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Recall that if (M™,g) satisfies Ric > 0, then the Li-Yau
Differential Harnack Inequality tells us for each nonnegative

f: M — R, with f; its heat flow, that %f Wf#Jr% > 0.
Our main result will be to generalize this to patht space P, M
of the manifold.

A key point is that instead of considering infinite dimensional
gradients and Laplacians on P, M we will consider, in a spirit
similar to [13,8], a family of finite dimensional gradients and
Laplace operators. Namely, for each H}-function ¢ : Rt — R
we will define the ¢-gradient Vo F : PoM — T, M and the
p-Laplacian A, F = tr, Hess F' : P, M — R, where Hess F' is
the Markovian Hessian and both the gradient and the ¢-trace
are induced by n vector fields naturally associated to ¢ under
stochastic parallel translation.

Now let (M™,g) satisfy Ric = 0, then for each nonnegative
F: P.M — Rt we will show the inequality
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E.[A,F]  E,[V,F]?
E.[F] = E,.[F2

n 2
+ = >0
5 llell?

for each ¢, where E, denotes the expectation with respect
to the Wiener measure on P,M. By applying this to the
simplest functions on path space, namely cylinder functions
of one variable F(y) = f(v(t)), we will see we recover the
classical Li-Yau Harnack inequality exactly. We have similar
estimates for Einstein manifolds, with errors depending only
on the Einstein constant, as well as for general manifolds,
with errors depending on the curvature. Finally, we derive
generalizations of Hamilton’s Matrix Harnack inequality on
path space Py M. It is our understanding that these estimates
are new even on the path space of R".

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

Differential Harnack inequalities on manifolds Let us open by recalling the classical
differential Harnack inequalities on manifolds. Thus, consider a Riemannian manifold
(M™, g) and for f : M — R denote by f; = Hyf : M — R the solution of the heat
equation (9, — A) fy = 0 with fo = f. The classical Li-Yau differential Harnack inequality
[12] tells us that if f is nonnegative and if Ric > 0, then we have
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Afe VPP n
S + 5 20 (1.1)

While there are many other useful sharp estimates on heat flows which play an impor-

tant role in analysis for manifolds with nonnegative Ricci curvature, for instance the
Bakry-Emery [1] estimate |VH, f| < H|Vf|, the differential Harnack inequality distin-
guishes itself in that it directly incorporates the dimension into the underlying estimate.
Thus, the differential Harnack inequality is the usual starting point for many estimates
on heat kernels, and other estimates which directly rely on the underlying dimension.
For instance, integrating along a suitable space-time geodesic gives the sharp classical
Harnack estimate

n/2 d(zq,x2)?
) e SR (). (12)

fip(w2) > (%

The differential Harnack inequality (1.1) and many of its implications are sharp and
obtained when considering the heat kernel on Euclidean space. As another application
we can apply (1.1) to the heat kernel p, (y) = pi(x,y), centered at some point x € M,
in order to obtain the estimate

n

Alnpg s > o (1.3)
One can interpret the above as a smoothing of the classical Laplacian comparison theo-
rems for the distance function. In addition to the Li-Yau Harnack inequality there is also
Hamilton’s Matrix Harnack inequality [7]. In the context where one assumes the stronger
geometric constraints V Ric = 0 and sec > 0, Hamilton proved the Hessian version of
(1.1) given by

V3fe ViV g
STty 20 (1.4)

Harnack and basics of path space P,M The goal of this paper is to extend the differ-
ential Harnack inequalities to the context of the path space P,M of a manifold. We will
have generalizations of the Li-Yau differential Harnack inequality (1.1), the Hamilton
Matrix Harnack inequality (1.4), and the heat kernel estimate (1.3) to the path space
context. These extensions will require some work to detail, which we will do step by
step over the next several subsection, for now let us open with some general comments
followed by some standard constructions on analysis on path space. To begin, let us be
careful and remark that our notion of path space is the collection of continuous based
paths:

P,M = {v € C°[0,00), M) : y(0) = z}. (1.5)

Performing analysis on P, M, like performing analysis on any space, involves three impor-
tant ingredients: A nice dense collection of functions to work with, a measure to integrate
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with, and a notion of gradient. The first two of these ingredients will be standard notions
in this context, which we will review now. The notion of gradient we will introduce in
this paper, and its induced Laplacian, will be new. The ¢-gradient V, and ¢-Laplacian
A, will act more as a family of finite dimensional gradients and Laplacians, in the spirit
of [13,8]. We will introduce these a little more slowly over the coming subsections.

Let us now finish our introductory review by dealing with the first two ingredients
above, namely the construction of nice functions and the Wiener measure. Both are
built using the canonical evaluation maps on path space. Namely, consider a partition
t={0<t < - <t < oo}, then from this we can build the evaluation map ey :
P,M — MP¥ given by

ee(Y) = (Vs -+ Mer) - (1.6)

From this we can generate functions on P,M by pullback. Namely, given a partition t
and a function f: M* — R the induced cylinder function F : P,M — R on path space
is given by

F(y) =egf(v) = fOyas 700 - (1.7)

These functions have a distinctly finite dimensional quality to them, and as such will
be particularly easy and natural to work with. In the end these functions will be dense
in every space of functions we need to work on, so it will be sufficient to do most
computations with respect to them.

In a similar vein, path space P, M is equipped with a natural probability measure P,
called the Wiener measure, which is uniquely defined through its pushforwards by the
evaluation maps:

e« Py = pr, (¥, dx1)pry—t, (¥1,dT2) - - pry—ty_, (Tp—1, dx)) | (1.8)

where pi(z, dy) = pi(z,y)dvg(y) are the heat kernel measures. It is a beautiful classical
result that P, exists as a measure on continuous path space P, M. In this way the Wiener
measure not only tells us about the heat kernels at all times and points, but also how
they interact with one another.

Let us now move ourselves toward the new results, during which time we will introduce
the notions of gradient and Laplacian that will prove themselves most important.

1.1. Differential Harnack inequalities on path space of R™

Let us begin by analyzing the context of path space on flat Euclidean space. Our
results are new even in this setting, and beyond that it will be an excuse to analyze the
estimates and inequalities in a context where many of the technical bells and whistles
will not be present. We will be interested in studying continuous paths based at the
origin:
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PyR™ = {v € C°([0,00),R™) : 4(0) = 0} . (1.9)

On PyR™ we can consider the Wiener probability measure Py, defined as in (1.8). It
is interesting to observe one can view this measure as a Gaussian measure on PyR"
with standard deviation coming from the H'-norm. As such, when performing analysis
on path space it is convenient to often restrict ourselves to directions which are H' in
nature, which gives rise to the Cameron-Martin space:

H =< hePR": ||h||% z/|h\2dt< 00 . (1.10)

Our first main result in the rigid context of path space on R” is the following, which
we will use as an inspiration for our generalized Matrix Harnack inequality in the path
space setting:

Theorem 1.11 (convezity). If F : PyR™ — R is a positive integrable function, then the
associated functional

1

oR™

is conver.

We will provide the short proof of the above in Section 2, for now let us consider an
enlightening example obtained by applying the above to the simplest functions on path
space:

Example 1.13. Consider the cylinder function F : B R™ — R* given by F(v) = f(v(t)),
where f : R" — R* and ¢t > 0 are fixed. Consider a linear curve h(s) = 2z € R”
connecting the origin to a point z € R”™, and for each direction v € R"™ and each reR
consider the perturbation of A in the v direction given by h.(s) = $(x +rv) € R" for
s < t. That is, h.(s) is simply the straight curve from the origin to h.(t) = = 4 rv, so in
particular ho(s) = h(s). Now using the pushforward characterization (1.8) of the Wiener
measure we can compute

|z + 7o)

|z + 72
4t '

=ln fi(z+rv) + py

®p(h,) =In /f(y—&-x-i—rv)pt(o,dy)
(1.14)

Then the convexity condition d”i—i O (h,) > 0 converts to the inequality
0
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2
V2f,}(tv,v) <fotév> n % >0 (115)

for every v, which is precisely the Matrix Harnack inequality (1.4). O

Generalizing the above example, given f : R"™* — Rt and 0 < t; < ... < t}, we can
consider

Htl,‘..,tkf(m17"'7xk> = / f(yl +xla-"ayk+xk)ptl(oadyl)pt27t1<y17dy2)
R (1.16)
R (ykflv dyk),

which can be interpreted as a (completely correlated) generalization of the heat flow,
and obtain:

Corollary 1.17 (convezity for generalized heat flow). The function vy Rk 5 R,

lz1|* | oo — a1 ok — x|
dty  A(ta —t1) T Atk — tr—1)

Ve(@r, .. xp) =InHy, g f2n, .0 2p)+ (1.18)

1S conver.

We have therefore seen that Theorem 1.11 behaves as a natural path space general-
ization of the Matrix Harnack Inequality, and indeed recovers it exactly when applied to
the simplest functions on path space.

Our next challenge is that Theorem 1.11 as written does not generalize to manifolds.
We will therefore look for weak reformulations which have some hope of being defined on
general manifolds. This will eventually lead us to our differential Harnack inequalities.

There are many approaches one can naturally take to write Theorem 1.11 weakly,
the statements and definitions of our next results are motivated by giving a presenta-
tion which will extend in a natural manner to more general manifolds. We begin by
introducing the (p-gradient in the Euclidean context:

Definition 1.19. Let ¢ : [0,00) — R be an H}-function, i.e. |[¢||? = []¢|* < oo and
©(0) = 0. For F': BhR™ — R we define its p-gradient V,F : PBpR™ — R™ by

(Vo F(3),v) = Doy F = lim P+ W;’) —F) | (1.20)

Note that, in a spirit similar to [13,8], the ¢-gradient V,F is essentially a finite
dimensional gradient as it only considers information about the derivative of F'in those
directions determined by ¢. By considering an orthonormal basis {¢;} we can recover
the full Malliavin gradient VX F : P;R™ — 3.

In addition to the @p-gradient we will want to define the associated (p-Hessians and
p-Laplacians:
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Definition 1.21. Let ¢ : [0,00) — R be an H}-function. For F : P;R"™ — R we define
1. The ¢-Hessian Hess, F': PyR™ — R™*" given by’
(Hessy, F(77),v ® w) = Dy Dy F (1.22)

2. The ¢-Laplacian A, F : Ph)R™ — R given by A, F' = tr(Hess, F).

Considering an orthonormal basis {¢;} we can recover the H'-Laplacian Ag¢, so that
in this way we have naturally decomposed the infinite dimensional Laplacian into a sum
of finite dimensional Laplacians. We can now use Theorem 1.11 in order to prove the
following;:

Theorem 1.23 (Differential Harnack inequality on path space of Fuclidean space). If F :
PyR"™ — R is a nonnegative integrable function, then for all test functions ¢ € H}(RT)
we have

E[I‘IIEG[S;‘T F IE[VSOFI}ES;]]? Vo] | g”mz >0, (1.24)

where £ denotes the expectation with respect to the Wiener measure Py, and 6 = d;;
denotes the Euclidian metric. In particular, we can trace to obtain
2
E[A F] _ E [V, Fl n

Theorem 1.23 can be viewed as an infinite family of finite dimensional differential
Harnack inequalities on path space. It is not hard to see that Theorem 1.23 and Theo-
rem 1.11 in fact imply each other. The formulation as a differential Harnack inequality,
as opposed to a convexity statement, is more suitable for our generalizations to the path
space of manifolds.

1.2. The p-gradient and @-Laplacian

In order to state our results on general manifolds we need to discuss the notion of
p-gradients and @-Laplacians on manifolds. Let us begin by defining the notion of the
p-gradient:

Definition 1.26 (p-gradient). Let F' : P,M — R be a cylinder function, and let ¢ :
[0,00) — R be an Hj-function, i.e. a function such that ||¢|[* = [|4*> < oo and
©(0) = 0. Then we define the ¢-gradient V,F': P,M — T, M by

L It is worth observing that the definition in the Euclidean context is greatly simplified, as @uv is a constant
vector field and thus D, Dy F' is a Hessian. In the general case we must subtract off the correct Christoffel
symbol.
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(V,F,v) = D,y F, (1.27)

where V is the vector field along « obtained by parallel translating v along ~,? and thus
Dy is the directional derivative of F' in the direction ¢V € T, P, M.

The p-gradient is essentially a finite dimensional gradient, in a spirit similar to [13,8].
It contains information about the directional derivatives of F'in all directions determined
by ¢. As in the Euclidean case, by considering an orthonormal basis {¢;} of H} we see
that we can recover the full Malliavin-gradient VX F : P, M — H.

In order to define a Hessian we must consider covariant derivatives of vector fields
on path space. Two considerations when defining a connection on P,M are that one
wishes it to be compatible with the H}-metric, and wishes it to preserve adapted vector
fields. Among such connections there is a best choice, which was introduced in Cruzeiro-
Malliavin [4], called the Markovian connection. To define the Markovian connection,
recall that vector fields V on P, M can be identified with functions v, : P,M — T, M =
R™ via parallel transport. Namely, we can take V(v); € T,,M and map it using the
parallel translation map P (vy) : Ty, M — T, M to get

v(y) = B()V(y): € TaM. (1.28)

Definition 1.29 (Markovian Connection). The Markovian connection V on P, M is given
by.’%

t

d

ER(VVIV), = Dy + /PSRm%(VS,%)ds s (1.30)
0

where P; : T, M — T, M denotes the parallel translation map, and where wy = P,W;.

We note that the curvature term in (1.30) arises as the derivative of the parallel
translation map.

Given the Markovian connection V, the Markovian Hessian of a function F': P,M —
R is now naturally defined by

Hess F(V, W) = Dv(DwF) — vawF, (131)

where D denotes the directional derivatives. Using this, we can now introduce the -
Hessian and @-Laplacian, which will play a central roles in our differential Harnack
inequalities:

2 We need to use the stochastic parallel translation map to make this precise on a generic curve, see
Section 3.
3 To be precise, the integral should be viewed as Stratonovich integral, see Section 3.
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Definition 1.32 (@-Hessian and ¢-Laplacian). Let F': P, M — R be a cylinder function,
and let ¢ : [0,00) — R be an Hj-function, i.e. a function such that ||¢||? = [ [¢]? < oo
and ¢(0) = 0.

1. We define Hess, F': P, M — Ty M ® T; M by
Hess,, F'(v,v) = Hess F(¢V, V), (1.33)
where V' is the vector field along v obtained by parallel translating v along ~.

2. AJF = tr(HessyJ F) : PLM — R is the ¢-Laplacian obtained by tracing the -
Hessian.

To understand the meaning of this definition, consider for each ¢ an n-dimensional
distributional F, C TP, M given by

E, = span{ @V : V is the parallel translation of a vector v € TwM} . (1.34)

Thus, at each v € P, M we have that E,(7) is an n-dimensional subspace of T, P, M.
Then the p-Hessian and the ¢-Laplacian are simply given by

Hess, F = Hess F|, . (1.35)
and
A F =trp, Hess I (1.36)

In particular, the @-Laplacian is simply the trace of the infinite dimensional Hessian
along the finite dimensional subspace E,,. Hence, in the same spirit as the (p-gradients,
the p-Laplacians behave as a family of finite dimensional Laplacians. This is crucial for
us, as our generalization of the differential Li-Yau Harnack inequality will actually be a
family of inequalities, one for each A,.

1.8. Differential Harnack inequalities on path space of Ricci flat manifolds

Now we are in a position to discuss our first more general estimates. We begin with
the Ricci-flat context primarily because the estimates are cleaner and easier to digest.
The general cases will follow in the next subsections. Our main theorem in the Ricci-flat
case is the following:

Theorem 1.37 (Differential Harnack inequality on path space). Let M be a Ricci-flat
manifold, and let F : P,M — R be a nonnegative function. Then, for all p € H}(R™)
we have the inequality
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e e TR ) 055

Let us begin, as we often like to, by applying this to the simplest functions on path
space in order to see that we can recover the classical Li-Yau Harnack inequality:

Example 1.39 (Li- Yau inequality). Let us consider the cylinder function F : P,M — R
given by F(v) = f(y(t)), where f: M — Rt and ¢ > 0 are fixed. Let ¢ : [0,00) — R be
such that ¢(s) = § for s <t and ¢(s) = 1 for s > ¢. One can use the definition of the
p-gradient to immediately compute

VoF(y) = P()VF(y(1)), (1.40)

where Py(y) : TyyM — T,M denotes parallel transport. Now let e; € T, M be an
orthonormal basis with F; the associated parallel translation invariant vector fields along
each ~y. Using the definition of the Markovian connection (Definition 1.29) we see that

vaE#Ei =0, (1.41)
i=1

where the curvature term disappeared after taking the trace since Ric = 0. It follows
that

DpF(7) = Af(1(1))- (1.42)

Using the above and the Feynman-Kac formula we can then derive the equalities

E,[F] = / Fpelz,dy) = fulz),

E.[ALF] = Afi(z),
E,[V,F] = Vfi(x), (1.43)

where in the last equality we used again that Ric = 0. Finally, observing that ||¢||? = %
and plugging all of this into (1.38) we obtain

Afy VAP n
S + 2>, 1.44
Tt f? 2t (144)

which is precisely the Li-Yau Harnack inequality. 0O

Another consequence is a generalization of the Li-Yau estimate (1.3) on heat kernels:
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Example 1.45 (Laplacian of the log of the Wiener Measure). By plugging in a smoothed
Dirac delta function into Theorem 1.37 we formally obtain the Laplace comparison esti-
mate*

AyInP, > ,g’ (1.46)

for each ¢ with ||¢|| = 1. To interpret this, recall from (1.34) that for each ¢ we have
an associated n-dimensional distribution E, on TP, M, and that A, = trg,, Hess. Thus,
the estimate (1.46) is telling us that the trace of the Hessian of In P, is bounded below on
each of the n-dimensional subspaces E,. Hence, In P, behaves like a plurisubharmonic
function on a complex manifold.

Remark 1.47 (Equality). Computing more carefully one can check that actually equality
is attained in the above example. Namely, the log of the Wiener measure satisfies the
interesting identity

AyInP, = ,g (1.48)

for each normalized . We emphasize that this only holds if M is Ricci-flat.

Alternatively, instead of in terms of the H'-geometry, our differential Harnack in-
equality on path space of Ricci-flat manifolds can also be understood in terms of the
L2-geometry of path space. To this end, we denote by Hessé and Aﬁ the p-Hessian and
p-Laplacian that are obtained by using the L?-connection V#* instead of the Markovian
connection V. Concretely, we have

2

c
Hess; F(v,v) = e

RACA (1.49)

where 7, is a family of curves with 0s|s—07s = ¢V and Vv (8578) =0," and
L z
AZF = trHessj I (1.50)

Corollary 1.51 (Differential Harnack inequality in terms of L*-geometry). Let M be a
Ricci-flat manifold, and let F : P,M — R be a nonnegative function. Then, for all
o € HY(RT) we have the inequality

z [AG z Ve ’ n 2
]EIEE[;’f] JEJEEEV[F]ZH T gllell =0 (1.52)

4 Here, we view the energy functional —InP, = %f|"y|2 as the log of the Wiener measure, motivated
by the integration by parts formula. Note that although In P, is not defined on continuous path space, its
gradient is.

5 For instance v, (t) = exp., 1) (s¢p(t)V(t)) gives such a curve.
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In fact, we will show in Section 4.4 that on path space of Ricci-flat manifolds, the
p-Laplacian induced by the L?-connection agrees with the one induced by the Markovian
connection.

1.4. Differential Harnack inequalities on path space of general manifolds

The situation for general manifolds is quite analogous to the previous section, though
unsurprisingly we now get more error terms depending on the curvatures. Our main
differential Harnack inequality on the path space of general manifolds is the following:

Theorem 1.53 (Differential Harnack inequality on path space). Let F : P,M — R™ be
a nonnegative Sr-measurable function on path space. Then, for every ¢ € HE(RT) we
have the inequality

% + Cr(Ric) + Cr(Rm, V Ric)

(A F]  [E,[V,F)]
E.F]  E,[F] *(

EI[F2]1/2
)

where Cp(Ric) < oo and Cp(Rm, VRic) < oo are constants, which converge to 0 as
[Ric| + |V Ric| — 0 assuming that |Rm| and T stay bounded.

Theorem 1.53 generalizes Theorem 1.37 to the path space of general manifolds. Again,
it provides an infinite dimensional family of finite dimensional differential Harnack in-
equalities on path space P,M. There are a couple points about the error terms worth
observing. They depend on the L?-norm of F. In general, they further depend on bounds
on the full curvature tensor | Rm| and on |V Ric|. This seems to be a feature of second
order estimates on path space, in contrast to the first order estimates of [13,8], where
the errors only depend on the Ricci curvature, and nothing involving the full curvature
or the covariant derivative of curvature. However, if the underlying manifold is Einstein,
then as a corollary of our proof we obtain:

Corollary 1.55. If M is Finstein, i.e. Ric = Ag, then the constants only depend on A,
namely

n L[ F2)1/2 ,
"o (1 + %)) el2 >0, (1.56)

B0 BV (

where Cr(A) — 0 as A — 0 assuming that T stays bounded.

Remark 1.57. We saw in the Ricci-flat case that A, may be replaced by Aé. However,
this is absolutely not the case in general, even if M is Einstein. The difference between
the Markovian and L? quantities involves terms that are fundamentally not controllable
in the form of (1.54).
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1.5. Differential matriz Harnack inequalities on path space

Finally, we discuss our differential Matrix Harnack inequality on path space, meant
to generalize Hamilton’s Matrix Harnack Inequality (1.4):

Theorem 1.58 (Differential Matriz Harnack inequality on path space). Let F : PoM —
RT be a nonnegative Sp-measurable function on path space. Then, for every p € HE(R™)
we have the inequality

E;[Hess, F|  Ey[V,F] @ E, [V, F]

]Ew[FQ]l/Q

1 . .
+ <§ + Cr(Ric) + Cp(Rm, VRlc)W

) lolge > 0, (1.59)

where Cr(Ric) < oo and Cr(Rm, VRic) < oo are constants, which converge to 0 as
|Rm| 4 |V Ric| — 0 assuming that T stays bounded.

In the path space context one only gets a full errorless estimate in the flat case.
That is, similar to Hamilton’s Matrix Harnack inequality, which assumes sec > 0 and
V Ric = 0, even Ricci-flatness is not enough to obtain Hessian estimates without error
terms. This should not be surprising, as the full Hessian estimates inevitably involve
estimates on parallel translation maps, which involve the full curvature tensor. Compared
to the manifold case, Theorem 1.58 again contains completely new global information
capturing the interaction between different points.

1.6. Other generalizations

The differential Harnack inequalities of the previous sections were in terms of the
p-Hessian and (p-Laplacian, which themselves depended on a choice of connection on
P, M. Our chosen connection on P, M, namely the Markovian connection V, is the one
that is popular in the literature, however the differential Harnack inequalities do in fact
hold for a wide class of connections on P,M. The Markovian condition (1.30) can be
generalized to the condition

LR, = Dy + Ay, V) (1.60)
where A¢(v,V) : T, M — T, M. Then so long as for each bounded V we have that A; is
an adapted process which is also an L? antisymmetric mapping, then the induced con-
nection is an H'-connection which preserves adapted vector fields for which the Harnack
inequalities of this paper hold. Let us consider two important scenarios, beginning with
the Cartan connection on P, M:
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Definition 1.61 (Cartan Connection). The Cartan connection V¢ on P, M is the unique
connection such that vector fields of the form ¢V are parallel, where ¢ is an Hi-function
and V is the vector field on P, M obtained by parallel translating a fixed v € T, M along
each .

The Cartan connection satisfies &4 P,(V{,W); = Dy, and thus (1.60) holds with
A = 0. The Cartan connection V¢ is a flat connection on P, M which is not torsion free,
indeed its torsion is now related to the curvature of M itself. In particular, one can prove
the verbatim differential Harnack inequalities stated in this paper hold with the Hessian
and Laplacian induced by this connection as well.

Finally, let us consider a non-example. Another interesting choice of connection on
P.M is the L2-connection V*. Indeed, on Ricci-flat spaces the ¢-Laplacians induced
by the Markovian connection, the Cartan connection, and L?-connection are all the
same. However, the L?-connection in the form of (1.60) looks like 4P/(VEW), =
Dy + Ry, (Vs, v)we + (fot P, Rm,yS(Vs,f'ys)ds) w;. The additional curvature term
Rm, (Vs, ) is clearly not an L? function on P, M. The effect of this is that in non-Ricci
flat case (or indeed for the Matrix Harnack even in the Ricci-flat case) the differential
Harnack inequalities of this paper do not hold. One obtains new errors (see the antic-
ipating integral in Proposition 4.60) which fundamentally cannot be controlled in the
same fashion.

1.7. Outline of the paper

Let us briefly outline the paper along with the main steps of the proof.

In Section 2, we give the proof of our Harnack estimate Theorem 1.11 on the path space
PyR™ of Euclidean space. The proof in this context comes down to nothing more than
a computation involving the Cameron-Martin change of variables formula and Hélder’s
inequality. Regardless, this simple setting allows for a good starting point for developing
intuition.

In Section 3, we discuss the required preliminaries regarding stochastic analysis on
manifolds. After recalling the Wiener measure and the stochastic parallel translation
map, we will spend some time discussing the different notions of gradients which appear
in this paper. These notions, and in particular the gradients of vector fields, can give
rise to some subtle points on the path space analysis. This is in part because there are
several different such notions, each meant to capture different behaviors. Finally, at the
end of Section 3 we will discuss the intertwining and integration by parts formula. We
will state and prove the integration by parts formula for continuous adapted processes,
which is a somewhat more general form than the most popular one. This form of the
integration by parts formula will be needed in future steps.

In Section 4, we will give the proofs of our Harnack results in the Ricci-flat context.
The proofs in the Ricci-flat case will be very similar to the general case of Section 5,
however we can avoid many technicalities which can otherwise bog one down. The first
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main result in Section 4 is the Halfway Harnack of Theorem 4.8 which shows that the
quadratic form
E,[Dy(DvF)] E,DyF]? E;[Dy, vF]

Q)= S - BT S VIR 2 0. (162

is nonnegative for all adapted vector fields V' on path space P,M. Here, V is the
Markovian connection from Cruzeiro-Malliavin [4], see Definition 1.29. One can view
this Halfway Harnack as a nongeometric version of the Harnack inequality, as funda-
mentally one can view it as the pushforward of our Harnack on Euclidean path space
under the Ito map. This Halfway Harnack of a function F itself is then only half the
picture, as we need to remove the non-tensorial terms, as well as estimate a variety of
a-priori arbitrary looking curvature terms hidden inside the definition of the Markovian
connection. When combined with the correct tracing formulas this will allow us to turn
the Halfway Harnack into the full differential Harnack.

In Section 5, we end by generalizing the differential Harnack to the path space of
arbitrary manifolds. Indeed, this is very similar spirit to the Ricci-flat context, however
everything is a good deal more technical. In particular, we will see it is important to use
a twisted notion of gradient, which will interact better with the methods of this paper
in the non Ricci-flat context.

2. The Euclidean case

In this short section, as warmup for the later sections, we prove our differential Har-
nack inequalities in the simple setting of path space of R™. We start by establishing
convexity of the functional ®5 from (1.12).

Proof of Theorem 1.11. Let hy, ho € 3 and A1, Ay € (0,1) with Ay + A2 = 1. We have to
show that

(I)F(>qh1 + )\th) < )\1(I)F(h1) + )\Q(I)F(hz). (21)

To this end, note that by the Cameron-Martin theorem [3] we have the change of variables
formula

/ F(y+ h) dPo(7) = / F(y)ed =4I gy (), (2.2)
PyoR™ PoR™

where (h,7y) = fooo hy AW, (%) is given as Ito integral of the process hy with respect to
Brownian motion. Using this, a short computation yields

®r(Ahy + A2hs) =In (P/ F('y)e%(>\1h1+>\zh277>d]13>0(,y)
oRn
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<\ ln )ez M aPy(v) | + Ao ln v)ez m27) qpy (+)

O]R" ORn

= )\1@5‘ hl + AoPp hg) (23)

where we used the change of variables formula (2.2) in the first and third line, and
Holder’s inequality in the second line. This proves the theorem. O

Considering the most simple functions and variations on path space, Theorem 1.11
implies Hamilton’s Matrix Harnack inequality (1.4) as explained in Example 1.13. More
generally, we obtain the following corollary.

Corollary 2.4. If k is a positive integer, f : R"** — R, is a positive function (say of
subexponential growth), and 0 < t; < ... < ti, then the associated function w{hwtk
Rk - R,

(1,...,2k) —
H(ﬁ/ Fy + 21, Yk + 28) pey (0, dyn) pry—1, (Y1, dy2) - - ~Ptk—tk1(yk—1,dyk)>
nxk

|21 |? n |z2 — x1]? - |2k — xp|?

+ e k=l
4t 4(ty — t1) 4ty — tk—l)

(2.5)

is convex. In particular, for k =1 we see that the function

_lz—z]" Z\

1 il 2.6
z+—1In f n/Qz —l—? (2.6)

is conver, which by computing the Hessian reduces to Hamilton’s Matriz Harnack in-
equality (1.4).

Remark 2.7. Generalizing the intuition of the case k = 1, it is useful to interpret the

functions

Hy o f(xr, . xp) = / fpn+x, .y +2r)pe (0,dyn) - pe—tyy (Yk—1, dyn)
Rnk
(2.8)
appearing in (2.5) as a generalized heat flow for k-point functions. A particularly inter-
esting feature of Corollary 2.4 is that it gives also information about the mixed Hessians

Vo Ve, Hey oo f(21, ... 2p) for i # 5.
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Remark 2.9. Another useful way to understand the generalized heat flow for k-point
functions is to rewrite it quite redundantly as an integral over k Brownian motions in
R™:

Htl,“.,tkf(xlw-ka) = / f(%gl + X1, Y, +xk)X{»yl:,,,:,yk}dP0(’yl)---dPQ(fyk)~
Po(Rn)k

(2.10)

The indicator function x,1—. _.} enforces that these & Brownian motions are com-

pletely correlated, i.e. they are actually all the same. The formula (2.10) can be compared

with the opposite extreme, the completely uncorrelated case, which is obtained by drop-

ping the indicator function, namely
Utl,‘.ﬂtkf(xlv'-'axk) = / f(’ytl —‘y—l‘l,...,’ytk —|—1L‘k,)d]P)0(’yl)d]P)0(’}/k) (211)
Po(Rm)k

In particular, in the special case that f(y1,...,yx) = fi(y1) - - fx(yx) is a product func-
tion, this simply becomes a product of heat flows, namely

Utl »»»»» tk(fl"'fk)(xlw"’wk):Htlfl(ml)”'Htkfk(xk)' (212)

And simply adding up the Hamilton’s Matrix Harnack expressions for these k heat flows
one sees that

2 2
(@1, yzn) > Uy (fre fi) (@, ) + 20 4 Il (2.13)

is also convex. Of course, the convexity in the completely correlated case is the much
more interesting one, and the one that doesn’t simply follow by applying Hamilton’s
Matrix Harnack inequality k& times, but for the sake of intuition it is quite useful to keep
in mind these two opposite extreme cases.

Proof of Corollary 2.4. Given the function f : R"** — R, and the times 0 < t; < ... <
tr, we can define a positive function on path space by setting

F(’Y) = f(/ytu""’ytk)' (214)

Now thinking of the times 0 < t; < ... < tj as fixed, to any k-points z1,...,zx € R"
we associate a Cameron-Martin vector h*1-~%k € H by defining

%xl for0 <t<t

T+ ttz_—ttll (2 — 1) for t; <t <ty

hzl""’zk —

(2.15)

t—tr_—
Tr—1+ tk_tkkjl (v — xp—1) fortr_q <t <ty

T, for t > t;,
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Since hy' """ is piecewise linear it is easy to compute that

2 _ 2 _ 2
|21 N |22 — 1] L |k — i1 |®
tq (ta —t1) (tk — th—1)

IpI* = (2.16)

. 0 PR™ — R"™ ~ s (v;,,...,7,) denotes the
evaluation map at the times 0 < t; < ... < t; then the pushforward of the Wiener

To proceed, we recall that if e, . ;

measure is given by a product of heat kernel measures, namely

€ty ty «Po = Pty (O’ dyl)ptz—tl (y17 dy?) s Pl —tr—a (yk—h dyk) (217)

Using this, we compute

/ F(y+h)dPo(y) = / FOy+ heys v+ hay ) dPo(7)
PyR™ PoR™

= / Fyr + 21, Yk + k) pey (0, dy1) pry—t, (Y1, dy2) - - pry—t_y (Yu—1,dyx).  (2.18)
]Rnxlc

Now let us define &4, ¢, : R™* — H, (21,...,2) — by """ and observe that this is a
linear map. Since by Theorem 1.11 the functional @z : H — R is convex, the composed
function ®p o ly,, 4, : R™** — R is also convex. The above computation shows that
%fl,...,tk =®prol, .+, and this proves the corollary. O

To conclude this section, let us prove our differential Harnack inequalities on path
space of R™:

Proof of Theorem 1.23. Given any vector v € R™ and any function ¢ € HZ(RT) we
consider the direction

he(t) = ep(t)v. (2.19)
As a consequence of Theorem 1.11, the function
1
e Op(h,) zlnE[F(v—i—eapv)]—i—ZHgavaz (2.20)

is convex. Now, a straightforward computation yields

d _ E[DuoF (7 + pv)]

ztrlhe) = —f [F(y + )]

1
+ el (2:21)

and
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& E [Dyy Dy F) <IE Dy F

Foleatr(ng = 222 ) 3PP 0. @2

Recalling the definitions of the ¢-gradient (Definition 1.19) and ¢-Hessian (Defini-

tion 1.21), we conclude that

E[I’]IEQ[S;T Fl E[VSDF]éEi"]IE [V Fl n g||w‘|2 >0, (2.23)

where § denotes the Euclidean metric. This proves the theorem. 0O

Remark 2.24. As a motivation for the analysis in the manifold case, let us record that
the second variation in a general direction h € J is given by

V20 p(0)[h, ] = = [D]Eh([g]m] - (Eﬁb’:f }> R (2.25)

3. Preliminaries for the manifold case

In this section we briefly discuss some preliminaries regarding the analysis on path
space. Standard references for stochastic analysis on manifolds are the books by Hsu [10]
and Stroock [14].

In the following, M denotes an n-dimensional Riemannian manifold (either compact
or complete with Ricci curvature bounded below). Given any x € M, recall from the
introduction that path space

P, M = {v:]0,00) — M |~y continuous, vo = =}, (3.1)

consists of all continuous paths in M based at z. Path space is equipped with the
compact-open topology.

3.1. Wiener measure and stochastic parallel transport

Brownian motion and stochastic parallel transport on Riemannian manifolds are most
conveniently described via the Eells-Elworthy-Malliavin formalism. The gist of this con-
struction is that Cartan’s rolling without slipping provides a way to identify Brownian
motion W; on R™ with Brownian motion on M, as well as with horizontal Brownian
motion on the frame bundle F'M, see equation (3.4) below.

To describe this, consider the O,-bundle 7 : M — M of orthonormal frames. By def-
inition, the fiber over any point € M is given by the orthonormal maps u : R" — T, M.
Thus, if eq, ..., e, denotes the standard basis of R™, then weq,...,ue, is an orthonormal
basis of T,, M, where x = 7(u). Recall from basic differential geometry (see e.g. [11]) that
the frame bundle comes equipped with n canonical horizontal vector fields Hq, ..., H,,
which are defined by
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H,(u) = (uey)”, (3.2)

where * denotes the horizontal lift.

Let (PyR™,%,Py) be the space of continuous curves in R™ equipped with the Borel
o-algebra and the Euclidean Wiener measure, and denote the coordinate process by
W;: PpR™ — R™. We use the normalization that the generator of W; is given by Agn
instead of %ARTL, i.e. the covariation is given by

(W, WP = 264, (3.3)

Given an initial frame u above z € M, following Eells-Elworthy-Malliavin one consid-
ers the following stochastic differential equation (SDE) on the frame bundle

n
dUt = ZHa(Ut) 9] tha’ UQ =u, (34)
a=1
where Hy,...,H, are the canonical horizontal vector fields, and od denotes the

Stratonovich differential.

Definition 3.5 (Ito map, Wiener measure, and stochastic horizontal lift). Let U : PyR™ —
P,FM be the solution map of the SDE (3.4). The map I := 7(U): P,R" — P, M is
called the Ito map. The Wiener measure on P, M is defined as the pushforward measure
P, = I4Py. The map W, := Wy o I7': P,M — R" is the euclidean Brownian motion
under P,. Finally, the map U := U o I"': P,M — P,FM is called the stochastic

horizontal lift.

By definition, the Ito map I provides an isomorphism between the probability spaces
(PoR™, %, Py) and (P, M, 3, P,). As stated in the introduction, the Wiener measure P,
on P, M is uniquely characterized by the following property. For any evaluation map

Cty,ty - PIM_>Mka Y= (fYtla"'77tk>7 (36)

its pushforward is given by

(€ty,ti)# AP (Y1, - yk) = ey (@, Y1) Pro—ts (Y1, dY2) - - - Pt—t (Yk—1, dYr), (3.7)

where p;(z, dy) = pi(x,y) dvg(y) denotes the heat kernel measure on M.

The main advantage of the frame bundle formalism is that in addition to the Wiener
measure of Brownian motion on M it also yields (without any additional effort) a notion
of stochastic parallel transport:

Definition 3.8 (stochastic parallel transport). The family of isometries P, := UgU; *:
TrwyM — T, M is called stochastic parallel transport.



R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714 21

To conclude this section, let us point out as a consequence of the SDE (3.4), taking
also into account our normalization (3.3), the Ito formula on the frame bundle takes the

form
df = Hof AW + Ay f dt, (3.9)

where f = for: FM — M — R, and where Ay = Y.7_, H? denotes the horizontal
Laplacian.

3.2. Gradients on path space

This section is dedicated to studying the various notions of gradients which appear
in this paper and relating them. In general there are many such notions that play a role
in the literature, and in this paper at some point or another, however most are easily
related.

As before, we denote by H the Cameron-Martin space, i.e. the Hilbert space of H'-
curves {h;}¢>0 in R™ with hg = 0, equipped with the inner product

/ ha ety dt. (3.10)
0

Any h € H can be viewed as a vector field Uh on P, M by taking
(Uh)e(y) = U(y)he € T, M, (3.11)

where U(y) denotes the stochastic horizontal lift of v as in Definition 3.5.
For a function F': P,M — R, a priori there are several notions, which can be listed:

VHFE . P,M — ¥ the Malliavin gradient,

VIF: P,M — T, M the parallel gradients,
V*F : P,M — TP, M the L*-gradient. (3.12)

Additionally in this paper we will be considering the ¢-gradient V F : P,M — T, M.
The following summarizes the relationships between the first of these notions of gra-
dient:

Lemma 3.13 (gradients). Let F : P,M — R, then we have the relations:
(VEF,Uh),, = DypF = (V* / v F, ht t, (3.14)
0

where Uh denotes the vector field associated to h € H as in (3.11).
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Proof. The first two equalities are tautological, as they are in fact the definitions of
the L?-gradient and the Malliavin gradient, respectively. Thus, we will focus on relating
these notions of gradient to the parallel gradient as in the last equality. It is enough for
us to show this on cylinder functions

F=f vy eorve) (3.15)

For a cylinder function F, the directional derivative Dy, F' in direction of the vector Uh
is given by

k
DunF() =3 (V9 G+ 7). U (b, ) (3.16)
Jj=1 Tty
k
=Y (P IV e ) ey ) (3.17)

<.
Il
_

where V) denotes the gradient with respect to the j-th variable, and P.(v) denotes
stochastic parallel transport as in Definition 3.8. Recall from [13] that the t-parallel
gradient V,IJF : PLM — T, M is defined via the directional derivative of F' along the
vector field which is 0 up to time ¢ and parallel translation invariant for times larger
than ¢, i.e.

HF ZPt ])f ,Ytu"' ”Ytk)~ (318)

tj>t

As a motivation for the related but more complicated analysis of the Hessian in
subsequent sections, it is convenient to rephrase the above in terms of the frame bundle
FM as in Section 3.1. In terms of the horizontal vector fields HY) on FM* we can write
the directional derivative as

DunF =3 <H(j)f,htj> : (3.19)
J

where f = fom : FM* — R denotes the lift of f. Moreover, equation (3.18) can be
rewritten as

ViF=Y HUF, (3.20)

tj>t

so that

t;

/ <VL'F, ht> dt=3" <H(j)f7hti - htH> . (3.21)

ti—1 jzi
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Finally, let us put all of this together in order to compute

Dy F =Y <H(j)f, htj> =y <H(j)f, he, — he,_, / V”F ht dt, (3.22)
J 0

j>i
which proves the final equality. O

Therefore we have seen that all the notions of gradient contain roughly the same
information, simply packaged in a slightly different form. Let us use this to understand
our notion of ¢-gradient V F' : P,M — T,M. The following is immediate from the
definition:

Corollary 3.23 (gradients). Let F : P,M — R and ¢ : [0,00) — R be an H'-function
with ¢(0) = 0. Then we have the relations

oo

(VoF,0) = DypnF = (VEE,U(pv)),, = (VF, pv), = / <v't‘F, gbv> dt, (3.24)
0

where we are viewing ov € H.

One can therefore view the p-gradient as a smoothed version of the parallel gradient,
where instead of defining a gradient for each ¢t > 0 we have defined a gradient for each
¢ :]0,00) = R.

To conclude this section, let us remark that from Lemma 3.13 (gradients) one sees
that

d

viF = Z(VF), (3.25)

i.e. the t-parallel gradient is the time-derivative of the Malliavin gradient. In particular,
it follows that

IIVPCF|2, = /|V,'JF|2 dt. (3.26)

Also, having defined them on cylinder functions, thanks to the integration by parts
formula (see below), the gradients can be extended to unbounded closed operators on
L2,

3.8. Intertwining formula and integration by parts
Let us first recall the classical integration by parts formula on path space. If F,G :

P, M — R are cylinder function and h € H, assuming say either that h is compactly
supported or Ric = 0, then



24 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714

1T
E, [DynF G| = E, | —~FDynG + 5FG/<ht+Rict he, dW3) | | (3.27)
0

see [5,9]. Here, Ric;: R™ — R™ is the Ricci transform at Uy, i.e. for v € R™, Ric; v denotes
the unique element in R™ such that (Ric; v, w) = Ricyv,)(Usv, Upw) for all w € R™.

More generally, as pointed out e.g. in [2, Sec. 2.3], instead of constant h € H, one can
also consider adapted processes vy : P, M — R™ with E, [||U||:2}c] < o00. To discuss this,
recall first from Definition 3.5 that the Ito map

I:PR™ - P, M (3.28)

is an isomorphism between probability spaces. However, the Ito map does not preserve
the geometry. The curvature term one gets from differentiating the Ito map is captured
conveniently by the intertwining formula from Cruzeiro-Malliavin [4, Thm. 2.6]: The
derivative of a differentiable function F : P,M — R can be computed in terms of the
derivative of the composed function F oI : P)R™ — R via

Dy (FolI)=(Dy,F)ol, (3.29)

where the R™-valued process v* is given by

t

dv; = dvy — /IRs(odWs,vS) o dW, (3.30)
0
where
(R (2, y)w, z) = Rm,, (Us (7)2, Us(7)y, Us(7)2, Us ('V)U))a (3.31)

for x,y,z,w € R™. Here, the process v* is a so-called tangent process. In general, a
tangent process ( is an R™-valued semi-martingale

dCt - At th + bt dt, (332)
where ¢ — (A, b;) is an adapted process taking values in so0, x R™ such that

E, UOOO |bs|2d5] < 00. The derivative of a function F : PoR™ — R in direction of a
tangent process ( is defined by

_ d
D¢F(B) = o

F (v&(8)) (3.33)

e=0

where 3 = I~1(y) and
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t t
(B = [ e AW (y) +e [ bs(y)ds. (3.34)
/ /

The intertwining formula can be used to derive the following variant of the integration
by parts formula:

Proposition 3.35 (integration by parts, cf. [2, Sec. 2.8]). If F,G : P,M — R are cylin-
der functions, then for any adapted process vy : PoM — R™ with E, [fooo(|1}t|2 + |0 +
Ric vt|2) dﬂ < o0, we have

1 [ee)
]Ez [DUvF G] = Ew —FDUUG + §FG/<’U1/ + RiCt Ut,th> . (336)

Proof. By the product rule it is enough to prove the integration by parts formula in the
case G = 1.

Consider the function F := Fol : PyR™ — R, where I denotes the Ito map. Applying
Girsanov’s theorem, we see that on PyR™ for every tangent process ¢ of the form (3.32)
we have

—_

Eo [DcF| = 5IEO F/(btol, dWy) | - (3.37)
0

In particular, we can apply this for { = v* from equation (3.30). Using Ito calculus, we
compute

t
/RS(OdWs, vg) 0 dWy =
0

1
R (OdWs, ’Us) th + iiRt(Oth, ’Ut)th (338)

o —__

t
/fRS odWs, vs) dW; — Ricy vpdt. (3.39)
0

Hence, the non-martingale part of v* is given by
rL.}t dt + RiCt (o dt. (340)

Thus, together with the intertwining formula (3.29) we conclude that

E. [DyoF] = Eq [D,-F| =

N =

oo
Eo F/ { (0 + Ricyvy) o I, dWy) (3.41)
0
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oo

1
= iEx F/ <’Ut + RiCt V¢, th> . (342)
0

This proves the proposition. O
4. The Ricci-flat case

In this section, we prove our main theorems in the Ricci-flat case. In Section 4.1, we
will find a certain positive quadratic form. In Section 4.2, we will rewrite this quadratic
form in a more geometric way to prove our main differential Harnack inequality on path
space (Theorem 1.37). In Section 4.3, we will establish the Matrix Harnack Inequality
on path space. Finally, in Section 4.4, we express our differential Harnack inequality in
terms of the L2-Laplacian.

4.1. A positive quadratic form

The goal of this section is to prove Theorem 4.8 (Halfway Harnack). To this end we
start with the following definitions.

Definition 4.1 (adapted L?-vector fields on path space). We denote by
L24(PM; 3) (4.2)

the space of all ¥;-adapted stochastic processes v : P,M — R™ with E,, [||v]|3] < oo.
The space of adapted L2-vector fields on path space P, M is defined by

L24(P,M;TP,M) := {Uv|v € L3y (PM; H) }, (4.3)
where
(Uv)e(7) :=Ue(y)ve(y) € T, M (4.4)

is the vector field on path space corresponding to v. By definition, this gives a bijective
map

U:L2j(PeM;H) — L2((P.M; TP, M). (4.5)

Using this bijection, we can define the inner product of V,W € L2,(P,M;TP,M) by
(V. W)y, = /ot i dt, (4.6)
0

where v = U™V and w = U™'W are the associated R™-valued processes.
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Definition 4.7 (derivable vector field). A vector field V' € L2,(P,M;TP,M) is called
derivable if Dy exists in L2, (P,M;H) for all W € L2,(P,M;TP,M), where v =
U-tv.

In particular all constant vector fields, i.e. vector fields of the form V = Uh for some
h € H, are of course derivable. The set of derivable vector fields is dense in the space of
adapted vector fields. The following is our Halfway Harnack inequality in the Ricci-flat
case:

Theorem 4.8 (Halfway Harnack). Let M be a Ricci-flat manifold, and let F: P, M — R

be a nonnegative cylinder function. Then, the quadratic form

 EDy(DyF)] EJDvF? | EJDy v Fl | 1E[F|VI2]
QrlV V= = T T R T R T2 B

is nonnegative for every derivable V € L? ,(P,M;TP,M). Here, V denotes the Marko-
vian connection (see below).

Morally speaking, our quadratic form Qp can be thought of as “push forward under
the Ito map in the sense of adapted differential geometry” of the quadratic form V2®(0)
from Remark 2.24. To discuss this properly, and as a preparation for the actual proof
of Theorem 4.8, let us start by recalling the Markovian connection as introduced by
Cruzeiro-Malliavin [4]. In the following, we write®

(Rs(z,y)w, z) = Rm,, (Us(v)x, Us(v)y, Us(v)z, US(V)w), (4.10)
where z,y, z,w € R™.

Definition 4.11 (Markovian connection, [4, Sec. III]). The Markovian connection is de-
fined for constant vector fields via

t

d .

EUgl(kaUh)t = / R (0dWy, k) hy, (4.12)
0

with initial condition (V;,Uh)o = 0, where h, k € J(. The definition is then extended to
nonconstant vector fields Uv via the Leibniz rule.

Note that (4.12) can be solved for V;, Uh by integrating in time and inverting U.

The connection V is called Markovian, since the right hand side of (4.12) only depends
on the value of h at time ¢.

6 Careful about the switching of the order of z and w between R and Rm below.
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Let us observe that the Stratonovich integral actually agrees with the corresponding
Ito integral for Ricci flat spaces:

Lemma 4.13. If M is a Ricci-flat manifold, then

t t

/ﬂzs(odWs,ks) = /iRS(dWS,kS). (4.14)

0 0

Proof. In general, a Stratonovich integral can be converted to an Ito integral by adding
a quadratic variation term:

t t t
/ RSy k! 0 dWE = / RSy kb AW + / L Ak Raped, WY, (4.15)
0 0 0

Using Ito calculus, the Bianchi identity, and the condition Ric = 0 we compute
L Ak Rapea, W5 = KL H RSy g ds = K2(H.Ryy — HyR;,) ds = 0. (4.16)
This proves the lemma. 0O

It is important to note that for V. € L2,(P,M;TP,M) and derivable W €
L2,(P,M;TP,M), we have that z; := Ut_l(VVW)t defines an adapted R™-valued pro-
cess with finite norm E,[||z||3,] < co. Hence, by Proposition 3.35 (integration by parts)
it holds that:

Eo[Dv,wF G] =E, |-FDyv, wG + %FG/@,th} : (4.17)
0

In general, the Markovian connection interacts well with the integration by parts
formula. Recall that the integration by parts formula motivates the following definition
of divergence.

Definition 4.18 (divergence on Ricci flat Manifolds). The divergence of an adapted vector
field V = Uv € L2,(P,M; TP, M) on path space of a Ricci-flat manifold is defined by

(V) = %/(ot, dWy) . (4.19)
0

The following is a very useful algebraic relation:

Proposition 4.20 (commutator formula, [2, Thm 3.2]). Assume that M is Ricci-flat, and
let V,\W € L2 (P, M;TP,M). If W is derivable, then
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Dyé(W) =86(Vy W)+ 5 (V. W)y (4.21)

Proof. Let v = U~V and w = U~'W. By the intertwining formula (3.29) differentiation
on P, M along V can be transformed to differentiation on PyR™ along v* given by v = 0
and

t
dvf = vy dt — / Re(0dWs, vs) AW, (4.22)
0

where we replaced odW; by dW; using the assumption Ric = 0, cf. the proof of Propo-
sition 3.35.

Recall that curves 8 € FPyR"™ correspond to curves v € P,M via the Ito map
I: P\R™ — P, M. The intertwining formula yields

Dy / (tby, AW,) (7) = D, / wy o I,dW;) (B) (4.23)
0 0

/(D (g o I),dWy) ( +/ (g o I,dDy=Wy) (B). (4.24)
0

Using again the intertwining formula, the first integrand can be rewritten as

Dy« (w0 I)(B) = Dy (). (4.25)

For the second term, using W; () = ¢ and equation (3.33) we compute

t t
d .
D) = | / SR aw, () e [i.(0)ds | (420)

0

__o//:RT (0dW:(7), vr (v ))dWs(7)+0/©s(7) ds. (4.27)

Consequently, combining (4.23), (4.25) and (4.26) and, we conclude that

2Dy 5(W) :7<Dth, dW,) — 7<wt /tﬂQ,,(odWT, or) th> + 7<@t,wt> dt

0 0 0 0
(4.28)

oo oo

t
/Dth,th /</Rr(odWT,vr)wt,th>—|—<V,W>%. (4.29)
0

0 0
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Observing that

t

d
Dy + / R (odW, v, )i = U7 (VW) (4.30)
0

and recalling the definition of divergence, this proves the proposition. O

Now we are able to check by direct computation that our quadratic form Qg is
nonnegative.

Proof of Theorem 4.8. By scaling we can assume that
E.[F] = 1. (4.31)
First, by the usual integration by parts formula (3.36) we have
E.[DyF)=E,[Fé(V)]. (4.32)
Second, using the version from (4.17) we see that
E, [DVVVF} =E, [F§(V,V)]. (4.33)

Third, applying integration by parts twice and using Proposition 4.20 (commutator for-
mula) we obtain

Eq [Dy (Dv F)] =E; [Dy F6(V)] (4.34)
=E, [F5(V)*] —E, [FDy5(V)] (4.35)
=E, [F6(V)?] = B, [FO(Vy V)] = SEL[FI[VI3].  (4.36)

Combining the above formulas, we conclude that
QrlV.V] = B, [Fo(V)?] - E, [Fo(V)]2, (4.37)

which is indeed nonnegative by the Cauchy-Schwarz inequality. This proves the theo-
rem. O

4.2. Differential Harnack

We can now prove our differential Harnack inequality on path space (Theorem 1.37),
which we restate here for convenience of the reader:
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Theorem 4.38 (Differential Harnack inequality on path space). Let M be a Ricci-flat
manifold, and let F : P,M — R be a nonnegative function. Then, for all ¢ € H}(R™T)
we have the inequality

E, [ASOF] |Em [v%"F”?

n 2
- - > 0. 4.39
Proof. Let F(v) = f(7¢,,- - ,7t,) be a nonnegative cylinder function. By scaling we can
assume that
E.[F]=1. (4.40)

By Theorem 4.8 (Halfway Harnack) and the definition of the Markovian Hessian we have
Qr[V,V] =E, [Hess F(V,V)] - E, [DyF]” + 2E, [Dy v F| + 4[|V|[3 > 0, (4.41)

for all derivable vector fields V € L2 (P, M;TP,M). In particular, we can apply this to
V@ corresponding to the process vy = ¢.e,, where e, € T, M is an orthonormal basis.
By definition of the ¢-gradient we have

DyeF = (V,F,e,) (4.42)

and by definition of the ¢-laplacian we have

n
Ay F = Hess F(V*, V). (4.43)
a=1
Using the formula
_ [P
DyoF = <vt Foy ) dt, (4.44)
0

together with Definition 4.11 (Markovian connection) and Lemma 4.13, we infer that

o i
Dy, veF = / <V|tF, / RS(dWs,wsea)gbtea> dt. (4.45)
0 0

Hence, summing over a and using that Ric = 0 we conclude

> QrlV V) = Eo [AF] - [E, [V FI* + el > 0. (4.46)

a=1

This proves the theorem. O
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4.3. Differential matriz Harnack

In this section, we prove the Matrix Harnack inequality on path space in the Ricci-flat
case:

Theorem 4.47 (Differential Matriz Harnack inequality on path space, Ricci-flat case).
Let M be a Ricci-flat manifold, and let F : P,M — R be a nonnegative Lp-measurable
function on path space. Then, for every ¢ € Hi(R™) we have

E,[Hess, F] E,[V,F]®E,[V,F] E,[F?]'/?

E,[F] - E,[F]2 + %C <1 + CT(Rm)Tm) ||30H2 >0, (4.48)

where Cp(Rm) < oo s a constant, which converges to 0 as |Rm| — 0 assuming that T
stays bounded.

Proof. Let F' = f(v,, - ,7,) be a cylinder function. By scaling we can assume that
E.[F] =1 and ||¢|| = 1. (4.49)

Let v € R™ be any unit vector. Arguing similarly as in the proof of Theorem 4.38, we
see that

(]Ez [Hess, F] — E, [V, F] @ E, [V, F] + %‘f) (v,v) > —2E, [F3 (Vy V). (4.50)

Using Ito’s isometry and the bound |p,| < s/2, we can estimate
. 2

T
E, {5(VVV)2]§/IEI /st(dws,%v) G2 dt < Cr(Rm).  (4.51)
0 0

Together with the Cauchy Schwarz inequality, this implies the assertion. 0O
4.4. Differential Harnack in terms of L?-Laplacian

The goal of this section is to relate the Markovian Hessian and the L2-Hessian, as
needed for Corollary 1.51. The following notions of gradient of vector fields will play the
dominant roles:

V# the L%-connection ,
V the Markovian connection. (4.52)
Here, the L2-connection is the Levi-Civita connection of the L?-inner product, and the

Markovian connection is as in Definition 4.11. These connections on the space of vector
fields naturally induce Hessians on the space of functions by the formulas:
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Hess® F(V,W) = Dv(DwF) — Dyeyw F,
Hess F(V, W) = DV (DwF) — vawF . (453)

Our goal is now to relate the two induced Hessians. Namely, we will show that
Hess F(Uh, Uh) = Hess® F(Uh,Uh) + / ”F Ry (0dW, ht)ht> (4.54)
0

To prove this, we start by expressing the L?-Hessian in terms of the parallel Hessians.

Lemma 4.55 (L?-Hessian and Parallel Hessian). Let F : P,M — R be a function on
path space, and let Hess® F its L2-Hessian as defined above. Then for any h,k € H we
have

o0

Hess* F(Uh, Uk) / / <VQVL'F, b ®kt> ds dt. (4.56)
0 0

Proof. The proof is a more involved version of the relationship between the L2-gradient
and the parallel gradient from the preliminaries section. To begin, note that for any
cylinder function

F(y) = f(Frs 570 (4.57)

using the horizontal vector fields on FM* we can compute

ti—1tj—1
/ (VIVIF by @) dsdt= 3" HOH™F (b, = i )08, = hE,,) . (4.58)
o 0>i,m>j

Now, similarly as in the L2-gradient computation from the preliminaries section, we can
use the horizontal vector fields to compute the L?-Hessian:

Hess® F(Uh,Uk) =Y HOH™ fhi kY.

4m
= > HOHM™f(h —hg (kY k)
£>i,m>j
ti—1tj—1
:Z/ / (VIVIF b @) dsdt
bl bty

= / / (VIV)Fhy, by dsat, (4.59)
0 0
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which, by density of cylinder functions, completes the proof of the lemma. O

We will now prove the formula (4.54), relating the L?-Hessian and the Markovian-
Hessian:

Proposition 4.60 (Markovian Hessian and L?-Hessian). Let F: P,M — R be a cylinder
function, and let Vi = Uihy, where h € H. Then

Hess F(V,V) = Hess® F(V, V) +/ VI Ry oth,ht)ht> (4.61)
0

Remark 4.62. The integral in (4.61) is an anticipating integral, but since F(y) =
f(¥eys .-y 11,,) s a cylinder function it can simply be expressed as a finite sum of usual
non-anticipating integrals:

oo t;
/<v't‘F, th(oth,ht)ht> = <uti1V(“f7/Rt(oth,ht)ht>. (4.63)
0 0

i

Proof. Let F(v) = f(V4,,-..,7,) be a cylinder function, where 0 < t; < ... < #. We
will first compute in the smooth setting and appeal to the transfer principle later. So let
¢ be a smooth curve in M starting at x, with horizontal lift u; and anti-development
B¢. Let v be a smooth variation of y; with fixed initial point such that

d
de

7 = uthy =: V;. (4.64)

e=0

Let ug be the horizontal lift of v;. We compute

k
d (i)
Dy(DvF)=—| ;Vu;hti FOfs - 5) (4.65)
=3 (VOO e ) + 3 (VOL V)
i,j=1 T, MOTo, M5 L T,
(4.66)
By Lemma 4.55 (L2-Hessian and parallel Hessian) the first term is given by
k . .
3 <V(’)V(7) £V, ® Vt> — Hess® F(V, V). (4.67)
ii=1 Twi M®T’YtjM

To compute the second term, note that by definition of the horizontal lift we have

Vi, (ureq) =0, (4.68)
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hence

Vs, Vv, (urea) = R(91, Vo) (ueea). (4.69)
Through integration this implies

t;

Vv, (ugeq) = / P/ (7R (%, Vi) (ureq) dt (4.70)
0
t;
:/utimt(ﬁ.t;ht)ea dt, (4.71)
0

where P/* = u;, ou; ' denotes the parallel transport along ~ from T, M to T,, M. Thus,
we get

173

Z <V(i)f, Vv, Wi>thi M Z <“t_ilv(i)f,

i=1

th(ﬂ't,ht)dthti> . (472)
0 R~

Putting things together and using the transfer principle (see [14]) we obtain

k ti
Dy(DyF) =Hess“F(V,V) + ) <Ptiv<i> 1, / Ry (0dW, ht)hti> . (4.713)
0

i=1 R~

The curvature term can be rewritten as

t;
Z <Ptiv(i)f7 / Ry (cdWy, ht)hti>
i 0

t; ¢

= Z <PtiV(i)f,/th(oth, ht)(hti - ht)> +Z <Pt1V(Z)f, /Rt(Oth, ht)ht>

0 R» 0 Rn
(4.74)

R~

For the first term in (4.74) we find by recalling the definition of the Markovian connection

i

t;
> <ptiv<i> f, / Re(0dWy, hy)(he, — ht)>
0

R~

ti t;
=Z<Ptiv<“f, | [ 1wcaoaedwi, b, ds> (4.75)
i 0 0

R~
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ti S
=> <Ptiv(i)f,//Rt(oth,ht)hs ds>
0 0

g Rn

:/<VQF,/th(oth,ht)hs> ds = Dy vF, (4.76)
0 0 R™

where we also changed the order of integration in the first line. For the second term in
(4.74), we obtain

t; [e%¢]
Z<Ptiv(i)f,/Rt(oth,ht)ht> =/<V!F, Rt(oth,ht)ht>Rn. (4.77)
0

i Re 0

Putting everything together, this proves the proposition. 0O
As an immediate consequence of the above we obtain:

Corollary 4.78. If M is Ricci-flat, then the w-Laplacian induced by the Markovian con-
nection and the L?-connection agree, i.e.

A, = AL (4.79)

In particular, our differential Harnack inequality on path space of Ricci-flat manifolds
can be rewritten as

E, [ALF . ‘o
i - T+ P 2o 0

5. The general case

Note that Xp-measurable functions on C([0,00); M) can be identified with functions
on C([0,T]; M). Hence, for ease of notation from now on we will assume that all curves
have time domain [0, 1], i.e. we will work with the path space

P,M = {v:1]0,1] — M |~ continuous ,yy = z}, (5.1)

the Cameron-Martin norm
1/2

1
ollac = / ode | (5.2)
0

etc (it is easy to rephrase the theorems from the introduction as equivalent theorems for
t €10,1]).
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5.1. A positive quadratic form

The goal of this section is to prove Theorem 5.32 (Halfway Harnack). In contrast
to the Ricci-flat case from the previous section, we now have to take into account the
Ricci-terms. To this end, we start with the following definition.

Definition 5.3 (hat-map). The hat-map

Lig(PeM;3) = L3y (PeM33), v 0 (5.4)
is defined by
t
(1) = w1) + [ Rics(2)e0) ds, (5.5)
0

where Rics(y) : R™ — R"™ is given by (Rics(y)v, w) = Ricy, (Us(y)v, Us(v)w).

Lemma 5.6 (cf. [6, Lem. 3.7.1]). The hat-map is well-defined, linear, and bijective. More-
over, we have the bounds

[19]]sc < (1 + C(Ric))[[vllsc, and [Jv]|lsc < (1 + C(Ric))||9]]sc (5.7)
where C(Ric) — 0 as |Ric| — 0.

Proof. Using |Ric| < K and |vs| < tY/2||v]|s¢ < ||v]|5¢ we can estimate

1 1
/\ét|2dt:/|bt+Rictvt|2dt < (1+ C(E)|vlZ, (5.8)
0 0
hence
E, [|18]13] < (1 + C(K))E, [||v][3] < oo. (5.9)

Together with the observation that by the defining formula (5.5) the process 9, is adapted
whenever v; is adapted, this implies that the hat-map is well defined. Also, the hat-map
is obviously linear.

Next, agssume that & = 0. Then, from (5.5) we see that v solves the ODE

’[Jt + RiCt VUVt = O, Vo = 0. (510)

Thus, v = 0, which shows that the hat-map is injective.
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Finally, given w € L2,(P,M;H) we solve the ODE
1.}15 + RiCt UVt = wt, Vo = 0. (511)

The solution is clearly adapted, and using |Ric| < K and |v| < ||[v||3¢ we can estimate
1

lloll3c = / e = Ricyv|* dt < (1 +e) [Jwl][5c + C(e, K)||ol[5- (5.12)
0

Choosing ¢ small enough the term on the right hand side can be absorbed. Hence,
v € L2,(P,M;H), which proves that the hat-map is surjective. This concludes the proof
of the lemma. 0O

Definition 5.13 (hat of a vector field on path space). For any vector field V €
Lgd(PmM; TP, M) we write

V.=UU-1V. (5.14)

Now, as in Cruzeiro-Fang [2] we can consider the modified Markovian connection:

Definition 5.15 (modified Markovian connection, [2, Sec. 3]). The modified Markovian
connection VF is defined via

VEW = v W (5.16)
for VW € Lid(PIM ; TP, M), where V denotes the Markovian connection from Defini-
tion 4.11.

The modified Markovian connection is well-defined, since the hat-map is invertible
by Lemma 5.6. Note that in the Ricci-flat case we have VF = V, since the hat-map
becomes the identity-map.

By [2, Thm. 3.1] the modified Markovian connection is compatible with the modified
H-product

(V, W) = <\7,W>j{. (5.17)

Indeed, using that V is compatible with the H-product one can compute
Z V,WA:Z<1A/,W\> 5.18
VW) ; (51)
= (v, V. W) +{(V.v,W) 5.19
< z " + zW ). (5.19)

— <v§v, W>}AC i <V, v‘;w>ﬁ . (5.20)
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Definition 5.21 (divergence). The divergence of a vector field V € L2 (P,M; TP, M) is
defined by

1
1
= 5/ Ut, th (522)
0

where v = U™V and 0, = 9, + Ric; v; as in Definition 5.3.

The definition of the divergence is motivated by the integration by parts formula (see
Section 3.3), which can be rewritten as

E,[DyvFG]=E,[-FDyG+ FG4(V)] (5.23)
for V€ L2,(P,M;TP,M). The following is a very useful algebraic relation:

Proposition 5.24 (commutator formula, cf. [2, Thm. 3.2]). For V,\W & L2,(P,M;
TP, M), with W differentiable, we have

Dy(W) = 8(VEW) + L (v, W) (5.25)

Proof. The proof is similar to the one of Proposition 4.20, with a few changes to take
into account the Ricci-terms. Generalizing equation (4.22) we now have

t
dvf =0, dt — /fRS(OdWS, vs) o dWy (5.26)
0
t
=0, dt — /fRs(odWS, vs) AWy + Ricy vy dt (5.27)
0
t
by dt — / Ra(od WV, vs) dWi. (5.28)
0

Using this and the intertwining formula we compute

o0

2Dy (W) = DV/<zbt,th> (5.29)

/ U}t (@) I th + / ’LUt o 17 de* Wt> (530)
0 0
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oo

o] o] t
:/<Dmbt,th>—/<1bt,/325(odWs,vs)th> +/<@t,at> dt.  (5.31)
0 0

0 0

This implies the assertion. O

We are now ready to state and prove our Halfway Harnack inequality in the general
case:

Theorem 5.32 (Halfway Harnack). Let F : P,M — R* be a nonnegative cylinder func-
tion. Then

Op[V.V] = E, [Dv(DvF)] E,[DyF)? . E, [Fé(VﬁVﬂ . 1Ee [FIIVII%}
Ex[F] E.[F]? E.[F] 2 Eo[F]
(5.33)
is nonnegative for every derivable V € L2 ,(P,M; TP, M).
Proof. By scaling we can assume that
E,[F] = 1. (5.34)
Using the integration by parts formula (5.23) we get
E.[DyF)=E,[Fé(V)], (5.35)
and
E, [DV‘;VF} ~E, [Fé(v‘;V)} . (5.36)

Next, applying the integration by parts formula (5.23) twice and using also Proposi-
tion 5.24 (commutator formula) we compute

Eq [Dy (Dy F)] =Eg [Dy Fo(V)] (5.37)
=E, [F§(V)?] - E, [FDyvs(V)] (5.38)

=E, [F6(V)?] - E, [Fé(vl‘fV)} ~1E, [F||V\|§AJ . (5.39)
Combining the above formulas, we conclude that
Qr[V,V] =E, [F§(V)?] —E, [F5(V)], (5.40)

which is indeed nonnegative by the Cauchy-Schwarz inequality. 0O
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5.2. Differential matriz Harnack

In this section, we prove the differential Matrix Harnack inequality (Theorem 1.58)
on the path space of general Riemannian manifolds.

Proof of Theorem 1.58. We will show the claim for cylinder functions and appeal to

density. So let F' = f(vy4,, -, v, ) be a cylinder function. By scaling we can assume that
F is ¥1-measurable, and that

E.[F]=1, and ||| =1. (5.41)
Fix any unit vector e, € T, M. We choose
vy = @(t)eq, (5.42)
and apply Theorem 5.32 (Halfway Harnack) for V' = Uwv, which gives
E. [Dy(DvF)] - E, [DvF) + B, [F3(VEV)] + 3B, [FIVIZ] 0. (5.43)
Using the definition of the Markovian Hessian we rewrite this as
E, [Hess F(V, V)] — E, [DvF|* + LE, [F||V[3]
+ 4, [F (VI = IVIBc)| + Ea [Do,vF] + B [Dop F| 2 0. (5.44)

We view the terms in the second line as error terms, which we have to bound from above.
First, using Lemma 5.6 and equations (5.41) and (5.42) we can estimate

LE. [F(IVIE - V1) | < C(Rio). (5.45)

Next, using also the integration by parts formula, Cauchy-Schwarz inequality, the Ito
isometry, and Lemma 5.6, we have

E, [Dy vF]* = E, [F6(VyV)]> < (1+ C(Ric)EL[FAE, [|IVy V2],  (5.46)

Similarly, using the definition of the modified Markovian connection (Definition 5.15),
we can estimate

E, [DV|V:VF}2 ~E, {Fa(v‘;V)r < (1+ C(Ric))E,[F?] E, [||VVI7||§C] . (547

To finish the proof of the theorem, it thus remains to prove the following claim:
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Claim 5.48. We have the estimates

E, [[[Vy V]3] < C(Rm, V Ric), (5.49)
and

E, [||vvx7|\§c} < C(Rm, V Ric), (5.50)
where C'(Rm, V Ric) < oo is a constant which tends to zero as |Rm| + |V Ric| — 0.

Proof of the claim. By definition of the Markovian connection and our choice of V' we
have
1]t 2 t 2

E, [|[IVy V]3] =Es //IRS(OdWS,vS)q}t dt| < sup E, /Rs(odWSmS)

tefo,1
o1 [0,1]

(5.51)

Using Ito’s lemma and the Bianchi identity we see that
Rs(0dWs,vs) = Rs(dWs,vs) + (V Ric)s A vs ds, (5.52)

where A is a certain bilinear pairing whose precise structure is irrelevant for our purpose.
Hence, using also the bound |vs] < 1, and Tto’s isometry, we can estimate

t 2

/ (odWy,v)| | < 2E, /fRs(dWs,vs) +9E, / |(V Ric)s A vy ds
0 0
< C(Rm, V Ric),
(5.53)
which proves the estimate (5.49).
Concerning estimate (5.50), by the definition of the Markovian connection we have

2

E. |19, 718] =E. | [ |Dvir+ / Ro(odW,, vs)i| dt (5.54)

o _

1 1 t
<IE, / Dyéi? dt| + 2E, / / Ry (odWy, vs)| 0] dt
0 0

(5.55)

Using Lemma 5.60 below, and |v;| < 1, we can estimate
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2

|Dyo,|> < 2|(V Ric),|? + 8| Ricy |2 | | Re(0dWs,v,)| . (5.56)

o—_

This yields

1
E, /|Dvét|2dt < C(Rm, V Ric). (5.57)
0

Finally, using |3;|? < 2|¢|? 4 2|Ric|? and arguing similarly as above we can estimate

t 2

1
E, //Rs(odWS,vs) |42 dt| < C(Rm, V Ric). (5.58)
0 [0

This proves the claim. O

Putting things together we conclude that

E, [Hess F(V,V)]—E, [DyF]* + 3E, [F||V]|3] + C(Ric) + C(Rm, V Ric)E, [F?]"/? > 0.

(5.59)
Together with the definition of the p-Hessian and @-Laplacian, and our choice of V', this
finishes the proof of Theorem 1.58. O

It remains to prove the following lemma, which has been used in the above proof:

Lemma 5.60. If v € H and V = Uv, then

t t
Dy, = (V Ric)¢ (v, ve) + Ricy /Rs(odW.;,vs)vt - /Rs(ode,vs) Rictvg. (5.61)
0 0

Remark 5.62. Note that in the Einstein case Dy 9, = 0, as expected.
Proof. By the definition of ¥ we have
Dy, = Dy Ricg vy (5.63)

Let us assume that v; is a smooth path in M, and let 7; be the variation with v =0
and %’ Ofyf = V;. Let u§ be the horizontal lift of v;. Let 3 be the anti-development in

R”. Later we will appeal to the transfer principle.
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Let e, be a basis vector in R™. Then

: d :
(Dy Rici(vt), €a)gn =7y (Ricqys (ufvy), u§6a>Tw€M (5.64)
= (Vy, (Ric,, (V2)) 7utea>TwM + (Ricy, (V2), Vv, (utea»TwM .
(5.65)
From the proof of Proposition 4.60 we already know that
t
Vv, (uteq) = ug / R*(Bs,vs) dseq . (5.66)
0
Using also the Leibniz rule we obtain
th (RiC’Yt (V;f)) = (th R‘lc"/t)(‘/t) + R’iC’Yt (thV;f) (567)
t
= (Vy, Ric,,)(V;) + Ric,, ut/Rs(Bs,vs) dsvg | . (5.68)

0

Putting things together, this yields

t t
Dy Rict vy = (V Ric) (v, v¢) + Ricy /fRS(BS,vS) dsvy | — /IRS(BS,US) ds Ricg vy .
0 0
(5.69)

By the transfer principle, this implies the assertion. O
5.8. Differential Harnack

In this final section, we prove the differential Harnack inequality on path space of
general manifolds (Theorem 1.53) and its corollary (Corollary 1.55).

We note that taking the trace of the differential Matrix Harnack inequality (Theo-
rem 1.58) one immediately obtains

Ex[F2}1/2
E, [F]

E[AF]  |E.[V,F)?
] E.FP *(

% 4+ O(Ric) + C(Rm, V Ric)

. ) el =0, G:10)

however, only with the information that C'(Rm, V Ric) — 0 as | Rm| + |V Ric| — 0.

To get the sharper estimate from Theorem 1.53, where C'(Rm, V Ric) tends to zero
as |Ric|] + |V Ric| — 0 assuming only that | Rm| stays bounded, we will argue in the
opposite order. Namely, will first take the trace, and then derive sharper estimates for
the error terms of the trace Harnack.
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Proof of Theorem 1.53. By scaling we can assume that F' is ¥1-measurable, and that
E.[F]=1, and ||¢||=1. (5.71)

Arguing similarly as in the proof of Theorem 1.58 and taking the trace over V,, = U(pe,,),
where e, € T,,M is an orthonormal basis, we obtain

E, [A,F] — [E, [V, F] + gEI [F] + C(Ric)
1/2

1/2

+ (1 + C(Ric)) | E, E.[F3Y/? > 0.

1D Vv, Vall3
a

1D Vv, Vall3
a

(5.72)

To finish the proof of the theorem, it thus remains to prove the following claim:

Claim 5.73. We have the estimates

E. [HZW,%H%{ < Cy(Ric, VR), (5.74)

and

E, < Cy(Rm, V Ric), (5.75)

1D Vv, Vall3

where C1(Ric, VR) tends to zero as |Ric| + |[VR| — 0, and Ca(Rm, V Ric) tends to zero
as |Ric| + |V Ric| — 0 assuming only that | Rm | stays bounded.

Proof of the claim. Using the definition of the Markovian connection and our choice of
V. we have

1] ¢ 2

E, ||ZvVaVa||:2}f =E, / /ZfRS(OdWsa@sea)thea dt (5.76)
a 0 0 a
. 2
< sup E, /(ps Ric, odW, . (5.77)
t€[0,1] 5

Using Ito’s lemma and the contracted Bianchi identity we see that
Ric, odW, = Rics dW, + 5(VR) ds. (5.78)

Hence, using also the bound |vs| < 1, and Ito’s isometry, we can estimate
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t
/ 4 Rics 0dW,| | < C(Ric, VR), (5.79)
0

4).

which proves the estimate (5.7
Concerning estimate (5.75), by the definition of the Markovian connection we have

v lllzvvfallﬁc

=E, jZDV /ZR (odWy,v2)0%| dt| . (5.80)

a

Now, similarly as in the proof of (5.50) we can estimate

1
/|DV t} < C(Rm, V Ric), (5.81)
0

where C'(Rm, V Ric) tends to zero as |Ric|+|V Ric| — 0 assuming only that | Rm | stays
bounded. Moreover, since 9 = 0 + Ric,v¢ and v = ¢;e, we have

t

t
Z Rs(0dWs,v3)0 /gpSRicS o dWs ¢y + / Rs(0dWy,vd) Ric vf (5.82)
0 0

From this, the assertion follows. O
Using the claim, and putting things together we concluded that
E.[A,F] - [E,[V,F]| + g + C(Ric) + C(Rm, Ric, VRic)E, [F2]"? > 0,  (5.83)

where C(Rm, V Ric) tends to zero as |Ric|+|V Ric| — 0 assuming only that | Rm | stays
bounded. This finishes the proof of Theorem 1.53. O

Proof of Corollary 1.55. Inspecting the above proof we see that in the Einstein case the
error estimates in the claim above only depend on the Einstein constant. This proves
the corollary. O
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