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Abstract—Controlling the multiway power flow in a multi-
active-bridge (MAB) converter is important for achieving high
performance and sophisticated functions. Traditional feedfor-
ward methods for MAB converter control rely on precise lumped
circuit models. This paper presents a machine learning (ML)
method for feedforward power flow control of a MAB converter
without a precise circuit model. A feedforward neural network
(FNN) was developed to capture the non-linear characteristics
and predict the phases needed to achieve the targeted power flow.
The neural network was trained with a large amount of data,
collected with a set of known phase angles. This trained network
was used to predict the phases to achieve the targeted power
flow. A 6-port MAB converter was built and tested to validate
the methodology and demonstrate the “machine-learning-in-
the-loop” implementation. Transfer learning was proven to be
effective in reducing the size of the training data needed to
obtain an accurate ML model. ML-based feedforward power flow
control can achieve comparable accuracy as traditional model-
based methods, and can function without a precise lumped circuit
element model of the MAB converter.

Index Terms—multi-active-bridge converter, power flow con-
trol, machine learning, artificial intelligence, neural network,
transfer learning, machine-learning-in-the-loop

I. INTRODUCTION

MULTI-Active-Bridge (MAB) converters connect many

sources and loads through a single power conversion

stage and manage the multiway power flow. MAB converters

are attractive in many applications including multiport energy

routers, battery balancers, and differential power processing

(DPP) systems in data centers and photovoltaic applications

[1]–[6]. Fig. 1 illustrates the operation principles of a MAB

converter with many dc-ac units coupled to a single magnetic

core. The power flow is controlled by the phase-shift modu-

lation. Each port is connected to a dc source or a load with a

constant voltage. In a MAB converter, the ports with leading

phases inject power into the multi-winding transformer, and
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Fig. 1. An example MAB converter with power flow controlled by phase
shifts. Leveraging microprocessors with specialized ML accelerators, the
phase angles of a MAB converter can be predicted by a neural network.
The training of the neural network is offline trained and online inferred.

vice versa for the ports with lagging phases [7], [8]. The ad-

vantages of MAB converters include: 1) low power conversion

stress; 2) low component count; 3) fast dynamic response;

4) high system efficiency; and 5) high power density. Many

control strategies have been developed for MAB converters

[9]–[11].

One way to determine the required phase shifts for the de-

sired power flow in a MAB converter is to derive an equivalent

circuit model and find numerical solutions as presented in [12],

[13]. However, the equations connecting phase shifts to power

flow are usually non-linear and may require iterative algo-

rithms to solve, such as the Newton-Raphson (NR) method,

the Quasi-Newton (QN) method, and the Stochastic Gradient

Descent (SGD) [14], [15]. Iterative algorithms need parameter

initialization, and may not converge. Equation-based con-

trol cannot capture non-idealities and non-linearities such as

parasitic capacitances/inductances and equivalent resistances,

leading to inaccurate results. Moreover, there is no closed-

form equation to derive the power flow in MAB converters

operating with piecewise-sinusoidal currents.

The focus of this paper is feedforward power flow control
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(a)

(b)

Fig. 2. (a) Star and (b) Delta equivalent circuit model of an N -port MAB
converter. The element values in this model may be non-linear or non-ideal.

of multi-active-bridge converters. Similar to the feedforward

power flow control models in dual-active-bridge (DAB) con-

verters [7], [8], we develop a neural network model to estimate

the phase needed to achieve a target power flow in a multi-

active-bridge converter (MAB). The recent advances in ML

and artificial intelligence (AI) offer new opportunities in build-

ing models and developing control algorithms for sophisticated

systems without precise physical models. Artificial neural net-

works (ANN) have been proven effective in capturing complex

non-linear relationships among clearly defined inputs and out-

puts, and have been explored in power electronics applications

[16], including the modeling of semiconductor devices [17],

motors and drives [18], converter design [19], [20], magnetics

[21]–[24], and grid impedances [25]. Many edge computing

controller platforms, such as STM NanoEdgeAIStudio, TI

Edge AI, and Arduino Nano, have embedded ML accelerators.

This paper applies ML methods to control the power flow

in a MAB converter. A Neural Network (NN) model replaces

the traditional numerical solver and serves as the feed-forward

path of a complete feedback control loop. It takes the targeted

power flow as the input and predicts the phase angles that

can produce the targeted power flow. Transfer learning is used

to pretrain a model with theoretical data and optimize the

pretrained neural network with a small experimental dataset.

A 6-port MAB converter was built and tested to verify the
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Fig. 3. Operating principles of a MAB converter in trapezoidal, quasi-resonant
and resonant modes with phase shift control. If the blocking capacitor is large,
the MAB converter operates with trapezoidal branch current. If the blocking
capacitor is small, the MAB converter current is piecewise-sinusoidal.

theory, prove the concept, and to demonstrate the hardware

implementation of the ML-based power flow control. Experi-

mental results show that the ML-based power flow control can

achieve comparable accuracy as traditional NR methods when

precise lumped circuit models are known, and can capture the

non-linearites and non-idealities that cannot be captured by

traditional model-based methods.

Feedforward control allows the system to rapidly transition

from one steady-state to another steady-state, and is critical

for MAB converters operating as energy routers [11]. The

main contribution of this paper is a systematic approach

to implementing feedforward power flow control of MAB

converters with ML. We demonstrate the unique strengths

of ML as compared to traditional model-based feedforward

control, and present an end-to-end ML solution with hardware

implementation, including (1) automatic data acquisition; (2)

neural network control architecture design; (3) hardware im-

plementation of machine learning; and (4) transfer learning for

data size reduction. The concepts and methodologies explored

in this paper can be widely applied to other sophisticated

control problems in power electronics. The proposed ML

framework can be extended to include more advanced ML

methods, such as deep learning, reinforcement learning, and

physics-informed ML [26].

II. TRADITIONAL POWER FLOW MODELS AND CONTROL

METHODS FOR MAB CONVERTERS

Fig. 2 shows the (a) Star and (b) Delta equivalent circuit

models of a MAB converter. Each branch of the MAB

converter is modeled as a voltage source (Vi) connected in

series with a capacitor (Ci) and a linking inductor (Li). There

is a magnetizing inductance Lm in each branch. The power

flow between ports is determined by the linking inductance
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and the series capacitance. In specific cases, the Star model is

interchangeable with the Delta model as presented in [12].

The voltage and current waveforms at a port, with phase-

shift modulation, are illustrated in Fig. 3. If the impedance of

the series capacitance (Ci) is negligible, the system operates

with piecewise-linear current waveform. If the impedance of

the series capacitance is comparable to the impedance of the

linking inductance (Li), the system operates with piecewise-

sinusoidal current waveform. The power flow can be calculated

based on the lumped circuit model and the corresponding

phase shift, but there is no explicit equation to solve for the

phase shift based on the required power flow.

Both feedforward and feedback loops are needed to achieve

the desired power flow in a MAB converter. The feedforward

control can quickly predict control variables based on a

theoretical circuit model, while the feedback control can com-

pensate for non-idealities due to disturbances or manufacturing

variations of components. A traditional feedforward control

uses iterative algorithms to calculate the phase shift from the

required power flow. The feedback control presented in [4]

used PI controllers. Feedforward and feedback control loops

can be applied together to precisely regulate the power flow for

large-signal modulation and small-signal stability. The focus

of this paper is to develop a feedforward control strategy for

MAB converters using ML.

A. Trapezoidal Operation of MAB Converters

If the capacitance values are large enough such that only

the linking inductances impact the power flow, the MAB con-

verter operates with trapezoidal current. In a Delta model, the

inductance Lij can be calculated from the linking inductance

(L1 to Ln) in a Star model following [27]:

Lij =
(
Li + LTHi

)[
Lj

(
1

Lm
+

n∑
k �=i,j

1

Lk

)
+ 1

]
, (1)

where the Thevenin-equivalent inductance seen by port i is:

LTHi =

(
1

Lm
+

n∑
k �=i

1

Lk

)−1

. (2)

As a result, the total power fed into the passive network

from the ith port is a function of φij , Vi, and Vj :

Pi =
n∑

j=1

ViVj

2πfsNiNjLij
φij

(
1− |φij |

π

)
. (3)

The power fed into the ith port is determined by the phase

angle and voltage of all ports. The power between each port

monotonically changes from negative to positive when φij

sweeps from − 1
2π to 1

2π. The non-idealities in the circuit

element values may cause mismatches between the theoretical

analysis and experimental measurements, resulting in inaccu-

rate phase estimations for power flow control.

B. Quasi-Resonant Operation of MAB Converters

If the series L-C tank resonates at the switching frequency

with low impedance, the MAB converter operates with res-

onant current. With the fundamental frequency analysis, the

input of each port can be considered as a sinusoidal voltage

source. In this case, the impedance matrix of the passive

network described as a Star network is:

Z =

⎡
⎢⎢⎢⎣
Z1 + Zm Zm . . . Zm

Zm Z2 + Zm . . . Zm

...
...

. . .
...

Zm Zm . . . Zn + Zm

⎤
⎥⎥⎥⎦ . (4)

where Zi represents the branch impedance of port i and Zm

represents the impedance of the magnetizing inductance Lm.

Zi = j

(
ωLi − 1

ωCi

)
, Zm = jωLm. (5)

The admittance matrix is the inverse of the impedance matrix:

Y = Z−1 =

⎡
⎢⎣
Y11 . . . Y1n

...
. . .

...

Yn1 . . . Ynn

⎤
⎥⎦ , (6)

Yij = Gij +Bij =

⎧⎨
⎩
yi +

∑
k �=i

yik if i = j

− yij if i �= j

(7)

As described in [12], if a MAB converter operates with

resonant current, the active power fed into each port can be

modeled following the methods in power system analysis [28]:

Pi =
8

π2

n∑
k=1

ViVk (Gik cos(φik) +Bik sin(φik)) . (8)

where Vi and Vk are the amplitudes of the square wave voltage

at port i and port k.

For a MAB converter operating with purely sinusoidal

current waveforms, the power between each port also mono-

tonically changes from negative to positive when φij sweeps

from − 1
2π to 1

2π, which is the same as that for an ideal

MAB converter operating in the trapezoidal mode, yet the

nonidealities and non-linearities in the circuit may cause

discrepancies in the power flow analysis. For a MAB converter

operating in the quasi-resonant mode, a piecewise-sinusoidal

current results in sophisticated power flow that cannot be

solved for by explicit equations [12]. Equation-based models

cannot accurately predict the power flow in this case. The

accuracy of equation-based feed-forward power flow control

may rapidly decrease as the switching frequency or the number

of ports increases.

C. Limitation of Traditional Feedforward Power Flow Control

Traditional feedforward power flow control utilizes iterative

algorithms to calculate phases from required power flow

based on Eq. (3) or Eq. (8). However, these equations cannot

capture non-idealities and non-linearities in real circuits. Non-

idealities come from circuit elements that are not incorporated

by lumped circuit models, including parasitic capacitances,
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Fig. 4. Architecture of an example 3-layer feedforward neural network (FNN).
The FNN has an input layer (P ), an output layer (Φ), and a few hidden layers,
each with weight (ω, μ) and bias (b) parameters.

leakage inductances, variable resistances, etc. Non-linearities

come from the non-linear behavior of the circuit elements

depending on the operating conditions. The capacitance value

of a capacitor may change depending on the dc-bias voltage,

and the inductance value of an inductor may change depending

on the dc-bias current. The hysteresis loss of multi-winding

transformer may change depending on frequency, dc bias and

current waveform.

The circuit models for the multiwinding transformer of the

MAB converter may be unknown to designers and may change

significantly during the operation of the circuit. ML-based con-

trol can address these design challenges with unknown circuit

parameters by capturing non-idealities and non-linearities from

measured data. As long as the data used for training the neural

network captures the change of the circuit parameters, the

neural network model will capture the impact of the change in

the circuit parameters. The neural network models developed

in this work will replace the traditional feedforward models

and function together with feedback loops to handle the change

in circuit parameters and operating conditions.

III. NEURAL NETWORK MODELS FOR POWER FLOW

CONTROL OF MAB CONVERTERS

It is challenging to explicitly calculate the phase angles for a

MAB converter required to achieve a target power flow based

on equations. However, the input and output parameters of a

MAB converter control problem are clear. They are similar to

those of typical ML problems [26]. In this paper, the challenge

of power flow control in a MAB converter is considered as

a multi-input multi-output (MIMO) ML problem and solved

using ML tools. The input is a vector of the power flow

through each port, and the output is a vector of the phase

shifts at each port. The phase at each port is modulated by an

ML-based controller to achieve the targeted power flow.

We select Feedforward Neural Network (FNN) as an ex-

ample method to control the MIMO power flow [26]. FNN

is one of the most widely used neural networks with mature

support for hardware deployment. In FNN, the information

always moves in one direction — forward from the input

nodes, through the hidden nodes, to the output nodes. No

cycles or loops exist in the network. Fig. 4 shows an example

architecture of a FNN applied to the MAB power flow control.

The neurons in the input, output and hidden layers of this FNN

are connected by:

Nj = S

(
n∑

i=1

(wi,j · Pi) + b1,j

)
, j = 1, . . . ,m, (9)

Φj =

m∑
i=1

(μi,j ·Ni) + b2,j , j = 1, ..., n− 1. (10)

ωi,j is the weight of the neuron connected to the hidden layer.

b1,j is the bias of the hidden layer neuron Nj . μi,j is the

weight of the neuron connected to the output layer and b2,j is

the bias of the output layer neuron Φj . S in Eq. (9) represents

the sigmoid function, a commonly used activation function that

creates non-linearity for neuron outputs. This FNN structure is

used to capture the relation between the phase vector and the

power vector for a MAB converter. Assuming the phase of Port

#1 is selected as a reference port with 0°, the input layer of the

neural network has n neurons (representing the targeted power

flowing into each port). The output layer of the neural network

has n-1 neurons (representing the desired phase at each port).

One can place multiple hidden layers between the input and

output layers. For a particular MAB converter, the numbers of

input and output neurons are fixed while the numbers of hidden

layers and the numbers of neurons in each layer are adjustable.

Each neuron in the hidden layer or the output layer contains

a bias parameter b. Every two neurons in different layers are

connected by a weight parameter w. In the training stage, the

Adam optimizer [29] in TensorFlow is used to update the

weights and biases based on the Mean Square Error (MSE)

between predicted outputs and ground truth outputs. Weights

and biases are updated after each training iteration to optimize

these parameters and reduce the MSE. The performance of

the FNN typically increases as the number of hidden layers

or the number of neurons in each layer increases, but the size

and complexity of the network will also increase. One should

carefully size the neural network depending on the complexity

of the problem and the number of training data to achieve high

accuracy and avoid over-fittings.

IV. MACHINE LEARNING INFRASTRUCTURE

Machine learning is data engineering. The size and quality

of the datasets determine the applicability and accuracy of the

modeling results. The computational needs in data acquisition

and off-line model training are heavy, while the computational

needs for model deployment and on-line algorithm inference

are light. Here we introduce the hardware and software infras-

tructure needed to perform data acquisition and model training

for our ML-based feedforward power flow control.

A. Hardware Infrastructure

The block diagram of the machine-learning data acquisition

platform is presented in Fig. 5, including dataset collection,

neural network training, ML-based control implementation and

accuracy evaluation. In the training stage, substantial pre-

selected phases are fed into the MAB converter to produce
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system for collecting data, 3) a TensorFlow platform for model training, 4) an Al accelerator for model deployment, and 5) a DSP for power stage control.
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Fig. 6. The prototype 6-port MAB power stage and control circuitry. The 6-
winding transformer was implemented as a planar transformer with windings
embedded in the printed circuit board. The rated power for each port is
36 W in trapezoidal mode and 48 W in sinusoidal mode. The MAB converter
switches at 500 kHz. The MOSFETs used in this prototype are CSD17318Q2T
from Texas Instruments, and the magnetic core is ER64/13/51-3C92 from
Ferroxcube. Each port switches at 12 V.

corresponding power flow. A LabVIEW platform is used

to measure and store the power flow to form phase-power

datasets. Then, the generated datasets are utilized to train the

FNN in the TensorFlow platform [30] and the trained FNN

model is stored in the AI accelerator. In the implementation

stage, when the system requests a specific power flow, the

neural network accelerator infers the FNN model and calcu-

lates the corresponding phases. The calculated phase vector is

sent from the neural network accelerator to a Digital Signal

Processor (DSP), where the actual phase-shifted PWM signals

are produced, in accordance with its phase resolution, and

fed into the 6-port MAB converter. The LabVIEW system

Main Power Board
(4 Layers)

Planar Magnetic Core

Bottom Cover Board
 (2 Layers)

Planar Magnetic Core

Main Power Board (Layer 1 – 4)

Bottom Cover Board (Layer 1 & 2)

(a)

(b)

Fig. 7. (a) Assembly view of the MAB converter prototype with a planar
magnetic core, two stacked PCBs, and related control and auxiliary circuits;
(b) Layout pattern of the six layer PCB winding with a single turn.

measures the voltage and current of each port and records

the resulting power flow. Finally, the generated power flow

is compared with the targeted power to verify the prediction

accuracy of the ML method.

B. MAB Converter Power Stage Design

Fig. 6 shows the hardware prototype designed as the plat-

form for testing the ML-based MAB power flow control.

The system comprises a 6-port MAB power stage, a TI

DSP 28379D microcontroller for generating the phase-shifted

PWM signals, an ATmega 328 AI accelerator integrated in

an Arduino Nano board for inferring the machine learning
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Measured current at each port Measured voltage at each port 

Fig. 8. Graphical user interface of the LabVIEW platform for power measurement. The voltages of all ports are maintained at 12 V, and the current of all
ports are dynamically controlled depending on the needs. The system refreshes the power flow at 10 Hz and record the data for neural network training.

model, and a National Instrument LabVIEW platform for

data acquisition. The AI accelerator contains a neural network

module which is compatible with the TensorFlow platform.

It can store and infer neural networks to predict the control

output. In this paper, the neural network inference (ATmega

328) and the phase-shift modulation (TI DSP 28379D) are

performed separately by two independent processors. One

may implement a control strategy to combine the machine

learning and the PWM modulation in a unified microcontroller

platform, such as the TI C66x series. This paper also focuses

on developing these algorithms and infrastructures for offline

machine learning. Online learning and hybrid online/offline

learning methods can also be applied for such control pur-

poses, however, these methods will require hardware with

greater computational capability.

The 3D assembly view of the 6-winding planar transformer

is shown in Fig. 7. The transformer comprises two ER mag-

netic cores and two stacked printed circuit boards (PCBs).

The 4-layer main power board hosts the PCB windings for

four ports and the 2-layer bottom cover board hosts the PCB

windings for the rest two ports. Each port is connected to

a single turn and all ports are designed to have the same

maximum volt-per-second sharing the same core. The series

inductance (external & leakage) of each port is 140 nH and

the switching frequency is 500 kHz. The phase signals at each

port can be set between − 1
2π and 1

2π, providing monotonic

relationship between phase and power. The phase resolution

is 1.8° with 500 kHz switching frequency, determined by the

100 MHz clock frequency of the PWM module in the DSP.

The predicted phases in experiments are rounded to the nearest

integer multiple of 1.8° in accordance with the hardware

phase resolution. Two hardware configurations are explored to

examine the effectiveness of the ML-based control in different

operating conditions. For the MAB converter operating with

trapezoidal current waveforms, 16 μF dc-blocking capacitors

are used. The rated voltage is 12 V and the rated current

is 3 A at each port. For the MAB converter operating with

piecewise-sinusoidal current waveforms, 1.33 μF dc-blocking

capacitors are used. The rated voltage is 12 V and the rated

current is 4 A at each port. In practice, the load can be a

(P, V ) load in which the load is a voltage source, or a (P,Q)
load in which the load has a known impedance [31], [32].

All examples explored in this paper are (P, V ) loads with

a constant voltage source behavior (such as batteries). This

paper also demonstrates phase-shift modulation for power flow

control with a 50% fixed duty cycle and a 500 kHz fixed

switching frequency. Neural network models for pulse-width

modulation or variable frequency modulation [11], as well as

for interfacing with current source loads can also be developed

in a similar way.

C. Data Acquisition with LabVIEW Platform

We use a LabVIEW system to automatically collect a large

amount of power data. Fig. 8 shows the software interface

of the LabVIEW system. The real-time dc voltage at each

port and the dc current through each port are listed, together

with the total running time of the acquisition process. The

visualized data streams can help to monitor the operating status

of the circuit and cease the data collection process after all

tasks are completed. During the data acquisition process, each
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Algorithm 1 neural network training

Input:
Phase data set from pre-definition Φn;

Power data set from LabVIEW platform Pn;

Output:
Tensorflow Lite model Tnn;

1: Match the order of the phase data Φn with the order of

the power data Pn;

2: Split the phase-power data set (Pn, Φn) into a training set

(Ptrain, Φtrain) and a test set (Ptest, Φtest);

3: Shuffle and Standardize the training set (Ptrain, Φtrain)

and the test set (Ptest, Φtest);

4: Define the neural network (NN) structure in TensorFlow;

5: Select optimizer (Adam), activation function (sigmoid)

and loss function (MSE) for NN training;

6: Set initial learning rate (0.1), learning rate schedule (decay

by 0.7 per 100 epochs) and batch size (64) for NN training;

7: Train the NN with the training set (Ptrain, Φtrain);

8: Test the NN with the test set (Ptest, Φtest);

9: Convert the NN into TensorFlow Lite model Tnn;

10: return Tnn;

Algorithm 2 neural network implementation

Input:
Power demand vector P0;

Neural network in TensorFlow Lite format Tnn;

Output:
Phase-shift vector for the MAB converter Φactual;

1: Standardize the power demand P0;

2: Call the neural network model Tnn;

3: Infer Tnn to predict a phase-shift vector Φ0 from P0;

4: Generate the actual phase shifts Φactual from Φ0 with the

limited phase resolution (1.8°);

5: Feed Φactual into the MAB converter;

6: return Φactual;

state generated by the corresponding phase shifts is applied for

100 ms, providing enough time for the MAB converter to reach

the steady state. The voltage and current values of each state

are extracted to form the power dataset and paired with the

corresponding phase values provided by the microcontroller.

D. FNN Training and Inference

The rapid development of machine learning frameworks

such as PyTorch and Tensorflow, together with numerous

open-source examples available online have greatly acceler-

ated the process of developing neural network models. For

modelling power flow, the feedforward neural network is

trained on the Tensorflow platform and converted to the Ten-

sorflow Lite format which can link the software and hardware

system. The model can then be encoded and downloaded into

a neural network accelerator for phase prediction. When the

AI accelerator receives the power demand, the neural network

module stored in the accelerator is activated and infers the

model to calculate the corresponding phases. Algorithm 1

shows the pseudo code for the network training implemented

in TensorFlow. Offline training is adopted for this control

application since the circuit parameters remain fixed for short

term operation, disregarding component aging and other long

term effects.

E. Implementation of Feedforward Power Flow Control

When a particular power flow is required, either by the

system command or by the requirement from the feedback

loop, the AI accelerator on the ATmega 328 board is activated.

The accelerator sets the required power flow as input and infers

the neural network model to obtain the corresponding phase

shifts. The information of the phase shifts is sent from the

accelerator to the DSP through I2C communication protocol.

The DSP modulates the phase-shifted PWM signals to its

limited phase resolution (1.8° in this design), and generates

the desired power flow. Algorithm 2 shows the pseudo code

for FNN inference in the microcontroller implemented in C.

Since the phase resolution of our controller implementation is

1.8°, a phase prediction error of less than 1.8°is needed for a

majority of the operating points and is our control target.

V. EXPERIMENTAL SETUP

Two experimental setups were selected to demonstrate the

advantages of ML-based control: (1) when the series capac-

itance is large (16 μF), the MAB converter operates in the

trapezoidal mode with trapezoidal current waveforms. This

experiment is used to compare the performance of ML-based

control against the Newton-Raphson method used in power

systems analysis [12], [28]; (2) when the series capacitance

is small (1.33 μF), the MAB converter operates in quasi-

resonant mode with piecewise-sinusoidal current waveforms.

This experiment is used to demonstrate the effectiveness of the

ML-based control method in capturing the non-linear system

characteristics when explicit power flow equations do not exist.

A. Trapezoidal Operation Mode

Fig. 11 shows a pair of example voltage and current

waveforms for port #1 when the MAB converter operates in

trapezoidal mode. The following three datasets were collected

for this mode:

• Dataset I with phase-input power-output: Port #1 is

assumed as the reference port with its phase as 0°. The phases

of ports #2 to #6 are swept through the following 9 steps: [-

21.6°, -16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°, 21.6°]. The

resulting power, ranging from -36 W to 36 W, is recorded

for each port. A total number of 95 = 59, 049 data points

(phase-power pairs) are collected by the LabView system.

• Dataset II with phase-input power-output: Port #1 is

assumed as the reference port with its phase as 0°. The phases

of port #2 to #6 are swept through the following 7 steps

[-21.6°, -14.4°, -7.2°, 0°, 7.2°, 14.4°, 21.6°]. The resulting

power, ranging from -36 W to 36 W, is recorded for each

port. A total of 75 = 16, 807 data points are collected.

• Dataset III with power-input phase-output: 10, 000 tar-

geted power vectors are randomly created for the six ports,

ranging from -36 W to 36 W, as the input of this neural
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Fig. 9. Block diagrams of the data acquisition process. Three types of datasets
are collected for different purposes.

network. Dataset I is used to train a neural network with

power as the input and phase as the output. This neural

network predicts the needed phase vectors to generate the

targeted power flow. The predicted phases are fed into the

hardware system. Finally, the output power are measured in

the experimental setup.

The collected phase and power data sets are combined and

utilized in TensorFlow to train the FNN. The FNN comprises

one input layer, one output layer and one hidden layer. The

input layer has six neurons, representing the power flowing

into six ports. The output layer has five neurons, representing

the phases of five ports (excluding the first port as it is

the phase shift reference). The FNN was encoded in the AI

accelerator to infer the phases based on the targeted power

flow. The predicted phases are converted to actual phases by

the pulse-width-modulation (PWM) module in the TI DSP. The

measured and targeted power flow were compared to validate

the effectiveness of the ML-based power flow control strategy.

Different numbers of neurons were used in the hidden layer

and their performance were compared. The batch size was

128. Each training run had 500 epochs. The initial learning

rate was set as 0.01, decaying by 70% every 100 epochs. The

tests were repeated multiple times with data shuffling.

The following four experiments were performed:

• Experiment A: Training with 85% of Dataset I; Testing
with 15% of Dataset I. The purpose of this experiment is

to evaluate the capability of the NN model in operating under

scenarios similar to those from the training data.

• Experiment B: Training with 100% of Dataset I; Testing
with 100% of Dataset II. The purpose of this experiment is

to evaluate the capability of the NN model in operating under

scenarios different from the training data. Note that Dataset I

and Dataset II are collected with different sets of phase angles.

• Experiment C: Training with 100% of Dataset I; Testing
with 100% of Dataset III. The purpose of this experiment

is to evaluate the capability of a FNN in a real application -

solving for the phases based on the targeted power. Dataset

I is collected with pre-selected phase angles. Dataset III is

collected with calculated phase angles for targeted power.

• Experiment D: Measured Power Flow based on Phases
Predicted by NR-methods. The purpose of this experiment

is to evaluate the effectiveness of the NR-method for MIMO

power flow control with targeted phase and calculated phase

for Experiment A and B, and targeted power and measured
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Fig. 10. Block diagrams of the experimental process. Different experiments
and different datasets are used to verify different hypotheses.

power for Experiment C. With an error target of 10 mW, it

usually takes three iterative steps for the algorithm to converge.

Each iterative step includes a Jacobian matrix inversion [12].

Table I summarizes the experimental results with different

number of neurons in the hidden layers, and compares the

results of the ML method and the NR method. The ML

model’s performance in Experiment A and Experiment B are

evaluated by means of the average absolute phase mismatch

per port between the measured and predicted phases. Even

a small phase mismatch may lead to a significant power

mismatch. The performance of the model in Experiment C

is evaluated based on the average absolute power mismatch

per port between the targeted power and the measured power,

normalized to the maximum power rating of each port as a

percentage value. In the worst case scenario, the power error

can reach ±10%, but they appear for very few data points,

while the error for most of the data points is very low. The

average power mismatch for the Neural network model, as

reported in Table I, is usually below 3%.

B. Quasi-Resonant Operation Mode

Fig. 14 shows the voltage and current waveforms of port

#1 when the MAB converter operates in quasi-resonant mode.

The following three datasets were collected for this mode:

• Dataset I with phase-input power-output: Port #1 is

assumed as the reference port with its phase as 0°. The phases

of ports #2-6 are swept through the following 9 steps: [-21.6°, -

16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°, 21.6°]. The resulting

power, ranging from -48 W to 48 W, is recorded for each port.

A total number of 95 = 59, 049 data points are collected.

• Dataset II with phase-input power-output: Port #1 is

assumed as the reference port with its phase as 0°. The phases

of port #2-6 are swept through the following 7 steps: [-21.6°,

-14.4°, -7.2°, 0°, 7.2°, 14.4°, 21.6°]. The resulting power,

ranging from -48 W to 48 W, is recorded for each port. A

total number of 75 = 16, 807 data points are collected.

• Dataset III with power-input phase-output: 10, 000 tar-

geted power vectors are randomly created for the six ports,

ranging from -48 W to 48 W, as the input of this neural
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TABLE I
MISMATCH BETWEEN PREDICTED AND TARGETED CONTROL VARIABLES WITH MACHINE LEARNING (ML) AND NEWTON-RALPHSON (NR) METHODS

WHEN THE MAB CONVERTER OPERATES WITH TRAPEZOIDAL CURRENT WAVEFORM

Method ML Methods (Experiment A, B, C) NR Method (Experiment D)

Number of Neurons in the Hidden Layer 4 5 10 30 50 N/A

Total Number of Parameters in the Neural Network 53 65 125 365 605 N/A

Experiment A: Avg. Abs. Phase Mismatch [°] 3.295° 0.208° 0.033° 0.006° 0.003° 0.853°

Experiment B: Avg. Abs. Phase Mismatch [°] 4.271° 0.245° 0.032° 0.007° 0.005° 0.884°

Experiment C: Avg. Abs. Power Percentage Mismatch [%] N/A 2.895% 2.254% 2.319% 2.332% 5.230%

Vsw1 2V/div

IL1 2A/div

0.4μs

Fig. 11. Example voltage and current waveforms of port #1 when the MAB
converter operates in the trapezoidal mode with trapezoidal current. The port-
to-port operation is similar to a dual-active-bridge converter.

network. Dataset I was used to train a neural network with

power-input and phase-output. This neural network predicts

the needed phase vectors to generate the targeted power

flow as a part of the control loop. The phases are fed into

the power stage and the power-output vectors are measured.

The following three experiments were performed with these

datasets:

• Experiment A: Training with 85% of Dataset I; Testing
with 15% of Dataset II. The purpose of this experiment is

to evaluate the capability of the NN model in operating under

scenarios similar to the training data.

• Experiment B: Training with 100% of Dataset I; Testing
with 100% of Dataset II. The purpose of this experiment is

to evaluate the capability of the NN model in operating under

scenarios different from the training data. Note that Dataset I

and Dataset II are collected with different sets of pre-selected

phase angles.

• Experiment C: Training with 100% of Dataset I; Testing
with 100% of Dataset III. The purpose of this experiment is

to evaluate the capability of a FNN in performing under real

application scenarios - solving for the phases based on the

targeted power flow. Dataset I is collected with pre-selected

phase angles. Dataset III is collected with back-calculated

phase angles.

We find that the ML methods are capable of predicting

the phase angles for the MAB converter, even in the quasi-

resonant mode of operation. In comparison, the NR method

cannot capture the power flow for MAB converters operating

in resonant modes because there are no explicit equations

for power calculation. Machine learning methods do not rely

on precise lumped circuit models or power flow equations to

predict the required phase-shift, and thus is applicable to MAB
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with trapezoidal current: (a) Error distribution curves for 30, 10 and 5-neuron
FNNs; (b)-(d): Error histograms for 30, 10 and 5-neuron FNNs. The average
power percentage error per port is usually below 3%.

(a) (b)

-15 -10 -5 0 5 10 15
Percentage Error of Power (%)

0

1000

2000

3000

4000

5000

N
um

be
r o

f D
at

a

50-neuron
30-neuron
10-neuron
5-neuron
NR

-15 -10 -5 0 5 10 15
Percentage Error of Power (%)

0

1000

2000

3000

4000

5000
NR method

Fig. 13. Results of Experiment D in trapezoidal mode: (a) Error distribution
curves for FNN with 50, 30, 10, 5 neurons & the NR method; (b) Error
histogram of the NR method.

converters operating in quasi-resonant mode without explicit

power flow models.

The performance of the ML-based power flow control

methods are evaluated by sweeping the number of neurons

in the hidden layers and statistically comparing the model
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TABLE II
MISMATCH BETWEEN PREDICTED AND TARGETED RESULTS WITH DIFFERENT SIZES OF THE NEURAL NETWORK WHEN THE MAB CONVERTER

OPERATES WITH QUASI-RESONANT CURRENT WAVEFORM.

Number of Neurons in the Hidden Layer 4 5 10 20 30 50

Total Number of Parameters in the Neural Network 53 65 125 245 365 605

Experiment A: Avg. Abs. Phase Mismatch [°] 4.330° 0.238° 0.099° 0.047° 0.013° 0.007°

Experiment B: Avg. Abs. Phase Mismatch [°] 4.576° 0.267° 0.100° 0.050° 0.049° 0.033°

Experiment C: Avg. Abs. Power Percentage Mismatch [%] N/A 3.381% 2.981% 3.008% 3.302% 4.101%

Vsw1 2V/div

IL1 2A/div

0.4μs

Fig. 14. Example voltage and current waveforms of port #1 when the
MAB converter operates in the quasi-resonant mode with piecewise sinusoidal
current. The port-to-port operation is similar to a series-resonant converter.

accuracy. MSE is used as the loss function for neural network

training, aiming to inflict more penalty on data with larger

error and keeping the deviation in phase error values small.

Average absolute phase mismatch (the difference between

the desired phase and predicted phase), and absolute power

percentage mismatch (the percentage difference between the

desired power and achieved power) are used as the figures-of-

merit for performance comparison. 95th percentile error rate

is also used as a figure-of-merit to evaluate the error in the

section of transfer learning.

VI. NEURAL NETWORK PERFORMANCE EVALUATION

A. Trapezoidal Operation Mode

Table I summarizes the results of the three experiments.

The number of parameters in the NN increases as the number

of neurons in the hidden layer increases. In Experiment A

& B, the prediction error decreases as the network complexity

increases and finally reaches saturation. Insufficient number of

neurons may lead to underfitting and hence, large prediction

error. The phases’ mean absolute average error in Experiment

A & B are similar, indicating that FNN can be applied to

predict operating conditions that are not fully covered by

the training data. In Experiment C, the average power error

generated by the FNN-based phases is below 3%, verifying

the effectiveness of the ML-based control on the test dataset.

Fig. 12 shows the power error distributions of FNN in Experi-

ment C. The deviation of ML-based control is relatively small.

Fig. 13 shows the comparison of power error distributions

between FNNs (Experiment C) and NR method (Experiment

D). In the selected examples, the deviation of FNN is smaller

than that of NR method. The error for the NR method is

distributed in the range between -10° to +10°. Dc biases are
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Fig. 15. Error distribution in Experiment C under quasi-resonant situation:
(a) Error distribution curves for 30, 10 & 5-neuron FNNs; (b)-(d): Error
histograms for 30, 10 & 5-neuron FNNs. The average power percentage error
per port is usually below 5%.

observed in the NR method due to non-idealities in the lumped

circuit parameters. Fig. 16 (a) shows the power flow at 6 ports

for 16 different operating conditions in trapezoidal mode, and

each condition is active for 60 ms. It compares the desired and

measured power flow as a time series when a 5 neurons FNN

was used to predict the desired phase. Power flow controlled

by ML usually matches better with the target power than the

power flow controlled by a NR-based algorithm. Fig. 16 (b)

shows one example power flow step change at 6 ports. It takes

about 1.2 ms for the system to transit from one power flow

operating condition to another.

B. Quasi-Resonant Operation Mode

Table II summarizes the results of the three experiments

conducted under the quasi-resonant mode of operation. Again,

we observe that the error decreases as the neural network

size increases. The prediction error of the ML algorithm in

the quasi-resonant mode is larger than that of trapezoidal

mode, partly due to the more complicated MIMO power

flow. However, with a large enough NN, the average phase
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Fig. 18. Monte Carlo simulation to investigate the impact of component
tolerances: (a) Average absolute % of power error in both trapezoidal and
quasi-resonant modes with capacitance and inductance variations; (b) Power
error distribution with ±20% inductance tolerances in four cases.

mismatch can be lowered, as it can be seen that the average

absolute power mismatch per port of a 10-neuron FNN is

below 3%. Fig. 17 (a) shows the power flow at 6 ports for

16 different operating conditions in quasi-resonant mode, and

each condition is active for 60 ms. It compares the desired and

measured power flow as a time series when a 10 neurons FNN

was used to predict the desired phase. Fig. 17 (b) shows one

example power flow step change at 6 ports. It takes about 1.2

ms for the system to transit from one power flow operating

condition to another.

C. Impact of Component Tolerances

We performed Monte Carlo simulation to investigate the

impact of component tolerances on feedforward model. The

component values (inductance and capacitance) are assumed

to follow a normal distribution - the average of the normal

distribution is the desired component value and the tolerance

defines the boundary within which 95% of component values

lie. We randomly generate 400 component values following the

normal distribution and use the theoretical models to evaluate

the power flow. The 400 component values are combined with

400 random pairs of phase shifts (6 per pair), leading to a

total of 960,000 data points for the power flow. The generated

power is calculated and estimated from Eq. (3) for trapezoidal

mode and Eq. (8) for quasi-resonant mode.

Fig. 18 (a) shows the average absolute power error with

the tolerance swept from 0% to ±50%. Fig. 18 (b) shows the

power error histogram with ±20% component tolerances. In

the trapezoidal mode, only the series inductance Li has impact

on the power flow. When the series inductance tolerance

increases from ±5% to ±50% , the absolute average of the

power error increases from 0.71% to 8.1%, respectively. In

the quasi-resonant mode, power error is analyzed for three

cases: (i) only the tolerance of the series inductance Li is

increasing; (ii) only the tolerance of the series capacitance Ci

is increasing; (iii) the tolerances of both the series inductance

Li and the series capacitance Ci are increasing. The worst case

happens when both Ci and Li have ±50% tolerance, leading to

about 30% of average absolute power error. The results also

reveal that the power flow of this particular design is more

sensitive to inductance variation than capacitance variation.

VII. REDUCE DATA SIZE WITH TRANSFER LEARNING

Transfer learning is a ML technique where a model devel-

oped for one task is reused as the starting point to initiate the

model for a new task as long as they share similar features

[22]. This technique can greatly reduce the amount of data

needed to train the model for the new task. Fig. 19 illustrates

the principle of the transfer learning method used for the

MAB converter. Transfer learning is applied to control the

power flow in a MAB converter by pre-training the neural

network with data obtained through theoretical calculations

(in trapezoidal mode), then fine-tuning the model with data

obtained through experimental measurements to include the ef-

fects of non-idealities and component variations. Since models

formed by ideal and experimental data coherently share similar

features, the knowledge of traditional modeling can be reused

and transferred from one scenario to another. The accuracy

of the neural network obtained through transfer learning is

compared with the accuracy of a neural network obtained

through the traditional method with a large amount of data.

A. Data Collection for Training

1) Trapezoidal Operation Mode: Eq. (3) is used to produce

numerous ideal power-phase data with predetermined phase

information. This training data is not precise due to the

unavoidable mismatch between models and physical char-

acteristics, leakage inductances, and parasitics. The physical

behaviors of the multiwinding magnetics cannot be well cap-

tured by lumped circuit models. The following three datasets

are collected for training and testing the NN in trapezoidal

operation mode.

• Dataset 1 from equation-based calculations for training:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

9 steps: [-21.6°, -16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°,

21.6°]. The resulting power, ranging from -36 W to 36 W, is

calculated for each port. A total number of 95 = 59, 049 data

points are collected.
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• Dataset 2 from experimental measurements for training:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

9 steps: [-21.6°, -16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°,

21.6°]. The resulting power, ranging from -36 W to 36 W, is

recorded for each port. A total number of 95 = 59, 049 data

points are collected.

• Dataset 3 from experimental measurements for testing:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

7 steps: [-21.6°, -14.4°, -7.2°, 0°, 7.2°, 14.4°, 21.6°]. The

resulting power, ranging from -36 W to 36 W, is recorded.

A total number of 75 = 16, 807 data points are collected.

2) Quasi-resonant Operation Mode: It is shown in [12] that

Eq. (8) can be used to generate theoretical data of phase-power

pairs for MAB converters operating with piecewise sinusoidal

current, even in quasi-resonant mode. The mismatch between

the predicted power and measured power is small enough and

thus, can be use to pre-train the neural network model. The

following three datasets are collected for training and testing

the NN in quasi-resonant operation mode.

• Dataset 4 from equation-based calculations for training:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

9 steps: [-21.6°, -16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°,

21.6°]. The resulting power, ranging from -48 W to 48 W, is

calculated for each port. A total number of 95 = 59, 049 data

points are collected.

• Dataset 5 from experimental measurements for training:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

9 steps: [-21.6°, -16.2°, -10.8°, -5.4°, 0°, 5.4°, 10.8°, 16.2°,

21.6°]. The resulting power, ranging from -48 W to 48 W, is

recorded for each port. A total number of 95 = 59, 049 data

points are collected.

• Dataset 6 from experimental measurements for testing:
Port #1 is assumed as the reference port with its phase as 0°.

The phases of ports #2 to #6 are swept through the following

7 steps: [-21.6°, -14.4°, -7.2°, 0°, 7.2°, 14.4°, 21.6°]. The

resulting power, ranging from -48 W to 48 W, is recorded

for each port. In total, 75 = 16, 807 data points are collected.

B. Neural Network Structure and Pre-training

The selected FNN comprises one hidden layer with 10

neurons as the testing platform for transfer learning. The FNN

also has an input layer with 6 neurons representing the power

of the 6 ports, and an output layer with 5 neurons representing

the control phases of 5 ports with one port as the phase

reference port (0°). MSE is used as the loss function and

Adam is used as the NN optimizer. During the pre-training

process, Dataset 1 is used to train a “Pre-trained Network” as

shown in Fig. 20. The initial learning rate is 0.5, decaying to

70% every 10 epochs. The batch size is 64 and the number of

training epochs is 50. The number of training epochs for pre-

training should be much smaller compared to re-training or

regular training process because the pre-training process only

needs to capture the main features of the training data while

the details can be ignored. The pre-training process should

be designed to keep the maximum generality for retraining

purposes. With pre-training, the parameters (weights & biases)

of the neural network are initialized with patterns learnt from

the theoretical model. Without pre-training, these parameters

are randomly initialized. Pretraining the model with theoretical

data can greatly reduce the prediction error when limited

experimental data is available.
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Fig. 20. Parameter visualization of a pre-trained FNN model in trapezoidal
operation mode with weight (ω, μ) and bias (b). Weight ω between input
layer and hidden layer has 6× 10 = 60 parameters. Weight μ between input
layer and hidden layer has 10 × 5 = 50 parameters. Bias b in the hidden
layer has 10 parameters, while bias b in the output layer has 5 parameters. A
large percentage of the weight parameters are negligible and ineffective for
phase inference. Techniques such as network pruning [33] can be applied to
further reduce the size of the model.

C. Re-training and Experimental Results

When the pre-trained model is directly applied to the testing

set with experimental data, the prediction error comes from

the mismatch between the theoretical models and the actual

physical model, due to non-idealities and non-linearities. Re-

training the pre-trained model with a small amount of ex-

perimental data can fix the mismatch. Fine-tuning the pre-

trained model with a small dataset can yield a comparable

accuracy to the case when a much larger dataset is used. In

comparison, if the model is initialized without any pre-trained

information and trained with the same amount of experimental

data, the accuracy is usually much worse than the transfer-

learned model.

The following experiments are designed to verify the effec-

tiveness of transfer learning. Experiment A&B is for trape-

zoidal mode while Experiment C&D is for quasi-resonant

mode. Mean absolute error is used to compare the differences

between transfer learning and traditional learning. The 95th

percentile error is also used as a figure-of-merit. Over 95% of

the testing results fall within the 95th percentile error range.

• Experiment A: Pre-training with 100% of Dataset 1; Re-

training with variable data points of Dataset 2; Testing with

100% of Dataset 3. The amount of data used for retraining

is swept from 1 to 3000 in ten steps. The purpose of this

experiment is to evaluate the performance and efficiency of

transfer learning as the size of the retraining dataset increases.

• Experiment B: No pre-training; Training with a variable

data points in Dataset 2; Testing with 100% of Dataset 3. The

size of the training data is swept from 1 to 3000 in ten steps.

The purpose of this experiment is to evaluate the performance

and efficiency of a traditional machine learning process as the

size of the training dataset increases.

Fig. 21 (a) and (b) show the mean absolute error and

the 95th percentile error of phase predictions in trapezoidal

mode. The experiment for each number of retraining data

size is repeated 10 times with data shuffling. When there is

only one experimental data point, the 95th percentile error

of the transfer learning model is 3.0°, and is much better

than the result obtained from a model with randomly initiated

parameters (28.2°). With 100 retraining data points, the 95th

percentile error of the transfer learning model is reduced to

1.0°, while it takes over 1,000 data points for a randomly

initiated model to reach the same level of accuracy.

• Experiment C: Pre-training with 100% of Dataset 4; Re-

training with variable data points of Dataset 5; Testing with

100% of Dataset 6. The size of the retraining dataset is swept

from 1 to 3000 in ten steps. The purpose of this experiment

is to evaluate the performance and efficiency of the transfer

learning method as the size of the retraining dataset increases.

• Experiment D: No pre-training; Training with a variable

data size in Dataset 5; Testing with 100% of Dataset 6. The

size of the training dataset is swept from 1 to 3000 in ten steps.

The purpose of this experiment is to evaluate the performance

and efficiency of a traditional machine learning process as the

size of the training dataset increases.

Fig. 21 (c) and (d) show the mean absolute error and the

95th percentile error of phase predictions when the MAB

converter operates in quasi-resonant mode. The experiment for

each subset of the experimental data is repeated 10 times with

data shuffling. When there is only one experimental data point,

the 95th percentile error of the transfer learned model (3.0°) is

more than 10 times lower than that of the randomly initiated

model (31.6°). It only takes 200 retraining data points for the

95th percentile error of the transfer learned model to reach

1.3°. It takes over 1,000 data points for the traditional learned

model to reach the same level of accuracy.

Machine learning methods are data-driven. The performance

of machine learning methods highly depends on the size and

quality of the database. In application scenarios when the sizes

of the datasets are limited, transfer learning is a powerful and

an efficient way to reduce the size of the experimental data

needed to train a neural network model to achieve high enough

accuracy for controlling the power flow of a MAB converter.

VIII. CONCLUSIONS

This paper presents the methodology and hardware imple-

mentation of a machine learning based power flow control of

MAB converters. A 6-port MAB converter with 48 W of max-

imum power per port and 500 kHz switching frequency was

used a platform to validate the concept. The ML algorithms

are implemented in hardware as a part of the power flow

controller. The MAB converter was tested in two operation
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(a) (b)

(d)(c)

Fig. 21. Phase error under different conditions: (a) the mean absolute error of phase in trapezoidal mode; (b) the 95th percentile error of phase in trapezoidal
mode; (c) the mean absolute error of phase in quasi-resonant mode; (d) the 95th percentile error of phase in quasi-resonant mode.

modes: trapezoidal mode and quasi-resonant mode. In trape-

zoidal mode with trapezoidal current, the performance of the

ML-based approach is comparable to that of a traditional NR

method and can achieve high accuracy. In quasi-resonant mode

with piecewise-resonant current, the traditional NR method is

not applicable, while the ML methods can still maintain high

accuracy through a model-free learning approach. Transfer

learning was used to reduce the amount of experimental data

needed for a neural network to achieve high accuracy. It is

shown that machine learning methods can overcome a few

fundamental challenges of controlling the power flow in MAB

converters and can be greatly enhanced by transfer learning.
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