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Abstract This paper studies the structure and stability of boundaries in non-
collapsedRCD(K , N ) spaces, that is,metric-measure spaces (X,d,H N )with
Ricci curvature bounded below. Our main structural result is that the boundary
∂X is homeomorphic to a manifold away from a set of codimension 2, and
is N − 1 rectifiable. Along the way, we show effective measure bounds on
the boundary and its tubular neighborhoods. These results are new even for
Gromov–Hausdorff limits (MN

i ,dgi , pi ) → (X,d, p) of smooth manifolds
with boundary, and require new techniques beyond those needed to prove the
analogous statements for the regular set, in particular when it comes to the
manifold structure of the boundary ∂X . The key local result is an ε-regularity
theorem, which tells us that if a ball B2(p) ⊂ X is sufficiently close to a half
space B2(0) ⊂ R

N+ in the Gromov–Hausdorff sense, then B1(p) is biHölder to
an open set of RN+ . In particular, ∂X is itself homeomorphic to B1(0N−1) near
B1(p). Further, the boundary ∂X is N−1 rectifiable and the boundarymeasure
H N−1 ∂X is Ahlfors regular on B1(p) with volume close to the Euclidean
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778 E. Bruè et al.

volume. Our second collection of results involve the stability of the boundary
with respect to noncollapsed mGH convergence Xi → X . Specifically, we
show a boundary volume convergence which tells us that the N −1 Hausdorff
measures on the boundaries converge H N−1 ∂Xi → H N−1 ∂X to the
limit Hausdorff measure on ∂X . We will see that a consequence of this is that
if the Xi are boundary free then so is X .

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
1.1 Singular strata and boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
1.2 An ε-regularity theorem for top dimensional singularities . . . . . . . . . . . . . 782
1.3 Structure of boundaries and of spaces with boundary . . . . . . . . . . . . . . . 784
1.4 Stability and gap theorems for boundaries . . . . . . . . . . . . . . . . . . . . . 786
1.5 Comparison with the Alexandrov theory . . . . . . . . . . . . . . . . . . . . . . 787
1.6 The remainder of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
2.1 Calculus tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
2.2 RCD spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

2.2.1 Structure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
2.2.2 Calculus on RCD spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

2.3 Continuity equation and flow maps . . . . . . . . . . . . . . . . . . . . . . . . . 796
2.4 Noncollapsed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
2.5 Cone splitting via content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

3 Splitting maps on RCD spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
3.1 Functional splitting theorem, local version . . . . . . . . . . . . . . . . . . . . . 804
3.2 δ-Splitting maps and ε-GH isometries . . . . . . . . . . . . . . . . . . . . . . . 810
3.3 Transformation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

4 Neck regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
4.1 Structure of neck regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
4.2 Existence of neck regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

4.2.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
4.3 Strategy of proof of Theorem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . 829

4.3.1 Proof of Proposition 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
4.3.2 Proof of Theorem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

5 Neck Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
5.1 Proof of the neck decomposition theorem . . . . . . . . . . . . . . . . . . . . . 840

6 Boundary rectifiability and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
6.1 Proof of the stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846
6.2 Rectifiable structure and volume estimates . . . . . . . . . . . . . . . . . . . . . 847
6.3 A second notion of boundary and further regularity properties . . . . . . . . . . . 851

7 Distance from the boundary and noncollapsing of boundaries . . . . . . . . . . . . . 854
7.1 Laplacian of the distance from the boundary . . . . . . . . . . . . . . . . . . . . 856
7.2 Alexandrov spaces and noncollapsed Ricci limits with boundary . . . . . . . . . 862

8 Improved neck structure and boundary measure convergence . . . . . . . . . . . . . . 866
8.1 Improved neck structure theorem and boundary volume rigidity . . . . . . . . . . 866
8.2 Topological regularity of the boundary . . . . . . . . . . . . . . . . . . . . . . . 870
8.3 Convergence of boundary measures . . . . . . . . . . . . . . . . . . . . . . . . . 874

9 Topological regularity up to the boundary . . . . . . . . . . . . . . . . . . . . . . . . 876
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

123



Boundary regularity and stability for spaces 779

1 Introduction

This paper studies structural and stability properties for noncollapsedRCD(K ,

N ) spaces with boundary. In particular, we give affirmative answers to some
of the recent conjectures presented in [37,59].

Most of the statements are new and of interest even for noncollapsed limits
of smooth Riemannian manifolds with convex boundary and interior lower
Ricci curvature bounds.

Our main results can be grouped into

• Structure results for boundaries and spaces with boundary;
• Stability/gap theorems about the absence/presence of boundary.

In particular, we obtain the rectifiable structure of the boundary together
with measure estimates. Moreover we prove that noncollapsed RCD spaces
are homeomorphic to topological manifolds (possibly with boundary) up to
sets of codimension two.

On the side of stability/gap results we are going to prove that the absence
of boundary is preserved under noncollapsed (pointed) Gromov–Hausdorff
convergence and that the boundary volume measures converge in full general-
ity. We also show that the presence of boundary is stable, under an additional
assumption which is satisfied for sequences of smooth manifolds with bound-
ary.

Below, after briefly introducing the relevant terminology and background,
we outline the main achievements of the paper.

The Riemannian Curvature Dimension condition RCD(K , ∞) was intro-
duced in [6] (see also [5]) coupling the Curvature Dimension condition
CD(K , ∞), previously proposed in [85,86] and independently in [67], with
the infinitesimally Hilbertian assumption, corresponding to the Sobolev space
H1,2 being Hilbert.
The natural finite dimensional refinements subsequently led to the notions
of RCD(K , N ) and RCD∗(K , N ) spaces, corresponding to CD(K , N ) (resp.
CD∗(K , N ), see [15]) coupledwith linear heat flow.The classRCD(K , N )was
proposed in [43], motivated by the validity of the sharp Laplacian comparison
and of the Cheeger–Gromoll splitting theorem, proved in [41]. The (a priori
more general) RCD∗(K , N ) condition was thoroughly analysed in [39] and
(subsequently and independently) in [11] (see also [24] for the equivalence
betweeen RCD∗ and RCD in the case of finite reference measure).
Several geometric and analytic properties have been proved for RCD(K , N )

spaces in the last years, often inspired by the theory of (weighted) Riemannian
manifolds with lower Ricci bounds and of Ricci limits. Without the aim of
being complete, let us mention the heat kernel estimates [54], the rectifiability
[69], the constancy of the dimension in the almost everywhere sense [19] (cf.

123



780 E. Bruè et al.

with [33] dealing with Ricci limit spaces) and the existence of a second order
differential calculus [44].

In the theory of Ricci limit spaces, further regularity properties are satisfied
under the noncollapsing assumption. If the approximating sequence of smooth
Riemannian manifolds, besides the lower Ricci bound

RicMi ≥ −(N − 1), (1.1)

verifies also the lower volume bound

H N (B1(pi )) ≥ v > 0, (1.2)

then by volume convergence [28,32] the volume measures converge to the
H N -measure on the limit metric space. Noncollapsed Ricci limit spaces are
much more regular than general Ricci limits, see [28–31].

Motivated by this refinement in the theory of Ricci limits, a notion of non-
collapsed RCD(K , N ) metric measure space (X,d,m) has been proposed in
[37] by asking that m = H N (a weaker definition had been previously sug-
gested in [64]). In the same work some properties valid for noncollapsed Ricci
limits have been generalized to the synthetic framework, such as the volume
convergence and the stratification of the singular set. More recent contribu-
tions dealt with topological regularity [59], volume bounds for the singular
strata [14] and differential characterizations [53].

1.1 Singular strata and boundaries

On a noncollapsed RCD(K , N ) metric measure space (X,d,H N ) any tan-
gent cone is a metric cone (see [27,28,36,37]). Moreover, there is a natural
stratification of the singular set

S0 ⊂ S1 ⊂ · · · ⊂ SN−1 = S := X \ R, (1.3)

where

R :=
{
x ∈ X : Tanx (X,d) = {(RN ,deucl)}

}
(1.4)

is the set of regular points of (X,d,H N ) and, for any 0 ≤ k ≤ N − 1,

Sk :=
{
x ∈ X : no tangent cone at x splits off Rk+1

}
. (1.5)
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Boundary regularity and stability for spaces 781

This stratification was first introduced in [28] for noncollapsed Ricci limits.
Therein it was proven that

SN−1 \ SN−2 = ∅ (1.6)

and that the following Hausdorff dimension estimate holds:

dimH Sk ≤ k, 1 ≤ k ≤ N − 2. (1.7)

A more quantitative analysis of singular strata was initiated in [30], based on
quantitative differentiation arguments and yielding to Minkowski-type esti-
mates for the quantitative singular strata

Sk
ε,r := {x ∈ X : for no r ≤ s < 1 Bs(x) is a (k + 1, ε)-symmetric ball}

and

Sk
ε :=

⋂
r>0

Sk
ε,r . (1.8)

We recall that Bs(x) is said to be a (k, ε)-symmetric ball provided

dGH (Bs(x), Bs(z)) ≤ sε,

where z ∈ C(Z)×R
k is a tip of the metric coneC(Z)×R

k . We refer to Sect. 2
for the precise introduction of metric cones and of the Gromov–Hausdorff
distance dGH .

Later on, in [29] the estimates for the quantitative singular strata have been
sharpened, and the k-rectifiable structure of Sk has been shown for any 0 ≤
k ≤ N − 2.

In the framework of RCD spaces, the top dimensional singular stratum
SN−1\SN−2 is not empty in general, since Riemannianmanifolds with convex
boundary and lower Ricci curvature bounds in the interior belong to this class
(here by convex boundary we intend that the second fundamental form with
respect to the interior unit normal must be non negative definite). Still, the
Hausdorff dimension estimate (1.7) holds for any 0 ≤ k ≤ N − 1 (see [37]).
The same phenomenon happens in the theory of Alexandrov spaces, where the
top dimensional singular stratum is strictly linked to the boundary of the space
[22,75]. Elementary examples suggest that this is the case also for noncollapsed
RCD spaces.

In [37,59] two different notions of boundary for an RCD(K , N ) space
(X,d,H N ) have been proposed (see also [58] for another notion introduced
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for Alexandrov spaces). For the sake of this introduction we are going to deal
with the one introduced in [37], where the authors define

∂X := SN−1 \ SN−2. (1.9)

Above we denoted by SN−1 \ SN−2 the topological closure of SN−1\SN−2.
Let us point out that, since the density of H N at any point in SN−1\SN−2

equals 1/2, by lower semicontinuity of the density it holds

∂X\
(
SN−1\SN−2

)
⊂ SN−2, (1.10)

in particular

dimH

(
∂X\

(
SN−1\SN−2

))
≤ N − 2. (1.11)

A comparison with the notion of boundary introduced in [59] will be inves-
tigated subsequently in the paper (cf. Theorem 6.6 (i)).

Given the above definition of boundary it sounds natural to introduce the
following.

Definition 1.1 We say that an RCD(K , N ) space (X,d,H N ) has boundary
in B1(p) if

(SN−1\SN−2) ∩ B1(p) �= ∅,

otherwise we say that (X,d,H N ) has no boundary in B1(p).

1.2 An ε-regularity theorem for top dimensional singularities

For all the subsequent developments of the paper, the building block is an
ε-regularity theorem, dealing with the structure of balls sufficiently close in
the GH sense to a ball centered on the boundary of a half-space.

Let us preliminarily recall that a set E ⊂ X is said to be (N − 1)-rectifiable
provided

E ⊂ M ∪
⋃
i∈N

Ei ,

where H N−1(M) = 0 and each Ei is biLipschitz to a Borel subset of RN−1

for any i ∈ N.
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Boundary regularity and stability for spaces 783

Theorem 1.2 (ε-regularity)Let 1 ≤ N < ∞ be a fixed natural number and let
ε > 0. If δ ≤ δ(N , ε), then for any RCD(−δ(N − 1), N ) m.m.s. (X,d,H N )

with p ∈ X such that

dGH (B16(p), B
R
N+

16 (0)) < δ, (1.12)

it holds that ∂X ∩ B1(p) �= ∅. Moreover

(i) (Ahlfors regularity) for any x ∈ ∂X ∩ B1(p) and for any 0 < r < 1

(1 − ε)ωN−1r
N−1 ≤ H N−1(∂X ∩ Br (x)) ≤ (1 + ε)ωN−1r

N−1; (1.13)

(ii) (Rectifiable structure) ∂X ∩ B1(p) is (N − 1)-rectifiable;
(iii) (Topological structure) there exists a map F : B1(p) → R

N+ satisfying
(a) (1 − ε)d(x, y)1+ε ≤ |F(x) − F(y)| ≤ C(N )d(x, y) for any x, y ∈

B1(p);
(b) F(p) = 0 and ∂RN+∩B1−2ε(0) ⊂ F(∂X∩B1(p)) = ∂RN+∩F(B1(p));
(c) F is open and a homeomorphism with its image;

(d) B
R
N+

1−2ε(0) ⊂ F(B1(p)).

Remark 1.3 In view of the volume ε-regularity for the boundary Theorem 8.2
the conclusions of Theorem 1.2 hold by assuming p ∈ ∂X and the volume
pinching condition

H N (B32(p)) ≥ 1

2
ωN (32)N − δ (1.14)

in place of (1.12).

The proof of Theorem 1.2 requires most of the tools developed in the paper
and will be split into several intermediate results.

One of the building blocks to prove the boundary measure estimates in
Theorem 1.2 is a weaker ε-regularity theorem, Theorem 6.1. There we prove
that there exist constants c(N ) > 1 and η(N ) > 0 such that if

dGH (B1(p), B
R
N+

1 (0)) < η(N ),

then

c(N )−1 ≤ H N−1(∂X ∩ B1(p)) ≤ c(N ).

Stability is a key feature of the top dimensional singular stratum. It is well
known that codimension two singularities might appear even for limits of
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smooth manifolds. The easiest example of this being that of a two dimensional
singular cone, which can be obtained as a limit of smooth manifolds with
uniform lower Ricci bounds by rounding off the tip.

Among the other things, Theorem 1.2 (and even its weaker version The-
orem 6.1) implies that the top dimensional singular stratum SN−1\SN−2 is
empty for noncollapsed Ricci limits of manifolds without boundary, as known
from the seminal paper [28]. It is worth stressing that our strategy is completely
different from the original one, which is based on a topological argument and
seems not suitable to handle the general case of RCD spaces. A previous
attempt in this direction has been made in [59], where the authors extended
Cheeger–Colding’s result to the setting of noncollapsed RCD spaces verifying
an additional topological regularity assumption. In contrast, our proof is quan-
titative in nature and does not require any topological argument. Moreover,
the statement we achieve is stronger, and new even in the smooth framework.
Indeedwe prove that closeness to themodel boundary ball implies the presence
of a definite amount of boundary points.

TheAhlfors regularity for the boundarymeasure in sharp form, Theorem1.2
(i), will be established through several steps. The key step is the improved
structure theorem for boundary balls Theorem 8.1, which when combined
with Theorem 6.1 yields to Ahlfors regularity in weaker form, with a constant
c(N ) > 1 and1/c(N ) in place of 1+ε and 1−ε, respectively. The sharp version
of the bound will be obtained later in Corollary 8.7 by combining the stability
of Theorem 8.1 and the rectifiable and biHölder structure of Theorem 8.4 (ii),
(iii) and (iv).

The topological regularity part of Theorem 1.2 is new and of interest even
in the case of limits of smooth Riemannian manifolds. At its heart, the proof
is based on two key points, (cf. with the proof of Theorem 8.1). The first is
the stability of Lemma 7.1 which tells us that if a ball Br (x) is Gromov–
Hausdorff close to a half space, then the boundary singularities ∂X ∩ Br (x)
must be ε-close to a ball inRn−1∩Br (0n−1). The second is a boundary volume
ε-regularity Theorem 8.2, based in turn on Lemma 6.5, which roughly tells
us that if there are two balls Br (x) ⊆ BR(x), both close to half spaces and
centered at a boundary point, then the smaller ball Br (x) must be at least as
close to a half-space as the larger ball BR(x). The effect of these two results
is that once boundary singularities start to appear, they cannot stop appearing
and we can eventually put them together into a topological structure.

1.3 Structure of boundaries and of spaces with boundary

The ε-regularity Theorem 1.2, when combined with a covering argument,
yields a structural result for noncollapsed RCD spaces with boundary.
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Boundary regularity and stability for spaces 785

Here and throughout the paper we shall adopt the notation

Br (A) :=
⋃
a∈A

Br (a)

to indicate the tubular neighbourhood of a set on a metric space.

Theorem 1.4 (Boundary Structure) Let (X,d,H N ) be an RCD(−(N −
1), N ) space with p ∈ X such thatH N (B1(p)) > v > 0. If (SN−1\SN−2)∩
B2(p) �= ∅, then the following hold
(i) (Rectifiability and volume estimates) ∂X is (N − 1)-rectifiable and

H N−1(Br (x) ∩ ∂X) ≤ C(N , v)r N−1 for any x ∈ ∂X ∩ B1(p) and r ∈ (0, 1);

(ii) (Volume estimate for the tubular neighbourhood)

H N (Br (∂X) ∩ B1(p)) ≤ C(N , v)r for any r ∈ (0, 1), p ∈ X, (1.15)

(iii) (Uniqueness of tangents) for any x ∈ SN−1\SN−2 the tangent cone at x
is unique and isomorphic to RN+;

(iv) (Topological regularity) for any 0 < α < 1 there exists a closed set
Cα ⊂ SN−2(X) such that

(a) dimH (X\Cα) ≤ N − 2;
(b) X\Cα is a topological manifold with boundary and Cα-charts.

The rectifiability of the top dimensional singular stratum was conjectured
both in [59, Conjecture 4.10] and in [37], together with the local finiteness of
theH N−1-measure. Moreover, with (1.15) we sharpen the volume bound for
the tubular neighbourhood of the top dimensional singular set obtained in [14,
Corollary 2.7] by adapting the techniques developed in [30] to the synthetic
framework. The topological regularity part of Theorem 1.4 improves upon [59,
Theorem 4.11], including the boundary in the statements.

The regularity results above are mostly peculiar of codimension one singu-
larities:

• Volume estimates for the tubular neighbourhood and the measure estimate
for the full singular stratum, and not only for the quantitative one, fail in
codimensionhigher thanone. Indeed there are examples of twodimensional
Alexandrov spaces where the singular set S0 has not locally finite H 0-
measure, see for instance [29, Section 3.4].

• In [34, Theorem 1.2] a noncollapsed Ricci limit space (X,d,H N ) with
a point x ∈ SN−2\SN−3 with non unique tangent cone is constructed
(actually tangents with maximal splitting R

k for any 0 ≤ k ≤ N − 2
appear at that point).
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786 E. Bruè et al.

• As pointed out in [29, Remark 1.11, Example 3.2] based on [66], there is
an example of N -dimensional Alexandrov space such that the singular set
SN−2 is a Cantor set, and in particular no point has a neighbourhood in
which SN−2 is topologically a manifold.

In the case of Ricci limits, Theorem 1.4 (iv) can be sharpened to a finite
H N−2-measure estimate for the topologically singular set, relying on [29]:

Theorem 1.5 Let (X,d,H N ) be an RCD m.m.s. arising as noncollapsed
limit of a sequence of smooth Riemannian manifolds with convex boundaries
and Ricci curvature bounded from below in the interior by −(N − 1). Then,
for any 0 < α < 1, there exist a constant C = C(N , α,H N (B1(p))) and a
closed set of codimension two Cα ⊂ SN−2(X) such that

H N−2(Cα ∩ B1(p)) ≤ C(N , α,H N (B1(p))), for any p ∈ X (1.16)

and X\Cα is a topological manifold with boundary and Cα-charts.

1.4 Stability and gap theorems for boundaries

The following stability theorem gives an affirmative answer to [59, Conjecture
5.11] (see Remark 6.7 for more explanations). Its proof follows directly from
(a weak form of) the ε-regularity theorem for boundary balls, Theorem 1.2 (i).

Theorem 1.6 (Stability) Let N ∈ N
+ and K ∈ R be fixed. Let (Xn,dn,H N ,

xn) be a sequence of pointed RCD(K , N ) spaces with no boundary on B2(xn)
converging in the pmGH topology to (Y,dY ,H N , y). Then Y has no boundary
on B1(y).

While the above tells that spaces without boundary converge to spaces with-
out boundary under non collapsing pGH convergence, stability of boundary
points (i.e whether boundary points converge to boundary points) remains an
open question in the general case.

The analysis of the Laplacian of the distance from the boundary performed
in Sect. 7 allows us to prove the localAhlfors regularity of the boundary volume
measure, together with stability of boundary points in the case of Ricci limits
with boundary.

Theorem 1.7 Let (X,d,H N , p)be the noncollapsed pGH limit of a sequence
of smooth N-dimensional Riemannian manifolds (Xn,dn, pn) with convex
boundary and Ricci curvature bounded from below by K in the interior. Then:

(i) if B1(pn)∩∂Xn �= ∅ for every n then ∂X �= ∅.Moreover if points xn ∈ ∂Xn
converge to x ∈ X, then x ∈ ∂X;
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Boundary regularity and stability for spaces 787

(ii) for any x ∈ ∂X one has

H N−1(B2(x) ∩ ∂X) > C(K )H N (B1(x)); (1.17)

(iii) H N−1 ∂X is locally Ahlfors regular and for any x ∈ ∂X any tangent
cone at x has boundary.

We conjecture that the gap estimate (1.17) holds for general noncollapsed
RCD spaces without further assumptions, which would also prove stability of
boundary points and the equivalence between the two notions of boundary in
[37] and [59] in full generality.

Our last result is a version of Colding’s volume convergence theorem (cf.
[28,32]) for boundary measures:

Theorem 1.8 (Boundary Volume Convergence) Let 1 ≤ N < ∞ be a fixed
natural number. Assume that (Xn,dn,H N , pn) are RCD(−(N − 1), N )

spaces converging in the pGH topology to (X,d,H N , p). Then

H N−1 ∂Xn → H N−1 ∂X weakly. (1.18)

In particular

lim
n→∞H N−1(∂Xn ∩ Br (xn)) = H N−1(∂X ∩ Br (x))

whenever Xn � xn → x ∈ X and H N−1(∂X ∩ ∂Br (x)) = 0.

1.5 Comparison with the Alexandrov theory

In [78,90] it has been proved that if (X,d) is an N -dimensional Alexan-
drov space with curvature bounded from below by k, then (X,d,H N ) is an
RCD(k(N − 1), N ) metric measure space. Below we compare the results of
the present paper with the literature about Alexandrov spaces:

(i) on Alexandrov spaces, interior regular points have neighbourhoods bi-
Lipschitz homeomorphic to Euclidean balls and regular boundary points
have open neighbourhoods bi-Lipschitz homeomorphic to boundary balls
in the Euclidean half-space. This was proved in [23], see in particular
Remark 12.9.1 for a remark dealing with boundary points and the more
recent [40, Theorem 1.1] for a detailed proof.

(ii) While in the Alexandrov theory topological regularity near to regular inte-
rior and boundary points was already known, the existence of biHölder
homeomorphisms with harmonic components (apart from the last coor-
dinate in the case of boundary points) is new also in this case. Indeed it
answers to an open question in [76], cf. with Remark 9.6.
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788 E. Bruè et al.

(iii) The non collapsing of boundaries under non collapsing convergence of
Alexandrov spaces is proved in [57, Theorem 9.2, Remark 9.13] where
the more general case of extremal subsets is considered. The volume con-
vergence for the boundary measure is considered in the more recent [40,
Theorem 1.3].

(iv) When N = 2, it has been proved in [68] thatRCD(K , 2) spaces (X,d,H 2)

areAlexandrov spaces. In particular, most of the results of the present paper
follow from the Alexandrov theory if N = 2.

(v) Relying on [66, Corollary 1.4] instead of [29] it is possible to prove that
Theorem 1.5 holds also when (X,d,H N ) is an Alexandrov space with
curvature bounded from below.

1.6 The remainder of the paper

The rest of the paper is divided in eight sections.
The first two aim at presenting preliminary results which will be used

throughout the paper. In Sect. 2 we recall the main definitions and basic
results of the theory of RCD spaces. In Sect. 3 we prove a local version of
the almost splitting theorem, originally due to Cheeger–Colding (see [27,31]
for the present form on Ricci limit spaces) and previously proved on RCD
spaces only in a weaker form (see [17,18]). Moreover we adapt the proof of
the transformation theorem [29] (see also [31]) by Cheeger–Jiang–Naber to
the RCD framework.

In Sect. 4 we introduce and study neck regions tailored for the analysis of
boundaries on noncollapsed RCD spaces. This study is the key ingredient for
all the developments of the paper: rectifiable regularity, topological regularity
and stability.
The role of this tool has been prominent in the recent literature about spaces
with lower Ricci curvature bounds and bounded Ricci curvature, see [29,56],
and also in several other frameworks, see for instance [71,72].
The analysis of neck regions is made in two steps. After their introduction
in Definition 4.3, we first describe their structure in Theorem 4.9. In the sec-
ond step we prove existence of neck regions in Theorem 4.13 under geometric
assumptions, guaranteeing in particular the non triviality of the previous struc-
tural result.
In the analysis of the structure of neck regions there are several simplifications
with respect to the study in [29,56]. Instead non trivial new ideas are needed
to deal with the stability of codimension one singularities and the existence of
neck regions.

In Sect. 5, following closely the neck decomposition theorems in [29,56],
we prove that any noncollapsed RCD(K , N ) space can be decomposed into
neck-regions, (N , ε)-symmetric balls and a set of codimension at least 2, with
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quantitative summability control over the radii of balls appearing in the cov-
ering.

In Sect. 6 we combine the previously obtained existence and structure of
neck regions with the neck decomposition theorem to prove the weak ε-
regularity Theorem 6.1. In particular, we show the stability Theorem 1.6 for
spaces without boundary, and the (N −1)-rectifiable structure of the boundary
together with local finiteness estimates for the boundary measure (cf. Theo-
rem 1.4 (i)).

We dedicate Sect. 7 to the study of the distance function from the boundary.
We show how upper bounds on the absolutely continuous part of its Laplacian
imply noncollapsing estimates on the boundary measure, see Theorem 7.4.
We present an open question concerning the case of general noncollapsed
RCD(K , N ) spaces that we are able to verify for smooth manifolds with
boundary and their noncollapsed pGH limits, as well as Alexandrov spaces
with curvature bounded below. As a consequence we prove Theorem 1.7.

In Sect. 8 we improve the structure of neck regions by a bootstrap argument
based on the stability of the boundary. In Theorem 8.1 we prove that, on a ball
sufficiently close in the GH sense to the model ball of the half-space, balls
centered at boundary points are close to the model ball in the half-space and
balls centered at interior points are close to the model ball in the Euclidean
space at any sufficiently small scale.
The improved neck structure Theorem 8.1 has a number of consequences:
the topological regularity of the boundary up to sets of ambient codimension
two (see Theorem 8.4), the improved volume estimate Corollary 8.7 and the
boundary volume convergence Theorem 1.8. In Sect. 9 we deal with the topo-
logical regularity up to the boundary of noncollapsed RCD spaces proving
Theorem 1.2 (iv), Theorem 1.4 (iv) and Theorem 1.5.

2 Preliminaries

A metric measure space will be a triple (X,d,m) where (X,d) is a complete
and separable metric space and m is a locally finite Borel measure.
We will denote by Br (x) = {d(·, x) < r} and B̄r (x) = {d(·, x) ≤ r} the
open and closed balls respectively. By Lip(X) (resp. Lipb(X)) we denote the
space of Lipschitz (resp. bounded) functions and for any f ∈ Lip(X) we shall
denote its slope by

lip f (x) := lim sup
y→x

| f (x) − f (y)|
d(x, y)

. (2.1)

Wewill use the standard notation L p(X,m), for the L p spaces andL n,H n for
the n-dimensional Lebesgue measure on Rn and the n-dimensional Hausdorff
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measure on a metric space, respectively. The Hausdorff measure is always
normalised in such a way that it coincides with the Lebesgue measure on
Euclidean spaces. We shall also denote byH n∞ the pre-Hausdorff measure in
dimension n (obtained with no upper bounds on the radii of the covering sets).
We shall denote by ωn the Lebesgue measure of the unit ball in R

n .
We will also deal with pointed metric measure spaces (X,d,m, x) in case

a reference point x ∈ X has been fixed. We will say that a pointed metric
measure space is normalised whenever

ˆ
B1(x)

(1 − d(x, y)) dm(y) = 1. (2.2)

We will deal with the Gromov–Hausdorff (GH), measured Gromov–
Hausdorff (mGH) and pointed measured Gromov–Hausdorff (pmGH) con-
vergence of (pointed) metric measure spaces. We refer to [46] for the relevant
background about these notions. The associated distances will be denoted by
dGH , dmGH and dpmGH .

A basic reference about analysis on metric space is the book [22]. Given a
proper metric space (X,d) and two bounded subsets F, E ⊂ X we denote by

dH (E, F) := inf{r > 0 : E ⊂ Br (F) and F ⊂ Br (E)}

their Hausdorff distance in (X,d).1

We recall a simple connection between convergence in the Hausdorff dis-
tance and behaviour of pre-Hausdorff measures H α∞, for any α ≥ 0. If
dH (An, A) → 0 and A is compact, then

H α∞(A) ≥ lim sup
n→∞

H α∞(An). (2.3)

When the sets are subsets of metric spaces converging in the pGH topology
we will understand the convergence as realized in a common background
proper metric space and the Hausdorff convergence of compact sets has to
be understood as Hausdorff convergence in the ambient space. All the spaces
considered in this paper are proper.

Remark 2.1 We recall that in a proper metric space (Z ,dZ ) with a sequence
of uniformly bounded compact sets Kn ⊂ Z and K ⊂ Z , the following
conditions are equivalent:

(i) Kn converge to K in the Hausdorff distance;

1 We remark that to obtain a distance one should restrict to bounded and closed sets, but this
will cause no troubles for our aims.
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(ii) Kn converge to K in the Kuratowski sense, i.e. any limit point x of a
subsequence xn ∈ Kn belongs to K and for any y ∈ K there exists a
sequence yn ∈ Kn such that, up to subsequence, yn → y;

(iii) setting dC : Z → [0, ∞) to be the distance function from any closed set
C ⊂ Z , it holds that dKn → dK uniformly as n → ∞.

We refer to [16] for a treatment of these equivalences and we remark that they
hold also for subsets of a pGH converging sequence of metric spaces (once
the convergence is realized in a common proper metric space).

2.1 Calculus tools

The Cheeger energy Ch : L2(X,m) → [0, +∞] associated to a m.m.s.
(X,d,m) is the convex and lower semicontinuous functional defined through

Ch( f ) := inf

{
lim inf
n→∞

ˆ
X

| lip fn |2 dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖ fn − f ‖2 → 0

}
(2.4)

and its finiteness domain will be denoted by H1,2(X,d,m). Looking at the
optimal approximating sequence in (2.4), it is possible to identify a canonical
object |∇ f |, called minimal relaxed slope, providing the integral representa-
tion

Ch( f ) =
ˆ
X

|∇ f |2 dm ∀ f ∈ H1,2(X,d,m). (2.5)

Definition 2.2 Any metric measure space such that Ch is a quadratic form is
said to be infinitesimally Hilbertian.

Let us recall from [6,43] that, under the infinitesimally Hilbertian assump-
tion, the function

∇ f1 · ∇ f2 := lim
ε→0

|∇( f1 + ε f2)|2 − |∇ f1|2
2ε

(2.6)

defines a symmetric bilinear form on H1,2(X,d,m) × H1,2(X,d,m) with
values into L1(X,m).

It is possible to define a Laplacian operator � : D(�) ⊂ L2(X,m) →
L2(X,m) in the following way. We let D(�) be the set of those f ∈
H1,2(X,d,m) such that, for some h ∈ L2(X,m), one has

ˆ
X

∇ f · ∇g dm = −
ˆ
X
hg dm ∀g ∈ H1,2(X,d,m) (2.7)
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and, in that case, we put � f = h. It is easy to check that the definition is
well-posed and that the Laplacian is linear (because Ch is a quadratic form).

Definition 2.3 (Perimeter and sets of finite perimeter) Given a Borel set E ⊂
X and an open set A ⊂ X the perimeter Per(E, A) is defined as

Per(E, A) := inf

{
lim inf
n→∞

ˆ
A
lip(un) dm : un ∈ Liploc(A), un → χE in L1

loc(A,m)
}

. (2.8)

We say that E has locally finite perimeter if Per(E, K ) < ∞ for any compact
set K . In that case it can be proved that the set function A �→ Per(E, A) is the
restriction to open sets of a locally finite Borel measure Per(E, ·) defined by

Per(E, B) := inf {Per(E, A) : B ⊂ A, A open} . (2.9)

The following coarea formula is taken from [70, Proposition 4.2].

Theorem 2.4 (Coarea formula) Let (X,d,m) be a locally compact metric
measure space and v ∈ Lip(X). Then, {v > r} has locally finite perimeter for
L 1-a.e. r ∈ R and, for any Borel function f : X → [0, ∞], it holds

ˆ
X
f |∇v| dm =

ˆ ∞

−∞

(ˆ
f d Per({v > r}, ·)

)
dr. (2.10)

2.2 RCD spaces

Let us start by recalling the so-called curvature dimension conditionCD(K , N ).
Its introduction dates back to the seminal and independent works [67,85,86],
while in this presentation we closely follow [15].

BelowP(X) denotes the set of probability measure over X while

Geo(X) := {γ : [0, 1] → X : d(γ (t), γ (s)) = |t − s|d(γ (1), γ (0)) s, t ∈ [0, 1]}.

We define the operator et : Geo(X) → X as et (γ ) := γ (t). Given μ0, μ1 ∈
P(X), an optimal geodesic plan is any� ∈ P(Geo(X)) such that (e0, e1)��
is an optimal plan, i.e.

ˆ
X×X

1

2
d(x, y)2 d(e0, e1)��(x, y) ≤

ˆ
X×X

1

2
d(x, y)2 dπ(x, y), (2.11)

for any π ∈ P(X × X) such that π(A× X) = μ0(A) and π(X × A) = μ1(A)

for any Borel set A ⊂ X .
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Definition 2.5 (Curvature dimension bounds) Let K ∈ R and 1 ≤ N < ∞.
We say that am.m.s. (X,d,m) is aCD(K , N ) space if, for anyμ0, μ1 ∈ P(X)

absolutely continuous w.r.t. m with bounded support, there exists an optimal
geodesic plan � ∈ P(Geo(X)) such that for any t ∈ [0, 1] and for any
N ′ ≥ N we have

−
ˆ

ρ
1− 1

N ′
t dm ≤ −

ˆ {
τ

(1−t)
K ,N ′ (d(γ (0), γ (1)))ρ

− 1
N ′

0 (γ (0)) + τ
(t)
K ,N ′ (d(γ (0), γ (1)))ρ

− 1
N ′

1 (γ (1))

}
d�(γ ),

where (et )�� = ρtm, μ0 = ρ0m, μ1 = ρ1m and the distortion coefficients
τ tK ,N (·) are defined as follows. First we define the coefficients [0, 1]×[0, ∞) �
(t, θ) �→ σ

(t)
K ,N (θ) by

σ
(t)
K ,N (θ) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞ if K θ2 ≥ Nπ2,
sin(tθ

√
K/N )

sin(θ
√
K/N )

if 0 < θ < Nπ2,

t if K θ2 = 0,
sinh(tθ

√
K/N )

sinh(θ
√
K/N )

if K θ2 < 0,

(2.12)

then we set τ (t)
K ,N (θ) := t1/Nσ

(t)
K ,N−1(θ)1−1/N .

Definition 2.6 We say that a metric measure space (X,d,m) satisfies the Rie-
mannian curvature-dimension condition for some K ∈ R and 1 ≤ N < ∞
(it is an RCD(K , N ) m.m.s. for short) if it is a CD(K , N ) infinitesimally
hilbertian metric measure space.

Note that, if (X,d,m) is an RCD(K , N ) m.m.s., then so is (suppm,d,m),
hence in the following we will always tacitly assume suppm = X .

Remark 2.7 (Compatibility with the smooth case) The RCD(K , N ) notion is
compatible with the smooth case of weighted Riemannian manifolds with
(weighted-)Ricci curvature bounded from below [67,85–87]. It means that
a Riemannian manifold meets the RCD(K , N ) condition if and only if it
has dimension smaller than N and the N -dimensional Bakry-Ricci tensor is
bounded below by K .

Remark 2.8 (Stability) A fundamental property of RCD(K , N ) spaces, that
will be used several times in this paper, is the stability w.r.t. pmGH conver-
gence, meaning that a pmGH limit of a sequence of (pointed) RCD(K , N )

spaces is still an RCD(K , N ) m.m.s.
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The basic references for the theory of convergence and stability of Sobolev
functions on converging sequences of RCD(K , N ) metric measure spaces are
[46] and [7,8].

We recall that any RCD(K , N ) m.m.s. (X,d,m) satisfies the Bishop-
Gromov inequality:

m(BR(x))

vK ,N (R)
≤ m(Br (x))

vK ,N (r)
, (2.13)

for any 0<r < R and for any x ∈ X , where vK ,N (r) :=NωN
´ r
0

(
sK ,N (s)

)N−1

ds and

sK ,N (r) :=

⎧
⎪⎪⎨
⎪⎪⎩

√
N−1
K sin

(√
K

N−1r
)

if K > 0,

r if K = 0,√
N−1
−K sinh

(√ −K
N−1r

)
if K < 0.

(2.14)

In particular (X,d,m) is locally uniformly doubling, that is to say, for any
R > 0 there exists C(K , N , R) > 0 such that

m(B2r (x)) ≤ C(K , N , R)m(Br (x)) for any x ∈ X and for any 0 < r < R. (2.15)

Moreover, in [80,88] has been proven that RCD(K , N ) spaces verify a local
Poincaré inequality, therefore they fit in the general framework of PI spaces
considered for instance in [26].

2.2.1 Structure theory

From the point of view of geometric measure theory a notion of k-regular point
for an RCD(K , N ) metric measure space (X,d,m) can be introduced in the
following terms.

Definition 2.9 (Regular points)We say that x ∈ Rk whenever

(
X,

d
r
,

m

m(Br (x))
, x

)
→ (Rk,deucl, ω

−1
k H k, 0k) in the pmGH topology

as r ↓ 0, where ωk := H k(B1(0k)).

In [19] (see also the very recent [35]), generalizing a previous result obtained
for Ricci limits in [33], it has been proved that for any RCD(K , N ) metric
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measure space (X,d,m) there exists an integer 1 ≤ n ≤ N , that we shall call
essential dimension of (X,d,m) from now on, such that

m(X\Rn) = 0. (2.16)

In this generality we also know after [69] that X is (m, n)-rectifiable as metric
space. Moreover, the representation formula m = θH n , for some locally
integrable nonnegative density θ , has been obtained in the independent works
[38,47,60].

2.2.2 Calculus on RCD spaces

We refer to [6,43,44] for the basic background about first and second order
differential calculus on RCD spaces.

Here and in the following we denote by Hess u the Hessian of a function
u ∈ H2,2(X,d,m), referring to [44] for the study of its main properties in this
framework. Thanks to locality, we will be dealing also with functions that are
defined only locally. Following the notation of [44], we denote the space of
test functions as

Test(X,d,m) := { f ∈ D(�) ∩ L∞(X,m) : |∇ f | ∈ L∞(X) and

� f ∈ H1,2(X,d,m)}. (2.17)

The existence of many test functions within this framework is one of the
outcomes of [82].
We will also rely repeatedly on the following existence result for good cut-off
functions.

Lemma 2.10 (Good cut-off functions [10]) Let (X,d,m) be an RCD(K , N )

space. Let p ∈ X be fixed. Then there exists η ∈ Test(X,d,m) such that
0 ≤ η ≤ 1 on X, the support of η is compactly contained in B5(p), and η = 1
on B4(p).

In Sect. 3 we will rely on some tools from optimal transportation on
RCD(K , N ) spaces.Mainly wewill be concernedwith first and second deriva-
tives of (sufficiently regular) potentials along Wasserstein geodesics. We will
denote by W2 the Wasserstein distance induced by optimal transport with
cost equal to the distance squared on the space P2(X) of probabilities with
finite second moment. We refer to [6,87] for the basic terminology about this
topic and to [49] for a more detailed account about optimal transportation on
RCD(K , N ) spaces.

The next result follows by combining Proposition 5.15 and Corollary 5.7 in
[41].
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Proposition 2.11 Let (X,d,m) be an RCD(K , N ) space for some K ∈ R

and 1 ≤ N < ∞. Consider a W2-geodesic (ηs)s∈[0,1] ∈ P2(X), satisfying
ηs ≤ Cm and supp ηs ⊂ BR(p) for any s ∈ [0, 1], for some C > 0, R > 0
and p ∈ X. Then, for any u ∈ Lip(X,d), the function s �→ ´

u dηs is C1 and
one has

d

ds

ˆ
u dηs = 1

s

ˆ
∇u · ∇ϕs dηs for every s ∈ (0, 1], (2.18)

where ϕs is any Lipschitz Kantorovich potential from ηs to η0.

2.3 Continuity equation and flow maps

Let us recall that given any function u ∈ Test(X,d,m) a solution to the conti-
nuity equation induced by∇u is any absolutely continuous curve (ρt )t∈[0,1] ⊂
P2(X) such that the following holds: for any f ∈ Lipc(X,d) the function
t �→ ´

f dρt is absolutely continuous and it satisfies

d

dt

ˆ
f dρt =

ˆ
∇u · ∇ f dρt for a.e. t ∈ [0, 1]. (2.19)

We refer to [12,45] for the treatment of the continuity equation on (RCD)
metric measure spaces.

The next result is a particular case of [45, Proposition 3.11].

Lemma 2.12 Let (X,d,m) be anRCD(K , N )metric measure space for some
K ∈ R and 1 ≤ N < ∞. Let u ∈ Test(X,d,m) and let (ρt )t∈[0,1] ⊂ P2(X)

be a solution of the continuity equation associated to∇u. If we further assume
that ρt ≤ Cm for any t ∈ [0, T ] for some C > 0, then for any ν ∈ P2(X) it
holds

d

dt

1

2
W 2

2 (ρt , ν) =
ˆ

∇u · ∇ϕt dρt for a.e. t ∈ (0, 1), (2.20)

where ϕt is any optimal Kantorovich potential for the transport problem
between ρt and ν.

The theorembelow is taken from [50]where the second order differentiation
formula along W2-geodesics has been proved on RCD(K , N ) metric measure
spaces.

Theorem 2.13 Let (X,d,m) be anRCD(K , N )m.m.s. for some 1 ≤ N < ∞.
Let (ηs)s∈[0,1] be a W2-geodesic connecting probability measures η0 and η1
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absolutely continuous w.r.t. m and with bounded densities and assume that
u ∈ Test(X,d,m). Then, the curve

s �→
ˆ

∇u · ∇ϕs dηs (2.21)

is C1 on [0, 1], where ϕs is any function such that for some r ∈ [0, 1] with
s �= r it holds that −(r − s)ϕs is an optimal Kantorovich potential from ηs to
ηr . Moreover

d

ds

ˆ
∇u · ∇ϕs dηs =

ˆ
Hess u(∇ϕs, ∇ϕs) dηs, for any s ∈ [0, 1]. (2.22)

In the context of RCD(K , ∞) spaces a general theory of flows for Sobolev
vector fields has been developed in [12]. Here we only collect some simplified
statements relevant for our purposes.

Definition 2.14 Let u ∈ Test(X,d,m). We say that a Borel map X : [0, ∞)×
X → X is a Regular Lagrangian flow (RLF for short) associated to ∇u if the
following conditions hold true:

(1) X(0, x) = x and X(·, x) ∈ C([0, ∞); X) for every x ∈ X ;
(2) there exists L ≥ 0, called compressibility constant, such that

X(t, ·)�m ≤ Lm, for every t ≥ 0; (2.23)

(3) for every f ∈ Test(X,d,m) the map t �→ f (X(t, x)) is locally absolutely
continuous in [0, ∞) for m-a.e. x ∈ X and

d

dt
f (X(t, x)) = ∇u · ∇ f (X(t, x)) for a.e. t ∈ (0, ∞). (2.24)

In the next theorem we state some general results concerning Regular
Lagrangian flows that will be used in the sequel.

Theorem 2.15 Let (X,d,m) be an RCD(K , ∞) space for some K ∈ R. Let
us fix a function u ∈ Test(X,d,m) with �u ∈ L∞(X,m). Then

(i) there exists a unique regular Lagrangian flow X : R× X → X associated
to ∇u2 (uniqueness is understood in the following sense: if X and X̄ are
Regular Lagrangian flows associated to ∇u, then for m-a.e. x ∈ X one
has X t (x) = X̄ t (x) for any t ∈ R);

2 To be more precise, there exist unique Regular Lagrangian flows X+, X− : [0, +∞)× X →
X associated to ∇u and −∇u respectively and we let X t = X+

t for t ≥ 0 and X t = X−−t for
t ≤ 0.
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(ii) X satisfies the semigroup property: for any s ∈ R it holds that, for m-a.e.
x ∈ X,

X(t, X(s, x)) = X(t + s, x) ∀t ∈ R, (2.25)

and the following bound is verified:

e−t‖�u‖L∞m ≤ (X t )� m ≤ et‖�u‖L∞m; (2.26)

(iii) if�u = 0,Hess u = 0 and |∇u| ≤ 1 in B4(p) for some p ∈ X then, for any
x ∈ B1(p) and t ∈ (−1, 1) the map X admits a pointwise representative
satisfying

d(X t (x), X t (y)) = d(x, y) for any x, y ∈ B1(p), and t ∈ (−1, 1). (2.27)

Proof We refer to [4, Theorem 1.12] for the proof of (i) and (ii), while (iii)
follows just localising the argument in [20, Theorem 2.7]. ��
Remark 2.16 (Continuity equations and flowmaps) Solutions to the continuity
equations and flow maps are strictly related. Indeed, given a function u ∈
Test(X,d,m) with �u ∈ L∞(X,m) and X a RLF associated to ∇u one has
that

ρtm := (X t )#ρ0m, t ∈ [0, 1],

is the unique solution to the continuity equationwith initial datumρ0 ∈ L∞(X)

and velocity field ∇u.

2.4 Noncollapsed spaces

In [37] the notion of noncollapsed RCD(K , N )metric measure space has been
proposed motivated by the theory of noncollapsed Ricci limit spaces, studied
since [28] (see also a similar, though a priori weaker, notion suggested in [64]).
We say that (X,d,m) is a noncollapsed RCD(K , N ) space if N is an integer
and m = H N .

We point out that another relevant class to consider would be that of
RCD(K , N ) metric measure spaces for which the essential dimension equals
N (called weakly noncollapsed in [37]). In the compact case it is known that
these spaces are noncollapsed in the above sense [53] and it is conjectured that
this should be true also in the general case.

On top of the usual structure of RCD(K , N ) spaces, noncollapsed spaces
have additional regularity properties.
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Let us begin by pointing out the following powerful result [37, Theorem
1.2], generalizing a previous statement due to Cheeger–Colding [28] (see also
[32]).

Theorem 2.17 (Volume convergence) Let (Xn,dn,H N , xn) be pointed non-
collapsed RCD(K , N ) metric measure spaces and assume that they converge
in the pGH topology to (X,d, x). Then, if

lim sup
n→∞

H N (B1(xn)) > 0, (2.28)

they also converge in the pmGH topology to (X,d,H N , x).

We refer to [22, Definition 3.6.16] for the definition of metric cone
(C(Y ),dC ) over a metric space (Y,dY ). Here we just recall that for points
(r1, x1) and (r2, x2) such that r1, r2 ≥ 0 and dY (x1, x2) ≤ π the cone distance
is given by the law of cosines:

d2C ((r1, x1), (r2, x2)) = r21 + r22 − 2r1r2 cos(dY (x1, x2)). (2.29)

In [37], generalizing [28] and relying on [36] (which extends in turn one of
the key results in [27]) it has been proven that for a noncollapsed RCD(K , N )

metric measure space (X,d,H N ) any tangent cone is a metric cone over a
noncollapsed RCD(N−2, N−1)metric measure space (Y,dY ,H N−1). This
amounts to say that any pGH limit of (X, r−1

i d, x), for some sequence of radii
ri ↓ 0, is a metric cone in the sense above.

Given any noncollapsed RCD(K , N ) metric measure space (X,d,H N )

and any x ∈ X let us denote by

�X (x) := lim
r→0

H N (Br (x))

ωNr N

the density of H N at x (when there is no risk of confusion we will drop the
dependence on the ambient space X ). The existence of the limit above follows
from the Bishop-Gromov inequality. Moreover, the lower semicontinuity of
the density (cf. [37, Lemma 2.2 (i)]) together with a standard result about
differentiation of measures allow to infer that �(x) ≤ 1 for every x ∈ X and
�(x) = 1 for H N -a.e. x ∈ X .
Byvolume rigidity (see [37,Theorem1.6] after [32])we recognize that�(x) =
1 if and only if the tangent cone is unique and isometric to (RN ,deucl).
More generally, Colding’s volume convergence theorem [28,32] (see also [37,
Theorem 1.3]) yields that for any x ∈ X any cross section (Y,dY ) of a tangent
cone C(Y ) at x satisfies

H N−1(Y ) = NωN�(x). (2.30)

123



800 E. Bruè et al.

2.5 Cone splitting via content

Let us start by restating a quantitative version of the cone splitting lemma [30,
Lemma 4.1] tailored for RCD(K , N ) spaces (see [14] for the present version).

Definition 2.18 We define the ε − (t, r) conical set in B 1
2
(x0) as

Cε
t,r :=

{
x ∈ B 1

2
(x0) : dGH

(
B̄ tr

2
(x), B̄ tr

2
(z)

)

≤ εr

2
for some RCD(0, N ) cone Z with tip z

}
. (2.31)

Theorem 2.19 For all K ∈ R, N ∈ [2, ∞), 0 < γ < 1, δ < γ −1, and
for all τ, ψ > 0 there exist 0 < ε = ε(N , K , γ, δ, τ, ψ) < ψ and 0 <

θ = θ(N , K , γ, δ, τ, ψ) such that the following holds. Let (X,d,m) be an
RCD(K , N ) m.m.s., x ∈ X and r ≤ θ be such that there exists an εr-GH
equivalence

F : Bγ −1r

(
(0, z∗)

) → Bγ −1r (x) (2.32)

for some cone Rl × C(Z), with (Z ,dZ ,mZ ) an RCD(N − l − 2, N − l − 1)
m.m.s.. If there exists

x ′ ∈ Bδr (x) ∩ Cε
γ −N ,δr (2.33)

with

x ′ /∈ Bτr

(
F
(
R
l × {

z∗
} ∩ Bγ −1r ((0, z

∗))
))

∩ Br (x), (2.34)

then for some cone R
l+1 × C(Z̃), where (Z̃ ,dZ̃ ,mZ̃ ) is an RCD(N − l −

3, N − l − 2) m.m.s.,

dGH
(
Br (x), Br ((0, z̃

∗))
)

< ψr. (2.35)

Theorem 2.19 is a quantitative version of the following statement: if ametric
cone with vertex z is a metric cone also with respect to z′ �= z, then it contains
a line.

Let us now present a quantitative version of the cone splitting theorem via
content, taken from [29, Theorem 4.9]. We begin by defining the notion of the
pinching set.
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Definition 2.20 Let (X,d,H N ) be an RCD(−ξ(N − 1), N ) and p ∈ X , we
set

V̄ := inf
y∈B4(p)

Vξ−1(y), (2.36)

where Vr (x) := H N (Br (x))
vK ,N (r) is the volume ratio appearing in (2.13).

We define the set with small volume pinching accordingly to be

Pr,ξ (x) := {
y ∈ B4r (x) : Vξr (y) ≤ V̄ + ξ

}
. (2.37)

Theorem 2.21 Let (X,d,H N ) be an RCD(−ξ(N − 1), N ) space with
H N (B1(p)) > v > 0. If for some r ∈ (0, 1) it holds thatH N (Bγ r (Pr,ξ )) ≥
εγ r N , with 0 < δ, ε < δ(N , v), γ ≤ γ (N , v, ε) and ξ ≤ ξ(δ, ε, γ, N , v),
then there exists q ∈ B4r (p) such that either

dGH (Bδ−1r (q), B
R
N+

δ−1r
(0N )) ≤ δr, (2.38)

or

dGH (Bδ−1r (q), BR
N

δ−1r (0
N )) ≤ δr. (2.39)

The proof of Theorem 2.21 easily follows from Theorem 2.19, see for
instance [56, Theorem 7.6].

3 Splitting maps on RCD spaces

In the development of the structure theory of Ricci limit spaces a prominent
role has been played by the δ-splittingmaps [27–29,31]. After the construction
of a second order differential calculus on RCD spaces in [44] this tool, which
provides a way to turn analytic information into geometric information, has
also begun to play a role in the synthetic framework [17].

All the works mentioned above rely on the equivalence between the
existence of an R

k-valued δ-splitting map and the (pointed measured)GH-
closeness to a product with factor Rk . Below we state the definition of a
δ-splitting map relevant for the sake of this paper.

Definition 3.1 Let (X,d,m) be an RCD(−(N − 1), N ) m.m.s., p ∈ X and
δ > 0 be fixed. We say that u := (u1, . . . , uk) : Br (p) → R

k is a δ-splitting
map provided it is harmonic and it satisfies:

(i) |∇ua| < C(N );
(ii) r2

ffl
Br (p)

|Hess ua|2 dm < δ;
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(iii)
ffl
Br (p)

|∇ua · ∇ub − δab| dm < δ;

for any a, b = 1, . . . , k.

Remark 3.2 (About the scale invariant smallness of the Hessian) If we make
the stronger assumption that the ambient space is RCD(−δ(N − 1), N ), then
condition (ii) is unnecessary oncewe strengthen the harmonicity assumption to
harmonicity on B2r (p), since it follows from conditions (i) and (iii) integrating
the Bochner inequality against a good cut-off function, see for instance [18].

Remark 3.3 (Sharper gradient bounds) If we assume that (X,d,m) is an
RCD(−δ(N − 1), N ) metric measure space then the gradient bound in (i)
can be sharpened to the conclusion

sup
Br/2(p)

|∇ua| ≤ 1 + C(N )δ1/2 for any a = 1, . . . , k. (3.1)

In particular, if u : Br (x) → R
k is a δ-splittingmap according toDefinition 3.1

and the ambient space is RCD(−δ(N − 1), N ), then u : Br/2(x) → R
k is a

C(N )δ-splitting map and we can replace condition (i) in the definition with
the sharper gradient bound (3.1).

Moreover the following Lipschitz estimate holds

|u(x) − u(y)| ≤ (1 + C(N )δ1/2)d(x, y) for any x, y ∈ Br/4(p). (3.2)

The validity of (3.1) has been pointed out for the first time in the framework
of smooth Riemannian manifolds in [31, equations (3.42)–(3.46)], we report
here a slightly modified argument tailored for the RCD framework.

Let us fix a ∈ {1, . . . , k} and drop the dependence on the chosen component,
writing just u.
Observe that, by volume doubling and (iii), for any y ∈ Br/2(p) it holds that

 
Br/2(y)

∣∣|∇u|2 − 1
∣∣ dm ≤ C(N )δ. (3.3)

Now we consider a regular cut-off function ϕ : X → [0, 1] such that ϕ = 1
on B3/4r (x) and ϕ = 0 outside of Br (x), r2 |�ϕ| ≤ C(N ) and r |∇ϕ| ≤ C(N )

(see Lemma 2.10) and the one parameter family

ft (y) :=
ˆ

(|∇u|2 (z) − 1)ϕ(z)pt (y, z) dm(z). (3.4)
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Differentiating with respect to time, taking into account the heat kernel esti-
mate

pt (y, z) ≤ C(N )e−c(N ) r
2
t

m(B√
t (x))

≤ C(N )

m(Br (x))
,

∀ y ∈ B 1
2 r

(x), z ∈ Br (x)\B 3
4 r

(x) and t ∈ [0, r2], (3.5)

which follows from [54] and volume doubling, for any y ∈ Br/2(x) and
t ∈ [0, r2] we can estimate

d

dt
ft (y) =

ˆ (
� |∇u|2 ϕ + 2∇ |∇u|2 · ∇ϕ +(|∇u|2 − 1)�ϕ

)
(z)pt (y, z) dm(z)

≥ − δ

ˆ
|∇u|2 (z)pt (y, z) dm(z) − C(N )

r

ˆ
Br (x)\B 3

4 r
(x)

|Hess u| (z)pt (y, z) dm(z)

− C(N )

r2

ˆ
Br (x)\B 3

4 r
(x)

∣∣∣|∇u|2 − 1
∣∣∣ (z)pt (y, z) dm(z)

(3.5)≥ − C(N )δ − C(N )
δ1/2

r2
− C(N )

δ

r2

≥ − C(N )
δ1/2

r2
. (3.6)

Above the first inequality follows from the bounds for the cut-off function and
from Bochner’s inequality.

Given (3.6), observing that, for m-a.e. y ∈ Br/2(x) it holds

ft (y) → ∣∣|∇u|2 − 1
∣∣ (y), as t ↓ 0, (3.7)

we can integrate between 0 and r2 to obtain

|∇u|2 (y) − 1 ≤C(N )δ1/2 +
ˆ ∣∣|∇u|2 (z) − 1

∣∣ϕ(z)pt (y, z) dm(z)

≤C(N )δ1/2 + C(N )

 
Br (x)

∣∣|∇u|2 − 1
∣∣ dm

≤C(N )δ1/2.
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From this we easily infer that

sup
Br/2(x)

|∇u| ≤ 1 + C(N )δ1/2. (3.8)

In order to show (3.2) it is enough to check that for any v ∈ R
k with |v| = 1

it holds

sup
Br/2(x)

|∇(v · u)| ≤ 1 + C(N )δ1/2. (3.9)

Indeed (3.9) yields

|v · (u(x) − u(y))| ≤ (1 + δ1/2)d(x, y) for any x, y ∈ Br/4(p), (3.10)

which implies (3.2) by taking the supremum w.r.t. v ∈ S
k−1.

Now the key observation to prove (3.9) is that v ·u verifies (up to a constant)
the same bounds of the components of the original δ-splittingmap. In particular
it is harmonic and it satisfies

−
ˆ
Br (p)

||∇(v · u)|2 − 1| dm ≤ C(N )δ, (3.11)

therefore applying the argument already described for ua we get (3.10).

The first main result of this section will be Theorem 3.8 below, where we
prove the equivalence between the existence of an R

k-valued δ-splitting map
on a ball and the measured GH closeness of the ball with same center and
comparable radius to the ball of a product with R

k . This statement will be
proved arguing by compactness, starting from its rigid version Theorem 3.4.

The second key result is Proposition 3.13, a version of the transformation
theorem [29, Proposition7.7] (see also [31] for a previous versionwith different
assumptions) tailored for our purposes.

3.1 Functional splitting theorem, local version

In the rest of the note we will rely on the following functional version of the
(iterated) splitting theorem in local form. With respect to the present literature
the main novelty is the locality of the statement, which requires some cut-off
arguments and the use of Theorem 2.13, which relies in turn on [50]. The proof
combines techniques from [27,41].

Theorem 3.4 Let (X,d,m) be an RCD(0, N ) m.m.s. for some N ≥ 1 and
let p ∈ X be fixed. Assume that for some positive k ∈ N there exists u =
(u1, . . . , uk) : B6(p) → R

k satisfying
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(i) u(p) = 0;
(ii) |∇ua| = 1 and �ua = 0, m-a.e. in B5(p) for any a = 1, . . . , k;
(iii) ∇ua · ∇ub = 0, m-a.e. in B5(p), for any a �= b.

Then there exist a m.m.s. (Z ,dZ ,mZ ) and a function f : B1(p) → Z such
that

(u, f ) : B1/k(p) → R
k × Z (3.12)

is an isomorphism of metric measure spaces with its image.

Proof Let η ∈ Test(X,d,m) be a good cut-off function (see Lemma 2.10)
satisfying η = 1 on B4(p) and η = 0 on X\B5(p). Let us define the vector
fields ba := ∇(ηua) and denote by Xa their Regular Lagrangian flows, for
a = 1, . . . , k. Notice that by the improved Bochner inequality with Hessian
term [44, Theorem 3.3.8], Hess(ηua) = 0 in B4(p). Therefore thanks to
Theorem 2.15 (iii) we have a pointwise defined representative of Xa

t (x) for
t ∈ (−1, 1) and x ∈ B1(p) satisfying (2.27). Building upon [48, Theorem
3.24] we conclude that Xa

ta ◦ Xb
tb = Xb

tb ◦ Xa
ta whenever Xa

ta , X
b
tb ∈ B1(p),

a, b = 1, . . . , k. Moreover, it holds

ua(X
a
t (x)) − ua(x) = t for any x ∈ B1(p) and t ∈ (−1, 1). (3.13)

Let us now set Z := {u = 0}, dZ (x, y) := d(x, y) for x, y ∈ Z , and

� : Rk × Z → X s.t. �(t1, . . . , tk, x) := X1
t1 ◦ X2

t2 ◦ · · · ◦ Xk
tk (x). (3.14)

In order to conclude the proof it is enough to show that there exists a pointwise
representative

� : (−1/k, 1/k)k × (B1(p) ∩ Z) → X which is an isometry with its image. (3.15)

Indeed, if it the case, we can conclude as follows. Observe that B1/k(p) ⊂
�((−1/k, 1/k)k × (B1(p) ∩ Z)), since for any y ∈ B1/k(p) we can set

π(y) := �(−u1(y), . . . , −uk(y), y) ∈ Z ∩ B1(p),

ta := ua(y) ∈ (−1/k, 1/k),

and check, bymeans of (3.13), that�(t1, . . . , tk, π(y)) = y. Finally we notice
that �−1 : B1/k(p) → R

k × Z is the sought map, since it is an isometry and
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can be written as �−1 = (u, f ) for some f : B1/k(p) → Z , thanks to (3.13).
Moreover setting mZ := π#(m B1/k(p)), one can easily check that

�#(L
k × mZ ) = m on B1/k(p).

The proof of (3.15) is divided in three steps.
Step 1. There exists a pointwise representative of � on (−1/k, 1/k)k ×
(B1(p) ∩ Z) such that, for any x, y ∈ B1(p) ∩ Z and (t1, . . . , tk) ∈
(−1/k, 1/k)k it holds

d(�(t1, . . . , tk, x), �(t1, . . . , tk, y)) = d(x, y) and d(Xa
t (x), x) = |t |, (3.16)

for a = 1, . . . , k.
Aswe have already remarked, there exists a pointwise defined representative

of Xa
t (x) for t ∈ (−1, 1) and x ∈ B1(p) satisfying (2.27), therefore the first

identity in (3.16) follows.
Concerning the second equality, observe that, since |∇(ηua)| = 1 in B4(p)we
have that d(Xa

t (x), x) ≤ t for t ∈ (−1, 1) and x ∈ B1(p). Moreover (3.13)
and the fact that ua is 1-Lipschitz in B1(p) give

t = |ua(Xa
t (x)) − ua(x)| ≤ d(Xa

t (x), x), for x ∈ Z ∩ B1(p) and t ∈ (−1, 1). (3.17)

Combining the two inequalities also the second equality in (3.16) follows.
Step 2. In this step we are going to prove that for any a ∈ {1, . . . , k}, any

x, y ∈ B1(p) and any t ∈ (0, 1) it holds

1

2
d2(Xa

t (x), y) − 1

2
d2(x, y) =

ˆ t

0

(
ua(X

a
s (x)) − ua(y)

)
ds. (3.18)

To this aim let us fix a ∈ {1, . . . , k}, x, y ∈ B1(p) and r > 0 with the property
that Br (x) ∪ Br (y) ⊂ B1(p). Then let us define

μr := 1

m(Br (x))
m Br (x) and νr := 1

m(Br (y))
m Br (y). (3.19)

Let us set ρr
t := (

Xa
t

)
# μr and observe that for any function f ∈ Lip(X,d)

we have

d

dt

ˆ
f dρr

t = d

dt

ˆ
f (Xa

t ) dμr =
ˆ

∇ f · ∇u dρr
t , (3.20)

namely ρr
t = (

Xa
t

)
# μr solves the continuity equation associated to ∇u (cf

Remark 2.16). Therefore Lemma 2.12 guarantees that t �→ 1
2W

2
2 (ρr

t , νr ) is
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absolutely continuous and

d

dt

1

2
W 2

2 (ρr
t , ν

r ) =
ˆ

∇u · ∇ϕt dρ
r
t for a.e. t ∈ (0, 1), (3.21)

where ϕt is any optimal Kantorovich potential from ρr
t to νr .

Let us now fix t ∈ (0, 1) such that (3.21) holds true. Denote by (η
r,t
s )s∈[0,t] the

W2-geodesic connecting νr to ρr
t . From Proposition 2.11 we get

d

ds

∣∣
s=1

ˆ
u dηr,ts = 1

t

ˆ
∇u · ∇ϕt dρ

r
t , (3.22)

where ϕt is any optimal Kantorovich potential from ρr
t to νr .

Combining (3.21) and (3.22) we deduce

d

dt

1

2
W 2

2 (
(
Xa
t

)
# μr , νr ) = t

d

ds

∣∣
s=1

ˆ
u dηr,ts for a.e. t ∈ (0, 1). (3.23)

Moreover, since Hess u = 0 in supp η
r,t
s for any 0 ≤ s ≤ t ≤ 1, Theorem 2.13

implies that s �→ ´
u dηr,ts is affine. Therefore

t
ˆ

u dηr,ts = (t − s)
ˆ

u dνr +s
ˆ

u ◦ Xa
t dμ

r , for any 0 ≤ s ≤ t ≤ 1, (3.24)

that, along with (3.23), yields

1

2
W 2

2 (
(
Xa
t

)
# μr , νr ) − 1

2
W 2

2 (μr , νr ) =
ˆ t

0

(ˆ
u ◦ Xa

s dμ
r −

ˆ
u dνr

)
ds. (3.25)

Finally, (3.18) follows from (3.25) by continuity letting r → 0.
Step 3. We conclude the proof of (3.15) by showing that

d2(�(t1, . . . , tk , x), �(s1, . . . , sk , y)) = d2(x, y) + |t1 − s1|2 + . . . + |tk − sk |2,(3.26)

for any x, y ∈ Z ∩ B1(p) and any sa, ta ∈ (−1/k, 1/k), for a = 1, . . . , k.
In order to do so let us assume without loss of generality that t1 ≥ s1 and set
x̄ := X2

t2 ◦ . . . ◦ Xk
tk (x) and ȳ := X2

s2 ◦ . . . ◦ Xk
sk if k ≥ 2 and x̄ := x , ȳ := y

otherwise.
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By exploiting the semigroup property (ii) in Theorem 2.15, Step 1 and Step
2, we get

d2(�(t1, . . . , tk, x), �(s1, . . . , sk, y)) − d2(x̄, ȳ)

= d2(Xt1(x̄), Xs1(ȳ)) − d2(x̄, ȳ)

= d2(Xt1−s1(z̄), ȳ) − d2(x̄, ȳ)

= 2
ˆ t1−s1

0

(
u1(X

1
s (x̄)) − u1(ȳ)

)
ds

(3.13)= |t1 − s1|2 + (t1 − s1)(u1(x̄) − u1(ȳ)).

Observe now that u1(x̄) = u1(ȳ) = 0 since the function t �→ u1(Xa
t (z)) is

constant for t ∈ (−1, 1), z ∈ B2(p) and a �= 1. Indeed, taking the derivative
w.r.t. t ∈ (−1, 1) and using (iii) in our assumptions we have

d

dt
u1(X

a
t (z)) = ∇u1 · ∇ua(X

a
t (z)) = 0, (3.27)

for a.e. t ∈ (−1, 1) and for a.e. z ∈ B2(p). The statement can then be proved
for any time and starting point by a continuity argument. It follows that

d2(�(t1, .., tk, x), �(s1, . . . , sk, y)) = d2(x̄, ȳ) + |t1 − s1|2 (3.28)

and a simple induction argument gives (3.26). ��
Below we specialize Theorem 3.4 to the case in which (X,d,H N ) is a

noncollapsed RCD(K , N ) space and the splitting map has N − 1 compo-
nents. In this case we are going to prove that, as expected, the factor Z is one
dimensional.

Theorem 3.5 Let (X,d,H N ) be anRCD(0, N )m.m.s. for some natural 2 ≤
N < ∞ and let p ∈ X be fixed. Assume that there exists a 0-splitting map

u = (u1, . . . , uN−1) : B6(p) → R
N−1.

Then there exist a m.m.s. (Z ,dZ ,H 1), with (Z ,dZ ) isometric to the ball of a
one dimensional Riemannian manifold (possibly with boundary), and a map
f : B1/(N−1)(p) → Z such that

(u, f ) : B1/(N−1)(p) → BR
N−1×Z

1/(N−1) ((0, z0))

is an isomorphism of metric measure spaces.
Moreover, up to an additive constant, f coincides with the signed distance

function from the level set { f = z0}.
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Remark 3.6 In particular, Z is isometric, in the sense of Riemannian mani-
folds, to either a circle or a connected closed interval I ⊆ R, possibly with
infinite length.

Proof Let us start by applying the local functional splitting Theorem 3.4 to get
the metric measure space (Z ,dZ ,mZ ) and the map f : B1/(N−1)(p) → Z .

By a slight modification of the proof of [41, Corollary 5.30], we can prove
a weaker version of the CD(0, N ) condition for the space (Z ,dZ ,mZ ). More
precisely we can check that, for any μ0 ∈ P2(Z) satisfying μ0 � mZ and
suppμ0 ⊂ B1/(N−1)(z0) there exists r > 0 such that for any μ1 ∈ P2(X)

absolutely continuousw.r.t.mZ and supported on Br (suppμ0)one has a unique
W2-geodesic connecting μ0 and μ1 which satisfies the defining inequality for
the CD(0, N ) condition.

Next we observe that, as a consequence of the discussion above, of the
isometry between B1/(N−1)(p) and the split ball and of the noncollapsing
assumption, all the metric measured tangents to (Z ,dZ ,mZ ) are either lines or
half lines as metric spaces. By the structure theory of RCD spaces, the tangent
is unique and a line for mZ -a.e. z ∈ BZ

1 (z0). Moreover, by the noncollapsing
assumption, at points where there is a line in the tangent the tangent is unique,
since they correspond to points on the starting space where the tangent is RN .

Adapting the arguments of [63] (see also [84] for a recent generalization
with simplified arguments relying on optimal transport tools), it is possible to
prove that at points of Z where there is a line in the tangent there is a small
ball isometric to the Euclidean one. Moreover, at the other points the tangent
is still unique and isometric to a half line pointed at the extreme (otherwise
there would be a full line in the tangent and we would be in the previous case).
Arguing as in the proof of [84, Theorem 3.1] we conclude that each point in Z
has a neighborhood isometric either to (−ε, ε) or to [0, ε). Hence the metric
conclusion follows from the characterization of one dimensional Riemannian
manifolds.

The conclusion about the measure can be achieved relying on the fact that

(u, f ) : B1/(N−1)(p) → BR
N−1×Z

1/(N−1) ((0, z0))

is an isomorphism of metric measure spaces and the measure on (X,d) is
H N .

The last conclusion in the statement can be easily proved given the previous
ones. ��
Remark 3.7 The converse of Theorem 3.4 is trivially verified. Indeed, if the
space is locally isomorphic to a product with Euclidean factor then the coor-
dinates of the Euclidean factor are easily seen to verify properties (i)–(iii).
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3.2 δ-Splitting maps and ε-GH isometries

Arguing by compactness we now obtain an approximated version of Theo-
rem 3.4. As in the rigid case the novelty with respect to the literature of RCD
spaces is the ease of producing locality of the statement, cf. with [17].We refer
to [31, Lemma 1.21] and [29, Theorem 4.11] for similar statements for Ricci
limits.

Theorem 3.8 (δ-splitting vs ε-GH isometry) Let 1 ≤ N < ∞ be fixed.

(i) For every 0 < δ < 1/2 and ε ≤ ε(N , δ) the following holds. If (X,d,m)

is an RCD(−ε(N − 1), N ) m.m.s. satisfying

dmGH (B2(p), B
R
k×Z

2 (0, z)) ≤ ε (3.29)

for some integer k, some p ∈ X and some pointed m.s. (Z ,dZ ), then there
exists a δ-splitting map u = (u1, . . . , uk) : B1(p) → R

k .
(ii) For every ε > 0 and δ < δ(N , ε) the following holds. If (X,d,m) is a

normalised RCD(−δ(N − 1), N ) m.m.s. and there exists a δ-splitting map
u : B6(p) → R

k for a given p ∈ X, then

dGH (B1/k(p), B
R
k×Z

1/k (0, z)) < ε (3.30)

for some pointed metric space (Z ,dZ , z). Moreover, there exists f :
B1(p) → Z such that

(u − u(p), f ) : B1/k(p) → BR
k×Z

1/k (0, z) is an ε-GH isometry. (3.31)

(iii) If we additionally assume that (X,d,H N ) is RCD(−δ(N − 1), N ) non-
collapsed with H N (B1(p)) > v > 0, k = N − 1, and δ < δ(N , v, ε),
then (Z ,dZ ,H 1) in (ii) can be chosen to be the ball of a one dimensional
Riemannian manifold, possibly with boundary.

Proof The first part of the statement can be proved arguing as in the proof
of [17, Proposition 3.9], relying on the local convergence and stability results
obtained in [8].

Let us now prove the second conclusion. Arguing by contradiction, for
any n ∈ N, we can find a normalised pointed RCD(−1/n, N ) m.m.s.
(Xn,dn,mn, pn) and a 1/n-splitting map un : B6(pn) → R

k such that
un(pn) = 0 and the following property holds: for any pointed metric space
(Z ,dZ , z) and any function f : B1/k(pn) → BZ

1/k(z), the map

(un, f ) : B1/k(pn) → BR
k×Z

1/k ((0, z)) is not an ε-GH equivalence. (3.32)
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Thanks to the stability and compactness of the RCD condition we can find
a pointed RCD(0, N ) m.m.s. (X∞,d∞,m∞, p∞) such that, up to extract a
subsequence (that we do not relabel), it holds

(Xn,dn,mn, pn) → (X∞,d∞,m∞, p∞) in the pmGH topology. (3.33)

Arguing as in [17, Proposition 3.7] we can assume that un → u uniformly
in B6(p∞), where u is a C(N )-Lipschitz and harmonic function in B6(p∞)

satisfying ∇ua · ∇ub = δab, m∞-a.e. in B2(p∞) for a, b = 1, . . . , k. Thanks
to Theorem 3.4 we can find a m.s. (Z ,dZ ) and a function f : B1/k(p∞) → Z
such that

(u, f ) : B1/k(p∞) → R
k × Z is an isometry with its image. (3.34)

Let us conclude the proof by showing that (3.34) contradicts (3.32). Let us
consider a sequence of 1/n-isometries �n : B1/k(pn) → B1/k(p∞). By [87,
Lemma 27.4] we can suppose that�n converge to an isometry from B1/k(p∞)

into itself. Up to composing with the inverse of this isometry we assume that
the maps �n converge to the identity map of B1/k(p∞). Set fn := f ◦ �n .
Next we claim that

(un, fn) : B1/k(pn) → BR
k×Z

1/k ((0, z))is a ε-GH isometry for n ∈ N big enough, (3.35)

which will contradict (3.32) yielding the sought conclusion.
Being f continuous (actually 1-Lipschitz since (u, f ) is an isometry with

its image), one can easily prove that (un, fn) → (u, f ), therefore the image

of (un, fn) is ε-dense in BR
k×Z

1/k ((0, z)) for any n big enough. It remains just
to check that
∣∣∣d2(x, y) − |un(x) − un(y)|2 − | fn(x) − fn(y)|2

∣∣∣ ≤ ε for any x, y ∈ B1/k(pn) (3.36)

when n is big enough. We argue by contradiction. If the conclusion were false
we could find sequences (xn) and (yn) in B1/k(pn) such that the defining
condition of ε-isometries does not hold for these points, i.e.

∣∣d2(xn, yn) − |un(xn) − un(yn)|2 − | fn(xn) − fn(yn)|2
∣∣ > ε. (3.37)

By compactness, up to extracting a subsequence that we do not relabel, we can
assume that xn converge to x ∈ B1/k(p∞) and yn converge to y ∈ B1/k(p∞).
It is easily verified that x �= y, thanks to (3.37) and to the Lipschitz regularity
of un and f . Passing to the limit (3.37), taking into account the uniform
convergence of un to u and the convergence of�n to the identity map together
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with the continuity of f , we get

∣∣d2(x, y) − |u(x) − u(y)|2 − | f (x) − f (y)|2∣∣ ≥ ε, (3.38)

that contradicts (3.34).
The additional conclusion under the noncollapsing assumption can be

obtained relying on Theorem 3.5. Taking into account the lower bound on the
volume, the pmGH convergence in the contradiction argument above improves
to noncollapsed convergence. Therefore the limit space is RCD(0, N ) noncol-
lapsed. ��
Remark 3.9 When (X,d,H N ) is a noncollapsed RCD(−δ(N −1), N ) space
satisfyingH N (B1(p)) > v, then in Theorem 3.8 we can relax (3.29) to

dGH (B2(p), B
R
k×Z

2 (0, z)) ≤ ε, (3.39)

provided δ ≤ δ(N , v, ε).

Remark 3.10 In the case of maximal dimension we can slightly improve upon
the implication between δ-splitting and ε-isometry. In particular the following
holds: for any ε > 0 there exists δ = δ(ε, N ) > 0 such that if (X,d,m) is an
RCD(−δ(N − 1), N ) space, B3/2(p) ⊂ X ,

dGH (B3/2(p), B
R
N

3/2(0)) < δ (3.40)

and u : B1(p) → R
N is a δ-splitting map, then u : B1(p) → R

N is an
ε-isometry.
The same statement holds for splitting maps with N − 1 components in case
we put RN+ in place of RN .

This statement can be proved relying on the local convergence and stability
results of [8], taking into account the fact that local spectral convergence holds
for all radii when the limit space is the Euclidean space (or, more in general,
a metric measure cone).

Notice that the main improvement is that we do not need to worsen the
radius to pass from the δ-splitting condition to the ε-isometry. Moreover we
can allow not only for harmonic δ-splitting functions but also for functions
with small Laplacian in L2(B1(p)), cf. with Definition 3.11 below.

For the study of the topological structure of RCD spaces with boundary in
section 9 we will need a slightly less restrictive notion of δ-splitting map.

Definition 3.11 Fix δ > 0. Let (X,d,m) be an RCD(−δ(N − 1), N ) m.m.s.
and p ∈ X . We say that u := (u1, . . . , uk) : Br (p) → R

k is a δ-almost
splitting map provided it satisfies
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(i) |∇ua| < C(N );
(ii)

k∑
a,b=1

 
Br (p)

|∇ua · ∇ub − δab| dm +
k∑

a=1

r2
 
Br (p)

(�ua)
2 dm < δ. (3.41)

Arguing as inRemark 3.2 one can easily check throughBochner’s inequality
that a δ-almost splitting map u : B2r (p) → R

k satisfies

r2
 
Br (p)

|Hess u|2 dm ≤ C(N )δ.

Therefore, the only meaningful difference between the notion of δ-splitting
map and δ-almost splitting map is that the latter is not harmonic but enjoys a
scale invariant L2-smallness of the Laplacian.

Remark 3.12 It is immediately seen that Theorem 3.8 and Remark 3.10 still
hold when relaxing the assumptions by considering δ-almost splitting maps in
place of δ-splitting maps.

3.3 Transformation theorem

In [31] a key result in order to prove the codimension 4 conjecture for non-
collapsed limits of manifolds with bounded Ricci curvature was the so-called
transformation theorem. Given an (N − 2, δ(ε))-splitting map u : B1(p) →
R

N−2, [31, Theorem 1.32] provides conditions guaranteeing the existence of a
lower triangularmatrixwith positive entries Tr such that Tru : Br (x) → R

N−2

is an (N − 2, ε)-splitting map for 0 < r < 1.
In [29] (see in particular Proposition 7.8) a geometric version of the

transformation theorem was proved, in order to study singular strata of any
codimension on Ricci limits. In particular, the weak version of the estimate
proven in [29] was that given a (k, δ)-splitting map on B1(p), there is a lower
triangular matrix with positive entries Tr such that Tru : Br (x) → R

k remains
(k, ε)-splitting as long as Bs(p) is k-symmetric and far from being (k + 1)-
symmetric, for any r ≤ s ≤ 2.

Here we provide a version of the geometric transformation theorem tailored
for the purpose of studying the structure of noncollapsed RCD spaces with
boundary.We focus the attention only on δ-boundary balls (see Definition 4.1)
and (N , δ)-symmetric balls (corresponding to k = n − 1, n in [29]) and, for
technical reasons, we work with possibly non harmonic δ-splitting maps (cf.
with Definition 3.11) rather than harmonic δ-splitting maps. Up to these small
variants the argument presented here is the one from [29].
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Proposition 3.13 (Transformation) Let 1 ≤ N < ∞ be a fixed natural num-
ber. For any ε > 0 there exists δ(N , ε) > 0 such that for any δ < δ(N , ε), for
any RCD(−δ2(N −1), N ) space (X,d,H N ), for any x ∈ X and 0 < r0 < 1
the following hold.

• If Bs(x) is a δ2-boundary ball for any r0 ≤ s ≤ 1 and u : B2(x) → R
N−1

is a δ-almost splitting map, then for each scale r0 ≤ s ≤ 1 there exists an
(N − 1) × (N − 1) lower triangular matrix Ts such that
(i) Tsu : Bs(x) → R

N−1 is an ε-almost splitting map on Bs(x);
(ii)

ffl
Bs(x)

∇(Tsu)a · ∇(Tsu)b dH N = δab;

(iii)
∣∣∣Ts ◦ T−1

2s − Id
∣∣∣ ≤ ε.

• If Bs(x) is an (N , δ2)-symmetric ball for any r0 ≤ s ≤ 1 and u : B2(x) →
R

N is a δ-almost splitting map, then for each scale r0 ≤ s ≤ 1 there exists
an N × N lower triangular matrix Ts such that
(i) Tsu : Bs(x) → R

N is an ε-almost splitting map on Bs(x);
(ii)

ffl
Bs(x)

∇(Tsu)a · ∇(Tsu)b dH N = δab;

(iii)
∣∣∣Ts ◦ T−1

2s − Id
∣∣∣ ≤ ε.

We postpone the proof of the transformation Proposition 3.13 after some
technical lemmas. The first one is about the very rigid form of harmonic func-
tions with almost linear growth on the Euclidean space and half-space. It can
be easily proved thanks to the explicit knowledge of entire harmonic functions
(cf. with [29, Lemma 7.8], dealing with a much more general case) and we
omit the details.

Lemma 3.14 Let 1 ≤ N < ∞ be a fixed natural number, then there exists
ε = ε(N ) > 0 such that the following holds. Let (X,d,H N ) be isomorphic
either to the Eucildean spaceRN or to the half-spaceRN+ . Then any harmonic
function u : X → R with almost linear growth, |u(x)| ≤ C |x |1+ε + C for
any x ∈ X, is linear and induced by an R factor.

The second lemma is about estimates for the transformation matrixes, given
their existence. We refer to [29, Lemma 7.9] for its proof, which is a simple
inductive argument relying on the uniqueness of Cholesky decompositions
[51].
Below we shall denote by |·|∞ the L∞-norm on matrixes.

Lemma 3.15 Under the assumptions of Proposition 3.13, there exists a con-
stant C = C(N ) > 0 such that, if Ts and T2s are matrixes verifying (i) and
(ii) at scale s and 2s respectively, then automatically

∣∣∣Ts ◦ T−1
2s − Id

∣∣∣∞ ≤ C(N )ε. (3.42)
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Given Lemma 3.15 and arguing inductively as in [29] it is then possible to
prove a growth estimate for the transformation matrixes, once we assume that
they exist.

Corollary 3.16 Under the assumptions of Proposition 3.13, there exists a
constant C = C(N ) > 0 such that, if Tr̄ and Tr are matrixes verifying (i)
and (ii) at scales 0 < r̄ < r respectively, then

∣∣T−1
r ◦ Tr̄

∣∣∞ ≤
(r
r̄

)Cε

. (3.43)

Proof of Proposition 3.13 Let us treat first the second case of (N , δ2)-
symmetric balls. Observe also that we only need to prove (i) and (ii), since
(iii) will follow from Lemma 3.15.

We wish to get the sought conclusion arguing by contradiction. We suppose
that there exists 0 < ε0 � 1 such that the following hold:

(a) there exist pointed RCD(−δi , N ) spaces (Xn,dn,H N , xn) such that the
balls Br (xn) are (N , δ2i )-symmetric for any rn ≤ r ≤ 1, and δn-almost
splitting maps un : B2(xn) → R

N , for a sequence δn ↓ 0;
(b) there exist sn > rn such that for any sn < r ≤ 1 there exist lower triangular

matrixes Txn,r such that Txn,r u : Br (xn) → R
N is an ε0-splitting map on

Br (xn) and

 
Br (xn)

∇(Txn,r u)a · ∇(Txn,r u)b dH N = δab; (3.44)

(c) no such mapping Txn,sn/10 exists on Bsn/10(xi ).

Let us start by noticing that it must hold sn ↓ 0 as n → ∞, otherwise we
would easily reach a contradiction.
Then let us consider the scaled pointed spaces X̃n := (Xn, s−1

n dn,H N , xn).
Observe that, since BXn

r (xn) is (N , δn)-symmetric for any ri ≤ r ≤ 1, on the

scaled space it holds that BX̃n
r (xn) is (N , δn)-symmetric for any rn/sn ≤ 1 ≤

r ≤ s−1
n . Since sn → 0 as n → ∞, we infer that X̃n converge to R

N in the
pGH (and a posteriori pmGH) topology.

Let us now set

vn := s−1
n Txn,sn (un − un(xn)). (3.45)

Observe that
 
BX̃n
r (xn)

(�vn)
2 dH N ≤ C(r)δn for any 1 ≤ r ≤ s−1

n , (3.46)
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thanks to Corollary 3.16 and the fact that un is a δn-almost splitting map
( cf. Definition 3.11 (ii)). Moreover vn has almost linear growth, |vn(x)| ≤
Cd(xn, x)1+ε+C for any x such thatd(xn, x) ≤ s−1

n , thanks to Corollary 3.16,
and it verifies

 
BX̃n
1 (xn)

∇van · ∇vbn dH
N = δab, (3.47)

by (3.44).
By [8] and (3.46) we obtain that vn converge locally in W 1,2 and locally

uniformly to a harmonic function v : RN → R
N with almost linear growth.

Passing to the limit (3.47) and taking into account Lemma 3.14, we get that v
is an orthogonal transformation of RN .

Localizing the W 1,2-convergence (see [7, Theorem 1.5.7, Proposition
1.3.3.]), we obtain

lim
n→∞

 
BX̃n
1 (xn)

∣∣∣∇van · ∇vbn − δab

∣∣∣ dH N = 0. (3.48)

Therefore, taking into account also (3.46), we infer that vi : BX̃n
1 (xn) → R

N

becomes an εn-almost splitting map where εn → 0 as n → ∞.
Hence for each 1/10 ≤ r ≤ 1 and any sufficiently large n there exists a lower
triangular N × N matrix An,r with

∣∣An,r − Id
∣∣ ≤ C(N )εn and

 
BX̃n
r (xn)

∇(An,rvn)
a · ∇(An,rvn)

b dH N = δab. (3.49)

In particular, for any sufficiently large n, An,rvn : BX̃n
r (xn) → R

N is an ε0-
splitting map for any 1/10 ≤ r ≤ 1 satisfying the orthogonality condition
(ii) in the statement. This contradicts the minimality of si (cf. with condition
(c)), scaling back to the starting spaces Xn . This finishes the proof of the
existence of transformation matrixes, the growth estimate (iii) can be obtained
by Lemma 3.15, as we already argued.

The case of boundary balls can be handled by the very same argument. The
only difference is that the sequence X̃n converges in the pmGH topology to
the Euclidean half space RN+ , instead of RN . As before, we pass to the limit in
the sequence vn to get a harmonic function v : RN+ → R

N−1. Then we apply
Lemma 3.14 to infer that v is linear and depends only on the Euclidean factor
R
n−1. ��
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4 Neck regions

This section is dedicated to the introduction and the analysis of neck regions.
We first provide the relevant definition tailored for the study of singularities of
codimension one for noncollapsed RCD spaces. Then in Sects. 4.1 and 4.2 we
provide structural results for neck regions and an existence result, respectively.

The notion of neck region has been introduced in [56,72] to study L2-
curvature bounds for spaces with bounded Ricci curvature and the energy
identity for Yang–Mills connections. Its use has been crucial also in [71] and,
more recently, in [29], for the rectifiability of singular sets in arbitrary codi-
mension on noncollapsed Ricci limits.

In the following we shall denote by R
N+ := {x ∈ R

N : xN ≥ 0} the
Euclidean half space of dimension N ≥ 1.

Definition 4.1 (Boundary ball) Let 1 ≤ N < ∞ and (X,d,H N ) be an
RCD(−(N − 1), N ) metric measure space. Given x ∈ X and r > 0 we say

that Br (x) is a δ-boundary ball if it is δr -GH close to B
R
N+

r (0).

Given a δ-boundary ball B1(x) and a δ-isometry � : BR
N+

1 (0) → B1(x) we
set

Lx,1 := �({xN = 0}). (4.1)

When Br (x) is a δ-boundary ball we will consider the approximate singular
set Lx,r that can be introduced in the analogous way.

Remark 4.2 The following property is an easy consequence of definitions.
Given a δ-boundary ball B1(x), a δ-isometry

� : BR
N+

1 (0) → B1(x)

and y ∈ Lx,1, any ball Bs(y) ⊂ Br (x) is a δs−1-boundary ball.

We now introduce the relevant notion of a neck region for this paper:

Definition 4.3 (Neck region) Fix ε, δ ∈ (0, 1/2), an integer N ≥ 1 and τ :=
10−10N . Let (X,d,H N , p) be a pointed noncollapsed RCD(−ε(N − 1), N )

metric measure space. We say that N ⊂ B2(p) is an (ε, δ)-neck region if
there exist a closed set C ⊂ B1(p) and a function r : C → [0, 1/8] such
that N := B2(p)\ ∪x∈C B̄rx (x) and, setting C0 := {x ∈ C : rx = 0} and
C+ := C\C0, the following hold:
(i) the family {B̄τ 2rx (x)}x∈C ⊂ B2(p) is disjoint;
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(ii) for any x ∈ C and rx ≤ r ≤ τ−3, Br (x) is an ε2-boundary ball, i.e. there
exists an ε2r -GH isometry

�x,r : BR
N+

r (0) → Br (x); (4.2)

(iii) setting Lx,r := �x,r ({xN = 0})
C ∩ Br (x) ⊂ B2εr (Lx,r ) and Lx,r ∩ Br (x) ⊂ B103τr (C) (4.3)

for any x ∈ C and rx < r < τ−3;
(iv) there exists a δ4-splitting map u : Bτ−4(p) → R

N−1 such that, for any
x ∈ C and rx < r < τ−3 it holds that

u : Br (x) → R
N−1 is a δ-splitting map (4.4)

and

r2
 
Br (x)

|Hess u|2 dH N ≤ rδ2. (4.5)

Remark 4.4 In fact, it will follow from the construction that Lip rx ≤ τ 2.

As in [29,56] we introduce the packing measure as an approximation of the
Hausdorff measure restricted to the top dimensional singular stratum.

Definition 4.5 Given any neck region N = B2(p)\ ∪x∈C B̄rx (x) we shall
denote by μ the associated packing measure defined by

μ := H N−1 C0 +
∑
x∈C+

r N−1
x δx . (4.6)

Remark 4.6 Informally, a neck regionN := B2(p)\∪x∈C B̄rx (x) is the portion
of the boundary ball B2(p) that we are able to control at any scale and location.
It comes with a closed set C, which approximates the boundary of the space,
and good harmonic splitting maps u : B2(p) → R

N−1. Any ball centered at
x ∈ C with radius r > rx looks like a ball in the Euclidean half space, and
u : Br (x) → R

N−1 is a δ-splitting map.
The union of balls {B̄rx (x) : x ∈ C+} is the set where we are not able to

control neither the space nor the harmonic splitting functions. A fundamental
step in our work is to prove that ∪x∈C B̄rx (x) is small (cf. Theorem 4.13).

The packing measure μ has to be understood as an approximation of the
volume measure of the boundary.

Let us explain the meaning of each item in Definition 4.3. Condition (i)
guarantees that we do not overly cover the bad set. Conditions (ii) and (iii)
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play the role of a Reifenberg condition on the singular set, still they are not
sufficient alone to prove rectifiability, which requires the combination with (ii)
and (iv). Condition (iv) says that u : B2(p) → R

N−1 is well-behaved on any
ball Br (x), where x ∈ C and r > rx .

Remark 4.7 With respect to the notions of neck region adopted in [29,56]
here we chose to put the harmonic δ-splitting map directly into the definition.
Building δ-splitting maps that control the geometry of neck regions requires a
great amount of efforts and several ideas in codimension greater or equal than
two, as in [29,56]. Here instead we heavily rely on the fact that we are working
in codimension one and the L2-Hessian bounds for harmonic δ-splitting maps
propagate well thanks to a weighted maximal function argument, as pointed
out in [31].

Remark 4.8 It follows from Colding’s volume convergence theorem [37, The-
orem 1.3] (see also [28,32]) that there exists a function � := �(ε, N )

depending only on N and going to 0 as ε → 0 such that, if Br (x) is an
ε-boundary ball, then

∣∣∣∣
H N (Br (x))

ωNr N
− 1

2

∣∣∣∣ ≤ �(ε, N ). (4.7)

In particular, if N = B2(p)\ ∪x∈C B̄rx (x) is an (ε, δ)-neck region, then (4.7)
holds for any x ∈ C and for any rx ≤ r ≤ τ−3.

4.1 Structure of neck regions

The aim of this subsection is to prove a structure theorem for neck regions,
its relevance will be clear after Sect. 4.2 where we are going to prove that
neck regions can be built on any ball sufficiently close to a ball of the model
half-space.

Let us recall that the main goal of the present paper is to prove rectifiability
and measure bounds for the singular stratum of codimension one on noncol-
lapsed RCD spaces together with stability under noncollapsing convergence.
In this regard Theorem 4.9 is a key building block since, together with Theo-
rem 4.13, it tells that our desired properties hold, up to a controlled error, on
balls close to the model ball.

Theorem 4.9 (Neck structure theorem) Let N ∈ N, v > 0, 0 < ε < 1 be
fixed, and let η < η(N , ε) and δ < δ(N , v, ε). Then for any (η, δ)-neck region
N = B2(p)\Brx (C) of anRCD(−η(N −1), N ) space (X,d,H N ) satisfying
H N (B1(p)) ≥ v it holds that:
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(i) u : C → R
N−1 is bi-Lipschitz with its image, more precisely

||u(x) − u(y)| − d(x, y)| ≤ εd(x, y) for any x, y ∈ C, (4.8)

where u : Bτ−4(p) → R
N−1 is as in Definition 4.3 (iv);

(ii) there exists c = c(N ) ≥ 1 such that, denoting by μ the packing measure
as in (4.6), we have

c−1r N−1 ≤ μ(Br (x)) ≤ cr N−1 for any x ∈ C and rx ≤ r ≤ 2; (4.9)
(iii) at any x ∈ C0 the tangent cone is unique and isometric to R

N+ .

Remark 4.10 Let us comment on the different parts of the statement of Theo-
rem 4.9.

The combination of points (i) and (ii) is the analogue of [56, Theorem 3.10]
and [29, Theorem 2.9]. Together with the existence of neck regions and the
neck decomposition theorem it can be summed up to obtain rectifiability of
the top dimensional singular stratum and measure estimates.

Point (iii) has an analogue in the context of lower Ricci bounds for the codi-
mension two stratum [29] and in the context of two sided Ricci bounds for
the codimension four stratum [56], where the tangent cones are also uniquely
determined by the neck structure. There is no analogue in case of general stra-
tum under a lower Ricci bound [29] however, where uniqueness of symmetries
holds in the neck region but not of the whole tangent cone.

In order to provide the reader with an intuition about the notion of neck
region and about the neck structure theorem, we present two elementary exam-
ples below. They are the counterparts of [29, Example 2.11, Example 3.1] in
the present context.

Example 4.11 (Simplest) Let (X,d,H N ) = (RN+ ,deucl,H N ) be the
Euclidean half-space. Let u : R

N+ → R
N−1 be the map whose compo-

nents are the coordinates of the R
N−1 factor of RN+ = R

N−1 × R+. Let
C ⊂ B2(0N−1) × {0} be any closed subset and r : C → [0, 1/8] be any
function with Lip r ≤ τ 2 and such that the family {B̄τ 2rx (x)}x∈C ⊂ B2(0N ) is
disjoint. Then it is straightforward to check thatN := B2(p)\ ∪x∈C B̄rx (x) is
a (0, 0)-neck region with associated splitting map u.
Notice that in this case the rectifiability and the Ahlfors regularity of the
packing measure follow since C ⊂ R

N−1 canonically and {Bτrx (x)} form a
Vitali covering. Moreover, if one looks for a maximal neck region the natural
choice in this case would be to consider C = B2(0N−1) × {0} and r ≡ 0.

Example 4.12 (Conical) A less elementary example of neck region can be
constructed considering a conical singularity.
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If we denote by It the closed interval of length 0 < t ≤ π , then the coneC(Ir )
endowed with cone distance and Hausdorff measure H 2 is an RCD(0, 2)
space with boundary. For t = π we obtain a half-space, while for 0 < t <

π it corresponds to a convex region inside R
2 with boundary ∂C(It ) and a

singularity at the origin 0 ∈ C(It ).
If π − t < ε2 then we can find a harmonic δ4-splitting map u : Bτ−4(0) → R,
thanks to Theorem 3.8. A first important difference with the previous elemen-
tary situation is that |∇u(x)| → 0 as d(x, 0) → 0. Therefore u cannot remain
δ-splitting at all scales r > 0 on Br (0).
Nevertheless, if we consider π − t < ε2, choose any τ 2-Lipschitz function
r : ∂C(It ) → [0, 1/8] such that r(0) > ε and any closed set C ⊂ ∂C(It )
such that {Bτ 2rx (x)} is a disjoint family, then it is possible to check thatN :=
B2(0)\ ∪x∈C B̄rx (x) is an (ε, δ)-neck region.
The construction can be generalized to any dimension by taking the product

with RN−2.

Proof of Theorem 4.9 (i). Let us fix x, y ∈ C and set r := (2τ 2)−1d(x, y).
Assuming without loss of generality that ry ≥ rx , we have rx < r < τ−3 as a
consequence of (i) in Definition 4.3. Therefore, by (iv) in Definition 4.3

u : Br (x) → R
N−1 is a δ-splitting map. (4.10)

Let ε′ < ε to be fixed later. Assuming δ < δ(ε′, N ), Theorem 3.8 yields
the existence of a one dimensional manifold (Z ,dZ , z) and a function f :
B2d(x,y)(x) → Z such that

F := (u − u(x), f ) : B2d(x,y)(x) → BR
N−1×Z

2d(x,y) ((0, z))

(4.11)

is a 2d(x, y)ε′-GH isometry. Since 2d(x, y) ≥ τ 2rx , taking into account Def-
inition 4.3 (ii) and Remark 4.2 we know that B2d(x,y)(x) is a τ−2η-boundary
ball. Therefore the triangle inequality gives

dGH (B
R
1+

2d(x,y)(0), B
Z
2d(x,y)(z)) ≤ 2d(x, y)(τ−2η + ε′). (4.12)

Hence, choosing η, ε′ ≤ ε(N ), we can apply Lemma 4.15 below concluding
that

F = (u − u(x), f ) : B 3
2d(x,y)(x) → B

R
N+

3
2d(x,y)

(0) (4.13)

is a 2d(x, y)ε’-GH isometry. In order to get (i) it suffices to check that

| f (z)| ≤ 30(ε′ + 2τ−2η)d(x, y), for any z ∈ C ∩ B 3
2d(x,y)(x). (4.14)
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Indeed (4.14), when plugged in the defining condition of GH-isometries

||F(x) − F(y)| − d(x, y)| ≤ 2d(x, y)ε′, (4.15)

gives the sought conclusion provided ε′, η ≤ C(ε, N ).
To check (4.14) we rely on (iii) in Definition 4.3. Set s := 3

2d(x, y) to ease
notation and recall that 2τ−2s ≥ rx . Observe that

F ◦ �x,2τ−2s : BR
N+

s (0) → B
R
N+

s (0) is a 2(ε′ + 2τ−2η)s-GH isometry,

therefore Lemma 4.15 gives

F ◦ �x,2τ−2s ({xN = 0}) ⊂ B10(ε′+2τ−2η)s ({xN = 0}) = {xN < 10(ε′ + 2τ−2η)s}. (4.16)

By (iii) in Definition 4.3 C ∩ B2τ−2s(x) ⊂ B10ητ−2s(�x,2τ−2s({xN = 0})), we
conclude that

F(C ∩ Bs(x)) ⊂ F(B10ητ−2s(�x,2τ−2s({xN = 0})))
⊂ B20(ε′+2τ−2η)s(F ◦ �x,2τ−2s({xN = 0})) ⊂ {xN < 30(ε′ + 2τ−2η)s},

yielding (4.14).
(ii). We begin by showing that

μ(Br (z)) ≤ cr N−1 for any z ∈ C and rz ≤ r ≤ 2. (4.17)

Fix z ∈ C and rz < r < 2. Recall that by i) in Definition 4.3,

{B τ2
2 rx

(x)}{x∈C+} is a disjoint family. (4.18)

In view of (i) we know that u : Br (z) ∩ C → B3r (u(z)) is a (1+ ε)-Lipschitz
map, therefore

d(u(x), u(C0)) ≥ (1 − ε)τ 2rx for any x ∈ C+ ∩ Br (z), (4.19)

and

⎛
⎝u(C0 ∩ Br (z)) ∪

⋃
x �=z, x∈Br (z)∩C+

B τ2
2 rx

(u(x))

⎞
⎠ ⊂ B3r (u(z)). (4.20)
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Then we can estimate

μ(Br (z)) = H N−1(Br (z) ∩ C) +
∑

x∈Br (z)∩C+
r N−1
x

≤ c′(N )H N−1(u(C0 ∩ Br (z)))

+ c′(N )
∑

x �=z, x∈Br (z)∩C+
H N−1(B τ2

2 rx
(u(x)))

+ c′(N )H N−1(B τ2
2 rz

(u(z)))

≤ c′(N )

(
H N−1(B3r (u(z))) + H N−1(B τ2

2 rz
(u(z)))

)

≤ c
(
r N−1 + r N−1

z

)
≤ cr N−1.

Let us now show the opposite inequality:

μ(Br (z)) ≥ c−1r N−1 for any z ∈ C and 0 ≤ r ≤ 2. (4.21)

Observe that, by the very definition of packing measure (4.6), it is sufficient
to verify (4.21) for radii r such that rz < r < 2.

Let us fix z ∈ C and rz < r < 2 as above. It suffices to prove that

Br/8(u(z)) ⊂ u(C0 ∩ B̄r (z)) ∪
⋃

x∈C+∩B̄r (z)

B̄rx (u(x)). (4.22)

Indeed (4.22) gives

ωN−1

8N−1 r
N−1 ≤ H N−1(u(C0 ∩ B̄r (z))) +

∑

x∈C+∩B̄r (z)

H N−1(Brx (u(x)))

≤ (1 + ε)NH N−1(C0 ∩ Br (z)) + ωN−1

∑

x∈C+∩B̄r (z)

r N−1
x

≤ C(N )μ(B̄r (z)).

Let us check (4.22) arguing by contradiction. Set for simplicity u(z) = 0. If
the conclusion is false we can find w ∈ Br/8(0) such that w /∈ B̄rx (u(x)) for
any x ∈ C ∩ B̄r (z). Then we can set

s := inf{sx : x ∈ C ∩ B̄r (z) and w ∈ Bsx (u(x))}. (4.23)

Observe that, by the very definition of s, it holds that r/8 > s = sx > rx
for some x ∈ C ∩ B̄r (z). Therefore the ball Bs(x) is an η-boundary ball and
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u : Bs(x) → R
N−1 is δ-splitting. Hence, arguing as in the first part of the

proof, we can complete u to an sε′-GH isometry

F := (u, f ) : Bs(x) → B
R
N+

s ((u(x), 0)), (4.24)

provided δ < δ(N , ε′), for some ε′ < 1/8. Since (w, 0) ∈ B̄
R
N+

s ((u(x), 0)) we
can find y ∈ Lx,s such that |u(y) − w| ≤ 2sε′.
Moreover, thanks to the second inclusion in (iii) of Definition 4.3 there exists
y′ ∈ C ∩ B2s(x) such that d(y, y′) ≤ 103τ s. This implies that

|u(y′) − w| ≤ |u(y) − u(y′)| + |u(y) − w|
≤ Lip u d(y, y′) + 2sε′ ≤ (103τ Lip u + 2ε′)s < s,(4.25)

since u is (1 + C(N )
√

δ)-Lipschitz and τ < 10−4, cf. with Remark 3.3.
We claim that B2s(x) ⊂ Br (z). In order to prove this claim let us first point

out that

|u(x) − u(z)| ≤ |u(x) − w| + |u(z) − w| < r/8 + r/8 = r/4. (4.26)

Hence, since by the result of the previous step,

||u(x) − u(z)| − d(x, z)| ≤ εd(x, z), (4.27)

we can infer that, if ε < ε(N ), then d(x, z) < 2r/4 = r/2. In particular, since
we already pointed out that s < r/8, we obtain that Bs(x) ⊂ Br (z), as we
claimed.

This gives (4.22), since (4.25) and the inclusion B2s(x) ⊂ Br (z) contradicts
the minimality of s.

(iii). Let (Y, �,H N , y) be a tangent cone at x ∈ C0, originating from
a sequence rn ↓ 0. From (iv) in Definition 4.3 we know that there exists
u∞ : Y → R

N−1 satisfying

(a) Hess u∞ = 0,
(b)

´
B1(y)

|∇(u∞)a ·∇(u∞)b−δab| dH N ≤ C(N )δ, for a, b = 1, . . . , N −1,

as a limit of the sequence

urn := u :
(
X,

d
rn

,
H N

rnN
, x

)
→ R

N−1 as n → ∞.

This can be easily checked with a by now standard argument, relying on the
convergence and stability results of [7,8].
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By the functional splitting theorem (cf. [14, Lemma 1.20]), Y splits off a factor
R

N−1. Moreover, it is a metric cone and it is not isometric to R
N , thanks to

Definition 4.3 (ii). Therefore it is isometric to RN+ . ��

4.2 Existence of neck regions

The aim of this subsection is to prove that on any ball of a noncollapsed
RCD(−(N − 1), N ) space, which is sufficiently GH-close to the model ball
on the half space

B
R
N+

1 (0) ⊂ R
N+ (4.28)

it is possible to build a neck region.
It is worth noting that, for the sake of proving stability results, it is key to

construct neck regions quite carefully. If we were to build neck regions that
are much smaller than they should be, then the construction would not force
the presence of boundary points in SN−1\SN−2 on regions which look like
half spaces.
For this reason below we are going to prove that neck regions verifying an
additionalmaximality condition exist, once we assume closeness to the model
boundary ball.

Theorem 4.13 (Existence of maximal neck regions) Let τ := 10−10N ,
0 < ε ≤ ε(N ), δ < δ(ε, N ) and η < η(ε, δ, N ). If (X,d,H N ) is an
RCD(−η(N − 1), N ) m.m.s., p ∈ X and B4τ−4(p) is an η-boundary ball,
then there exists an (ε, δ)-neck region N = B2(p)\ ∪x∈C B̄rx (x) on B2(p)
which additionally verifies the following maximality condition:

μ(C+) =
∑
x∈C+

r N−1
x ≤ ε. (4.29)

Remark 4.14 The combination of (4.29) with the lower Ahlfors bound in The-
orem 4.9 (ii) and Theorem 4.9 (iii) implies that on η-boundary balls there exists
a bunch of boundary points in SN−1\SN−2.
This is the starting point of our rigidity and stability and it is unique to the
codimension one setting. Indeed, as it is pointed out in [29], for neck regions
on smooth Riemannian manifolds, C0 is always empty (there is no singular
set). Instead, the combination of (4.29) and Theorem 4.9 above provides an
analytic proof of a quantitative (and more general) version of the fact, proved
in [28], that smooth Riemannian manifolds with lower Ricci curvature bounds
cannot converge without volume collapse to a half-space.
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4.2.1 Auxiliary results

Before proving Theorem 4.13, we prove three key lemmas. The first one deals
with en elementary property of one dimensional Riemannian manifolds with
boundary, the second one deals with the propagation of the δ-splitting property,
the last one is the fundamental iteration step in the proof of Theorem 4.13.

Lemma 4.15 (One dimensional rigidity) There exists ε0 > 0 such that, if
a pointed one dimensional Riemannian manifold (possibly with boundary)
(Z ,dZ , z) satisfies

dGH (BR+
1 (0), BZ

1 (z)) ≤ ε ≤ ε0, (4.30)

then there exist 0 ≤ a ≤ ε ≤ 1 − ε ≤ b ≤ ∞ such that BZ
1 (z) is isometric to

the ball of radius one centered at a ∈ [0, b).
Proof Observe that ∂Z �= ∅, since any ball of radius one in S

1(r) for some
r > 0, or inR is ε0 far from BR+

1 (0), provided ε0 is small enough. This implies
that Z is isometric to [0, b) for some b ≤ ∞. It is now immediate to check that
a ball of radius one in [0, b) is ε-close to BR+

1 (0) if and only if it is centered
at some point 0 ≤ a ≤ ε and b ≥ 1 − ε. ��

Next we give a general auxiliary result about the propagation of the δ-
splitting property. Basically, it amounts to saying that given a δ-splittingmap at
a certain location and scale, the δ-splitting property, up to slightly worsening δ,
propagates if we can control the Hessian in a slightly better than scale invariant
sense. We refer to [56, Lemma 5.91] and to [17] for previous appearances of
this argument.

Lemma 4.16 Let 1 ≤ N < ∞ be fixed. There exists C = C(N ) > 0 such
that for any RCD(−(N − 1), N ) metric measure space (X,d,m) with p ∈ X
the following holds. If u : B2(p) → R

k is a δ-splitting map with x ∈ B1(p)
such that

s
 
Bs(x)

|Hess u|2 dm ≤ δ1/2, for any 0 < r < s < 1, (4.31)

then u : Bs(x) → R
k is a C(N )δ1/4-splitting map for any r < s < 1.

Proof It is enough to check that
 
Bs(x)

|∇ua · ∇ub − δab| dm < C(N )δ1/4 for any 0 < r < s < 1, (4.32)

for a, b = 1, . . . , k.
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Let us set fa,b := |∇ua · ∇ub − δab| and note that |∇ fa,b| ≤
2C(N )(|Hess ua|+ |Hess ub|), here we have used (i) in Definition 3.1. Using
this bound, the local Poincaré inequality (cf. [80,88]) and (4.31) we deduce

∣∣∣∣
 
Bs (x)

fa,b dm −
 
Bs/2(x)

fa,b dm

∣∣∣∣∣

≤ C(N )s
 
Bs (x)

|∇ fa,b| dm

≤ 2C(N )

(
s2
 
Bs (x)

|Hess ua |2 dm + s2
 
Bs (x)

|Hess ub|2 dm
)1/2

≤ 4C(N )δ1/4s1−1/2,

for any 0 < r < s < 1. Applying a telescopic argument it is simple to see that
∣∣∣∣
 
B1(x)

fa,b dm −
 
Bs (x)

fa,b dm

∣∣∣∣ ≤ C(N )δ1/4 for any 0 < r < s < 1. (4.33)

Therefore, using that u : B2(p) → R
k , is a splitting map we deduce

 
Bs(x)

fa,b dm ≤
∣∣∣∣
 
B1(x)

fa,b dm −
 
Bs(x)

fa,b dm

∣∣∣∣ +
 
B1(x)

fa,b dm

≤C(N )δ1/4 + C(N )

 
B2(p)

fa,b dm

≤C(N )δ1/4,

therefore yielding (4.32). ��
The next lemma is the main iterative step in the construction of maximal

neck regions over boundary balls.

Lemma 4.17 (Iteration step) Let τ = 10−10N and γ ∈ (0, 1/4) be fixed
with ε0 as in Lemma 4.15. For any ε < 2γ ∧ ε0/2 and δ ≤ δ(ε, γ, N ) the
following property holds. Given an RCD(−ε(N −1), N )m.m.s. (X,d,H N ),
an ε2-boundary ball B2(p) ⊂ X and k ∈ N, if there exists a δ4-splitting map
u : B2γ −k (p) → R

N−1 such that

τ 4γ −m
 
B

τ4γ−m (p)
|Hess u|2 dH N ≤ δ2 for m = 0, . . . , k, (4.34)

then there exists a covering

B1(p) ∩ Lp,2 ⊂
⋃
α

B2τ 3γ (xα)
⋃
β

B2τ 3γ (xβ), (4.35)
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where

(i) the family {Bτ 4γ (xα)} ∪ {Bτ 4γ (xβ)} is disjoint;
(ii) for any α, B2γ (xα) is an ε2-boundary ball such that

τ 4γ

 
B

τ4γ
(xα)

|Hess u|2 dH N ≤ δ2

with

u : Bs(xα) → R
N−1 a Cγ,N δ-splitting map for any s ∈ [τ 2γ, γ −k];

(4.36)

(iii) for any β,

τ 4γ

 
B

τ4γ
(xβ)

|Hess u|2 dH N > δ2; (4.37)

(iv) xα ∈ B2γ ε(Lp,2) for any α, and xβ ∈ Lp,2 for any β.

Proof We choose δ = δ(ε, γ, N ) given by Theorem 3.8 such that any ball
endowed with a Cγ,N δ-splitting map is ε2/2-close to a ball in a space splitting
R

N−1, where Cγ,N is the constant in (4.40) below.
Let {Bτ 3γ (xξ )} be any covering of B1(p) ∩ Lp,2 with xξ ∈ Lp,2 and such

that {Bτ 4γ (xξ )} is a disjoint maximal collection.
Given ξ such that

τ 4γ

 
B

τ4γ
(xξ )

|Hess u|2 dH N ≤ δ2, (4.38)

one has

s
 
Bs(xξ )

|Hess u|2 dH N ≤ Cγ,N δ2 for any τγ ≤ s ≤ τγ −k, (4.39)

as a consequence of (4.34). Therefore, by Lemma 4.16,

u : Bs(xξ ) → R
N−1 is Cγ,N δ-splitting for any s ∈ [τγ, τγ −k]. (4.40)

In order to conclude the proof we just need to prove the existence of xα ∈
B2γ ε(xξ ) such that B2γ (xα) is an ε2-boundary ball.
To do so notice that the following properties hold:

(a) B4γ (xξ ) is a 2−1γ −1ε2-boundary ball;
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(b) there exists a one dimensional manifold (possibly with boundary) (Z ,dZ )

such that

dGH (B4γ (xξ ), B
R
N−1×Z

4γ ((0, z))) ≤ 2γ ε2. (4.41)

The property (a) follows from Remark 4.2 while (b) comes from (4.40) and
Theorem 3.8.

Let us finally prove that (a) and (b) imply the existence of xα ∈ B2γ ε(xξ )

such that B2γ (xα) is an ε2-boundary ball.
By exploiting (a), (b), the triangular inequality and our choice of ε, we

deduce

dGH (B
R
1+

4γ (0), BZ
4γ (z)) ≤ 2ε2 + 2γ ε2 ≤ 8γ ε ≤ ε0 4γ. (4.42)

Therefore by Lemma 4.15 (in scale invariant form) there exist 0 ≤ a ≤ 8γ ε ≤
4γ − 8γ ε ≤ b ≤ ∞ such that

dGH (B4γ (xξ ), B
R
N−1×[0,b]

4γ ((0, a))) ≤ 2γ ε2. (4.43)

Denoting by � : BR
N−1×[0,b]

4γ ((0, a)) → B4γ (xξ ) any 2γ ε2-GH isometry,
we set xα := �(0). It is easily seen that xα ∈ B2γ ε(xξ ) and B2γ (xα) is an
ε2-boundary ball (compare with Remark 4.2).

Changing xξ into xα in the above considered case and relabelling xξ as xβ

in the other one, it is easily verified that the family {Bγ (xα)} ∪ {Bγ (xβ)} has
the sought properties. ��

4.3 Strategy of proof of Theorem 4.13

The overall strategy is similar to those [29, Proposition 10.5], [56, Proposition
7.13, Proposition 7.26] and [72, Theorem 5.4]. The key difference with respect
to [29] and [56] is that we wish to build neck regions whose geometry is
controlled by the same δ-splitting map. Moreover, as we already pointed out,
we need to prove that bad-balls Brx (x) with x ∈ C+ have small (N − 1)-
dimensional content.

The first step in the construction is based on the iterative application of
Lemma 4.17. It turns that the outcome of this construction is a decomposition
which shares most of the properties of neck regions with a subtle difference:
there might be nearby balls with uncontrollably different sizes. This implies
in turn that the second inclusion in condition (iii) of Definition 4.3 needs to be
relaxed to a slightly weaker inclusion, where we do not look below the scale
ry near to a point y ∈ C+, cf. with (4.45) below.
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Definition 4.18 (Weak neck region) Fix ε, δ ∈ (0, 1/2), an integer N ≥ 1
and τ := 10−10N . Let (X,d,H N , p) be a pointed RCD(−ε(N − 1), N )

metric measure space. We say that N ⊂ B2(p) is a weak (ε, δ)-neck region
if there exist a closed set C ⊂ B1(p) and a function r : C → [0, 1/8] such
that N := B2(p)\ ∪x∈C B̄rx (x) and, setting C0 := {x ∈ C : rx = 0} and
C+ := C\C0, the following hold:
(i) the family {B̄τ 4rx (x)}x∈C ⊂ B2(p) is disjoint;
(ii) for any x ∈ C and rx ≤ r ≤ τ−4, Br (x) is an ε2-boundary ball, i.e. there

exists an ε2r -GH isometry

�x,r : BR
N+

r (0) → Br (x); (4.44)

(iii) setting Lx,r := �x,r ({xN = 0}), it holds that
C ∩ Br (x) ⊂ B2εr (Lx,r ) and Lx,r ∩ Br (x) ⊂ B100τ 3 max{r,ry}(C), (4.45)

for any x ∈ C and rx < r < τ−4, where we denoted by

B100τ 3 max{r,ry}(C) :=
⋃
y∈C

B100τ 3 max{r,ry}(y); (4.46)

(iv) there exists a δ4-splitting map u : B2τ−4(p) → R
N−1 such that, for any

x ∈ C and rx < r < τ−4 it holds that

u : Br (x) → R
N−1 is a δ-splitting map (4.47)

and

r2
 
Br (x)

|Hess u|2 dH N ≤ C(N )rδ2. (4.48)

The packing measure associated to a weak neck region is defined as in the case
of neck regions, cf. with Definition 4.5.

The outcome of this first step will be a weak neck region for which we can
additionally prove a small content bound for bad-balls, cf. with (4.49) below.
This is due to the fact that in Lemma 4.17 we only stop the decomposition
when the Hessian bound fails. Since we start with a Hessian bound on the
ambient ball, this allows to get a content bound for bad-balls via a standard
weighted maximal argument.

Proposition 4.19 (Existence of weak neck regionswith content estimates) Let
τ := 10−10N . For any 0 < ε ≤ ε(N ), for any δ < δ(ε, N ) and η < η(ε, δ, N )

the following holds. If (X,d,H N ) is an RCD(−η(N − 1), N ) m.m.s., p ∈ X
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and B4τ−4(p) is an η-boundary ball, then there exists a weak (ε, δ)-neck region
N = B2(p)\ ∪x∈C Brx (x) on B2(p) which additionally verifies

μ(C+) =
∑
x∈C+

r N−1
x ≤ ε. (4.49)

Once we have built a weak neck region we need to refine the construction to
get a neck region out of it, also keeping the small content bound for bad balls.
This will be achieved refining the approximate singular set and regularizing
the radius function rx .
Via this procedure we might be enlarging the set C+ of centers of bad balls and
the new bad balls might not verify anymore the maximality condition (4.37).
The key observation will be that the new center points are all near to old center
points at the right scale. Then the structure Theorem 4.9 allows to turn the
small content bound for the weak neck region into a small content bound for
the neck region.

4.3.1 Proof of Proposition 4.19

Base step. Let us fix a scale parameter γ = 1/8, ε ≤ ε(N ) and δ < δ(ε, γ, N )

as in Lemma 4.17. We consider η < η(N , δ4) such that, by Theorem 3.8 (i),
there exists a δ4-splitting map u : B2τ−4(p) → R

N−1.
Let us apply Lemma 4.17 with k = 0 to obtain a covering

B1(p) ∩ Lp,1 ⊂
⋃
α

B2τ 3γ (x1α)
⋃
β

B2τ 3γ (x1β), (4.50)

where

(i) the family {Bτ 4γ (x1α)} ∪ {Bτ 4γ (x1β)} is disjoint;
(ii) α-balls B2γ (x1α) and β-balls B2γ (x1β) verify the following:

(α-balls) for any α, B2γ (x1α) is an ε2-boundary ball and

u : Bs(x
1
α) → R

N−1 is a Cγ,N δ-splitting map for any s ∈ [τ 3γ, 1]; (4.51)

(β-balls) for any β, τ 4γ
ffl
B

τ4γ
(x1β)

|Hess u|2 dH N > δ2;

(iii) x1α ∈ B2γ ε(Lp,2) for any α, and x1β ∈ Lp,2 for any β.

Iteration steps. Observe that

N 1 := B2(p)\
⎛
⎝⋃

α

B̄τ 2γ (x1α) ∪
⋃
β

B̄τ 2γ (x1β)

⎞
⎠ (4.52)
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is easily seen to be a neck region. However, it could be that this neck region
is not nearly maximal and can be extended. Therefore we wish to iteratively
refine the construction by decomposing the α-balls in the decomposition via
Lemma 4.17.

To this aim, let us apply Lemma 4.17 with k = 1 and same choice of
parameters as in the base step of the iteration to any approximate singular set
Lx1α,γ (after scaling the scale γ to scale 1).
We obtain a covering

(⋃
α

Lx1α,γ

)
\
⋃
β

Bτ 3γ (x1β) ⊂
⋃
α

B2τ 3γ 2(x2α) ∪
⋃
β

B2τ 3γ 2(x2β) (4.53)

such that Bτ 4γ 2(x2α) and Bτ 4γ 2(x2β) are disjoint,

x2β ∈
(⋃

α

Lx1α,γ

)
\
⋃
β

Bτ 3γ (x1β) (4.54)

and

x2α ∈
(⋃

α

B2γ 2εLx1α,γ

)
\
⋃
β

Bτ 3γ (x1β). (4.55)

Moreover, the balls in the covering are labeled as α-balls or β-balls according
to the convention of Lemma 4.17. In particular:

• for any center of α-ball x2α , it holds that Br (x
2
α) is a γ −1ε2-boundary ball

for any γ 2 < r < τ−4 and

τ 4γ k
 
B

τ4γ k (x2α)

|Hess u|2 dH N ≤ δ2 for k = 0, 1, 2. (4.56)

• for any k = 1, 2 and any centre of β-ball xkβ , it holds that

τ 4γ k
 
B

τ4γ k (xkβ)

|Hess u|2 dH N > δ2. (4.57)

Moreover, being γ ≤ 1/4, the balls Bτ 4γ 2(x2α) and Bτ 4γ 2(x2β) are alsomutually

disjoint with all the balls Bτ 4γ (x1β).
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At this stage of the decomposition we have a weak neck region

N 2 := B2(p)\
⎛
⎝⋃

α

B̄γ 2(x2α) ∪
⋃

1≤ j≤2

⋃
β

B̄γ j (x
j
β)

⎞
⎠ . (4.58)

Observe that after this second step we pass from a neck region to a weak
neck region since there might already be balls of different sizes nearby. As
we already pointed out this motivates the necessity for a refinement of the
construction later on.

After repeating this decomposition i times, decomposing at each step the
α-balls via Lemma 4.17 (applied with k = i after scaling each α-ball to radius
2), we get an approximate weak neck region

N i := B2(p)\
⎛
⎝⋃

α

B̄γ i (xiα) ∪
⋃

1≤ j≤i

⋃
β

B̄γ j (x
j
β)

⎞
⎠ . (4.59)

The balls in the covering in particular satisfy the following:

• for any centre of α-ball xiα , it holds that Br (x
i
α) is a γ −1ε2-boundary ball

for any γ i < r < τ−4 and

τ 4γ k
 
B

τ4γ k (xiα)

|Hess u|2 dH N ≤ δ2 for k = 0, 1, . . . , i. (4.60)

• for any k = 1, 2, . . . , i , and any centre of β-ball xkβ , it holds that

τ 4γ k
 
B

τ4γ k (xkβ)

|Hess u|2 dH N > δ2. (4.61)

Limiting argument. Set
Ciα := {xiα}. (4.62)

By construction (cf. with (4.54) and (4.55)) we have

Ci+1
α ⊂ Bγ i (Ciα). (4.63)

Therefore, we can define the Hausdorff limit

C0 := lim
i→∞ Ciα. (4.64)
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By letting i → ∞ and passing to the limit the weak neck regionsN i in (4.59),
letting

C+ := {xβ} =
⋃
i

{xiβ}, and rxβ := γ i if xβ = xiβ, (4.65)

we get

N := B2(p)\
⎛
⎝C0 ∪

⋃
β

B̄rβ (xβ)

⎞
⎠ = B2(p)\

⎛
⎝C0 ∪

⋃
x∈C+

B̄rx (x)

⎞
⎠ . (4.66)

By construction, the balls Bτ 4rx (x) are disjoint for x ∈ C+,

τ 4rx

 
B

τ4rx
(x)

|Hess u|2 dH N > δ2. (4.67)

Passing to the limit the bounds in the intermediate steps of the construction
it is possible to infer that N is a (γ −1ε, δ)-weak neck region.

Content bound. Let us now verify the small content bound (4.49). Taking
into account the disjointness of the balls Bτ 4rx (x) for x ∈ C+ and (4.67) we
can estimate

∑
x∈C+

H N (Bτ 4rx (x))

τ 4rx
≤ δ−2

∑
x∈C+

ˆ
B

τ4rx
(x)

|Hess u|2 dH N

≤ δ−2
ˆ
B2(p)

|Hess u|2 dH N

≤C(N )δ−2
 
B2(p)

|Hess u|2 dH N

≤C(N , τ )δ2

=C(N )δ2 ≤ ε.

The sought conclusion follows fromRemark 4.8, which yieldsH N (Bτ 4rx (x))
≥ 1

4ωN (τ 4rx )N .

4.3.2 Proof of Theorem 4.13

We can now complete the proof of the existence of neck regions, together with
the small content estimate. First we are going to apply Proposition 4.19. Then
we refine the approximate singular set and the radius function to get a neck
region. In the last step of the proof we prove the content bound relying on
(4.49) and on the structure of neck regions Theorem 4.9.
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Refinement of approximate singular set and radius. Let ε′, δ′ > 0 to
be chosen later in terms of ε, δ and N . Given η < η(ε′, δ′, N ) we apply
Proposition 4.19 with ε′ and δ′ in place of ε and δ to obtain a weak neck region

Ñ := B2(p)\
⎛
⎝C̃0 ∪

⋃

x̃∈C̃+

B̄r̃x̃ (x̃)

⎞
⎠ . (4.68)

Let γ = 1/8 be the iteration scale in the proof of Proposition 4.19.
In order to refine the weak neck region Ñ , let us build an approximate

singular set S̃ as follows. For any x ∈ B2(p) we denote by x̃ ∈ C̃ a point
verifying d(C̃, x) = d(x̃, x) and set sx := 2max{d(C, x), r̃x̃ }.

We say that x ∈ B2(p) belongs to S̃ if x ∈ ∪ỹ∈C̃Bτ r̃ ỹ (ỹ) and

x ∈ Bε′sx Lx̃,sx . (4.69)

Now, let us define a radius function on S̃ as

rx := τ 2 max{d(x, C̃), τ 4r̃x̃ }. (4.70)

It is easily seen that Lip rx ≤ τ 2, C̃ ⊂ S̃ and rx = 0 for any x ∈ C̃0.
Choose amaximal disjoint collection {Bτ 2rx (x), x ∈ S̃}whose set of centers

C = C0 ∪ C+ satisfies C0 = C̃0 and C̃+ ⊂ C+.
We claim that

N := B2(p)\
(
C0 ∪

⋃
x∈C+

B̄rx (x)
)

(4.71)

is an (ε, δ)-neck region for ε′ ≤ ε′(ε, N ) and δ′ ≤ δ′(ε, δ, N ).
Proof of the neck region properties for N . The Vitali covering condition

(i) in the neck region Definition 4.3 is satisfied by the construction. Moreover,
as we already pointed out, it holds Lip rx ≤ τ 2.

Next, note that Br (x) is an (ε′2τ−6)-boundary ball for all x ∈ C and rx ≤
r ≤ γ τ−4. This follows from Remark 4.2 thanks to the following observation:
with this choice of parameters, all the balls Br (x̃) for x̃ ∈ C̃ and r > r̃x̃ in the
weak neck region are γ −1ε′2-boundary balls and the center point x belongs to
the approximate singular set by (4.69).
Since γ −1ε′2τ−6 ≤ ε2 for ε′ ≤ ε′(N , ε), this proves condition (ii) in Defini-
tion 4.3.

The first inclusion in Definition 4.3 (iii) is also satisfied by the very con-
struction of S̃, since the center points all belong to the approximate singular
set above their own scale.
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Let us now verify the second inclusion in (iii) of Definition 4.3, which is
the main reason for the refinement of the weak neck region Ñ into N .

Let x ∈ C and rx ≤ r ≤ τ−3. Then, if x̃ ∈ C̃ is such that d(x, x̃) = d(x, C̃),

Lx,r ∩ Br (x) ⊂ B2τ−2r (x̃), (4.72)

since r ≥ rx ≥ τ 2d(x, x̃) by (4.70).
The cone splitting Theorem 2.19 gives

Lx,r ∩ Br (x) ⊂ Bτr/4(Lx̃,2τ−2r ) (4.73)

for ε ≤ ε(N ). The application of the cone splitting theorem is justified by
the fact that, as we already pointed out above, the balls Bs(x) and Bt (x̃) are
ε2-boundary balls for s ≥ rx and t ≥ rx .

In order to get (iii) of Definition 4.3 it is enough to see that

Lx̃,2τ−2r ∩ Br (x) ⊂ B200τ max{2r,ry}(C). (4.74)

Indeed, if (4.74) holds, then the Lipschitz property Lip rx ≤ τ 2 gives

Lx,r ∩ Br (x)
(4.73)⊂ Bτr/4(Lx̃,2τ−2r ) ∩ Br (x)
(4.74)⊂ B400τ max{2r,ry}(C) ∩ Br (x)

⊂ B103τr (C ∩ B3r (x)).

Let us prove (4.74).
The property (iii) in the definition of weak neck region Ñ (see Definition 4.18)
gives the inclusion

Lx̃,2τ−2r ⊂ B100τ 3 max{2τ−2r,r̃ ỹ }(C̃) =
⋃

r̃ ỹ≤2τ−2

r B200τr (ỹ) ∪
⋃

r̃ ỹ≥2τ−2

r B100τ 3 r̃ ỹ (ỹ). (4.75)

Moreover, the cone splitting Theorem 2.19 implies

Lx̃,2τ−2r ∩ B100τ 3r̃ ỹ (ỹ) ⊂ Bτ 20r̃ ỹLỹ,τ 2r̃ ỹ for any ỹ ∈ C̃ with r̃ ỹ ≥ 2τ−2r, (4.76)

for any ε′ ≤ ε′(ε, N ).
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To finish the proof of (4.74) we are going to prove that

(Bτ 20r̃ ỹLỹ,τ 2r̃ ỹ ) ∩ B2τ−2r (x̃) ⊂ B2τ 20r̃ ỹ (S̃) ∩ B2τ−2r (x̃) (4.77)

⊂ Bτ/4r (S̃) (4.78)

⊂ Bτ/4max{2r,2ry}(C). (4.79)

Let us first check (4.77). In particular we claim that Lỹ,τ 2r̃ ỹ ⊂ Bτ 20r̃ ỹ (S̃).

Given z ∈ Lỹ,τ 2r̃ ỹ we consider z̃ ∈ C such that d(z, z̃) = d(z, C̃). If d(z, z̃) ≤
τ 20r̃ ỹ then z ∈ Bτ 20r̃ ỹ (S̃), since z̃ ∈ S̃. If d(z, z̃) > τ 20r̃ ỹ then

z ∈ Lỹ,τ 2r̃ ỹ ∩ Bsz (z̃) ⊂ BεszLz̃,sz ,

where sz := 2max{d(z, z̃), r̃z̃} ≥ 2τ 20r̃ ỹ, (4.80)

as a consequence of the cone splitting Theorem 2.19. This implies z ∈ S̃ by
(4.69), since we already know that z ∈ Bτ 2r̃ ỹ (ỹ) ⊂ ∪w̃∈C̃ B̄τ r̃w̃ (w̃).

To prove (4.78) we rely on the inequalities τ 20r̃ ỹ ≤ τ 10ry , rx̃ ≤ r and
the Lipschitz bound Lip ry ≤ τ 2. The last inclusion (4.79) follows from the
definition of C.

Let us now verify condition (iv) in Definition 4.3. For any x ∈ C we consider
a point in x̃ ∈ C̃ such thatd(x, C̃) = d(x, x̃).Observe that, for any rx ≤ r ≤ τ 3,
it holds Br (x) ⊂ Bτ−6r (x̃). The sought conclusion follows from

r2−
ˆ
Br (x)

|Hess u|2 dH N ≤ C(τ, N )τ−12r2−
ˆ
B

τ−6r (x̃)
|Hess u|2 dH N (4.81)

(4.48)≤ C(τ, N )rδ′2, (4.82)

by choosing δ′ ≤ δ′(N , δ).
If r ≥ τ 3 instead, the sought bound can be easily obtained by recalling that

u : B4τ−4(p) → R
N−1 is a δ′-splittingmap and, again, choosing δ′ ≤ δ′(δ, N ).

Proof of the small content bound (4.29). By the very construction of the
neck region N , the following holds:

C+ ⊂
⋃

x̃∈C̃+

Bτ r̃x̃ (x̃). (4.83)

Moreover, for any x̃ ∈ C̃+ and for any x ∈ C+ ∩ Bτ r̃x̃ (x̃) it holds that

rx ≤ τ 6r̃x̃ ≤ τ r̃x̃ , (4.84)
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by definition of radius function (4.70).
Denotingbyμ the packingmeasure of the neck regionN as inDefinition4.5,

it holds

∑
x∈C+

r N−1
x = μ(C+)

(4.83)≤
∑

x̃∈C̃+

μ(Bτ r̃x̃ (x̃)) (4.85)

(4.84) (4.9)≤ C(N )
∑

x̃∈C̃+

r̃ N−1
x̃ (4.86)

(4.49)≤ C(N )ε′ ≤ ε. (4.87)

5 Neck Decomposition

The main result of this part is Theorem 5.1 below. Its proof is based on the
combination of the following three ingredients:

• the boundary-interior decomposition Theorem 5.2, dealing with a decom-
position of the space into a singular part, regular balls and boundary balls
with content bounds;

• the existence of neck regions Theorem 4.13;
• the structure theorem for neck regions Theorem 4.9.

The covering arguments needed in the proof are essentially those of [56, Sec-
tion 7] (see also [29, Section 10]) and we will only sketch them in most cases.

Theorem 5.1 (Neck decomposition theorem) Let η > 0 with δ < δ(N , v, η)

and consider a noncollapsed RCD(−(N − 1), N ) m.m.s. (X,d,H N ). For
any p ∈ X such thatH N (B1(p)) ≥ v, there exists a decomposition

B1(p) ⊂
⋃
a

(Na ∩ Bra (xa)
) ∪

⋃
b

Brb(xb) ∪ Sδ,η, (5.1)

Sδ,η ⊂
⋃
a

(C0,a ∩ Bra (xa)
) ∪ S̃δ,η, (5.2)

such that the following hold:

(i) for any a, the set Na = B2ra (xa)\B̄rx (Ca) is an (η, δ)-neck region with
(N − 1)-singular set C0,a ⊂ B2ra (xa);

(ii) for any b, the ball B2rb(xb) is (N , η)-symmetric and r2b ≤ η;
(iii)

∑
a r

N−1
a + ∑

b r
N−1
b + H N−1(Sδ,η) ≤ C(N , v, δ, η);

(iv) it holdsH N−1(S̃δ,η) = 0;
(v) the singular set Sδ,η is (N − 1)-rectifiable;
vi) if η < η(N , v) and δ < δ(N , v, η), then SN−1\SN−2 ⊂ Sδ,η.
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TheNeck decomposition theorem provides a quantitative covering of B1(p)
in terms of sets that we know how to control at any scale. In the decomposition
we have:

(a) (N , η)-symmetric balls Brb(xb). They cover the “interior” of the space and
look Euclidean at any scale and location;

(b) neck regionsNa = B2ra (xa)\B̄rx (Ca), where balls centred at xa ∈ Ca look
like boundary balls at any scale above ra;

(c) the setSδ,η. This is an (N−1)-dimensional set covering the actual boundary
of the space up to an H N−1-negligible set.

What makes our covering quantitative is the content bound (c). This is the key
ingredient to prove sharp estimates on the size of tubular neighbourhoods of
the boundary.

The essence of the Neck decomposition theorem is well illustrated in the
case of the convex region C(It ) introduced in Example 4.12, where It is an
interval with very small length t . In this case neither interior 2-symmetric balls
of fixed size, nor 1-symmetric boundary balls of fixed size can get too close to
the singular point. Therefore one is led to consider a covering with infinitely
many regular balls (whose radii become smaller and smaller when the centres
get close to the singular point) and infinitely many neck regions (whose radii
become smaller and smaller as the centres get close to the singular point).
We refer to [29, Example 2.14 and 2.15] for other examples of neck decom-
positions in any codimension.

The next theorem is typically the first step in the proof of the Neck Decom-
position Theorem 5.1. We emphasize it here, as once we have proven the
ε-regularity Theorem 1.2 this leads to our Boundary Structure Theorem 1.4:

Theorem 5.2 (Boundary-Interior decomposition theorem) For any η > 0 and
RCD(−(N−1), N )m.m.s. (X,d,H N )with p ∈ X such thatH N (B1(p)) ≥
v, there exists a decomposition

B1(p) ⊂
⋃
a

Bra (xa) ∪
⋃
b

Brb(xb) ∪ S̃, (5.3)

such that the following hold:

(i) the balls B4τ−4ra (xa) are η-boundary balls and r2a ≤ η;
(ii) the balls B2rb(xb) are (N , η)-symmetric and r2b ≤ η;
(iii) S̃ ⊂ S and H N−1(S̃) = 0;
(iv)

∑
b r

N−1
b ≤ C(N , v, η);

(v)
∑

a r
N−1
a ≤ C(N , v).

The proof of Theorem 5.2 proceeds via an iterative recovering argument.
In the next subsection, we introduce various rougher decompositions which
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include different types of balls, and we show how we can iteratively get rid of
them. The arguments are those of [29, Section 10], with some simplifications
due to the strong rigidity of singularities in codimension one. We only sketch
the proofs, omitting the details and referring to [29] for all the details.

5.1 Proof of the neck decomposition theorem

Let us state an intermediate decomposition result and show how it can be used
to derive the boundary-interior decomposition Theorem 5.2. Here a different
type of balls appears, which are not η-boundary balls nor (N , η)-symmetric
balls but have a definite volume drop with respect to the background scale.

Proposition 5.3 For any η > 0 there exists ν0(N , v, η) > 0 such that,
if (X,d,H N ) is an RCD(−(N − 1), N ) m.m.s. and B1(p) ⊂ X verifies
H N (B1(p)) ≥ v, then there exists a decomposition

B1(p) ⊂
⋃
a

Bra (xa) ∪
⋃
b

Brb(xb)
⋃
ν

Brν (xν) ∪ S̃ (5.4)

such that the following hold:

(i) for any a, the ball B4τ−4ra (xa) is an η-boundary ball and r2a ≤ η;
(ii) for any b, the ball B2rb(xb) is (N , η)-symmetric and r2b ≤ η;
(iii)

∑
b r

N−1
b + ∑

ν r
N−1
ν ≤ C(N , η, v);

(iv)
∑

a r
N−1
a ≤ C(N , v);

(v) S̃ ⊂ S and H N−1(S̃) = 0;
(vi) for any ν, inf y∈B4rν (xν) Vrν (y) ≥ inf y∈B4(p) V1(y) + ν0.

Let us now prove the boundary-interior decomposition Theorem 5.2. In
order to do so we just need to iteratively apply a finite number of times Propo-
sition 5.3 to get rid of ν-balls in the decomposition.

Proof of Theorem 5.2 In order to prove Theorem 5.2 given Proposition 5.3 we
just need to follow the first part of the proof of [29, Theorem 2.12]. After
a finite number of iterations of the induction step decomposition we get a
decomposition with only a-balls, b-balls and a subset of the singular stratum
SN−2. ��

The remainder of this subsection is devoted to the proof of Proposition 5.3.
We are going to consider constants ξ, δ, γ, ε which in general will satisfy

0 < ξ � δ < γ < ε < ε(N ). (5.5)
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We will assume additionally that (X,d,H N ) is an RCD(−ξ(N − 1), N )

space. The general cases of all the statements can be achieved via additional
covering arguments.

Let us introduce the notation for the various families of balls we will use in
the intermediate steps of our arguments.

We recall that the set with small volume pinching has been introduced in
(2.37) and the almost cone splitting via content Theorem 2.21, to which we
refer for the various constants appearing below.

Any ball Br (x) will be of one or more of these types, indexed by letters
b, c, d and e:

(i) b-balls Brb(xb) are balls such that B2rb(xb) is (N , η)-symmetric;
(ii) c-balls Brc(xc) are balls which are not b-balls but satisfy

H N (Bγ rc(Prc,ξ (xc))) ≥ εγ r Nc ; (5.6)

(iii) d-balls are balls Brd (xd) for which Prd ,ξ (xd) �= ∅ but

H N (Bγ rd (Prd ,ξ (xd))) < εγ r Nd ; (5.7)

(iv) e-balls Bre(xe) for which Pre,ξ (xe) = ∅.
Remark 5.4 Let us point out that any e-ball Bre(xe) can be covered by ν-balls
as in (vi) of Proposition 5.3 in such a way that

Bre(xe) ⊂
⋃
ν

Brν (xν) (5.8)

and
∑

ν r
N−1
ν ≤ C(N , v)r N−1

e .
In order to do so it is sufficient to consider a Vitali covering of Bre(xe) with
balls Bξre(x

i
e) such that xie ∈ Bre(xe) and the balls Bξre/5(x

i
e) are disjoint.

At the end of the proof of [29, Proposition 10.2] it is verified that the balls
Bξre(x

i
e) are ν-balls with ν0 = ξ and the content estimate follows from the

Vitali covering property.

Remark 5.5 Let us see how to recover boundary balls starting from c-balls.
We wish to prove that, for δ sufficiently small, any c-ball Brc(xc) is such
that Bτ−6rc(x

′
c) is an η-boundary ball for some x ′

c ∈ B4rc(xc), in particular
Brc(xc) ⊂ Bτ−6rc(x

′
c).

In order to do sowe argue by contradiction. Recall that the parameters are set in
such a way that the assumptions of the cone splitting via content Theorem 2.21
are satisfied.Observe that, if Brc(xc) is a c-ball (see (5.6)), then there exists x

′
c ∈

B4rc(xc) such that Bδ−1rc(x
′
c) is (N − 1, δ2)-symmetric. Since by assumption

Brc(xc) is not (N , η)-symmetric, it is easy to check arguing by contradiction
that, for δ sufficiently small, Bτ−6rc(x

′
c) is an η-boundary ball.
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Proposition 5.6 Let v > 0 be fixed. For any ε ≤ ε(N , v), γ ≤ γ (N , v, ε),
δ ≤ δ(N , v, η) and ξ ≤ ξ(N , v, ε, γ, δ, η) and for any RCD(−ξ(N − 1), N )

m.m.s. (X,d,H N ) and B1(p) ⊂ X such thatH N (B1(p)) ≥ v the following
holds. There exists a decomposition

B1(p) ⊂
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
e

Bre(xe) ∪ S̃, (5.9)

where we are adopting the usual notation for the various types of balls,

∑
b

r N−1
b +

∑
c

r N−1
c +

∑
e

r N−1
e ≤ C(N , γ ), (5.10)

∑
c

r N−1
c ≤ C(N , v) (5.11)

and S̃ ⊂ S, withH N−1(S̃) = 0.

Proof Specializing [29, Proposition 10.3] to the case k = N − 1, we obtain
that there exist ε ≤ ε(N , v), γ ≤ γ (N , v, ε) and δ ≤ δ(N , v, η) such that, if
the additional assumptionH N (Bγ (P1,ξ (p))) < εγ is satisfied (that is to say
B1(p) is a d-ball), the following holds: there exists a decomposition

B1(p) ⊆ S̃d ∪
⋃
b

Brb(xb) ∪
⋃
c

Brc(xc) ∪
⋃
e

Bre(xe), (5.12)

where

(i) H N−1(S̃d) = 0;
(ii)

∑
b r

N−1
b + ∑

e r
N−1
e ≤ C(N , γ );

(iii)
∑

c r
N−1
c ≤ C(N , v).

To conclude, let us observe that, if B1(p) is either a b-ball, a c-ball or an
e-ball, then the statement is trivially verified. Therefore we can assume that
B1(p) is a d-ball and the conclusion follows from what we observed in the
first part of the proof. ��
Proof of Proposition 5.3 We divide the proof into two steps.

In the first one we reduce ourselves to balls such that, after rescaling of the
space at the scale of their radii the lower Ricci curvature bound is −ξ(N − 1).
Then, relying onRemark 5.4 andRemark 5.5, we get the sought decomposition
starting from Proposition 5.6.

Step 1. Considering a Vitali covering of B1(p) with balls of sufficiently
small radius we reduce to balls that, when rescaled to radius one, verify the
assumptions of Proposition 5.6. The number of these balls can be controlled
due to the Vitali property.
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Step 2. Given any ball arising from the first step, we apply Proposition 5.6.
Thanks to Remark 5.4 we cover any e-ball with ν-balls keeping to content
bound. Next, relying on Remark 5.5, for any c-ball Brc(xc) we find xa ∈
B4rc(xc) such that Bτ−6rc(xa) is an η-boundary ball and we substitute the
given c-ball with the a-ball B4τ−4rc(xa). Since Brc(xc) ⊂ Bra (xa) we keep the
covering property and also the content bound is preserved. ��

The proof of the neck decomposition Theorem 5.1 with properties i) to
iv) relies on the iterative application of the boundary-interior decomposition
Theorem 5.2 together with the existence of neck regions Theorem 4.13 and
the structure Theorem 4.9 to take care of the content and H N−1-measure
estimates.

Proof of Theorem 5.1 In the following we are going to denote by Br f (x f ) a
ball which has not been identified with an a-ball or b-ball yet.

Let us start combining and rephrasing Theorem 4.13 and Theorem 4.9 in a
way convenient for our purposes: for any ε > 0, η < η(ε, N ) and δ ≤ δ(N , η)

there exists η′ > 0 such that, if a ball B4τ−4r (p) is an η′-boundary ball, then
there exists an (η, δ)-neck region N = B2r (p)\B̄rx (C) over B2r (p) such that

(i) Br (p) ⊂ (N ∩ Br (p)) ∪ C0 ∪ ⋃
f B2r f (x f );

(ii) H N−1(C0) ≤ A(N )r N−1;
(iii) the singular set C0 is biLipschitz to a subset of RN−1;
(iv) and

∑
f r

N−1
f ≤ εr N−1;

(v) for any f it holds that

H N (Br f (x f )) ≤ 2

3
ωNr

N . (5.13)

Let us just point out that item (v) above follows from Remark 4.8.
In order to get the sought covering we proceed inductively. First we apply

Theorem 5.2 with η = η′ given in the discussion above. Then we build
(η, δ)-neck regions verifying (i) to (v) above on any ball B2ra(xa) of the decom-
position. After this first stage of the procedure we get

B1(p) ⊂
⋃
a

(C0,a ∩ Bra (xa)
) ∪

⋃(Na ∩ Bra (xa)
) ∪

⋃
b

Brb (xb) ∪
⋃
f

Br f (x f ) ∪ S̃, (5.14)

with

(i)
∑

b r
N−1
b ≤ C(N , v, η);

(ii)
∑

a H
N−1(C0,a) ≤ A(N )

∑
a r

N−1
a ≤ C ′(N , v);

(iii) S̃ ⊂ S and H N−1(S̃) = 0;
(iv)

∑
f r

N−1
f ≤ ε

∑
a r

N−1
a ≤ C(N , v)ε.
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Next we apply again the procedure above to the balls Br f (x f ): first we per-
form the boundary-interior decomposition of Theorem 5.2, then we build neck
regions on any new η-boundary ball appearing. At the first iteration we get
B1(p) ⊂

⋃
a1

(
C0,a1 ∩ Bra1 (xa1 )

)
∪
⋃
a1

(
Na1 ∩ Bra1 (xa1 )

)
∪
⋃
b1

Brb1
(xb1 ) ∪

⋃
f1

Br f1
(x f1 ) ∪ S̃1,

with

(i)
∑

b1(rb1)
N−1 ≤ C(N , v, η)(1 + C(N , v)ε);

(ii)
∑

a1(ra1)
N−1 ≤ C(N , v)(1 + εC(N , v));

(iii
∑

a1 H
N−1(C0,a1) ≤ A(N )C(N , v)(1 + εC(N , v));

(iv) S̃1 ⊂ S and H N−1(S̃1) = 0;
(v)

∑
f1(r f1)

N−1 ≤ ε
∑

f r
N−1
f ≤ C(N , v)ε2.

Arguing by induction, after n iterations of the scheme we get
B1(p) ⊂

⋃
an

(C0,an ∩ Bran (xan )
) ∪

⋃(Nan ∩ Bran (xan )
) ∪

⋃
bn

Brbn (xbn ) ∪
⋃
fn

Br fn (x fn ) ∪ S̃n ,

with

(n-i)
∑

bn (rbn )
N−1 ≤ C(N , v, η)(1 + C(N , v)ε + · · · + (C(N , v)ε)n);

(n-ii)
∑

an (ran )
N−1 ≤ C(N , v)(1 + C(N , v)ε + · · · + (C(N , v)ε)n);

(n-iii)
∑

an H
N−1(C0,an ) ≤ C(N , v)(1 + C(N , v)ε + · · · + (C(N , v)ε)n);

(n-iv) S̃n ⊂ S and H N−1(S̃n) = 0;
(n-v)

∑
fn (r fn )

N−1 ≤ C(N , v)εn.

Next we wish to pass to the limit in the construction above.
To this aim choose ε small enough to ensure that C(N , v)ε < 1, η and δ

accordingly and let us set

S̃ f :=
⋂
n≥1

⋃
fn

B2r fn (x fn ). (5.15)

Furthermore we denote by a any index belonging to ∪n {an} and by b any
index belonging to ∪n {bn}. Observe that {an} ⊂ {am} if n ≤ m and analogous
inclusion holds for the indexes b.
Then it is easy to check that

B1(p) ⊂
⋃
a

(C0,a ∩ Bra (xa)
) ∪

⋃(Na ∩ Bra (xa)
) ∪

⋃
b

Brb (xb) ∪ S̃ f ∪
⋃
n≥1

S̃n . (5.16)

Passing to the limit (n-i), (n-ii) and (n-iii) we can easily verify that:

(i)
∑

a r
N−1
a + ∑

b r
N−1
b ≤ C(N , v, η);

(ii)
∑

a H
N−1(C0,a) ≤ C(N , v)

(iii) ∪n≥1S̃n ⊂ S and H N−1(∪n≥1S̃n) = 0.
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To conclude we are left to verify that

H N−1
(
S̃ f

)
= 0 and S̃ f ⊂ S. (5.17)

The first conclusion can be checked relying on (n-iv) above, taking into account
the definition of the Hausdorff pre-measuresH N−1

ξ .
The second conclusion can be verified since the balls Br fn (x fn ) satisfy

the volume bounds (5.13). Therefore, at any point x ∈ S̃ f , it holds that
limr→0H

N (Br (x))/ωNr N < 1, hence x ∈ S.
All in all, letting

Sδ,η :=
⋃
a

(C0,a ∩ Bra (xa)
) ∪ S̃ f ∪

⋃
n≥1

S̃n, (5.18)

we get the neck decomposition verifying the sought properties in the statement.
To address v) we just point out that, by (5.18), Sδ,η is covered by the count-

able union
⋃
a

(C0,a ∩ Bra (xa)
)

(5.19)

up to H N−1-negligible sets. Therefore it is (N − 1)-rectifiable by the neck
structure Theorem 4.9.

Now we deal with vi). In order to do so we follow the last part of the proof
of [29, Theorem 2.12], with simplifications due to the rigidity of codimension
one.

We claim that the following hold:

(a) if η < η(N ) and Bτ−1rb(xb) is an (N , η)-symmetric ball such that r2b (N −
1) ≤ η, then there is no point of SN−1\SN−2 in Brb(xb);

(b) if η < η(N ) and δ < δ(η, N ) then no (η, δ)-neck region Na =
B2ra (xa)\B̄rx (C) can contain points of SN−1\SN−2.

This will certainly suffice to establish (vi), so let us prove (a) and (b) above.

To prove (a) let us fix ε < dGH (BR
N

1 (0), B
R
N+

1 (0))/2. Then by volume
convergence, volume monotonicity and volume rigidity, if η < η(ε) = η(N ),
any tangent cone at any point x ∈ Brb(xb) has unit ball ε-close to the unit ball
of RN , therefore x /∈ SN−1\SN−2.

In order to prove (b) let us consider x ∈ Na = B2ra (xa)\B̄rx (Ca) and let
y ∈ Ca be such that d(x, y) = d(x, Ca). Then by the first defining condition
of neck region B4d(x,y)(y) is an η-boundary ball. Therefore, Bd(x,y)/2(x) is
(N , ε)-symmetric if η < η(ε). Then, arguing as in the proof of (a) we infer
that, if ε < ε(N ), then x /∈ SN−1\SN−2. ��
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6 Boundary rectifiability and stability

This section is dedicated to the proofs of the rectifiability and first stability
results for boundaries of noncollapsed RCD spaces by means of the tools
developed in section 5 and section 4.

6.1 Proof of the stability results

Let us start with a weak ε-regularity result. Basically, it amounts to saying that
balls sufficiently close in the GH sense to amodel boundary ball have a definite
amount of boundary points. This will be sharpened later on in Corollary 8.7.

Theorem 6.1 Let N ≥ 1 be fixed. There exists η(N ) > 0 and c(N ) > 1 such
that, if η ≤ η(N ) and

dGH (B1(p), B
R
N+

1 (0)) ≤ η, (6.1)

where B1(p) is a ball of an RCD(−η(N − 1), N ) space (X,d,H N ), then

c(N )−1 ≤ H N−1(SN−1 ∩ B1(p)) ≤ c(N ). (6.2)

Proof The lower bound in (6.2) follows by combining Theorem 4.9 and The-
orem 4.13. Indeed by means of the latter, for η > 0 small enough, we can
build an (ε, δ)-neck region over B4−1τ 4(p) and from (ii), (iii) in Theorem 4.9
and (4.29) we deduce that, up to take ε, δ sufficiently small, it holds

H N−1(SN−1 ∩ B1(p)) ≥ H N−1(C0) ≥ μ(B4−1τ 4(p)) − μ(C+) ≥ c(N ).

The upper bound in (6.2) instead follows from Theorem 5.1. Indeed, it is
sufficient to apply the neck decomposition with parameters η and δ sufficiently
small in such a way that, thanks to (vi) of Theorem 5.1, SN−1\SN−2 ⊂ Sδ,η

and then to rely on (iii) of the same statement to infer that

H N−1
(
(SN−1\SN−2) ∩ B1(p)

)
= H N−1(SN−1 ∩ B1(p)) ≤ C(N , v).

To conclude we observe that the dependence of the constant on the volume
can be removed taking into account the volume convergence Theorem 2.17
and (6.1). ��

The ε-regularity theorem above directly yields a stability result for the
absence of boundary under noncollapsing pGH convergence.
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Theorem 6.2 Let (Xn,dn,H N , xn) be a sequence of noncollapsed RCD(K ,

N ) spaces with no boundary on B2(xn) in the sense of Definition 1.1. Assume
that

(Xn,dn,H N , xn)
pGH−−→ (Y,dY ,H N , y). (6.3)

Then (Y,dY ,H N ) has no boundary on B1(y).

Proof Let us argue by contradiction. Assume that there exists z ∈ B1(y) ∩
SN−1\SN−2. Thenwe can find r ∈ (0, 1/5) such that dGH (Br (z), B

R
N+

r (0)) ≤
η(N )
2 r where η(N ) is as in Theorem 6.1. Let Xn � zn → z ∈ Y . Then we have

dGH (Br (zn), B
R
N+

r (0)) ≤ dGH (Br (zn), Br (z)) + dGH (Br (z), B
R
N+

r (0)) < η(N )r

for n big enough. Thanks to Theorem 6.1 above we can infer that

(SN−1\SN−2) ∩ Br (zn) �= ∅,

contradicting the assumption that Xn has no boundary in B2(xn) ⊃ Br (zn). ��

6.2 Rectifiable structure and volume estimates

The main goal of this section is to prove Theorem 1.4 (i), (ii) and (iii). This
will be achieved through some intermediate steps.

Theorem 6.3 Let 1 ≤ N < ∞ and v > 0 be fixed. Let (X,d,H N )

be a noncollapsed RCD(−(N − 1), N ) space and p ∈ X be such that
H N (B1(p)) > v > 0. Then the following hold:

(i) the singular set SN−1 is (N − 1)-rectifiable;
(ii) there exists a constant C = C(N , v) > 0 such that

H N (Br (SN−1\SN−2) ∩ B1(p)) ≤ Cr for any r ∈ (0, 1), p ∈ X. (6.4)

In particular

H N−1(SN−1 ∩ B1(p)) ≤ C for any p ∈ X; (6.5)

(iii) at any x ∈ SN−1\SN−2, the tangent cone is unique and isomorphic to the
Euclidean half space RN−1+ := {x ∈ R

N : xN ≥ 0}.
Proof of Theorem 6.3 (i) The rectifiability ofSN−1 immediately follows from
Theorem 5.1. Indeed

SN−1 ∩ B1(p) ⊂
⋃
a

C0,a ∪ S̃δ,η,

123



848 E. Bruè et al.

where H N−1(Sδ,η) = 0 and C0,a is (N − 1)-rectifiable by (iv), (v) and (vi)
of Theorem 5.1. ��
Proof of Theorem 6.3 (ii) We divide the proof of (6.4) in three steps: volume
estimate for the tubular neighbourhood intersected with neck regions (Step 1),
volume estimate for the tubular neighbourhood intersected with regular balls
(Step 2) and combination of the previous estimates (Step 3).

Let us point out that (6.5) can be obtained either as a consequence of
Theorem 5.1, or as a consequence of the volume bound for the tubular neigh-
bourhood (6.4) by a standard argument (cf. [14, Lemma 2.5]).

Step 1. We claim that if ε ≤ ε(N ) and δ ≤ δ(N , v, ε), then for any (ε, δ)-
neck region Na = B2ra (xa)\Brx (Ca) it holds

H N (Br (SN−1\SN−2) ∩Na ∩ Bra (xa)) ≤ C(N , v)rr N−1
a , for any r ∈ (0, 1).

(6.6)

Observe that (6.6) is trivially verified when r > ra/2. Indeed

H N (Br (SN−1\SN−2) ∩ Na ∩ Bra (xa))

≤ H N (Bra (xa)) ≤ C(N , v)r Na ≤ 2C(N , v)rr N−1
a .

Therefore let us assume r ≤ ra/2. Notice that

Br (SN−1\SN−2) ∩ Na ∩ Bra (xa) ⊂ B2r (Ca). (6.7)

Indeed, if this is not the casewe couldfind x ∈ Br (SN−1\SN−2)∩Na∩Bra (xa)
and y ∈ Ca such that 2r ≤ d(x, Ca) = d(x, y) =: s. Observe that B2s(y) is
an ε-boundary ball and

(SN−1\SN−2) ∩ B2s(y) ⊂ B8τ s(Ca), (6.8)

as a consequence of (iii) in Definition 4.3 (recall that we set τ := 10−10N ).
Being x ∈ Br (SN−1\SN−2) ∩ Na ∩ Bra (xa) there exists

z ∈ (SN−1\SN−2) ∩ B2s(y) ⊂ B8τ s(Ca) (6.9)

such that d(x, z) ≤ r . This yields to a contradiction since

r ≥ d(x, z) ≥ d(x, Ca) − 8τ s ≥ s(1 − 8τ) ≥ 2r(1 − 8τ). (6.10)

With (6.7) at our disposal let us conclude the proof of (6.6). Let x1, . . . , xm ∈
Ca be such that {Br (xi )} is a disjoint family, 2r > rxi for any i = 1, . . . ,m
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and

{x ∈ Ca : rx < 2r} ∩ Bra (xa) ⊂
m⋃
i=1

B5r (xi ). (6.11)

It is immediate to check that

B2r (Ca) ∩ Na ∩ Bra (xa) ⊂
m⋃
i=1

B10r (xi ). (6.12)

Hence from (6.7) we deduce

H N (Br (SN−1\SN−2) ∩ Na ∩ Bra (xa)) ≤
m∑
i=1

H N (B10r (xi )) ≤ C(N , v)mrN . (6.13)

It remains only to show that m ≤ C(N )r1−Nr N−1
a . In order to do so we use

(ii) in Theorem 4.9 which gives

cr N−1
a ≥ μ(B2ra (xa)) ≥

m∑
i=1

μ(Br (xi )) ≥ c−1mrN−1, (6.14)

with μ packing measure associated to the neck region as in (4.6).
Step 2. We claim that, for any ε < ε(N ), it holds

H N (Br (SN−1\SN−2) ∩ Brb (xb)) ≤ C(N , v)rr N−1
b for any r ∈ (0, 1), (6.15)

whenever B2rb(xb) is an (N , ε)-symmetric ball.
Let us choose ε(N ) small enough to ensure that

(SN−1\SN−2) ∩ B 3
2 rb

(xb) = ∅

whenever B2rb(xb) is (N , ε)-symmetric for some ε ≤ ε(N ). This choice gives
the implication

Br (SN−1\SN−2) ∩ Brb(xb) �= ∅ �⇒ rb ≤ 2r (6.16)

that easily leads to (6.15).
Step 3. Let us conclude the proof of (6.4) relying on Theorem 5.1 and the

previous two steps. Let ε(N ) > 0 be smaller than the ones in Step 1 and Step 2,
and let δ ≤ δ(N , v, ε(N )), smaller than the one in Step 2 and in Theorem 5.1.
By Theorem 5.1 we can find a covering

B1(p) ⊂
⋃
a

(Na ∩ Bra (xa)
) ∪

⋃
b

Brb(xb) ∪ Sδ,η, (6.17)
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where any B2rb(xb) is an (N , ε(N ))-symmetric ball, Na = B2ra\Brx (Ca) is
an (ε(N ), δ) neck region and Sδ,η is H N -negligible. Then we can estimate

H N (Br (SN−1\SN−2) ∩ B1(p)) ≤
∑
a

H N (Br (SN−1\SN−2) ∩ Na ∩ Bra (xa))

+
∑
b

H N (Br (SN−1\SN−2) ∩ Brb (xb))

≤ C(N , v)r

⎛
⎝∑

a
r N−1
a +

∑
b

r N−1
b

⎞
⎠

≤ C(N , v)r,

where the first inequality follows from (6.17), the second one from Step 1 and
Step 2 and the last one from (iii) in Theorem 5.1. ��

Proof of Theorem 6.3 (iii) When x ∈ SN−1\SN−2 any tangent cone has
the density at the tip equal to �X (x) = 1/2 since (RN+ ,dEucl,H N , 0) ∈
Tanx (X,d,H N ). Hence, Lemma 6.5 below implies that if (Y, �,H N , y) ∈
Tanx (X,d,H N ) then, either Y = R

N+ or it has no boundary according to
Definition 1.1.
This along with a classical result (see for instance [29, Theorem 4.2]) ensuring
that the set of tangent cones at given point x ∈ X is connected with respect to
the pmGH topology, implies the sought conclusion. Indeed the set of pointed
RCD(K , N ) spaces without boundary is closed with respect to noncollapsed
pGH convergence by Theorem 6.2. ��

Remark 6.4 It follows from the lower semicontinuity of the density � and
the observation that �(x) = 1/2 for any x ∈ SN−1\SN−2, that for any
noncollapsed RCD(K , N ) m.m.s. (X,d,H N ), it holds that �(x) ≤ 1/2 for
any x ∈ ∂X .

Lemma 6.5 Let C(Y ) be a noncollapsed RCD(0, N ) m.m.s. which is a cone
over an RCD(N − 2, N − 1) m.m.s. (Y,dY ,H N−1) with tip p. If C(Y ) has
boundary according to Definition 1.1 then �(p) ≤ 1

2 . Moreover, the equality
holds if and only if C(Y ) is isometric to the Euclidean half-space RN+ .

Proof It is simple to verify that if C(Y ) has boundary then Y has boundary as
well. Observe that (Y,dY ,H N−1) is an RCD(N − 2, N − 1) space, therefore
by [61] it has diameter less thanπ . Let y ∈ SN−2\SN−3(Y ). Then the Bishop-
Gromov inequality for the CD(N − 2, N − 1) condition ensures that

H N−1(Y ) = H N−1(Bπ(y)) ≤ �Y (y)NωN ≤ 1

2
NωN . (6.18)
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Therefore

�C(Y )(p) = lim
r→0

H N (Br (p))

ωNr N
= H N−1(Y )

NωN
≤ 1

2
, (6.19)

where the second equality follows from the definition of metric measure cone
while the inequality follows from (6.18) (cf. with (2.30)).

Let us now deal with the equality case. Assume that �(p) = 1
2 . We claim

that C(Y ) is a cone with respect to any x ∈ SN−1\SN−2. Indeed, for any
x ∈ C(Y ), it holds

lim
r→∞

H N (Br (x))

ωNr N
= lim

r→∞
H N (Br (p))

ωNr N
= 1/2, (6.20)

since

lim
r→∞

H N (Br (x))

ωNr N
= lim

r→∞
H N (Br+R(x))

ωN (r + R)N

≥ lim
r→∞

H N (Br (p))

ωNr N
· r N

(r + R)N

= lim
r→∞

H N (Br (p))

ωNr N
,

wherewe set R := d(x, p) and the converse inequality can be obtained switch-
ing the roles of x and p.

Therefore, if we additionally assume that x ∈ SN−1\SN−2, then

r �→ H N (Br (x))

ωNr N
is constant on (0, ∞). (6.21)

The volume cone implies metric cone theorem [36] (see also [27] for the
previously considered case of Ricci limits) gives then the claimed conclusion.

Arguing inductively and relying on the cone splitting theorem we can now
conclude that C(Y ) = R

N+ . ��

6.3 A second notion of boundary and further regularity properties

Recall that our working definition of boundary ∂X , taken from [37], is as
topological closure of the top dimensional singular stratum:

∂X := SN−1\SN−2. (6.22)
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In [59] an alternative definition of boundary has been proposed, inspired by
the one adopted for Alexandrov spaces [75]:

FX := {x ∈ X : there exists a cone with boundary

(Y,dY ) ∈ Tanx (X,d,H N )
}

, (6.23)

where cones with boundary are cones for which the cross section, that is a non-
collapsed RCD(N −2, N −1) space thanks to [37,61], has boundary. Arguing
recursively we reduce to RCD(0, 1) spaces and, thanks to the classification in
[63], we know that they are isometric to manifolds of dimension one, possibly
with boundary (in the topological sense). In this case we say that the space has
boundary if and only if it is a manifold with boundary.

Theorem 6.6 Let 1 ≤ N < ∞ and v > 0 be fixed. Let (X,d,H N ) be an
RCD(−(N − 1), N ) space and p ∈ X be such that H N (B1(p)) > v. Then,
SN−1\SN−2 = ∅ if and only if FX = ∅. Moreover the following hold:

(i) FX ⊂ ∂X;
(ii) ∂X is (N − 1)-rectifiable and

H N−1(∂X∩ Br (x)) ≤ C(N , v)r N−1for any x ∈ ∂X ∩ B1(p) and r ∈ (0, 1);
(iii)

H N (Br (∂X) ∩ B1(p)) ≤ C(N , v)r for any r ∈ (0, 1), p ∈ X, (6.24)

Proof From the inclusion SN−1\SN−2 ⊂ FX we deduce that FX = ∅
implies SN−1\SN−2 = ∅. To prove the converse implication we show the
following

FX �= ∅ �⇒ SN−1\SN−2 �= ∅, (6.25)

by induction on N . The case N = 1 is trivial, thanks to the classification
of RCD(0, 1) spaces [63]. Let us deal with the inductive step. Given a non-
collapsed RCD(K , N ) m.m.s. (X,d,H N ) and x ∈ FX there exists a cone
(C(Y ), �,H N , y) ∈ Tanx (X,d,m) where the cross section (Y,dY ,H N−1)

is an RCD(N − 2, N − 1) space such that FY �= ∅. The inductive assumption
gives

SN−1\SN−2(Y ) �= ∅,

which easily yields the claimed conclusion.
Let us now prove the inclusion FX ⊂ ∂X . Being ∂X closed, for any

x ∈ X\∂X there exists r > 0 such that

Br (x) ∩ (SN−1\SN−2) = ∅.
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Therefore any tangent cone (Y, �,H N , y) at x satisfies SN−1\SN−2 = ∅ as a
consequence of Theorem 6.1. Hence, from (6.25) we deduce FY = ∅ which,
by definition, yields x /∈ FX .

The rectifiability and the measure estimate in (ii) follow from Theo-
rem 6.3 (i) and (6.5) respectively, taking into account the dimension estimate
dim SN−2 ≤ N − 2. The volume bound for the tubular neighbourhood is a
consequence of (6.4) and the very definition of ∂X . ��
Remark 6.7 Thanks to Theorem 6.6, the notion of having boundary for a non-
collapsed RCD space is independent of the definition of boundary we choose,
between the ones in [37,59]. This gives a positive answer to [59, Question
4.8].

Moreover, we can employ the stability result in Theorem 1.6 to prove that
any pmGH limit (X,d,H N , x) of a sequence of pointed RCD(K , N ) spaces
(Xn,dn,H N , xn) with FXn = ∅ satisfies FX = ∅. This answers positively
to [59, Question 5.11].

Remark 6.8 With the techniques of this paper we are not able to show the
identity FX = ∂X in full generality, which would give a positive answer to
[59, Question 4.9].
Nevertheless the analysis of the Laplacian of the distance from the boundary
performed in section 7 allows us to prove this identity, together with the local
Ahlfors regularity of the boundary volume measure, in the case of Ricci limits
with boundary. Moreover, the improved neck structure Theorem 8.1 gives the
same conclusion on δ-boundary balls whenever δ < δ(N ).

Corollary 6.9 Let 1 ≤ N < ∞ be a fixed natural number. Then, for any
v > 0 there exists a constant C = C(N , v) > 0 such that the following
holds. If (X,d,H N ) is an RCD(−(N − 1), N ) space and x ∈ X is such that
H N (B1(x)) > v, then

H N−1∞ (∂X ∩ B1(x)) ≤ H N−1 (∂X ∩ B1(x))

≤ C(n, v)H N−1∞ (∂X ∩ B1(x)). (6.26)

Proof Thefirst inequality above is true in great generality by the very definition
of the Hausdorff and pre-Hausdorff measures.

Let us pass to the verification of the second one.
In order to do so letC(N , v) be such thatH N−1(∂X∩Br (x)) ≤ C(N , v)r N−1

for any x ∈ ∂X ∩ B1(p) and r ∈ (0, 1) given by Theorem 1.4 (i). Let Bri (xi )
be any covering of a Borel set A ⊂ ∂X ∩ B1(x). Then, up to worsening the
constant C(n, v) we can estimate

H N−1(A) ≤
∑
i

H N−1(A ∩ ∂X) ≤ C(N , v)
∑
i

r N−1
i . (6.27)
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Passing to the infimum on the family of all coverings of A we get the sought
estimate

H N−1(A) ≤ C(N , v)H N−1∞ (A). (6.28)

��
Corollary 6.10 Let 1 ≤ N < ∞ be a fixed natural number and v > 0,
then the following holds. Assume that (Xn,dn,H N , pn) are noncollapsed
RCD(−(N−1), N ) spaces converging in the pGH topology to (X,d,H N , p)
and verifying the noncollapsing assumptionH N (B1(pn)) > v for any n ∈ N.
Then

H N−1(∂X ∩ B1(p)) ≥ 1

C(N , v)
lim sup
n→∞

H N−1(∂Xn ∩ B1(pn)), (6.29)

where C(N , v) > 0 is the constant appearing in Corollary 6.9 above.

Proof Let us denote by C ⊂ X the limit of the sequence of compact sets
∂Xn ∩ B1(pn) in the Hausdorff topology, possibly after passing to a sub-
sequence. Here it is understood that the convergence of the ambient spaces
is realized in a common proper metric space (Z ,dZ ). Since, as we already
remarked, any boundary point has density less than 1/2 and the density is lower
semicontinuous along pGH converging sequences, we infer that�X (x) ≤ 1/2
for any x ∈ C . In particular C ⊂ S ∩ B1(p). Moreover, it easily fol-
lows from the Hausdorff dimension estimate dimH (SN−2) ≤ N − 2 that
H N−1∞ (C) ≤ H N−1∞ (∂X ∩ B1(p)).
Taking into account the general inequality H N−1∞ ≤ H N−1 and the discus-
sion above, in order to prove (6.29) it suffices now to observe that

H N−1∞ (C) ≥ lim sup
n→∞

H N−1∞ (∂Xn ∩ B1(pn))

≥ 1

C(N , v)
lim sup
n→∞

H N−1(∂Xn ∩ B1(pn)),

where the first inequality is a consequence of (2.3) while the second one
follows from Corollary 6.9. ��

7 Distance from the boundary and noncollapsing of boundaries

In this section we are going to study some key properties of the distance
function from the boundary. They will be useful to better understand the con-
vergence of boundaries of RCD spaces under noncollapsing pGH convergence
and their topological regularity in the next sections.
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Given a noncollapsedRCD(−(N−1), N ) space (X,d,H N )with boundary
we denote by

d∂X : X → R+, d∂X (x) := min
p∈∂X

d(x, p)

the distance function from ∂X .
Let us start with a key lemma regarding convergence of distance functions

from the boundary in case the limit space is the model half space.

Lemma 7.1 Let 1 ≤ N < ∞ be a fixed natural number. For any sequence of
pointed RCD(−(N − 1), N ) spaces (Xn,dn,H N , xn) such that B8(xn) →
B
R
N+

8 (0) in the GH-topology one has that

∂Xn ∩ B3(xn) → ∂RN+ ∩ B3(0) in the Hausdorff sense. (7.1)

Moreover d∂Xn → d∂RN+ uniformly and in W 1,2 on B2(0).

Proof Taking into account Remark 2.1 it is sufficient to prove that the conver-
gence holds in the Kuratowski sense.

Let us first prove that any limit point of a sequence of points yn ∈ ∂Xn ∩
B3(pn) belongs to ∂RN+ ∩B3(0). To this aim it is sufficient to take into account
Remark 6.4 and the lower semicontinuity of the density along pGH converging
sequences of noncollapsed spaces.We conclude that the limit point has density
less than 1/2 and therefore it belongs to the boundary of the half space, since
those are the only singular points.

Nextwewish to prove that anypoint in ∂RN+∩B3(0) is the limit of a sequence
of points in ∂Xn ∩ B3(pn). To prove this claim we rely on the stability of the
boundary. If the claim were false then we could find a scale r > 0 and points
yn ∈ Xn such that yn → 0 ∈ R

N+ and Br (yn) ⊂ Xn has no boundary for any
n ∈ N. The contradiction follows by Theorem 6.1, since the ball Br (0) ⊂ R

N+
has boundary.

The uniform convergence d∂Xn → d∂RN+ on B2(0) is a simple consequence
of (7.1) (see again Remark 2.1).

To obtain theW 1,2 convergence it is sufficient to observe that, as pointed out
in [9], for uniformly continuous functions the uniform and the L2 convergence
are equivalent. Moreover,

∣∣∇d∂Xn

∣∣ = |∇d∂X | = 1 H N a.e., therefore the
W 1,2 convergence follows from the volume convergence Theorem 2.17, since

ˆ
B2(pn)

∣∣∇d∂Xn

∣∣2 dH N = H N (B2(pn)) → H N (B2(0))

=
ˆ
B2(0)

|∇d∂X |2 dH N . (7.2)
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��
Given the stability Theorem 6.1 and Lemma 7.1 we can provide a useful

improvement upon the form of the ε-isometry in Theorem 3.8 in the case of
δ-boundary balls.

Corollary 7.2 Let 1 ≤ N < ∞ be a fixed natural number. Then for any ε > 0
there exists δ = δ(ε, N ) > 0 such that, if (X,d,H N ) is a noncollapsed
RCD(−δ(n − 1), N ) space and B2(x) ⊂ X is a δ-boundary ball, then for any
ε-splitting map u : B1(x) → R

N−1 such that u(x) = 0 one has that

(u,d∂X ) : B1(x) → R
N+ is an ε-isometry, (7.3)

and

N−1∑
k=1

 
B1(p)

|∇uk · ∇d∂X | dH N ≤ ε. (7.4)

Proof Both conclusions can be obtained arguing by contradiction as in the
proof of Theorem 3.8 and relying on Lemma 7.1. ��

7.1 Laplacian of the distance from the boundary

Next we study the Laplacian of the distance function from the boundary, which
plays a fundamental role in establishing noncollapsing estimates for the bound-
ary measure.

Let us begin by recalling that d∂X has locally measure valued Laplacian
�d∂X on X\∂X as a consequence of the general representation theorem for
Laplacians of distance functions [25, Corollary 4.16]. Moreover in [25, Corol-
lary 4.16] it is also proved that the singular part of �d∂X on X\∂X is non
positive. The following conjecture regards the absolutely continuous part.

Open Question 7.3 Let (X,d,H N ) be a noncollapsed RCD(K , N ) m.m.s.
for some K ∈ R and 1 ≤ N < ∞. Assume that ∂X �= ∅. Then

�acd∂X ≤ −Kd∂X on X\∂X, (7.5)

where �acd∂X denotes the absolutely continuous part of �d∂X on X\∂X .
As we shall see below, Open Question 7.3 can be verified for Alexandrov

spaces with curvature bounded from below, Riemannian manifolds with con-
vex boundary and interior lower Ricci curvature bounds and their noncollapsed
pGH limits. Notice that in this papermanifoldswith convex boundary are those
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for which the second fundamental form with respect to the interior normal
vector is non negative definite. Thanks to [89, Theorem 1.2.1] this condition
implies that the interior part of the manifold is geodesically convex.

Themain difficulty in order to answer toOpenQuestion 7.3 in full generality
is that a geometric condition needs to be turned into an analytic information: the
fact that ∂X is the boundary of an RCD(K , N ) space (X,d,H N ), therefore
it is convex to some extent, should imply a bound on the Laplacian of the
distance function.
In the case of Alexandrov spaces this difficulty can be circumvented since the
distance from the boundary is concave (in the case of non negative sectional
curvature) see [1] and [77, Theorem 3.3.1]. For smooth manifolds, instead,
the regularity of the boundary is key to turn the non negativity of the second
fundamental form into non negativity of the mean curvature of the boundary.

Let us first present themain analytic and geometric implications of a positive
answer to Open Question 7.3.

Theorem 7.4 Let N ∈ N, N ≥ 1 and K ∈ R be fixed. Given an RCD(K , N )

m.m.s. (X,d,H N ) with ∂X �= 0 such that Open Question 7.3 is verified, the
following hold:

(i) d∂X has measure valued Laplacian on X and�d∂X ∂X = H N−1 ∂X;
(ii) for any p ∈ ∂X one has

H N−1(B2(p) ∩ ∂X) > C(K )H N (B1(p)); (7.6)

(iii) any tangent cone at x ∈ ∂X has boundary, in particularFX = ∂X (recall
that FX is defined in (6.23)).

Let us state and prove a lemma that is independent of the validity of Open
Question 7.3 and will play a role in the proof of Theorem 7.4.

Lemma 7.5 Let 1 ≤ N < ∞ be a natural number and (X,d,H N ) be a
noncollapsedRCD(−(N−1), N )metricmeasure space. Assume that ∂X �= ∅.
Then d∂X : X → [0, ∞) has locally measure valued Laplacian on X\∂X and
the singular part of �d∂X is non positive on X\∂X. Moreover

ˆ
X

∇ϕ · ∇d∂X dH N = −
ˆ

ϕ dμ − lim
ri→0

ˆ
{d∂X>ri }

ϕ d�d∂X

for any ϕ ∈ Lipc(X), (7.7)

for some sequence ri ↓ 0 and locally finitemeasureμ on X (a priori depending
on the chosen sequence).
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Proof We have already observed that�d∂X has locally measure valued Lapla-
cian on X\∂X and the singular part of �d∂X is non positive on X\∂X as a
consequence of [25, Corollary 4.16].

Let us verify that d∂X verifies (7.7). We treat only the case when (X,d) (and
a fortiori ∂X ) is compact, the general one can be handled with an additional
cut-off argument.

In order to do so we wish to pass to the limit in the integration by parts for-
mula on (sufficiently regular) superlevel sets of the distance from the boundary.
Observe that, by the coarea formula Theorem 2.4, for almost every r > 0, the
superlevel set {d∂X > r} has finite perimeter. Moreover, the volume bound for
the tubular neighbourhood of the boundary

H N ({d∂X < r}) ≤ Cr, (7.8)

obtained thanks to Theorem 6.6 (iii) via a covering argument, together with
a further application of the coarea formula, yield the existence of a sequence
(ri ) with ri ↓ 0 as i → ∞ and

Per({d∂X > ri }) ≤ C for any i ∈ N. (7.9)

Since d∂X has measure valued Laplacian on X\∂X = {d∂X > 0}, the
bounded vector field ∇d∂X has measure valued divergence on the same
domain. Therefore, applying the Gauss Green theorem [21, Section 6] to the
vector field ϕ∇d∂X on the domain {d∂X > ri } we infer that

ˆ
{d∂X>ri }

∇ϕ · ∇d∂X dH N = −
ˆ

{d∂X>ri }
ϕ d�d∂X

−
ˆ

ϕ fi d Per({d∂X > ri }), (7.10)

for some function fi verifying

‖ fi‖L∞(Per({d∂X>ri })) ≤ 1. (7.11)

Thanks to (7.9) and (7.11) we can assume that, up to extracting a subsequence,
the measures fi Per({d∂X > ri }) weakly converge to a finite measure ν on X
in duality with continuous functions. Therefore we can pass to the limit in
(7.10) as i → ∞ to get that

ˆ
X

∇ϕ · ∇d∂X dH N = −
ˆ

ϕ dμ − lim
ri→0

ˆ
{d∂X>ri }

ϕ d�d∂X , (7.12)

as we claimed. ��
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Proof of Theorem 7.4 Let μ and ri ↓ 0 be as in Lemma 7.5. If Open Ques-
tion 7.3 holds then we deduce that

ˆ
∇ϕ · ∇d∂X dH N

≤ −
ˆ

ϕ dμ − K
ˆ

ϕd∂X dH N for any ϕ ∈ Lipc(X) s.t. ϕ ≥ 0.

In particular ϕ �→ ´ ∇ϕ · ∇d∂X dH N + ´
ϕ dμ + K

´
ϕd∂X dH N is a

negative linear map. Hence there exists a nonnegative locally finite measure ν

such that
ˆ

∇ϕ · ∇d∂X dH N +
ˆ

ϕ dμ + K
ˆ

ϕd∂X dH N

= −
ˆ

ϕ dν, for any ϕ ∈ Lipc(X).

This implies that d∂X has measure valued Laplacian on X .
Let us now prove that

�d∂X ∂X = H N−1 ∂X. (7.13)

Observe first that �d∂X � H N−1 as a consequence of the following more
general observation, applied to b = ∇d∂X : if b is a bounded vector field with
measure valued divergence div b on a noncollapsed RCD space (X,d,H N ),
then div b � H N−1.

In order to prove the property above we rely on the integration by parts for-
mula for bounded vector fields with measure valued divergence proved in this
framework in [21], taking into account the bound Per(Br (x)) ≤ CK ,Nr N−1

for any 0 < r < 1 and following the Euclidean strategy in [73]. Relying on
these tools we infer that

|div b(Br (x))| ≤ CK ,N ‖b‖∞ r N−1, for any 0 < r < 1, (7.14)

which suffices to conclude that div b � H N−1.
Next observe that �d∂X ∂X is absolutely continuous with respect to

H N−1 ∂X , which is a locally finite measure on an (N − 1)-rectifiable set
by Theorem 6.6. By standard differentiation of measures tools we infer that,
in order to prove (7.13), we need to show that

lim
r→0

�d∂X (Br (x))

ωN−1r N−1 = 1, for H N−1-a.e. x ∈ ∂X. (7.15)
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The validity of (7.15) can be checked at any regular boundary point x ∈
SN−1\SN−2, applying Lemma 7.1 to the sequence of scaled spaces converg-
ing to the tangent half-space. Indeed the W 1,2 convergence of the distance
functions, yields the weak convergence of their Laplacians, which yields in
turn (7.15) by scaling.

We can now pass to the proof of (ii). Let ϕ ∈ Lip(X) be nonnegative with
bounded support. The coarea formula Theorem 2.4 yields

d

ds

ˆ
Bs(∂X)

ϕ dH N =
ˆ

ϕ d Per({d∂X > s}) for a.e. s ≥ 0.

Using again the Coarea formula, the H N -a.e. identity |∇d∂X |2 = 1 and
integrating by parts, we get

ˆ ∞

0
a′(s)

ˆ
ϕ d Per({d∂X > s}) = −

ˆ
a(d∂X ) div(ϕ∇d∂X ) dH N , (7.16)

for any a ∈ C∞
c (0, ∞). A simple approximation and Lebesgue points argu-

ment allows plugging a(s) = χ{s≤r} on (7.16) for almost every r > 0, yielding

ˆ
ϕ d Per({d∂X > r}) =

ˆ
{d∂X<r}

div(ϕ∇d∂X ) dH N for a.e. r ≥ 0.

All in all we have

d

ds

ˆ
Bs(∂X)

ϕ dH N =
ˆ

ϕ d Per({d∂X > s})

=
ˆ
Bs(∂X)

div(ϕ∇d∂X ) dH N

≤
ˆ
Bs(∂X)

|∇ϕ| dH N +
ˆ
Bs(∂X)

ϕ d�d∂X

(7.5),(i)≤
ˆ
Bs(∂X)

|∇ϕ| dH N

+
ˆ

∂X
ϕ dH N−1 + K−s

ˆ
Bs(∂X)

ϕ dH N ,

for a.e. s ≥ 0.
Let t ∈ (0, 1). An additional approximation argument allows to plug ϕ =

χBt (p) in the previous inequality. Setting f (s, t) := H N (Bs(∂X) ∩ Bt (p)),
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we then infer that s �→ f (s, t) is absolutely continuous and

d

ds
f (s, t) ≤ H N−1(∂X ∩ Bt (p)) + Per(Bt (p), Bs(∂X)) + K−s f (s, t)

≤ C(N , K ), (7.17)

for a.e. s ∈ (0, 1). This yields in turn

d

ds

ˆ t

0
f (s, r) dr ≤ tH N−1(∂X ∩ Bt (p)) + f (s, t) + K−s

ˆ t

0
f (s, r) dr, (7.18)

for a.e. s ∈ (0, 1), thanks to the coarea formula and the bound

| f (s, t) − f (s′, t)| ≤ |s − s′|C(N , K ) for any s, s′, t ∈ (0, 1). (7.19)

By using (7.17) and (7.19) it is simple to verify that s �→ ´ 1−s
0 f (s, 1−r) dr

is absolutely continuous in (0, 1). We now prove that

d

ds

ˆ 1−s

0
f (s, 1 − r) dr ≤ H N−1(∂X ∩ B1−s(p))

+sK−
ˆ 1−s

0
f (s, 1 − r) dr, (7.20)

for a.e. s ∈ (0, 1).
For any t ∈ (0, 1) we denote by It ⊂ [0, 1] the set of s ∈ (0, 1) such that
(7.17) holds true. Given s ∈ ∩t∈Q∩(0,1) It =: I and ε > 0 we consider q ∈ Q

such that s < q < s + ε. Then we have

ˆ 1−s

0

f (s + h, 1 − r) − f (s, 1 − r)

h
dr

≤
ˆ 1−q

0

f (s + h, 1 − r) − f (s, 1 − r)

h
dr + εC(N , K ),

(7.21)

for any 0 < h < 1 small enough, as a consequence of (7.17). Therefore, using
the fact that s < q, we get

lim sup
h→0

ˆ 1−s

0

f (s + h, 1 − r) − f (s, 1 − r)

h
dr

≤ (1 − q)H N−1(∂X ∩ B1−q(p)) + f (s, 1 − q)

+K−s
ˆ 1−q

0
f (s, 1 − r) dr + εC(N , K )

≤ (1 − s)H N−1(∂X ∩ B1−s(p)) + f (s, 1 − s)
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+K−s
ˆ 1−s

0
f (s, 1 − r) dr + εC(N , K ),

for any s ∈ I . Letting ε → 0 we conclude

lim sup
h→0

ˆ 1−s

0

f (s + h, 1 − r) − f (s, 1 − r)

h
dr

≤ (1 − s)H N−1(∂X ∩ B1−s(p)) + f (s, 1 − s)

+ K−s
ˆ 1−s

0
f (s, 1 − r) dr,

(7.22)

for any s ∈ I .
Using once more (7.19) we easily deduce

lim
h→0

−1

h

ˆ 1−s

1−s−h
f (s + h, 1 − r) dr = − f (s, 1 − s), (7.23)

which along with (7.22) gives (7.20) for any s ∈ I such that the derivative
d
ds

´ 1−s
0 f (s, 1 − r) dr exists.

We can finally conclude the proof of (7.6) by integrating (7.20) in (0, 1/2):

1

2
e
1
8 K

−
H N (B1/2(p))

≤
ˆ 1/2

0
e
1
8 K

−
H N (B1/2(∂X) ∩ B1/2(p)) ≤ 1

2
H N−1(∂X ∩ B1(p)).

Let us now address (iii). This assertion can be obtained by combining Corol-
lary 6.10 and the inequality

lim inf
r→0

H N−1(Br (x) ∩ ∂X)

ωN−1r N−1 ≥ C(K )�X (x) for any x ∈ ∂X (7.24)

which follows in turn from the scaling invariant version of (7.6). ��

7.2 Alexandrov spaces and noncollapsed Ricci limits with boundary

We are able to verify Open Question 7.3 in the setting of Alexandrov spaces
with curvature bounded below and in the case of Ricci limits with boundary.

Let us recall that an N -dimensional Alexandrov space with curvature
bounded from below by k and equipped with the measure H N is a non-
collapsed RCD(k(N − 1), N ) space, see [78,90].
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Proposition 7.6 Let (X,d,H N ) be an Alexandrov space with curvature
bounded from below by k and assume that ∂X �= ∅. Then d∂X has locally
measure valued Laplacian,

�acd∂X ≤ −k(N − 1)d∂X and �sd∂X ≤ 0 on X\∂X. (7.25)

In particular, there exists a constant C(k, N ) > 0 such that the following
holds: if p ∈ ∂X, then

H N−1(B2(p) ∩ ∂X) > C(k, N )H N (B1(p)). (7.26)

Next we deal with the case of RCD spaces with boundary that are also
smooth Riemannian manifolds, see [52]. This is a key tool in order to address
the case of limits of Riemannian manifolds with boundary later. Let us point
out that bounds for the Laplacian on the distance from the boundary in the
sense of barriers and under different assumptions have been considered in
[74] (see also the references therein).

Proposition 7.7 Let (X,d,H N ) be a smooth N-dimensional Riemannian
manifold with convex boundary ∂X (in the sense that the second fundamental
form with respect to the interior normal is non negative definite) and Ricci
curvature bounded from below by K in the interior. Then d∂X has locally
measure valued Laplacian,

�acd∂X ≤ −Kd∂X and �sd∂X ≤ 0 on X\∂X. (7.27)

In particular

H N−1(B2(p) ∩ ∂X) > C(K )H N (B1(p)) for any p ∈ ∂X. (7.28)

The lower bound for the volume of the boundary in the case of smooth RCD
spaceswith boundary allows us to get amore complete picture about their pGH
limits. The last result of this section provides, in particular, a positive answer
to [59, Questions 4.4, 4.7, 4.9] in this setting.

Theorem 7.8 Let (X,d,H N , p) be the noncollapsed pGH limit of a limit
of smooth N-dimensional pointed Riemannian manifolds (Xn,dn, pn) with
convex boundary and Ricci curvature bounded from below by K in the interior.
Assume that there exists R > 0 such that BR(pn) ∩ ∂Xn �= ∅ for any n ∈ N.
Then

(i) ∂X �= ∅. Moreover, if points xn ∈ ∂Xn converge to x ∈ X, then x ∈ ∂X;
(ii) d∂X has measure valued Laplacian,

�acd∂X ≤ −Kd∂X and �sd∂X ≤ 0 on X\∂X. (7.29)
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and

�d∂X ∂X = H N−1 ∂X; (7.30)

(iii) ∂X = FX, H N−1 ∂X is locally Ahlfors regular and for any x ∈ ∂X
any tangent cone at x has boundary.

The remaining part of this subsection is devoted to the proof of Proposi-
tion 7.6, Proposition 7.7 and Theorem 7.8.

Proof of Proposition 7.6 We avoid introducing all the relevant background
about calculus on Alexandrov spaces, since this is not the main topic of the
paper. We refer to [3,22] for the relevant notions and references.

In [1] (see also [77, Theorem 3.3.1]) it is proved that on any Alexandrov
space with curvature bounded from below by k and non empty boundary, the
distance function from the boundary isFk-concave, that is to say its restriction
to any unit speed geodesic γ : [0, 1] → X verifies

(d∂X ◦ γ )′′ + kd∂X ◦ γ ≤ 0 (7.31)

in the sense of barriers. We already know that the singular part of �d∂X is
non positive on X\∂X (see Lemma 7.5). It is then sufficient to prove that its
absolutely continuous part verifies

�acd∂X ≤ −Kd∂X on X\∂X. (7.32)

Combining (7.31) with Alexandrov’s theorem (see [3, Proposition 7.5] for
its proof in the setting of DC functions on Alexandrov spaces) and the fact that
the restriction of d∂X to a minimizing geodesic connecting a regular point to
a point of minimal distance on the boundary is affine, we infer that

tr Hessac d∂X ≤ −k(N − 1)d∂X , H N -a.e. on X, (7.33)

whereHessac d∂X denotes the absolutely continuous part of theHessian ofd∂X .
Indeed, we recall that the tangent cone on an Alexandrov space can be equiv-
alently characterised as the set of initial velocities of geodesics. Then (7.33)
follows by tracing, since there is a direction v along which Hessac d∂X (v, v) =
0, while along all the others the estimate Hessac d∂X (v, v) ≤ −kd∂X holds by
(7.31).

The conclusion (7.32) follows from the fact that the Laplacian is the trace
of the Hessian in this context, see [3, Proposition 5.8, 5.9].

The second conclusion of Proposition 7.6 follows from Theorem 7.4. ��
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Proof of Proposition 7.7 Observe that, as pointed out in [52], smooth Rie-
mannian manifolds with convex boundary and Ricci curvature bounded from
below in the interior are RCD spaces.

Also in this case it is sufficient to deal only with the absolutely continu-
ous part of the Laplacian. The bound (7.27) can be obtained starting from the
following observation: since the boundary is smooth and convex it has non
positive second fundamental form with respect to the exterior normal. There-
fore by tracing we infer that it has nonpositive mean curvature with respect to
the exterior normal. By smoothness again we infer that the restriction of the
a.c. part of the Laplacian of the distance from the boundary on the boundary is
non positive (it coincides with the mean curvature). By the localization tech-
nique [25] we can then propagate the non positivity of the Laplacian on the
boundary to the interior to obtain (7.27).
More in detail, we recall that d∂X induces a decomposition of the Riemannian
manifold into rays (Xα,mα,d) and an associated disintegration of the volume
measure: ˆ

M
ϕ dH N =

ˆ
Q

ˆ
Xα

ϕ dmα dq(α), (7.34)

whereQ is a set parametrizing the rays in the decomposition and q is a suitable
weight on Q.
Moreover, for q-a.e. ray (Xα) the one dimensional metric measure space
(Xα,mα,d) is a CD(K , N ) space, hence mα = hαH

1 for some density
hα which is log−K concave, once we parametrize the ray Xα with a geodesic
γα such that its ending point belongs to ∂X .

By [25] we also know that

�acd∂X = − (log hα)′ , (7.35)

with canonical identifications. The sought conclusion follows observing that
since hα is log−K concave, it holds that

(− log hα)′(s) ≥ (− log hα)′(t) + K (s − t). (7.36)

Let p = γα(t) and γα(s) is the footpoint on ∂X of the minimizing geodesic
for the distance to the boundary γα . Since we already pointed out that the
convexity of the boundary yields (− log hα)′(γα(s)) ≤ 0 when γα(s) ∈ ∂X ,
we infer from (7.36) and (7.35) that,

(�acd∂X )(p) = (− log hα)′(s − d∂X (γα(t))) (7.37)

≤ (− log hα)′(s) − Kd∂X (γα(t)) ≤ −Kd∂X (γα(t))

= −Kd∂X (p). (7.38)
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The inequality (7.28) and the fact that d∂X has measure valued Laplacian
globally now follow from Theorem 7.4. ��
Remark 7.9 For general RCD(K , N ) spaces (X,d,H N ), the missing ingre-
dient for the Riemannian strategy above is a counterpart of the non positive
mean curvature condition with respect to the exterior normal along the bound-
ary.

Proof Theorem 7.8 Let us start by proving the second part of (ii). The first part
will directly follow. In order to do so we observe that, if xn ∈ ∂Xn , then by
(the scale invariant version of) (7.28) we infer that

H N−1(∂Xn ∩ Br (xn)) > C(K , N )H N (B1(xn))r
N−1

for n ∈ N and 0 < r < 1. (7.39)

Therefore we can apply Corollary 6.10 to get that

H N−1(∂X ∩ Br (x)) ≥ C(K , N , v)r N−1 for any 0 < r < 1, (7.40)

where v > 0 is a noncollapsing bound forH N (B1(xn)). From (7.40) we infer
in particular that x ∈ ∂X .

By the stability Theorem 1.6 we know that if x ∈ ∂X then there exists
a sequence ∂Xn � xn → x , as n → ∞. Therefore d∂Xn converge locally
uniformly and locally in W 1,2 to d∂X . Hence we can pass to the limit their
measure valued Laplacians and the bounds obtained in Proposition 7.7 to infer
that d∂X has measure valued Laplacian satisfying the bound (7.29).

The remaining conclusions follow immediately from Theorem 7.4. ��

8 Improved neck structure and boundary measure convergence

In this section we are going to improve upon the regularity of balls sufficiently
close to the model boundary ball on the half-space. This will provide a key
tool in order to obtain topological regularity of boundaries, away from sets of
ambient codimension two, and convergence of the boundary measures under
noncollapsing pGH convergence as stated in Theorem 1.8.

8.1 Improved neck structure theorem and boundary volume rigidity

Below we state the key result we will rely on. As in the case of (N , δ)-
symmetric balls, where regularity propagates at all locations and scales, in
the case of a δ-boundary ball we shall see that balls centered at boundary
points are still δ′-boundary balls at any scale, while balls centered at interior
points become (N , δ′)-symmetric at sufficiently small scales.
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Theorem 8.1 Let 1 ≤ N < ∞ be a fixed natural number. For any 0 < ε <

ε(N ), δ ≤ δ(N , ε) and for any RCD(−δ(N − 1), N ) m.m.s. (X,d,H N ),
p ∈ X such that B2(p) is a δ-boundary ball, the following properties hold:

(i) for any x ∈ ∂X ∩B1(p) and any r ∈ (0, 1) there exists an εr-GH isometry

�x,r : BR
N+

r (0) → Br (x);
(ii) for any x ∈ ∂X∩B1(p)and for any0 < r < 1, settingLx,r := �x,r ({xN =

0}) it holds
dH (∂X ∩ Br (x),Lx,r ∩ Br (x)) ≤ εr. (8.1)

It follows in particular that

dGH (∂X ∩ Br (x), B
R
N−1

r (0)) ≤ 2εr; (8.2)

(iii) for any x ∈ B1/2(p)\∂X and r ∈ (0,d∂X (x)/2) the ball Br (x) is (N , ε)-
symmetric.

The proof of Theorem 8.1 builds upon the following ε-regularity results for
the boundary, which is based in turn on the stability of boundaries Theorem 6.1
and the volume rigidity for cones with boundary Lemma 6.5.

Theorem 8.2 (Volume ε-regularity for the boundary) Let N ∈ N, N ≥ 1 be
fixed. For any ε > 0, if δ ≤ δ(N , ε) and (X,d,H N , x) is an RCD(−δ(N −
1), N ) pointed m.m.s., x ∈ ∂X and H N (B1(x)) ≥ 1

2ωN − δ, then

dGH (B1/2(x), B
R
N+

1/2(0)) ≤ ε. (8.3)

Proof We divide the proof into two steps, first proving a weak version of the
statement, where we additionally assume a definite size of boundary points in
the given ball, and then passing to the strong form via bootstrap.

Step 1. We claim that the following holds: for any ε > 0 and c > 0, if
δ ≤ δ(N , ε, c) and (X,d,H N , x) is an RCD(−δ(N −1), N ) pointed m.m.s.,
x ∈ ∂X , H N (B1(x)) ≥ 1

2ωN − δ and H N−1(∂X ∩ B1/2(x)) ≥ c, then

dGH (B1/2(x), B
R
N+

1/2(0)) ≤ ε. (8.4)

We argue by contradiction. Let us assume that for some ε > 0 and c > 0 there
is a sequence (X,dn,H N , xn) of RCD(−1/n, N ) p.m.m.s. with xn ∈ ∂Xn ,
such thatH N (B1(xn)) ≥ 1

2ωN − 1
n , H

N−1(∂Xn ∩ B1/2(xn)) ≥ c and

dGH (B1/2(xn), B
R
N+

1/2(0)) ≥ ε for any n ∈ N. (8.5)
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Up to extracting a subsequence (Xn,dn,H N , xn) → (X,d,H N , x) in the
pmGH topology.
Notice that, by Corollary 6.10 and the uniform lower bound on the boundary
measure, we infer that ∂X ∩ B̄1/2(x) �= ∅.

Since x is limit of boundary points it holds �X (x) ≤ 1/2, by lower semi-
continuity of the density. Therefore, by volume convergence and thanks to the
volume pinching assumption,H N (Br (x)) = ωN/2 for any r ∈ [0, 1]. Hence
the volume cone implies metric cone theorem (see [36]) gives that B1/2(x)
is isometric to the ball of radius 1/2 of a cone C(Z) centered at a tip point
z ∈ C(Z) with isometry sending x to z. The sought contradiction comes from
Lemma6.5. Indeed Z has boundary and�(z) = 1

2 , thereforeC(Z) is isometric
to RN+ .

Step 2. Next we wish to remove the lower volume boundary assumption.
In order to do so we first observe that, by a limiting argument, it is sufficient
to prove the statement under the assumption that x ∈ SN−1\SN−2.

Let us set c := 4−Nc(N )−1 and assume without loss of generality that
ε < η(N ), where c(N ) and η(N ) are as in Theorem 6.1. We wish to prove
that δ(N , ε) = δ(N , ε, c) given by the previous step does the right job. Let us
argue by contradiction. If this is not the case then we can find 0 < r < 1 such
that

dGH (Br/4(x), B
R
N+

r/4 (0)) ≤ εr/4, (8.6)

but

dGH (Br/2(x), B
R
N+

r/2 (0) > εr/2, (8.7)

since we know that the only element of the tangent cone at x is RN+ (cf. with
Theorem 6.3 (iii)).
Observe that

H N−1(∂X ∩ Br/2(x)) ≥ H N−1(∂X ∩ Br/4(x)) ≥ cr N−1, (8.8)

by our choice of c and (the scale invariant version of) Theorem 6.1.
Moreover, by volume monotonicity,

H N (Br (x)) ≥ 1

2
(ωN − δ)r N . (8.9)

Applying the result of Step 1 (in scale invariant form) we infer that

dGH (Br/2(x), B
R
N+

r/2 (0) ≤ εr/2, (8.10)
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therefore reaching a contradiction with (8.7). ��
Remark 8.3 Under the same assumptions of Theorem8.2, it follows by volume
monotonicity and scaling that (8.4) can be slightly improved to the statement

dGH (Br/2(x), B
R
N+

r/2 (0)) ≤ εr, (8.11)

for any 0 < r < 1.

Proof of Theorem 8.1 Let us begin by observing that for any δ ≤ δ(δ0, N ) if
B2(p) is a δ-boundary ball of an RCD(−δ(N − 1), N ) space then

B1(x) is a δ0-boundary ball for any x ∈ ∂X ∩ B1(p). (8.12)

This claim can be checked arguing by contradiction and exploiting the fact that
boundary points converge to boundary points when the limit ball is isometric
to a ball centered on the boundary of the half space RN+ (cf. with Lemma 7.1).

Next, by volume convergence, choose δ0 = δ0(ε, N ) < ε/2 such that if
B1(x) is a δ0-boundary ball on an RCD(−δ(N − 1), N ) and x ∈ ∂X , then the
assumptions of Theorem 8.2 are satisfied.
If we choose δ accordingly given by the observations above, then by Theo-
rem 8.2 we infer that, for any x ∈ ∂X and for any 0 < r < 1, Br (x) is an
ε-boundary ball.

From now on we let

�x,r : BR
N+

r (0) → Br (x) (8.13)

be εr -isometries, for any x ∈ ∂X and any 0 < r < 1.

Let us prove (ii). We first prove that for any z ∈ B
R
N+

r (0) ∩ {xN = 0} there
exists y ∈ Br (x) ∩ ∂X such that d(�x,r (z), y) ≤ C(N )εr . In order to do so
it is sufficient to observe that for any s > 0 the ball Bsr (�x,r (z)) is an s−1ε-
boundary ball. By Theorem 6.1, if s−1ε < η(N ), then there exists a boundary
point y ∈ Brs(�x,r (z))∩∂X . Therefore, minimizing we infer that there exists
a boundary point y ∈ Br (x) ∩ ∂X such that d(�x,r (z), y) ≤ C(N )εr , where
C(N ) := 1/η(N ).

It remains to prove that for any y ∈ Br (x) ∩ ∂X there exists z ∈ B
R
N+

r (0) ∩
{xN = 0} such that d(y, �x,r (z)) ≤ C(N )εr . In order to do so it is sufficient to
observe that, by elementary considerations, if B1(p) ⊂ R

N+ is an ε-boundary
ball, then d(p, {xN = 0}) ≤ C(N )ε, therefore by scaling invariance of the
half-space, if Br (p) is an ε-boundary ball, then d(p, {xN = 0}) ≤ C(N )εr .

Let us finally prove (iii). In order to obtain the conclusion it is sufficient
to prove the following statement: for any ε > 0 there exists δ > 0 such
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that if (X,d,H N ) is an RCD(−δ(N − 1), N ) m.m.s., p ∈ X and B4(p)
is a δ-boundary ball, then for any x ∈ B1(p)\∂X the ball Bd∂X (x)/2(x) is
(N , ε)-symmetric. Indeed, if Bd∂X (x)/2(x) is (N , ε)-symmetric, then by vol-
ume convergence Theorem2.17 it has almost Euclidean volume and by volume
almost rigidity [37, Theorem 1.6] we infer that Br (x) is (N , ε)-symmetric for
any 0 < r < d∂X (x)/2, up to worsening ε.

Let us nowprove the claimed conclusion. Let q ∈ ∂X be such thatd∂X (x) =
d(q, x) and set r := 2d∂X (x). As a consequence of (i) and (ii) we know that

there exists an εr -GH isometry �x,r : BR
N+

r (0) → Br (q).
By elementary considerations we can find z ∈ R

N+ such that

Bd∂X (x)/2(z) ⊂ B
R
N+

r (0)\∂RN+ (8.14)

and

�x,r : Bd∂X (x)/2(z) → Bd∂X (x)/2(x) (8.15)

is an 8εr -GH isometry. ��

8.2 Topological regularity of the boundary

Thanks to Theorem 8.1 we better understand the geometry of δ-boundary
balls. Below we build a parametrization of the boundary of a δ-boundary ball
well suited for its geometry. In particular this parametrization will put us in
position to control both the topology and the volume near to sufficiently regular
boundary points (cf. with [13,28,59] in the case of interior regular points).
With respect to Theorem 4.9 here we heavily rely on Theorem 8.1 and on the
transformation Proposition 3.13 to get bi-Hölder continuity of the splitting
map, as in [29].

Theorem 8.4 Let 1 ≤ N < ∞ be a fixed natural number. Then for each 0 <

ε < 1/5 there exists δ = δ(ε, N ) > 0 such that for any RCD(−δ(N − 1), N )

space (X,d,H N ) and for any δ-boundary ball B16(p) ⊂ X, ∂X ∩ B8(p) is
homeomorphic to a smooth (N − 1)-dimensional manifold without boundary.
Moreover, there exists a map u : B8(p) → R

N−1 verifying the following
properties:

(i) u : B8(p) → R
N−1 is an ε-splitting map;

(ii) there exists a closed set U ⊂ B1(p) ∩ ∂X such that

H N−1 ((B1(p) ∩ ∂X)\U ) ≤ ε (8.16)
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and

(1 − ε)d(x, y) ≤ |u(x) − u(y)| ≤ (1 + ε)d(x, y) for any x, y ∈ U ; (8.17)

(iii) for any x, y ∈ ∂X ∩ B1(p) it holds that

(1 − ε)d(x, y)1+ε ≤ |u(x) − u(y)| ≤ (1 + ε)d(x, y); (8.18)

(iv) u(B1(p) ∩ ∂X) ⊃ BR
N−1

1−2ε (0).

Proof The fact that B8(p) ∩ ∂X is homeomorphic to a smooth N − 1-
dimensional manifold without boundary follows from Theorem 8.1 (ii) thanks
to Reifenberg’s theorem for metric spaces [28, Theorem A.1.1], see also
[13,59,81].

Let us fix 0 < η < ε to be specified later. Choosing δ small enough we
can build an η-splitting map u : B8(p) → R

N−1 by Theorem 3.8. This in
particular proves (i).

Let us now show (ii). We set

U :=
{
x ∈ B1(p) ∩ ∂X : s

 
Bs(x)

|Hess u|2 dH N ≤ η1/2

for any s ∈ (0, 5)

}
.

Notice that U is closed and u : Bs(x) → R
N−1 is a C(N )η1/4-splitting map

for any s ∈ (0, 5), by Lemma 4.16. For δ and η small enough we deduce from
Corollary 7.2 that

(u,d∂X ) : Bs(x) → R
N+ is an

ε

1 + ε
-GH isometry

for any x ∈ U and s ∈ (0, 5/2). In particular, given x, y ∈ U and s =
d(x, y)(1 + ε), it holds

||u(x) − u(y)| − d(x, y)| ≤ ε

1 + ε
s = εd(x, y),

therefore yielding (8.17).
Let us prove (8.16). A standard Vitali’s covering argument produces a dis-

joint family of balls {Bsi (xi )}i∈N with xi ∈ B1(p) ∩ ∂X , si ∈ (0, 1) such
that

(B1(p) ∩ ∂X)\U ⊂
⋃

i∈N
B5ri (xi ) and 5si

 
B5si (x)

|Hess u|2 dH N > η1/2. (8.19)
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Relying on (8.19), the Bishop-Gromov inequality, Remark 4.8 and Theo-
rem 1.4 (i) (see also Theorem 6.6 (ii)), we conclude that

H N−1((B1(p) ∩ ∂X)\U ) ≤
∑
i∈N

H N−1(B5si (xi ) ∩ ∂X) ≤ C(N )
∑
i∈N

sN−1
i

≤ C(N )η−1/2
∑
i∈N

ˆ
Bsi (xi )

|Hess u|2 dH N

≤ C(N )η1/2 ≤ ε,

for η sufficiently small.
The Hölder estimate (8.18) will follow from Theorem 5.1 (i) and the trans-

formation Proposition 3.13, arguing as in the proof of [29, Theorem 7.10].
More precisely, if x, y ∈ B1(p) ∩ ∂X we set r := d(x, y). Then by

Theorem 8.1 (i) we infer that Br (x) is an η-boundary ball, for η small to
be chosen later, if δ ≤ δ(N , η). Then we apply the transformation Propo-
sition 3.13 to obtain existence of a lower triangular matrix Tx,r such that
Tx,r u : Br (x) → R

N−1 is an ε′-splitting map for ε′ small to be chosen later
and for any η ≤ η(N , ε′). Taking into account Corollary 7.2 we obtain that

∣∣Tx,r u(x) − Tx,r u(y)
∣∣ ≥ (1 − ε)d(x, y). (8.20)

Taking into account the matrix growth estimate
∣∣Tx,r

∣∣ ≤ r−ε (cf. Corol-
lary 3.16) and that r = d(x, y) we get that

|u(x) − u(y)| ≥ (1 − ε)d(x, y)1+ε. (8.21)

The upper bound in (8.18) follows from Remark 3.3.
To prove the last assertion we argue as in [59, Remark 2.10]. We claim that

there exists 0 < s < 1 such that

u(Bs(p) ∩ ∂X) ∩ B
R
N−1

1−2ε (0) = B
R
N−1

1−2ε (0).

To this aim we observe that u(Bs(p) ∩ ∂X) ∩ B
R
N−1

1−2ε (0) is non empty and

closed in B
R
N−1

1−2ε (0). Moreover, it holds

u(Bs(p) ∩ ∂X) ∩ B
R
N−1

1−2ε (0) = u(Bs(p) ∩ ∂X) ∩ B
R
N−1

1−2ε (0),

whenever s1+ε(1 − ε) > 1 − 2ε. Indeed for any q ∈ ∂Bs(p) ∩ ∂X one has

|u(q)| = |u(q) − u(p)| ≥ (1 − ε)s1+ε > 1 − 2ε,
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as a consequence of (8.18). Therefore, for such a choice of s the set u(Bs(p)∩
∂X) ∩ B

R
N−1

1−2ε (0) is also open in B
R
N−1

1−2ε (0) as a consequence of the invariance
of the domain (here we are using that B8(p) ∩ ∂X is an (N − 1)-dimensional
topological manifold, as we already pointed out). ��
Remark 8.5 In the smooth case, i.e. when (X,d,H N ) is a Riemannian mani-
fold with convex boundary and Ricci curvature bounded below by−δ(N −1),
the map u : B1(p) ∩ ∂X → R

N−1 obtained in Theorem 8.4 is also a diffeo-
morphism onto its image. This follows by observing that u is smooth and

dux : Tx∂X → R
N−1 is nondegenerate for any x ∈ B1(p) ∩ ∂X. (8.22)

Observe that u : B2(p) → R
N−1 is a ε-splitting map where ε ≤ ε(N ).

Let x ∈ B1(p) ∩ ∂X . By the transformation Proposition 3.13 for any r ≤ 1,
there exists an N × N matrix Ax,r such that Ax,r ◦ u : Br (x) → R

N−1 is
a δ-splitting map, where δ ≤ δ(δ′, N ). For r ≤ rx small enough, standard
elliptic regularity estimates up to the boundary give

sup
Br (x)

|∇(Ax,r ◦ u)a · ∇(Ax,r ◦ u)b − δαβ | ≤ C(N )δ′

for any a, b = 1, . . . , N − 1, (8.23)

which implies that dux is nondegenerate.

Corollary 8.6 Let 1 ≤ N < ∞ be a natural number and (X,d,H N ) be an
RCD(−(N −1), N )metric measure space. Assume that ∂X �= ∅, then for any
0 < α < 1 there exists Uα ⊂ ∂X such that:

(i) Uα is relatively open and dense in ∂X;
(ii) dimH (∂X\Uα) ≤ N − 2;
(iii) Uα is an (N − 1)-dimensional α-Hölder topological manifold without

boundary and the charts can be chosenwith components that are restriction
of harmonic maps (on the ambient space).

Proof Fix α ∈ (0, 1). Thanks to Theorem 8.4 we can find δ < δ(N , α) with
the property that if B16(p) is a δ-boundary ball of an RCD(−δ(N − 1), N )

m.m.s. (X,d,H N ), then ∂X ∩ B1(p) is aCα manifold of dimension (N −1).
For any x ∈ SN−1\SN−2 we consider rx ∈ (0, δ) such that B16rx (x) is a
δ-boundary ball and we set

Uα :=
⋃

x∈SN−1\SN−2

Brx (x) ∩ ∂X.

By constructionUα satisfies (iii). Notice thatUα is open and dense in ∂X and
∂X\U ⊂ SN−2, yielding (i) and (ii). ��
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Corollary 8.7 Let 1 ≤ N < ∞ be a fixed natural number. For any ε > 0
and δ < δ(ε, N ) > 0 the following holds. If (X,d,H N ) is an RCD(−δ(N −
1), N ) space and B16(p) is a δ-boundary ball, then

(1 − ε)ωN−1 ≤ H N−1(∂X ∩ B1(p)) ≤ (1 + ε)ωN−1. (8.24)

Moreover, FX ∩ B1(p) = ∂X ∩ B1(p) and for any x ∈ ∂X ∩ B1(p), any
tangent cone at x has boundary.

Proof Let ε′ < ε to be fixed later. For δ ≤ δ(N , ε′) we find a ε′-splitting
function u : B8(p) → R

N−1 satisfying (i)-(iv) in Theorem 8.4 with ε′ in
place of ε. Let in particular U ⊂ B1(p) ∩ ∂X be the good set appearing in
Theorem 8.4 (ii).

The inclusion u(U ) ⊂ B1+ε′(0) implies

H N−1(∂X ∩ B1(p)) ≤ ε′ + H N−1(U ) ≤ ε′ + (1 + ε′)N−1L N−1(u(U ))

≤ ε′ + (1 + ε′)2N−2ωN−1. (8.25)

On the other hand since u(B1(p) ∩ ∂X) ⊃ BR
N−1

1−2ε′(0), u((∂X ∩ B1(p))\U ) ≤
C(N )ε′ and u is bi-Lipschitz on U we infer that

H N−1(∂X ∩ B1(p)) ≥ H N−1(U )

≥ 1

(1 + ε′)N−1

(
ωN−1(1 − 2ε′)N−1 − C(N )ε′) . (8.26)

The sought conclusion (8.24) follows from (8.25) and (8.26) by choosing ε′
small enough.

The second part of the statement follows from (8.24) taking into account the
following general property: given a noncollapsed RCD(−(N − 1), N ) space
(X,d,H N ) and a point x ∈ ∂X such that

lim inf
r→0

H N−1(∂X ∩ Br (x))

r N−1 > 0, (8.27)

then any tangent cone to (X,d) at x has boundary.
The verification of the claim above follows from Corollary 6.10, taking into
account the scaling properties of H N−1. ��

8.3 Convergence of boundary measures

Let us recall that for measures defined on sequences of metric spaces con-
verging in the pGH sense, weak convergence is understood in duality with
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continuous functions with bounded support once the pGH converging metric
spaces are embedded in a common proper metric space (cf. [7,8]).

In this framework, two standard consequences of weak convergence are the
lower semicontinuity of the evaluation on open sets and the upper semicon-
tinuity of the evaluation on closed sets: if μn are locally finite measures on
Z weakly converging to μ in duality with continuous functions with bounded
support as n → ∞ and A ⊂ Z and C ⊂ Z are an open and a closed subset
respectively, then

μ(A) ≤ lim inf
n→∞ μn(A) and μ(C) ≥ lim sup

n→∞
μn(C). (8.28)

From the two properties above one can easily infer the full convergence
limn→∞ μn(O) = μ(O), for any Borel set O ⊂ Z such that μ(∂O) = 0,
where we denoted by ∂O the topological boundary of O .

We now prove Theorem 1.8 which is restated below for reader’s conve-
nience.

Theorem 8.8 (Boundary Volume Convergence) Let 1 ≤ N < ∞ be a fixed
natural number. Assume that (Xn,dn,H N , pn) are RCD(−(N − 1), N )

spaces converging in the pGH topology to (X,d,H N , p). Then

H N−1 ∂Xn → H N−1 ∂X weakly. (8.29)

In particular

lim
n→∞H N−1(∂Xn ∩ Br (xn)) = H N−1(∂X ∩ Br (x)),

whenever Xn � xn → x ∈ X and H N−1(∂X ∩ ∂Br (x)) = 0.

Proof Set νn := H N−1 ∂Xn . Up to extracting a subsequence one has that
νn → ν weakly, where ν is a nonnegative measure on X satisfying
(i) ν(Br (x)) ≤ C(N )r N−1 for any x ∈ X and a.e. r ∈ (0, 2);
(ii) supp ν ⊂ SN−1.
Here we have used standard compactness theorem for measures along with
Theorem 1.4 (i), the lower semicontinuity of the density �Xn w.r.t. the GH
convergence, and Remark 6.4. We need to prove that ν = H N−1 ∂X .

Let us begin by observing that, as a consequence of (i) and (ii),
it holds that ν � H N−1 SN−1 = H N−1 ∂X . In particular if
SN−1(X)\SN−2(X) = ∅ then ν = H N−1 ∂X = 0. We can therefore
assume that SN−1(X)\SN−2(X) �= ∅. To get the claimed conclusion it is
enough to verify that

lim
r→0

ν(Br (x))

ωN−1r N−1 = 1 for H N−1-a.e. x ∈ ∂X, (8.30)
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thanks to a classical result about differentiation of measures [62]. Here we
used that ∂X is (N − 1)-rectifiable with locally finite H N−1-measure.

To prove (8.30) we rely on Corollary 8.7. Observe that we can check (8.30)
just considering regular boundary points x ∈ SN−1\SN−2 for which the limit

lim
r→0

ν(Br (x))

ωN−1r N−1 (8.31)

exists.
Let us fix δ > 0. For any x ∈ ∂X as above there exists rx < 1 such that

Br (x) is a δ/2-boundary ball for every r ∈ (0, rx ), thanks to Theorem 8.1 (i).
In particular, if ∂Xn � xn → x ∈ ∂X then Br (xn) is a δ-boundary ball for any
r ∈ (0, rx ], and n big enough (here we rely again on Theorem 8.1 (i) to handle
radii in (0, rx )). Notice that the existence of the sequence (xn) verifying the
property above for r = rx is a consequence of the stability Theorem 6.1. Let
us now fix ε > 0 and assume that δ ≤ δ(N , ε) so that Corollary 8.7 holds true.
We get

∣∣∣∣
ν(Br (x))

ωN−1r N−1 − 1

∣∣∣∣ =
∣∣∣∣ limn→∞

H N−1(∂Xn ∩ Br (xn))

ωN−1r N−1 − 1

∣∣∣∣
≤ ε for a.e.r ∈ (0, rx ), (8.32)

3 which yields (8.30), being ε arbitrary. ��

9 Topological regularity up to the boundary

In [59, Corollary 3.2], following the arguments of [28] (see also the previous
[13]) and relying onReifenberg’s theorem formetric spaces, it has been proved
that on any noncollapsed RCD(K , N ) space (X,d,H N ) and for any α ∈
(0, 1) there exists an open and dense subset U ⊂ X such that:

• dimH (X\(U ∪ ∂X)) ≤ N − 2;
• U is an N -dimensional topological manifold with no boundary and Cα-
charts.

The aim of this section is to sharpen this result including the boundary in
the topological regularity statement. We shall prove that any noncollapsed
RCD(K , N ) is space (with boundary) is homeomorphic, up to a set of codi-
mension two, to a topologicalmanifold (with boundary)withα-biHölder charts
for any 0 < α < 1.

3 The inequality (8.32) holds for all those radii such that ν(Br (x)\Br (x)) = 0, a property
which fails in at most countable cases.
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In view of [59, Theorem 4.11] and of Theorem 5.1 the main tool needed to
get topological regularity up to the boundary are biHölder topological charts
on δ-boundary balls.

Theorem 9.1 Let N ∈ N, N ≥ 1 and (X,d,H N ) be anRCD(−δ(N−1), N )

space, p ∈ X such that B16(p) is a δ-boundary ball. Then, for any 0 < ε < 1/5
if δ < δ(N , ε) there exists F : B1(p) → R

N+ such that

(i) (1−ε)d(x, y)1+ε ≤ |F(x)−F(y)| ≤ C(N )d(x, y) for any x, y ∈ B1(p);
(ii) F(p) = 0 and ∂RN+ ∩ B1−2ε(0) ⊂ F(∂X ∩ B1(p)) = ∂RN+ ∩ F(B1(p));
(iii) F is open and a homeomorphism onto its image;

(iv) B
R
N+

1−2ε(0) ⊂ F(B1(p)).

By combining [59, Theorem 4.11] and Theorem 9.1 we infer that on a
noncollapsed RCD(−(N − 1), N ) m.m.s., if ε < ε(N ) then any point in
X\SN−2

ε has a neighbourhood which is Cα-homeomorphic either to an open
set inRN or to an open set inRN+ (see (1.8) for the definition of the quantitative
singular stratum SN−2

ε ). It is then easy to infer the following.

Theorem 9.2 Let N ∈ N, N ≥ 1 be fixed and 0 < α < 1. If (X,d,H N ) is
a RCD(−(N − 1), N ) metric measure space, then there exists a closed set of
codimension at least two Cα ⊂ SN−2

ε (X), for some 0 < ε < ε(N , α), such
that X\Cα is a topological manifold with boundary and Cα-charts.

Let us begin by proving Theorem 9.2 assuming the validity of Theorem 9.1.
The latter will be proven at the end of this section.

Proof It is sufficient to prove that if ε < ε(N , α), then any point in X\SN−2
ε

admits a neighbourhood which is either Cα-homeomorphic to an open subset
of RN , or Cα-homeomorphic to an open subset of RN+ .
In order to do so we just observe that, if x ∈ X\SN−2

ε , then there exists
0 < r < 1 such that either Br (x) is (N , ε)-symmetric, or Br (x) is an ε-
boundary ball. In the first case x has a neighbourhoodCα-homeomorphic to an
open subset of RN by [59, Theorem 4.11] (see also [13,28]), for ε < ε(α, N ).
In the second case, by Theorem 9.1 x has a neighbourhoodCα-homeomorphic
to an open subset of RN+ , if ε < ε(α, N ). ��

In the framework of limits of N -dimensional manifolds with convex bound-
ary andRicci tensor bounded belowby−(N−1) in the interiorwe can improve
Theorem 9.2 with the following.

Theorem 9.3 Let (X,d,H N ) be an RCD m.m.s. arising as noncollapsed
limit of a sequence of smooth Riemannian manifolds with convex and Ricci
curvature bounded from below in the interior by −(N − 1). Then for any
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0 < α < 1 there exists a constant C = C(N , α,H N (B1(p))) and a closed
set of codimension at least two Cα ⊂ SN−2(X) such that

H N−2(Cα ∩ B1(p)) ≤ C(N , α,H N (B1(p))), for any p ∈ X (9.1)

and X\Cα is a topological manifold with boundary and Cα-charts.

The improvement will follow from the sharp measure estimates for the
effective singular stratum SN−2

ε on noncollapsed Ricci limit spaces obtained
in [29]. The conclusion is almost straightforward once we point out that the
verbatim arguments of [29] allow to treat also the case of noncollapsed limits
of smooth Riemannian manifolds with convex boundary (and interior lower
Ricci curvature bounds). Since that case was not considered therein, we also
give a detailed proof relying on a gluing procedure (see [83]) in order to reduce
the study of singularities in the boundary to that of interior singularities.

Proof of Theorem 9.3 First let us point out that, the analogue of [29, Theorem
1.9] in the case of non collapsed limits of smooth manifolds with convex
boundary and interior lower Ricci curvature bounds yields that, under our
assumptions,

H N−2(SN−2
ε ∩ B1(p)) < C(N , ε,H N (B1(p))). (9.2)

The conclusion then follows from Theorem 9.2, where we proved that the
topologically singular set is included in SN−2

ε . The validity of [29, Theorem
1.9] in the case of manifolds with boundary can be checked with the verbatim
arguments therein indicated.

However, since the case of manifolds with boundary is not considered in
[29], below we provide an alternative proof under the additional technical
assumption that the smooth approximating manifolds have boundaries with
uniformly bounded diameter.

Let us start by pointing out that

(i) if x ∈ ∂X and �X (x) ≥ 1/2 − η(N , α), then x has a neighbourhood
Cα-homeomorphic to an open set in RN+ ;

(ii) if x ∈ X verifies�X (x) ≥ 1−η(N , α), then x has an open neighbourhood
Cα-homeomorphic to an open subset of RN .

We refer to [13,28,59] for the proof of (ii), which is based on Reifenberg’s
theorem for metric spaces.
Property (i) instead directly follows from the Boundary volume rigidity The-
orems 8.2 and 9.1.
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It follows from the discussion above that, letting

I := {x ∈ ∂X : �X (x) <
1

2
− η(N , α)},

P := {x ∈ X\∂X : �X (x) < 1 − η(N , α)},
(9.3)

it suffices to prove

H N−2 ((I ∪ P) ∩ B1(p)) ≤ C(N , α,H N (B1(p))). (9.4)

Let now (X̂ , d̂,H N ) be the doubling of (X,d,H N ) gluing along ∂X , see
for instance [79] for the precise definition. We claim that it is noncollapsed
Ricci limit (of a sequence of smooth N -dimensional Riemannian manifolds
with no boundary and Ricci curvature bounded from below by −N ).

Before proving the claim let us see how it implies (9.4). In order to do so
we let ι : X → X̂ be one of the canonical immersions of the starting space
into its double. Since ι is isometric, in order to prove (9.4) it suffices to prove
that

H N−2 (ι(I ∪ P) ∩ B1(ι(p))) ≤ C(N , α,H N (B1(ι(p)))). (9.5)

It is easy to check that, for any x̂ ∈ ι(I ∪ P) it holds

�X̂ (x) ≤ 1 − 2η(N , α).

Hence, there exists ε = ε(N , α) such that

ι(I ∪ P) ⊂ SN−2
ε (X̂). (9.6)

Applying [29, Theorem 1.9] to (X̂ , d̂) we infer that

H N−2(ι(I ∪ P) ∩ B1(ι(p))) ≤ C(N , α,H N (B1(p))), (9.7)

which yields the sought estimate.
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Let us pass to the verification of the claim. In order to do so we let (Xn,dn)
be the sequence of smooth manifolds with boundary converging to (X,d). We
then let (X̂n, d̂n) be the doubling along the boundary of (Xn,dn). From [83]
(see also the previous [65]) we deduce that (X̂n, d̂n) is a noncollapsed limit
of a sequence of smooth Riemannian manifolds with no boundary and Ricci
curvature bounded below by −N , for any n ∈ N. Then it is easy to check that
(X̂n, d̂n) converge in the pGH topology to (X̂, d̂)without collapse. To conclude
we observe that a diagonal argument yields that (X̂ , d̂) is a noncollapsed Ricci
limit space. ��
Remark 9.4 Relying on [29, Remark 1.10] we can improve (9.1) by showing a
stronger packing type estimate: for any collection of disjoint balls {Bri (xi )}i∈N
with xi ∈ Cα ∩ B1(p) it holds

∑
i∈N

r N−2
i ≤ C(N , α,H N (B1(p))). (9.8)

The remaining part of this section is devoted to the proof of Theorem 9.1.
Let us first introduce a regularization result for the distance to the boundary
on δ-boundary balls.

Lemma 9.5 Let N ∈ N, N ≥ 1 be fixed. For any ε > 0, if δ < δ(N , ε) then
the following holds. Given an RCD(−δ(N − 1), N ) m.m.s. (X,d,H N ) and
p ∈ X such that B8(p) is a δ-boundary ball, there exists a (1 + ε)-Lipschitz
function b : B4(p) → R+ satisfying:

(i) |b(x) − d∂X (x)| ≤ εd∂X (x) for any x ∈ B2(p);
(ii) b ∈ Dloc(�, B4(p)\∂X) and

 
Br (x)

|∇b − ∇d∂X |2 dH N + r2
 
Br (x)

|�b|2 dH N ≤ ε, (9.9)

for any x ∈ B2(p)\∂X, and r = d∂X (x)/3.

Proof We divide the proof into four steps. The first one aims at building a
partition of unity suitable for the geometry of our problem. In the second step
we build harmonic approximations of d∂X on balls with radius proportional to
their distance from the boundary and prove good estimates as in the theory of
Ricci limits (cf. [27]). The sought function is obtained averaging the harmonic
approximations of the distance obtained in Step 2 by the partition of unity built
in Step 1. The third step is devoted to the proof of (i) while in the last step we
obtain (ii).
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Step 1. There exist a family of functions {ϕk : B8(p) → R+}k∈N and a
family of balls {Brk (xk)}k∈N satisfying the following conditions:

(a) rk := d∂X (xk)/8, B4(p)\∂X ⊂ ⋃
k B 2

3 rk
(xk);

(b) if B 3
2 rk1

(xk1) ∩ . . . ∩ B 3
2 rkm

(xkm ) �= ∅ then m ≤ C(N ) and rki ≤ C(N )rk j
for any i, j = 1, . . . ,m;

(c) ϕk ∈ Lip(X) ∩ D(�), suppϕk ⊂ Brk (xk) and

ϕk + rk |∇ϕk | + r2k |�ϕk | ≤ C(N );
(d)

∑
k ϕk = 1 on B4(p)\∂X .

Let us briefly explain how to build a family of balls satisfying (a) and (b).
For any α ∈ N we cover B4(p) ∩ {2−α ≤ d∂X ≤ 2−α+2} using balls
{B2−α−1(xα,i ) : i = 1, . . . ,mα} with xα,i ∈ {2−α ≤ d∂X ≤ 2−α+2} such
that {B2−α−3(xα,i ) i = 1, . . . ,mα} is a disjoint family. The verification of the
fact that {B2−α−1(xα,i ) : α = 1, . . . ,mα, i ∈ N} satisfies (a) and (b) follows
from the following simply verified observations:

• mα ≤ C(N ) for any α ∈ N;
• if B 3

2 ·2−α−1(xα,i ) ∩ B 3
2 ·2−β−1(xβ, j ) �= ∅ then |α − β| ≤ 2.

We build now the partition of unity {ϕk} satisfying (c) and (d) following a
standard procedure. For any k ∈ N we use Lemma 2.10 to get a nonnegative
function ηk satisfying ηk = 1 on B 2

3 rk
(xk) and ηk = 0 on X\Brk (xk) along

with the bound

ηk + rk |∇ηk | + r2k |�ηk | ≤ C(N ).

Then we set

ϕk := ηk∑
i ηi

.

The verification of (c) and (d) is straightforward and builds upon the observa-
tion that 1 ≤ ∑

i ηi ≤ C(N ) on B4(p)\∂X .
Step 2. If δ < δ(N , ε), x ∈ B4(p), s = d∂X (x)/5 then there exists a unique

solution bx,s to the Dirichlet boundary value problem4

{
�bx,s = 0 on Bs(x),

bx,s = d∂X on ∂Bs(x),
(9.10)

which satisfies moreover the estimates

4 The Dirichlet boundary condition below is understood as bx,s − d∂X ∈ H1,2
0 (Bs(x)).
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(1) bx,s > 0, |∇bx,s | ≤ C(N ) and |∇bx,s | ≤ 1 + ε on Bs/2(x);
(2) |bx,s − d∂X | ≤ εs on Bs(x);
(3)

ffl
Bs(x)

|∇bx,s − ∇d∂X |2 dH N ≤ ε.

Existence and uniqueness of solutions to (9.10) follow from classical func-
tional analytic arguments (cf. [26, (4.5)] and [8, (4.11)]) since X\B(1+ε)s(x) �=
∅. Thepositivity ofbx,s in (1) is a consequenceof themaximumprinciple,while
the gradient bounds follow from [55] (for the non sharp one) and Remark 3.3,
for the sharp one given (iii).

In order to verify (2) and (3) let us consider a point q ∈ B4(p) ∩ ∂X such
that d(x, q) ≤ 5s and notice that B6s(q) is a δ′-boundary ball for δ ≤ δ(N , δ′),
thanks to Theorem 8.1 (i). Since Bs(x) ⊂ B6s(q) we can scale the space by a
factor 3/2s and verify (2) and (3) in the special case d∂X (x)/5 = s = 2/3. In
order to do so we rely on the continuity of the harmonic replacement (see [8])
arguing by contradiction.

First we observe that 1/n-boundary balls B2(qn) converge to B
R
N+

2 (0) as
n → ∞. Then we recall that Lemma 7.1 yields uniform andW 1,2 convergence
of the distance functions from the boundaries along the converging sequence,
and on any converging sequence of balls B2/3(xn).5 To conclude we observe
that on the half space the distance from the boundary is harmonic away from
the boundary and local spectral convergence holds for any ball far away from
the boundary. Therefore the harmonic replacements of the distance from the
boundary verify:

∥∥bxn,2/3 − d∂Xn

∥∥
W 1,2(B2/3(xn))

→ 0

and
∥∥bxn,2/3 − d∂Xn

∥∥
L∞(B2/3(xn))

→ 0, (9.11)

as n → ∞, yielding the sought estimates (2) and (3).
Step 3. Let ϕk and Brk (xk) be as in Step 1. We set bk := bxk ,2rk , where

bxk ,2rk is obtained by Step 2, and we define

b :=
∑
k

ϕkbk .

Let us show that |b(x) − d∂X (x)| ≤ C(N )εd∂X (x) for any x ∈ B2(p).

5 This stronger statement can be checked arguing as in the case of balls centered at boundary
points, given the uniform convergence of the distance functions.
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First let us consider x ∈ B2(p)\∂X . Using (1), (2), (b) and (d) we get

|b(x) − d∂X (x)| ≤
∑
k

ϕk(x)|bk(x) − d∂X (x)|

≤ 2ε
∑

{k:ϕk(x)�=0}
ϕk(x)rk

≤ C(N )εd∂X (x).

Then we can estimate

|∇b| (x) ≤
∑
k

|∇ϕk | (x)|bk − d∂X |(x) +
∑
k

ϕk(x) |∇bk | (x)

≤ εC(N )
∑

{k:ϕk(x)�=0}
|∇ϕk | (x)d∂X (x) + 1 + ε

≤ 1 + C(N )ε,

forH N -a.e. x ∈ B4(p). Above we exploited the very definition of b, together
with (a)–(d) and (1), (2).
This gradient estimate, together with the previous one, allows to infer that b
is Lipschitz once we set b = 0 on ∂X .

Step 4. We now verify that b ∈ Dloc(�, B4(p)\∂X) and

 
Br (x)

|∇b − ∇d∂X |2 dH + r2
 
Br (x)

|�b|2 dH N

≤ ε∀ x ∈ B2(p), r = d∂X (x)/3. (9.12)

ForH N -a.e. x ∈ B2(p) one has

|∇(b − d∂X )|(x) ≤
∑

{k:ϕk(x)�=0}
|∇(ϕk(bk − d∂X ))|(x)

≤ C(N )ε +
∑

{k:ϕk(x)�=0}
|∇bk − ∇d∂X |(x), (9.13)

where we have used (b), (c) and (2).
Let us now observe that on B4(p)\∂X it holds

�b =
∑
k

�ϕkbk + 2
∑
k

∇ϕk · ∇bk . (9.14)
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The first sum in (9.14) can be easily bounded by using (b), (c), (d) and (2)

∣∣∣∣∣
∑
k

�ϕk(x)bk(x)

∣∣∣∣∣ =
∣∣∣∣∣
∑
k

�ϕk(x)(bk(x) − d∂X (x))

∣∣∣∣∣
≤ C(N )

∑
{k:ϕk(x)�=0}

r−2
k εrk ≤ C(N )εd−1

∂X (x).
(9.15)

The estimate of the second sum in (9.14) uses (b) and (d):

∣∣∣∣∣
∑
k

∇ϕk · ∇bk(x)

∣∣∣∣∣ ≤
∑
k

|∇ϕk |(x)|∇bk − ∇d∂X |(x)

≤ C(N )d−1
∂X (x)

∑
{k:ϕk(x)�=0}

|∇bk − ∇d∂X |(x).
(9.16)

By combining (9.13), (9.15) and (9.16) we find out

 
Br (x)

|∇b − ∇d∂X |2 dH N + r2
 
Br (x)

|�b|2 dH N

≤ C(N )ε + C(N )

 
Bs(x)

∑
{k:ϕk(z)�=0}

|∇bk − d∂X |2(z) dH N (z),

which easily yields the sought conclusion as a consequence of (b) and (3). ��
Before entering into the proof of Theorem 9.1 we outline its strategy for the

reader’s convenience. In a nutshell: we perform a Reifenberg type argument
with two model sets, the Euclidean space R

N and the Euclidean half space
R

N+ , instead of the single model of the usual statement.
The homeomorphism F : B1(p) → R

N+ is built by setting F := (u, b)
where u : B8(p) → R

N−1 is a δ-splitting map with u(p) = 0 and b is given
by Lemma 9.5. The latter has to be understood as a suitable regularization of
d∂X . It is straightforward to check that F is a Lipschitz map, the delicate part
of our argument is to prove that

|F(x) − F(y)| ≥ (1 − ε)d(x, y)1+ε, for any x, y ∈ B1(p). (9.17)

To this aim, we distinguish two cases.
Case 1: x, y are far away from the boundary. More precisely, r := d(x, y)

is much smaller than d∂X (y) and d∂X (x). In this case, x, y ∈ B2r (x) and the
ball B2r (x) looks Euclidean at any scale. We can then run a transformation
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argument as in [29, Theorem 7.10] to find a transformation matrix A such that

A ◦ F : Br (x) → R
N is a δ-almost splitting map, |A| ≤ r−ε. (9.18)

Using that δ-almost splitting maps are ε-isometries we conclude

|F(x) − F(y)| ≥ rε|A ◦ F(x) − A ◦ F(y)|
≥ rε(1 − ε)d(x, y) ≥ (1 − ε)d(x, y)1+ε. (9.19)

Case 2: x, y are close to the boundary. In this case B2r (x) is a boundary
ball, where r := d(x, y), and we can apply a transformation argument on
u : B2r (x) → R

N−1. We can find A such that

A ◦ u : Br (x) → R
N−1 is a δ-splitting map, |A| ≤ r−ε. (9.20)

Arguing as above, we deduce that v := (A ◦ u, b) : Br (x) → R
N+ is an

ε-isometry and

|F(x) − F(y)| ≥ rε|v(x) − v(y)| ≥ (1 − ε)d(x, y)1+ε. (9.21)

Proof of Theorem 9.1 For δ < δ(N , δ′) we build a δ′-splitting map u :
B8(p) → R

N−1 with u(p) = 0 and a function b : B8(p) → R+ satisfy-
ing (i) and (ii) in Lemma 9.5 with δ′ in place of ε. We claim that F := (u, b)
verifies (i)–(iv).

Let x, y ∈ B1(p) and set r := d(x, y). The inequality |F(x) − F(y)| ≤
C(N )d(x, y) follows from the Lipschitz regularity of u and b.

Aiming at proving the inequality |F(x) − F(y)| ≥ (1 − ε)d(x, y)1+ε we
are going to argue as in the proof of [29, Theorem 7.10] (see also the proof
of (8.18)), relying on the transformation theorem. Since in this case the target
is the half-space and not the Euclidean space, we need to study separately the
two cases r ≤ d∂X (x)/3 and r > d∂X (x)/3.

Assume first r ≤ d∂X (x)/3. Let q ∈ ∂X ∩ B1(p) such that d(x, q) =
d∂X (x). For δ < δ(N , δ′) the ball Bs(q) is a δ′-boundary ball for any s ∈ (0, 8),
by Theorem 8.1 (i). The transformation theorem Proposition 3.13 (see also the
matrix growth estimate in Corollary 3.16) applied to u : B2d∂X (x)(q) → R

N−1

(taking into account the fact that u : B2(q) → R
N−1 is a δ′-splitting map)

implies the existence of a matrix Tx such that

• Tx ◦ u : B2d∂X (x)(q) → R
N−1 is an ε′-splitting map;

• |Tx | ≤ (2d∂X (x))−ε′ ≤ (6r)−ε′
,
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whenever δ′ < δ′(N , ε′). Assume δ′ ≤ ε′. Setting v := (Tx ◦ u, b), thanks to
Corollary 7.2 and (9.9), we have

N∑
α,β=1

 
Bs (x)

|∇vα · ∇vβ − δαβ | dH N +
N∑

α=1

s2
 
Bs (x)

|�vα|2 dH N ≤ ε′′, (9.22)

for s := d∂X (x)/3 and ε′ ≤ ε′(N , ε′′).
Applying again Proposition 3.13 to v : Bs(x) → R

N taking into account that
Bt (x) is a (N , δ′)-symmetric ball for any r ≤ t < 3/2s (see Theorem 8.1 (iii))
when δ ≤ δ(N , δ′), we get the existence of a matrix Ax such that

• w := Ax ◦ v : Br (x) → R
N is a ε′′-almost splitting map;

• |Ax | ≤ r−ε′′
,

for ε′ ≤ ε′(N , ε′′). Hence, if ε′′ ≤ ε′′(N , ε′′′), w : Br (x) → R
N is a ε′′′-GH

isometry thanks to Remark 3.10 and Remark 3.12, yielding that

||w(x) − w(y)| − d(x, y)| ≤ ε′′′r = ε′′′d(x, y).

This implies in turn

|F(x) − F(y)| ≥ (1 − ε)d(x, y)1+ε,

being w := B ◦ F , where B is a matrix satisfying |B| ≤ (1 + ε)r−ε for
ε′, ε′′, ε′′′ small enough.

Let us now deal with the case r > d∂X (x)/3. Let q ∈ ∂X ∩ B1(p) such that
d(x, q) = d∂X (x). Notice that B8r (q) is a δ′-boundary ball for δ ≤ δ(N , δ′)
as a consequence of Theorem 8.1 (i). We apply the transformation theorem
Proposition 3.13 to get a matrix Ax , such that |Ax | ≤ (8r)−ε′

and Ax ◦ u :
B8r (q) → R

N−1 is an ε′-splitting map. Relying now on Corollary 7.2 and on
Lemma 9.5 (i) we infer that, when δ ≤ δ(N , ε′′), v := (A ◦ u, b) : B4r (q) →
R

N+ is an ε′′-GH isometry. Notice that y ∈ B4r (q), hence

||v(x) − v(y)| − d(x, y)| ≤ 4rε′′ = 4ε′′d(x, y).

Arguing as above we deduce |F(x)− F(y)| ≥ (1−ε)d(x, y)1+ε, for ε′′ small
enough.

The assertion (ii) follows from the fact that {b = 0}∩ B4(p) = ∂X ∩ B4(p)
and Theorem 8.4 (iv).

Observe that F : B1(p)\∂X → R
N+\{xN = 0} is an open mapping by

invariance of the domain. Indeed, under our assumptions B1(p)\∂X is homeo-
morphic to a topologicalmanifold thanks to Theorem8.1 (iii) andReifenberg’s
theorem. Being F continuous and injective, to prove that F : B1(p) → R

N+
is an homeomorphism with its image it is sufficient to prove (iv). If this is
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the case, to prove that the image of any open set in B1(p) is open in R
N+ we

just need to observe that on any boundary ball, up to an invertible matrix, the
restriction of F verifies the same properties that F verifies on the ball of radius
1.

Let us therefore move to the verification of (iv). In order to do this it is
sufficient to prove that

F(B1(p) ∩ {d∂X ≥ δ}) ⊃ B1−2ε(0) ∩ {xN > δ(1 + ε)}, (9.23)

for any δ > 0. This claim can be verified arguing as we did in the proof of
Theorem 8.4 (iv), relying once more on the invariance of the domain and on
the fact that F(x) ∈ {xN = 0} if and only if x ∈ ∂X . ��
Remark 9.6 Arguing as in the proof of [29, Theorem 7.10] (see also the proof
of Theorem 9.1 above) and relying on the transformation Proposition 3.13 it
is possible to obtain the following regularity result, which is worth pointing
out.

If (X,d,H N ) is a noncollapsed RCD(−(N − 1), N ) space and x ∈ X is a
regular point, then for any 0 < α < 1 there exists an open neighbourhood of x
which isCα-homeomorphic to an open subset ofRN , and the homeomorphism
can be chosen with harmonic coordinate maps.

This observation gives in particular a positive answer to a question raised in
[76, Question 2.1] about existence of homeomorphisms from a neighbourhood
of a regular point of an Alexandrov space with curvature bounded from below
to an open set in R

N with harmonic coordinates. Notice that the regularity of
the harmonic map cannot be improved to biLipschitz, due to the presence of
singular points where harmonic maps do degenerate, see [31, Example 2.14].
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