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Recall that if (Mn, g) satisfies Ric ≥ 0, then the Li-Yau 
Differential Harnack Inequality tells us for each nonnegative 
f : M → R+, with ft its heat flow, that Δft

ft
− |∇ft|2

f2
t

+ n
2t

≥ 0. 
Our main result will be to generalize this to path space PxM
of the manifold.
A key point is that instead of considering infinite dimensional 
gradients and Laplacians on PxM we will consider, in a spirit 
similar to [13,8], a family of finite dimensional gradients and 
Laplace operators. Namely, for each H1

0 -function ϕ : R+ → R

we will define the ϕ-gradient ∇ϕF : PxM → TxM and the 
ϕ-Laplacian ΔϕF = trϕ Hess F : PxM → R, where Hess F is 
the Markovian Hessian and both the gradient and the ϕ-trace 
are induced by n vector fields naturally associated to ϕ under 
stochastic parallel translation.
Now let (Mn, g) satisfy Ric = 0, then for each nonnegative 
F : PxM → R+ we will show the inequality
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Ex[ΔϕF ]
Ex[F ]

− Ex[∇ϕF ]2

Ex[F ]2
+

n

2
||ϕ||2 ≥ 0

for each ϕ, where Ex denotes the expectation with respect 
to the Wiener measure on PxM . By applying this to the 
simplest functions on path space, namely cylinder functions 
of one variable F (γ) ≡ f(γ(t)), we will see we recover the 
classical Li-Yau Harnack inequality exactly. We have similar 
estimates for Einstein manifolds, with errors depending only 
on the Einstein constant, as well as for general manifolds, 
with errors depending on the curvature. Finally, we derive 
generalizations of Hamilton’s Matrix Harnack inequality on 
path space PxM . It is our understanding that these estimates 
are new even on the path space of Rn.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

Differential Harnack inequalities on manifolds Let us open by recalling the classical 
differential Harnack inequalities on manifolds. Thus, consider a Riemannian manifold 
(Mn, g) and for f : M → R denote by ft = Htf : M → R the solution of the heat 
equation (∂t −Δ)ft = 0 with f0 = f . The classical Li-Yau differential Harnack inequality 
[12] tells us that if f is nonnegative and if Ric ≥ 0, then we have



R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714 3
Δft

ft
− |∇ft|2

f2
t

+ n

2t
≥ 0 . (1.1)

While there are many other useful sharp estimates on heat flows which play an impor-
tant role in analysis for manifolds with nonnegative Ricci curvature, for instance the 
Bakry-Emery [1] estimate |∇Htf | ≤ Ht|∇f |, the differential Harnack inequality distin-
guishes itself in that it directly incorporates the dimension into the underlying estimate. 
Thus, the differential Harnack inequality is the usual starting point for many estimates 
on heat kernels, and other estimates which directly rely on the underlying dimension. 
For instance, integrating along a suitable space-time geodesic gives the sharp classical 
Harnack estimate

ft2(x2) ≥
(

t1
t2

)n/2
e− d(x1,x2)2

4(t2−t1) ft1(x1) . (1.2)

The differential Harnack inequality (1.1) and many of its implications are sharp and 
obtained when considering the heat kernel on Euclidean space. As another application 
we can apply (1.1) to the heat kernel ρx,t(y) = ρt(x, y), centered at some point x ∈ M , 
in order to obtain the estimate

Δ ln ρx,t ≥ − n

2t
. (1.3)

One can interpret the above as a smoothing of the classical Laplacian comparison theo-
rems for the distance function. In addition to the Li-Yau Harnack inequality there is also 
Hamilton’s Matrix Harnack inequality [7]. In the context where one assumes the stronger 
geometric constraints ∇ Ric = 0 and sec ≥ 0, Hamilton proved the Hessian version of 
(1.1) given by

∇2ft

ft
− ∇ft ⊗ ∇ft

f2
t

+ g

2t
≥ 0 . (1.4)

Harnack and basics of path space PxM The goal of this paper is to extend the differ-
ential Harnack inequalities to the context of the path space PxM of a manifold. We will 
have generalizations of the Li-Yau differential Harnack inequality (1.1), the Hamilton 
Matrix Harnack inequality (1.4), and the heat kernel estimate (1.3) to the path space 
context. These extensions will require some work to detail, which we will do step by 
step over the next several subsection, for now let us open with some general comments 
followed by some standard constructions on analysis on path space. To begin, let us be 
careful and remark that our notion of path space is the collection of continuous based 
paths:

PxM ≡
{

γ ∈ C0([0, ∞), M) : γ(0) = x
}

. (1.5)

Performing analysis on PxM , like performing analysis on any space, involves three impor-
tant ingredients: A nice dense collection of functions to work with, a measure to integrate 
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with, and a notion of gradient. The first two of these ingredients will be standard notions 
in this context, which we will review now. The notion of gradient we will introduce in 
this paper, and its induced Laplacian, will be new. The ϕ-gradient ∇ϕ and ϕ-Laplacian 
Δϕ will act more as a family of finite dimensional gradients and Laplacians, in the spirit 
of [13,8]. We will introduce these a little more slowly over the coming subsections.

Let us now finish our introductory review by dealing with the first two ingredients 
above, namely the construction of nice functions and the Wiener measure. Both are 
built using the canonical evaluation maps on path space. Namely, consider a partition 
t = {0 < t1 < · · · < tk < ∞}, then from this we can build the evaluation map et :
PxM → Mk given by

et(γ) = (γt1 , . . . , γtk
) . (1.6)

From this we can generate functions on PxM by pullback. Namely, given a partition t
and a function f : Mk → R the induced cylinder function F : PxM → R on path space 
is given by

F (γ) = e∗
tf(γ) = f(γt1 , . . . , γtk

) . (1.7)

These functions have a distinctly finite dimensional quality to them, and as such will 
be particularly easy and natural to work with. In the end these functions will be dense 
in every space of functions we need to work on, so it will be sufficient to do most 
computations with respect to them.

In a similar vein, path space PxM is equipped with a natural probability measure Px, 
called the Wiener measure, which is uniquely defined through its pushforwards by the 
evaluation maps:

et ∗Px = ρt1(x, dx1)ρt2−t1(x1, dx2) · · · ρtk−tk−1(xk−1, dxk) , (1.8)

where ρt(x, dy) = ρt(x, y)dvg(y) are the heat kernel measures. It is a beautiful classical 
result that Px exists as a measure on continuous path space PxM . In this way the Wiener 
measure not only tells us about the heat kernels at all times and points, but also how 
they interact with one another.

Let us now move ourselves toward the new results, during which time we will introduce 
the notions of gradient and Laplacian that will prove themselves most important.

1.1. Differential Harnack inequalities on path space of Rn

Let us begin by analyzing the context of path space on flat Euclidean space. Our 
results are new even in this setting, and beyond that it will be an excuse to analyze the 
estimates and inequalities in a context where many of the technical bells and whistles 
will not be present. We will be interested in studying continuous paths based at the 
origin:
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P0R
n =

{
γ ∈ C0([0, ∞),Rn

)
: γ(0) = 0

}
. (1.9)

On P0R
n we can consider the Wiener probability measure P0, defined as in (1.8). It 

is interesting to observe one can view this measure as a Gaussian measure on P0R
n

with standard deviation coming from the H1-norm. As such, when performing analysis 
on path space it is convenient to often restrict ourselves to directions which are H1 in 
nature, which gives rise to the Cameron-Martin space:

H =

⎧⎨⎩h ∈ P0R
n : ||h||2H ≡

∞∫
0

|ḣ|2dt < ∞

⎫⎬⎭ . (1.10)

Our first main result in the rigid context of path space on Rn is the following, which 
we will use as an inspiration for our generalized Matrix Harnack inequality in the path 
space setting:

Theorem 1.11 (convexity). If F : P0Rn → R+ is a positive integrable function, then the 
associated functional

ΦF : H → R, ΦF (h) = ln

⎛⎝ ∫
P0Rn

F (γ + h) dP0(γ)

⎞⎠ + 1
4 ||h||2H (1.12)

is convex.

We will provide the short proof of the above in Section 2, for now let us consider an 
enlightening example obtained by applying the above to the simplest functions on path 
space:

Example 1.13. Consider the cylinder function F : P0R
n → R+ given by F (γ) = f(γ(t)), 

where f : Rn → R+ and t > 0 are fixed. Consider a linear curve h(s) ≡ s
t x ∈ Rn

connecting the origin to a point x ∈ Rn, and for each direction v ∈ Rn and each r ∈ R

consider the perturbation of h in the v direction given by hr(s) ≡ s
t (x + rv) ∈ Rn for 

s ≤ t. That is, hr(s) is simply the straight curve from the origin to hr(t) = x + rv, so in 
particular h0(s) = h(s). Now using the pushforward characterization (1.8) of the Wiener 
measure we can compute

ΦF (hr) = ln

⎛⎝∫
Rn

f(y + x + rv)ρt(0, dy)

⎞⎠ + |x + rv|2
4t

= ln ft(x + rv) + |x + rv|2
4t

.

(1.14)

Then the convexity condition d2
2

∣∣∣ ΦF (hr) ≥ 0 converts to the inequality
dr
r=0
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∇2ft(v, v)
ft

− 〈∇ft, v〉2

f2
t

+ |v|2
2t

≥ 0 (1.15)

for every v, which is precisely the Matrix Harnack inequality (1.4). �
Generalizing the above example, given f : Rn×k → R+ and 0 < t1 < . . . < tk we can 

consider

Ht1,...,tk
f(x1, . . . , xk) :=

∫
Rnk

f(y1 + x1, . . . , yk + xk)ρt1(0, dy1)ρt2−t1(y1, dy2)

. . . ρtk−tk−1(yk−1, dyk),

(1.16)

which can be interpreted as a (completely correlated) generalization of the heat flow, 
and obtain:

Corollary 1.17 (convexity for generalized heat flow). The function ψf : Rn×k → R,

ψf (x1, . . . , xk) = ln Ht1,...,tk
f(x1, . . . , xk)+ |x1|2

4t1
+ |x2 − x1|2

4(t2 − t1) +. . .+ |xk − xk−1|2
4(tk − tk−1) (1.18)

is convex.

We have therefore seen that Theorem 1.11 behaves as a natural path space general-
ization of the Matrix Harnack Inequality, and indeed recovers it exactly when applied to 
the simplest functions on path space.

Our next challenge is that Theorem 1.11 as written does not generalize to manifolds. 
We will therefore look for weak reformulations which have some hope of being defined on 
general manifolds. This will eventually lead us to our differential Harnack inequalities.

There are many approaches one can naturally take to write Theorem 1.11 weakly, 
the statements and definitions of our next results are motivated by giving a presenta-
tion which will extend in a natural manner to more general manifolds. We begin by 
introducing the ϕ-gradient in the Euclidean context:

Definition 1.19. Let ϕ : [0, ∞) → R be an H1
0 -function, i.e. ||ϕ||2 ≡

∫
|ϕ̇|2 < ∞ and 

ϕ(0) = 0. For F : P0R
n → R we define its ϕ-gradient ∇ϕF : P0R

n → Rn by

〈∇ϕF (γ), v〉 ≡ DϕvF = lim
ε→0

F (γ + εϕv) − F (γ)
ε

. (1.20)

Note that, in a spirit similar to [13,8], the ϕ-gradient ∇ϕF is essentially a finite 
dimensional gradient as it only considers information about the derivative of F in those 
directions determined by ϕ. By considering an orthonormal basis {ϕj} we can recover 
the full Malliavin gradient ∇HF : P0R

n → H.
In addition to the ϕ-gradient we will want to define the associated ϕ-Hessians and 

ϕ-Laplacians:
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Definition 1.21. Let ϕ : [0, ∞) → R be an H1
0 -function. For F : P0R

n → R we define

1. The ϕ-Hessian Hessϕ F : P0R
n → Rn×n given by1

〈Hessϕ F (γ), v ⊗ w〉 ≡ DϕvDϕwF . (1.22)

2. The ϕ-Laplacian ΔϕF : P0R
n → R given by Δϕ F = tr(Hessϕ F ).

Considering an orthonormal basis {ϕj} we can recover the H1-Laplacian ΔH, so that 
in this way we have naturally decomposed the infinite dimensional Laplacian into a sum 
of finite dimensional Laplacians. We can now use Theorem 1.11 in order to prove the 
following:

Theorem 1.23 (Differential Harnack inequality on path space of Euclidean space). If F :
P0R

n → R+ is a nonnegative integrable function, then for all test functions ϕ ∈ H1
0 (R+)

we have

E [Hessϕ F ]
E[F ] − E [∇ϕF ] ⊗ E [∇ϕF ]

E[F ]2 + δ

2 ||ϕ||2 ≥ 0 , (1.24)

where E denotes the expectation with respect to the Wiener measure P0, and δ = δij

denotes the Euclidian metric. In particular, we can trace to obtain

E [ΔϕF ]
E[F ] − |E [∇ϕF ]|2

E[F ]2 + n

2 ||ϕ||2 ≥ 0. (1.25)

Theorem 1.23 can be viewed as an infinite family of finite dimensional differential 
Harnack inequalities on path space. It is not hard to see that Theorem 1.23 and Theo-
rem 1.11 in fact imply each other. The formulation as a differential Harnack inequality, 
as opposed to a convexity statement, is more suitable for our generalizations to the path 
space of manifolds.

1.2. The ϕ-gradient and ϕ-Laplacian

In order to state our results on general manifolds we need to discuss the notion of 
ϕ-gradients and ϕ-Laplacians on manifolds. Let us begin by defining the notion of the 
ϕ-gradient:

Definition 1.26 (ϕ-gradient). Let F : PxM → R be a cylinder function, and let ϕ :
[0, ∞) → R be an H1

0 -function, i.e. a function such that ||ϕ||2 ≡
∫

|ϕ̇|2 < ∞ and 
ϕ(0) = 0. Then we define the ϕ-gradient ∇ϕF : PxM → TxM by

1 It is worth observing that the definition in the Euclidean context is greatly simplified, as ϕv is a constant 
vector field and thus DϕvDϕwF is a Hessian. In the general case we must subtract off the correct Christoffel 
symbol.



8 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714
〈∇ϕF, v〉 = DϕV F, (1.27)

where V is the vector field along γ obtained by parallel translating v along γ,2 and thus 
DϕV is the directional derivative of F in the direction ϕV ∈ TγPxM .

The ϕ-gradient is essentially a finite dimensional gradient, in a spirit similar to [13,8]. 
It contains information about the directional derivatives of F in all directions determined 
by ϕ. As in the Euclidean case, by considering an orthonormal basis {ϕj} of H1

0 we see 
that we can recover the full Malliavin-gradient ∇HF : PxM → H.

In order to define a Hessian we must consider covariant derivatives of vector fields 
on path space. Two considerations when defining a connection on PxM are that one 
wishes it to be compatible with the H1

0 -metric, and wishes it to preserve adapted vector 
fields. Among such connections there is a best choice, which was introduced in Cruzeiro-
Malliavin [4], called the Markovian connection. To define the Markovian connection, 
recall that vector fields V on PxM can be identified with functions vt : PxM → TxM ≡
Rn via parallel transport. Namely, we can take V (γ)t ∈ Tγt

M and map it using the 
parallel translation map Pt(γ) : Tγt

M → TxM to get

vt(γ) := Pt(γ)V (γ)t ∈ TxM. (1.28)

Definition 1.29 (Markovian Connection). The Markovian connection ∇ on PxM is given 
by3

d

dt
Pt(∇V W )t = DV ẇt +

⎛⎝ t∫
0

Ps Rmγs
(Vs, γ̇s) ds

⎞⎠ ẇt , (1.30)

where Pt : Tγt
M → TxM denotes the parallel translation map, and where wt = PtWt.

We note that the curvature term in (1.30) arises as the derivative of the parallel 
translation map.

Given the Markovian connection ∇, the Markovian Hessian of a function F : PxM →
R is now naturally defined by

Hess F (V, W ) ≡ DV (DW F ) − D∇V W F , (1.31)

where D denotes the directional derivatives. Using this, we can now introduce the ϕ-
Hessian and ϕ-Laplacian, which will play a central roles in our differential Harnack 
inequalities:

2 We need to use the stochastic parallel translation map to make this precise on a generic curve, see 
Section 3.

3 To be precise, the integral should be viewed as Stratonovich integral, see Section 3.



R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714 9
Definition 1.32 (ϕ-Hessian and ϕ-Laplacian). Let F : PxM → R be a cylinder function, 
and let ϕ : [0, ∞) → R be an H1

0 -function, i.e. a function such that ||ϕ||2 ≡
∫

|ϕ̇|2 < ∞
and ϕ(0) = 0.

1. We define Hessϕ F : PxM → T ∗
x M ⊗ T ∗

x M by

Hessϕ F (v, v) = Hess F (ϕV, ϕV ) , (1.33)

where V is the vector field along γ obtained by parallel translating v along γ.
2. ΔϕF = tr

(
Hessϕ F

)
: PxM → R is the ϕ-Laplacian obtained by tracing the ϕ-

Hessian.

To understand the meaning of this definition, consider for each ϕ an n-dimensional 
distributional Eϕ ⊂ TPxM given by

Eϕ = span
{

ϕV : V is the parallel translation of a vector v ∈ TxM
}

. (1.34)

Thus, at each γ ∈ PxM we have that Eϕ(γ) is an n-dimensional subspace of TγPxM . 
Then the ϕ-Hessian and the ϕ-Laplacian are simply given by

Hessϕ F = Hess F
∣∣
Eϕ⊗Eϕ

, (1.35)

and

ΔϕF = trEϕ
Hess F . (1.36)

In particular, the ϕ-Laplacian is simply the trace of the infinite dimensional Hessian 
along the finite dimensional subspace Eϕ. Hence, in the same spirit as the ϕ-gradients, 
the ϕ-Laplacians behave as a family of finite dimensional Laplacians. This is crucial for 
us, as our generalization of the differential Li-Yau Harnack inequality will actually be a 
family of inequalities, one for each Δϕ.

1.3. Differential Harnack inequalities on path space of Ricci flat manifolds

Now we are in a position to discuss our first more general estimates. We begin with 
the Ricci-flat context primarily because the estimates are cleaner and easier to digest. 
The general cases will follow in the next subsections. Our main theorem in the Ricci-flat 
case is the following:

Theorem 1.37 (Differential Harnack inequality on path space). Let M be a Ricci-flat 
manifold, and let F : PxM → R be a nonnegative function. Then, for all ϕ ∈ H1

0 (R+)
we have the inequality
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Ex [ΔϕF ]
Ex[F ]

−
∣∣Ex [∇ϕF ]

∣∣2
Ex[F ]2 + n

2
||ϕ||2 ≥ 0. (1.38)

Let us begin, as we often like to, by applying this to the simplest functions on path 
space in order to see that we can recover the classical Li-Yau Harnack inequality:

Example 1.39 (Li-Yau inequality). Let us consider the cylinder function F : PxM → R+

given by F (γ) = f(γ(t)), where f : M → R+ and t > 0 are fixed. Let ϕ : [0, ∞) → R be 
such that ϕ(s) = s

t for s ≤ t and ϕ(s) = 1 for s ≥ t. One can use the definition of the 
ϕ-gradient to immediately compute

∇ϕF (γ) = Pt(γ)∇f(γ(t)) , (1.40)

where Pt(γ) : Tγ(t)M → TxM denotes parallel transport. Now let ei ∈ TxM be an 
orthonormal basis with Ei the associated parallel translation invariant vector fields along 
each γ. Using the definition of the Markovian connection (Definition 1.29) we see that

n∑
i=1

∇ϕEi
ϕEi = 0, (1.41)

where the curvature term disappeared after taking the trace since Ric = 0. It follows 
that

ΔϕF (γ) = Δf(γ(t)). (1.42)

Using the above and the Feynman-Kac formula we can then derive the equalities

Ex[F ] =
∫
M

f(y)ρt(x, dy) = ft(x) ,

Ex[ΔϕF ] = Δft(x) ,

Ex[∇ϕF ] = ∇ft(x) , (1.43)

where in the last equality we used again that Ric = 0. Finally, observing that ||ϕ||2 = 1
t

and plugging all of this into (1.38) we obtain

Δft

ft
− |∇ft|2

f2
t

+ n

2t
≥ 0 , (1.44)

which is precisely the Li-Yau Harnack inequality. �
Another consequence is a generalization of the Li-Yau estimate (1.3) on heat kernels:
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Example 1.45 (Laplacian of the log of the Wiener Measure). By plugging in a smoothed 
Dirac delta function into Theorem 1.37 we formally obtain the Laplace comparison esti-
mate4

Δϕ lnPx ≥ −n

2 , (1.46)

for each ϕ with ||ϕ|| = 1. To interpret this, recall from (1.34) that for each ϕ we have 
an associated n-dimensional distribution Eϕ on TPxM , and that Δϕ = trEϕ

Hess. Thus, 
the estimate (1.46) is telling us that the trace of the Hessian of lnPx is bounded below on 
each of the n-dimensional subspaces Eϕ. Hence, lnPx behaves like a plurisubharmonic 
function on a complex manifold.

Remark 1.47 (Equality). Computing more carefully one can check that actually equality 
is attained in the above example. Namely, the log of the Wiener measure satisfies the 
interesting identity

Δϕ lnPx = −n

2 (1.48)

for each normalized ϕ. We emphasize that this only holds if M is Ricci-flat.

Alternatively, instead of in terms of the H1-geometry, our differential Harnack in-
equality on path space of Ricci-flat manifolds can also be understood in terms of the 
L2-geometry of path space. To this end, we denote by HessLϕ and ΔL

ϕ the ϕ-Hessian and 
ϕ-Laplacian that are obtained by using the L2-connection ∇L instead of the Markovian 
connection ∇. Concretely, we have

HessLϕ F (v, v) = d2

ds2

∣∣∣
s=0

F (γs) , (1.49)

where γs is a family of curves with ∂s|s=0γs = ϕV and ∇ϕV

(
∂sγs

)
= 0,5 and

ΔL
ϕ F = tr HessLϕ F . (1.50)

Corollary 1.51 (Differential Harnack inequality in terms of L2-geometry). Let M be a 
Ricci-flat manifold, and let F : PxM → R be a nonnegative function. Then, for all 
ϕ ∈ H1

0 (R+) we have the inequality

Ex

[
ΔL

ϕ F
]

Ex[F ] −
∣∣Ex [∇ϕF ]

∣∣2
Ex[F ]2 + n

2 ||ϕ||2 ≥ 0. (1.52)

4 Here, we view the energy functional − ln Px ≡ 1
4
∫

|γ̇|2 as the log of the Wiener measure, motivated 
by the integration by parts formula. Note that although ln Px is not defined on continuous path space, its 
gradient is.

5 For instance γs(t) = expγ(t)(sϕ(t)V (t)) gives such a curve.
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In fact, we will show in Section 4.4 that on path space of Ricci-flat manifolds, the 
ϕ-Laplacian induced by the L2-connection agrees with the one induced by the Markovian 
connection.

1.4. Differential Harnack inequalities on path space of general manifolds

The situation for general manifolds is quite analogous to the previous section, though 
unsurprisingly we now get more error terms depending on the curvatures. Our main 
differential Harnack inequality on the path space of general manifolds is the following:

Theorem 1.53 (Differential Harnack inequality on path space). Let F : PxM → R+ be 
a nonnegative ΣT -measurable function on path space. Then, for every ϕ ∈ H1

0 (R+) we 
have the inequality

Ex[ΔϕF ]
Ex[F ] − |Ex[∇ϕF ]|2

Ex[F ]2 +
(

n

2 + CT (Ric) + CT (Rm, ∇ Ric)Ex[F 2]1/2

Ex[F ]

)
||ϕ||2 ≥ 0,

(1.54)

where CT (Ric) < ∞ and CT (Rm, ∇ Ric) < ∞ are constants, which converge to 0 as 
|Ric| + |∇ Ric | → 0 assuming that |Rm| and T stay bounded.

Theorem 1.53 generalizes Theorem 1.37 to the path space of general manifolds. Again, 
it provides an infinite dimensional family of finite dimensional differential Harnack in-
equalities on path space PxM . There are a couple points about the error terms worth 
observing. They depend on the L2-norm of F . In general, they further depend on bounds 
on the full curvature tensor | Rm | and on |∇ Ric |. This seems to be a feature of second 
order estimates on path space, in contrast to the first order estimates of [13,8], where 
the errors only depend on the Ricci curvature, and nothing involving the full curvature 
or the covariant derivative of curvature. However, if the underlying manifold is Einstein, 
then as a corollary of our proof we obtain:

Corollary 1.55. If M is Einstein, i.e. Ric = Λg, then the constants only depend on Λ, 
namely

Ex[ΔϕF ]
Ex[F ] − |Ex[∇ϕF ]|2

Ex[F ]2 +
(

n

2 + CT (Λ)
(

1 + Ex[F 2]1/2

Ex[F ]

))
||ϕ||2 ≥ 0, (1.56)

where CT (Λ) → 0 as Λ → 0 assuming that T stays bounded.

Remark 1.57. We saw in the Ricci-flat case that Δϕ may be replaced by ΔL
ϕ . However, 

this is absolutely not the case in general, even if M is Einstein. The difference between 
the Markovian and L2 quantities involves terms that are fundamentally not controllable 
in the form of (1.54).
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1.5. Differential matrix Harnack inequalities on path space

Finally, we discuss our differential Matrix Harnack inequality on path space, meant 
to generalize Hamilton’s Matrix Harnack Inequality (1.4):

Theorem 1.58 (Differential Matrix Harnack inequality on path space). Let F : PxM →
R+ be a nonnegative ΣT -measurable function on path space. Then, for every ϕ ∈ H1

0 (R+)
we have the inequality

Ex[Hessϕ F ]
Ex[F ] − Ex[∇ϕF ] ⊗ Ex[∇ϕF ]

Ex[F ]2

+
(

1
2 + CT (Ric) + CT (Rm, ∇ Ric)Ex[F 2]1/2

Ex[F ]

)
||ϕ||2gx ≥ 0, (1.59)

where CT (Ric) < ∞ and CT (Rm, ∇ Ric) < ∞ are constants, which converge to 0 as 
|Rm| + |∇ Ric | → 0 assuming that T stays bounded.

In the path space context one only gets a full errorless estimate in the flat case. 
That is, similar to Hamilton’s Matrix Harnack inequality, which assumes sec ≥ 0 and 
∇ Ric = 0, even Ricci-flatness is not enough to obtain Hessian estimates without error 
terms. This should not be surprising, as the full Hessian estimates inevitably involve 
estimates on parallel translation maps, which involve the full curvature tensor. Compared 
to the manifold case, Theorem 1.58 again contains completely new global information 
capturing the interaction between different points.

1.6. Other generalizations

The differential Harnack inequalities of the previous sections were in terms of the 
ϕ-Hessian and ϕ-Laplacian, which themselves depended on a choice of connection on 
PxM . Our chosen connection on PxM , namely the Markovian connection ∇, is the one 
that is popular in the literature, however the differential Harnack inequalities do in fact 
hold for a wide class of connections on PxM . The Markovian condition (1.30) can be 
generalized to the condition

d

dt
Pt(∇A

V W )t = DV ẇt + At(γ, V ) ẇt , (1.60)

where At(γ, V ) : TxM → TxM . Then so long as for each bounded V we have that At is 
an adapted process which is also an L2 antisymmetric mapping, then the induced con-
nection is an H1-connection which preserves adapted vector fields for which the Harnack 
inequalities of this paper hold. Let us consider two important scenarios, beginning with 
the Cartan connection on PxM :
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Definition 1.61 (Cartan Connection). The Cartan connection ∇C on PxM is the unique 
connection such that vector fields of the form ϕV are parallel, where ϕ is an H1

0 -function 
and V is the vector field on PxM obtained by parallel translating a fixed v ∈ TxM along 
each γ.

The Cartan connection satisfies d
dt Pt(∇C

V W )t = DV ẇt, and thus (1.60) holds with 
A ≡ 0. The Cartan connection ∇C is a flat connection on PxM which is not torsion free, 
indeed its torsion is now related to the curvature of M itself. In particular, one can prove 
the verbatim differential Harnack inequalities stated in this paper hold with the Hessian 
and Laplacian induced by this connection as well.

Finally, let us consider a non-example. Another interesting choice of connection on 
PxM is the L2-connection ∇L. Indeed, on Ricci-flat spaces the ϕ-Laplacians induced 
by the Markovian connection, the Cartan connection, and L2-connection are all the 
same. However, the L2-connection in the form of (1.60) looks like d

dtPt(∇L
V W )t =

DV ẇt + Rmγt
(Vs, γ̇t)wt +

(∫ t

0 Ps Rmγs
(Vs, γ̇s) ds

)
ẇt. The additional curvature term 

Rmγt
(Vs, γ̇t) is clearly not an L2 function on PxM . The effect of this is that in non-Ricci 

flat case (or indeed for the Matrix Harnack even in the Ricci-flat case) the differential 
Harnack inequalities of this paper do not hold. One obtains new errors (see the antic-
ipating integral in Proposition 4.60) which fundamentally cannot be controlled in the 
same fashion.

1.7. Outline of the paper

Let us briefly outline the paper along with the main steps of the proof.
In Section 2, we give the proof of our Harnack estimate Theorem 1.11 on the path space 

P0R
n of Euclidean space. The proof in this context comes down to nothing more than 

a computation involving the Cameron-Martin change of variables formula and Hölder’s 
inequality. Regardless, this simple setting allows for a good starting point for developing 
intuition.

In Section 3, we discuss the required preliminaries regarding stochastic analysis on 
manifolds. After recalling the Wiener measure and the stochastic parallel translation 
map, we will spend some time discussing the different notions of gradients which appear 
in this paper. These notions, and in particular the gradients of vector fields, can give 
rise to some subtle points on the path space analysis. This is in part because there are 
several different such notions, each meant to capture different behaviors. Finally, at the 
end of Section 3 we will discuss the intertwining and integration by parts formula. We 
will state and prove the integration by parts formula for continuous adapted processes, 
which is a somewhat more general form than the most popular one. This form of the 
integration by parts formula will be needed in future steps.

In Section 4, we will give the proofs of our Harnack results in the Ricci-flat context. 
The proofs in the Ricci-flat case will be very similar to the general case of Section 5, 
however we can avoid many technicalities which can otherwise bog one down. The first 
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Φ

main result in Section 4 is the Halfway Harnack of Theorem 4.8 which shows that the 
quadratic form

QF [V, V ] := Ex[DV (DV F )]
Ex[F ] − Ex[DV F ]2

Ex[F ]2 +
Ex[D∇V V F ]

Ex[F ] + 1
2 ||V ||2H ≥ 0, (1.62)

is nonnegative for all adapted vector fields V on path space PxM . Here, ∇ is the 
Markovian connection from Cruzeiro-Malliavin [4], see Definition 1.29. One can view 
this Halfway Harnack as a nongeometric version of the Harnack inequality, as funda-
mentally one can view it as the pushforward of our Harnack on Euclidean path space 
under the Ito map. This Halfway Harnack of a function F itself is then only half the 
picture, as we need to remove the non-tensorial terms, as well as estimate a variety of 
a-priori arbitrary looking curvature terms hidden inside the definition of the Markovian 
connection. When combined with the correct tracing formulas this will allow us to turn 
the Halfway Harnack into the full differential Harnack.

In Section 5, we end by generalizing the differential Harnack to the path space of 
arbitrary manifolds. Indeed, this is very similar spirit to the Ricci-flat context, however 
everything is a good deal more technical. In particular, we will see it is important to use 
a twisted notion of gradient, which will interact better with the methods of this paper 
in the non Ricci-flat context.

2. The Euclidean case

In this short section, as warmup for the later sections, we prove our differential Har-
nack inequalities in the simple setting of path space of Rn. We start by establishing 
convexity of the functional ΦF from (1.12).

Proof of Theorem 1.11. Let h1, h2 ∈ H and λ1, λ2 ∈ (0, 1) with λ1 + λ2 = 1. We have to 
show that

ΦF (λ1h1 + λ2h2) ≤ λ1ΦF (h1) + λ2ΦF (h2). (2.1)

To this end, note that by the Cameron-Martin theorem [3] we have the change of variables 
formula ∫

P0Rn

F (γ + h) dP0(γ) =
∫

P0Rn

F (γ)e 1
2 〈h,γ〉− 1

4 ||h||2
dP0(γ), (2.2)

where 〈h, γ〉 =
∫∞

0 ḣt dWt(γ) is given as Ito integral of the process ḣt with respect to 
Brownian motion. Using this, a short computation yields

F (λ1h1 + λ2h2) = ln

⎛⎝ ∫
n

F (γ)e 1
2 〈λ1h1+λ2h2,γ〉dP0(γ)

⎞⎠

P0R
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≤ λ1 ln

⎛⎝ ∫
P0Rn

F (γ)e 1
2 〈h1,γ〉dP0(γ)

⎞⎠+ λ2 ln

⎛⎝ ∫
P0Rn

F (γ)e 1
2 〈h2,γ〉dP0(γ)

⎞⎠
= λ1ΦF (h1) + λ2ΦF (h2), (2.3)

where we used the change of variables formula (2.2) in the first and third line, and 
Hölder’s inequality in the second line. This proves the theorem. �

Considering the most simple functions and variations on path space, Theorem 1.11
implies Hamilton’s Matrix Harnack inequality (1.4) as explained in Example 1.13. More 
generally, we obtain the following corollary.

Corollary 2.4. If k is a positive integer, f : Rn×k → R+ is a positive function (say of 
subexponential growth), and 0 < t1 < . . . < tk, then the associated function ψf

t1,...,tk
:

Rn×k → R,

(x1, . . . , xk) 
→

ln
( ∫
Rn×k

f(y1 + x1, . . . , yk + xk)ρt1(0, dy1)ρt2−t1(y1, dy2) . . . ρtk−tk−1(yk−1, dyk)
)

+ |x1|2
4t1

+ |x2 − x1|2
4(t2 − t1) + . . . + |xk − xk−1|2

4(tk − tk−1) (2.5)

is convex. In particular, for k = 1 we see that the function

x 
→ ln

⎛⎝∫
Rn

f(z) e− |x−z|2
4t

(4πt)n/2 dz

⎞⎠ + |x|2
4t

(2.6)

is convex, which by computing the Hessian reduces to Hamilton’s Matrix Harnack in-
equality (1.4).

Remark 2.7. Generalizing the intuition of the case k = 1, it is useful to interpret the 
functions

Ht1,...,tk
f(x1, . . . , xk) :=

∫
Rnk

f(y1 + x1, . . . , yk + xk)ρt1(0, dy1) . . . ρtk−tk−1(yk−1, dyk)

(2.8)
appearing in (2.5) as a generalized heat flow for k-point functions. A particularly inter-
esting feature of Corollary 2.4 is that it gives also information about the mixed Hessians 
∇xi

∇xj
Ht1,...,tk

f(x1, . . . , xk) for i �= j.
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Remark 2.9. Another useful way to understand the generalized heat flow for k-point 
functions is to rewrite it quite redundantly as an integral over k Brownian motions in 
Rn:

Ht1,...,tk
f(x1, . . . , xk) =

∫
P0(Rn)k

f(γt1 + x1, . . . , γtk
+ xk)χ{γ1=...=γk}dP0(γ1) . . . dP0(γk).

(2.10)
The indicator function χ{γ1=...=γk} enforces that these k Brownian motions are com-
pletely correlated, i.e. they are actually all the same. The formula (2.10) can be compared 
with the opposite extreme, the completely uncorrelated case, which is obtained by drop-
ping the indicator function, namely

Ut1,...,tk
f(x1, . . . , xk) :=

∫
P0(Rn)k

f(γt1 + x1, . . . , γtk
+ xk)dP0(γ1) . . . dP0(γk). (2.11)

In particular, in the special case that f(y1, . . . , yk) = f1(y1) · · · fk(yk) is a product func-
tion, this simply becomes a product of heat flows, namely

Ut1,...,tk
(f1 · · · fk)(x1, . . . , xk) = Ht1f1(x1) · · · Htk

fk(xk). (2.12)

And simply adding up the Hamilton’s Matrix Harnack expressions for these k heat flows 
one sees that

(x1, . . . , xk) → ln Ut1,...,tk
(f1 · · · fk)(x1, . . . , xk) + |x1|2

4t1
+ . . . + |xk|2

4tk
(2.13)

is also convex. Of course, the convexity in the completely correlated case is the much 
more interesting one, and the one that doesn’t simply follow by applying Hamilton’s 
Matrix Harnack inequality k times, but for the sake of intuition it is quite useful to keep 
in mind these two opposite extreme cases.

Proof of Corollary 2.4. Given the function f : Rn×k → R+ and the times 0 < t1 < . . . <

tk we can define a positive function on path space by setting

F (γ) := f(γt1 , . . . , γtk
) . (2.14)

Now thinking of the times 0 < t1 < . . . < tk as fixed, to any k-points x1, . . . , xk ∈ Rn

we associate a Cameron-Martin vector hx1,...,xk ∈ H by defining

hx1,...,xk
t :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t
t1

x1 for 0 ≤ t ≤ t1

x1 + t−t1
t2−t1

(x2 − x1) for t1 ≤ t ≤ t2

. . . . . .

xk−1 + t−tk−1
tk−tk−1

(xk − xk−1) for tk−1 ≤ t ≤ tk

x for t ≥ t

(2.15)
k k
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Since hx1,...,xk
t is piecewise linear it is easy to compute that

||h||2 = |x1|2
t1

+ |x2 − x1|2
(t2 − t1) + . . . + |xk − xk−1|2

(tk − tk−1) . (2.16)

To proceed, we recall that if et1,...,tk
: P0Rn → Rnk, γ 
→ (γt1 , . . . , γtk

) denotes the 
evaluation map at the times 0 < t1 < . . . < tk then the pushforward of the Wiener 
measure is given by a product of heat kernel measures, namely

et1,...,tk ∗P0 = ρt1(0, dy1)ρt2−t1(y1, dy2) . . . ρtk−tk−1(yk−1, dyk). (2.17)

Using this, we compute

∫
P0Rn

F (γ + h) dP0(γ) =
∫

P0Rn

f(γt1 + ht1 , . . . , γtk
+ htk

) dP0(γ)

=
∫

Rn×k

f(y1 + x1, . . . , yk + xk) ρt1(0, dy1)ρt2−t1(y1, dy2) . . . ρtk−tk−1(yk−1, dyk). (2.18)

Now let us define �t1,...,tk
: Rn×k → H, (x1, . . . , xk) 
→ hx1,...,xk

t and observe that this is a 
linear map. Since by Theorem 1.11 the functional ΦF : H → R is convex, the composed 
function ΦF ◦ �t1,...,tk

: Rn×k → R is also convex. The above computation shows that 
ψf

t1,...,tk
= ΦF ◦ �t1,...,tk

, and this proves the corollary. �
To conclude this section, let us prove our differential Harnack inequalities on path 

space of Rn:

Proof of Theorem 1.23. Given any vector v ∈ Rn and any function ϕ ∈ H1
0 (R+) we 

consider the direction

hε(t) = εϕ(t)v. (2.19)

As a consequence of Theorem 1.11, the function

ε 
→ ΦF (hε) = lnE [F (γ + εϕv)] + 1
4 ||εϕv||2 (2.20)

is convex. Now, a straightforward computation yields

d

dε
ΦF (hε) = E [DϕvF (γ + εϕv)]

E [F (γ + εϕv)] + 1
2ε|v|2||ϕ||2, (2.21)

and
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d2

dε2 |ε=0ΦF (hε) = E [DϕvDϕvF ]
E [F ] −

(
E [DϕvF ]
E [F ]

)2

+ 1
2 |v|2||ϕ||2 ≥ 0. (2.22)

Recalling the definitions of the ϕ-gradient (Definition 1.19) and ϕ-Hessian (Defini-
tion 1.21), we conclude that

E [Hessϕ F ]
E[F ] − E [∇ϕF ] ⊗ E [∇ϕF ]

E[F ]2 + δ

2 ||ϕ||2 ≥ 0 , (2.23)

where δ denotes the Euclidean metric. This proves the theorem. �
Remark 2.24. As a motivation for the analysis in the manifold case, let us record that 
the second variation in a general direction h ∈ H is given by

∇2ΦF (0)[h, h] = E [Dh(DhF )]
E [F ] −

(
E [DhF ]
E [F ]

)2

+ 1
2 ||h||2. (2.25)

3. Preliminaries for the manifold case

In this section we briefly discuss some preliminaries regarding the analysis on path 
space. Standard references for stochastic analysis on manifolds are the books by Hsu [10]
and Stroock [14].

In the following, M denotes an n-dimensional Riemannian manifold (either compact 
or complete with Ricci curvature bounded below). Given any x ∈ M , recall from the 
introduction that path space

PxM = {γ : [0, ∞) → M | γ continuous, γ0 = x}, (3.1)

consists of all continuous paths in M based at x. Path space is equipped with the 
compact-open topology.

3.1. Wiener measure and stochastic parallel transport

Brownian motion and stochastic parallel transport on Riemannian manifolds are most 
conveniently described via the Eells-Elworthy-Malliavin formalism. The gist of this con-
struction is that Cartan’s rolling without slipping provides a way to identify Brownian 
motion Wt on Rn with Brownian motion on M , as well as with horizontal Brownian 
motion on the frame bundle FM , see equation (3.4) below.

To describe this, consider the On-bundle π : FM → M of orthonormal frames. By def-
inition, the fiber over any point x ∈ M is given by the orthonormal maps u : Rn → TxM . 
Thus, if e1, . . . , en denotes the standard basis of Rn, then ue1, . . . , uen is an orthonormal 
basis of TxM , where x = π(u). Recall from basic differential geometry (see e.g. [11]) that 
the frame bundle comes equipped with n canonical horizontal vector fields H1, . . . , Hn, 
which are defined by
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Ha(u) = (uea)∗, (3.2)

where ∗ denotes the horizontal lift.
Let (P0Rn, Σ, P0) be the space of continuous curves in Rn equipped with the Borel 

σ-algebra and the Euclidean Wiener measure, and denote the coordinate process by 
W̄t : P0Rn → Rn. We use the normalization that the generator of W̄t is given by ΔRn

instead of 1
2ΔRn , i.e. the covariation is given by

[W̄ a
t , W̄ b

t ] = 2tδab. (3.3)

Given an initial frame u above x ∈ M , following Eells-Elworthy-Malliavin one consid-
ers the following stochastic differential equation (SDE) on the frame bundle

dŪt =
n∑

a=1
Ha(Ūt) ◦ dW̄ a

t , Ū0 = u, (3.4)

where H1, . . . , Hn are the canonical horizontal vector fields, and ◦d denotes the 
Stratonovich differential.

Definition 3.5 (Ito map, Wiener measure, and stochastic horizontal lift). Let Ū : P0Rn →
PuFM be the solution map of the SDE (3.4). The map I := π(Ū) : P0Rn → PxM is 
called the Ito map. The Wiener measure on PxM is defined as the pushforward measure 
Px = I#P0. The map Wt := W̄t ◦ I−1 : PxM → Rn is the euclidean Brownian motion 
under Px. Finally, the map U := Ū ◦ I−1 : PxM → PuFM is called the stochastic 
horizontal lift.

By definition, the Ito map I provides an isomorphism between the probability spaces 
(P0Rn, Σ, P0) and (PxM, Σ, Px). As stated in the introduction, the Wiener measure Px

on PxM is uniquely characterized by the following property. For any evaluation map

et1,...,tk
: PxM → Mk, γ 
→ (γt1 , . . . , γtk

), (3.6)

its pushforward is given by

(et1,...,tk
)# dPx(y1, . . . , yk) = ρt1(x, dy1)ρt2−t1(y1, dy2) · · · ρtk−tk−1(yk−1, dyk), (3.7)

where ρt(x, dy) = ρt(x, y) dvg(y) denotes the heat kernel measure on M .
The main advantage of the frame bundle formalism is that in addition to the Wiener 

measure of Brownian motion on M it also yields (without any additional effort) a notion 
of stochastic parallel transport:

Definition 3.8 (stochastic parallel transport). The family of isometries Pt := U0U−1
t :

Tπ(Ut)M → TxM is called stochastic parallel transport.
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To conclude this section, let us point out as a consequence of the SDE (3.4), taking 
also into account our normalization (3.3), the Ito formula on the frame bundle takes the 
form

df̃ = Haf̃ dW a
t + ΔH f̃ dt, (3.9)

where f̃ = f ◦ π : FM → M → R, and where ΔH ≡
∑n

a=1 H2
a denotes the horizontal 

Laplacian.

3.2. Gradients on path space

This section is dedicated to studying the various notions of gradients which appear 
in this paper and relating them. In general there are many such notions that play a role 
in the literature, and in this paper at some point or another, however most are easily 
related.

As before, we denote by H the Cameron-Martin space, i.e. the Hilbert space of H1-
curves {ht}t≥0 in Rn with h0 = 0, equipped with the inner product

〈h, k〉H :=
∞∫

0

〈
ḣt, k̇t

〉
dt. (3.10)

Any h ∈ H can be viewed as a vector field Uh on PxM by taking

(Uh)t(γ) = Ut(γ)ht ∈ Tγt
M, (3.11)

where U(γ) denotes the stochastic horizontal lift of γ as in Definition 3.5.
For a function F : PxM → R, a priori there are several notions, which can be listed:

∇HF : PxM → H the Malliavin gradient,

∇‖
t F : PxM → TxM the parallel gradients,

∇LF : PxM → TPxM the L2-gradient. (3.12)

Additionally in this paper we will be considering the ϕ-gradient ∇ϕF : PxM → TxM .
The following summarizes the relationships between the first of these notions of gra-

dient:

Lemma 3.13 (gradients). Let F : PxM → R, then we have the relations:

〈
∇LF, Uh

〉
L2 = DUhF =

〈
∇HF, h

〉
H

=
∞∫

0

〈
∇‖

t F, ḣt

〉
dt , (3.14)

where Uh denotes the vector field associated to h ∈ H as in (3.11).
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Proof. The first two equalities are tautological, as they are in fact the definitions of 
the L2-gradient and the Malliavin gradient, respectively. Thus, we will focus on relating 
these notions of gradient to the parallel gradient as in the last equality. It is enough for 
us to show this on cylinder functions

F = f(γt1 , . . . , γtk
). (3.15)

For a cylinder function F , the directional derivative DUhF in direction of the vector Uh

is given by

DUhF (γ) =
k∑

j=1

〈
∇(j)f(γt1 , · · · , γtk

), Utj
(γ)htj

〉
Tγtj

M
(3.16)

=
k∑

j=1

〈
Ptj

(γ)∇(j)f(γt1 , · · · , γtk
), htj

〉
TxM

, (3.17)

where ∇(j) denotes the gradient with respect to the j-th variable, and Pt(γ) denotes 
stochastic parallel transport as in Definition 3.8. Recall from [13] that the t-parallel 
gradient ∇‖

t F : PxM → TxM is defined via the directional derivative of F along the 
vector field which is 0 up to time t and parallel translation invariant for times larger 
than t, i.e.

∇‖
t F =

∑
tj>t

Ptj
(γ)∇(j)f(γt1 , · · · , γtk

). (3.18)

As a motivation for the related but more complicated analysis of the Hessian in 
subsequent sections, it is convenient to rephrase the above in terms of the frame bundle 
FM as in Section 3.1. In terms of the horizontal vector fields H(j) on FMk we can write 
the directional derivative as

DUhF =
∑

j

〈
H(j)f̃ , htj

〉
, (3.19)

where f̃ = f ◦ π : FMk → R denotes the lift of f . Moreover, equation (3.18) can be 
rewritten as

∇‖
t F =

∑
tj>t

H(j)f̃ , (3.20)

so that

ti∫
ti−1

〈
∇‖

t F, ḣt

〉
dt =

∑
j≥i

〈
H(j)f̃ , hti

− hti−1

〉
. (3.21)
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Finally, let us put all of this together in order to compute

DUhF =
∑

j

〈
H(j)f̃ , htj

〉
=
∑
j≥i

〈
H(j)f̃ , hti

− hti−1

〉
=

∞∫
0

〈
∇‖

t F, ḣt

〉
dt , (3.22)

which proves the final equality. �
Therefore we have seen that all the notions of gradient contain roughly the same 

information, simply packaged in a slightly different form. Let us use this to understand 
our notion of ϕ-gradient ∇ϕF : PxM → TxM . The following is immediate from the 
definition:

Corollary 3.23 (gradients). Let F : PxM → R and ϕ : [0, ∞) → R be an H1-function 
with ϕ(0) = 0. Then we have the relations

〈∇ϕF, v〉 ≡ DU(ϕv)F =
〈
∇LF, U(ϕv)

〉
L2 =

〈
∇HF, ϕv

〉
H

=
∞∫

0

〈
∇‖

t F, ϕ̇v
〉

dt , (3.24)

where we are viewing ϕv ∈ H.

One can therefore view the ϕ-gradient as a smoothed version of the parallel gradient, 
where instead of defining a gradient for each t ≥ 0 we have defined a gradient for each 
ϕ : [0, ∞) → R.

To conclude this section, let us remark that from Lemma 3.13 (gradients) one sees 
that

∇‖
t F = d

dt
(∇HF )t, (3.25)

i.e. the t-parallel gradient is the time-derivative of the Malliavin gradient. In particular, 
it follows that

||∇HF ||2H =
∞∫

0

|∇‖
t F |2 dt. (3.26)

Also, having defined them on cylinder functions, thanks to the integration by parts 
formula (see below), the gradients can be extended to unbounded closed operators on 
L2.

3.3. Intertwining formula and integration by parts

Let us first recall the classical integration by parts formula on path space. If F, G :
PxM → R are cylinder function and h ∈ H, assuming say either that h is compactly 
supported or Ric = 0, then
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Ex [DUhF G] = Ex

⎡⎣−FDUhG + 1
2FG

∞∫
0

〈
ḣt + Rict ht, dWt

〉⎤⎦ , (3.27)

see [5,9]. Here, Rict : Rn → Rn is the Ricci transform at Ut, i.e. for v ∈ Rn, Rict v denotes 
the unique element in Rn such that 〈Rict v, w〉 = Ricπ(Ut)(Utv, Utw) for all w ∈ Rn.

More generally, as pointed out e.g. in [2, Sec. 2.3], instead of constant h ∈ H, one can 
also consider adapted processes vt : PxM → Rn with Ex

[
||v||2H

]
< ∞. To discuss this, 

recall first from Definition 3.5 that the Ito map

I : P0R
n → PxM (3.28)

is an isomorphism between probability spaces. However, the Ito map does not preserve 
the geometry. The curvature term one gets from differentiating the Ito map is captured 
conveniently by the intertwining formula from Cruzeiro-Malliavin [4, Thm. 2.6]: The 
derivative of a differentiable function F : PxM → R can be computed in terms of the 
derivative of the composed function F ◦ I : P0Rn → R via

Dv∗(F ◦ I) = (DUvF ) ◦ I, (3.29)

where the Rn-valued process v∗ is given by

dv∗
t = dvt −

t∫
0

Rs(◦dWs, vs) ◦ dWt, (3.30)

where

〈Rs(x, y)w, z〉 ≡ Rmγs

(
Us(γ)x, Us(γ)y, Us(γ)z, Us(γ)w

)
, (3.31)

for x, y, z, w ∈ Rn. Here, the process v∗ is a so-called tangent process. In general, a 
tangent process ζ is an Rn-valued semi-martingale

dζt = At dWt + bt dt, (3.32)

where t 
→ (At, bt) is an adapted process taking values in son × Rn such that 
Ex

[∫∞
0 |bs|2 ds

]
< ∞. The derivative of a function F̄ : P0Rn → R in direction of a 

tangent process ζ is defined by

DζF̄ (β) = d

dε

∣∣∣
ε=0

F̄
(
ψζ

ε(β)
)

, (3.33)

where β = I−1(γ) and
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ψζ
ε (β)t =

t∫
0

eεAs(γ) dWs(γ) + ε

t∫
0

bs(γ) ds. (3.34)

The intertwining formula can be used to derive the following variant of the integration 
by parts formula:

Proposition 3.35 (integration by parts, cf. [2, Sec. 2.3]). If F, G : PxM → R are cylin-
der functions, then for any adapted process vt : PxM → Rn with Ex

[∫∞
0
(
|v̇t|2 + |v̇t +

Rict vt|2
)

dt
]

< ∞, we have

Ex [DUvF G] = Ex

⎡⎣−FDUvG + 1
2FG

∞∫
0

〈v̇t + Rict vt, dWt〉

⎤⎦ . (3.36)

Proof. By the product rule it is enough to prove the integration by parts formula in the 
case G = 1.

Consider the function F̄ := F ◦I : P0Rn → R, where I denotes the Ito map. Applying 
Girsanov’s theorem, we see that on P0Rn for every tangent process ζ of the form (3.32)
we have

E0
[
DζF̄

]
= 1

2E0

⎡⎣F̄

∞∫
0

〈
bt ◦ I, dW̄t

〉⎤⎦ . (3.37)

In particular, we can apply this for ζ = v∗ from equation (3.30). Using Ito calculus, we 
compute

t∫
0

Rs(◦dWs, vs) ◦ dWt =
t∫

0

Rs(◦dWs, vs) dWt + 1
2Rt(◦dWt, vt)dWt (3.38)

=
t∫

0

Rs(◦dWs, vs) dWt − Rict vtdt. (3.39)

Hence, the non-martingale part of v∗ is given by

v̇t dt + Rict vt dt. (3.40)

Thus, together with the intertwining formula (3.29) we conclude that

Ex [DUvF ] = E0
[
Dv∗ F̄

]
= 1

2E0

⎡⎣F̄

∞∫ 〈
(v̇t + Rict vt) ◦ I, dW̄t

〉⎤⎦ (3.41)

0
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= 1
2Ex

⎡⎣F

∞∫
0

〈v̇t + Rict vt, dWt〉

⎤⎦ . (3.42)

This proves the proposition. �
4. The Ricci-flat case

In this section, we prove our main theorems in the Ricci-flat case. In Section 4.1, we 
will find a certain positive quadratic form. In Section 4.2, we will rewrite this quadratic 
form in a more geometric way to prove our main differential Harnack inequality on path 
space (Theorem 1.37). In Section 4.3, we will establish the Matrix Harnack Inequality 
on path space. Finally, in Section 4.4, we express our differential Harnack inequality in 
terms of the L2-Laplacian.

4.1. A positive quadratic form

The goal of this section is to prove Theorem 4.8 (Halfway Harnack). To this end we 
start with the following definitions.

Definition 4.1 (adapted L2-vector fields on path space). We denote by

L2
ad(PxM ;H) (4.2)

the space of all Σt-adapted stochastic processes vt : PxM → Rn with Ex

[
||v||2H

]
< ∞. 

The space of adapted L2-vector fields on path space PxM is defined by

L2
ad(PxM ; TPxM) :=

{
Uv | v ∈ L2

ad(PxM ;H)
}

, (4.3)

where

(Uv)t(γ) := Ut(γ)vt(γ) ∈ Tγt
M (4.4)

is the vector field on path space corresponding to v. By definition, this gives a bijective 
map

U : L2
ad(PxM ;H) → L2

ad(PxM ; TPxM). (4.5)

Using this bijection, we can define the inner product of V, W ∈ L2
ad(PxM ; TPxM) by

〈V, W 〉H :=
∞∫

0

v̇t · ẇt dt, (4.6)

where v = U−1V and w = U−1W are the associated Rn-valued processes.
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Definition 4.7 (derivable vector field). A vector field V ∈ L2
ad(PxM ; TPxM) is called 

derivable if DW vt exists in L2
ad(PxM ; H) for all W ∈ L2

ad(PxM ; TPxM), where v =
U−1V .

In particular all constant vector fields, i.e. vector fields of the form V = Uh for some 
h ∈ H, are of course derivable. The set of derivable vector fields is dense in the space of 
adapted vector fields. The following is our Halfway Harnack inequality in the Ricci-flat 
case:

Theorem 4.8 (Halfway Harnack). Let M be a Ricci-flat manifold, and let F : PxM → R+

be a nonnegative cylinder function. Then, the quadratic form

QF [V, V ] := Ex[DV (DV F )]
Ex[F ] − Ex[DV F ]2

Ex[F ]2 +
Ex[D∇V V F ]

Ex[F ] + 1
2
Ex[F ||V ||2H]

Ex[F ] , (4.9)

is nonnegative for every derivable V ∈ L2
ad(PxM ; TPxM). Here, ∇ denotes the Marko-

vian connection (see below).

Morally speaking, our quadratic form QF can be thought of as “push forward under 
the Ito map in the sense of adapted differential geometry” of the quadratic form ∇2ΦF (0)
from Remark 2.24. To discuss this properly, and as a preparation for the actual proof 
of Theorem 4.8, let us start by recalling the Markovian connection as introduced by 
Cruzeiro-Malliavin [4]. In the following, we write6

〈Rs(x, y)w, z〉 ≡ Rmγs

(
Us(γ)x, Us(γ)y, Us(γ)z, Us(γ)w

)
, (4.10)

where x, y, z, w ∈ Rn.

Definition 4.11 (Markovian connection, [4, Sec. III]). The Markovian connection is de-
fined for constant vector fields via

d

dt
U−1

t (∇UkUh)t =
t∫

0

Rs(◦dWs, ks) ḣt, (4.12)

with initial condition (∇UkUh)0 = 0, where h, k ∈ H. The definition is then extended to 
nonconstant vector fields Uv via the Leibniz rule.

Note that (4.12) can be solved for ∇UkUh by integrating in time and inverting Ut. 
The connection ∇ is called Markovian, since the right hand side of (4.12) only depends 
on the value of ḣ at time t.

6 Careful about the switching of the order of z and w between R and Rm below.
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Let us observe that the Stratonovich integral actually agrees with the corresponding 
Ito integral for Ricci flat spaces:

Lemma 4.13. If M is a Ricci-flat manifold, then

t∫
0

Rs(◦dWs, ks) =
t∫

0

Rs( dWs, ks). (4.14)

Proof. In general, a Stratonovich integral can be converted to an Ito integral by adding 
a quadratic variation term:

t∫
0

Rs
abcdkb

s ◦ dW a
s =

t∫
0

Rs
abcdkb

s dW a
s +

t∫
0

1
2 d[kbRabcd, W a]s (4.15)

Using Ito calculus, the Bianchi identity, and the condition Ric = 0 we compute

1
2 d[kbRabcd, W a]s = kb

sHaRs
abcd ds = kb

s(HcRs
bd − HdRs

bc) ds = 0. (4.16)

This proves the lemma. �
It is important to note that for V ∈ L2

ad(PxM ; TPxM) and derivable W ∈
L2

ad(PxM ; TPxM), we have that zt := U−1
t (∇V W )t defines an adapted Rn-valued pro-

cess with finite norm Ex[||z||2H] < ∞. Hence, by Proposition 3.35 (integration by parts) 
it holds that:

Ex[D∇V W F G] = Ex

⎡⎣−FD∇V W G + 1
2FG

∞∫
0

〈żt, dWt〉

⎤⎦ . (4.17)

In general, the Markovian connection interacts well with the integration by parts 
formula. Recall that the integration by parts formula motivates the following definition 
of divergence.

Definition 4.18 (divergence on Ricci flat Manifolds). The divergence of an adapted vector 
field V = Uv ∈ L2

ad(PxM ; TPxM) on path space of a Ricci-flat manifold is defined by

δ(V ) = 1
2

∞∫
0

〈v̇t, dWt〉 . (4.19)

The following is a very useful algebraic relation:

Proposition 4.20 (commutator formula, [2, Thm 3.2]). Assume that M is Ricci-flat, and 
let V, W ∈ L2

ad(PxM ; TPxM). If W is derivable, then
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DV δ(W ) = δ(∇V W ) + 1
2 〈V, W 〉H . (4.21)

Proof. Let v = U−1V and w = U−1W . By the intertwining formula (3.29) differentiation 
on PxM along V can be transformed to differentiation on P0Rn along v∗ given by v∗

0 = 0
and

dv∗
t = v̇t dt −

t∫
0

Rs(◦dWs, vs) dWt, (4.22)

where we replaced ◦dWt by dWt using the assumption Ric = 0, cf. the proof of Propo-
sition 3.35.

Recall that curves β ∈ P0Rn correspond to curves γ ∈ PxM via the Ito map 
I : P0Rn → PxM . The intertwining formula yields

DV

∞∫
0

〈ẇt, dWt〉 (γ) = Dv∗

∞∫
0

〈
ẇt ◦ I, dW̄t

〉
(β) (4.23)

=
∞∫

0

〈
Dv∗(ẇt ◦ I), dW̄t

〉
(β) +

∞∫
0

〈
ẇt ◦ I, dDv∗W̄t

〉
(β). (4.24)

Using again the intertwining formula, the first integrand can be rewritten as

Dv∗(ẇt ◦ I)(β) = DV ẇt(γ). (4.25)

For the second term, using W̄t(β) = βt and equation (3.33) we compute

Dv∗W̄t(β) = d

dε

∣∣∣
ε=0

⎛⎝ t∫
0

e−ε
∫ s

0 Rr(◦dWr(γ),vr(γ)) dWs(γ) + ε

t∫
0

v̇s(γ) ds

⎞⎠ (4.26)

= −
t∫

0

s∫
0

Rr(◦dWr(γ), vr(γ)) dWs(γ) +
t∫

0

v̇s(γ) ds. (4.27)

Consequently, combining (4.23), (4.25) and (4.26) and, we conclude that

2DV δ(W ) =
∞∫

0

〈DV ẇt, dWt〉 −
∞∫

0

〈
ẇt,

t∫
0

Rr(◦dWr, vr) dWt

〉
+

∞∫
0

〈v̇t, ẇt〉 dt

(4.28)

=
∞∫

0

〈DV ẇt, dWt〉 +
∞∫

0

〈 t∫
0

Rr(◦dWr, vr)ẇt, dWt

〉
+ 〈V, W 〉H . (4.29)



30 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714
Observing that

DV ẇt +
t∫

0

Rr(◦dWr, vr)ẇt = d

dt
U−1

t (∇V W )t, (4.30)

and recalling the definition of divergence, this proves the proposition. �
Now we are able to check by direct computation that our quadratic form QF is 

nonnegative.

Proof of Theorem 4.8. By scaling we can assume that

Ex[F ] = 1. (4.31)

First, by the usual integration by parts formula (3.36) we have

Ex [DV F ] = Ex [Fδ(V )] . (4.32)

Second, using the version from (4.17) we see that

Ex

[
D∇V V F

]
= Ex [Fδ(∇V V )] . (4.33)

Third, applying integration by parts twice and using Proposition 4.20 (commutator for-
mula) we obtain

Ex [DV (DV F )] =Ex [DV Fδ(V )] (4.34)

=Ex

[
Fδ(V )2]− Ex [FDV δ(V )] (4.35)

=Ex

[
Fδ(V )2]− Ex [Fδ(∇V V )] − 1

2Ex[F ||V ||2H]. (4.36)

Combining the above formulas, we conclude that

QF [V, V ] = Ex

[
Fδ(V )2]− Ex [Fδ(V )]2 , (4.37)

which is indeed nonnegative by the Cauchy-Schwarz inequality. This proves the theo-
rem. �
4.2. Differential Harnack

We can now prove our differential Harnack inequality on path space (Theorem 1.37), 
which we restate here for convenience of the reader:
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Theorem 4.38 (Differential Harnack inequality on path space). Let M be a Ricci-flat 
manifold, and let F : PxM → R be a nonnegative function. Then, for all ϕ ∈ H1

0 (R+)
we have the inequality

Ex [ΔϕF ]
Ex[F ] −

∣∣Ex [∇ϕF ]
∣∣2

Ex[F ]2 + n

2 ||ϕ||2 ≥ 0. (4.39)

Proof. Let F (γ) = f(γt1 , · · · , γtk
) be a nonnegative cylinder function. By scaling we can 

assume that

Ex[F ] = 1. (4.40)

By Theorem 4.8 (Halfway Harnack) and the definition of the Markovian Hessian we have

QF [V, V ] = Ex [Hess F (V, V )] − Ex [DV F ]2 + 2Ex

[
D∇V V F

]
+ 1

2 ||V ||2H ≥ 0, (4.41)

for all derivable vector fields V ∈ L2
ad(PxM ; TPxM). In particular, we can apply this to 

V a corresponding to the process va
t = ϕtea, where ea ∈ TxM is an orthonormal basis. 

By definition of the ϕ-gradient we have

DV aF = 〈∇ϕF, ea〉 , (4.42)

and by definition of the ϕ-laplacian we have

ΔϕF =
n∑

a=1
Hess F (V a, V a). (4.43)

Using the formula

DUwF =
∞∫

0

〈
∇‖

t F, ẇt

〉
dt, (4.44)

together with Definition 4.11 (Markovian connection) and Lemma 4.13, we infer that

D∇V a V aF =
∞∫

0

〈
∇‖

t F,

t∫
0

Rs( dWs, ϕsea)ϕ̇tea

〉
dt. (4.45)

Hence, summing over a and using that Ric = 0 we conclude

n∑
a=1

QF [V a, V a] = Ex [ΔϕF ] − |Ex [∇ϕF ]|2 + n

2 ||ϕ||2 ≥ 0. (4.46)

This proves the theorem. �
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4.3. Differential matrix Harnack

In this section, we prove the Matrix Harnack inequality on path space in the Ricci-flat 
case:

Theorem 4.47 (Differential Matrix Harnack inequality on path space, Ricci-flat case). 
Let M be a Ricci-flat manifold, and let F : PxM → R+ be a nonnegative ΣT -measurable 
function on path space. Then, for every ϕ ∈ H1

0 (R+) we have

Ex[Hessϕ F ]
Ex[F ] − Ex[∇ϕF ] ⊗ Ex[∇ϕF ]

Ex[F ]2 + gx

2

(
1 + CT (Rm)Ex[F 2]1/2

Ex[F ]

)
||ϕ||2 ≥ 0, (4.48)

where CT (Rm) < ∞ is a constant, which converges to 0 as |Rm| → 0 assuming that T
stays bounded.

Proof. Let F = f(γt1 , · · · , γtk
) be a cylinder function. By scaling we can assume that

Ex[F ] = 1 and ||ϕ|| = 1. (4.49)

Let v ∈ Rn be any unit vector. Arguing similarly as in the proof of Theorem 4.38, we 
see that(

Ex

[
Hessϕ F

]
− Ex [∇ϕF ] ⊗ Ex [∇ϕF ] + gx

2

)
(v, v) ≥ −2Ex [Fδ (∇V V )] . (4.50)

Using Ito’s isometry and the bound |ϕs| ≤ s1/2, we can estimate

Ex

[
δ (∇V V )2

]
≤

T∫
0

Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

Rs( dWs, ϕsv)

∣∣∣∣∣∣
2⎤⎥⎦ |ϕ̇t|2 dt ≤ CT (Rm) . (4.51)

Together with the Cauchy Schwarz inequality, this implies the assertion. �
4.4. Differential Harnack in terms of L2-Laplacian

The goal of this section is to relate the Markovian Hessian and the L2-Hessian, as 
needed for Corollary 1.51. The following notions of gradient of vector fields will play the 
dominant roles:

∇L the L2-connection ,

∇ the Markovian connection. (4.52)

Here, the L2-connection is the Levi-Civita connection of the L2-inner product, and the 
Markovian connection is as in Definition 4.11. These connections on the space of vector 
fields naturally induce Hessians on the space of functions by the formulas:
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HessL F (V, W ) ≡ DV (DW F ) − D∇L
V W F ,

Hess F (V, W ) ≡ DV (DW F ) − D∇V W F . (4.53)

Our goal is now to relate the two induced Hessians. Namely, we will show that

Hess F (Uh, Uh) = HessL F (Uh, Uh) +
∞∫

0

〈
∇‖

t F,Rt(◦dWt, ht)ht

〉
. (4.54)

To prove this, we start by expressing the L2-Hessian in terms of the parallel Hessians.

Lemma 4.55 (L2-Hessian and Parallel Hessian). Let F : PxM → R be a function on 
path space, and let HessL F its L2-Hessian as defined above. Then for any h, k ∈ H we 
have

HessL F (Uh, Uk) =
∞∫

0

∞∫
0

〈
∇‖

s∇‖
t F, ḣs ⊗ k̇t

〉
ds dt. (4.56)

Proof. The proof is a more involved version of the relationship between the L2-gradient 
and the parallel gradient from the preliminaries section. To begin, note that for any 
cylinder function

F (γ) = f(γt1 , . . . , γtk
), (4.57)

using the horizontal vector fields on FMk, we can compute

ti−1∫
ti

tj−1∫
tj

〈
∇‖

s∇‖
t F, ḣs ⊗ k̇t

〉
ds dt =

∑
�≥i,m≥j

H(�)
a H

(m)
b f̃ (ha

ti
− ha

ti−1
)(hb

tj
− hb

tj−1
) . (4.58)

Now, similarly as in the L2-gradient computation from the preliminaries section, we can 
use the horizontal vector fields to compute the L2-Hessian:

HessL F (Uh, Uk) =
∑
�,m

H(�)
a H

(m)
b f̃ ha

t�
kb

tm

=
∑

�≥i,m≥j

H(�)
a H

(m)
b f̃ (ha

ti
− ha

ti−1
)(hb

tj
− hb

tj−1
)

=
∑
i,j

ti−1∫
ti

tj−1∫
tj

〈
∇‖

s∇‖
t F, ḣs ⊗ k̇t

〉
ds dt

=
∞∫

0

∞∫
0

〈
∇‖

s∇‖
t Fḣs, ḣt

〉
ds dt , (4.59)



34 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714
which, by density of cylinder functions, completes the proof of the lemma. �
We will now prove the formula (4.54), relating the L2-Hessian and the Markovian-

Hessian:

Proposition 4.60 (Markovian Hessian and L2-Hessian). Let F : PxM → R be a cylinder 
function, and let Vt = Utht, where h ∈ H. Then

Hess F (V, V ) = HessL F (V, V ) +
∞∫

0

〈
∇‖

t F,Rt(◦dWt, ht)ht

〉
. (4.61)

Remark 4.62. The integral in (4.61) is an anticipating integral, but since F (γ) =
f(γt1 , . . . , γtk

) is a cylinder function it can simply be expressed as a finite sum of usual 
non-anticipating integrals:

∞∫
0

〈
∇‖

t F,Rt(◦dWt, ht)ht

〉
=
∑

i

〈
u−1

ti
∇(i)f,

ti∫
0

Rt(◦dWt, ht)ht

〉
. (4.63)

Proof. Let F (γ) = f(γt1 , . . . , γtk
) be a cylinder function, where 0 < t1 < . . . < tk. We 

will first compute in the smooth setting and appeal to the transfer principle later. So let 
γt be a smooth curve in M starting at x, with horizontal lift ut and anti-development 
βt. Let γε

t be a smooth variation of γt with fixed initial point such that

d

dε

∣∣∣
ε=0

γε
t = utht =: Vt. (4.64)

Let uε
t be the horizontal lift of γε

t . We compute

DV (DV F ) = d

dε

∣∣∣
ε=0

k∑
i=1

∇(i)
uε

ti
hti

f(γε
t1

, . . . , γε
tk

) (4.65)

=
k∑

i,j=1

〈
∇(i)∇(j)f, Vti

⊗ Vtj

〉
Tγti

M⊗Tγtj
M

+
k∑

i=1

〈
∇(i)f, ∇Vti

Vti

〉
Tγti

M
.

(4.66)

By Lemma 4.55 (L2-Hessian and parallel Hessian) the first term is given by

k∑
i,j=1

〈
∇(i)∇(j)f, Vti

⊗ Vtj

〉
Tγti

M⊗Tγtj
M

= HessLF (V, V ). (4.67)

To compute the second term, note that by definition of the horizontal lift we have

∇γ̇t
(utea) = 0, (4.68)
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hence

∇γ̇t
∇Vt

(utea) = R(γ̇t, Vt)(utea). (4.69)

Through integration this implies

∇Vti
(uti

ea) =
ti∫

0

P ti
t (γ)R(γ̇t, Vt)(utea) dt (4.70)

=
ti∫

0

uti
Rt(β̇t, ht)ea dt, (4.71)

where P ti
t = uti

◦u−1
t denotes the parallel transport along γ from Tγt

M to Tγti
M . Thus, 

we get

k∑
i=1

〈
∇(i)f, ∇Vti

Vti

〉
Tγti

M
=
∑

i

〈
u−1

ti
∇(i)f,

ti∫
0

Rt(β̇t, ht)dt hti

〉
Rn

. (4.72)

Putting things together and using the transfer principle (see [14]) we obtain

DV (DV F ) = HessLF (V, V ) +
k∑

i=1

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)hti

〉
Rn

. (4.73)

The curvature term can be rewritten as

∑
i

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)hti

〉
Rn

=
∑

i

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)(hti
− ht)

〉
Rn

+
∑

i

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)ht

〉
Rn

.

(4.74)

For the first term in (4.74) we find by recalling the definition of the Markovian connection

∑
i

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)(hti
− ht)

〉
Rn

=
∑

i

〈
Pti

∇(i)f,

ti∫
0

ti∫
0

1[t,ti](s)Rt(◦dWt, ht)ḣs ds

〉
Rn

(4.75)



36 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714
=
∑

i

〈
Pti

∇(i)f,

ti∫
0

s∫
0

Rt(◦dWt, ht)ḣs ds

〉
Rn

=
∞∫

0

〈
∇‖

sF,

s∫
0

Rt(◦dWt, ht)ḣs

〉
Rn

ds = D∇V V F, (4.76)

where we also changed the order of integration in the first line. For the second term in 
(4.74), we obtain

∑
i

〈
Pti

∇(i)f,

ti∫
0

Rt(◦dWt, ht)ht

〉
Rn

=
∞∫

0

〈
∇‖

t F,Rt(◦dWt, ht)ht

〉
Rn

. (4.77)

Putting everything together, this proves the proposition. �
As an immediate consequence of the above we obtain:

Corollary 4.78. If M is Ricci-flat, then the ϕ-Laplacian induced by the Markovian con-
nection and the L2-connection agree, i.e.

Δϕ = ΔL
ϕ . (4.79)

In particular, our differential Harnack inequality on path space of Ricci-flat manifolds 
can be rewritten as

Ex

[
ΔL

ϕ F
]

Ex[F ] −
∣∣Ex [∇ϕF ]

∣∣2
Ex[F ]2 + n

2 ||ϕ||2 ≥ 0. (4.80)

5. The general case

Note that ΣT -measurable functions on C([0, ∞); M) can be identified with functions 
on C([0, T ]; M). Hence, for ease of notation from now on we will assume that all curves 
have time domain [0, 1], i.e. we will work with the path space

PxM = {γ : [0, 1] → M | γ continuous , γ0 = x}, (5.1)

the Cameron-Martin norm

||v||H =

⎛⎝ 1∫
0

|v̇t|2 dt

⎞⎠1/2

, (5.2)

etc (it is easy to rephrase the theorems from the introduction as equivalent theorems for 
t ∈ [0, 1]).
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5.1. A positive quadratic form

The goal of this section is to prove Theorem 5.32 (Halfway Harnack). In contrast 
to the Ricci-flat case from the previous section, we now have to take into account the 
Ricci-terms. To this end, we start with the following definition.

Definition 5.3 (hat-map). The hat-map

L2
ad(PxM ;H) → L2

ad(PxM ;H), v 
→ v̂ (5.4)

is defined by

v̂t(γ) = vt(γ) +
t∫

0

Rics(γ)vs(γ) ds, (5.5)

where Rics(γ) : Rn → Rn is given by 〈Rics(γ)v, w〉 = Ricγs
(Us(γ)v, Us(γ)w).

Lemma 5.6 (cf. [6, Lem. 3.7.1]). The hat-map is well-defined, linear, and bijective. More-
over, we have the bounds

||v̂||H ≤ (1 + C(Ric))||v||H, and ||v||H ≤ (1 + C(Ric))||v̂||H (5.7)

where C(Ric) → 0 as | Ric | → 0.

Proof. Using | Ric | ≤ K and |vt| ≤ t1/2||v||H ≤ ||v||H we can estimate

1∫
0

| ˙̂vt|2 dt =
1∫

0

|v̇t + Rict vt|2 dt ≤ (1 + C(K))||v||2H, (5.8)

hence

Ex

[
||v̂||2H

]
≤ (1 + C(K))Ex

[
||v||2H

]
< ∞. (5.9)

Together with the observation that by the defining formula (5.5) the process v̂t is adapted 
whenever vt is adapted, this implies that the hat-map is well defined. Also, the hat-map 
is obviously linear.

Next, assume that v̂ = 0. Then, from (5.5) we see that v solves the ODE

v̇t + Rict vt = 0, v0 = 0. (5.10)

Thus, v = 0, which shows that the hat-map is injective.
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Finally, given w ∈ L2
ad(PxM ; H) we solve the ODE

v̇t + Rict vt = ẇt, v0 = 0. (5.11)

The solution is clearly adapted, and using | Ric | ≤ K and |vt| ≤ ||v||H we can estimate

||v||2H =
1∫

0

|ẇt − Rict vt|2 dt ≤ (1 + ε) ||w||2H + C(ε, K)||v||2H. (5.12)

Choosing ε small enough the term on the right hand side can be absorbed. Hence, 
v ∈ L2

ad(PxM ; H), which proves that the hat-map is surjective. This concludes the proof 
of the lemma. �
Definition 5.13 (hat of a vector field on path space). For any vector field V ∈
L2

ad(PxM ; TPxM) we write

V̂ := U ̂U−1V . (5.14)

Now, as in Cruzeiro-Fang [2] we can consider the modified Markovian connection:

Definition 5.15 (modified Markovian connection, [2, Sec. 3]). The modified Markovian 
connection ∇|= is defined via

∇|=
V W

∧

= ∇V Ŵ (5.16)

for V, W ∈ L2
ad(PxM ; TPxM), where ∇ denotes the Markovian connection from Defini-

tion 4.11.

The modified Markovian connection is well-defined, since the hat-map is invertible 
by Lemma 5.6. Note that in the Ricci-flat case we have ∇|= = ∇, since the hat-map 
becomes the identity-map.

By [2, Thm. 3.1] the modified Markovian connection is compatible with the modified 
H-product

〈V, W 〉
Ĥ

:=
〈

V̂ , Ŵ
〉
H

. (5.17)

Indeed, using that ∇ is compatible with the H-product one can compute

Z 〈V, W 〉
Ĥ

= Z
〈

V̂ , Ŵ
〉
H

(5.18)

=
〈

∇Z V̂ , Ŵ
〉
H

+
〈

V̂ , ∇ZŴ
〉
H

(5.19)

=
〈

∇|=
Z V, W

〉
+
〈

V, ∇|=
Z W

〉
. (5.20)
Ĥ Ĥ
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Definition 5.21 (divergence). The divergence of a vector field V ∈ L2
ad(PxM ; TPxM) is 

defined by

δ(V ) := 1
2

1∫
0

〈 ˙̂vt, dWt

〉
, (5.22)

where v = U−1V and ˙̂vt = v̇t + Rict vt as in Definition 5.3.

The definition of the divergence is motivated by the integration by parts formula (see 
Section 3.3), which can be rewritten as

Ex [DV FG] = Ex [−FDV G + FGδ(V )] (5.23)

for V ∈ L2
ad(PxM ; TPxM). The following is a very useful algebraic relation:

Proposition 5.24 (commutator formula, cf. [2, Thm. 3.2]). For V, W ∈ L2
ad(PxM ;

TPxM), with W differentiable, we have

DV δ(W ) = δ(∇|=
V W ) + 1

2 〈V, W 〉
Ĥ

. (5.25)

Proof. The proof is similar to the one of Proposition 4.20, with a few changes to take 
into account the Ricci-terms. Generalizing equation (4.22) we now have

dv∗
t =v̇t dt −

t∫
0

Rs(◦dWs, vs) ◦ dWt (5.26)

=v̇t dt −
t∫

0

Rs(◦dWs, vs) dWt + Rict vt dt (5.27)

= ˙̂vt dt −
t∫

0

Rs(◦dWs, vs) dWt. (5.28)

Using this and the intertwining formula we compute

2DV δ(W ) = DV

∞∫
0

〈 ˙̂wt, dWt

〉
(5.29)

=
∞∫

0

〈
Dv∗( ˙̂wt ◦ I), dW̄t

〉
+

∞∫
0

〈 ˙̂wt ◦ I, dDv∗W̄t

〉
(5.30)
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=
∞∫

0

〈
DV

˙̂wt, dWt

〉
−

∞∫
0

〈
˙̂wt,

t∫
0

Rs(◦dWs, vs) dWt

〉
+

∞∫
0

〈 ˙̂vt, ˙̂wt

〉
dt. (5.31)

This implies the assertion. �
We are now ready to state and prove our Halfway Harnack inequality in the general 

case:

Theorem 5.32 (Halfway Harnack). Let F : PxM → R+ be a nonnegative cylinder func-
tion. Then

QF [V, V ] := Ex [DV (DV F )]
Ex[F ] − Ex [DV F ]2

Ex[F ]2 +
Ex

[
Fδ(∇|=

V V )
]

Ex[F ] + 1
2

Ex

[
F ||V ||2

Ĥ

]
Ex[F ]

(5.33)

is nonnegative for every derivable V ∈ L2
ad(PxM ; TPxM).

Proof. By scaling we can assume that

Ex[F ] = 1. (5.34)

Using the integration by parts formula (5.23) we get

Ex [DV F ] = Ex [Fδ(V )] , (5.35)

and

Ex

[
D∇|=

V V
F
]

= Ex

[
Fδ(∇|=

V V )
]

. (5.36)

Next, applying the integration by parts formula (5.23) twice and using also Proposi-
tion 5.24 (commutator formula) we compute

Ex [DV (DV F )] =Ex [DV Fδ(V )] (5.37)

=Ex

[
Fδ(V )2]− Ex [FDV δ(V )] (5.38)

=Ex

[
Fδ(V )2]− Ex

[
Fδ(∇|=

V V )
]

− 1
2Ex

[
F ||V ||2

Ĥ

]
. (5.39)

Combining the above formulas, we conclude that

QF [V, V ] = Ex

[
Fδ(V )2]− Ex [Fδ(V )]2 , (5.40)

which is indeed nonnegative by the Cauchy-Schwarz inequality. �
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5.2. Differential matrix Harnack

In this section, we prove the differential Matrix Harnack inequality (Theorem 1.58) 
on the path space of general Riemannian manifolds.

Proof of Theorem 1.58. We will show the claim for cylinder functions and appeal to 
density. So let F = f(γt1 , · · · , γtk

) be a cylinder function. By scaling we can assume that 
F is Σ1-measurable, and that

Ex[F ] = 1, and ||ϕ|| = 1. (5.41)

Fix any unit vector ea ∈ TxM . We choose

vt = ϕ(t)ea, (5.42)

and apply Theorem 5.32 (Halfway Harnack) for V = Uv, which gives

Ex [DV (DV F )] − Ex [DV F ]2 + Ex

[
Fδ(∇|=

V V )
]

+ 1
2Ex

[
F ||V ||2

Ĥ

]
≥ 0. (5.43)

Using the definition of the Markovian Hessian we rewrite this as

Ex [Hess F (V, V )] − Ex [DV F ]2 + 1
2Ex

[
F ||V ||2H

]
+ 1

2Ex

[
F
(

||V ||2
Ĥ

− ||V ||2H
)]

+ Ex

[
D∇V V F

]
+ Ex

[
D∇|=

V V
F
]

≥ 0. (5.44)

We view the terms in the second line as error terms, which we have to bound from above.
First, using Lemma 5.6 and equations (5.41) and (5.42) we can estimate

1
2Ex

[
F
(

||V ||2
Ĥ

− ||V ||2H
)]

≤ C(Ric). (5.45)

Next, using also the integration by parts formula, Cauchy-Schwarz inequality, the Ito 
isometry, and Lemma 5.6, we have

Ex

[
D∇V V F

]2 = Ex [Fδ(∇V V )]2 ≤ (1 + C(Ric))Ex[F 2]Ex

[
||∇V V ||2H

]
. (5.46)

Similarly, using the definition of the modified Markovian connection (Definition 5.15), 
we can estimate

Ex

[
D∇|=

V V
F
]2

= Ex

[
Fδ(∇|=

V V )
]2

≤ (1 + C(Ric))Ex[F 2]Ex

[
||∇V V̂ ||2H

]
. (5.47)

To finish the proof of the theorem, it thus remains to prove the following claim:
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Claim 5.48. We have the estimates

Ex

[
||∇V V ||2H

]
≤ C(Rm, ∇ Ric), (5.49)

and

Ex

[
||∇V V̂ ||2H

]
≤ C(Rm, ∇ Ric), (5.50)

where C(Rm, ∇ Ric) < ∞ is a constant which tends to zero as | Rm | + |∇ Ric | → 0.

Proof of the claim. By definition of the Markovian connection and our choice of V we 
have

Ex

[
||∇V V ||2H

]
= Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣
t∫

0

Rs(◦dWs, vs)v̇t

∣∣∣∣∣∣
2

dt

⎤⎥⎦ ≤ sup
t∈[0,1]

Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

Rs(◦dWs, vs)

∣∣∣∣∣∣
2 ⎤⎥⎦ .

(5.51)

Using Ito’s lemma and the Bianchi identity we see that

Rs(◦dWs, vs) = Rs( dWs, vs) + (∇ Ric)s ∧ vs ds, (5.52)

where ∧ is a certain bilinear pairing whose precise structure is irrelevant for our purpose. 
Hence, using also the bound |vs| ≤ 1, and Ito’s isometry, we can estimate

Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

Rs(◦dWs, vs)

∣∣∣∣∣∣
2 ⎤⎥⎦ ≤ 2Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

Rs(dWs, vs)

∣∣∣∣∣∣
2 ⎤⎥⎦+ 2Ex

⎡⎢⎣
⎛⎝ t∫

0

|(∇ Ric)s ∧ vs| ds

⎞⎠2 ⎤⎥⎦
≤ C(Rm, ∇ Ric),

(5.53)
which proves the estimate (5.49).

Concerning estimate (5.50), by the definition of the Markovian connection we have

Ex

[
||∇V V̂ ||2H

]
=Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣DV
˙̂vt +

t∫
0

Rs(◦dWs, vs) ˙̂vt

∣∣∣∣∣∣
2

dt

⎤⎥⎦ (5.54)

≤2Ex

⎡⎣ 1∫
0

|DV
˙̂vt|2 dt

⎤⎦+ 2Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣
t∫

0

Rs(◦dWs, vs)

∣∣∣∣∣∣
2

| ˙̂vt|2 dt

⎤⎥⎦ .

(5.55)

Using Lemma 5.60 below, and |vt| ≤ 1, we can estimate
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|DV
˙̂vt|2 ≤ 2|(∇ Ric)t|2 + 8| Rict |2

∣∣∣∣∣∣
t∫

0

Rs(◦dWs, vs)

∣∣∣∣∣∣
2

. (5.56)

This yields

Ex

⎡⎣ 1∫
0

|DV
˙̂vt|2 dt

⎤⎦ ≤ C(Rm, ∇ Ric). (5.57)

Finally, using | ˙̂vt|2 ≤ 2|v̇t|2 + 2|Ric|2 and arguing similarly as above we can estimate

Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣
t∫

0

Rs(◦dWs, vs)

∣∣∣∣∣∣
2

| ˙̂vt|2 dt

⎤⎥⎦ ≤ C(Rm, ∇ Ric). (5.58)

This proves the claim. �
Putting things together we conclude that

Ex [Hess F (V, V )]−Ex [DV F ]2 + 1
2Ex

[
F ||V ||2H

]
+C(Ric)+C(Rm, ∇ Ric)Ex[F 2]1/2 ≥ 0.

(5.59)
Together with the definition of the ϕ-Hessian and ϕ-Laplacian, and our choice of V , this 
finishes the proof of Theorem 1.58. �

It remains to prove the following lemma, which has been used in the above proof:

Lemma 5.60. If v ∈ H and V = Uv, then

DV
˙̂vt = (∇ Ric)t(vt, vt) + Rict

⎛⎝ t∫
0

Rs(◦dWs, vs)vt

⎞⎠ −
t∫

0

Rs(◦dWs, vs) Rict vt. (5.61)

Remark 5.62. Note that in the Einstein case DV
˙̂vt = 0, as expected.

Proof. By the definition of v̂ we have

DV
˙̂vt = DV Rict vt. (5.63)

Let us assume that γt is a smooth path in M , and let γε
t be the variation with γε

0 = 0
and d

dε

∣∣∣
ε=0

γε
t = Vt. Let uε

t be the horizontal lift of γε
t . Let β be the anti-development in 

Rn. Later we will appeal to the transfer principle.
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Let ea be a basis vector in Rn. Then

〈DV Rict(vt), ea〉Rn = d

dε

∣∣∣
ε=0

〈
Ricγε

t
(uε

t vt), uε
t ea

〉
Tγε

t
M

(5.64)

= 〈∇Vt
(Ricγt

(Vt)) , utea〉Tγt M + 〈Ricγt
(Vt), ∇Vt

(utea)〉Tγt M .

(5.65)

From the proof of Proposition 4.60 we already know that

∇Vt
(utea) = ut

t∫
0

Rs(β̇s, vs) ds ea . (5.66)

Using also the Leibniz rule we obtain

∇Vt
(Ricγt

(Vt)) = (∇Vt
Ricγt

)(Vt) + Ricγt
(∇Vt

Vt) (5.67)

= (∇Vt
Ricγt

)(Vt) + Ricγt

⎛⎝ut

t∫
0

Rs(β̇s, vs) ds vt

⎞⎠ . (5.68)

Putting things together, this yields

DV Rict vt = (∇ Ric)t(vt, vt) + Rict

⎛⎝ t∫
0

Rs(β̇s, vs) ds vt

⎞⎠−
t∫

0

Rs(β̇s, vs) ds Rict vt .

(5.69)

By the transfer principle, this implies the assertion. �
5.3. Differential Harnack

In this final section, we prove the differential Harnack inequality on path space of 
general manifolds (Theorem 1.53) and its corollary (Corollary 1.55).

We note that taking the trace of the differential Matrix Harnack inequality (Theo-
rem 1.58) one immediately obtains

Ex[ΔϕF ]
Ex[F ] − |Ex[∇ϕF ]|2

Ex[F ]2 +
(

n

2 + C(Ric) + C(Rm, ∇ Ric)Ex[F 2]1/2

Ex[F ]

)
||ϕ||2 ≥ 0, (5.70)

however, only with the information that C(Rm, ∇ Ric) → 0 as | Rm | + |∇ Ric | → 0.
To get the sharper estimate from Theorem 1.53, where C(Rm, ∇ Ric) tends to zero 

as |Ric| + |∇ Ric | → 0 assuming only that | Rm | stays bounded, we will argue in the 
opposite order. Namely, will first take the trace, and then derive sharper estimates for 
the error terms of the trace Harnack.
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Proof of Theorem 1.53. By scaling we can assume that F is Σ1-measurable, and that

Ex[F ] = 1, and ||ϕ|| = 1. (5.71)

Arguing similarly as in the proof of Theorem 1.58 and taking the trace over Va = U(ϕea), 
where ea ∈ TxM is an orthonormal basis, we obtain

Ex

[
ΔϕF

]
− |Ex [∇ϕF ]|2 + n

2Ex [F ] + C(Ric)

+ (1 + C(Ric))

⎛⎝Ex

[
||
∑

a

∇Va
Va||2H

]1/2

+ Ex

[
||
∑

a

∇Va
V̂a||2H

]1/2
⎞⎠Ex[F 2]1/2 ≥ 0.

(5.72)

To finish the proof of the theorem, it thus remains to prove the following claim:

Claim 5.73. We have the estimates

Ex

[
||
∑

a

∇Va
Va||2H

]
≤ C1(Ric, ∇R), (5.74)

and

Ex

[
||
∑

a

∇Va
V̂a||2H

]
≤ C2(Rm, ∇ Ric), (5.75)

where C1(Ric, ∇R) tends to zero as |Ric| + |∇R| → 0, and C2(Rm, ∇ Ric) tends to zero 
as |Ric| + |∇ Ric | → 0 assuming only that | Rm | stays bounded.

Proof of the claim. Using the definition of the Markovian connection and our choice of 
Va we have

Ex

[
||
∑

a

∇Va
Va||2H

]
= Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣
t∫

0

∑
a

Rs(◦dWs, ϕsea)ϕ̇tea

∣∣∣∣∣∣
2

dt

⎤⎥⎦ (5.76)

≤ sup
t∈[0,1]

Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

ϕs Rics ◦dWs

∣∣∣∣∣∣
2 ⎤⎥⎦ . (5.77)

Using Ito’s lemma and the contracted Bianchi identity we see that

Rics ◦dWs = Rics dWs + 1
2 (∇R)s ds. (5.78)

Hence, using also the bound |vs| ≤ 1, and Ito’s isometry, we can estimate



46 R. Haslhofer et al. / Advances in Mathematics 410 (2022) 108714
Ex

⎡⎢⎣
∣∣∣∣∣∣

t∫
0

ϕs Rics ◦dWs

∣∣∣∣∣∣
2 ⎤⎥⎦ ≤ C(Ric, ∇R), (5.79)

which proves the estimate (5.74).
Concerning estimate (5.75), by the definition of the Markovian connection we have

Ex

[
||
∑

a

∇Va
V̂a||2H

]
=Ex

⎡⎢⎣ 1∫
0

∣∣∣∣∣∣
∑

a

DVa
˙̂va
t +

t∫
0

∑
a

Rs(◦dWs, va
s ) ˙̂va

t

∣∣∣∣∣∣
2

dt

⎤⎥⎦ . (5.80)

Now, similarly as in the proof of (5.50) we can estimate

Ex

⎡⎣ 1∫
0

∣∣DVa
˙̂va
t

∣∣2⎤⎦ ≤ C(Rm, ∇ Ric), (5.81)

where C(Rm, ∇ Ric) tends to zero as |Ric| + |∇ Ric | → 0 assuming only that | Rm | stays 
bounded. Moreover, since ˙̂va

t = v̇a
t + Rictv

a
t and va

t = ϕtea we have

∑
a

Rs(◦dWs, va
s ) ˙̂va

t =
t∫

0

ϕsRics ◦ dWs ϕ̇t +
t∫

0

Rs(◦dWs, va
s ) Rict va

t (5.82)

From this, the assertion follows. �
Using the claim, and putting things together we concluded that

Ex[ΔϕF ] − |Ex[∇ϕF ]|2 + n

2 + C(Ric) + C(Rm, Ric, ∇ Ric)Ex

[
F 2]1/2 ≥ 0, (5.83)

where C(Rm, ∇ Ric) tends to zero as |Ric| + |∇ Ric | → 0 assuming only that | Rm | stays 
bounded. This finishes the proof of Theorem 1.53. �
Proof of Corollary 1.55. Inspecting the above proof we see that in the Einstein case the 
error estimates in the claim above only depend on the Einstein constant. This proves 
the corollary. �
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