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Abstract The nanoscale multiphase phase-field model for stress and temperature-induced multivariant marten-
sitic transformation under large strains developed by the authors in Basak and Levitas (J Mech Phys Solids
113:162–196, 2018) is revisited, the issues related to the gradient energy and coupled kinetic equations for
the order parameters are resolved, and a thermodynamically consistent non-contradictory model for the same
purpose is developed in this paper. The model considers N + 1 order parameters to describe austenite and
N martensitic variants. One of the order parameters describes austenite↔martensite transformations, and the
remaining N order parameters, whose summation is constrained to the unity, describe the transformations
between the variants. A non-contradictory gradient energy is used within the free energy of the system to
account for the energies of the interfaces. In addition, a kinetic relationship for the rate of the order parameters
versus thermodynamic driving forces is suggested, which leads to a system of consistent coupled Ginzburg–
Landau equations for the order parameters. An approximate general crystallographic solution for twins within
twins is presented, and the explicit solution for the cubic to tetragonal transformations is derived. A large
strain-based finite element method is developed for solving the coupled Ginzburg–Landau and elasticity equa-
tions, and it is used to simulate a 3D complex twins within twins microstructure. A comparative study between
the crystallographic solution and the simulation results is presented.

Keywords Multiphase phase-field approach · Martensitic transformations · Twins within twins ·

Crystallographic solution · Large strains · Finite element method

1 Introduction

Martensitic transformations and microstructures. Martensitic transformations (MTs) are diffusionless
solid–solid phase transformations observed in many metallic and nonmetallic crystalline solids, minerals,
and various compounds, where a parent phase called austenite (high-temperature phase) transforms into the
product phase called martensite (low-temperature phase) [1,2]. The martensitic phase (here denoted by M)
has lower crystallographic symmetry than the austenite phase (here denoted by A) and generally has multiple
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variants. Very complex microstructures such as austenite-twinned martensite, twins within twins, twins within
twins within twins, wedge, X-interfaces are observed within the materials undergoing MTs [1–5]. The evo-
lution of such microstructures plays a central role in, for example, the strengthening of steel, shape memory
effect in various alloys, ferromagnetic effect, caloric effects, etc. [1,6].

In continuum theories for MTs, such phase-changing materials are modeled as nonlinear elastic materials
having multiple wells in the free energy density function [1,2,4,7,8]. Fine twinned microstructures associated
with austenite-martensite interfaces, which were observed under the microscopes [9–12], are usually obtained
as the minimizers of such non-convex energies within the continuum theories [4]. The analytical crystallo-
graphic solutions for twins between a pair of variants and the austenite-twinned martensite interfaces are
well-known within the small as well as finite deformation theories [1,2,4,13]. These solutions have been fur-
ther used for obtaining the solutions for more complex wedge microstructures [5,14] and X-interfaces [15,16].
Another important complex microstructure is twins within twins [1,3] for which the general crystallographic
equations were established in [1,10,11]. Though the governing equations are well-known for twins within
twins, the analytical solutions for such microstructures are still missing to the best of our knowledge.

Phase-field approach to MTs. The phase-field approaches based on the Ginzburg–Landau equations [17]
(similar to Allen–Cahn’s approach [18]), which provide an ideal framework for studying the MTs, have been
widely used for studying nucleation, growth of the phases, and evolution of complex microstructures [19–
51]. Notably, the phase-field approaches are popularly used for other types of structural changes in materials,
including melting [52], the evolution of damage [53], the kinetics of grain boundaries [54], etc. In all the
phase-field models, a set of sufficiently smooth scalar internal variables, called the order parameters, are used
to describe the phases. The volume fraction based (e.g., [55–63]) or the transformation strains based (e.g.,
[19,20,23,24,26]) order parameters have been used. Within the multiphase phase-field approaches, the order
parameters should be constrained to some specified surfaces in order to control the transformation paths. For
that purpose, various constraint hypersurfaces such as hypersphere [64], planar surfaces [65], and straight lines
[20,66] have been used; see [20] for a review. The double-well (e.g., [19,20,26,64,66]) or double-obstacle
(e.g., [22])-based thermal energies are usually used. The free energies are considered to be smooth functions
of the order parameters, and the transformation strains are accepted as linear [55,57–60,60–63] or nonlinear
functions [19–21,23,24,67] of the order parameters smoothly varying between all the phases. The energies and
the transformation strains satisfy the requirements of thermodynamic equilibrium of the phases [45,46] (also
see Sect. 2.5). The first large strain-based phase-field theory and computational approaches were presented
in [21,37,47]. They utilized the methods of repetitive superposition of large strains, developed by Levin in
[68–70] for viscoelastic materials, extended to materials with phase transformations. A gradient (of the order
parameters)-based nonlocal energy is considered, which introduces finite interface widths between the phases,
and in 3D domains, the interfaces are modeled as shell-like regions [71]; see, e.g., [72] and the references therein
for other types of nonlocal theories. The time evolution of these order parameters describing the kinetics of the
PTs is derived using the laws of thermodynamics, yielding a system of coupled Ginzburg–Landau equations.
The interfacial stresses, consisting of the elastic and structural components and which play an important role
in the nucleation of the phases and also in their kinetics and growth, have been considered (e.g., [35,73,74]).
A detailed comparison between these various multiphase phase-field approaches to MTs is presented in [20].

The multiphase phase-field model for studying the multivariant MTs developed by the authors in [20] yields
non-contradictory results for a two-variant system. However, for a system with more than two variants, some
contradictions have been observed in relation to the gradient energy and the system of kinetic equations. One
of the aims of this work is to discuss those issues from that model and present a non-contradictory multiphase
phase-field model for MTs. A gradient energy proposed therein simplifies consistently for a two-variant system
and matches with the well-established result (see [20] for the discussion). However, a contradiction is observed
when the system contains more than two variants, as discussed in Sect. 2.3. An alternative form of the gradient
energy has been used here which has similarities with the gradient energy used in [22,23,58,65] and yields non-
contradictory results for any number of variants. In the present model, we, however, multiply this gradient term
with the determinant of the total deformation gradient while determining the total system energy to ensure
an appropriate form of the structural stress tensor, which was, however, not considered in [22,23,58,65].
Furthermore, we point out in Sect. 2.4.2 that the coupled kinetic equations for the order parameters are non-
contradictory for a two-variant system but lead to contradictions for an N -variant system for N > 2 if the
kinetic coefficients are assumed to be constants. We thus introduce a system of kinetic equations with kinetic
coefficients, which are piece-wise functions of the order parameters and the driving forces, which are motivated
by Ref. [60].
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Contribution of the paper. The contributions of this paper are mainly threefold:
i) We present a thermodynamically consistent nanoscale phase-field approach for multivariant MTs con-

sidering non-contradictory gradient energies and the local energies, including the barrier, chemical, and elastic
energy, as well as energies penalizing the multiphase junctions, while the deviations of the transformation
paths for A ↔ M and Mi ↔ M j PTs from the specified paths are appropriately controlled. The issues with the
existing gradient energy models are discussed. Furthermore, a consistent kinetic model for coupled Ginzburg–
Landau equations is derived, and the issues with the existing kinetic models are discussed. The present model
can be used for MTs with any number of variants.

ii) A general approximate crystallographic solution for the twins within twins microstructure is presented.
The solution for the cubic to tetragonal MTs is also obtained.

(iii) The evolution and formation of 3D twins within twins microstructures in a single grain are studied
using the present phase-field approach. The simulation results are in good agreement with the crystallographic
solution and the experimental results.
Notations. The multiplication and the inner product between two arbitrary second order tensors A and D are
denoted by (A · D)ab = Aac Dcb and A : D = Aab Dba , respectively, where Aab and Dab are the components
of the tensors in a right-handed orthonormal Cartesian basis {e1, e2, e3}. The repeated indices imply Einstein’s

summation. The Euclidean norm of A is defined by |A| =
√

A : AT . The second-order identity tensor is

denoted by I . AT , tr A, det A, sym(A), and skew(A) denote the transpose, trace, determinant, symmetric
part, and skew part of A, respectively. For an invertible tensor A, its inverse is denoted by A−1. The tensor
or dyadic product between two arbitrary vectors a and b is denoted by a ⊗ b. The reference, stress-free
intermediate, and deformed or current configurations are denoted by �0, �t , and �, respectively. The volumes
in the reference and current configurations are denoted by V0 and V , and their external boundaries are denoted
by S0 and S, respectively. The symbols ∇0(·) and ∇(·) denote the gradient operators in �0 and �, respectively.
The Laplacian operators in �0 and � are designated by ∇2

0 := ∇0 · ∇0 and ∇2 := ∇ · ∇, respectively. The
symbol := implies equality by definition.

2 Coupled mechanics and phase-field model

We describe our multiphase phase-field model in this section. In Sect. 2.1, the order parameters are introduced;
in Sect. 2.2, the kinematic relations are enlisted; the general form of Helmholtz free energy is presented
in Sect. 2.3; the general form of the governing coupled mechanics and phase-field equations is derived in
Sect. 2.4; using the condition for homogeneous nucleation of the phases, we have derived the expressions for
the interpolation functions related to the order parameters in Sect. 2.5; the explicit form of the energies is
derived in Sect. 2.6, and the structural stresses and Ginzburg–Landau equations are derived in Sect. 2.7; we
summarize the shortcomings of the previous models from the literature and discuss how the present model
overcomes them in Sect. 2.8.

2.1 Order parameters

For the MTs in a system with austenite and N martensitic variants, we consider N + 1 order parameters
·0, ·1, . . . , ·i−1, ·i , ·i+1, . . . , ·N , where ·0 describes A ↔ M transformations such that ·0 = 0 in A and
·0 = 1 in M, and ·i (for i = 1, . . . , N ) describes the variant Mi such that ·i = 1 in Mi and ·i = 0 in M j for
all j �= i . Such descriptions for the order parameters were introduced by the authors in earlier work [20]. The
order parameters ·1, ·2, . . . , ·N are to constrained lie on a plane by satisfying (see [20] for details)

N
∑

i=1

·i = 1, (2.1)

which ensures that the variant–variant transformation paths to lie in that hyperspace. We introduce a set
of all the order parameters as ·̃ = {·0, ·1, . . . , ·i , . . . , ·N } and a subset ·̃M = {·1, . . . , ·i , . . . , ·N } of
·̃. We also designate ·̂0 = {·0 = 0, ·1, . . . , ·i , . . . , ·N } for A and ·̂i = {·0 = 1, ·1 = 0, . . . , ·i =
1, . . . , ·N = 0} for the variant Mi . The set of the gradient of all the order parameters is denoted by ·̃∇ =
{∇·0, ∇·1, . . . , ∇·i , . . . , ∇·N }.
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2.2 Kinematics

The position vector of a particle in the deformed configuration � at time instance t is given by r(r0, t) =
r0 + u(r0, t), where r0 is the position vector of that particle in �0, and u is the displacement vector. For
a general thermoelastic deformation coupled to MTs, the total deformation gradient tensor F := ∇0r is
multiplicatively decomposition into [75]

F := ∇0r = Fe · F¸ · Ft , (2.2)

where the subscripts e, ¸ , and t designate the elastic, thermal, and transformational parts, respectively, and
Fe, F¸ , and Ft , respectively, are the elastic, thermal, and transformational parts of F. We denote J = det F,
Jt = det Ft , J¸ = det F¸ , and Je = det Fe. Hence, by Eq. (2.2), J = Je J¸ Jt . The Lagrangian total and
elastic strain tensors are defined as

E := 0.5(C − I), and Ee := 0.5(Ce − I), (2.3)

respectively, where C = FT · F and Ce = FT
e · Fe are the total and elastic right Cauchy–Green strain tensors,

respectively. We define the spatial total and elastic strain tensors as

b = 0.5(B − I), and be = 0.5(Be − I), (2.4)

respectively, where B = F · FT , and Be = Fe · FT
e are the total and elastic left Cauchy–Green strain tensors,

respectively. In this paper, we assume that the body is at a uniform temperature, and thus, we have F¸ = I
and J¸ = 1.
Kinematic model for Ft . We consider Ft as a linear combination of the Bain strains multiplied by the inter-
polation functions related to the order parameters [20]:

Ft = I +
N

∑

i=1

εti ϕ(aε, ·0) φi (·i ), (2.5)

where εti = U ti − I and U ti are the Bain strain and Bain stretch tensors, respectively, for Mi , ϕ(aε, ·0) and
φi (·i ) are the interpolation functions, and aε is a constant parameter. The exact form of these interpolation
functions, which are required to yield the conditions Ft (·̂0) = I in A and Ft (·̂i ) = U ti in Mi from Eq. (2.5),
are derived in Sect. 2.5. The possible values for aε are also prescribed in Sect. 2.5.

2.3 Free energy of the system

We assume the Helmholtz free energy per unit mass of the body as [20,73]:

ψ(F, Fe, ¸, ·̃, ·̃∇) = ψ l(F, Fe, ¸, ·̃) + Jψ∇(·0, ·̃
∇), (2.6)

where ψ l is the local part of the free energy density and ψ∇ is the gradient-based nonlocal energy accounting
for the energies of all the interfaces. We have taken ψ l as

ψ l(F, Fe, ¸, ·̃) = Jt

ρ0
ψe(Fe, ¸, ·̃) + J ψ̆¸ (¸, ·̃) + ψ̃¸ (¸, ·̃) + ψ p(·̃), (2.7)

where ψe is the strain energy per unit volume of �t , ψ̆¸ is the barrier energy related to A ↔ M PT and

all the variant↔variant transformations, ψ̃¸ is the thermal/chemical energy for A ↔ M transformations, ψ p

penalizes various triple and higher junctions between all the phases and also accounts for the penalization in
energy for the deviation of the transformation paths from the assigned ones, ¸ > 0 is the absolute temperature,
and ρ0 is the density of the solid in �0. In Eqs. (2.6) and (2.7), the barrier energy and the gradient energy are
multiplied by J following [73] in order to obtain the desired expression for the structural stresses [given by
Eq. (2.53)]. We consider that the material properties, such as the elastic constants, transformation strains, at
any material point, are determined using

B(·̃, ¸, F) = B0(1 − ϕ(a, ·0)) +
N

∑

i=1

Biφi (·i )ϕ(a, ·0), (2.8)

where Bi = Bi (·̂i , ¸, F) and B0 = B0(·̂0, ¸, F) are the material properties of Mi and A, respectively.
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2.4 Governing mechanics and phase-field equations

We now derive the governing equations. Applying the principle of balance of linear and angular momentum
and the first and second laws of thermodynamics and using an approach similar to [20,73], we derive the
mechanical equilibrium equation, dissipation inequalities, and Ginzburg–Landau equations.

2.4.1 Mechanical equilibrium equations and stresses

Using the balance of linear momentum, the mechanical equilibrium equations are obtained as (see, e.g., Chapter
3 of [76])

∇0 · P = 0 in �0, or ∇ · σ = 0 in �, (2.9)

where the body forces and inertia are neglected, P is the total first Piola–Kirchhoff stress tensor, and σ is the
total Cauchy stress tensor. Applying the balance of angular momentum along with Eqs. (2.9)1 and (2.9)2, we
get P · FT = F · PT , and σ = σ

T (see, e.g., Chapter 3 of [76]). In Appendix A, using Eqs. (2.6) and (2.7) and
the first and second laws of thermodynamics, and following the Coleman–Noll procedure [77,78], we have
shown neglecting the viscous stresses that the total first Piola–Kirchhoff stresses are composed of the elastic
and structural parts (also see [20]):

P = Pe + P st , where Pe = Jt

∂ψe

∂ Fe

· F−T
t , and (2.10)

P st = Jρ0(ψ̆
¸ + ψ∇)F−T − Jρ0

(

∇·0 ⊗ ∂ψ∇

∂∇·0
+

N
∑

i=1

∇·i ⊗ ∂ψ∇

∂∇·i

)

· F−T , (2.11)

are the elastic and structural first Piola–Kirchhoff stresses, respectively. Using the relation (see, e.g., Chapter
3 of [76])

P = Jσ · F−T , (2.12)

we derive the corresponding Cauchy stresses as

σ = σ e + σ st , σ e = J−1
e

∂ψe

∂ Fe

· FT
e , and (2.13)

σ st = ρ0(ψ̆
¸ + ψ∇)I − ρ0

(

∇·0 ⊗ ∂ψ∇

∂∇·0
+

N
∑

i=1

∇·i ⊗ ∂ψ∇

∂∇·i

)

. (2.14)

Using the functional form of ψe given by Eq. (2.7) in Eqs. (2.10)2 and (2.13)2, we rewrite the elastic stresses
as

Pe = Jt Fe · Ŝe · F−T
t , and σ e = J−1

e Fe · Ŝe · FT
e , (2.15)

where Ŝe = ∂ψe(Ee)

∂ Ee

. For an isotropic elastic response, Pe and σ e can alternatively be expressed as

Pe = Jt (2be + I) · ∂ψe(be)

∂be

· F−T , and σ e = J−1
e (2be + I) · ∂ψe(be)

∂be

. (2.16)
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2.4.2 Dissipation inequality and Ginzburg–Landau equations

Using the first and second laws of thermodynamics and neglecting any viscous stresses, we have derived the
following dissipation inequality in Appendix A:

ρ0D = ·̇0 X0M +
N

∑

i=1

·̇i X i ≥ 0, (2.17)

where D is the power dissipation per unit mass, X0M and X i are the conjugate thermodynamic forces for the
evolution of ·0 and ·i for i = 1, . . . , N , and their general form is given by

Xl =
(

PT
e · Fe − Jtψ

e F−1
t

)

: ∂ Ft

∂·l

− Jt

∂ψe

∂·l

∣

∣

∣

∣

Fe

− ρ0 J
∂(ψ̆¸ + ψ∇)

∂·l

− ρ0
∂(ψ̃¸ + ψ p)

∂·l

+∇0 ·
(

ρ0 J F−1 · ∂ψ∇

∂∇·l

)

for l = 0, 1, 2, . . . , N . (2.18)

Using the following identities (can be proved using indicial notations)

∇0·k = FT · ∇·k, and
∂ψ∇

∂∇0·k

= F−1 · ∂ψ∇

∂∇·k

, (2.19)

we can rewrite Xl given by Eq. (2.18) into the following compact form in terms of the gradients and variables
in �0:

Xl = −ρ0
∂ψ

∂·l

∣

∣

∣

∣

F

+ ∇0 ·
(

ρ0 J
∂ψ∇

∂∇0·l

)

for l = 0, 1, 2, . . . , N . (2.20)

Alternatively, using the identities ρ0 = Jρ and ∇0 · (J F−T ) = 0 (see Chapter 2 of [76] for their proofs) along
with Eqs. (2.19)1,2 in the last term of Eq. (2.18), we can express Xl in terms of the gradients and variables in
� as

Xl = −Jρ
∂ψ

∂·l

∣

∣

∣

∣

F

+ J∇ ·
(

Jρ
∂ψ∇

∂∇·l

)

for l = 0, 1, 2, . . . , N , (2.21)

where ρ is the density of the material in �.
Without loss of generality, we decouple the inequality (2.17) into

ρ0D0 = ·̇0 X0 ≥ 0 and ρ0DM =
N

∑

i=1

·̇i X i ≥ 0, (2.22)

which satisfies the original inequality (2.17). We now derive the Ginzburg–Landau equations using inequalities
(2.22)1 and (2.22)2. From the inequality (2.22)1, we derive the kinetic law for ·0 as

·̇0 = L0M X0, (2.23)

where L0M ≥ 0 is the kinetic coefficient for A ↔ M PTs. In order to derive the kinetic laws for the order
parameters·1, . . . , ·N using the inequality (2.22)2, we introduce the variables ·̇i j = ·̇i−·̇ j and X i j = X i−X j ,
using which we can verify that ·̇i j = −·̇ j i , X i j = −X j i , ·̇i i = 0, and X i i = 0 (no sum on indices). Using
these expressions, we can write

·̇i =
N

∑

j=1

·̇i j

N
for all i, j = 1, . . . , N . (2.24)

Using Eq. (2.24), the dissipation rate due to the evolution of the martensitic variants given by Eq. (2.22)2 is
rewritten as

ρ0DM =
N

∑

i=1

·̇i X i =
N

∑

i=1

N
∑

j=1

X i

·̇i j

N
(using Eq. (2.24))
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=
N

∑

i=1

N
∑

j=1

X i j ·̇i j

N
+

N
∑

i=1

N
∑

j=1

X j ·̇i j

N
(using X i j = X i − X j )

=
N

∑

i=1

N
∑

j=1

X i j ·̇i j

N
−

N
∑

i=1

N
∑

j=1

X j ·̇ j i

N
(using ·̇i j = −·̇ j i )

=
N

∑

i=1

N
∑

j=1

X i j ·̇i j

N
−

N
∑

i=1

N
∑

j=1

X i ·̇i j

N
(swapping the indices in the second term)

=
N

∑

i=1

N
∑

j=1

X i j ·̇i j

N
−

N
∑

i=1

X i ·̇i (using Eq. (2.24)). (2.25)

Noticing that the second term on the right-hand side of Eq. (2.25) is equal to ρ0DM (compare with Eq. (2.22)2),
we obtain

ρ0DM = 1

2

N
∑

i=1

N
∑

j=1

X i j

·̇i j

N
=

N−1
∑

i=1

N
∑

j=i+1

X i j

·̇i j

N
≥ 0. (2.26)

We decouple all the terms from inequality (2.26)2 and consider X i j ·̇i j/N ≥ 0 (no sum on indices), which
satisfies the original inequality (2.26)2. Based on these decoupled inequalities, we derive the kinetic equations
for each pair of variants as

·̇i j

N
= L i j (X i − X j ), (2.27)

where L i j ≥ 0 is the kinetic coefficient for transformations between Mi and M j , and it is taken in [60] as

L i j

⎧

⎪

«

⎪

¬

�= 0 if (X i − X j ) ≥ 0 and {0 < ·i < 1 & 0 < · j < 1}
�= 0 if (X i − X j ) ≤ 0 and {0 < ·i < 1 & 0 < · j < 1}
= 0 if (X i − X j ) ≥ 0 and {·i = 1 or · j = 0}
= 0 if (X i − X j ) ≤ 0 and {·i = 0 or · j = 1}.

(2.28)

Substituting Eq. (2.27) in Eq. (2.24), the Ginzburg–Landau equations for all N order parameters ·1, . . . , ·N

are obtained as

·̇i =
N

∑

j=1, j �=i

L i j (X i − X j ) for all i = 1, 2, . . . , N . (2.29)

We note that the kinetic coefficients L i j in Eq. (2.29), defined in Eq. (2.28), are piece-wise constants, jumping
between their finite values and zero depending on the driving forces and the order parameters. An issue will
arise if L i j is assumed to be constants similar to our earlier work in [20]. To understand it clearly, let us consider
a three-variant martensitic system (where ·0 = 1) with M1, M2, and M3 without any loss of generality. Using
the constraint ·1 + ·2 + ·3 = 1, the two independent Ginzburg–Landau equations from Eq. (2.29), when
expressed for ·̇1 and ·̇2, are given by

·̇1 = L12(X1 − X2) + L13(X1 − X3) and ·̇2 = L12(X2 − X1) + L23(X2 − X3). (2.30)

We now consider a martensitic region where M3 is absent and only the variants M1 and M2 evolve within
an arbitrary time interval. The order parameters ·1 and ·2 hence must be determined using the equation
·̇1 = ·̇2 = L12(X1 − X2) as ·1 + ·2 = 1 therein, and this is possible if and only if L13 = L23 = 0
therein within that time interval. However, if the coefficients L13 and L23 are taken as nonzero constants, the
contributions from the terms L13(X1 − X3) and L23(X2 − X3) would be there unwantedly since the driving
forces X1 − X3 and X2 − X3 might be nonzero there. The desired condition can be fulfilled by L i j given
by Eq. (2.28), but not by constant L i j considered in [20]. The essence of the third and fourth conditions in
Eq. (2.28) is that if variant i is absent, it cannot be transformed into other variants [60]. We mention that L i j

as another function of the order parameters has been used in [79,80].
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2.5 Thermodynamic equilibrium and interpolation functions

We now consider the thermodynamic equilibrium conditions for the homogeneous phases A and M [45–
47] and derive their implications on the explicit expressions of the energies, Ft , and material properties
introduced in Eqs. (2.6), (2.5), and (2.8), respectively. Classical thermodynamics says that a material point
is in thermodynamic equilibrium, provided it is in thermal, mechanical, and phase equilibrium (see Chapters
1 and 14 of [81]). Since we consider a uniform temperature of the body, the material points are at thermal
equilibrium (Chapter 1 of [81]). The state of stress P (or σ ) of that point satisfies Eq. (2.9)1 (or Eq. (2.9)2)
and hence, the points are in mechanical equilibrium as well. For the points from the homogeneous phases to
be in phase or chemical equilibrium, the following conditions must be satisfied [45–47]:

X0 = 0 in A and M, and

X i − X j = 0 in M for all i �= j, (2.31)

which are obtained by considering ·̇0 = 0 and ·̇i = 0 in Eqs. (2.23), (2.27), and (2.29) for any given ¸ , Fe,
and P , neglecting the terms related to the spatial derivatives of the order parameters. Equation (2.31)2 is the
condition for homogeneous transformation between the variants Mi and M j while all other variants are absent;
hence, ·i + · j = 1 therein.

The conditions given by Eq. (2.31)1, when used in conjunction with Eq. (2.18), yield

∂ Ft (·̂0)

∂·0
= 0, and

Jt

∂ψe(Ee, ¸, ·̂0)

∂·0

∣

∣

∣

∣

Fe

+ ρ0 J
∂ψ̆¸ (¸, ·̂0)

∂·0
+ ρ0

∂ψ̃¸ (¸, ·̂0)

∂·0
+ ∂ψ p(¸, ·̂0)

∂·0
= 0 in A;

∂ Ft (·̂i )

∂·0
= 0, and

Jt

∂ψe(Ee, ¸, ·̂i )

∂·0

∣

∣

∣

∣

Fe

+ ρ0 J
∂ψ̆¸ (¸, ·̂i )

∂·0
+ ρ0

∂ψ̃¸ (¸, ·̂i )

∂·0
+ ∂ψ p(¸, ·̂i )

∂·0
= 0 in M. (2.32)

Equation (2.18) when used in Eq. (2.31)2 leads to

∂ Ft (·̂i )

∂·i

− ∂ Ft (·̂i )

∂· j

= 0, and

Jt

(

∂ψe(Ee, ¸, ·̂i )

∂·i

∣

∣

∣

∣

Fe

− ∂ψe(Ee, ¸, ·̂i )

∂· j

∣

∣

∣

∣

Fe

)

+ ρ0 J

(

∂ψ̆¸ (¸, ·̂i )

∂·i

− ∂ψ̆¸ (¸, ·̂i )

∂· j

)

+ ρ0

(

∂ψ̃¸ (¸, ·̂i )

∂·i

−∂ψ̃¸ (¸, ·̂i )

∂· j

)

+
(

∂ψ p(¸, ·̂i )

∂·i

− ∂ψ p(¸, ·̂i )

∂· j

)

= 0 for all i, j = 1, . . . , N , & i �= j. (2.33)

We now obtain the exact expression for the interpolation functions ϕ(a, ·0) and φi (·i ) using the equilibrium
conditions given by Eqs. (2.32) and (2.33) within the homogeneous phases. Recalling that B(·̂0, ¸, F) = B0

and Ft (·̂0) = I in A, and B(·̂i , ¸, F) = Bi and Ft (·̂i ) = U ti in Mi by definitions (see the discussion near
Eq. (2.8)), we get the following conditions on ϕ(a, ·0) and φi (·i ) within the phases:

ϕ(a, 0) = 0, ϕ(a, 1) = 1; and φi (0) = 0, φi (1) = 1. (2.34)

The additional conditions on ϕ(a, ·0) and φi (·i ) within the phases are obtained using Eqs. (2.5) and (2.8) in
Eqs. (2.32) and (2.33) as

∂ϕ(a, 0)

∂·0
= ∂ϕ(a, 1)

∂·0
= 0, (2.35)

Bi

∂φi (·i = 0)

∂·i

= B j

∂φ j (· j = 1)

∂· j

and Bi

∂φi (·i = 1)

∂·i

= B j

∂φ j (· j = 0)

∂· j

for all i �= j. (2.36)
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Since the properties of the variants can be different (such as elastic constants, Bain strains, etc.), we conclude
from Eqs. (2.36)1,2 that for all possible combinations of variants Bi and B j , φi must satisfy

∂φi (·i = 0)

∂·i

= ∂φi (·i = 1)

∂·i

= 0 for all i = 1, 2, . . . , N . (2.37)

If the conditions given by Eq. (2.37) is met, Eqs. (2.36)1 and (2.36)2 are automatically satisfied when the
properties of the variants are the same (Bi = B j ). Considering the general polynomials of degree four for both
the interpolation functions ϕ(a, ·0) and φi (·i ), and then applying the conditions given by Eqs. (2.34), (2.35),
and (2.37), we obtain their expressions as

ϕ(a, ·0) = a·2
0 + (4 − 2a)·3

0 + (a − 3)·4
0, and φ(·i ) = ·2

i (3 − 2·i ) for all i = 1, 2, . . . , N , (2.38)

where 0 ≤ a ≤ 6 [45].

2.6 Explicit form of free energy

We now write the explicit expressions for all the energies introduced in Eqs. (2.6) and (2.7) below:

2.6.1 Strain energy

We consider ψe as a quadratic function of the elastic strain tensor Ee [20]

ψe = 0.5Ee : Ĉe(·0, ·̃M ) : Ee, (2.39)

where the fourth-order elastic modulus tensor at any material point is taken following Eq. (2.8) as [20]

Ĉe(·0, ·̃M ) = (1 − ϕ(a, ·0))Ĉ(e)0 + ϕ(a, ·0)

N
∑

i=1

φi (·i )Ĉ(e)i , (2.40)

and Ĉ(e)0 and Ĉ(e)i are the fourth-order elastic modulus tensors of A and Mi , respectively.

2.6.2 Barrier energy

The total energy of the barriers between A and M and between all the variants is [20]

ψ̆¸ = A0M ·2
0(1 − ·0)

2 + ϕ(ab, ·0) Ā

N−1
∑

i=1

N
∑

j=i+1

·2
i ·2

j , (2.41)

where A0M and Ā are the coefficients for the barrier energies between A and M, and Mi and M j (for all i �= j),
respectively, and the expression for ϕ(ab, ·0) is given by Eq. (2.38)1. We note that the barrier energy between
A and M (first term of Eq. (2.41)) and the barrier energies between the variants (terms within the summation)
satisfy the requirements for the thermodynamic equilibrium conditions (see Eqs. (2.32)2,4).

2.6.3 Thermal energy

The thermal energy of a particle undergoing A ↔ M PTs is taken as [20,45–47]

ψ̃¸ = ψ¸
0 (¸) + ϕ(a¸ , ·0)�ψ¸ (¸), where �ψ¸ = −�s0M (¸ − ¸e), (2.42)

ψ¸
0 is the specific thermal energy of A, �ψ¸ = ψ¸

M − ψ¸
0 is the specific thermal energy difference between

A and M phases, �s0M = sM − s0, s0 and sM are the specific entropies of A and M, respectively, and ¸e is
the thermodynamic equilibrium temperature between A and M phases. The interpolation function ϕ(a¸ , ·0) is
given by Eq. (2.38)1.
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2.6.4 Penalization energy

We penalize the triple and higher junctions between all the phases and the deviations of the transformation
paths between the variants using [20]

ψ p = ϕ(aK , ·0)

N−1
∑

i=1

N
∑

j=i+1

Ki j (·i + · j − 1)2·2
i ·

2
j + [1 − ϕ(aK , ·0)]

N−1
∑

i=1

N
∑

j=i+1

K0i j·
2
0·

2
i ·

2
j

+ϕ(aK , ·0)

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

Ki jk·
2
i ·

2
j·

2
k + [1 − ϕ(aK , ·0)]

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

K0i jk·
2
0·

2
i ·

2
j·

2
k

+ϕ(aK , ·0)

N−3
∑

i=1

N−2
∑

j=i+1

N−1
∑

k= j+1

N
∑

l=k+1

Ki jkl·
2
i ·

2
j·

2
k·

2
l , where (2.43)

the penalty coefficients satisfy the following symmetries (no summation on the indices):

Ki j = K j i ; K0i j = K0 j i ; K0 j ik = K0i jk = K0 jki = K0k ji = K0ik j = K0ki j ;
Ki jk = K j ik = K jki = Kk ji = Kik j = Kki j ; Ki jkl = K j ikl = Kl jki = Kk jil = Kik jl = Kilk j = Ki jlk;

Ki i = K0i i = Ki j i = Ki ik = K0i j i = Ki ikl = Ki j jl = K0i ik = Ki j il = Ki jki = Ki jkk = 0. (2.44)

The interpolation function ϕ(aK , ·0) is given by Eq. (2.38)1. We can verify that ψ p given by Eq. (2.43)
and its first derivative with respect to the order parameters satisfy the requirements for the thermodynamic
equilibrium conditions of the phases as discussed in Sect. 2.5. In Eq. (2.43), the parameter Ki j ≥ 0 controls the
penalization of the M j ↔ Mi transformation path deviation from the straight line · j + ·i = 1 for all ·k = 0
and k �= j, i . For the very large values of Ki j (→ ∞), the transformation path for M j ↔ Mi PT will coincide
with the straight line · j + ·i = 1, and the spurious phases Mk for k = 1, . . . , N and k �= i, j will not arise
within the Mi -M j boundary. The smaller values of Ki j will cause some deviation of the transformation paths
from those straight lines. As a result, the spurious phases will exist across the variant–variant interfaces. The
second term in Eq. (2.43) penalizes the triple junctions between A − Mi − M j (for i, j = 1, . . . , N ; i �= j),
and varying the constant parameter K0i j we can control the size and excess energy of the triple junction
regions; see, e.g., [52,54] for details and the numerical examples for the role of such term in grain boundary
related phenomena. Similarly, the third, fourth, and fifth terms of Eq. (2.43) penalize the junctions between
Mi −M j −Mk , A−Mi −M j −Mk , and Mi −M j −Mk −Ml , respectively. The constant coefficients K0i j ≥ 0,
Ki jk ≥ 0, K0i jk ≥ 0, and Ki jkl ≥ 0 are the control parameters which decide the size and excess energy of the
respective junction regions. In the second and fourth terms of ψ p, we have a multiplication factor 1−ϕ(aK , ·0)

to ensure that these terms are nonzero around the junctions between A and variants only and vanish within the
martensite.

Remark 1. In the absence of all the penalty terms, i.e., when Ki j = K0i j = K0ik = K0 jk = Ki jk =
K0i jk = 0, we can show that for a martensitic region (·0 = 1) with three variants, say, M1, M2 and M3,
the specific barrier energy (see Eq. (2.41)) at the center of the triple junction region, i.e., at the point with
·1 = ·2 = ·3 = 1/3 is 3 × Ā/81 = Ā/27 which is less than the specific barrier energy Ā/16 at the middle
line of any variant-variant interface (a line with, say, ·1 = ·2 = 1/2 and ·3 = 0). When K123 �= 0, the total
specific energy at a martensitic particle with ·1 = ·2 = ·3 = 1/3 is

ET J |·1=·2=·3=1/3 = Ā

27
+ K123

729
. (2.45)

It is to be noted that Tóth et al. [79] and Bollada et al. [80] considered barrier energy similar to ours given
by Eq. (2.41) but with a common multiplication factor to incorporate higher energy at the junction region as
compared to the respective interface regions. In this paper, we have, however, followed a different and simpler
approach for that purpose, where we have introduced the penalty terms in the free energy, and by varying the
coefficients K0i j , K0i jk, Ki jk, and Ki jkl we can control the energy and size of all the junction regions. For
example, by tuning the parameter K123 in Eq. (2.45), we can make the barrier energy height at the junction
region higher than the barrier energy in the interfacial region. However, a quantitative comparison between
our formulation and the approach in [79,80] is not given here.
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2.6.5 Gradient energy

We consider the gradient energy, considering all the interfacial energies, as

ψ∇ = β0M

2ρ0
|∇·0|2 + 1

2ρ0
ϕ̃(·0, aβ , ac)

N−1
∑

i=1

N
∑

j=i+1

βi j∇·i · ∇· j , (2.46)

where β0M and βi j = β j i are the gradient energy coefficients for A − M and Mi − M j interfaces, respectively.
The interpolation function ϕ̃ is taken as [20]

ϕ̃(aβ , ac, ·0) = ac + aβ·2
0 − 2[aβ − 2(1 − ac)]·3

0 + [aβ − 3(1 − ac)]·4
0, (2.47)

where the constant is taken as 0 < ac 
 1, and the purpose of considering it in Eq. (2.47) is discussed in
[20]. When ac = 0, note that ϕ̃(aβ , ac = 0, ·0) = ϕ(aβ , ·0). Here also, we take 0 ≤ aβ ≤ 6. The gradient
energy similar to Eq. (2.46) was earlier used in [58,65], for example. Note that the coefficients βi j in Eq. (2.46)
for the variant pairs in twin relationships would be much smaller than that for the variant pairs not in twin
relationships.

Remark 2. Notably, the authors earlier introduced another form of the gradient energy in [20], given by

ψ∇ = 1

2ρ0

⎡

£β0M |∇·0|2 +
N

∑

i=1

N
∑

j=1,�=i

βi j

8
|∇·i − ∇· j |2ϕ̃(·0, aβ , ac)

¤

⎦ . (2.48)

This energy given by Eq. (2.48) simplifies to

ψ∇ = 1

2ρ0
β0M |∇·0|2 + ϕ̃(·0, aβ , ac)

16ρ0

(

β12|∇·1 − ∇·2|2 + β21|∇·2 − ∇·1|2
)

, (2.49)

for a system with two variants. Applying the constraint ·1 + ·2 = 1 and β12 = β21 due to the symmetry [73]
in Eq. (2.49), we further simplify it to

ψ∇ = 1

2ρ0
β0M |∇·0|2 + ϕ̃(·0, aβ , ac)

2ρ0
β12|∇·1|2, (2.50)

which is consistent with the results of earlier models; see, e.g., [73] and the references therein. For a system
with three variants, Eq. (2.48) reduces to

ψ∇ = β0M

2ρ0
|∇·0|2 + 1

8ρ0

[

(β12 + β13) |∇·1|2 + (β12 + β23) |∇·2|2 + (β13 + β23) |∇·3|2

−2 (β12∇·1 · ∇·2 + β23∇·2 · ∇·3 + β13∇·1 · ∇·3)] ϕ̃(·0, aβ , ac). (2.51)

Let us consider a region for such a three-variant system where only M1 and M2 coexist and M3 is absent,
i.e., ·3 = 0 and ·1 + ·2 = 1. The gradient energy given by Eq. (2.51) in that region is rewritten by applying
these conditions as

ψ∇ = β0M

2ρ0
|∇·0|2 + 1

8ρ0
(β23 + β13 + 4β12) |∇·1|2ϕ̃

(

·0, aβ , ac

)

. (2.52)

The energy parameters β23 and β13 will influence the interfacial energy between M1 and M2 variants, which
is nonphysical; see also [80] for an analysis. We have shown that the gradient energy given by Eq. (2.48) yields
a nonphysical contribution for an interface between two variants from the gradient coefficients which are not
related to that interface. Hence, this form of gradient energy is not acceptable. However, the numerical results of
[20] and the subsequent papers [50,82], where the same model was used to simulate martensitic microstructures
with two variants, are correct. The energy given by Eq. (2.46) used in this paper is non-contradictory for any
number of variants.
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2.7 Explicit form of structural stresses and phase-field equations

Here, we write down the explicit form of the structural stresses and the Ginzburg–Landau equations using the
explicit form of the energies derived in Sect. 2.6. The boundary conditions for the mechanics and phase-field
equations used for the computation are also enlisted.

2.7.1 Explicit form of structural stresses

Using the gradient energy given by Eq. (2.46) in Eqs. (2.11) and (2.14), the structural stresses are obtained as

P st = Jρ0(ψ̆
¸ + ψ∇)F−T − Jβ0M∇·0 ⊗ ∇·0 · F−T − J ϕ̃

2

⎛

¿

N
∑

i=1

N
∑

j=1, j �=i

βi j∇·i ⊗ ∇· j

À

⎠ · F−T , and

σ st = ρ0(ψ̆
¸ + ψ∇)I − β0M∇·0 ⊗ ∇·0 − ϕ̃

2

N
∑

i=1

N
∑

j=1, j �=i

βi j∇·i ⊗ ∇· j . (2.53)

The elastic stresses are derived in Eqs. (2.15)1,2.

2.7.2 Explicit form of Ginzburg–Landau equations

Using Eqs. (2.39), (2.41), (2.42), (2.43), and (2.46) in Eqs. (2.18) and (2.20), we get the conjugate forces X0

and X i (for all i = 1, . . . , N ) when the field variables and space derivatives are expressed in �0 as

X0 =
(

PT
e · F − Jtψ

e I
)

: F−1
t · ∂ Ft

∂·0
− Jt

∂ψe

∂·0

∣

∣

∣

∣

Fe

− ρ0
∂ϕ(a¸ , ·0)

∂·0
�ψ¸

−Jρ0 Ā

N−1
∑

i=1

N
∑

j=i+1

·2
i ·2

j

∂ϕ(ab, ·0)

∂·0

−Jρ0 A0M (¸)(2·0 − 6·2
0 + 4·3

0) − J

2

∂ϕ̃(aβ , ac, ·0)

∂·0

N−1
∑

i=1

N
∑

j=i+1

βi j (C−1 · ∇0·i ) · ∇0· j

−ρ0

⎛

¿

N−1
∑

i=1

N
∑

j=i+1

K0i j ·
2
i ·2

j +
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

K0i jk·2
i ·2

j ·
2
k

À

⎠

[

2(1 − ϕ(aK , ·0))·0 − ∂ϕ(aK , ·0)

∂·0
·2

0

]

−ρ0
∂ϕ(aK , ·0)

∂·0

⎡

£

N−1
∑

i=1

N
∑

j=i+1

Ki j (·i + · j − 1)2·2
i ·2

j +
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

Ki jk·2
i ·2

j ·
2
k

+
N−3
∑

i=1

N−2
∑

j=i+1

N−1
∑

k= j+1

N
∑

l=k+1

Ki jkl·
2
i ·2

j ·
2
k·2

l

¤

⎦ + ∇0 ·
(

Jβ0M C−1 · ∇0·0

)

; (2.54)

Xi =
(

PT
e · F − Jtψ

e I
)

: F−1
t · ∂ Ft

∂·i
− Jt

∂ψe

∂·i

∣

∣

∣

∣

Fe

−2Jρ0 Ā

N
∑

j=1,�=i

·i ·
2
j ϕ(ab, ·0) − 2ρ0

N
∑

j=1,�=i

Ki j (·i + · j − 1)

×(2·i + · j − 1)·2
j ·i ϕ(aK , ·0) − 2ρ0

⎛

¿

N
∑

j=1,�=i

K0i j ·
2
j +

N−1
∑

j=1,�=i

N
∑

k= j+1

K0i jk·2
j ·

2
k

À

⎠ ·2
0·i (1 − ϕ(aK , ·0))

−2ρ0ϕ(aK , ·0)

N−1
∑

j=1,�=i

N
∑

k= j+1

Ki jk·i ·
2
j ·

2
k − 2ρ0ϕ(aK , ·0)

N−2
∑

j=1,�=i

N−1
∑

k= j+1

N
∑

l=k+1

Ki jkl·i ·
2
j ·

2
k·2

l

+0.5∇0 ·

⎛

¿ϕ̃(aβ , ac, ·0)J

N
∑

j=1,�=i

βi j C−1 · ∇0· j

À

⎠ for all i = 1, 2, 3, . . . , N . (2.55)
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The conjugate forces can alternatively be rewritten in terms of the Cauchy stress and the spatial derivatives in
� using Eqs. (2.18) and (2.21) as

X0

J
=

(

F−1 · σ e · F − ψe

Je
I

)

: F−1
t · ∂ Ft

∂·0
− 1

Je

∂ψe

∂·0

∣

∣

∣

∣

Fe

− ρ
∂ϕ(a¸ , ·0)

∂·0
�ψ¸

−Jρ Ā

N−1
∑

i=1

N
∑

j=i+1

·2
i ·2

j

∂ϕ(ab, ·0)

∂·0

−Jρ A0M (¸)(2·0 − 6·2
0 + 4·3

0) − 1

2

∂ϕ̃(aβ , ac, ·0)

∂·0

N−1
∑

i=1

N
∑

j=i+1

βi j ∇·i · ∇· j

−ρ

⎛

¿

N−1
∑

i=1

N
∑

j=i+1

K0i j ·
2
i ·2

j +
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

K0i jk·2
i ·2

j ·
2
k

À

⎠

[

2(1 − ϕ(aK , ·0))·0 − ∂ϕ(aK , ·0)

∂·0
·2

0

]

−ρ
∂ϕ(aK , ·0)

∂·0

⎡

£

N−1
∑

i=1

N
∑

j=i+1

Ki j (·i + · j − 1)2·2
i ·2

j +
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k= j+1

Ki jk·2
i ·2

j ·
2
k

+
N−3
∑

i=1

N−2
∑

j=i+1

N−1
∑

k= j+1

N
∑

l=k+1

Ki jkl·
2
i ·2

j ·
2
k·2

l

¤

⎦ + ∇ · (β0M∇·0) ; (2.56)

Xi

J
=

(

F−1 · σ e · F − ψe

Je
I

)

: F−1
t · ∂ Ft

∂·i
− 1

Je

∂ψe

∂·i

∣

∣

∣

∣

Fe

− 2Jρ Ā

N
∑

j=1,�=i

·i ·
2
j ϕ(ab, ·0) − 2ρ

N
∑

j=1,�=i

Ki j

×(·i + · j − 1)(2·i + · j − 1)·2
j ·i ϕ(aK , ·0) − 2ρ

⎛

¿

N
∑

j=1,�=i

K0i j ·
2
j +

N−1
∑

j=1,�=i

N
∑

k= j+1

K0i jk·2
j ·

2
k

À

⎠ ·2
0·i [1

−ϕ(aK , ·0)] − 2ρϕ(aK , ·0)

N−1
∑

j=1,�=i

N
∑

k= j+1

Ki jk·i ·
2
j ·

2
k − 2ρϕ(aK , ·0)

N−2
∑

j=1,�=i

N−1
∑

k= j+1

N
∑

l=k+1

Ki jkl·i ·
2
j ·

2
k·2

l

+0.5∇ ·

⎛

¿ϕ̃(aβ , ac, ·0)

N
∑

j=1,�=i

βi j ∇· j

À

⎠ for all i = 1, 2, 3, . . . , N . (2.57)

2.7.3 Boundary conditions

The boundary conditions for the phase-field equations and the mechanics problem used in this paper are listed
here.
Phase-field problem. We have applied the periodic BC for all the order parameters. Let us consider two
boundaries Sp1·k

⊂ S0 and Sp2·k
⊂ S0, where Sp1·k

∩ Sp2·k
is empty. These two boundaries have opposite

unit normals (outward) in �0, i.e., (n0)Sp1·k
= −(n0)Sp2·k

, and they are subjected to the periodic BCs related

to the order parameters ·k (for k = 0, 1, 2, . . . , N ). Hence, the order parameters and their gradients on these
boundaries satisfy

·k |Sp1·k
= ·k |Sp2·k

and (∇0·k · n0)Sp1·k
= (∇0·k · n0)Sp2·k

for all k = 0, 1, 2, . . . , N . (2.58)

Mechanics problem. While solving the equilibrium equation given by Eq. (2.9)1 or Eq. (2.9)2, we have used a
combination of periodic and traction boundary conditions on the surfaces. On a traction boundary S0T ⊂ S0,
the traction is specified ( psp):

P · n0 = psp on S0T . (2.59)

If two boundaries Spu1 ⊂ S0 and Spu2 ⊂ S0 (where Spu1 ∩ Spu2 is empty) are subjected to a periodic BC on
the displacement u, then the displacement on these boundaries is related by

u|Spu1 = u|Spu2 + (Fh − I) · r0, (2.60)

where Fh is a specified homogeneous deformation gradient.
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Fig. 1 A schematic of twins within twins

2.8 Remarks about the present model

Note that the model presented above is mostly based on the authors’ earlier multiphase phase-field model
developed in [20]. The local free energies of [20] (Eqs. (41), (43), (44), (48) therein) are non-contradictory
and hence, directly adopted in this paper. However, the gradient energy of [20] (Eq. (51) therein) has issues as
discussed in Remark 2 of Sect. 2.6. A non-contradictory gradient energy is hence used here in Eq. (2.46), which
overcomes those issues as discussed in Sect. 2.6. Furthermore, the kinetic coefficients L i j in the Ginzburg–
Landau equation (Eq. (27) in [20]) are assumed to be constants in [20]. We have discussed the problems of
assuming constant L i j in Sect. 2.4.2 and considered a form for the coefficients given by Eq. (2.28), which
overcomes those problems and satisfies the desired criteria. The present phase-field model differs in these two
aspects from our earlier model developed in [20].

3 Crystallographic solutions for twins within twins microstructure

In this section, we obtain an approximate solution for the twins within twins microstructures for cubic to
tetragonal MTs using the crystallographic theory (see, e.g., [1]). A schematic of twins within twins is shown
in Fig. 1 where the twins formed by a variants pair Mi and M j , and the twins formed by another pair Mk and
Ml form an interface of finite thickness δk shown by a shaded region. The volume fractions of Mi and Mk in
the respective twins are »1 and »2. The Mi and M j need not be in a twin relationship with the other variants
Mk or Ml [1].

3.1 Crystallographic equations and general approximate solutions

Crystallographic equations for twin–twin: The equations for the twins between the pairs Mi − M j , and
Mk-Ml are (see, e.g., Chapter 7 of [1] and [10,11])

F j − Fi = a′
1 ⊗ n1, and Fl − Fk = a′

2 ⊗ n2, (3.1)

respectively, where Fi , F j , Fk , and Fl are piece-wise constant deformation gradient tensors within the
martensitic regions Mi , M j , Mk , and Ml , respectively; n1 and n2 are the unit normals to the respective twin
boundaries such that n1 points into M j and n2 points into Ml (see Fig. 1); the vectors a′

1 and a′
2 are related to

the simple shear deformations. The governing equation for the twins within twins shown in Fig. 1 is (Chapter
7 of [1] and [10,11])

((1 − »1)Fi + »1 F j ) − ((1 − »2)Fk + »2 Fl) = b′ ⊗ m, (3.2)
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where »1 and »2 are the volume fractions of M j and Ml in the respective twins, m is the unit normal to the
twin–twin interface shown in the figure, and b′ is a vector related to the deformation.

Using the polar decompositions Fi = R1 · U ti , F j = R2 · U t j , Fk = R3 · U tk , and Fl = R4 · U tl , where
R1, R2, R3, and R4 are the constant rotation tensors, Eqs. (3.1)1 and (3.1)2 can be rewritten as

Q1 · U t j − U ti = a1 ⊗ n1, and Q2 · U tl − U tk = a2 ⊗ n2, (3.3)

where Q1 = RT
1 · R2, a1 = RT

1 · a′
1, Q2 = RT

3 · R4, and a2 = RT
3 · a′

2. Similarly, using Eqs. (3.1)1,2 and
(3.3)1,2 and the relations between these rotation tensors, Eq. (3.2) is rewritten as

Q3 · (U ti + »1a1 ⊗ n1) − (U tk + »2a2 ⊗ n2) = b ⊗ m, (3.4)

where Q3 = RT
3 · R1 and b = RT

3 ·b′. In order to solve Eq. (3.4), we post-multiply it with (U tk +»2a2 ⊗n2)
−1

and rearrange the terms to rewrite the equation as [10]

Q3 · Ã = I + b ⊗ m̃, , where (3.5)

Ã = (U ti + »1a1 ⊗ n1) · (U tk + »2a2 ⊗ n2)
−1, and m̃ = (U tk + »2a2 ⊗ n2)

−T · m. (3.6)

The unknowns to be determined from the above equations (3.3) to (3.6) are »1, »2, δ» , a1, a2, n1, n2, b, m,
Q1, Q2, and Q3.

Twins within twins solution: The solution for Eq. (3.3)1 and (3.3)2 is well known (see, e.g., Chapter 5 of [1]),

which we enlist here for completeness. We thus define a symmetric tensor G1 = U−1
ti ·U2

t j ·U
−1
ti corresponding

to Eq. (3.3)1. The eigenvalues of G1 are denoted by ¼1, ¼2, and ¼3, which are all positive, and the corresponding
normalized eigenvectors are denoted by i1, i2, and i3, respectively. Equation (3.3)1 has a solution if and only
if ¼1 ≤ 1, ¼2 = 1, and ¼3 ≥ 1 (assuming ¼1 ≤ ¼2 ≤ ¼3). The expressions for a1 and n1 are given by

a1 = ζ1

(

√

¼3(1 − ¼1)

¼3 − ¼1
i1 + ξ

√

¼1(¼3 − 1)

¼3 − ¼1
i3

)

, and

n1 =
√

¼3 −
√

¼1

ζ1

√
¼3 − ¼1

(

−
√

1 − ¼1 U ti i1 + ξ
√

¼3 − 1 U ti i3

)

, (3.7)

respectively, where ξ = ±1, and ζ1 is such that |n1| = 1. The solutions a2 and n2 for the twins between Mk

and Ml are similarly obtained using the eigenpairs of U−1
tk · U2

tl · U−1
tk in Eq. (3.7). The rotations Q1 and Q2

can then be obtained using Eq. (3.3)1,2.
Following [10], we now obtain an approximate solution for the twins within twins equation (3.5), which

has got a form similar to the austenite-twinned martensite interface equation using the procedure of Ball and
James [4] (also see Chapter 7 of [10]). Noticing that the Bain stretches U ti , U t j , U tk , and U tl are given for
a material, we first obtain a1 and n1 using Eq. (3.7); a2 and n2 are also obtained using similar relations. The
procedure for obtaining the remaining unknowns »1, »2, Q3, b, and m̃ is derived here. In obtaining these
unknowns, let us first assume that the parameters »1 and »2 are given and solve for the other unknowns. We
introduce

G2 = Ã
T · Ã, (3.8)

which is symmetric and positive-definite, and its eigenvalues are positive numbers denoted by �1, �2, and
�3. j1, j2, and j3 denote the corresponding normalized eigenvectors. Equation (3.5) has a solution if and
only if �1 ≤ 1, �2 = 1, and �3 ≥ 1 assuming �1 ≤ �2 ≤ �3. The solutions for the vectors b and m̃ are
obtained as (see, e.g., [4] and Chapter 6 of [1])

b = ζ2√
�3 − �1

(

√

�3(1 − �1) j1 + ξ
√

�1(�3 − 1) j3

)

, and

m̃ =
√

�3 −
√

�1

ζ2

√
�3 − �1

(

−
√

1 − �1 j1 + ξ
√

�3 − 1 j3

)

. (3.9)
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The unit normal to the twin–twin boundary m is finally obtained using Eq. (3.9)2 in Eq. (3.6)2 as

m =
√

�3 −
√

�1

ζ2

√
�3 − �1

(U tk + »2n2 ⊗ a2) ·
(

−
√

1 − �1 j1 + ξ
√

�3 − 1 j3

)

, (3.10)

where ζ2 in Eqs. (3.9) and (3.10) is such that the norm |m| = 1. The rotation Q3 is then determined using
Eqs. (3.9)1,2 in Eq. (3.5). Note that the middle eigenvalues �2 obtained would be an expression as a function
of the volume fractions »1 and »2. Setting �2 = 1, which is required for the existence of the twins within twins
solution [10], would give a relation between »1 and »2. However, it is impossible to obtain the unique solutions
for »1 and »2 from the limited governing equations. The thickness of the transition layer δ» is indeterminate.

3.2 Twins within twins solutions for cubic to tetragonal MTs

The solutions for twins within twins for cubic to tetragonal MTs are now obtained. The three Bain stretch
tensors for such transformations are (Chapter 5 of [1])

U t1 = χ c1 ⊗ c1 + α c2 ⊗ c2 + α c3 ⊗ c3,

U t2 = α c1 ⊗ c1 + χ c2 ⊗ c2 + α c3 ⊗ c3,

U t3 = α c1 ⊗ c1 + α c2 ⊗ c2 + χ c3 ⊗ c3, (3.11)

where α < 1 and χ > 1 are the material constants and {c1, c2, c3} is a right-handed standard Cartesian basis
in the cubic unit cell of A such that the basis vectors are parallel to three mutually orthogonal sides of that unit
cell. The solutions for twins between M1 − M2 are (n pointing into M2), M1 − M3 (n pointing into M3), and
M2 − M3 (n pointing into M3) are (see, e.g., Chapter 5 of [1])

a =
√

2υ(χ c1 ± αc2), n = (−c1 ± c2)/
√

2;
a =

√
2υ(χ c1 ± αc3), n = (−c1 ± c3)/

√
2;

a =
√

2υ(χ c2 ± αc3), n = (−c2 ± c3)/
√

2, (3.12)

respectively, where υ = (χ2 − α2)/(χ2 + α2). Since all the variants for the tetragonal M phase are in a
twin relationship [1], the combinations of possible twins within twins solutions are {M1, M2} − {M1, M3},
{M2, M1}−{M2, M3}, and {M2, M3}−{M2, M1}, where the corresponding twin solutions {a1, n1} and {a2, n2}
are to be considered from Eq. (3.12).

Using Eq. (3.6)1 and the solutions to the corresponding twin pairs from Eq. (3.12), we get G2 as the
following diagonal tensor for all the possible combinations of twins within twins listed above:

G2 = Ã
T · Ã = �1 j1 ⊗ j1 + �2 j2 ⊗ j2 + �3 j3 ⊗ j3, where (3.13)

�1 = [1 − »2υ]2 < 1,

�2 = [(1 + »1)α
2 + (1 − »1)χ

2]2[(1 + »2)χ
2 + (1 − »2)α

2]2/(χ2 + α2)4 = 1, and

�3 = [1 + »1υ]2 > 1, (3.14)

and we have used the facts χ > 1, α < 1, 0 < υ < 1, and 0 < »1, »2 < 1. The eigenvectors j1, j2, and
j3 are functions of the vectors c1, c2, and c3 and depend on the combinations of the variants in the twins as
obtained below. We have imposed the condition �2 = 1 in Eq. (3.14)2, which is a requirement for G2 given
by Eq. (3.13) to represent a twins within twins as discussed above, and from that, the following two conditions
on the parameters χ, α, »1, »2 are obtained:

1

»1
− 1

»2
= υ, or

(»1 − »2)
1

υ
+ »1»2 = 2

υ2
. (3.15)

Since 0 < υ < 1, Eq. (3.15)1 is satisfied if and only if »1 < »2. For »1 = »2, Eq. (3.15)1 yields the
trivial condition χ = α, which does not yield twins. It is easy to verify that for all χ > 1 and α < 1 no
0 < »1, »2 < 1 satisfy Eq. (3.15)2, and hence, we disregard this relation. Finally, considering »1 and »2 are
related by Eq. (3.15)1, and using the expressions for �1 and �3 given by Eqs. (3.14)1,3 into Eqs. (3.7)1,2,
(3.9)1, and (3.10), we get the solutions for b and m for different twins within twins as listed below.
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Case I For {M1, M2} − {M1, M3} twin pairs
For {M1, M2} − {M1, M3} twin pairs, the indices are i = k = 1, j = 2, and l = 3, and »1 and »2 are the
volume fractions of M2 and M3 in the respective twins. The eigenvectors of G2 tensor are obtained as j1 = c3,
j2 = c1, and j3 = c2. The vectors b and m̃ are obtained using Eqs. (3.14)1,3 in Eq. (3.9)1,2 as

b = ζ2√
(»1 + »2)[2 + (»1 − »2)υ]

[

ξ(1 − »2υ)
√

»1(2 + »1υ) c2 + (1 + »1υ)
√

»2(2 − »2υ) c3

]

, and

m̃ =
√

»1 + »2 υ

ζ2

√
2 + (»1 − »2)υ

[

ξ
√

»1(2 + »1υ) c2 −
√

»2(2 − »2υ) c3

]

, (3.16)

respectively. Using Eqs. (3.16)2 and (3.7)1,2 in Eq. (3.10), we finally get m as

m =
√

»1 + »2 υα

ζ2

√
2 + (»1 − »2)υ

[

−ξυ»1.5
2

√

2 − »2υ c1 + ξ
√

»1(2 + »1υ) c2 −
√

»2(2 − »2υ)(1 + »2υ) c3

]

,

(3.17)

where the condition |m| = 1 yields

ζ2 =
√

»1 + »2 υα√
2 + (»1 − »2)υ

[

»2(2 − »2υ)(1 + 2»2υ + 2»2
2 υ2) + »1(2 + »1υ)

]1/2
. (3.18)

Case II For {M2, M1} − {M2, M3} twin pairs
In this case, the indices are i = k = 2, j = 1, and l = 3, and »1 and »2 are the volume fractions of M1 and
M3 in the respective twins. The eigenvectors for G2 tensor are given by j1 = c3, j2 = c2, and j3 = c1. The
vectors b, m̃, and m are obtained in a manner similar to case-I, as

b = ζ2√
(»1 + »2)[2 + (»1 − »2)υ]

[

ξ(1 − »2υ)
√

»1(2 + »1υ) c1 + (1 + »1υ)
√

»2(2 − »2υ) c3

]

,

m̃ =
√

»1 + »2 υ

ζ2

√
2 + (»1 − »2)υ

[

ξ
√

»1(2 + »1υ) c1 −
√

»2(2 − »2υ) c3

]

, and (3.19)

m =
√

»1 + »2 υα

ζ2

√
2 + (»1 − »2)υ

[

ξ
√

»1(2 + »1υ) c1 − ξυ»1.5
2

√

2 − »2υ c2 −
√

»2(2 − »2υ)(1 + »2υ) c3

]

,

(3.20)

where ζ2 is given by Eq. (3.18).
Case III For {M3, M1} − {M3, M2} twin pairs
In this case, the indices are i = k = 3, j = 1, and l = 2, and »1 and »2 are the volume fractions of M1 and
M2 in the respective twins. The eigenvectors for G2 tensor are given by j1 = c2, j2 = c3, and j3 = c1. The
vectors b, m̃, and m are obtained, in a manner similar to case-I and case-II, as

b = ζ2√
(»1 + »2)[2 + (»1 − »2)υ]

[

ξ(1 − »2υ)
√

»1(2 + »1υ) c1 + (1 + »1υ)
√

»2(2 − »2υ) c2

]

,

m̃ =
√

»1 + »2 υ

ζ2

√
2 + (»1 − »2)υ

[

ξ
√

»1(2 + »1υ) c1 −
√

»2(2 − »2υ) c2

]

, and (3.21)

m =
√

»1 + »2 υα

ζ2

√
2 + (»1 − »2)υ

[

ξ
√

»1(2 + »1υ) c1 −
√

»2(2 − »2υ)(1 + »2υ) c2 − ξυ»1.5
2

√

2 − »2υ c3

]

,

(3.22)

where ζ2 is given by Eq. (3.18).
In summary, we have obtained the general analytical solution for a1, a2, n1, n2, b, and m listed in Eqs. (3.7),

(3.9), and (3.10). The rotation tensors Q1, Q2, and Q3 can finally be obtained using Eqs. (3.3)1,2 and (3.4).
The twins within twins solutions for the cubic to tetragonal MTs are listed in Eqs. (3.12) and (3.16) to (3.22).
Since the volume fractions »1 and »2, which satisfy the relation given by Eq. (3.15)1, cannot be determined
uniquely, there are many solutions possible for each of the twins within twins listed in Cases (I), (II) and
(III) (also see Chapter 7 of [1]). The width of the twins within twins interface (shaded region in Fig. 1) δ» is
indeterminate within the governing equations at hand.
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Fig. 2 Unit cells for cubic austenite and three tetragonal martensitic variants

4 Results and discussions

We present the simulation results for twins within twins microstructure obtained using our phase-field approach.
The materials properties for NiAl alloy, which exhibits cubic to tetragonal MTs, are considered and listed in
Sect. 4.1. In Sect. 4.2, the phase-field results are compared with the crystallographic solution obtained in Sect. 3
(Fig. 2).

4.1 Material parameters

The material parameters for NiAl alloy are enlisted here. We consider the interfacial widths and energies as
δ0M = 1 nm, γ0M = 0.2 N/m, δ12 = δ13 = δ23 = 0.75 nm, and γ12 = γ13 = γ23 = 0.1 N/m. Using
the following analytical relations between the interfacial thickness and energy and the phase-field parameters
[73,83]

δ0M =
√

18β0M

ρ0 A0M

; β0M = γ0Mδ0M ; δi j =
√

−18βi j

ρ0 Ā
, βi j = −γi jδi j , (4.1)

which were obtained by solving an 1D Ginzburg–Landau equation neglecting mechanics, we obtain ρ0 A0M =
3600 MPa, ρ0 Ā = 2400 MPa, β0M = 2 × 10−10 N, and β12 = β13 = β23 = −7.5 × 10−11 N. We take
¸e = 215 K and ρ0�s = −1.47 MPa K−1, using which we calculate the critical temperatures for A → M and
M → A transformations as (see [51]) ¸c

A→M
= ¸e + A0M/(3�s) = 0 K and ¸c

M→A
= ¸e − A0M/(3�s) = 430

K, respectively. The Lamé constants, assuming isotropic elastic response of the phases, are taken to be identical
for all the phases A, M1, M2, and M3: ¼̄0 = ¼̄1 = ¼̄2 = ¼̄3 = 74.62 GPa, μ̄0 = μ̄1 = μ̄2 = μ̄3 = 72 GPa. The
other constant parameters are taken as [20] a = aβ = aε = aK = 3, ac = 10−3, ρ0 K12 = ρ0 K23 = ρ0 K13 =
50 GPa, ρ0 K012 = ρ0 K023 = ρ0 K013 = 5 GPa, ρ0 K0123 = ρ0 K123 = 50 GPa, and L0M = 2600 (Pa-s)−1.
The kinetic coefficient L i j given by Eq. (2.28) is taken as 12600 (Pa-s)−1 when it assumes a nonzero value for
all i, j = 1, 2, 3 and i �= j . The transformation stretches are α = 0.922 and χ = 1.215 [45].

4.2 Numerical result for twins within twins

For the simulation, we consider a 22 nm×22 nm×22 nm cube as the reference body V0, as shown in Fig. 3a.
The periodic BC given by Eq. (2.58) is used for all the order parameters on the respective opposite faces of
the cube domain. We have used the periodic BC for the normal component of the displacement vector given
by Eq. (2.60) on the opposite faces of the cube, where the homogeneous deformation gradient is taken as
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(a) (b)

(d)
(c)

Fig. 3 Evolution of twin within twin microstructure in a 22 nm×22 nm×22 nm cube shown by the color plot of ·eq = ·0(1 −
0.67·1 − 0.33·2): ·eq = 0.33 denotes M1; ·eq = 0.67 denotes M2; ·eq = 1 denotes M3

Fh = I +0.98 n0 ⊗n0, and n0 is the unit normal to the opposite faces of the cube V0. On each face of the cube
domain, we have used the traction-free BC for the tangential components of the first Piola–Kirchhoff traction
vector (see Eq. (2.59)). The temperature of the sample is taken as ¸ = 0 K. The material properties listed in
Sect. 4.1 are used. The Bain tensors listed in Eq. (3.11) are used in Eq. (2.5), where the basis vectors c1, c2, and
c3 of A unit cell are parallel to basis vectors e1, e2, and e3, respectively, attached to the sample V0 (see Fig. 3a).
The initial distribution of the order parameters is taken between 0 ≤ ·0 ≤ 1, 0 ≤ ·1 ≤ 0.8, and 0 ≤ ·2 ≤ 0.8,
all distributed randomly, as shown in Fig. 3a. The remaining order parameter ·3 is calculated using Eq. (2.1)
for all the times t ≥ 0. In particular, we have shown a color plot for an equivalent order parameter defined as
·eq = ·0(1−0.67·1 −0.33·2), which takes the following values at different phases: ·eq = 0 in A, ·eq = 0.33
in M1, ·eq = 0.67 in M2, and ·eq = 1 in M3. We have developed a nonlinear finite element procedure, similar
to [82], described in Appendix B. A finite element code has been developed using an open-source package
deal.ii [84]. The domain is discretized spatially with quadratic brick elements, and it is ensured that at least
three grid points lie across all the interfaces. The mesh density in the 3D domain is shown in Fig. 4a, and the
mesh density on one of the boundaries is shown in Fig. 4b. The time derivatives of the order parameters are
discretized using the backward difference scheme of order two, as described in Appendix B. A constant time
step size of �tn = 2 × 10−16 s is used for the simulation.

The evolution of the microstructure is shown at different time instances in Fig. 3a–d. Figure 3b, c show
the intermediate microstructures at different time instances approaching a twinned microstructure. We finally
obtain a twins within twins microstructure between the twin pairs M1−M2 and M1−M3 as shown in Fig. 3d. The
microstructure shown in Fig. 3d is a little far from being a stationary one. However, the twinned microstructure
obtained here can be compared with the analytical solution as there is no further significant change in the
orientations of the twin and twin–twin boundaries with time, as observed in Fig. 3c, d. The microstructures on
three faces of the domain with unit normals parallel to e3, e2 and e1 are shown in Fig. 5a–c, respectively.
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(a) (b)

Fig. 4 Mesh density a in 3D computational domain, and b on one of the external boundaries

(a) (c)(b)

Fig. 5 Twin microstructures on three mutually perpendicular faces of the sample shown in Fig. 3d. The color plots of ·eq are
shown: ·eq = 0.33 denotes M1; ·eq = 0.67 denotes M2; ·eq = 1 denotes M3

The plots for the components of the Cauchy elastic stress tensor (in GPa) at t = 2.25 ps (corresponding to
the microstructure shown in Fig. 3d) are shown in Fig. 6. The internal stresses are concentrated mainly across
the twin–twin boundaries and twin boundaries (see, e.g., [85] for experimental results). The stresses vary from
compressive to tensile between two adjacent variant plates within and near the twin–twin interfaces. For a
better understanding of the elastic stresses across the interfaces, we have shown a plot for the components
across the lines joined by the points O and A, and C and B (see Fig. 3d) in Fig. 7a, b, respectively. In these
two figures, the elastic stresses within M1 − M3 and M1 − M2 twin boundaries are plotted. Figure 7b covers
the stresses across a twin–twin boundary. All the normal stresses σ(e)11, σ(e)22, and σ(e)33 are significantly
higher across the twin boundaries compared to the adjacent phases. The reason for such large elastic stresses
within the twin boundaries is studied in detail by the authors in [86]. The shear stresses σ(e)12 and σ(e)13 on the
corresponding external boundary (having unit normal e1 in �0) are much lower due to the traction-free BC
applied in the tangential plane. The stresses across the twins within twins boundaries are usually much higher
than that across the twin boundaries (also see Fig. 7). This can be explained using the fact that the twin–twin
boundaries are compatible in an average sense, whereas the twin boundaries are compatible in Hadamard’s
sense according to the crystallographic theory (see Chapter 5 of [1]). Understanding the stress distributions
across these interfaces is important from the materials design perspective [85].

Comparison of crystallographic and numerical solutions. We now present a comparative study of the
microstructure obtained numerically with the crystallographic solution obtained in Sect. 3.2. We have shown
the twins within twins microstructures obtained using the present phase-field approach in Fig. 3, where the
twins with variants pair M1 − M2 are forming interfaces with the twins made of variants pair M1 − M3, i.e.,
the indices of Fig. 1 are i = k = 1, j = 2, and l = 3. The normal to interfaces between M1 and M2 plates
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Fig. 6 Components of the Cauchy elastic stress tensor (in GPa) in the sample shown in Fig. 3d

(a) (b)

Fig. 7 Components of the Cauchy elastic stress tensor across the lines drawn between points (a) O and A, and (b) C and B shown
in Fig. 3d. a and b the elastic stress distribution across the twin boundaries between variants M1 −M3 and M1 −M2, respectively
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Fig. 8 Plot for »2 versus »1 given by Eq. (3.15)1 for NiAl alloy

Table 1 Crystallographic solutions for twins between the variants for NiAl alloy in {c1 , c2 , c3} basis

Variant pair a n

M1–M2 0.4625 c1 ± 0.3510 c2 −0.7071 c1 ± 0.7071 c2

M1–M3 0.4625 c1 ± 0.3510 c3 −0.7071 c1 ± 0.7071 c3

M2–M3 0.4625 c2 ± 0.3510 c3 −0.7071 c2 ± 0.7071 c3

Fig. 9 A plane within a twins-twins interface (within the domain shown in Fig. 3d) is shown by the rectangle. The unit normal
to that plane is m = 0.1020 c1 − 0.7204 c2 + 0.6859 c3
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are making approximately 45◦ with both e1 and e2 axes, and the normal to interfaces between M1 and M3

plates are making approximately 45◦ with both e1 and e3 axes. The inclinations of the twin boundaries agree
with the crystallographic solution listed in Table 1. The volume fractions of M1 in the respective twin pairs are
calculated as 0.54 and 0.44, respectively, from the simulation result. Hence, »1 = 0.46 and »2 = 0.56. The
unit normal to one of the twins within twins interface (shown by a rectangular plane with red lines in Fig. 9)
m is obtained as (pointing from M1 − M3 side to M1-M2 side)

m = 0.1020 c1 − 0.7204 c2 + 0.6859 c3. (4.2)

We now calculate m using the analytical solution given by Eq. (3.17). As mentioned earlier, the volume
fractions »1 and »2, satisfying the relation given by Eq. (3.15)1 and plotted in Fig. 8, cannot be uniquely
determined from the limited governing equations at hand. We assume »1 = 0.46 for the analytical solution
based on the numerical data and obtain »2 = 0.5250 using the analytical expression given by Eq. (3.15)1. The
analytical and numerical results for »2 differ by 7.7%. Finally, using Eqs. (3.16), (3.17), and (3.18), we obtain
ζ2 = 0.2634 and the vectors b, m̃, and m as

b = ±0.16 c2 + 0.2093 c3,

m̃ = ±0.7119 c2 − 0.7115 c3, and

m = ∓0.0927 c1 ± 0.6564 c2 − 0.7487 c3. (4.3)

The maximum difference in the components of analytical and numerically obtained unit normals m is
approximately 9%, and the orientation of the analytical m differs by 5.3◦ from the numerical one. One of the
main sources of difference is that in the numerical solution, local stress fields and their relaxation by incomplete
martensitic variants at the twin within twin interface are automatically taken into account. Qualitatively similar
twins within twins microstructures shown in Fig. 3d have been observed experimentally during the cubic to
tetragonal MTs, for example, in NiAl alloy [9,87], NiMn alloy [88], etc.

5 Concluding remarks

This paper has mainly threefold contributions, which are summarized below:
(i) The phase-field model for multivariant MTs developed by the authors in [20] is revisited in this paper.

That model is analyzed, and the issues are found related to the nonlocal gradient energy and the coupled kinetics
related to the variant–variant transformations in [20]. Those issues are resolved here, and a non-contradictory
and thermodynamically consistent multiphase phase-field model for studying multivariant MTs is presented.
The present model considers N + 1 order parameters to describe the austenite and N martensitic variants
similar to [20], where the sum of all the order parameters related to the variants is constrained to unity. The
local part of the system free energy, composed of the strain energy, barrier energy between the phases and
the variants, thermal energy of A and M phases, penalization energies for deviation of the variant–variant
transformation paths from the prescribed ones and also for the triple and higher junctions, is considered from
[20]. The barrier and gradient energies are multiplied with the determinant of the total deformation gradient,
which yields the desired form of the structural stress tensor. The kinematic model for the transformation stretch
tensor as a linear combination of the Bain strains multiplied with some nonlinear interpolation functions is
assumed. The interpolation functions are derived as fourth-degree polynomials in the order parameters using
the thermodynamic equilibrium conditions of the homogeneous phases. The coupled mechanics and Ginzburg–
Landau equations are derived using the balance laws of linear and angular momentum, and the first and second
laws of thermodynamics. The kinetic coefficients related to the evolution of the order parameters for the
variants at material points are taken to be piecewise constant functions depending on the values of the order
parameters and thermodynamic forces. Neglecting the viscous stresses, the total stress at a point is found to
be sum of the elastic and structural parts.

(ii) A general approximate crystallographic solution for the twins within twins microstructure is obtained.
The solutions for cubic to tetragonal transformations are presented considering all three variants present within
the microstructure.

(iii) A non-monolithic finite element formulation for the coupled mechanics and phase-field equations is
developed (see Appendix B). 3D twins within twins microstructure evolution in a single grain is studied, and
the numerical results are compared with the crystallographic solution.
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The present phase-field model can be used to study complex martensitic microstructures with any number
of variants for cubic↔orthorhombic and cubic↔monoclinic transformations. The martensitic microstructures
induced by defects, including nanovoid surfaces [89], dislocations, etc., can be studied by extending the present
model. Note that for large transformation strains for the MTs Si I to Si II, a new martensitic microstructure,
which does not obey the mathematical theory of martensite [1–5], was obtained with molecular dynamic
simulations in [90]. It will be a challenge for the current (and any other) large-strain theory to simulate such a
microstructure.
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Appendix

A Thermodynamic formalism and dissipation inequality

We use the general thermodynamically consistent nonlocal framework developed by the authors in [20,73]
for deriving the governing coupled mechanics phase-field equations. For the completeness of the presentation,
we briefly show the derivation of the dissipation inequality, which is used for deriving the Ginzburg–Landau
equations for the order parameters and the constitutive relations in Sect. 2. We begin with the following
dissipation inequalities obtained using the first and second laws of thermodynamics in �0 [20,73]:

ρ0D = P : Ḟ
T − ρ0ψ̇ − ρ0s ˙̧ + ∇0 · ( Q

·
0 ·̇0) +

N
∑

i=1

∇0 · ( Q
·
i ·̇i ) ≥ 0, and − 1

¸
h0 · ∇0¸ ≥ 0, (A.1)

where D is the power dissipation per unit mass. The symbol P denotes the total first Piola–Kirchhoff stress
tensor, ψ is the specific (per unit mass) Helmholtz free energy, ρ0 denotes the mass density of V0, ¸ > 0 is
the absolute temperature, s is the specific entropy, Q

·
l (l = 1, . . . , N ) are the generalized force vectors in �0

introduced for the balance of some of the terms in the inequality (A.1) [20,73], and h0 is the heat flux vector.
Based on inequality (A.1)2, we write the Fourier’s law h0 = −K ¸ · ∇0¸ , where K ¸ is the heat conductivity
tensor which is symmetric and positive semi-definite. If the body is at a uniform temperature, as assumed for
the numerical simulation in Sect. 4.2, h0 = 0.

The material time derivative of the system free energy given by in Eqs. (2.6) and (2.7) is obtained as

ψ̇ = Jt

ρ0

∂ψe

∂ Fe

· F−T
t : Ḟ

T − Jt

ρ0
FT

e · ∂ψe

∂ Fe

· F−T
t : Ḟ

T

t + Jtψ
e

ρ0
F−T

t : Ḟ
T

t + J (ψ̆¸ + ψ∇)F−T : Ḟ
T

+
N
∑

i=0

(

J
∂(ψ̆¸ + ψ∇)

∂·i

+ ∂(ψ̃¸ + ψ p)

∂·i

+ Jt

ρ0

∂ψe

∂·i

∣

∣

∣

∣

Fe

)

·̇i + J

N
∑

i=0

∂ψ∇

∂∇·i

· ˙∇·i + ∂ψ

∂¸
˙̧,

(A.2)

where we have used ˙det T = (det T )T−1 : Ṫ , and
˙

T−1 = −T−1 · Ṫ · T−1 for an arbitrary invertible
second-order tensor T (t). Using the relation

N
∑

l=0

∂ψ∇

∂∇·l

· ˙∇·l =
N
∑

l=0

∂ψ∇

∂∇·l

· ˙
(F−T · ∇0·l) =

N
∑

l=0

(

F−1 · ∂ψ∇

∂∇·l

· ˙∇0·l − ∇·l ⊗ F−1 · ∂ψ∇

∂∇·l

: Ḟ
T
)

,

(A.3)

where we have used ∇·l = F−T · ∇0·l , and noticing that Ft is a function of all the order parameters [see
Eq. (2.5)], we rewrite Eq. (A.2) as

ψ̇ =
(

Jt

ρ0

∂ψe

∂ Fe

· F−T
t + J (ψ̆¸ + ψ∇)F−T − J

N
∑

l=0

∇·l ⊗ F−1 · ∂ψ∇

∂∇·l

)

: Ḟ
T
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+
N
∑

l=0

J F−1 · ∂ψ∇

∂∇·l

· ˙∇0· + ∂ψ

∂¸
˙̧ +

N
∑

l=0

(

J
∂(ψ̆¸ + ψ∇)

∂·l

+ ∂(ψ̃¸ + ψ p)

∂·l

+ Jt

ρ0

∂ψe

∂·l

∣

∣

∣

∣

Fe

+
(

Jtψ
e

ρ0
F−T

t − Jt

ρ0
FT

e · ∂ψe

∂ Fe

· F−T
t

)

: ∂ FT
t

∂·l

)

·̇i . (A.4)

We apply the Coleman–Noll procedure [77] (see [78] for its generalization to a nonlocal theory) to obtain
the constitute relations. Using Eq. (A.4) in the inequality (A.1)1 and assuming that the dissipation rate is

independent of ˙̧, and ˙∇0·l (for all l = 0, 1, . . . , N ), and neglecting the viscous dissipation within the solid,

we get the constitutive relations for entropy s = −∂ψ

∂¸
, generalized force vector Q

·
l = ρ0 J F−1 · ∂ψ∇

∂∇·l

for all

l = 0, 1, . . . , N [77,78], and the total first Piola–Kirchhoff stress tensor P is given by Eq. (2.10)1. Considering
these relations, the dissipation inequality (A.1)1 finally simplifies to (2.17) given in Sect. 2.4.2.

B Finite element procedure and numerical implementation

In this appendix, we briefly describe our FE formulation and derive the system of algebraic equations which
are solved to compute the nodal displacements and order parameters in our 3D domain. We discretize the
volume in the reference body into nel finite elements, i.e., V0 ≈ ∪nel

el=1V el
0 . The total number of grid points is

ngrid. The boundary S0 consists of the edges and areas of some elements. We have developed the FE procedure
for solving the couple mechanics, and phase-field equations using a non-monolithic scheme, where the order
parameters are assumed to remain fixed while solving the mechanics equations and the displacements are
assumed to remain fixed while solving the phase-field equations (see [82] for details).

FE procedure for mechanics problem. Writing the weak form of the equilibrium equation Eq. (2.9)1, we
linearize it and discretize the linearized equation using the standard procedure [91] to obtain the following
system of algebraic equations for computing the increment in the nodal displacements (see [82] for derivation)

K · �up = −ru, where (B.1)

K is the 3 ngrid ×3 ngrid global tangent stiffness matrix which is symmetric, ru is the 3 ngrid ×1 global residual
matrix, and �up is the 3 ngrid × 1 incremental displacement matrix at the p-th iteration. The global matrix K
is obtained by using the standard assembly operation on the elemental tangent matrix, which is obtained using
the following 3 × 3 matrix related to the nodes ι and » of each element (index as el)

K el
ι» =

∫

V el
0

(

Bel
ι

T · C
el · Bel

» + Gι» I
)

dV el
0 . (B.2)

The size of the elemental matrix K el is 3 ng ×3 ng , where ng is the number of nodes in an element. The global
ru matrix is obtained by assembling the elemental residual matrix obtained using the following 3 × 1 matrix
related to node ι of each element

(rel
ι )u =

∫

V el
0

J el Bel
ι

T · σ
el dV el

0 . (B.3)

The size of the elemental rel matrix is 3 ng ×1. Here, we enlist the other symbols in Eq. (B.2). C
el = C

el
e +C

el
st

is the 6 × 6 elemental stiffness matrix and C
el
e and C

el
st are the 6 × 6 elemental elastic and structural stiffness

matrices, respectively. Their components are obtained from the following two fourth-order tensors in � (see
[82] for derivation):
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C(e)abcd = J−1
e F(e)ap F(e)bq F(e)cr F(e)ds Ĉ(e)pqrs, and

C(st)abcd = σ(st)abδcd + δabσ(st)cd − (σ(st)acδbd + σ(st)adδbc + δacσ(st)bd + δadσ(st)bc)

+ρ0 J (ψ̆¸ + ψ∇)(δacδbd + δadδbc − δabδcd), (B.4)

respectively, and using the Voigt representation. In Eq. (B.4)1, Ĉ(e) := ∂2ψe

∂ Ee∂ Ee

is the fourth-order elasticity

tensor defined in �t [82]. We denote the shape functions for the ιth grid point in element V el
0 as Nι for

ι = 1, . . . , ng . The standard ∇Nι and Bel
ι matrices of sizes 3 × 1 and 6 × 3, respectively, are given by [91]

∇Nι =

⎡

£

Nι,1

Nι,2

Nι,3

¤

⎦ ; and Bel
ι =

⎡

⎢

⎢

⎢

⎢

⎢

£

Nι,1 0 0
0 Nι,2 0
0 0 Nι,3

Nι,2 Nι,1 0
0 Nι,3 Nι,2

Nι,3 0 Nι,1

¤

⎥

⎥

⎥

⎥

⎥

⎦

, (B.5)

where the comma followed by the number designates the derivative with respect to ri (for i = 1, 2, 3) in �. In
Eq. (B.3), σ

el = {σ11, σ22, σ33, σ12, σ23, σ13}T is the 6 × 1 matrix whose elements are the components of
the total stress σ given by Eq. (2.13)1. In Eq. (B.2)1, Gι» I = J el (∇N T

ι · σ · ∇N») I is the geometric part of
the tangent matrix K , and here note that σ is a 3 × 3 matrix (see Chapter 3 of [91]). Finally, solving Eq. (B.1)
iteratively using Newton’s method, the 3ngrid × 1 nodal displacement matrix is updated after the pth iteration
using

up = up−1 + �up. (B.6)

FE procedure for Ginzburg–Landau equations. We discretize the time rate of the order parameters as

·̇l = (c1·
n
l + c2·

n−1
l + c3·

n−2
l )/�tn for all l = 0, 1, 2, . . . , N , (B.7)

where the constants c1, c2, and c3 take the values 1, −1, and 0, respectively, for BDF scheme of order one,
and their values are 1.5, −2, and 0.5, respectively, for BDF scheme of order two. The time step size �tn at
the nth iteration is chosen which yields a converged solution for the N order parameters. The superscript n

designates the time index, and the time instance after (n − 1)th iteration is given by tn = tn−1 + �tn . Using
Eq. (B.7) in the Ginzburg–Landau equations (2.23) and (2.29), we write down their weak forms, linearize the
weak forms and discretize them and finally, do the assembly operation using the standard procedure [91] to
obtain the system of algebraic equations for the N independent order parameter ·l (say ·0, ·1, . . . , ·N−1):

T l · �η
n,q
l = −rl for l = 0, 1, . . . , N − 1. (B.8)

In Eq. (B.8), T l is ngrid × ngrid symmetric global matrix related to ·l and it is given by

T l(·
n,q−1
k ) = c1 Ml + �tn H l + �tn Gl . (B.9)

The global mass matrix Ml , global Laplace matrix H l , and global nonlinear matrix Gl are obtained by applying
the standard assembly operation of the corresponding ng ×ng elemental mass, Laplace, and nonlinear matrices,
respectively. The ι» components of the elemental mass, Laplace, and nonlinear matrices are given by

(Mel
l )ι» =

∫

V el
0

NιN» dV el
0 ,

(Hel
l )ι» =

∫

V el
0

h
n,q−1
l L

β

l J n(∇Nι · ∇N»)dV el
0 ,

(Gel
l )ι» =

∫

V el
0

∂ f n
l (·

n,q−1
l )

∂·n
l

∣

∣

∣

∣

∣

F

NιN»dV el
0 , (B.10)

respectively, where h
n,q−1
0 = 1, L

β
0 = L0Mβ0M , h

n,q−1
l = ϕ̃(aβ , ac, ·

n,q−1
0 ), and L

β

l =
∑N

k=1,�=l Llkβlk

for l = 1, . . . , N . The expressions for f n
l for l = 0 and l = 1, . . . , N are given by Eqs. (B.13) and (B.14),
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respectively, and ngrid is the total number of degrees of freedom for ·l . In Eq. (B.8), �η
n,q
l is ngrid × 1 matrix

for the increment of ·l at q th Newton iteration in nth time step, and rl is ngrid × 1 residual matrix given by

rl = (c1 Ml + �tn H l) · η
n,q−1
l + c2 Ml · η

n−1
l + c3 Ml · ηn−2

l + �tn f l , (B.11)

where ngrid × 1 global matrix f l is obtained by assembling the ng × 1 elemental matrices whose ι component
is

( f el
l )ι =

∫

V el
0

f n
l NιdV el

0 (B.12)

for all l = 0, 1, . . . , N − 1. The order parameters after each iteration are updated using

η
n,q
l = η

n,q−1
l + �η

n,q
l for l = 0, 1, . . . , N − 1.

The nodal matrix η
n,q
N is then obtained using the constraint Eq. (2.1).

Following the procedure of [82], the expressions for f0 and fi for i = 1, 2, . . . , N appearing in Eqs. (B.10)3

and (B.12) are obtained using Eqs. (2.54), (2.55), (2.56), and (2.57) as

f n
0 = L0M
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f n
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X∇
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In Eqs. (B.13) and (B.15), Y n
l = Fn

t
−1 · ∂ Fn

t

∂·n
l

for all l = 0, 1, . . . , N . Following the procedure of [91], the

expressions for ∂ f n
0 /∂·n

0 and ∂ f n
i /∂·n

i appearing in Eq. (B.10)3 are derived using Eqs. (B.13) and (B.14).
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