩ B1 (0) , V ∩ B1 (0)) ≡ dH (L ∩ B1 (0), V ∩ B1 (0)), (3.44)

Note that if dim(L) �= dim(V ), then dG(L, V ) = 1.

In the next lemma, we recall a basic fact about linear and affine subspaces. While
for two general sets it is highly non true that A ⊆ Bδ (B) implies B ⊆ Bcδ (A), for
affine subspaces of the same dimension something similar to that is true.

Lemma 3.14 Let p + V and q + W be k-dimensional affine subspaces in X, with
(p + V ) ∩ B1/2(0) �= ∅. Suppose

(p + V ) ∩ B1(0) ⊂ Bδ(q + W ). (3.45)

Then we have

dH ((p + V ) ∩ B1(0), (q + W ) ∩ B1(0)) ≤ c(k)δ , (3.46)

and in particular, dG(V ,W ) ≤ c(k)δ.
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Proof As it is self-evident, the requirement that V and W have the same dimension
is crucial for the lemma. This suggests that the proof is based on some argument
involving affine basis for p + V and q + W and comparisons between the two. We
can take δ ≤ δ0(k) by ensuring c(k) ≥ δ−1

0 .
Let p0 ∈ p+V be a point of minimal distance from the origin, so that ‖p0‖ ≤ 1/2.

Take p1, . . . , pk ∈ (p + V ) ∩ B9/10(0) a sequence of points such that

‖pi − p0‖ = 1/3 and pi /∈ p0 + B2/9 (span(p1 − p0, . . . , pi−1 − p0)) .

(3.47)

One can find the pi using the Riesz lemma as in Lemma 3.7. In particular, this implies
that {(pi − p0)}ki=1 are vectors in 2/9-general position in V . By hypothesis, we can
pick qi ∈ q + V such that ‖qi − pi‖ ≤ 2δ. From Lemma 3.11 the {qi − q0}ki=1 are in
1/9-general position provided δ0(k) is sufficiently small.

Take some y ∈ (q+W )∩B1(0). Then by Lemma 3.5 there are numbers αi = αi (y)
so that

y = q0 +
k
∑

i=1

αi (qi − q0), |αi | ≤ c(k). (3.48)

If we let x = x(y) ∈ p + V be the point defined by

x = p0 +
k
∑

i=1

αi (pi − p0) , (3.49)

then

||y − x || ≤ ||q0 − p0|| +
k
∑

i=1

|αi | [||pi − qi || + ||p0 − q0||] ≤ c(k)δ. (3.50)

Therefore we have (q + W ) ∩ B1(0) ⊂ Bc(k)δ(p + V ).
One can easily check that, since max{||p||, ||q||} ≤ 3/4, we have

Bε((p + V ) ∩ B1+ε) ⊂ B10ε((p + V ) ∩ B1(0)) , (3.51)

and the same for q + W . The lemma now follows directly. ��

3.4 Almost-projections, graphs

In this section, we recall some basic definition and properties of linear bounded pro-
jections in Banach spaces, and use this notion to define graphs over finite dimensional
subsets. Before beginning, we mention the fact that bounded linear projections over
Banach spaces behavedifferently than inHilbert spaces. In aHilbert space H , all closed
subspaces V have a linear projection πV of norm 1 and such that V ⊕π−1

V (0) = H . In
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Banach spaces norm-one linear projections are very rare objects. Indeed, if a Banach
space X of dimension≥ 3 admits a norm-one linear projection for all of its two dimen-
sional subspaces, then X is a Hilbert space. This is a classical result in Banach spaces,
see the recent survey [31, section 3].

In order to distinguish the nice Hilbert space projections from their rougher Banach
counterparts, we are going to call a linear projection on a Banach space with norm
bounded (but not by 1) “almost projections”.

We start by recalling an easy consequence of Hahn-Banach theorem.

Lemma 3.15 Let L : A → V be a continuous linear operator from a linear subspace
A ⊂ X to a k-dimensional Banach space V . Then there exists a bounded linear
extension L̃ : X → V satisfying

||L̃|| ≤ c(k)||L||. (3.52)

Proof Let {wi } be a unit basis for V lying in 2/3 general position, see Lemma 3.7, and
identify V withRk via this basis. By Lemma 3.5, we know that ‖·‖L∞(Rk) is uniformly
equivalent to the original Banach norm on V . In other words, for all w ∈ V , we have
that the components φi : V → R given by φi (w) = φi

(∑

i λiwi
) = λi are uniformly

bounded linear maps with

‖φi‖ ≤ c(k). (3.53)

Define ψi : V → R by setting

ψi (v) = φi (L(v)). (3.54)

Then we have ‖ψi‖ ≤ c(k) ‖L‖, and by Hahn-Banach [32, Theorem III.5], for each i
there exists a norm preserving extension ψ̃i of ψi to the whole space X . Set

L̃(x) =
∑

i

ψ̃i (x)wi . (3.55)

We have

||L̃(x)||V ≤ c(k) ‖L(x)‖L∞(Rk ) ≤ c(k) ‖L‖V ||x ||V . (3.56)

��
We can use this lemma to give a trivial proof of the following:

Lemma 3.16 For any linear k-space V , there is a linear map πV : X → V satisfying
the following:

A) πV (v) = v for all v ∈ V ,
B) ||πV || ≤ c3(k),
C) given any W with dG(V ,W ) < ε, then ||πV (w) − w|| ≤ c3(k)ε||w||.
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Proof If we let L : V → V be the identity operator, then take πV to be the linear
extension of L from Lemma 3.15.

Now given w ∈ W , where dG(W , V ) < ε, we can by assumption find a v ∈ V
with ||w − v|| ≤ ε||w||. Then we have

||πV (w) − w|| ≤ ||πV (w) − πV (v)|| + ||πV (v) − v|| + ||v − w|| (3.57)

≤ (1 + c(k))||v − w|| (3.58)

≤ c(k)ε||w||. (3.59)

��
Definition 3.17 We shall call any linear map π : X → V satisfying the conditions
A)-B)-C) of Lemma 3.16 an almost-projection for V . Given any almost-projection π ,
we abuse notation and write π⊥ := I d − π .

Given an affine k-space p+V , we define πV in terms of the associated linear space
V . An affine space p + V admits a notion of almost-affine-projection

�(x) := p + πV (x − p) ≡ π⊥
V (p) + πV (x) , (3.60)

which is independent of choice of p ∈ p + V .

An important but easy consequence of the definition of almost projections is the
following.

Proposition 3.18 Let V , W be linear k-spaces, with almost-projections πV , πW . Sup-
pose dG(V ,W ) ≤ δ. Then

||π⊥
V (πW (x))|| ≤ c3(k)

2δ||x ||. (3.61)

Proof We have by Lemma 3.16 part C):

||π⊥
V (πW (x))|| = ||πW (x) − πV (πW (x))|| ≤ c3δ||πW (x)|| ≤ c23δ||x ||. (3.62)

��
Almost projections allow us to define a tractable notion of graph in a Banach space.

Definition 3.19 Given an affine k-space p+V , and almost-projection πV , we say a set
G is a graph over (V , πV ) if there is a domain � ⊂ p + V , and function g : � → X ,
so that

G = {x + g(x) : x ∈ �}, and πV (g(x)) ≡ 0. (3.63)

For short we will often write G = graph�,πV
(g).

Remark 3.20 Lemma 4.2 demonstrates that graphicality is “well-defined,” in the sense
that whenever G is a (small) graph with respect to some almost-projection π , then G
is a graph with respect to any other almost-projection (although with a slightly worse
bound).
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3.5 Modulus of smoothness

The norm in a Banach space is evidently a Lipschitz function, but in general nothing
more can be said. For example in L∞[0, 1] it is easy to see that the sup norm is not
C1.

The modulus of smoothness of a Banach space (X , ‖·‖) measures in a quantitative
way how smooth the norm of this space is. Here we briefly recall its definition and
main properties, for more on this topic we refer the reader to some standard reference
for Banach spaces (see [23,24]), and to some specific important articles related to this
subject (see [1,2,8,18]). Needless to say, since this topic has been extensively studied
in literature, these references are not exhaustive. Moreover, this notion is intimately
related via duality to the perhaps more standard notion of modulus of convexity.

Definition 3.21 Given a Banach space X , we set ρX : [0,∞) → [0,∞) to be its
modulus of smoothness, defined by

ρX (t) = sup
‖x‖=1 ‖y‖=t

(‖x + y‖ + ‖x − y‖
2

)

− 1. (3.64)

We say that X is uniformly smooth if limt→0 t−1ρX (t) = 0, and we say that is of
smoothness power-type α ∈ [1, 2] if

lim sup
t→0

t−αρX (t) < ∞. (3.65)

An easy consequence of the convexity of ‖·‖ is that ρX is a convex function.

Remark 3.22 Note that 0 ≤ ρ(t) ≤ t by the triangle inequality, and that for any Hilbert
space H , ρH (t) = √

1 + t2 − 1. In fact Hilbert spaces are the “smoothest” possible
Banach spaces, in the sense that for any Banach space X , we have ρX (t) ≥ ρH (t) (see
[24,28]).

Example 3.23 As a first example, we recall that when X = L p, we have

ρL p (t) ≤
{

p−1t p + o(t p) (1 < p ≤ 2)
(p − 1)t2 + o(t2) (2 < p < ∞)

. (3.66)

This follows from Hanner’s inequality (see [18], [24, pag 63]).

If X is uniformly smooth, then its norm is continuously differentiable away from
the origin. In such a space, the gradient of ‖x‖2 /2 is equal to the functional J (x),
where J is the normalized duality mapping between X and its dual X∗. Since this
mapping is going to play an important role in the following, we recall its definition
and some of its properties here.

Definition 3.24 Given any Banach space X , let X∗ be its dual. A normalized duality
mapping J : X → X∗ is a mapping satisfying

‖J (x)‖X∗ = ‖x‖X , 〈J (x), x〉 = ‖x‖2 , (3.67)
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where 〈φ, x〉 = φ(x) is the natural pairing between a functional φ ∈ X∗ and an
element x ∈ X .

Example 3.25 The easiest example of mapping J is given in a Hilbert space
(H , 〈·, ·〉H ), where the Riesz representation theorem states that J (x) = 〈x, ·〉H is
a normalized duality mapping, and actually it is the unique map with these properties.

For the reader’s convenience, we also recall what the mapping J is in the real
Banach spaces l p. For p ∈ (1,∞), there exists a unique J determined by

J
({xi }∞i=1

) =
( ∞
∑

i=1

|xi |p
) 2−p

p {

|xi |p−2 xi
}∞
i=1

∈ l∗p = lq . (3.68)

On l1, we can write

J
({xi }∞i=1

) =
( ∞
∑

i=1

|xi |
)

{sign(xi )}∞i=1 ∈ l∗1 = l∞ , (3.69)

where sign(x) is the sign function for x ∈ R\{0}, and it can be any number in [−1, 1]
if x = 0 (thus J is not uniquely determined on l1).

The most important property of J for us is the following effective continuity:

Lemma 3.26 ([1, equation 7.7]) If X is a uniformly smooth Banach space, then

||J (x) − J (y)||X∗ ≤ 8R
ρX (4||x − y||/R)

4||x − y||/R , (3.70)

where R = √(||x ||2 + ||y||2)/2.
AsadirectCorollary ofLemma3.26, and the definition of J ,weobtain the following

Pythagorean-type theorems (similar to [1, theorem 7.5], [2, theorem 2.11])

Lemma 3.27 Let X be a uniformly smooth Banach space, then

∣
∣
∣||x + y||2 − ||x ||2

∣
∣
∣ ≤ 2| 〈J x, y〉 | + 4(||x ||2 + ||y||2)ρX

(

4||y||
√||x ||2 + ||y||2

)

.

(3.71)

In particular, we mark two special cases. Let V k be a k-dimensional space in X. If
π(x) is an almost-projection to V , then for every x:

∣
∣
∣||x ||2 − ||π(x)||2

∣
∣
∣ ≤ 2|

〈

Jπ(x), π⊥(x)
〉

| + 8c3(k)
2||x ||2ρX (||π⊥(x)||/||x ||).

(3.72)
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If f : V → X is a Lipschitz mapping, with Lip( f ) ≤ ε ≤ 1, then

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣

≤ | 〈J (x − y), f (x) − f (y)〉 | + 8ρX (4ε)||x − y||2, (3.73)

for every x, y ∈ V .

Proof Let γ (t) = x + t y. Then we compute

∣
∣
∣||x + y||2 − ||x ||2

∣
∣
∣ =
∣
∣
∣
∣

ˆ 1

0
2
〈

Jγ (t), γ ′(t)
〉

dt

∣
∣
∣
∣

(3.74)

≤ 2| 〈J x, y〉 | +
ˆ 1

0
2| 〈J (x + t y) − J x, y〉 |dt . (3.75)

If we define

R(t) =
√

(||x + t y||2 + ||x ||2)/2 ≤
√

||x ||2 + ||y||2, (3.76)

then using Lemma 3.26 and the convexity of ρX , we bound

2| 〈J (x + t y) − J x, y〉 | ≤ 2 · 8R(t)
ρ(4||y||/R(t))

4||y||/R(t)
||y|| (3.77)

= 4R(t)2ρ(4||y||/R(t)) (3.78)

≤ 4R(t)
√

||x ||2 + ||y||2ρ(4||y||/
√

||x ||2 + ||y||2) (3.79)

≤ 4(||x ||2 + ||y||2)ρ(4||y||/
√

||x ||2 + ||y||2). (3.80)

This establishes (3.71).
To prove (3.72) replace x with π(x) and y with π⊥(x) in (3.71), and use the bound

||π || ≤ c3(k). To prove (3.73), replace x with x + f (x), and y with y + f (y). ��

Remark 3.28 Notice that if
〈

J |V , π⊥〉 ≡ 0 (so that π is an “orthogonal” projection),
then (3.72) becomes

∣
∣
∣||x ||2 − ||π(x)||2

∣
∣
∣ ≤ c(k)||x ||2ρX (||π⊥(x)||/||x ||). (3.81)

3.6 Canonical projections

In certain cases we have a canonical notion of projection, which admits better bounds
than a generic almost-projection.
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3.6.1 Hilbert spaces

If X is aHilbert space, and V is a k-plane, then V admits a unique orthogonal projection
πV : X → V , with the property that

||πV (x)||2 + ||x − πV (x)||2 = ||x ||2. (3.82)

Correspondingly, in a Hilbert space we have a canonical notion of orthogonal com-
plement V⊥ = ker(πV ), for which π⊥

V ≡ πV⊥ , in the notation of Definition 3.17.
Moreover, from the Pythagorean relation (3.82),

d(x, V ) = ||πV⊥(x)|| ≡ ||π⊥
V (x)||. (3.83)

Finally, let us remark that trivially, the orthogonal projection is an almost-projection.
The fact that projections in Hilbert spaces are canonical allow us to give a different

definition of distance between subspaces. In particular, given V ,W to linear subspaces
in H , we could define a distance between V and W by taking the operator norm
‖πV − πW‖. As it is not difficult to see, this notion is equivalent to dG(V ,W ). Here
we recall a standard lemma needed to show this equivalence, that will be stated in
more generality later on in Lemma 3.32.

Lemma 3.29 Let V ,W be linear subspaces of a Hilbert space. Then dG(V ,W ) =
dG(V⊥,W⊥).

Proof Standard, see e.g. [27, Lemma 4.3]. ��
With this easy lemma, we can show as promised that

Lemma 3.30 Let V ,W be linear subspaces of a Hilbert space H. Then for every
x ∈ H,

‖πV (x) − πW (x)‖ ≤ dG(V ,W )||x ||. (3.84)

In the converse direction we have

dG(V ,W ) ≤ sup
‖x‖=1

{‖πV (x) − πW (x)‖} . (3.85)

Proof Let x be such that ‖x‖ = 1, and set x = πV (x) + πV⊥(x) := y + z. Then

‖πV (x) − πW (x)‖2 = ‖y − πW (y) − πW (z)‖2 = ‖y − πW (y)‖2
+ ∥∥z − πW⊥(z)

∥
∥
2 = d(y,W )2 + d(z,W⊥)2. (3.86)

Since y ∈ V , then d(y,W ) ≤ ‖y‖ dG(V ,W ), and similarly d(z,W⊥) =
‖z‖ d(V⊥,W⊥). Since ‖y‖2 + ‖z‖2 = 1, by the previous lemma we get
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‖πV (x) − πW (x)‖2 ≤ ‖y‖2 dG(V ,W )2 + ‖z‖2 dG(V⊥,W⊥)2 = dG(V ,W )2.

(3.87)

This proves (3.84). (3.85) is an easy consequence of the definition of dG(V ,W ). ��

3.6.2 Curves in smooth Banach spaces

If X is uniformly smooth, then the normalized duality mapping between X and X∗
provides us with a canonical (norm one) projection onto one dimensional subspaces,
as described in the next Definition. Moreover, thanks to the results [1, theorem 7.5],
[2, theorem 2.11] we have a generalized Pythagorean theorem in uniformly smooth
Banach spaces that is going to be crucial for the power gain in the Reifenberg theorem.

Definition 3.31 Given a 1-dimensional subspace V of X , spanned by the unit vector
v, we call the map πV : X → V defined by πV (x) = 〈J (v), x〉 v the J-projection, or
canonical projection, onto V .

Of course any J -projection is trivially an almost-projection, and it is easy to see that
in a Hilbert space this coincides with the orthogonal projection onto V . Moreover, it
is easy to see that this almost projection has operator norm 1, since |〈J (v), x〉| ≤ ‖x‖
for all x and 〈J (v), v〉 = 1.

3.6.3 Summary

Let us summarize the two key properties we need of orthogonal and J-projections.

Lemma 3.32 Let V ,W be two k-spaces in X, with associated almost-projections
πV , πW . Suppose either X is Hilbert, and πV , πW are orthogonal; or X is uniformly
smooth, k = 1, and πV , πW are J-projections.

If dG(V ,W ) < δ, then

||πV − πW || ≤ 2ρX (4δ)/δ. (3.88)

Proof If X is Hilbert, this is a corollary of Lemma 3.30. Suppose now that X is a
uniformly smooth Banach space, k = 1, and that πV , πW are J-projections. We can
choose unit vectors v,w spanning V ,W , with ||v − w|| < δ, and then πV (x) =
〈J (v), x〉 v, and πW (x) = 〈J (w), x〉 w. We estimate therefore that

||πV (x) − πW (x)|| ≤ (||J (v) − J (w)|| + ||v − w||)||x ||
≤ (2ρX (4δ)/δ + δ)||x ||. (3.89)

In the last inequality we also used the convexity of ρX (t). ��
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Lemma 3.33 Take V a k-plane in X. If either X is Hilbert, and πV is the orthogonal
projection, or X is uniformly smooth, k = 1, and πV is the J-projection, then we have
the following improvements on (3.72), (3.73): for any x,

∣
∣
∣||x ||2 − ||π(x)||2

∣
∣
∣ ≤ 8||x ||2ρX (||π⊥(x)||/||x ||). (3.90)

If f : V → X is a Lipschitz mapping, with Lip( f ) ≤ ε ≤ 1, then for every x, y ∈ V ,

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣

≤ 2||x − y||||π( f (x) − f (y)|| + 8ρX (4ε)||x − y||2. (3.91)

Of course these estimates are far from sharp when X is Hilbert.

Proof By Lemma 3.27, it suffices to show that
〈

J |V , π⊥
V

〉 = 0. When X is Hilbert, this
follows immediately from the fact J (x) = 〈x, ·〉H . When X is uniformly smooth, and
k = 1, we can verify: given unit vector v spanning V , then

〈

J (v), π⊥
V (x)
〉

= 〈J (v), x − 〈J (v), x〉 v〉 = 0. (3.92)

��
Improved orthogonality estimates like (3.90) give improved Lipschitz bounds on

graph projections, which at a very basic level is whywe can expect improved estimates
on the Reifenberg maps.

Proposition 3.34 Take V a k-plane in X. Suppose either X is Hilbert, and πV is the
orthogonal projection, or X is uniformly smooth, k = 1, and πV is the J-projection.
Let

G = graph�,πV
(g), Lip(g) ≤ ε ≤ 1, � ⊂ V . (3.93)

Then we have the estimate
∣
∣
∣||(x + g(x)) − (y + g(y))||2 − ||x − y||2

∣
∣
∣ ≤ 8ρX (4ε)||x − y||2 ∀x, y ∈ �.

(3.94)

In particular, πV : G → V is a bi-Lipschitz equivalence, with Lipschitz constant
bounded by 1 + 8ρX (4ε).

Proof Immediate from Lemma 3.33 and the definition of graph. ��

3.7 Tilting control

We study the tilting between best planes at different scales, and try to control the tilting
using the β numbers.
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First of all, we give a definition of “approximate best subspace” for the measure μ

on any ball in X .

Definition 3.35 Given a finite measureμ in a Banach space X , and given a ball Br (x),
we set p(x, r)+V (x, r) to be an affine k-dimensional subspace (with p(x, r) ∈ Br (x))
such that

r−k−2
ˆ

Br (x)
d(y, p(x, r) + V (x, r))2dμ(y) ≤ 2βk

μ(x, r)2. (3.95)

The definition if obviously well-posed if β(x, r) > 0. For β(x, r) = 0, we have the
following easy lemma.

Lemma 3.36 Let βk
μ(x, r) = 0, then there exist a k-dimensional affine subspace p+V

such that the μ(Br (x)\(p + V )) = 0.

Remark 3.37 Note that we don’t claim simply that the support of the measure μ is
contained in p+V . Although this is equivalent to our claim when X is separable (and
thus it has a countable base for the topology), our claim is a priori stronger in general
Banach spaces.

Proof In infinite dimensionalBanach spaces,wedon’t have compactness for theGrass-
mannian of k-dimensional affine subspaces, thus we need a different argument. For
convenience, we assume that x = 0 and r = 1 and that μ(X\B1 (0)) = 0 (otherwise
we replace μ with μ�B1 (0)). Consider for all i ∈ N a sequence of affine subspaces
pi + Vi such that

ˆ

B1(0)
d(y, pi + Vi )

2dμ(y) ≤ 3−i , (3.96)

so that by Chebyshev inequality

μ(X\Bi−1(pi + Vi )) ≤ 2−i , (3.97)

Thus we get that for all j :

μ

⎛

⎝X\
⋂

j≥i

B j−1(p j + Vj )

⎞

⎠ ≤ 2−i+1 , (3.98)

and in turn

μ

⎛

⎝X\
⋃

i

⋂

j≥i

B j−1(p j + Vj )

⎞

⎠ = 0 , (3.99)

We claim that there is an affine k-space q + W so that

⋂

j≥i

B j−1(p j + Vj ) ⊂ q + W ∀i . (3.100)
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This would clearly finish the proof.
Nowobviously

⋂

j≥i B j−1(p j+Vj ) is a convex set. Take x0 ∈⋂ j≥i B j−1(p j+Vj )

be any point (if no such x0 exists then we have nothing to prove), and assume
by contradiction that there exist x1, . . . , xk+1 ∈ ⋂ j≥i B j−1(p j + Vj ) such that
{x1 − x0, . . . , xk+1 − x0} are linearly independent. Fix a τ > 0 so these points are in
τ -general position.

By Lemma 3.11, there exists j sufficiently large such that if {yi }k+1
i=0 are such that

||yi − xi || ≤ j−1, then {yi − y0}k+1
i=1 lie in τ/2 general position, and in particular are

linearly independent. Thus we can find a k + 1 dimensional affine subspace that is
contained in the k-dimensional affine subspace p j + Vj , for j sufficiently large, and
we reach our contradiction. ��

Now that we have a Definition 3.35 for the “L2-best plane” p(0, 1) + V (0, 1), we
turn to the tilting control. The idea is the following: given two balls one containing
the other, say for example B1 (0) and B1/10 (0), we want to be able to say that β(0, 1)
controls the distance between V (0, 1) and V (0, 1/10). The following example shows
that in general this is not possible.

Example 3.38 Let k = 1 and μ be the sum of 5 Dirac masses in the Euclidean R
2

μ = δ0 + δ(1,0) + δ(−1,0) + δ(0,t) + δ(0,−t). (3.101)

For 0 < t ≤ 1/10, it is easy to see that V (0, 1) is the x-axis, while V (0, 1/10) is the
y-axis, and this is independent on the choice of t .

Moreover, we have

β1
μ(0, 1/10)2 = 0 , β1

μ(0, 1)2 = 2t2. (3.102)

As t approaches 0, the beta numbers clearly don’t control the distance between V (0, 1)
and V (0, 1/10) (which is constant in t and equal to 1). So the geometry of the measure
μ is essential to obtain the bound we want.

Wewill see in the following that we have “tilting control” as long asμ is sufficiently
spread over something k-dimensional on the small ball. In order to be more precise,
we give the following definition of “good balls”.

Definition 3.39 Take μ a finite Borel-regular measure, and χ ∈ (0, 1/10). We say a
ball Br (x) is a good ball with respect to the measure μ and parameter χ if for any
affine subspace q + L of dimension ≤ k − 1, there exists a point z such that

i) μ(Bχr (z) ∩ Br (x)) ≥ 10−1c−1
2 (χr)k , and

ii) z /∈ B7χr (q + L)

Here c2(k) is the constant from Lemma 3.8. If k = 0 then good is simply the require-
ment that some z exists satisfying i). If Br (x) is not good, we say Br (x) is a bad ball
with respect to μ and χ .

The next lemma shows that on good balls we have good tilting control.
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Lemma 3.40 Let μ be a finite Borel-regular measure, and consider Br (x) ⊂ B1/2(0).
If Br (x) is a good ball with respect to μ and χ , then we have

dH ([p(x, r) + V (x, r)] ∩ B1(0), [p(0, 1) + V (0, 1)] ∩ B1(0))

≤ c(k, r , χ)βk
μ(0, 1) , (3.103)

and in particular

dG(V (x, r), V (0, 1)) ≤ c(k, r , χ)βk
μ(0, 1). (3.104)

An immediate corollary is the following comparability between any two good balls.

Lemma 3.41 Suppose Br ′(x ′) and Br (x) are good balls with respect to μ and χ . If we
have Br ′(x) ∪ Br (x) ⊂ BR/2(y), then

dH ([p(x, r) + V (x, r)] ∩ BR(y),
[

p(x ′, r ′) + V (x ′, r ′)
] ∩ BR(y))

≤ c(k, r/R, r ′/R, χ)βk
μ(y, R)R , (3.105)

and

dG(V (x, r), V (x ′, r ′)) ≤ c(k, r ′/R, r/R, χ)βk
μ(y, R). (3.106)

Proof of Lemma 3.40 By enlarging c as necessary we can also assume wlog that

βk
μ(0, 1) ≤ δ0(k, r , χ). (3.107)

In the following c denotes a generic constant depending only on k, r , χ , and for ease
of notation, we write β in place of βk

μ.
We claim we can inductively find points x̂0, . . . , x̂k ∈ Br (x) such that

(1) the vectors
{

x̂i − x̂0
}k
i=1 are in 5χr -general position

(2) we have the estimates

d(x̂i , p(x, r)+V (x, r))2 ≤ cβ(0, 1)2, d(x̂i , p(0, 1)+V (0, 1))2 ≤ cβ(0, 1)2.

(3.108)

Let us see how this claim completes the proof. Choose yi in p(x, r)+V (x, r) with
∥
∥x̂i − yi

∥
∥ ≤ cβ(0, 1). By the triangle inequality, d(yi , p(0, 1)+V (0, 1)) ≤ cβ(0, 1)

as well.
Provided δ0(k, r , χ) is sufficiently small, by Lemma 3.11 the vectors {yi − y0}ki=1

lie in 3χr -general position. Now given any y ∈ (p(x, r)+V (x, r))∩ B1(0), we write
by Lemma 3.5

y = y0 +
k
∑

i=1

αi (yi − y0), ||αi || ≤ c , (3.109)
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and thereby deduce

d(y, p(0, 1) + V (0, 1)) ≤ cβ(0, 1). (3.110)

The proof of Lemma 3.40 is completed by an application of Lemma 3.14.
We are left to prove the inductive claim. To construct our base case x̂0, in the

following let us set j = −1 and interpret q + L−1 = ∅. Otherwise, suppose by
induction that we have a collection

{

x̂i
} j
i=0 with the desired properties for some

j ≤ k − 1, and let q + L j be the j dimensional affine subspace given by

q + L j = x̂0 + span{x̂1 − x̂0, . . . , x̂ j − x̂0}. (3.111)

By assumption, there exists a point x j+1 /∈ B7χr (q + L j ) such that

μ(Bχr (x j+1) ∩ Br (x)) ≥ 10−1c−1
2 (χr)k . (3.112)

Set for simplicity μ̄ = μ�(Bχr (x j+1) ∩ Br (x)), and define for z ∈ X and s > 0 the
set

Qz,s =
{

y ∈ X s.t . d(y, p(z, s) + V (z, s)))2

≤ 3
 

d(w, p(z, s) + V (z, s))2dμ̄(w)

}

. (3.113)

By Chebyshev inequality, we have trivially that

μ̄(Qx,r ) ≥ 2

3
μ̄(X) , μ̄(Q0,1) ≥ 2

3
μ̄(X). (3.114)

Thus there exists a point x̂ j+1 ∈ spt μ̄ ∩ Qx,r ∩ Q0,1. Since spt μ̄ ⊆ Bχr (x j+1), by
the triangle inequality we get x̂ j+1 /∈ B5χr (q + L j ). Moreover, we have by (3.112)
and the inclusion Br (x) ⊂ B1(0) that

d(x̂ j+1, p(x, r) + V (x, r))2 ≤ 3μ(Br (y) ∩ Bχr (x j+1))
−1rk+2β(x, r)2 ≤ cβ(0, 1)2 ,

(3.115)

d(x̂ j+1, p(0, 1) + V (0, 1))2 ≤ 3μ(Br (y) ∩ Bχr (x j+1))
−1β(0, 1)2 ≤ cβ(0, 1)2.

(3.116)

This complete the proof of the inductive claim, and in turn the proof of the
lemma. ��

4 Reifenberg estimates in Banach spaces

Our fundamental tool is the Reifenberg map σ , which is essentially an interpolation
of projection mappings. We shall use the Reifenberg maps to construct approximating

123



1168 N. Edelen et al.

manifolds by “gluing” together nearby planes. This section establishes important basic
estimates on these maps. We are not defining the actual Reifenberg maps we use at
this stage; the estimates require only the basic structure.

In this section we shall suppose we have a fixed k-plane V , with almost-projection
π as in Definition 3.17, and a point p. Let xi be a 2r/5-separated set in X , and take
pi ∈ Br (xi ) with k-planes Vi and associated almost-projections πi .

Assume the following tilting and closeness control:

d(0, p + V ) < r/10, d(xi , p + V ) < r/10, d(pi , p + V ) < δr ,

dG(Vi , V ) < δ. (4.1)

4.1 Themap�

Suppose σ : B3r → X is a mapping of the form

σ(x) = x −
∑

i

φi (x)π
⊥
i (x − pi ) , (4.2)

where φi is the truncated partition of unity subordinate to the B3r (xi ), as per
Lemma 3.1. Notice that, by Lemma 3.8 and our hypothesis on xi , the overlap of
the {B3r (xi )}i is bounded by some uniform constant c(k). So in particular the φi

satisfy:

0 ≤ φi ≤ 1, spt φi ⊂ B3r (xi ), Lip(φi ) ≤ c(k)/r . (4.3)

We are ready to state and prove the main lemma (the “Banach squash lemma”)
regarding the properties of the map σ . This Lemma proves that, provided a set G is
reasonably well-behaved to start with (i.e. is a graph with small Lipschitz norm), then
σ |G has good Lipschitz bounds (parts A, D), and the image σ(G) has good graphical
properties (parts B, C).

There are two subtle points. First, where
∑

i φi = 1 the map σ is entirely an
interpolation of affine projections, and in these regions the resulting graph geometry
of σ(G) depends only on the geometry of affine the planes p+V , pi +Vi (and not on
G!). Here is a baby example for illustration: take X = R

n , the planes pi + Vi to be a
single p1 +V1, and for simplicity set φ1 ≡ 1. Then σ becomes to the affine projection
onto p1 + V1, and σ(G) = p1 + V1 for any graph G over p + V . In general, in part
C) we show that wherever

∑

i φi = 1, σ(G) has graphical bounds independent of G.
Outside the region where

∑

i φi = 1, the map σ starts to “remember” the geometry
of G. For example, in the extreme, when

∑

i φi = 0, the σ is simply the identity, and
σ(G) = G in there regime. In part B) we show the graphical bounds on σ(G) will
generally depend both on bounds for G, and the tilting between the various planes
p + V , pi + Vi .

Second, when we have some reasonable notion of orthogonality (e.g. when X is
Hilbert, or k = 1 and X is uniformly smooth), we get improved estimates on σ |G . This
is because σ is pushes G “almost orthogonally” to G’s plane of graphicality. Part D of
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Effective Reifenberg theorems in Hilbert… 1169

Lemma 4.1 shows a power gain in the “tangential” movement and Lipschitz bounds
of σ .

Various forms of this lemma are present in literature, for example in [11,13,39]. Up
to technical details, the proof of this lemma is standard. However, since this lemma is
crucial for our estimates andwe are going to use special properties of the J -projections
on Banach spaces, we write a complete proof of this lemma.

Lemma 4.1 (Banach Squash Lemma) There are constants ε1(k), c4(k) so that the
following holds. In the notation above, and with the assumptions (4.1), let G be a
closed set so that

G ∩ B3r = graph�,πV
(g), r−1||g|| + Lip(g) ≤ ε, B5r/2 ∩ (p + V ) ⊂ �.

(4.4)

Then provided δ + ε ≤ ε1(k), we have

A) For x, y ∈ G ∩ B3r , σ is a bi-Lipschitz equivalence between G ∩ B3r and σ(G ∩
B3r ), satisfying the estimates

r−1||σ(x) − x || ≤ c4(δ + ε), and ||(σ (x) − σ(y)) − (x − y)||
≤ c4(δ + ε)||x − y||. (4.5)

B) We have

σ(G) ∩ B2r = graph�̃,πV
(g̃), r−1||g̃|| + Lip(g̃)

≤ c4(δ + ε), B3r/2 ∩ (p + V ) ⊂ �̃, (4.6)

C) If
∑

i φi = 1 on B(2+c4(δ+ε))r , then in part B) we in fact have the bound

r−1||g̃|| + Lip(g̃) ≤ c4δ. (4.7)

D) Suppose either of the following scenarios: X is a Hilbert space, and each π , πi

are orthogonal; or X is a uniformly smooth Banach space, k = 1, and each π , πi

is a J-projection. Then we have the improved estimates: for all x, y ∈ G ∩ B3,

r−1||π(σ(x) − x)|| ≤ c4ρX (c4(δ + ε)), and
∣
∣
∣||σ(x) − σ(y)||2 − ||x − y||2

∣
∣
∣

≤ c4ρX (c4(δ + ε))||x − y||2 (4.8)

Proof In the following c denotes a generic constant depending only on k. We will
assume ε1(k) is chosen sufficiently small so that we always have cε1 ≤ 1/100. By
scaling we can assume r = 1.

Given x, y ∈ p + V , for ease of notation we shall write x+ = x + g(x), and
y+ = y + g(x). For each i , choose p̃i ∈ V so that || p̃i − pi || < δ. We can without
loss of generality assume ||p|| < δ.
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If φi (x+) > 0 and x+ ∈ B3, then ||x+ − xi || < 3, and therefore ||xi || < 6, and
||pi || < 7. For such an i , we have

||π⊥
i (x + g(x) − pi )|| ≤ ||π⊥

i (x − p̃i )|| + ||π⊥
i (g(x))|| + ||π⊥

i (pi − p̃i )|| (4.9)

≤ c(k)δ||x − p̃i || + c(k)||g(x)|| + c(k)δ (4.10)

≤ c(k)(δ + ε). (4.11)

Remember that x − p̃i ∈ V .
Since #{i : xi ∈ B6} ≤ c(k) by Lemma 3.8, we obtain

||σ(x+) − x+|| ≤
∑

i

|φi (x
+)|||π⊥

i (x+ − pi )|| ≤ c(k)(δ + ε). (4.12)

Similarly, we have

||(σ (x+) − x+) − (σ (y+) − y+)|| ≤
∑

i

|φi (x
+) − φi (y

+)|||π⊥
i (x+ − pi )||

+
∑

i

|φi (y
+)|||π⊥

i (x+ − y+)|| , (4.13)

where the first term on the right is bounded by

∑

i

|φi (x
+) − φi (y

+)|||π⊥
i (x+ − pi )|| ≤ c(||x − y|| + ||g(x) − g(y)||)c(k)(δ + ε)

(4.14)

≤ c(k)(δ + ε)(1 + ε)||x − y|| , (4.15)

and the second term is bounded by

∑

i

|φi (y
+)|||π⊥

i (x+ − y+)|| ≤ c(k)||π⊥
i (x − y)|| + c(k)||g(x) − g(y)|| (4.16)

≤ c(k)δ||x − y|| + c(k)ε||x − y||. (4.17)

This proves part A).
In order to prove B), we write

σ(x + g(x)) = x + π(σ(x + g(x)) − x) + π⊥(σ (x + g(x))) (4.18)

=: x + e(x) + π⊥(σ (x + g(x))) (4.19)

where we define e : B5/2 ∩ (p + V ) → V by

e(x) = π(σ(x + g(x)) − x) + π⊥(p) ≡ π(σ(x+) − x+) (4.20)

123



Effective Reifenberg theorems in Hilbert… 1171

Recall that x+ = x + g(x). Moreover, since ε1(k) < 1/10 we have

{x + g(x) : x ∈ B5/2 ∩ (p + V )} ⊂ G ∩ B3. (4.21)

By part A) and (4.21) we have for any x ∈ B5/2 ∩ (p + V ),

||e(x)|| ≤ c(k)(δ + ε), ||e(x) − e(y)|| ≤ c(k)(δ + ε)||x+ − y+||
≤ c(k)(δ + ε)||x − y||. (4.22)

Therefore, provided δ + ε ≤ ε1(k), we deduce the map

x �→ x + e(x) : B5/2 ∩ (p + V ) → U , (4.23)

is a bi-Lipschitz equivalence, with Lipschitz inverse

Q : U → B5/2 ∩ (p + V ), ||Q(x) − x || ≤ c(k)(δ + ε), Lip(Q) ≤ 2. (4.24)

Moreover, from our bounds (4.22) on e, we haveU ⊃ B2(0)∩ (p+V ) provided ε1(k)
is sufficiently small.

If we define

g̃(y) = π⊥(σ (Q(y) + g(Q(y)))) , (4.25)

then from (4.19) and the definition of Q we have

σ(Q(y) + g(Q(y))) = y + g̃(y). (4.26)

And so

σ({x + g(x) : x ∈ B5/2 ∩ V }) = graphU ,π (g̃), U ⊃ B2(0) ∩ (p + V ).

(4.27)

Since

g̃(y) = π⊥ [σ(Q(y) + g(Q(y))) − [Q(y) + g(Q(y))]] + g(Q(y)) , (4.28)

we have from part A) the bounds

||g̃(y)|| ≤ c(k)δ||Q(y) + g(Q(y))|| + ||g(Q(y))|| + c(k)δ ≤ c(k)(δ + ε), (4.29)

and

||g̃(y) − g̃(z)|| ≤ c(k)(δ + ε)||(Q(y) − g(Q(y))) − (Q(z) − g(Q(z)))||
+ ||g(Q(y)) − g(Q(z))|| (4.30)

≤ c(k)(δ + ε)||y − z|| , (4.31)for any y, z ∈ U .
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To finish proving B), it remains to show that

σ({x + g(x) : x ∈ B5/2 ∩ V }) ⊃ σ(G) ∩ B2(0) ⊃ {y + g̃(y) : y ∈ B3/2 ∩ V }.
(4.32)

First, suppose σ(x + g(x)) ∈ B2(0). Then

||x || ≤ ||(x + g(x)) − σ(x + g(x))|| + ||σ(x + g(x))|| + ||g(x)||
≤ c(k)(ε + δ) + 2 < 5/2. (4.33)

Conversely, if y ∈ B3/2 ∩ V , then

||σ(Q(y) + g(Q(y)))|| = ||y + g̃(y)|| ≤ 3/2 + c(k)(ε + δ) < 2 , (4.34)

again provided ε1(k) is small. This completes the proof of part B).
Let us prove part C). For ease of notation write x++ = Q(x) + g(Q(x)), and

y++ = Q(y) + g(Q(y)). By estimates (4.24) and part B), x++ ∈ B2+c(k)(δ+ε)

whenever x ∈ �̃. Therefore, we can write

g̃(x) = −π⊥(p) +
∑

i

φi (x
++)π⊥(pi + πi (x

++ − pi )). (4.35)

For any x with φi (x++) > 0, we can estimate using Proposition 3.18:

||π⊥(π⊥
i (pi ) + πi (x

++))|| ≤ c(k)||π⊥
i (pi − p̃i )|| + c(k)||π⊥

i ( p̃i )||
+ ||π⊥(πi (x

++))|| (4.36)

≤ c(k)δ + c(k)δ|| p̃i || + c(k)δ||x++|| (4.37)

≤ c(k)δ. (4.38)

Using Lemma 3.8, and the definition of xi , we deduce that

||g̃(x)|| ≤ c(k)δ for x ∈ �̃. (4.39)

Similarly, we can estimate

||g̃(x) − g̃(y)|| ≤
∑

i

|φi (x
++) − φi (y

++)|||π⊥(π⊥
i (pi ) + πi (x

++))||

+
∑

i

|φi (y
++)|||π⊥(πi (x

++ − y++))|| (4.40)

≤ c(k)δ||x++ − y++|| + c(k)δ||x++ − y++|| (4.41)

= c(k)δ||Q(x) − Q(y) + g(Q(x)) − g(Q(y))|| (4.42)

≤ c(k)δ||x − y|| , (4.43)
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using the estimates (4.24). This completes the proof of part C).
Finally, we show D). From part A), we have the coarse bounds

1

2
||x − y|| ≤ ||σ(x+) − σ(y+)|| ≤ 2||x − y||, 1

2
||x − y||

≤ ||x+ − y+|| ≤ 2||x − y|| , (4.44)

and

||π⊥(σ (x+) − σ(y+))|| ≤ c(δ + ε)||x − y||. (4.45)

We claim that

||π(σ(x+) − σ(y+)) − (x − y)|| ≤ c(ρ(c(δ + ε)) + (δ + ε)2)||x − y||. (4.46)

To see this, write

π(σ(x+) − σ(y+)) = (x − y) +
∑

i

(φi (x
+) − φi (y

+))π(π⊥
i (x+ − pi ))

+
∑

i

φi (y
+)π(π⊥

i (x+ − y+)) (4.47)

Then, similar to part A), but making use of Lemma 3.32, we can estimate

∥
∥
∥
∥
∥

∑

i

(φi (x
+) − φi (y

+))π(π⊥
i (x+ − pi ))

∥
∥
∥
∥
∥

≤ c(k)||x+ − y+||
(

sup
xi∈B6(0)

||π − πi ||||π⊥
i (x+ − pi )||

)

(4.48)

≤ c(k)

(
ρ(cδ)

δ
+ δ

)

(δ + ε)||x − y|| (4.49)

≤ c(k)(ρ(c(δ + ε)) + (δ + ε)2)||x − y|| , (4.50)

where in the last inequality we used the convexity of ρX . Similarly,

∥
∥
∥
∥
∥

∑

i

φi (y
+)π(π⊥

i (x+ − y+))

∥
∥
∥
∥
∥

≤ c(k)

(

sup
xi∈B6(0)

||π − πi ||||π⊥
i (x+ − y+)||

)

≤ c(k)(ρ(c(δ + ε)) + (δ + ε)2)||x − y||. (4.51)

This establishes our claim. By an essentially verbatim proof, we have also

||π(σ(x+) − x+)|| ≤ cρ(c(δ + ε))||x − y||. (4.52)
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Using (4.46), and (3.91) with the bounds of part A), we get

∣
∣
∣|σ(x+) − σ(y+)||2 − ||x+ − y+||2

∣
∣
∣ ≤ 4ρX (c(δ + ε))||x+ − y+||2

+ ||π(σ(x+) − σ(y+) − (x+ − y+))||||x − y|| (4.53)

≤ cρX (c(δ + ε))||x+ − y+||2. (4.54)

��

4.2 Regraphing

We demonstrate that graphs in the sense of Definition 3.19 (with small norm) over a
given affine plane p + V , can be written as graphs over slightly tilted/shifted affine
planes q +W , with small norm also. This lemma is very intuitive in Euclidean spaces,
although its proof is not so short. Here we present a Banach space version.

Lemma 4.2 Let V , W be k-spaces, with almost-projections πV , πW , and take points
p, q ∈ B2r . Suppose we know

d(q, p + V ) < δr , dG(V ,W ) < δ. (4.55)

Suppose G is such that

G ∩ B2r = graph�,πV
(g), r−1||g|| + Lip(g) < ε, B7r/5 ∩ (p + V )

⊂ � ⊂ (p + V ). (4.56)

Then provided δ+ε ≤ ε2(k), we have a regionU ⊂ q+W, and Lipschitz g : U → X,
so that

G ∩ Br = graphU ,πW
(h), r−1||h|| + Lip(h) ≤ c(k)(ε + δ),

B3r/5 ∩ (q + W ) ⊂ U ⊂ (q + W ). (4.57)

Remark 4.3 If W = V and p = q, then this demonstrates the “well-definition” of
graphicality in the sense of Definition 3.19: if G is a sufficiently small graph with
respect to some almost-projection, then it is a graph with respect to any almost-
projection. Unfortunately, in a general Banach space, regraphing G over a different
almost-projection will always pick up a factor of c(k), even in the special case of
W = V .

Proof In the following we denote by c a generic constant depending only on k, and
always assume ε2(k) is chosen so that ε2c ≤ 1

100 . Again by scaling we can assume
r = 1.

First, there is no loss in assuming ||p − q|| < δ. This follows because we can
choose p̃ ∈ V with ||q − p̃|| < δ, and then p + V = (p − p̃) + V . Let

�V (x) ≡ π⊥
V (p) + πV (x), �W (x) ≡ π⊥

W (q) + πW (x) (4.58)
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be the associated almost-affine projections to p + V , q + W (recall that �V is inde-
pendent of choice of p ∈ p + V ). We have

||�V || ≤ c(k), ||�W || ≤ c(k). (4.59)

Observe that�V : (q+W ) → (p+V ) is a bi-Lipschitz equivalence,with estimates

||�V (y) − y|| ≤ cδ(1 + ||y||), ||(�V (y) − y) − (�V (z) − z)|| ≤ cδ||y − z|| ,
(4.60)

whenever y, z ∈ q + W . This follows because, using Proposition 3.16,

||�V (y) − y|| = ||π⊥
V (p − q) + π⊥

V (y − q)|| ≤ c||p − q| + cδ||y − q||.
(4.61)

Similarly, we have

||(�V (y) − y) − (�V (z) − z)|| = ||π⊥
V (y − z)|| ≤ cδ||y − z||. (4.62)

Define the map f : B6/5 ∩ (q + W ) → (q + W ) by

f (y) = �W (�V (y) + g(�V (y))). (4.63)

Since�V (B6/5∩(q+W )) ⊂ B6/5+cδ∩V , we see that f is well-defined and Lipschitz.
We estimate, for y, z ∈ B6/5 ∩ (q + W ),

|| f (y) − y|| = ||�W (�V (y) − y + g(�V (y)))|| ≤ c(δ + ε) , (4.64)

and

||( f (y) − y) − ( f (z) − z)|| = ||�W (π⊥
V (y − z) + g(�V (y))

−g(�V (y)))|| ≤ c(δ + ε)||y − z||. (4.65)

Therefore, by our restriction on ε2(k), f has a Lipschitz inverse

f −1 : U ⊂ (q + W ) → B6/5 ∩ (q + W ) , (4.66)

with || f −1|| + Lip( f −1) ≤ 3.
Let us define g̃ : U → X by

g̃(y) = π⊥
W (�V ( f −1(y)) + g(�V ( f −1(y)))) − π⊥

W (q). (4.67)

Then, for y ∈ U , we have

�V ( f −1(y)) + g(�V ( f −1(y))) = y + g̃(y) , (4.68)
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and so

{x + g(x) : x ∈ �V (B6/5 ∩ (q + W ))} = graphU ,πW
(g̃). (4.69)

Let us demonstrate the correct estimates on g̃. For y, z ∈ U , we have

||g̃(y)|| ≤ c||(πV ( f −1(y) − q))|| + c||q|| + c||p||
+ c||g(�V ( f −1(y)))|| ≤ c(δ + ε) , (4.70)

and

||g̃(y) − g̃(z)|| ≤ c||πV ( f −1(y) − f −1(z))|| + c||g(�V ( f −1(y)))

− g(�V ( f −1(z)))|| (4.71)

≤ c(δ + ε)|| f −1(y) − f −1(z)|| (4.72)

≤ c(δ + ε)||y − z||. (4.73)

Therefore, it remains only to show

{x + g(x) : x ∈ �V (B6/5 ∩ (q + W ))} ⊃ G ∩ B1(0)

⊃ {y + g̃(y) : y ∈ B3/5 ∩ (q + W )}. (4.74)

On the one hand, if x + g(x) ∈ B1(0), then writing �−1
V : V → W we have

||�−1
V (x)|| ≤ (1 + cδ)||x + g(x) − g(x)|| < 1 + cδ + cε < 6/5. (4.75)

On the other hand, if y ∈ B3/5 ∩ (q + W ), then

||y + g̃(y)|| < 3/5 + c(δ + ε) < 1. (4.76)

This completes the proof of Lemma 4.2. ��

5 Power gain: examples

Before moving to the proof in general, we show here some examples illustrating the
behavior we can and cannot expect. In particular, wewant to seewhat kind of estimates
on the bi-Lipschitz constant we can expect in equation (4.8) (or equivalently (1.6)).
The examples that follow illustrate two phenomena: the first is that we cannot improve
(4.8) to

∣
∣
∣||σ(x) − σ(y)||2 − ||x − y||2

∣
∣
∣ ≤ c4 f (ε)||x − y||2 (5.1)

for any f (ε) ≤ cεα′
with α′ > α, where α is the power type of the ambient Banach

space X defined in (3.65).
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The second is that in a general Banach space X and for k ≥ 2, the improved
bi-Lipschitz estimate of (4.8) is wrong, and the best one can hope for is (4.5).

5.1 Power gain inR2 with Banach norms

Our first example is an easy example of a curve inR2 equipped with different l p norms
for 1 ≤ p ≤ 2. Recall that the l p norm on R

2 is defined by

‖(x, y)‖p =
{(|x |p + |y|p)1/p for p ∈ [1,∞) ,

max {|x | , |y|} for p = ∞.
(5.2)

We will denote by e1, e2 the standard vector basis of R2.
Let γ1 : [0, 1] → R

2 be the curve given by γ1(t) = te1. For all p, this curve has a
well-defined length, which is

ˆ 1

0
‖γ̇1‖l p dt = 1. (5.3)

For all |ε| ≤ 1, define the curve γ2 : [0, 1] → R
2 by

γ2(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

te1 for t ∈ [0, 1/3] ,

te1 + (t − 1/3) εe2 for t ∈ [1/3, 1/2] ,

te1 + (2/3 − t) εe2 for t ∈ [1/2, 2/3] ,

te1 for t ∈ [2/3, 1].
(5.4)

For those familiar with fractals, this curve is the first step of a snowflake construction
with step ε. Clearlyγ2 is aLipschitz curvewhich isC1 away from the points (1/3, 2/3).
Its speed as a function of p is given by

‖γ̇2(t)‖l p =

⎧

⎪⎨

⎪⎩

1 for t ∈ [0, 1/3) ,
(

1 + |ε|p)1/p for t ∈ (1/3, 2/3) ,

1 for t ∈ (2/3, 1].
(5.5)

Consider the projection map π : R2 → R
2 given by

π(x, y) = (x, 0). (5.6)

This is the standard orthogonal projection in R
2, and it is easy to verify that for all

1 ≤ p ≤ 2 this is a generalized projectionwith ‖π‖ = 1.Moreover, for 1 < p ≤ 2 this
is the J -projection (recall Definition 3.31 and (3.68)) onto the subspace V = span(e1).

Clearly, for all 1 ≤ p ≤ 2, the curveγ2 is a generalizedgraph (recallDefinition3.19)
over the subspace V with projection π , and this projection π(γ2(t)) = γ1(t) is a bi-
Lipschitz equivalence with bi-Lipschitz constant (1 + |ε|) for all 1 ≤ p ≤ 2.
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However, for 1 < p ≤ 2, the bi-Lipschitz constant can be improved to

(

1 + |ε|p)1/p ≤ 1 + cρ(R2,l p)(ε) ∼ε→0 1 + 1

p
|ε|p , (5.7)

whereweused the estimate (3.66) for themodulus of smoothnessρ(R2,l p). In particular,
this implies that for all points z, w ∈ γ2, we have

∣
∣
∣‖π(z) − π(w)‖2 − ‖z − w‖2

∣
∣
∣ ≤ cρ(R2,l p)(ε) ‖z − w‖2 . (5.8)

In the language of the Banach Squash Lemma 4.1, we can rephrase this example
in the following terms. We consider the Banach space X = (R2, l p) and the mapping
σ = π . In other words, we have a single 1-dimensional affine space V = span(e1)
and a single projection π onto this subspace, thus we do not need any partition of unity
{λi } to define the map σ .

G = γ2 is a generalized graph over the segment ([0, 1] × {0}) ⊂ V , and the
graphing function g satisfies

‖g‖∞ = ε , Lip(g) = ε . (5.9)

The projection map σ = π is an explicit bi-Lipschitz equivalence between G and
([0, 1] × {0}) ⊂ V , with bi-Lipschitz constant equal to (1 + |ε|p)1/p, which shows
that we cannot improve (4.8) to

∣
∣
∣||σ(x) − σ(y)||2 − ||x − y||2

∣
∣
∣ ≤ c4 f (ε)||x − y||2 (5.10)

for any f (ε) ≤ cεα for α > p.

5.2 Infinite dimensional snowflake

An instructive example to look at is the classical example of the snowflake. In particu-
lar, we recall the following standard construction in R2 (see for example [7, Exercise
10.16]).

The construction of a snowflake of parameter η > 0 is well known (see for example
[25, section 4.13]). Take the unit segment [0, 1]×{0} ⊆ R

2, and replace themiddle part
[1/3, 2/3] × {0} with the top part of the isosceles triangle with base [1/3, 2/3] × {0}
and of height η·lenght([1/3, 2/3]×{0}). In other words, you are replacing the segment
[1/3, 2/3]× {0} with the two segments joining (1/3, 0) to (1/2, η/3), and (1/2, η/3)
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to (2/3, 0). Then repeat this construction inductively on each of the 4 straight segments
in the new set. Here on the left hand side you can see the very classical picture of the
first three steps in the construction of the standard snowflake, with η = √

3/2.
It is clear that the length of the curve at step i is equal to the length at step i − 1

times 2/3+√1 + η2/3, so the length of the snowflake will be infinity for any η > 0.
This is a simple application of the Pythagorean theorem, and the extra square power
on η comes from the fact that at each step we are adding some length η to the curve,
but in a direction perpendicular to it.

However, if we replace the fixed parameter η with a variable parameter ηi , we
see immediately that the length of the limit curve will be finite if and only if
∑

η2i < ∞. This suggests that in R
2 a curve γ is of finite length if for all x ∈ γ ,

´ 1
0 β1

H1�γ
(x, r)2 drr < ∞.

Snowflake in L p spaces Here we try to produce a similar example in infinite
dimensions, and we will see that the finiteness of the length of the curve depends on
the summability of

∑
ηα
i , where α depends on the space.

Consider the space L∞[0, 1], and let ei ∈ L∞[0, 1] be the Rademacher’s functions.
In other words, we set e1 = 1[0,1] = 1, e2 = 1[0,1/2] − 1(1/2,1], e3 = 1[0,1/4] −
1(1/4,1/2] + 1(1/2,3/4] − 1(3/4,1], ... ei (t) = sign[sin(2π i t)].

Now consider the curve γ1 : [0, 1] → L∞([0, 1]) given by γ1(t) = te1. This curve
has a well-defined length, which is

ˆ 1

0
‖γ̇1‖L∞ dt = 1. (5.11)

We build a sequence of curves γn similar to snowflakes with parameter ηn , but devel-
oped over an infinite dimensional space instead of R2. In particular, take γ1, split it
into 3 pieces of equal length, and modify the middle piece by “bumping” it in the
direction of e2. In particular:

γ2(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

te1 for t ∈ [0, 1/3] ,

te1 + (t − 1/3) η1e2 for t ∈ [1/3, 1/2] ,

te1 + (2/3 − t) η1e2 for t ∈ [1/2, 2/3] ,

te1 for t ∈ [2/3, 1].
(5.12)

Then we repeat this process inductively on i , and apply the previous construction on
each of the straight segment in γi by bumping it in the direction of ei .

For each i , γi : [0, 1] → L∞[0, 1] is a Lipschitz function which is C1 away from
the points k · 3−i . The speed of γ2 and γ3 is given by

‖γ̇2(t)‖L∞ =

⎧

⎪⎨

⎪⎩

1 for t ∈ [0, 1/3) ,

1 + |η1| for t ∈ [1/3, 2/3) ,

1 for t ∈ [2/3, 1].
(5.13)
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‖γ̇3(t)‖L∞ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧

⎪⎨

⎪⎩

1 for t ∈ [0, 1/9) ,

1 + |η2| for t ∈ [1/9, 2/9) ,

1 for t ∈ [2/9, 1/3) ,
⎧

⎪⎨

⎪⎩

1 + |η1| for t ∈ [1/3, 4/9) ,

1 + |η1| + |η2| for t ∈ [4/9, 5/9) ,

1 + |η1| for t ∈ [5/9, 2/3) ,
⎧

⎪⎨

⎪⎩

1 for t ∈ [2/3, 7/9) ,

1 + |η2| for t ∈ [7/9, 8/9) ,

1 for t ∈ [8/9, 1] ,

(5.14)

It is easy to see that for a generic i the length of the curve obtained in this fashion is
then

L(γi ) =
ˆ 1

0
‖γ̇i‖L∞ = 1 + 1

3

i−1
∑

k=1

|ηk | . (5.15)

This implies that the pointwise limit γ∞ = limi γi is a curve of finite length if and
only if

∑∞
k=1 |ηk | < ∞.

Notice that the same family of curves γi seen as curves in L2([0, 1]) behaves in a
different way. Indeed, in order to compute the speed ‖γ̇ (t)‖ notice that in L2 we have
the identity

∥
∥
∥
∥
∥
∥

e1 +
∑

i≥2

ηi ei

∥
∥
∥
∥
∥
∥

2

= 1 +
∑

i

η2i , (5.16)

since ei are orthonormal vectors in L2. Thus it is easy to see that as curves in L2, γi
have uniformly bounded length if and only if

∑

i η
2
i < ∞. Thus, there is a strong

difference in behaviour between L2 and L∞ from this point of view.
Similar computations can be carried out in L p[0, 1], and using the standard inequal-

ities for L p norms (see Hanner inequality, [18, theorem 1]), it is possible to prove the
following lemma.

Lemma 5.1 The curves in the family γi : [0, 1] → L p[0, 1] have uniformly bounded
length if supi |ηi | ≤ 1/10 and

⎧

⎪⎨

⎪⎩

∑

i |ηi |p < ∞ for 1 ≤ p ≤ 2 ,
∑

i |ηi |2 < ∞ for 2 ≤ p < ∞ ,
∑

i |ηi | < ∞ for p = ∞.

(5.17)

Note that for p ∈ [2,∞) fixed, the lengths of γi are uniformly bounded if
∑

i |ηi |2 <

∞, but this bound is not uniform in p.
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Remark 5.2 Given the bounds on the modulus of smoothness for L p given by (3.66),
this behavior suggests a link between the modulus of smoothness of the space X and
the Reifenberg theorem.

5.3 Failure of sharp bi-Lipschitz bound

We give an example demonstrating the failure of the improved bound (1.6) when
k ≥ 2, and X is not Hilbert. In particular, we show that if X is a Banach space, even if
its modulus of smoothness of this space is of power type α > 1, then a Lipschitz graph
over some 2 dimensional space L with Lipschitz constant ε need not be (1 + cεα)

bi-Lipschitz equivalent to its base.
We consider the space X = R

3 with the �4 norm

||(x1, x2, x3)||�4 = (|x1|4 + |x2|4 + |x3|4)1/4. (5.18)

This space is uniformly smooth, with modulus of smoothness α = 2, so the improved
estimate (1.6) would imply

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣

≤ cε2||x − y||2 ∀x, y ∈ L ∩ B1(0) , (5.19)

for every 2-plane L2 ⊂ X , and every ε-Lipschitz graph function f : L ∩ B1(0) → X .
However, we shall demonstrate the following failure, precluding (5.19) for any

notion of graph.

Proposition 5.3 Let X = (R3, ‖·‖4). There is a 2-plane L2 ⊂ X, and absolute con-
stants c, ε0, with the following property: Given any function f : L∩ B1(0) → X, with
Lip( f ) = ε ≤ ε0, then we can find a pair x, y ∈ L ∩ B1(0) admitting a lower bound

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣ ≥ ε/c||x − y||2. (5.20)

Remark 5.4 In fact, the proof shows (5.20) for an open neighborhood of 2-planes. So
this failure is generic, in the sense that you cannot just “choose a better plane” or
“choose a better notion of graph.”

Remark 5.5 Any finite, n-dimensional Banach space is c(n)-equivalent to a Hilbert
space, and any Hilbert structure does admit an improved bound (5.19). However, in
passing between Banach and Hilbert norms you lose the sharpness of the inequality
(i.e. 1 + cε2 would become c(n)(1 + cε2)). Moreover, and more importantly, the
comparability between norms depends on the ambient dimension n, so even for non-
sharp estimates like those in 2.1, one cannot hope to use a “comparable” Hilbert
structure to gain a power.

The failure of the improved estimate (5.19) is fundamentally a consequence of the
non-linearity of J : L → X∗. We explain. Consider momentarily a general uniformly
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smooth Banach space X , with modulus of smoothness α, a k-space Lk , and an ε-
Lipschitz map f : Lk → X . By the same argument as Lemma 3.27, we have

||(x + f (x)) − (y + f (y))||2 − ||x − y||2 = 〈J (x − y), f (x) − f (y)〉
+O(εα)||x − y||2 ∀x, y ∈ L. (5.21)

The obstacle to obtaining an improved bi-Lipschitz estimate like (5.19) is then the
quantity

〈J (x − y), f (x) − f (y)〉 . (5.22)

When J |L is linear, then L admits an “orthogonal complement” L⊥ satisfying

L ⊕ L⊥ = X , and
〈

J |L , L⊥〉 = 0. (5.23)

For example, if {vi }i is a basis for L , then take L⊥ = ∩i ker J (vi ). When L⊥ exists,
we can define graphs over L to be maps into L⊥, and then (5.22) vanishes for all such
graphs f : L → L⊥. This is the origin of the improved bi-Lipschitz estimate (1.6).

In both exceptional cases (when X is Hilbert or k = 1), J |L is linear, and we
correspondingly get both a natural notion of graph and an improved bi-Lipschitz
estimate. When X is Hilbert, the inner product structure gives a natural isomorphism
X ∼= X∗, and so J : X → X∗ ∼= X is the just the identity mapping. When k = 1, J
is trivially linear on 1-spaces since J is always 1-homogenous.

In fact, these are the only caseswhen J |L is linear. A deep theorem of Banach spaces
(see [19, theorem3.8]) says that X isHilbert if and only if every closed subspace admits
an orthogonal complement L⊥ satisfying (5.23). If J |L2 were linear for every 2-plane,
then J would be linear on X , and by the argument above we could thereby find an
orthogonal complement to every closed L .

We mention a related, equally remarkable classification, which says that Banach
space is X is Hilbert if and only if every 2-dimensional space admits a norm-one
projection (see for example the recent survey [31, section 3]). However we point out
that nowhere in our paper do we ever explicitly use that a projection has norm-one.
The improved estimate is more directly a consequence of the existence of orthogonal
complements.

In our example space X = (R3, �4), J can be written explicitly as

J (x) = J (x1, x2, x3) = ||x ||−2
�4

((x1)3, (x2)3, (x3)3) , (5.24)

where we identify X∗ with (R3, �4/3) via the Euclidean inner product 〈·, ·〉. On any
2-space L , J |L is non-linear. Notice that since 1-homogenous functions are linear on
1-spaces, k ≥ 2 is necessary to see the non-linearity.

When J |L is non-linear, attempting to satisfy 〈J (x − y), f (x) − f (y)〉 = 0 for all
x, y ∈ L ∩ B1(0) should impose “too many” conditions on a non-constant f . Given
N + 1 points {xi }Ni=0 ⊂ L ∩ B1(0), then
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〈

J (xi − x j ), f (xi ) − f (x j )
〉 = 0 0 ≤ i < j ≤ N (5.25)

represents N (N + 1)/2 linear conditions on only N + 1 vectors { f (xi )}Ni=0.
Wewill find that for a generic choice of L and xi , and after fixing the value of f (x0),

the conditions (5.25) are linearly independent, and so force f to be constant. (Some
special 2-planes, like the coordinate planes xi = 0, admit orthogonal complements in
the sense of (5.23), and for these planes conditions (5.25) are degenerate).

We make this precise and quantitative in the following Lemma, which is the key to
proving Proposition 5.3.

Lemma 5.6 Let X = (R3, || · ||4). There is a 2-plane L2 ⊂ X, and an absolute
constant c, with the following property: Given any Lipschitz f : L ∩ B1(0) → X,
with Lip( f ) ≤ 1, then we can find a pair x, y ∈ L ∩ B1(0), so that

c |〈J (x − y), f (x) − f (y)〉| ≥ Lip( f )||x − y||2. (5.26)

The idea behind Lemma 5.6 is the following. If we take N = 5, and fix f (x0) = 0,
then the numbers

〈

J (xi − x j )/||xi − x j ||, f (xi ) − f (x j )
〉

0 ≤ i < j ≤ 5 (5.27)

represent 15 separate linear combinations of the 15 ( = N × n) various coordinates of
f (x1), . . . , f (x5). So the numbers (5.27) can be expressed as a square matrix M times
the vector ( f (x1), . . . , f (x5)). We will show that for a good choice of L2, and “most”
xi , this matrix is invertible, and so lower bounds on the differences || f (xi ) − f (x j )||
pass to lower bounds on the numbers (5.27).

First we show how Proposition 5.3 follows from Lemma 5.6, then we shall prove
Lemma 5.6.

Proof of Proposition 5.3 given Lemma 5.6 We claim to have the following inequality,
for any x, y ∈ B1(0) ∩ L:

∣
∣
∣||(x + f (x)) − (y + f (y))||2 − ||x − y||2

∣
∣
∣

≥ 2| 〈J (x − y), f (x) − f (y)〉 | − cε2||x − y||2 , (5.28)

for some absolute constant c independent of f . It is clear that this inequality and (5.26)
prove Proposition 5.3.

In order to prove this claim, recall that since X is smooth, we have J (x) =
grad||x ||2/2. Define the curve

γ (t) = x − y + t( f (x) − f (y)). (5.29)

We can compute

||(x + f (x)) − (y + f (y))||2 − ||x − y||2 (5.30)

123



1184 N. Edelen et al.

=
ˆ 1

0
2 〈J (γ (t)), f (x) − f (y)〉 dt

= 2 〈J (x − y), f (x) − f (y)〉 +
ˆ 1

0
2 〈J (γ (t) − γ (0)), f (x) − f (y)〉 dt . (5.31)

Using Lemma 3.32 and the estimate (3.66) for the modulus of smoothness of
(R2, ‖·‖4), we have the bound

| 〈J (γ (t) − γ (0)), f (x) − f (y)〉 | ≤ c|| f (x) − f (y)||2 ≤ cε2||x − y||2. (5.32)

This establishes (5.28). ��
Proof of Lemma 5.6 Take six points x0, x1, . . . , x5 ∈ L2 ∩ B1(0), off-putting for the
moment our specific choice of L . Since (5.26) is invariant under translations f �→
f + const, we can and shall assume f (x0) = 0.
Let us define X ∈ R

15 to be the vector of components ( f (x1), . . . , f (x5)), and
define Y ∈ R

15 to be the vector with entries

〈

J (xi − x j )/||xi − x j ||, f (xi ) − f (x j )
〉

0 ≤ i < j ≤ 5. (5.33)

(remember that f (x0) = 0!)
We can write each component Ya as the matrix product Ya =∑15

b=1 MabXb, where
Mab is a 15×15 matrix. Each entry of Mab is some component of±J (xi − x j )/||xi −
x j ||, and permuting the xi has the effect of permuting rows of M . Moreover, observe
thatMab depends only on the differences xi−x j , and hence there is no loss in assuming
x0 = 0 when calculating det(M).

Fix some choice of norm || · || on R15. Since each entry |Mab| ≤ 1, we have

||Y || ≥ (| det(M)|/c)||X || , (5.34)

for some absolute constant c. We wish to pick a good selection of xi , so that: det(M)

is bounded away from 0; || f (x0) − f (x1)|| ≈ Lip( f )||x0 − x1||; and ||xi − x j || ≈
||x0 − x1|| for every i < j . These properties, combined with (5.34) and our definition
of X , Y , will establish the Lemma.

Towards this goal, we first verify that det(M) is bounded away from 0 for “most”
choice of xi , in a particular 2-plane. From the formula (5.24), and taking x0 = 0, we
see that det(M) is a 0-homogenous function, and can be written

det(M) = D(x1, . . . , x5)

Q(x1, . . . , x5)
(5.35)

where D is a 45-homogeneous polynomial in the entries of each xi , and Q is an
analytic function which vanishes only when some xi = x j . Up to sign, each D, Q is
symmetric under permutations of the xi .

Fix L to be the plane spanned by v1 = (1, 1, 0), and v2 = (0, 1, 1). We claim D|L
is not the zero polynomial. This follows by a straightforward but tedious calculation.
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If we let

x0 = 0, x1 = v1 + v2, x2 = 2v1 + 3v2 , (5.36)

x3 = 3v1 + 4v2, x4 = 2v1 − v2, x5 = −v1 + 3v2 , (5.37)

then one can compute directly that D(x1, . . . , x5) �= 0.
By writing out

D|L =
∑

α

pα(x1)qα(x2, . . . , xn), (5.38)

where the pα are polynomials in the coordinates of x1 ∈ L , and qα are polynomials
in coordinates of x2, . . . , xn ∈ L , we see that

{x1 ∈ L : D(x1, ·)|L = 0} = {x1 ∈ L : pα(x1) = 0 for every α} (5.39)

is a dilation-invariant algebraic variety in L , and hence is a finite union of lines through
the origin. Repeating this, for x2, x3, . . . , x5, we arrive at the following statement: for
all but finitely many x1 ∈ S1 ⊂ L , we can find an x2 . . . , x5 ∈ S1 all distinct so that
D(x1, . . . , x5) �= 0, and ||x1 − xi || < 1/100.

An obvious argument then gives the following. There is an absolute constant c
(depending only on our choice of plane L), and a finite, 1/100-dense subset I of
S1 ⊂ L (in the sense that any point in S1 is within distance 1/100 of I ), so that for
every x1 ∈ I , we can find x2, . . . , x5 ∈ S1 ⊂ L , satisfying:

det(M)(x1, . . . , x5) ≥ 1/c, and ||x1 − xi || < 1/100, ∀2 ≤ i ≤ 5. (5.40)

For ease of notation write ε = Lip( f ). Choose p, q so that || f (p) − f (q)|| >

(ε/2)||p − q||. By replacing ε/2 with ε/10, we can assume that

B||p−q||/5(q) ⊂ B1(0). (5.41)

Set x0 = p, and choose some x1 ∈ B||p−q||/50(q) ∩ (p + ||p − q||I ). We then obtain
x2, . . . , x5 ∈ B1(0) ∩ ∂B||p−q||(p), so that:

det(M)(x0, x1, . . . , x5) ≡ det(M)(x1 − x0, . . . , x5 − x0) ≥ 1/c. (5.42)

For this choice of x0, . . . , x5, we can form the vectors X , Y as at the start of the
proof, and we get

||Y || ≥ (1/c)||X || ≥ (1/c)|| f (x1)|| = (1/c)|| f (x1) − f (x0)|| ≥ (ε/c)||p − q||.
(5.43)

Therefore, for some 0 ≤ i < j ≤ 5, we must have have

∣
∣
〈

J (xi − x j )/||xi − x j ||, xi − x j
〉∣
∣ ≥ (ε/c)||p − q|| ≥ (ε/c)||xi − x j ||, (5.44)
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which is the desired conclusion. ��

6 Covering Lemma

In this section we present the main covering Lemma of this paper and use it to prove
the main Theorem, while we postpone the proof of this covering Lemma to Sect. 7.
Before stating the Lemma, we provide some intuition behind its statement and proof
(see Sect. 7.1 for a more detailed outline of the proof).

6.1 Intuition for the Covering Lemma

We will consider a finite, Borel measure satisfying the following Dini bound:

ˆ 1

rs
βk

μ(s, r)α
dr

r
≤ δα, ∀s ∈ S, (6.1)

for some δ small. A simple scaling argument allows us to reduce to this case. The S
is a set of full μ-measure, and the rs : S → [0, 1) is a radius function, which can be
unrelated to μ. We break up S = Sz ∪ S+, where rs |Sz = 0, and rs |S+ > 0. One
should think of rs and S as a generalized partial covering of B1(0), consisting of open
balls {Brs (s)}s∈S+ and a set Sz , with the property that μ(B1(0)\S) = 0.1

The objective of the Covering Lemma is to build a new partial covering of B1(0),
of the form

F = S′
z ∪
⋃

s′∈S′+

Brs′ (s
′) ∪
⋃

b∈B
Brb (b) , (6.2)

whereS′
z andS′+ are suitable subsets ofSz andS+ respectively, and the new extra balls

in the covering Brb (b)b∈B are carefully chosen “badballs” according toDefinition3.39.
Since our final goal is to control the measure μ away from balls with packing

estimates, and obtain rectifiability information for this measure, we require our new
covering to have the following properties:

(1) F need not have full measure, but the discrepancy is controlled:

μ(B1 (0) \F) ≤ cδα. (6.3)

(2a) The balls in the covering, {Brs′ (s′)}s′∈S′+ and {Brb (b)}b∈B, admit a uniform k-
dimensional packing bound

∑

s′∈S′+

rks′ +
∑

b∈B
rkb ≤ c5(k). (6.4)

1 We mention that since X is not assumed to be separable, the complement of the support of μ may not
have measure zero, so it’s better to talk about sets of full measure rather than supports.
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(2b) The set S′
z is contained in the image of a (1 + cδα)-Lipschitz map τ : V → X ,

where V is a k-dimensional subspace. We will take S′
z = Sz ∩ τ(V ), and shall

construct the map τ during the proof (see also the outline in Sect. 7.1).
(2) The balls

{

Brb (b)
}

b∈B are bad according to Definition 3.39.

The reason F takes this structure is the following. Recall that good balls (according
to Definition 3.39) had “big” measure spread out around a k-plane, and this allowed
us to control the tilting of L2-approximate-best-planes between nearby good balls via
the β-numbers (Sect. 3.7). The vague strategy behind the Covering Lemma is to use
this tilting control, and our Dini condition (6.1), to construct inductively on smaller
and smaller scales a sequence of Lipschitz manifolds that approximate the collection
of good balls at a given scale. Regions which are “far away” from the approximating
manifolds have controlled measure (item 1). We can iterate on smaller and smaller
scales, but must stop if we hit a ball Brs (s), or some bad ball Brb (b) (item 3) – in either
case we loose tilting control. On these balls we get packing estimates (items 2a). If in
certain regions we can iterate infinitely far down, we end up with a Lipschitz manifold
covering a piece of Sz (item 2b).

Notice the packing estimates in item 2a are not small, regardless of δ. This is
best illustrated in the example when μ is supported entirely on a k-plane V : then
δ = 0, but we have no control over μ�V . In general, the set F forms a cover of
the “limiting” Lipschitz manifold, which is bi-Lipschitz to a disk, and lives near L2-
approximate-best-planes. F inherits good k-dimensional packing/measure bounds, but
the β-numbers give us no control over μ in this limiting manifold.

To obtain our Main Theorem 2.1, we must refine our cover inside the bad balls
{Brb(b)}b∈B. By definition of bad balls we know that, up to a set of small measure, μ
inside a given bad ball Brb (b) is concentrated around some k−1 dimensional subspace.
Thus we can cover most of μ�Brb (b) with a family of balls

{Bχrb

(

b′)}b′ with #{b′} ≤ c(k)χ1−k, (6.5)

where χ is chosen small. Thus we have small k-dimensional packing estimate on the
balls {Bχrb (b

′)}b′ . On each of these new balls Bχrb (b
′)we can then apply the Covering

Lemma again in an inductive fashion until we reach our final goal (that is, a covering
not involving bad balls). The smallness of the k-dimensional packing bounds in (6.5)
ensures that the global k-dimensional packing estimate of the new covering obtained in
this fashion will remain uniformly controlled in each step of our inductive refinement
(for the details, see Sect. 6.3.3).

We remark that the inductive application of the Covering Lemma is the reason we
must in (6.7) consider the restriction of bad balls Brb (b) to {s ∈ S : rs < rb}. We
need to ensure that in every new application of the Covering Lemma at some scale R
(occurring inside a bad ball produced from a previous application of the Lemma), we
only see S with rs < R.

6.2 Covering Lemma

Now we state precisely the main covering lemma.
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Lemma 6.1 (Reifenberg covering) There are constants δ0(k, ρX , χ) and c5(k), so that
the following holds. Let μ be a finite Borel-regular measure, and S = Sz ∪ S+ a set
of full μ-measure. Take rs : S → R+ a nonnegative radius function satisfying rs < 1,
rs |Sz = 0 and rs |S+ > 0. Assume that μ satisfies

ˆ ∞

rs
βk

μ(s, r)α
dr

r
≤ δα ∀s ∈ S , (6.6)

where α = α(X) is the power of smoothness of X.
Then provided δ ≤ δ0, there is a subcollection S′+ ⊂ S+, a collection of “bad-

balls” {Brb(b)}b∈B, and a mapping τ : p(0, 1) + V (0, 1) → X which is bi-Lipschitz
onto its image, so that the following holds:

A) measure control: if we let

F = [Sz ∩ τ(B3(0) ∩ (p(0, 1) + V (0, 1)))
] ∪
⋃

s′∈S′+

Brs′ (s
′)

∪
⋃

b∈B

[

Brb (b) ∩ {s ∈ S : rs < rb}
]

, (6.7)

then

μ(B1(0)\F) ≤ c(k, χ)δα , (6.8)

B) packing control: τ is a (1+c(k, ρX , χ)δα)-bi-Lipschitz equivalence, and we have

∑

s′∈S′+

rks′ +
∑

b∈B
rkb ≤ c5(k) , (6.9)

C) bad ball structure: for each b ∈ B, the ball Brb (b) is bad in the sense of Defini-
tion 3.39 with respect to μ, and hence is bad with respect to μ�{s ∈ S : rs < rb}
as well.

6.3 Proof of Theorem 2.1 given Lemma 6.1

Before proving the covering lemma, we show that with it we can prove our main
Theorem 2.1. We postpone the proof of Lemma 6.1 to Sect. 7.

We first observe that if suffices to prove Theorem 2.1 when

M = δ2 = δ20(k). (6.10)

For otherwise, if 0 �= M �= δ20(k), we can simply replace μ with the measure δ20μ/M ,
and use the scaling of β. Of course what secretly happens by scaling is that we are
changing our definition of good/bad balls – instead of scaling μ one could instead
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incorporate M into Definition 3.39. Note that the same idea has been used in the
recent article [26].

If M = 0, then Theorem 2.1 is trivial: By Lemma 3.36 we can find an affine k-
plane p + V so that μ(X\(p + V )) = 0, and then we define S′ by the condition
that {Brs′ (s′)}s′∈S′ covers μ-a.e. B1(0) ∩ (p+ V ), while the balls {Brs′/5(s′)}s′∈S′ are
disjoint. The required measure estimate is vacuous, and the packing estimate follows
from Lemma 3.8.

We observe second that, in the language of Lemma 6.1, we have S+ = S, and
Sz = ∅.

We now demonstrate how the Reifenberg Covering Lemma 6.1 can be used to prove
Theorem 2.1. The basic idea is that we can refine the covering on bad balls by applying
inductively the covering lemma in order to obtain a finer and finer coverings.

6.3.1 Inductive claim

We claim we can find for each i ≥ 0 a collection of bad balls Bi , and a subcollection
Si ⊂ S, with the following properties:

A) Measure estimate: if we let

Fi =
⋃

s∈Si

Brs (s) ∪
⋃

b∈Bi

[

Brb (b) ∩ {s ∈ S : rs < rb}
]

, (6.11)

then we have

μ(B1(0)\Fi ) ≤
i
∑

j=0

2− j , (6.12)

B) Packing estimates:

∑

s∈Si

r ks ≤ 3kc2(k)
i
∑

j=0

2− j , and
∑

b∈Bi

r kb ≤ 2−i , (6.13)

C) We have Si ⊂ Si+1, and
⋃

b∈Bi
B2rb (b) ⊃⋃b∈Bi+1

B2rb (b).

D) For each b ∈ Bi , we have rb ≤ χ i and the ball Brb (b) is bad with respect to
μ�{s ∈ S : rs < rb}.
Let us prove this claim by induction. If B1(0) is a bad ball then let B0 = {0} with

corresponding radius function r0 = 1, and let S0 = ∅. Conditions A)-D) are vacuous.
Otherwise, if B1(0) is good, we let B0 = S0 = ∅, and start from i = 1. To get

B1,S1, we apply the Covering Lemma 6.1 to B1(0) and μ, obtaining a Lipschitz
k-manifold T1, a collection of bad balls B1, and original balls S1 ⊂ S+. Conditions
A)-D) are then immediate, since Sz = ∅.
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6.3.2 Inductive step

Assume by induction our claim is true for i . Take b ∈ Bi . We know Brb (b) is bad
for μ�{s ∈ S : rs < rb}. Let us first estimate the “bad ball excess.” Set p + V =
p(b, rb) + V (b, rb), so that

μ(Brb (b)\Bχrb/30(p + V )) ≤ [χrb/30]−2
ˆ

Brb (b)
d(z, p + V )2dμ(z) (6.14)

≤ c(k, χ)rkbβk
μ(x, r)2 (6.15)

≤ c(k, χ)δ2rkb , (6.16)

where in the last inequality we used the bound (2.1) along with (6.10) and the estimate
(3.15).

By virtue of being bad there is an affine (k − 1)-plane p+ Lk−1 ⊂ p+ V k so that,
for any y ∈ Brb (b)\B10χrb (p + Lk−1), we have

μ({s ∈ S : rs < rb} ∩ Bχrb (y) ∩ Brb (b)) ≤ c−1
2 (χrb)

k/10. (6.17)

If k = 0 then we interpret p + Lk−1 = ∅. By choosing a maximal χrb/2-net in

S ∩ Brb (b) ∩ Bχrb/30(p + V k)\B10χrb(p + Lk−1) , (6.18)

and combining Lemma 3.8 with (6.17), we obtain

μ({s ∈ S : rs < rb} ∩ Brb (b) ∩ Bχrb/30(p + V k)\B10χrb(p + Lk−1)) ≤ rkb/10.

(6.19)

We need now only estimate “lower-dimensional” neighborhood

{s ∈ S : rs < rb} ∩ Brb (b) ∩ Bχrb/30(p + V k) ∩ B10χrb(p + Lk−1). (6.20)

Let us define Sb ⊂ S by the conditions that, first:

Sb ⊂ {s ∈ S ∩ B2rb (b) ∩ Bχrb/30(p + V k) such that χrb ≤ rs < rb} ; (6.21)

second: the balls {Brs (s)}s∈Sb cover

⋃

{Brs (s) : s ∈ S ∩ B2rb (b) ∩ Bχrb/30(p + V k) and χrb ≤ rs < rb} ; (6.22)

and third: the balls {Brs/5(s) : s ∈ Sb} are disjoint. One can construct Sb by the Vitali
covering theorem. By proximity to V and disjointness, we have by Lemma 3.8

∑

s∈Sb

rks ≤ 2kc2(k)r
k
b . (6.23)
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Now define Jb to be a maximal 2χrb/5-net in

S ∩ Brb (b) ∩ B10χrb(L
k−1) ∩ Bχrb/30(V

k)\
⋃

s∈Sb

Brs (s). (6.24)

We observe that {Brx (x)}x∈Jb covers (6.24), that the balls {Brx/5(x)}x∈Jb are disjoint,
and by Lemma 3.10 that #Jb ≤ cB(k)χ1−k . Moreover, it is clear from construction
that if x ∈ Jb then

s ∈ {s′ ∈ S : rs′ < rb} ∩ Bχrb (x)\
⋃

s′∈Sb

Brs′ (s
′) !⇒ rs < χrb. (6.25)

For each x ∈ Jb, apply the Covering Lemma 6.1 at scale Bχrb (x) to the measure
μ�{s ∈ S : rs < χrb}, and cover {s ∈ S : rs < χrb} to obtain corresponding
collections Sx , and Bx .

Now define

Si+1 = Si ∪
⋃

b∈Bi

⎛

⎝Sb ∪
⋃

x∈Jb

Sx

⎞

⎠ , Bi+1 =
⋃

b∈Bi

⋃

x∈Jb

Bx . (6.26)

6.3.3 Packing estimate

For each b ∈ Bi we estimate, using our inductive hypothesis,

∑

x∈Jb

⎛

⎝
∑

s∈Sx

r ks +
∑

b′∈Bx

r kb′

⎞

⎠ ≤ c5
∑

x∈Jb

rkx ≤ c5cBχrkb . (6.27)

Choose χ(k) so that c5cBχ < 1/2. Then we have

∑

s∈Si+1

rks ≤
∑

s∈Si

r ks + (2kc2 + c5cBχ)
∑

b∈Bi

r kb ≤ 3kc2

i
∑

j=0

2− j , (6.28)

and

∑

b∈Bi+1

rkb ≤ c5cBχ
∑

b∈Bi

r kb ≤ 2−i−1. (6.29)

6.3.4 Measure estimate

By the Covering Lemma, and since Sz = ∅, for each b ∈ Bi and x ∈ Jb we have
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μ

⎛

⎝{s : rs < χrb} ∩ Bχrb (x)\
⎛

⎝
⋃

s∈Sx

Brs (s) ∪
⋃

b′∈Bx

[

Brb′ (b
′) ∩ {s : rs < rb′ }]

⎞

⎠

⎞

⎠

≤ cδαrkb . (6.30)

Therefore, using our inductive hypothesis, bounds (6.14), (6.19), and ensuring
δ(k, ρX , χ) is sufficiently small, we obtain:

μ(B1(0)\Fi+1) ≤
i
∑

j=0

2− j +
∑

b∈Bi

μ(Brb (b) ∩ {s : rs < rb}\Fi+1) (6.31)

≤
i
∑

j=0

2− j +
∑

b∈Bi

(cδα + 1/10)rkb

+
∑

b∈Bi

∑

x∈Jb

μ(Bχrb (x) ∩ {s : rs < χrb}\Fi+1) (6.32)

≤
i
∑

j=0

2− j + 2−i/5 +
∑

b∈Bi

∑

x∈Jb

cδαrkx (6.33)

≤
i
∑

j=0

2− j + 2−i/5 + c(k, χ)δαχ2−i (6.34)

≤
i+1
∑

j=0

2− j . (6.35)

6.3.5 Finally

Take S′ = ∪iSi , and set

Z =
⋂

i

⋃

b∈Bi

[

B2rb (b) ∩ {s ∈ S : rs < rb}
]

. (6.36)

Then by the inclusions C) we have

μ

(

B1(0)\
(
⋃

s′∈S′
Brs′ (s

′) ∪ Z

))

≤
∞
∑

j=0

2− j . (6.37)

But since Z ∩ S+ = ∅ we have μ(Z) = 0.
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7 Proof of covering Lemma 6.1

We build by induction on i a sequence of k-dimensional Lipschitz manifolds Ti ,
Lipschitz mappings σi : X → X , and almost-coverings of S by “good,” “bad,” and
“original” balls, written as Gi , Bi , Si . We also define a sequence of “remainder sets”
Ri , and “excess sets” Ei . It will hold that Si ⊂ S, and Gi ∪ Bi ⊂ S\(Ri ∪ Ei ).

As opposed to the construction carried out in Sect. 6.3.2, where at every inductive
step bad balls were covered in a finer and finer way, here we will stop our construction
at the bad and original balls, and continue refining the construction inside good balls.

As the measure μ and dimension k will be fixed, for ease of notation in this section
we will write β in place of βk

μ. We shall prove that, for some fixed � = �(k, χ), our
manifolds and coverings admit the following properties for every i :

(1) T0 = p(0, 1) + V (0, 1).
(2) Graphicality of Ti : for any y ∈ Ti , there is a k-dimensional affine plane p + V

(depending on y), so that for any choice of almost-projection πV to V , we have

Ti ∩ B2ri (y) = graph�,πV
( f ) , (2ri )

−1|| f || + Lip( f ) ≤ �δ ,

B1.5ri (y) ∩ (p + V ) ⊂ � ⊂ (p + V ). (7.1)

Moreover, if there exists some g ∈ Gi ∩ B10ri (y), then we can take p + V =
p(g, ri ) + V (g, ri ).

(3) Each map τi = σi ◦ · · · ◦ σ1 : p(0, 1) + V (0, 1) → Ti is a (1 + c(k, ρX , χ)δα)-
bi-Lipschitz equivalence:

∣
∣
∣
∣

||τi (x) − τi (y)||
||x − y|| − 1

∣
∣
∣
∣
≤ c(k, ρX , χ)δα ∀x, y ∈ p(0, 1) + V (0, 1). (7.2)

(4) Ball control: The balls {Brs/5(s)}s∈Si ∪ {Brb/5(b)}b∈Bi ∪ {Bri /5(g)}g∈Gi are all
pairwise-disjoint. Moreover if x ∈ Bi ∪ Si , then d(x, Ti ) ≤ rx/20. Similarly, if
g ∈ G j for 1 ≤ j ≤ i , then d(g, Ti ) ≤ r j/20.

(5) Radius control: If b ∈ Bi and s ∈ S∩ Brb (b)\(Ei ∪ Ri ), then rs < rb. Similarly,
if g ∈ Gi and s ∈ S ∩ Bri (g)\(Ei ∪ Ri ), then rs < ri .

(6) Packing control: we have

∑

s∈Si⊂S
rks +
∑

b∈Bi

r kb +
∑

g∈Gi

rki ≤ c5(k). (7.3)

(7) Covering control: we have

μ

⎡

⎣B1(0)\
⎛

⎝
⋃

g∈Gi

[

Bri (g) ∩ {s ∈ S : rs < ri }
] ∪
⋃

s∈Si⊂S
Brs (s) ∪

⋃

b∈Bi

[

Brb (b) ∩ {s ∈ S : rs < rb}
]

⎞

⎠

⎤

⎦

≤ c(k, χ)δα . (7.4)
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An important consequence of Gi ⊂ S\(Ei ∪ Ri ), item (5) “radius control,” and
lemma 3.2 (and our assumption (6.6)), is that: whenever y ∈ B20ri (Gi ), and r ≥ ri ,
then

β(y, r) ≤ c(k)δ, and
ˆ ∞

r
β(y, s)α

ds

s
≤ c(k)δα. (7.5)

7.1 Sketch of the proof

To aid the reader in navigating the proof and construction of the Covering Lemma,
we give a rough and imprecise outline of how the manifolds Ti+1 and new covering
at scale ri+1 are inductively built. The detailed proof is carried out in Sect. 7.

The basic idea is that we want to refine the covering at scale i only on the set of
good balls Gi , since only in these balls do we have tilting control. We leave the scale
i bad and original balls Bi and Si untouched.

Given a good ball Bri (g), we let p(g, ri ) + V (g, ri ) be one of its approximate
best subspace according to Definition 3.35, i.e., a k-dimensional subspace almost
minimizing the integral

´
Bri (g)

d(x, p + V )2dμ. We define the sets

Ẽi+1 =
⋃

g∈Gi

Bri (g)\Bri+1/30(p(g, ri ) + V (g, ri )) , (7.6)

which are set of points that are scale-invariantly far from the approximating planes of
the good balls. Given the bounds on β given by (6.6), we can infer that the measure of
these points is small, see (7.67) for precise estimates. We do not refine our covering
in the Ẽi+1 . Neither do we refine our covering over the set of bad and original balls
Bi and Si , which for convenience we denote by

Ri =
⋃

b∈Bi

Brb (b) ∪
⋃

s∈Si

Brs (s) . (7.7)

Thus we focus on the set
⎛

⎝
⋃

g∈Gi

Bri (g) ∩ Bri+1/30(p(g, ri ) + V (g, ri ))

⎞

⎠ \Ri . (7.8)

We cover this set by a Vitali collection of balls of radius roughly ri+1, so that the balls
with the same centers and 1/5 of the radius are disjoint (see Sect. 7.2 for the precise
construction). We classify these balls into three types: original balls {Brs (s)}s∈S̃i+1

,
bad balls {Brb (b)}b∈B̃i+1

and good balls {Brg (g)}g∈G̃i+1
, and set

Si+1 = Si ∪ S̃i+1 , Bi+1 = Bi ∪ B̃i+1 , Gi+1 = G̃i+1. (7.9)

In other words, we forget about the old good balls, while original and bad balls are
cumulative in i . Original balls are a subset of the original covering, and good and bad
balls are chosen according to Definition 3.39.
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In this construction, some care is needed to ensure first, we don’t refine inside
original balls (item (5) “radius control” of our inductive hypothesis); and second, the
balls

{Brs/5(s)}s∈Si+1 ∪ {Brb/5(b)}b∈Bi+1 ∪ {Bri+1/5(g)}g∈Gi+1 (7.10)

are pairwise-disjoint.
Now we define the map σi+1 and in turn the manifold Ti+1 = σi+1(Ti ) using the

constructions and estimates of Sect. 4.
In particular, the map σi+1 is going to be an interpolation of projection maps πg

onto the approximating planes of Bri+1(g) with g ∈ Gi+1. These maps are glued
together with a partition of unity subordinate to {Bri+1(g)}g∈Gi+1 . We do not consider
the planes associated to bad and original balls.

Since all {Bri+1(g)}g∈Gi+1 are good balls, we can apply Lemma 3.40 to obtain tilting
control over the best planes p(g, ri+1) + V (g, ri+1) with g ∈ Gi+1. Plugging these
estimates into the Squash Lemma 4.1, we obtain that σi+1 is a bi-Lipschitz equivalence
between Ti and σi+1(Ti ) = Ti+1.

By analyzing these estimates carefully, we prove also that the map τi = σi ◦σi−1 ◦
· · ·◦σ1 : T0 → Ti+1 has uniform bi-Lipschitz estimates, thus the limitmap τ = limi τi
is still a bi-Lipschitz equivalence and T = τ(T0) is a Lipschitz manifold with uniform
volume bounds.

The importance of the manifold Ti+1 is that it provides a link among all the balls
in the covering, in the sense that all the disjoint balls in (7.10) have quantitatively
nonempty intersection with Ti+1 (see item (4) in the construction for a more precise
statement). This allows us to turn the uniform volume estimates into packing estimates
for the covering.

As i → ∞, the covering we constructed
⋃

s∈Si

Brs (s) ∪
⋃

b∈Bi

Brb (b) ∪
⋃

g∈Gi

Bri (g) (7.11)

will have three pieces in the limit: the set ∪iSi of all original balls, the set ∪iBi of all
bad balls, and the set ∩iGi of limits of good balls. These pieces become S′+, B, and
S′
z (respectively) in (6.7). The last part consists of the points where the refinement of

the construction never stops. Since this piece is contained in Bri (Ti ) for all i , its limit
is contained in the manifold T = τ(T0) (and thus it is rectifiable).

7.2 Construction

Recall that we write ri = χ i . By scaling we can assume r = 1 and p = 0. We
can also assume B1(0) is a good ball with respect to μ, as otherwise simply take
G = S′+ = ∅ and B = {0}. Thus we start our inductive process by defining G0 = {0},
and S0 = B0 = ∅ (so, no bad/original balls at scale r = 1), E0 = ∅, T0 = V (0, 1)
and R0 = ∅.

Suppose we have defined good/bad/original balls down to scale ri . Let us detail the
i + 1 stage of the construction. Let
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Ẽi+1 =
⋃

g∈Gi

Bri (g)\Bri+1/30(p(g, ri ) + V (g, ri )) (7.12)

be the “excess set,” and define for convenience the cumulative excess set by Ei+1 =
Ei ∪ Ẽi+1.

We define S̃i+1 by the following three conditions: first,

S̃i+1 ⊂
⎧

⎨

⎩
s ∈ S ∩

⋃

g∈Gi

[

B1.5ri (g) ∩ Bri+1/30(p(g, ri )

+V (g, ri ))] \Ri and ri+1 ≤ rs < ri

⎫

⎬

⎭
; (7.13)

second, we ask that the balls {Brs (s)}s∈S̃i+1
cover the set

⋃

⎧

⎨

⎩
Brs/5(s) : s ∈ S ∩

⋃

g∈Gi

[

B1.5ri (g) ∩ Bri+1/30(p(g, ri )

+V (g, ri ))] \Ri and ri+1 ≤ rs < ri

⎫

⎬

⎭
; (7.14)

and third, we require that the balls {Brs/5(s)}s∈S̃i+1
be disjoint. One can construct S̃i+1

by taking an appropriate Vitali cover.
In order to define Gi+1 and Bi+1, let Ji+1 be a maximal 2ri+1/5-net in

⎛

⎝S ∩ B1(0) ∩
⋃

g∈Gi

[

Brg (g) ∩ Bri+1/30(p(g, ri ) + V (g, ri ))
]

⎞

⎠ \
⎛

⎝Ri ∪
⋃

s∈S̃i+1

Brs (s)

⎞

⎠ .

(7.15)

It is easy to see that

S ∩ B1(0)\(Ei+1 ∪ Ri ) ⊂
⋃

s∈S̃i+1

Brs (s) ∪
⋃

x∈Ji+1

Brx (x) , (7.16)

and the balls {Brx/5(x)}x∈Ji+1 are disjoint.
We split Ji+1 into G̃i+1 and B̃i+1 depending on whether Brx (x) is good or bad

with respect to μ and χ according to Definition 3.39. We set also

Ri+1 = Ri ∪
⋃

s∈S̃i+1

Brs (s) ∪
⋃

b∈B̃i+1

Bri+1(b) , (7.17)
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and

Si+1 = Si ∪ S̃i+1, Gi+1 = G̃i+1, Bi+1 = Bi ∪ B̃i+1 . (7.18)

Notice again that while the sets Si+1,Bi+1, Ri+1 are “cumulative” in i , the set Gi+1
is not. Moreover, it is easy to see that

B1(0) ⊂ Ei ∪ Ri ∪
⋃

g∈Gi+1

Bri+1(g). (7.19)

We define σi+1 as follows. Let {φg}g∈Gi+1 be the truncated partition of unity
subordinate to {Bri+1(g)}g∈Gi+1 , as per Lemma 3.1. For a given g ∈ Gi+1, let
pg + Vg = p(g, ri+1) + V (g, ri+1) be the L2-approximate plane for Bri+1(g) of
Definition 3.35.
Let also πg : X → Vg ≡ V (g, ri+1) be a choice of almost-projection. If X is a Hilbert
space, take πg to be the orthogonal projection; if X is uniformly smooth, and k = 1,
take πg to be the J -projection.

We now set

σi+1(x) = x −
∑

g∈Gi+1

φi (g)π
⊥
g (x − pg) , (7.20)

and let Ti+1 = σi+1(Ti ).
This completes the inductive construction. In the following subsections we prove

the inductive properties asserted in 1)-7). On can easily check that all properties hold
triviallywhen i = 0, and therefore in the rest of this sectionwe can assumeby inductive
hypothesis that properties 1)-7) hold for all scales between r0 and ri .

7.3 Item 2: Graphicality

Fix y ∈ Ti+1. If y /∈ B10ri+1(Gi+1), then by construction σi+1 is the identity on
B2ri+1(y), and item 2 follows by induction. We can assume that y ∈ B10ri+1(g) for
some g ∈ Gi+1. In the following c denotes a generic constant depending only on
(k, χ), and which is independent of �, and we shall assume δ0(k, χ,�) is small
enough so that c(1 + �)δ0 ≤ ε1 (the constant from the squash Lemma 4.1).

First suppose i = 0, so that so that Ti ≡ T0 = p(0, 1) + V (0, 1) ≡ p0 + V0. By
the tilting Lemma 3.41, and by construction, we have for any g̃ ∈ G1 ∩ B9r1(g) the
estimates

d(g̃, p0 + V0) < r1/10, r−1
1 d(pg̃, p0 + V0) + dG(V (g̃, r1), V0)

≤ c(k, χ)β(0, 5) ≤ cδ , (7.21)

where p0 +V0 = p(0, 1)+V (0, 1) is an approximating subspace on B1 (0). Set πg̃ to
be a projection onto p(g̃, r1) + V (g̃, r1), and observe that if x ∈ B6r1(y), then σ1(x)
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takes the form

σ1(x) = x −
∑

g̃∈G1∩B9r1 (y)

φg̃πg̃(x − pg̃). (7.22)

In light of (7.21) and (7.22), σ1|B6r1 (y) satisfies the hypotheses of the squash lemma
at scale B2r1(y). Since T0 ≡ p0+V0, we can apply the squash lemma part B) to deduce

T1 ∩ B4r1(y) = graph�,π ′( f ) , r−1
i || f || + Lip( f ) ≤ c(k, χ)β(0, 5) ,

B3r1(y) ∩ (p0 + V0) ⊂ �. (7.23)

Finally, using estimates (7.21) we apply the regraphing Lemma 4.2 to (7.23) at scale
B2r1(y) to deduce item 2 when i = 0. Let us mention also that the squash lemma part
A) gives the bound

||σ1(x) − x || ≤ c(k, χ)δr1 ∀x ∈ T0. (7.24)

Now suppose i ≥ 1. By construction there is a g′ ∈ Gi so that g ∈ Bri (g
′), and a

g′′ ∈ Gi−1 so that g′ ∈ Bri−1(g
′′). Let us fix almost-projections π , π ′, and π ′′ to Vg ,

Vg′ , and Vg′′ respectively.
We have by induction d(g′, Ti−1) ≤ ri/30 + �δri−1 ≤ ri−1/10, and by construc-

tion B3ri (g
′) ⊂ B1.1ri−1(g

′′), and therefore we can write

Ti−1 ∩ B3ri (g
′) = graph�,π ′′( f ) , r−1

i || f || + Lip( f ) ≤ c�δ ,

B2.5ri (g
′) ∩ (pg′′ + Vg′′) ⊂ � . (7.25)

From tilting Lemma 3.41 and construction we have for any g̃ ∈ B6ri (g
′) ∩ Gi the

estimates:

d(g̃, pg′′ + Vg′′) ≤ ri/30 + cβ(g′′, 3ri−1)ri < ri/10 , (7.26)

and

r−1
i d(pg̃, pg′′ + Vg′′) + dG(V (g̃, ri ), Vg′′) ≤ cβ(g′′, 3ri−1) ≤ cδ . (7.27)

And similarly, for any g̃ ∈ B9ri+1(y) ∩ Gi+1:

d(g̃, pg′′ + Vg′′) < ri+1/10 , r−1
i+1d(pg̃, pg′′ + Vg′′) + dG(V (g̃, ri+1), Vg′′)

≤ cβ(g′′, 3ri−1) ≤ cδ. (7.28)

We now observe that for x ∈ B3ri (g
′) we have
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σi (x) = x −
∑

g̃∈Gi∩B6ri (g
′)
φg̃π

⊥
g̃ (x − pg̃) and

∑

g̃∈Gi∩B6ri (g
′)
φg̃ ≡ 1 on B2.5ri (g

′).

(7.29)

Therefore, by estimates (7.26) and (7.27), σi |B3ri (g) satisfies the hypothesis of the
squash Lemma 4.1 at scale Bri (g). We are justified in applying the squash lemma
parts B), C) to deduce

Ti ∩ B2ri (g
′) = graph�,π ′′( f ) , r−1

i || f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1) ,

B1.5ri (g
′) ∩ (pg′′ + Vg′′) ⊂ �, (7.30)

with c independent of �.
Since B6ri+1(y) ⊂ B1.1ri (g

′) we can use (7.30) to write

Ti ∩ B6ri+1(y) = graph�,π ′′( f ), r−1
i+1|| f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1),

B5ri+1(y) ∩ (pg′′ + Vg′′) ⊂ �. (7.31)

As above, by construction for x ∈ B6ri+1(y), the map σi+1 takes the form

σi+1(x) = x −
∑

g̃∈Gi+1∩B9ri+1 (y)

φg̃πg̃(x − pg̃) , (7.32)

though notice we do not anymore have equality
∑

g̃ φg̃ = 1 in the partition of unity.
By estimates (7.28) we can apply the squash lemma part B) at scale B2ri+1(y) to obtain

Ti+1 ∩ B4ri+1(y) = graph�,π ′′( f ), r−1
i+1|| f || + Lip( f ) ≤ c(k, χ)β(g′′, 3ri−1),

B3ri+1(y) ∩ (pg′′ + Vg′′) ⊂ �. (7.33)

Finally, again from estimates (7.28) we can apply the regraphing Lemma 4.2 at scale
B2ri+1(y) to prove item 2.

Let us observe further that, by applying the squash lemma part A) to (7.30) at scale
B2ri+1(y) we can obtain the estimate

||σi+1(x) − x || ≤ c(k, χ)δri+1 ∀x ∈ Ti . (7.34)

7.4 Item 3: bi-Lipschitz estimates

The bi-Lipschitz estimates are the core of the covering lemma, and they basically
follow from the corresponding estimates in the squash lemma. First, let us remark that
from the uniform estimate (7.34), we immediately obtain

||τ�(y) − τ j (y)|| ≤ c(k, χ)δr j ∀0 ≤ j < � ≤ i + 1, ∀y ∈ p(0, 1) + V (0, 1).

(7.35)
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Fix any x, y ∈ B3(0) ∩ (p(0, 1) + V (0, 1)). Note that wlog we can suppose x ∈
B3(0) since every σ j is the identity outside B3(0).

Choose a maximal, non-negative m ≤ i + 1 so that 6r j > ||τ j (x) − τ j (y)||
for all j ≤ m, and τ j (x) ∈ B10r j+1(G j+1) for all j ≤ m − 1. Notice that when
τm(x) ∈ B10rm+1(Gm+1), then since necessarily ||τm+1(x) − τm+1(y)|| ≥ 6rm+1, we
have for δ(k, χ) sufficiently small that

||τm(x) − τm(y)|| ≥ 6rm+1 − cδrm+1 ≥ χrm . (7.36)

If no such non-negative m exists, take m = 0, and then (7.36) trivially holds.
We claim that for each j ≤ m − 1, we have

∣
∣
∣
∣

||τ j+1(x) − τ j+1(y)||
||τ j (x) − τ j (y)|| − 1

∣
∣
∣
∣
≤ c(k, ρX , χ)β(τ j (x), 5r j−1)

α. (7.37)

It will then follow, by (7.5) and for δ(k, ρX , χ) sufficiently small, that for any j ≤ m
we have the bounds

||τ j (x) − τ j (y)|| ≤
j
∏

�=1

(1 + cβ(τ j (x), 10r�−1)
α)||x − y||

≤ exp

(

c
ˆ 10

r j

β(τ j (x), r)
α dr

r

)

||x − y||, and (7.38)

||τ j (x) − τ j (y)|| ≥
j
∏

�=1

(1 − cβ(τ j (x), 10r�−1)
α)||x − y||

≥ exp

(

−c
ˆ 10

r j

β(τ j (x), r)
α dr

r

)

||x − y||, (7.39)

for c = c(k, ρX , χ) independent of j and m.
We shall see that claim (7.37) is a direct consequence of the graphical estimates

from Sect. 7.3, and the squash Lemma 4.1. Take j ≤ m − 1. Like in the proof of item
2, we can find a g′′ ∈ G j−1 with τ j (x) ∈ B1.1r j−1(g

′′), and

Tj ∩ B6r j (τ j (x)) = graph�,πV
( f ) , r−1

j || f || + Lip( f ) ≤ c(k, χ)β(g′′, 3r j−1) ,

B2.5r j (τ j (x)) ∩ (pg′′ + Vg′′) ⊂ �, (7.40)

for some choice of almost-projection π ′′ to Vg′′ (if j = 0, then (7.40) vacuously holds
with g′′ = 0). Using estimates (7.28) and relation (7.32) (respectively (7.21), (7.22)
when j = 0), σ |B6r j+1 (τ j (x)) satisfies the hypotheses of the squash Lemma 4.1 at scale
B2r j+1(τ j (y)). Therefore, since τ j (y) ∈ B6r j+1(τ j (x)) by definition of m, we can
apply the squash Lemma 4.1 part D) if X is uniformly smooth, or part A) for general
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X , in order to deduce

∣
∣
∣
∣

||σ j+1(τ j (x)) − σ j+1(τ j (y))||
||τ j (x) − τ j (y)|| − 1

∣
∣
∣
∣
≤ cβ(g′′, 3r j−1)

α

≤ c(k, χ)β(τ j (x), 5r j−1)
α. (7.41)

This proves (7.37).
We now prove the following estimate: for any j ≥ m, we have

∣
∣
∣
∣

||τ j (x) − τ j (y)||
||τm(x) − τm(y)|| − 1

∣
∣
∣
∣
≤ c(k, ρX , χ)δα , (7.42)

with c independent of j ,m, as before. This clearly completes the bi-Lipschitz estimates.
First, we notice that if τm(x) /∈ B10rm+1(Gm+1), then σ j is the identity on τm(x),

τm(y) for all j ≥ m + 1, and hence there is nothing to show. We henceforth assume
that (7.36) holds.

For α = 1 (i.e., if X is a generic Banach space), the estimate is straightforward.
Indeed, using (7.35) and (7.36) we get:

∣
∣
∣||τ j (x) − τ j (y)|| − ||τm(x) − τm(y)||

∣
∣
∣ ≤ ||τ j (x) − τm(x)|| + ||τ j (y) − τm(y)||

(7.43)

≤ cδrm (7.44)

≤ c(k, χ)δ||τm(x) − τm(y)||. (7.45)

For α > 1 we proceed as follows. Let us fix pm +Vm and πm a choice of plane and
almost-projection so that, as per (7.40), we have

Tm ∩ B6rm (τm(x)) = graph�,πm
( f ) , r−1

m || f || + Lip( f ) ≤ c(k, χ)δ ,

(pm + Vm) ∩ B2.5rm (τm(x)) ⊂ �. (7.46)

We first prove the auxiliary estimate

Lemma 7.1 For any z ∈ B6rm (τm(x)) ∩ Tm, and j > m, we have

||πm(τ j (z) − z)|| ≤ c(k, ρX , χ)δαrm . (7.47)

Proof If α = 1 then this follows trivially from (7.34). Let us assume α > 1. We can
assume wlog that τt (z) ∈ B5rt+1(Gt+1) for all t ≤ j .

For each t withm < t ≤ j , choose a plane pt +Vt , and almost-projection πt to Vt ,
so that Tt ∩ B2rt (τt (z)) is graphical over pt + Vt as per item (2). Moreover, we can
choose Vt = V (gt , rt ) for some gt ∈ Gt ∩ B2rt (τt (z)).

From the squash lemma part D) we have

||πt (σt (τt−1(z)) − τt−1(z))|| ≤ c(k, ρX , χ)δαrt , (7.48)
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and by the tilting Lemma 3.41 and Lemma 3.32, we have

||πt − πt−1|| ≤ c(k, ρX , χ)δα−1. (7.49)

Now for each such t we compute

||πm(τt (z) − τt−1(z))|| ≤ ||πt (σt (τt−1(z)) − τt−1(z))||

+
(

t
∑

�=m+1

||πt − πt−1||
)

||σt (τt−1(z)) − τt−1(z)||

(7.50)

≤ cδαrt + ctδαrt , (7.51)

and therefore

j
∑

t=m+1

||πm(τt (z) − τt−1(z))|| ≤
j
∑

t=m+1

cδαtrt ≤ c(k, ρX , χ)δαrm . (7.52)

This proves (7.47). ��
We proceed to prove (7.42). We use Lemma 7.1 to bound

∣
∣||πm(τ j (x) − τ j (y))|| − ||πm(τm(x) − τm(y))||∣∣

≤ ||πm(τ j (x) − τm(x)|| + ||πm(τ j (y) − τm(y))|| (7.53)

≤ cδαrm (7.54)

≤ cδα||τm(x) − τm(y)||, (7.55)

and Proposition 3.34 and (7.36) to bound

∣
∣||πm(τm(x) − τm(y))|| − ||τm(x) − τm(y)||∣∣ ≤ cδα||τm(x) − τm(y)||. (7.56)

These together imply

∣
∣
∣||πm(τ j (x) − τ j (y))||2 − ||τm(x) − τm(y)||2

∣
∣
∣

≤ c(k, ρX , χ)δα||τm(x) − τm(y)||2. (7.57)

By (7.35) and our choice of m, we have the coarse bound

||τ j (x) − τ j (y)|| ≤ 10rm (7.58)

for small δ(k, χ). Therefore, by the Pythagorean theorem 3.33, we obtain

∣
∣
∣||τ j (x) − τ j (y)||2 − ||πm(τ j (x) − τ j (y))||2

∣
∣
∣
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≤ c(k, ρX , χ)||π⊥
m (τ j (x) − τ j (y))||αr2−α

m . (7.59)

Finally, using (7.46), and estimates (7.36), (7.34), we have

||π⊥
m (τ j (x) − τ j (y))||αr2−α

m ≤ (||τ j (x) − τm(x)|| + ||τ j (x) − τm(x)||
+||π⊥(τm(x) − τm(y))||

)α

r2−α
m (7.60)

≤ c(k, χ)δαr2m (7.61)

≤ c(k, χ)δα||τm(x) − τm(y)||2 , (7.62)

which completes the proof of 7.42, and thus the proof of item 3.

7.5 Item 4: Ball control

It is clear that {Brs/5(s)}s∈S̃i+1
∪ {Bri+1/5(x)}x∈Ji+1 are pairwise-disjoint, since for

each such s we have rs ≥ ri+1. Now take some x ∈ S̃i+1 ∪ Ji+1 and y ∈ Si ∪ Bi .
By construction we have (S̃i+1 ∪Ji+1) ∩ Bry (y) = ∅, and ry ≥ ri , and rx < ri . It is
then immediate that Brx/5(x) ∩ Bry/5(y) = ∅.

Let us prove the second assertion. Given x ∈ B̃ j ∪ S̃ j ∪ G j , for j ≥ 1, then
by construction and item 2 “graphicality” there exists an x ′(x) ∈ Ti−1 so that
∥
∥x ′(x) − x

∥
∥ ≤ r j/30 + c(k, ρX , χ)δr j−1. The uniform estimates (7.34) on the σi

imply that x ′′ = σi+1◦σi ◦· · ·◦σ j (x ′) ∈ Ti+1 satisfies
∥
∥x ′′(x) − x

∥
∥ ≤ r j/30+cδr j−1.

Therefore, for δ(k, ρX , χ) sufficiently small we obtain d(x, Ti+1) ≤ r j/20 ≤ rx/20.

7.6 Item 5: Radius control

Since Ri ∪ Ei ⊂ Ri+1 ∪ Ei+1, by our inductive hypothesis it suffices to prove “radius
control” when rb = ri+1. Suppose s ∈ S ∩ Brb (b) and rs ≥ rb ≡ ri+1. If rs ≥ ri ,
then by induction s ∈ Ei ∪ Ri and we are done. Otherwise, ri+1 ≤ rs < ri , and we
can without loss of generality assume s /∈ Ei+1.

By construction, b ∈ Brg (g) for some g ∈ Gi−1, and therefore s ∈ Brb (b) ⊂
B1.5rg (g). Therefore by definition (7.14) and our assumptions on s, we must have
s ∈⋃s′∈Si+1

Brs′ (s
′) ⊂ Ri+1.

This establishes item (5), since the proof for good balls is verbatim.

7.7 Item 6: Packing control

For the packing control, we are going to use the bi-Lipschitz estimates on themanifolds
Tj and the disjointness properties of balls in our construction. In particular, we know
that Ti+1 is (1+ c(k, ρX , χ)δα) bi-Lipschitz to V (0, 1). Moreover, since we have the
uniform estimates (7.34), we also know that Ti+1 ∩ B1 (0) is bi-Lipschitz to a subset
of V (0, 1) ∩ B2 (0).

For all s ∈ Si+1, let s′(s) ∈ Ti+1 be a point satisfying
∥
∥s′(s) − s

∥
∥ ≤ rs/20, and

in a similar way b′(b) ∈ Ti+1 satisfies
∥
∥b′ − b

∥
∥ ≤ rb/20, and g′(g) ∈ Ti+1 satisfies
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∥
∥g′ − g

∥
∥ ≤ ri+1/20. By construction, all the balls in the collection

{

Brs/7
(

s′(s)
)}

s∈Si+1
∪ {Brb/7

(

b′(b)
)}

b∈Bi+1
∪ {Bri+1/7

(

g′(g)
)}

g∈Gi+1
(7.63)

are pairwise disjoint.
Using the map τ−1

i+1 and its bi-Lipschitz estimates, we obtain that all the balls in the
collection

{

Brs/10
(

τ−1
i+1(s

′(s))
)}

s∈Si
∪
{

Brb/10
(

τ−1
i+1(b

′(b))
)}

b∈Bi

∪
{

Bri+1/10

(

τ−1
i+1(g

′(g))
)}

g∈Gi
(7.64)

are pairwise disjoint inside the k-dimensional affine ball T0 ∩ B3(0), and now the
desired packing control is a corollary of Lemma 3.8.

7.8 Item 7: Covering control

It is clear from item “radius control” that

B1(0) ∩ S ⊂ Ei ∪ Ri ∪
⋃

g∈Gi

[

Bri (g) ∩ {s : rs < ri }
]

. (7.65)

To prove item “covering control” it will therefore suffice to establish

μ(Ei ) ≤ c(k, χ)δα. (7.66)

First of all, note that by definition (1.1) of β, we get that for all j ≥ 0:

μ
(

Ẽ j+1

)

≤ c(k, χ)rkj

∑

g∈G j

β(g, r j )
2. (7.67)

We want to control the RHS with an integral by the Hk Hausdorff measure on
Ti+1. For each fixed 0 ≤ j ≤ i , using item 4 “ball control” we know the balls
{Br j /5(g)}g∈G j are pairwise disjoint, and for each g ∈ G j we have a g′(g) ∈ Ti+1

with
∥
∥g′(g) − g

∥
∥ ≤ r j/20. Therefore, the collection

{

Bri /7
(

g′(g)
)}

g∈G j
are pairwise

disjoint also.
Since Ti+1 is (1+ cδα)-bi-Lipschitz to a k-dimensional plane, and by Lemma 3.9,

we have that for all g ∈ G j

c(k)−1rkj ≤ Hk (Br j /7
(

g′(g)
) ∩ Ti+1

) ≤ c(k)rkj . (7.68)

Moreover, by (3.14), we know that for all y ∈ Bri /7
(

g′(g)
) ⊂ Bri /5 (g)

β(g, r j ) ≤ c(k)β(y, 2r j ). (7.69)
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Summing up all of these estimates, we get that

μ
(

Ẽ j+1

)

≤ c(k, χ)

ˆ

⋃

g∈G j
Br j /7(g

′(g))∩Ti+1

β(y, 2r j )
2dHk(y)

≤ c(k, χ)

ˆ

B2r j (G j )∩Ti+1

β(y, 2r j )
2dHk(y). (7.70)

Take a y ∈ B2(0), and let m be the maximal integer ≤ i for which y ∈ B2rm (Gm).
Since B2r0(G0) = B2(0), m ≥ 0. Then from (7.5) and our assumption (6.6) we have

i
∑

j=0

1B2r j (G j )(y)β(y, 2r j )
2 ≤ c(k, χ)

ˆ ∞

rm

β(y, s)2
ds

s

≤ c(k, χ)

ˆ ∞

rm

β(y, s)α
ds

s
≤ c(k, χ)δα. (7.71)

We can use (7.71) to sum contributions to Ei+1 over scales, and end up with

μ (Ei+1) ≤
i
∑

j=0

μ
(

Ẽ j+1

)

≤ c(k, χ)

ˆ

Ti+1∩B2(0)

⎛

⎝

i
∑

j=0

1B2r j (G j )(y)β(y, 2r j )
2

⎞

⎠ dHk(y) (7.72)

≤ c(k, χ)δαHk(Ti+1 ∩ B2 (0)). (7.73)

Using that Ti+1 is (1 + cδα)-bi-Lipschitz to V (0, 1), and Lemma 3.9, we conclude
(7.66). This establishes item “covering control.”

7.9 Finishing the proof of Lemma 6.1

The proof of the lemma is now just a corollary of the inductive covering. We can
define

S′+ =
∞
⋃

i=0

Si , B =
∞
⋃

i=0

Bi , τ = lim
i

τi , (7.74)

where the last limit exists as the τi are uniformlyCauchy (by e.g. (7.35)).Weobtain that
τ is a bi-Lipschitz map with the desired estimates because the bi-Lipschitz estimates
in item (3) are independent of i , and packing control of (6.9) follows directly from
the estimate (7.3) of item (6). The bad ball structure is simply the definition of a bad
ball in 3.39.
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We just need to establish the measure bound (6.7). By “ball control” (item (4)), we
know that for all i ,

⋃

g∈Gi

[

Bri (g) ∩ {s ∈ S : rs < ri }
] ⊆ B2ri (Ti ) ∩ {s ∈ S : rs < ri }. (7.75)

Therefore, by “covering control” (item (7)), we get for every i :

μ

⎡

⎣B1(0)\
⎛

⎝
[

B2ri (Ti ) ∩ {s ∈ S : rs < ri }
] ∪
⋃

s∈Si⊂S
Brs (s)∪

⋃

b∈Bi⊂B

[

Brb (b) ∩ {s ∈ S : rs < rb}
]

⎞

⎠

⎤

⎦ ≤ c(k, χ)δα . (7.76)

Since this estimate is independent of i , and

∞
⋂

i=0

B2ri (Ti ) ⊂ τ(B3(0) ∩ [p(0, 1) + V (0, 1)]) ,

∞
⋂

i=0

{s ∈ S : rs < ri } = Sz ,

(7.77)

we get the desired result.

8 Corollaries

In this section we complete the proofs of the various corollaries of the Main Theo-
rem 2.1.

We start with Corollary 2.3. Here we basically choose the radius function rs for the
covering S+ in a clever way and apply the Main Theorem.

Proof of Corollary 2.3 Fix an r ∈ (0, 1). For case A) define Sr = {s : rs ≥ r} and
μr = μ�Sr . We claim that μr is finite. From the definition of βk

μ we have a k-plane
p + V k so that

μr (B1(0)\Br/20(p + V )) ≤ c(r , k)M . (8.1)

On the other hand, using the definition of Sr we have by Lemma 3.8 that

μr (B1(0) ∩ Br/20(p + V )) ≤
∑

{rks : s ∈ Sr and d(s, p + V ) < rs/10} ≤ c(k).

(8.2)

So μr is finite, and thus Borel regular (see for example [30, theorem II, 1.2, pag
27]). This and the monotonicity of βμ in μ imply that we can find a Borel set U so
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that

ˆ 2

0
βk

μr̄
(x, r)α

dr

r
≤ Mα/2 ∀x ∈ U , (8.3)

and μr̄ (B1(0)\U ) ≤ 
.
By monotonicity of β, μr�U and Sr satisfy the requirements of Theorem 2.1.

Therefore we have some S′
r so that

μr (B1(0)) ≤ b
∑

s′∈S′
r

r ks′ + c(k, ρX )M + 
 ≤ c(k, ρX )(M + b) + 
. (8.4)

Since ∪r>0Sr covers μ-a.e., the required bound follows taking r → 0.
Similarly, in case B) define

S = {x : �k∗(μ, x) ≤ b} , (8.5)

and set rs ∈ (0, 1) to be any choice of radius for which μ(B5rs (s)) ≤ 20kbrks . Take
p + V , Sr , and μr as in part A). By assumption, we have ∪rSr covers μ-a.e.

We must demonstrate μr is finite. Let {Brs (s)}S̃r
be a Vitali cover of {Brs (s) : s ∈

Sr ∩ B1(0)∩ Br/20(p+V )}. Then, using the definition of rs and Lemma 3.8, we have

μr (B1(0) ∩ Br/20(p + V )) ≤
∑

s∈S̃r

μ(B5rs (s)) ≤
∑

s∈S̃r

20kbrks ≤ c(k)b. (8.6)

By the same argument as in (8.1) we have μr (B1(0)) < ∞, and thus Borel-regular.
So, as in part A), we can find a set U with (8.3) and μr̄ (B1(0)\U ) ≤ 
.

Soμr�U and Sr satisfy the requirements of Theorem 2.1, by an analogous compu-
tation to (8.4) we deduce the required bound for μr . Since this bound is independent
of r̄ and μr ↗ μ, we obtain the claim.

We prove case C). Fix p + V as above, and now in this case define

μr = μ�(B1(0)\Br (p + V )) ≤ bHk�(S\Br (p + V )). (8.7)

From (8.1) each μr is finite, and hence Borel-regular. A standard argument (see e.g.
chapter 1 in [36]) shows that if

A = {x : �∗,k(μr , x) > t}, (8.8)

then tHk(A) ≤ μr (A). Therefore we must have the density bounds

�∗,k(μr , x) ≤ b for μr -a.e. x , (8.9)

Using part B), then taking r → 0, we deduce

μ(B1(0)\(p + V )) ≤ c(k, ρX )(b + M). (8.10)
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Since fromLemma3.9we haveμ(B1(0)∩(p+V )) ≤ bHk(B1(0)∩(p+V )) ≤ c(k)b,
we conclude the desired estimate (2.5). ��

8.1 Rectifiability

Nowwe are ready to prove Theorem 2.6 about rectifiability criteria for the measureμ.
This proof follows from the Covering Lemma and some considerations. First of all,
fix any Br (x) ⊂ B1 (0). We can consider the trivial covering S = Sz = Br (x) for
this ball, and the Covering Lemma 6.1 tells us that if we define (6.7):

F =
(

Sz ∩ τ(B3(0
k))
)

∪
⋃

b∈B

[

Brb (b) ∩ {s ∈ S : rs < rb}
]

, (8.11)

this set covers most all of Br (x) up to a set of small μ measure.
The point now is to make sure that a fixed portion of the measure μ in B1 (0) will

be covered by the first part of the covering, i.e., by the set τ(B3(0k)), which is clearly
rectifiable. In other words, we need to make sure that the “bad balls” Brb (b) and the
set not covered by F do not carry much portion of the measure. This is the main part
of this proof, and it requires lower density bounds to ensure that we can pick balls
Br (x) that have enough measure μ. Once this is done a standard inductive procedure
can be used to cover a set of full measure with countably many Lipschitz images.

This is the only place where the lower bound on the upper density �∗,k(μ, x) > 0
plays a role. Notice that this assumption is necessary to ensure rectifiability, and in fact
it’s easy to see that positivity of the lower density �k∗(μ, x) > 0 is necessary (even
for other definitions of rectifiable, seee e.g. [5, Lemma 2.7]).

The following example is instructive. Consider the n-dimensional Lebesgue mea-
sure λn in Rn . For k < n, this measure clearly satisfies

ˆ 2

0
βk

λn (x, r)
2 dr

r
< ∞ , �k∗(λn, x) < ∞ (8.12)

for all x ∈ R
n . Indeed for all x , �k∗(λn, x) = �∗,k(λn, x) = �k(λn, x) = 0, but

clearly λn is not k-rectifiable.

Proof of Theorem 2.6 The argument is very similar to the ones in [13, section 10]. For
the reader’s convenience we sketch the argument here.

First, we prove our theorem under the stronger assumptions that μ is finite and

ˆ 2

0
βk

μ(x, r)α
dr

r
≤ Mα/2 , �k∗(μ, x) ≤ b, �∗,k(μ, x) ≥ a , (8.13)

with a, b, M positive and finite. We will turn to the general case afterwards.
Applying Corollary 2.3 at every scale we deduce

μ(Br (x)) ≤ c(k, ρX )(M + b)rk =: 
rk ∀x and ∀r < 1. (8.14)
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Note this implies μ � Hk .
By Lemma 3.3, given any δ > 0, then for μ-a.e. x there is a scale Rx so that

μ

(

z ∈ Br (x) :
ˆ ∞

0
βk

μ�Br (x)(z, s)
α ds

s
> δ

)

≤ δrk ∀0 < r < Rx . (8.15)

Let us take any such x and r < Rx , and by the above we can find a Borel set
A ⊂ Br (x) so that

ˆ ∞

0
βk

μ�A(z, s)α
ds

s
< δ, μ(Br (x)\A) ≤ δrk . (8.16)

Ensuring δ ≤ δ0(k, ρX , χ), we can apply the Covering Lemma 6.1 toμ�A, with cover
Sz = A, S+ = ∅, to obtain a Lipschitz mapping τ : B3 → X and a family of bad
balls B, so that

μ

[

A\
(

τ(B3) ∪
⋃

b∈B
Brb (b)

)]

≤ c(k, χ, ρX )δ , and
∑

b∈B
rkb ≤ c(k). (8.17)

For each bad ball Brb (b), we can follow the argument from Sect. 6.3.2, and use
upper bound (8.14), to obtain

μ(Brb (b)) ≤ (c(k, ρX , χ)δ2 + 1/10 + cB(k)χ
)rkb . (8.18)

Choose χ = min(1/100, 1/
), then taking δ(k, ρX , χ) sufficiently small, we can
combine (8.17) with (8.18) and our definition of A to obtain

μ(Br (x)\τ(B3)) ≤ c6(k)r
k , (8.19)

for some constant c6(k) which is independent of M , b, a.
In particular, by scaling μ and correspondingly readjusting χ , δ, we can assume

a ≥ 10c6. Then a straightforward argument using the above conclusions shows that,
for any closed set C , we can find finitely many Lipschitz mappings τ1, . . . , τN :
B3(0) ⊂ R

k → X , so that

μ(B1(0)\(C ∪ τ1(B3) ∪ · · · ∪ τN (B3))) ≤ 1

2
μ(B1(0)\C). (8.20)

Rectifiability for μ satisfying (8.13) now follows directly.
In order to conclude the proof, we show that the assumptions that μ is finite and

(8.13) holds instead of (2.7) are not restrictive.
First, we show that we can assume wlog that μ is finite, and thus also Borel-regular

since X is a metric space. Indeed, let x ∈ B1 (0) be such that

βk
μ(x, 2)α < ∞ , (8.21)
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and consider a k-dimensional affine plane p + V with

ˆ

B2(x)
d(y, p + V )α =

ˆ

B1(0)
d(y, p + V )α < ∞. (8.22)

Then automatically for all r̄ > 0 the measure μ restricted to the open set Or̄ =
Br̄ (p + V )

C
has finite mass. Moreover, by monotonicity of β in μ and since Or̄ is

open, μ�Or̄ satisfies all the assumptions of (2.7) and it is finite.
Note also that the measure μ�(p + V ) is rectifiable. Indeed, let

Ai =
{

�k∗(μ, x) < i
}

∩ (p + V ) ∩ B1 (0) , μi = μ�(p + V ) ∩ Ai . (8.23)

We claim that μi (Br (x)) ≤ cirk for all x, r , and thus μ�(p + V ) = limi μi �
Hk�(p + V ). In order to show that μi (Br (x)) ≤ cirk , let Br j

(

x j
)

be a covering of
Br (x) ∩ Ai with x j ∈ Ai , μi

(

Br j
(

x j
)) ≤ 2ωkirkj and Br j /5

(

x j
)

pairwise disjoint.

Since x j ∈ (p + V ) ∩ B1 (0),
∑

j (r j/5)
k ≤ c, and so μi (Br (x)) ≤ cirk as wanted.

Thus we can write

μ = μ�(p + V ) + lim
i→∞ μ�Oi−1 , (8.24)

and so if the finite measureμ�Or̄ is rectifiable for all r̄ > 0, we obtain that the original
μ is countably rectifiable also.

As for the stronger hypothesis (8.13), we have the following. Given a finite μ, for
any integer i , define

Ui =
{

x ∈ B1(0) :
ˆ 2

0
βk

μ(x, r)α
dr

r
≤ i, �k∗(μ, x) ≤ i, �∗,k(μ, x) ≥ i−1

}

.

(8.25)

By assumption, ∪iUi covers μ-a.e. x . Moreover, μ�Ui obviously satisfies

ˆ 2

0
βk

μ�Ui
(x, r)α

dr

r
≤ i, �k∗(μ�Ui , x) ≤ i . (8.26)

We claim that �∗,k(μ�Ui , x) ≥ 10−ki−1 for μ-a.e. x ∈ Ui . Given this claim and the
previous bounds (8.26), our initial proof will show that eachμ�Ui is k-rectifiable, and
hence μ is k-rectifiable also.

Let us prove our claim. The proof is standard, but we include it for the reader’s
convenience. When k = 0 the claim is trivial. Otherwise, set

A = {x ∈ Ui : �∗,k(μ�Ui , x) < 10−ki−1}. (8.27)

Suppose, towards a contradiction, that μ(A) > 0. Since μ is finite Borel-regular,
we can choose an open V ⊃ A so that μ(V ) ≤ (11/10)μ(A). For μ-a.e. x ∈ A, pick
a radius rx so that:
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Brx (x) ⊂ V ,
μ(Brx (x) ∩ A)

ωkrkx
≤ 10−ki−1,

μ(Brx/5(x))

ωk(rx/5)k
≥ (9/10)i−1. (8.28)

Let {Brxi (xi )}i be a Vitali cover of {Brx (x)}x∈A, so that the rxi /5-balls are disjoint.
This collection is countable, since each ball has a positive amount of measure. Then
we have the contradiction

μ(A)≤
∑

i

10−ki−1ωkr
k
xi≤2−k(10/9)

∑

i

μ(Brxi /5(xi ))≤2−k(10/9)μ(V ) < μ(A) .

(8.29)

Therefore we must have μ(A) = 0.
This completes the proof of our claim, and in turn the proof of Theorem 2.6. ��
Now we turn our attention to Corollary 2.7, which is just a special case of the

previous Theorem 2.6.

Proof of Corollary 2.7 Take r > 0. By our assumption there is an affine k-plane p+ V
so that

Hk(S\Br (p + V )) < ∞. (8.30)

Define

Sr =
{

x ∈ B1(0) : d(x, p + V ) ≥ r and
ˆ ∞

0
βk

μ(x, r)
dr

r
≤ 1/r

}

. (8.31)

Then Hk�Sr is finite, and hence we have density bounds

2−k ≤ �∗,k(Hk�Sr , x) ≤ 1 for Hk-a.e. x ∈ Sr . (8.32)

By construction and monotonicity of β, Hk�Sr satisfies the requirements of Theo-
rem 2.6, and so we deduce Sr is k-rectifiable.

From our hypotheses ∪r Sr = S\(p+V ) up to a set ofHk-measure 0. Since p+V
is trivially k-rectifiable, we finish the proof taking r → 0. ��

8.2 Proof of Proposition 2.8

Nowwe turn to Proposition 2.8, which is a corollary of the proof of the main Theorem.
Actually, the construction is much simplified in this case.

Remark 8.1 Before we sketch the proof of this result, it is worth noticing that up to
making sure that the constants involved in the estimates are independent of the ambient
dimension n, and up to using the notion of almost projections/canonical projections on
Banach spaces and the relative estimates studied in Sect. 3, the proof of this theorem
is very similar to the proof of [39, main theorem], [11]. In the language of our proofs,
the Reifenberg flat condition allows us to completely skip the good balls - bad balls
construction andmakes the inductive covering of Lemma 6.1 technically less involved.
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For this entire section, let us fix S to be a (k, δ)-Reifenberg flat set having 0 ∈ S, as
per Theorem 2.8. The proof is essentially standard. For ease of notation, in this section
we shall write β∞ in place of βk

S,∞.
Let us review some basic properties of the β∞. First, we trivially have β∞(x, r) ≤ δ

for any x ∈ S, by the Reifenberg-flat assumption. Second, if Br (x) ⊂ BR(y), then
β∞(x, r) ≤ (R/r)β∞(y, R). In particular, we have

β∞(x, r) ≤ c(k)
ˆ 2r

r
βk∞(x, s)

ds

s
. (8.33)

Definition 8.2 Given x ∈ S, let us define V∞(x, r) to be any k-plane for which

S ∩ Br (x) ⊂ B2β∞(x,r)r (x + V∞(x, r)) . (8.34)

Similar to how the L2-β-numbers control tilting betweennearbygoodballs, the L∞-
β-numbers control tilting between nearby Reifenberg-flat balls. The proof is identical,
except we use the Reifenberg-flat condition to obtain points in S in general position,
and require no lower mass bounds.

Lemma 8.3 Let x, x ′, y ∈ S, and suppose Br (x) ∪ Br ′(x ′) ⊂ BR/2(y), and BR(y) ⊂
B2(0). Then we have

dH ((x + V∞(x, r)) ∩ BR(y), (x ′ + V∞(x ′, r ′)) ∩ BR(y))

≤ c(k, r/R, r ′/R)β∞(y, R)R , (8.35)

and

dG(V∞(x, r), V∞(x ′, r ′)) ≤ c(k, r/R, r ′/R)β∞(y, R). (8.36)

Similarly, we have

dH ((x + V∞(x, r)) ∩ BR(y), S ∩ BR(y)) ≤ c(k, r/R)δR. (8.37)

Remark 8.4 Although phrased differently, a similar lemma is present in the proof of
[39, lemma 3.1].

Proof Provided δ(k) is sufficiently small, the Reifenberg-flat condition and stability
Lemma 3.11 imply we can find points x0 = x and x1, . . . , xk ∈ S ∩ B9r/10(x) so that
the vectors {xi − x0}ki=1 lie in r/2-general position.

For each i = 0, . . . , k we have

d(xi , (x + V∞(x, r))) ≤ β∞(xi , r)r , and d(xi , (y + V∞(y, R))) ≤ β∞(y, R)R.

(8.38)

Therefore, ensuring δ(k) is sufficiently small, we can use the stability Lemma 3.11
to find zi ∈ (x + V∞(x, r)) ∩ Br (x) such that ||xi − zi || ≤ 2δr , and the vectors
{zi − z0}ki=1 lie in r/4-general position. Lemma 3.5 implies that
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Effective Reifenberg theorems in Hilbert… 1213

d(z, y + V∞(y, R)) ≤ c(k, r/R)β∞(y, R)R ∀z ∈ (x + V∞(x, r)) ∩ BR(y).

(8.39)

Now use Lemma 3.14, and repeat the argument with Br ′(x ′), and the desired estimates
(8.35), (8.36) follow from the triangle inequality.

Let us prove (8.37). Fix a k-planeW so thatdH ((y+W )∩BR(y), S∩BR(y)) < 2δR.
We have by our choice of zi that

d(zi , y + W ) ≤ 4δR i = 0, . . . , k. (8.40)

Therefore, as above, lemmas 3.5 and 3.14 imply that

dH ((x + V∞(x, r)) ∩ BR(y), (y + W ) ∩ BR(y)) ≤ c(k, r/R)δR , (8.41)

and (8.37) follows by the triangle inequality. ��

8.2.1 Construction

Webuild themap τ as a limit ofmaps τi , constructed in a very similarmanner to Sect. 7.
The proof that each τi has the required bi-Hölder/bi-Lipschitz bounds is essentially
verbatim to items 2 and 3 in Sect. 7.

We shall inductively define a sequence of mappings τi : V (0, 1) → X , and mani-
folds Ti = τi (V (0, 1)), which admit the following properties:

(1) T0 = V (0, 1).
(2) Graphicality of Ti : for any y ∈ Ti , there is an k-dimensional affine plane p + V

(depending on y), so that for any choice of almost-projection πV to V , we have

Ti ∩ B2ri (y) = graph�,πV
( f ), (2ri )

−1|| f || + Lip( f ) ≤ �δ,

B1.5ri (y) ∩ (p + V ) ⊂ � ⊂ (p + V ), (8.42)

where � = �(k). Moreover, if there exists some g ∈ Gi ∩ B10ri (y), then we can
take p + V = p(g, ri ) + V (g, ri ).

(3) Each map τi : V (0, 1) → Ti is a (1 + c(k, χ)δ)-bi-Hölder equivalence.
(4) Given summability condition (2.12), then in fact each τi is a bi-Lipschitz equiv-

alence, with bound

e−c(k,ρX )Qα ||x − y|| ≤ ||τi (x) − τi (y)|| ≤ ec(k,ρX )Qα ||x − y||. (8.43)

(5) Covering control: We have dH (S ∩ B1+ri /2, Ti ∩ B1+ri /2) ≤ ri .

Given items (1))–(5)), the Reifenberg Theorem 2.8 will follows directly.
Let us detail the construction of the τi and Ti . Recall that ri = χ i , where here we

shall fix χ = 1/100.
For each i define Gi to be a maximal 2ri/5-net in S ∩ B1(0), so that the balls

{Bri (g)}g∈Gi cover S∩ B1(0), and the balls {Bri /5(g)}g∈Gi are disjoint. Given g ∈ Gi ,
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let Vg = V∞(g, ri ), and πg be a choice of almost-projection to Vg . Let {φg}g∈Gi be
the truncated partition of unity subordinate to {Bri (g)}g∈Gi , as per Lemma 3.1.

We now define

σi = x −
∑

g∈Gi

φg(x)πg(x − g) , (8.44)

and set τi = σi ◦ · · · ◦ σ1, and Ti = τi (T0) ≡ τi (V∞(0, 1)).
This completes the construction of the τi and Ti . In the following subsections we

prove by induction the properties 2)-5). We can assume by inductive hypotheses that
items 2)-5) hold for scales r0, . . . , ri .

8.2.2 Item 2: Graphicality

The proof is the same as Sect. 7.3, except we use the β∞ instead of β, and tilting
Lemma 8.3 in place of Lemma 3.41. Let us sketch the proof. In this section c denotes
a constant depending on k, but independent of �, and we assume δ(k) is sufficiently
small so that c(1 + �)δ < ε1(k).

Fix y ∈ Ti , and we can assume y ∈ B10ri+1(g) for some g ∈ Gi+1, since otherwise
σi+1 is the identity on B2ri+1(y). If i = 0, then we have for any g̃ ∈ G1 ∩ B9r1(y) the
estimates

d(g̃, V∞(0, 1)) ≤ 5β∞(0, 5) , dG(V∞(g̃, r1), V∞(0, 1)) ≤ c(k)β∞(0, 5).

(8.45)

Since T0 ≡ V∞(0, 1), we can apply the squash lemma at scale B2r1(y), then the
regraphing lemma at scale Br1(y), to deduce item (2).

Suppose i ≥ 1. By construction there is a g′ ∈ Gi so that g ∈ Bri (g
′), and a

g′′ ∈ Gi−1 so that g′ ∈ Bri−1(g
′′). Let us fix almost-projection π ′′ to Vg′′ .

By tilting Lemma 8.3 and by construction, we have for any g̃ ∈ B6ri (g) the esti-
mates

d(g̃, g′′ + Vg′′) ≤ cβ∞(g′′, 3ri−1)ri , dG(V∞(g̃, ri ), Vg′′) ≤ cβ∞(g′′, 3ri−1),

(8.46)

and similarly, for any g̃ ∈ Gi+1 ∩ B9ri+1(y),

d(g̃, g′′ + Vg′′) ≤ cβ∞(g′′, 3ri−1)ri+1 , dG(V∞(g̃, ri+1), Vg′′) ≤ cβ∞(g′′, 3ri−1).

(8.47)

We can then use our inductive hypothesis, the structure of σi , and the squash lemma
part C) at scale Bri (g

′), to obtain

Ti ∩ B2ri (g
′) = graph�,π ′′( f ) , r−1

i || f || + Lip( f ) ≤ cβ∞(g′′, 3ri−1) ,

B1.5ri (g) ∩ (g′′ + Vg′′) ⊂ �, (8.48)
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where c is independent of �. Since B6ri+1(y) ⊂ B1.1ri (g
′), we can now use the

squash lemma part B) at scale B2ri+1(y), then the regraphing lemma at scale Bri+1(y),
to deduce item (2).

As before, we can apply the squash lemma part A) to obtain the estimate

||σi+1(x) − x || ≤ c(k)δri+1 ∀x ∈ Ti . (8.49)

Moreover, part A) also gives the estimate

||(σi+1(x) − σi+1(y)) − (x − y)|| ≤ c(k)δ||x − y|| ∀x, y ∈ Ti . (8.50)

We explain. When ||x − y|| < 2ri , then we can use (8.48) and the squash lemma to
obtain (8.50). Otherwise, when ||x − y|| ≥ 2ri , then we can use (8.49) to get

||(σi+1(x) − σi+1(y)) − (x − y)|| ≤ 2cδri+1 ≤ c(k)δ||x − y||. (8.51)

8.2.3 Item 3: bi-Hölder estimates

Let us fix an x, y ∈ B3 ∩ V∞(0, 1). Set m be the maximal integer so that ||τi (x) −
τi (y)|| ≤ 6ri for all i ≤ m. We have by estimate (8.50) the bound

||τm(x) − τm(y)|| ≥ (1 − c(k)δ)m ||x − y|| , (8.52)

and so, provided 1 − c(k)δ ≥ 1/2, we have m ≤ a(10 log(6) − log(||x − y||)) for
some absolute constant a.

Therefore, using (8.50), we have for any i ≤ m the bounds

||τi (x) − τi (y)|| ≤ (1 + cδ)m ||x − y|| ≤ (1 + c(k)δ)||x − y||1−a log(1+c(k)δ), and
(8.53)

||τi (x) − τi (y)|| ≥ (1 − cδ)m ||x − y|| ≥ (1 − c(k)δ)||x − y||1−a log(1−c(k)δ).

(8.54)

As in Sect. 7.4, we can use (8.49) deduce for any i ≥ m the bound

∣
∣
∣||τi (x) − τi (y)|| − ||τm(x) − τm(y)||

∣
∣
∣ ≤ c(k)δrm ≤ c(k)δ||τm(x) − τm(y)||.

(8.55)

Combining this with (8.53), (8.54), and ensuring δ(k, γ ) is sufficiently small, we
obtain the required bi-Hölder estimate.

8.2.4 Item 4: bi-Lipschitz estimates

Let us assume the summability condition (2.12). The proof is identical to Sect. 7.4.
Fix x, y ∈ B3 ∩ V∞(0, 1), and choose m maximal so that ||τi (x) − τi (y)|| ≤ 6ri for
all i ≤ m. Using (8.48) and the squash Lemma 4.1 part D), we obtain
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∣
∣
∣
∣

||τi+1(x) − τi+1(y)||
||τi (x) − τi (y)|| − 1

∣
∣
∣
∣
≤ c(k, ρX )β∞(τi (x), 5ri−1)

α ∀i ≤ m − 1. (8.56)

By the same computation as (7.38), (7.39), we deduce, ensuring δ(k, ρX ) is sufficiently
small,

e−c(k,ρX )Qα ||x − y|| ≤ ||τi (x) − τi (y)|| ≤ ec(k,ρX )Qα ||x − y|| ∀i ≤ m. (8.57)

On the other hand, again by the same argument as in Sect. 7.4, we have

∣
∣
∣||τi (x) − τi (y)|| − ||τm(x) − τm(y)||

∣
∣
∣

≤ c(k, ρX )δα||τm(x) − τm(y)|| ∀i ≥ m. (8.58)

Since we can clearly assume δ ≤ Q, this establishes the required bi-Lipschitz bound.

8.2.5 Item 5: covering control

By inductive hypothesis we have

dH (Ti ∩ B1+ri /2, S ∩ B1+ri /2) < ri , (8.59)

and therefore by item “graphicality” and estimate (8.37), we have

dH (Ti ∩ B1+ri /2, S ∩ B1+ri /2) ≤ c(k)δri . (8.60)

We elaborate. Given any y ∈ Ti ∩ B1+ri /2, by (8.59) and construction we can find
a g ∈ Gi ∩ B6ri /5(y). Graphicality and estimate (8.37) imply that

d(y, S) ≤ d(y, g + Vg) + dH ((g + Vg) ∩ B5ri (y), S ∩ B5ri (y))

≤ �δri + c(k)δri . (8.61)

Conversely, given z ∈ S∩ B1+ri /2, we can pick a g ∈ Gi ∩ Bri (z) and y ∈ Ti ∩ Bri (z).
Then using graphicality an the definition of β∞ we obtain

d(z, Ti ) ≤ d(z, g + Vg) + dH ((g + Vg) ∩ B2ri (y), Ti ∩ B2ri (y))

≤ 2δri + �δri . (8.62)

This establishes (8.60).
Now using the C0 estimate (8.49) with (8.60) we deduce

dH (Ti+1 ∩ B1+ri+1/2, S ∩ B1+ri+1/2) ≤ c(k)δri < ri+1 , (8.63)

provided δ(k) is sufficiently small. This proves item (5).
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