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Abstract

Study of the plastic flow, strain-induced phase transformations (PTs), and microstructure
evolution under high pressure is important for producing new nanostructured phases'!® and
understanding physical'*7-1% and geophysical''"!* processes. However, these processes depend
on an unlimited combination of five plastic strain components and an entire strain path with no
hope of fully comprehending. Here, we introduce the rough diamond anvils (rough-DA) to reach
maximum friction equal to the yield strength in shear, which allows determination of pressure-
dependent yield strength. We apply rough-DA to compression of severely pre-deformed Zr. We
found in situ that after severe straining, crystallite size and dislocation density of a and w-Zr are
getting pressure-, strain- and strain-path-independent, reach steady values before and after PT,
and depend solely on the volume fraction of ®-Zr during PT. Immediately after completing PT,
o-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. Rough-DA produce a
steady state in a-Zr with lower crystallite size and larger dislocation density than smooth
diamonds. This leads to a record minimum pressure (0.67 GPa) for a-® PT with rough-DA,
much smaller than 1.36 GPa with smooth diamonds, 6.0 GPa under hydrostatic condition, and
phase equilibrium pressure, 3.4 GPa'®. Kinetics of strain-induced PT, in addition to plastic strain,
unexpectedly depends on time. This opens an unexplored field of the simultaneous strain- and
stress-induced PTs under pressure. The obtained results create new opportunities in material
design, synthesis, and processing of nanostructured materials by severe plastic deformations at
low pressure. Rough-DA can be utilized for finding similar laws for various material systems.
The above plethora of results was obtained in a single experiment, thus transforming the main
challenge—strongly heterogeneous fields in a sample—into a great opportunity.



Main

Processes that involve large plastic deformation and PTs under high pressure are common in
various manufacturing applications, materials synthesis technologies, and geophysics-related
problems. Plastic strain may drastically reduce the PT pressure by one®? and even two orders of
magnitude®, lead to new phases, and substitute time-controlled kinetics with fast plastic strain-
controlled kinetics”!. Four-scale theory and simulations’® are developed to explain these strain-
induced PTs (which are completely different from the traditional pressure or stress-induced PTs).
However, it is still in its infancy, and new experimental and theoretical approaches and
breakthrough results are very important. The main problem in studying plasticity, plastic strain-
induced PTs, and structural changes is that they depend on five components of the plastic strain

tensor &, and its entire path £gath, making an unspecifiable number of combinations of
independent parameters. In particular, the yield surface in the 5D deviatoric stress s space

f(s &, sgath) = 0, (p) depends on the pressure p, €,, and Sgath

hardening/softening and strain-induced anisotropy (Fig. 1A); here gy, is the yield strength in
compression. This complexity makes it practically impossible to determine the complete
evolution of the yield surface, even at small strains at ambient pressure. At high pressure, all

methods''"? present the yield surface as f(s) = g, (p), i.., like for perfectly plastic material (for
path
p

is neglected and merged in pressure, which causes large error in the

, demonstrating strain

which the yield surface is independent of ,and &

path
dependence on &, and &,

determination of the yield strength under high pressure. One of the methods to determine the
yield strength in shear 7, = g,/ V3 in DAC is based on the application of the simplified

ey . dp 21 . - .
equilibrium equation o Tf’ assuming the contact friction stress 7, between anvil and

sample reaches its maximum value Ty12’13’15 . Here, P is the pressure averaged over the sample
thickness 4. However, the results are systematically lower than other methods at ambient and
high pressure®!! due to the low friction coefficient of diamond leading to 75 < 7,,. Coupled
simulations and experiments show that 7, = 7,, only in a small region even above 100 GPa'®. To
resolve the above problems, we introduce rough diamond anvils (rough-DA), whose culet is
roughly polished to increase friction (Extended Data Fig. 1). We demonstrated that Ty = t,, for
rough-DA, which allowed us to robustly determine o, (p). The rough-DA allowed us to solve
several other basic problems and brought up discoveries described below.

, 1.e., 1s fixed in the 5D stress space), and

It was hypothesized in'’ that, above some level of accumulated plastic strain g in
monotonous straining (straining path without sharp changes in directions), the initially isotropic
polycrystalline materials deform as perfectly plastic and isotropic with a strain path-independent

surface of the perfect plasticity ¢ (s) = g, (p) (Fig. 1A). This statement means that the effect of

£, and sgath is excluded under the above conditions. Some qualitative supportive arguments for

the perfect plastic behavior are presented!”, but quantitative experimental proof is lacking for any
material. Here, we heavily pre-deformed commercial Zr by multiple rolling until saturation of its
hardness. We show that after the a-w PT, for four different compression stages (i.e., for very

different &, and sgath), all pressure distributions in the studied range from 2 to 11 GPa are
described by single function o, = 1.24 + 0.0965p (GPa). This is possible only if the material
behaves like perfectly plastic, isotropic, and independent of &, and egath. The perfectly plastic

state is related here to reaching a steady microstructure, determined here by in situ synchrotron
X-ray diffraction in terms of crystallite (grain) size d and dislocation density p, which do not
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change under successive plastic straining. For rough-DA at the beginning of a-» PT, d, is
smaller and p,, is larger than those from smooth anvils, i.e., rough-DA produces different, more
refined steady microstructure. This is also confirmed by the fact that the minimum pressure for
plastic strain-induced o-o PT, p4, was reduced from 1.36 GPa in smooth DAC to 0.67 GPa with

rough DAC, which is the record low PT pressure for Zr. For both smooth and rough anvils, the

gath. Surprisingly, d,, and p,,

evolution in w-Zr during a-® PT depends solely on the volume fraction ¢ of ®-Zr and is

independent of &), £gath, p, initial d, and anvil asperities. Similarly, there are unique functions

du(c) and pa(c) for rough-DA (with some scatter for 0.38<¢<0.52, which is discussed in

gath, and p. Thus, for strongly pre-deformed

material, &,and £§athare excluded from the governing parameters; this is the main completely

unexpected rule for plastic flow, microstructure evolution, and PT under pressure. The rough-
DA also qualitatively changes the PT kinetics for c: (a) dc/dg~(1-c) (first-order reaction) with
smooth anvils, while dc/dq is independent of ¢ (zero-order reaction) with rough-DA; (b) In
contrast to instantaneous process from conventional view on the strain-induced PTs, ¢ here varies
not only with growing plastic strain ¢, but also with time ¢.

pg,d,, and p,, in ©-Zr are shown to be independent of g,and €

supplementary materials), independent of &, &

Pressure dependence of the yield strength. Radial pressure distributions in each phase in
five successive compression steps, marked by the peak pressure at the culet center, are shown in
Fig. 1B. Corresponding sample thicknesses are collected in Extended Data Table. 2. Due to the
large asperities of the rough-DA, when they penetrate Zr surface, contact sliding occurs in a thin
layer of Zr, leading to 1 = T, Assuming von Mises yield condition with the yield strength o, =
039 + bp, and taking non-hydrostatic stress and heterogeneity along thickness into consideration,
the equilibrium equation averaged over thickness is advanced to (see Supplementary
Information):

dp —_4 09+bP
ar

= oy 4 nTTo\ 0y 2(1+0.524b)
— P=(F+ b)exP( Ab h ) b'A_\/§(1—0.262b)’ (1)

where P, is the pressure at the point ry. Fig. 1C shows that after a-o PT and for four different
compression stages, all pressure distributions overlap and are described by Eq. (1) with single
dependence o), = 1.24 + 0.0965p (GPa). Note that o) = 1.24 GPa is converted from the
hardness of w-Zr from*, H=3.72 GPa, based on the known relationship oy = H/3, proving that
T, is reached. Finite element simulations of the processes in DAC'®!” demonstrate that for
different positions and compression stages, &, sgath, and material rotations are very different.
Consequently, the ability to describe all four curves with single function o, (p) demonstrates
strict proof that for the monotonous loading with rough-DA, ®-Zr deforms as perfectly plastic
and isotropic material with &, and sgath independent surface of perfect plasticity. Additional

point is that the perfectly plastic state is found almost immediately after completing a-» PT, i.e.,
it is inherited from a-Zr. We found that for smooth anvils up to /5 GPa, the ratio 75 /7, = 0.39-
0.46 away from the center characterizes underestimate in the oy, (p) in previous works. We
connect perfectly plastic behavior with reaching steady microstructure. After completing PT, d,,,
and p,, for 6, 10, and 14 GPa steps are practically independent of radius (Figs. 2B and 3B). Since

path
Sp , Sp

. . .. ath .
microstructure, which is independent of pressure, &, and sg , 1s reached.

, and p strongly vary with radius and increasing load, this indicates that steady
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Fig. 1. Determination of the surface of perfect plasticity for ®-Zr. (A) Schematic of the evolution of the yield
surface f (s, &p sgath) =0, (p) until it reaches the fixed surface of perfect plasticity @ (s) = ay (p) in “5D” space of
deviatoric stresses s at fixed p. The initial yield surface and ¢ (s) = ay (p) are isotropic (circles). Two other yield
surfaces depend on &, and sgath, and acquire strain-induced anisotropy, namely shifted centers O; and O, (back
stress) and ellipsoidal shape due to texture. When the yield surface reaches ¢ (s) = g, (p), the material deforms as
perfectly plastic, isotropic with the fixed surface of perfect plasticity. (B) Pressure distributions for different
deformation steps with rough-DA. (C) Pressure in single-phase -Zr vs. r/h. Solid lines correspond to Eq. (1) for

039 = 1.24 GPa and 5=0.0965. Eq. (1) is not valid around culet center. Dash line shows the position where data is

truncated. The unified curve for all loadings (necessary to use data from all four compression stages as a single data
set) is obtained by shifting each curve (which is allowed by differential Eq. (1), see Supplementary Information)
along the horizontal axis by an appropriate distance. Shifts are shown in parenthesis. Since for different points from

different curves &p, sgath, and material rotations are very different, the obtained results prove the perfectly plastic

and isotropic material response with &, and egath independent surface ¢ (s) = g,,(p). (D) Distribution of volume
fraction of 0-Zr and pressure in a-Zr. Starting from the 6 GPa step, a -Zr is fully transformed to w-Zr along the
radius. Note that errors from the Rietveld refinement of the x-ray patterns for pressure, the volume fraction of phases
(as well as dislocation density and crystallite size) are smaller than the symbols in the plots.
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Fig. 2 Crystallite size distribution and evolution. Radial distributions of the crystallite size obtained with rough-
DA at (A) 2 and 3 GPa steps and (B) 6, 10, and 14 GPa steps. Since &
increasing load, this indicates that steady microstructure in terms of crystallite size, which is independent of

th
pressure, &,, and £,

p> €p

path

, and p strongly vary with radius and

is reached almost immediately after PT. (C) Crystallite size of a-Zr versus steady volume

fraction of ®-Zr from 2 and 3 GPa steps with rough-DA and with smooth anvils. Blue cross represents the first
appearance of ®-Zr with rough-DA at 0.67 GPa. For rough-DA at the beginning of a-® PT, the crystallite size is
smaller than that from smooth anvils, i.e., rough-DA produces different, more refined steady microstructure. With
exception of region 0.38<c<0.52, where some scatter is observed, the crystallite size of a-Zr during a-o PT is the
unique function of ¢, almost constant for ¢<0.6, which is independent of pressure, plastic strain, and strain path. (D)
Crystallite size of ®-Zr versus steady volume fraction of ®-Zr from 2 and 3 GPa steps with rough-DA, and with
smooth anvils. For rough-DA, points from 2 and 3 GPa steps overlap within dash lines. Results in (D) represent
surprising rule for o-Zr for both rough and smooth anvils: existence of the unique curve for the crystallite size solely

depending on ¢ for both pressure steps during a-» PT independent of pressure, &, and &,

path
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Fig. 3. Dislocation density distribution. Radial distribution of dislocation density at (A) 2 and 3 GPa steps, and (B)
6, 10, and 14 GPa steps. Since &, sgath, and p strongly vary with radius and increasing load, this indicates that

. . . . . . .. th .
steady microstructure in terms of dislocation density, which is independent of pressure, &,, and 85“ , is reached

almost immediately after PT. (C) Dislocation density in a-Zr versus volume fraction of ®w-Zr from 2 and 3 GPa steps
with rough-DA, and with smooth anvils. Blue cross represents the first appearance of ®w-Zr with rough-DA at 0.67
GPa. Since for rough-DA at the beginning of a-® PT, the dislocation density is larger than from smooth anvils, the
rough-DA produces different, more defected steady microstructure. With exception in region 0.38<c<(.52, where
some scatter is observed, the dislocation density in o-Zr during a-® PT is the unique function of ¢, almost constant
for ¢<0.6, which is independent of pressure, plastic strain, and strain path. (D) dislocation density in ®-Zr versus
volume fraction of @-Zr from 2 and 3 GPa steps with rough-DA, and with smooth anvils. For rough-DA, points
from 2 and 3 GPa steps overlap within dash lines. Results in (D) represent unexpected law for -Zr for both rough

and smooth anvils: existence of the unique curve for the dislocation density solely depending on ¢ for both pressure

steps during a-o PT independent of pressure, &, and egath. For small ¢, p, =p., indicating that small nuclei directly

inherit the dislocation structure from o-Zr during strain-induced PT.

Minimum pressure for initiation of strain-induced PT p¢. o-Zr diffraction peaks started
being observed at p¢ =0.67 GPa at the sample center (Fig. 4A and Extended Data Fig. 2). This is
a record low pressure for a-® Zr PT, which is 9.0 times lower than that under hydrostatic loading
(p? =6.0 GPa), 5.1 times lower than the phase equilibrium pressure of 3.4 GPa'#, and 2 times
lower than pg =1.36 GPa obtained with smooth anvils. At the culet edge at 2 GPa step, ¢=0.05 at
0.74 GPa (Fig. 1D), which means p¢ at the edge is practically identical to that at the center. This

indicates that for strongly pre-deformed o-Zr, p¢ is independent of £p> gt

h .
p  and pressure-strain
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path since they are very different at center and edge. The same is true for smooth diamonds
(Extended Data Fig. 3), for which, due to higher PT pressure, we have more points with p= p&.

At the initiation of PT with rough-DA, du =46 nm (Fig. 3C) and po= 1.68x10'3/m? (Fig.

4C), while with smooth anvils, de=66 nm (Fig. 3C) and ps= 1.22x10'5/m? (Fig. 4C), both

independent of radii and, consequently, &, egathand pressure-strain path. Thus, smooth and

rough anvils produce different steady microstructures in a-Zr (See Extended Data Table. 1 for
summary), which results in different p&. For steady microstructure of pre-deformed a-Zr, d~74
nm and p = 9.94x10'%/m? at ambient condition, which is one more steady microstructure. Since
for annealed a-Zr with micron grains, p¢ = 2.3 GPa’, a general trend is that p& reduces with
reduction in du (opposite to the initial theoretical prediction in’) and increase in pa.

PT and microstructure evolution kinetics. Distributions of pressure in phases and volume
fraction ¢ of o-Zr at 2 and 3 GPa steps are presented in Fig. 1D. Strain-induced PT kinetic
equation derived based on nanoscale mechanisms’ with neglected reverse PT is:

dc _ B1-0)* pa(q)-p d
dq B(1—c)+c( pd—pd ) for pe > pe. ()

w

l
Here p,(q) is the pressure in o-Zr - g loading path, B = (G ) ; k and [ are material parameters.

9%
oy
For smooth anvils, a=1, k&=11.65, and B=1.35 (Extended Data Fig. 4). Although plastic strain
tensor at arbitrary » is unknown in experiments, material near the symmetry axis undergoes

uniaxial compression and q = In(hy/h). Through numerical integration of Eq. (2), ¢ can be
expressed as a function of [ = quo (r.(q@) — p2) dq, where q, is the accumulated plastic strain at

p. In addition to steady-state data (after long relaxation time), data instantly after compression
and transient data between instant and steady states are shown in Fig. 4B. Such an unexpected
time dependence of PT kinetics confronts the conventional view that strain-induced PTs do not
occur without plastic strain increment, time is not an essential parameter, and plastic strain serves
as time-like parameter (like in Eq. (2))"%!°. Note that since the thickness of the sample does not
change between instant and steady states, creep as a reason for the time dependence of the strain-
induced PT is excluded. It appears that rough-DA allows us not only to reveal the time-
dependent part of the growth for strain-induced PT, but also to change the plastic strain-
dependent part. Surprisingly, c-/ curve is linear for steady state and instant state before relaxation
at 2 GPa step (I < 0.5) and after relaxation, with practically the same slope (Fig. 4B). Thus, the
rate of PT in Eq. (2) is independent of ¢, which results in a=/=0, B=1, and

dc _ 4 pa(@)-pé

dqg k ph-pé )
Value a=1 corresponds to multiple nucleation within the parent phase, while a=0 is typical for
propagation from a limited number of nuclei without their interaction, like for thickening of PT
band. Eq. (3) should be used for each fast-loading increment and for steady state, with different
k. Time-dependent contribution to the kinetics that reproduces Eq. (3) for the instant kinetics at
t = 0 and steady-state kinetics for t = oo and describes transient data at 2 GPa step is:

¢() = e(@e=oo + (@m0 = €(@D1=w) exp(—1355) “)

with a characteristic time of 43.13 min. Here, c(q);~o and c(q) ;- are the volume fractions after
instant compression and in the steady state. The surprising rule is found in Figs. 2D and 3D for
o-Zr: the unique curves d,(c) and p,,(c) for both pressure steps during a-® PT independent of

7



pressure, €, and sgath; for d, (c), it is also independent of processing with rough and smooth

anvils. There is similar, but weaker regularity for du(c) and pa(c) (Figs. 2C and 3C): with
exception in region 0.38<c<0.52, where some scatter is observed (see Supplementary
Information for discussion), the crystallite size and dislocation density in a-Zr during a-® PT is
the unique function of ¢, almost constant for ¢<0.6, which is independent of pressure, plastic
strain, and strain path. For small ¢, p« =po, indicating that small nuclei directly inherit the
dislocation structure from a-Zr during strain-induced PT.

2.8 T 1.0 T T T T T T g
A — (a*+a)-Zr B e steady state kinetics D i
26 4 o-Zr 4 @ Instant state kinetics P !
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Fig. 4 First appearance of ®-Zr at the sample center and strain and time-dependent Kinetics of a-® PT in Zr.
(A) Pure o-Zr diffraction peaks (blue) at p= 0.49 GPa and appearance of o-Zr peaks at p¢ = 0.67 GPa (red). (B)
The volume fraction of o-Zr vs. plastic strain and time. Green diamonds represent diffraction data after instant
compression; red circles designate results after reaching steady state; orange squares show intermediate data vs.
relaxation time; time labels show time from the beginning of the first measurement; g-values are shown near
symbols. Revealed linear strain-dependent kinetics and time dependence of the kinetics of strain-induced PT were
not observed in the literature.

The current results not only present the main and very nontrivial rules of plastic yielding,
strain-induced PT, and microstructure evolution during and after PT under high pressure but also
open new windows for utilizing rough-DA and finding similar laws for multiple material systems
in a broad pressure range. In particular, one can determine the pressure dependence of the yield
strength for important multiphase material systems (e.g., mantle rocks and composites).
Discovered time-dependence of the kinetics of strain-induced PTs opens unexplored field of the
simultaneous strain- and stress-induced PTs under pressure. By optimizing anvil asperity,
desirable plastic flow, minimum grain size, and minimum PT pressure can be reached. Also,
instead of severe plastic straining at high pressure, e.g., by high-pressure torsion, one can reach
one of the steady microstructures by severe straining at normal pressure (e.g., by rolling, ball
milling, or equal channel extrusion) and then produce PT and reach steady microstructure with
smaller grain size at relatively small plastic strain and low pressure by compression or high-
pressure torsion. Holding at a constant load to utilize the time-dependent PT component may
also be useful. For small volume fraction of w-Zr, crystallite size is much smaller, and
dislocation density is larger than for the steady state. This gives an idea of designing a-® Zr
composites with increased strength due to strong ultrafine-grained m-Zr and sufficient plasticity
due to a-Zr. During intense loading, an increase in volume fraction of m-Zr leads to energy
absorption and an increase in strength. All these may result in the economic plastic strain-
induced synthesis of nanostructured high-strength high-pressure phases at low pressures. In
addition, rough-DA eliminates the problem of describing contact friction required for modeling
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deformational and PT processes in DAC!®!7-!3, For traditional high-pressure torsion with
ceramic/metallic anvils, friction reaches the maximum possible level due to large asperities.
Utilizing rough-DA in rotational DAC>%8 will allow in situ studies of high-pressure torsion.
Also, to increase the maximum possible pressure in DAC, toroidal grooves are used, which
increase friction'?. This can be done with rough-DA more uniformly throughout the culet and
with smaller stress concentrators. Note that the above plethora of results was obtained in a single
experiment, thus transforming the main challenge—strongly heterogeneous fields—into a great
opportunity.

Methods
Experiment details

The material studied here is the same as was used in?’, purchased from Haines and Maassen
(Bonn, Germany), which is commercially pure (99.8%) a-Zr (Fe: 330 ppm; Mn: 27 ppm; Hf:
452 ppm; S: <550 ppm; Nd: <500 ppm). The sample slab of the initial thickness of 5.25 mm was
cold-rolled down to thin foil to obtain a plastically pre-deformed sample with saturated hardness.
3 mm disk was punched out from thin foil for unconstrained non-hydrostatic compression
experiments in DAC. For hydrostatic compression experiments, specks of size 20 pm were
chipped off from the pre-deformed sample. The hydrostatic high-pressure x-ray diffraction
measurements were performed to constrain the 3™ order Birch-Murnaghan equation of state
(Extended Data Table. 1) and pressure p?, which was found to be 6.0 GPa. All the pressures in
unconstrained non-hydrostatic experiments are determined using measured lattice parameters
and cell volume with the same equation of state. For hydrostatic experiments, Zr specks of size
20 um were loaded in the sample chamber along with silicone oil and copper chips as pressure
transmitting medium and pressure marker, respectively. The sample chamber was prepared by
drilling a hole of 250 um diameter in pre-indented stainless-steel gaskets indented from the
initial thickness of 250 pum to 50 um. Hydrostatic high-pressure experiments were carried out in
a small pressure step of 0.2 GPa up to a maximum pressure of 16 GPa. For the non-hydrostatic
experiment with smooth diamond anvils, a pre-deformed Zr sample disk (3 mm diameter, initial
thickness 165 um) was gradually compressed to ~15 GPa at the culet center without any
constraining gasket using a custom-designed loading system. For the nonhydrostatic experiments
with rough diamond anvil (rough-DA) (Extended Data Fig. 1), a pre-deformed Zr disk sample (3
mm diameter, initial thickness 163 um) was compressed gradually up to ~14 GPa at the culet
center with a gas-membrane system. All the in-situ axial XRD experiments were performed at
16-BM-D beamline at HPCAT (Sector 16) at Advanced Photon Source employing focused
monochromatic x-rays of wavelength 0.3100 A and size of 6um x 5um (full width at half
maximum (FWHM)) and recorded with Perkin Elmer detector. For the smooth anvil experiment,
the sample was scanned along one culet diameter (500 um) in 10 um step size at each load. For
rough-DA experiment, the sample was scanned along two perpendicular culet diameters (230
um) in 10 um step size. The sample thickness was measured through x-ray intensity absorption
using the linear attenuation equation with density corrected to the corresponding pressure,
similar to’. For the rough-DA experiment, the thickness was measured for six steps shown in
Extended Data Table. 2: when w-Zr emerged (0.67 GPa at the center) and when the pressure at
the center reached ~2, 3, 6, 10, and 14 GPa. The diffraction images were first converted to
unrolled patterns using FIT2D software?! (Extended Data Fig. 2) and then analyzed through



Rietveld refinement using MAUD software?? to obtain the lattice parameters, volume fractions of
w-Zr, microstrains, and crystallite sizes.

Dislocation density estimation

The crystallite sizes and microstrains extracted from the refinement using MAUD were used to
estimate the dislocation density as well, which helps in situ tracking the microstructure change
during deformation. Dislocation density can be expressed as®:

P =/ PcPms - (5)
Where p. and p,,s are the contribution to overall dislocation density from crystallite size and

microstrain, respectively. Contribution from crystallite size is:
3

pe =15 (6)
Where d is the crystallite size. Contribution from the microstrain is determined by the equation:
Pms = ke?/b?. (7
Where ¢ is the microstrain; b is the magnitude of the Burgers vector; k = 6mA (ﬁ) isa
0

material constant; E and G are Young’s modulus and shear modulus, respectively; A is a constant
that lies between 2 and m /2 based on the distribution of strain; r is the radius of crystallite with
dislocation; 1y is a chosen integration limit for dislocation core. In this study, A = 7 /2 as the
gaussian distribution of strain. Moduli E, G and their pressure dependence for o and w-Zr are
taken from>* and®, respectively. A reasonable value of In (7 /r,) being 4 is used?. a-Zr has a
dominant prismatic slip system of {1100}(1120)?%?"-282%_ As for w-Zr, a prismatic
{1120}(1100) and basal {0001)}(1100) dominant slip system is suggested based on plasticity
modeling®. Since crystal lattice gets compressed under pressure, the length of the Burger vector
is calculated using pressure-dependent lattice constants. It is worthy to note that when estimating
dislocation density using the Williamson-Smallman method*, we only consider one dominant
dislocation slip system. However, to accommodate arbitrary imposing plastic strain on
polycrystal, auxiliary slip systems are usually needed. With changing orientation of grains during
deformation, the Schmid factor of slip systems changes, and thus slip system activities, which is
the percentage of plastic strain accommodated by certain slip systems, will be different. This
may induce uncertainty in dislocation density estimation.
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Extended data figures and tables
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Extended Data Fig. 1. Surface asperity profile of a smooth anvil and a rough-DA. (A) a
traditional smooth diamond anvil with a range [-10 nm; 10 nm] and (B) a rough-polished

diamond anvil (rough-DA) with a range [-500 nm; 500 nm)].

Azimuth (Degrees)

2-Theia Angle (Degrees)
Extended Data Fig. 2. Unrolled diffraction image of Zr when w-Zr first emerged at 0.67
GPa at culet center.
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0.05 0.1 0.15 0.2 0.25
Radial distance (mm)

w phase fraction

(‘DL""I—H—L
0%ad = ——t = . ——

0 0.05 0.1 0.15 0.2 0.25
Radial distance (mm)

Extended Data Fig. 3. Radial distribution of (A) a-Zr pressure and (B) w-Zr volume
fraction in a sample deformed with smooth anvils. Different applied forces represent different
compression stages. Yellow squares show the minimum PT pressure pd =1.36 GPa at different
compression stages and at different radii where w-Zr was first observed. Since plastic strain,
plastic strain path, and pressure-strain path are very different at different locations and
compression stages and p¢ is independent of the locations, then p¢ is independent of plastic
strain, plastic strain path, and pressure-strain path.
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Extended Data Fig. 4. Kinetics of a-® phase transformation in Zr with smooth diamond
anvil. Compared to rough-DA experiment, kinetics shows different nonlinear features
corresponding to the first-order reaction with parameters a=1, k~=11.65, and B=1.35 in Eq. (2)

_~a _.d
e — p BU=9) (p“(q) P, instead of a=I/=0, B=1 for the experiment with rough-DA.
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A
Extended Data Fig. 5. Dislocation pileups producing a step at the grain boundary or phase
interface that causes a phase transformation. (A) Dislocation pileup in the left grain produces
step at the grain boundary and cubic to tetragonal PT and dislocation slip in the right grain.
Phase-field approach results from?!. (B) Dislocation pileup in the right grain produces a step at
the grain boundary in Si I and amorphization in the left grain. Molecular dynamics results
from>2. (C) Step at the phase interface boundary consisting of 15 dislocations and causing cubic
to hexagonal PT. The atomistic portion of the concurrent continuum-atomistic approach from??.
Adopted with changes from?!* with permissions.
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(A) . o (B)

gar7

Extended Data Fig. 6. Time evolution of the phase and dislocation structures at the fixed
applied normal stress and shear strain after phase nucleation in the right grain at the tip of
dislocation pileup in the left grain. (A) Schematics of grains with an initial solution for
dislocation pileup and nucleated high-pressure phase (red)**. (B) Nucleation and growth of the
high-pressure phase (red) in the right grain caused by an evolving dislocation pileup in the left
grain, which is shown at the top of each right grain!. Results are obtained with the phase-field

31,34

approach. Adopted with changes from”" " with permission.
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Extended Data Table 1. Structural and transformational parameters at three material
steady states obtained by rolling, treatment with smooth, and rough diamond anvils.

Multiple rolling Smooth anvils Rough anvils
. Steady state at
o-Zr 74 (ambient) PT initiation 66 46
Crystallite size (nm) et

eady state

w-Zr after PT 46 48

o | azr | 0.994(ambient) | Steadystateat 1.22 1.68
Dislocation density PT initiation
(10°m?2) Steady state

w-Zr - after PT 1.02 1.10

PT initiation pressure (GPa) - 1.36 0.67

Extended Data Table 2. Parameters of 3 Birch-Murnaghan equation of state of Zr used in
this study.

Zr phase V, (per formula unit) K, K,
o-Zr 23.272 A3 92.2 GPa 3.43
w-Zr 22.870 A3 102.4 GPa 2.93

Extended Data Table 3. The thickness of Zr sample with rough-DA in this study at
corresponding compression step. 0.67 GPa corresponds to the step when ®-Zr first emerge.

Compression step initial 0.67 GPa 2 GPa 3 GPa 6 GPa 10 GPa 14 GPa
Thickness (um) 163 101 56 48 40 32 26
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Supplementary Methods
1. Evaluation of the yield strength under high pressure

Pressure dependence of the yield strength is of great interest to many disciplines for
various reasons. It determines: (a) strength of structural elements working under extreme loads,
in particular, different high-pressure apparatuses, including DAC, rotational DAC, and
apparatuses with metallic or ceramic dies for the high-pressure torsion; (b) maximum pressure
that can be achieved in materials compressed in DAC (see Eq. (1)); (c) material flow in different
technologies, like high-pressure material synthesis, extrusion, forging, cutting, polishing, and
ball milling; (d) maximum possible friction in heavily loaded contacts, and related wear; (e) the
level of shear (deviatoric) stresses that can be applied to materials. The shear stresses drastically
affect the phase transformations, chemical reactions, and other structural changes*>-6.7:8:%10; (f)
plastic flow and geodynamic processes in Earth and other planets, including earthquakes.

There are two approaches to estimate yield strength under pressure in a DAC-like device,
which exploit x-ray diffraction in either radial or axial diffraction geometry. With radial
diffraction geometry, the yield strength in compression can be estimated from the lattice strains
(distortion of crystal lattice planes) measured by synchrotron x-ray diffraction. Since the
compression direction is perpendicular to the x-ray beam, lattice strains are detectable because
axial compression symmetry and diffraction symmetry do not coincide. With this method, all the
components of the elastic strain tensor in single crystals comprising polycrystalline sample can
be determined. Combined with high-pressure single crystal elastic constants, lattice strains can
be used to estimate the yield strength with proper mechanical assumptions®*. Despite obtaining a
large amount of experimental information and broad usage, this method suffers from several
disadvantages:

(a) All measurements are averaged over the diameter of the sample, and the radial
gradient of strain and stress fields is unavoidable due to contact friction. The macroscopic stress
state also includes shear stresses, which are not included in the treatment. To reduce the effect of
friction, a relatively small ratio of the sample diameter to thickness d /h needs to be used, which
also limits the axial displacement and applied plastic strain.

(b) When estimating yield strength from the lattice strains, different chosen mechanical
assumptions to determine effective elastic properties of the polycrystalline aggregate (Reuss,
Voigt, Hill, self-consistent, etc.) leads to different results.

(c) For multiphase materials, lattice strains give an estimation of stress in a single phase
only. The mixture theory for the yield strength of multiphase material is not well developed,
especially for large difference in the yield strength of phases*®’.

(d) Yield strength depends on the pressure, plastic strain, and grain size that evolve
during deformation. By presenting the yield strength versus pressure, all these effects are
prescribed to the pressure only, which introduces large errors.

With axial diffraction geometry, yield strength is estimated using radial pressure gradient
and sample thickness based on the simplified mechanical equilibrium equation in radial direction

r1213:15 combined with the assumption that the friction stress reaches the yield strength in shear
Ty
dar o



where p is the pressure, averaged over the sample thickness. Previously, the pressure was
measured at the surface using the ruby fluorescence method and thickness was measured on
recovered samples after unloading. Currently, pressure p can be measured using x-ray diffraction
and thickness using x-ray absorption. The advantage of Eq. (S1) is that it does not include
constitutive equations and assumptions, making it available for multiphase material.
Disadvantages are:

(a) Due to the low friction coefficient of diamond, the friction stress is much lower than
the yield strength in shear 7,,. This is the reason why this method significantly underestimates the
yield strength.

(b) Stress o and strain &, tensor fields are strongly heterogeneous along the radius, and

material undergoes very different plastic straining path sgath at different positions. Since the

yield strength depends on pressure, &,, and egath, but is presented as a function of a pressure
only, this also introduces large errors.

(c) Eq. (S1) neglects heterogeneity along the thickness and difference between pressure
and normal stresses.

We eliminate all the above drawbacks and advance mechanical equilibrium Eq. (S1) to
the form of Eq. (1) from the main text, which considers the heterogeneity of all stresses across
the sample thickness, in the following part.

2. Derivation of the advanced averaged equilibrium equation

Problem formulation. For compression of a sample in the DAC, a33, 0;1, and o0,, are the
normal stress components along the load (vertical), radial, and azimuthal directions, respectively;
T3, is the shear stress; o, and 7,, are the yield strength in compression and shear respectively.
Compressive stresses are negative. Pressure is defined as:

p = —(011 + 022 + 033)/3 . (52)
All stresses and pressure are functions of  and 2z/h in a cylinder coordinate system with the
origin at the center of the sample cylinder, where h is the sample thickness; in particular, p(0)
corresponds to the symmetry plane z = 0 and p(1) corresponds to the contact surface 2z/h = 1.
Pressure (or any stress), averaged over the sample thickness, is defined as:

_ 1 /h
p=+J,pdz (S3)
The contact friction stress 77 is defined by the simplified mechanical equilibrium equation
Aoy _ _ 215(p(1)) (S4)
dar h '

The pressure-dependent yield strength in compression o, and shear 7,, = o,/ V3 (based on the
von Mises equivalent stress) are:
o, = 0y + bp; 1, = 0,/V3 = (o + bp)/V3. (S5)
Note that g,, depends on the local pressure p. At the contact surface, symmetry plane, and for
averaged over the thickness, we have different pressures and yield strengths:
o,(1) =gy + bp(1); 0,(0) =0y +bp(0); &, =0y +bp. (S6)

7,(1) = (039 + b'p(l)) JV3; 7,(0) = (039 + bp(O)) /N3; T, = (039 + bﬁ)/\@.

For maximum possible friction provided by the rough-DA we have:



1 1
7 (p(D) = 7, (D) = 20, (1) = = + bp(1)). (S7)

With expression in Eq. (S7), the equilibrium Eq. (S4) specifies as:
doy; _ _iay(l) _ 2 039+bp(1) (88)

ar -~ V3 h V3 h
Since we assume that in XRD experiments, the distribution of pressure p(r) averaged over the

thickness is measured, we need to express &;; and p(1) in Eq. (S11) in terms of p(r).
Traditionally, this difference is neglected, i.e., it is assumed ;; = p(1) = p(r), which
introduces errors.

Analytical evaluation of the stress and pressure fields. We assume that material behaves
as perfectly plastic and isotropic macroscopically, with the surface of perfect plasticity @ (s) =
0y (p) in the 5D deviatoric stress tensor s space. This surface is independent of the plastic strain

tensor &, and its path egath. Such behavior can be achieved after large enough preliminary

plastic deformation leading to saturation of hardness'>. The pressure-dependent von Mises yield
condition (i.e., Drucker-Prager yield condition) is assumed:

1
p(s) = ﬁ\/(o'n — 02)? + (011 — 033)? + (032 — 033)% + 67132 = O'y(P) = \/§Ty(P)- (S9)
Equilibrium equations are:

0071 07,3 011=022 __ .

ag + aza + — = 0; (S10)
033 T13 4 T13 _
e (S11)

The following assumptions are made:
(a) It approximately follows from the finite element method simulations and DAC experiments:
011 = 032. Then plasticity condition Eq. (S9) simplifies to:

(011 — 0'33)2 + 3T?%1 = 0'3%(29) = 3T32/(P)~ (S12)
(b) Stress o035 is independent of z. However, it does not mean that:
Zupl=0 5 1y=12)2. (S13)

because at the contact surface, 7,(z) may equal to constant ay for all r, for material with
pressure-independent yield strength. g33, that is independent of z means two other terms in Eq.
(S11) make small contributions to o33.

For plane strain, when the term Trﬁ in Eq. (S11) is absent, a slightly modified Prandtl's

solution for the maximum possible contact friction® for stresses that satisfy equilibrium
equations and plasticity conditions are:

933(r) _ 933(0) | 2r

T, Ty T (S14)

Tis _ 22 s
Ty h > ( 5)
I o 2@ 4 27 _ (%) = 2™ _ (%) S16
Ty +h+\/§ 1 (h) S +V31 (h) ’ (S16)
P 2011t+033 _ o33(r) 2 (22 2 s17
Ty - 3‘L'y - Ty 3\/§ 1 (h) * ( )

The difference with Prandtl's solution is in multiplier v/3 instead of 2 in Eq. (6) for o;;. The
reason is that we use the von Mises condition and g,; = 0,,, which results in Eq. (S12), while in
Prandtl's solution, the Tresca condition along with plane strain assumption leads to the yield
condition (01, — 033) + 413, = 0y = 415.



Eq. (S16) and Eq. (S17) lead to the relationship:

ou_ _p V3| _ (%)
Pt b /1 (2)". (S18)

Stress 07, and pressure p, averaged over the sample thickness are

Gii _ 1choy 5 033(0)  2r 3w _ o33 | VBm

@ R0 7, T 1y(P) Tt _Ty(ﬁ)+ 4 (S19)
P _ _ 033 _\3m
@ T,®) 6 (520)

We assumed that 7, is constant during averaging and then substituted in the result 7,,(p). It is
possible to avoid this assumption, but the final equations are getting too bulky and not usable
analytically for our purposes. Note that the averaged value of 734 is much closer to the value of
011(2z/h) at the symmetry plane ;4 (0) than at the contact surface o1, (1). For example,
(0-11(0) — 0-33)/(\/§Ty) = 1, 011(1) — 0-33 = 0, and (511 — 0-33)/(\/§Ty) = 079 Simﬂar,
(p(0) + 033)/(27y/‘/§) = —1,p(1) — 033 = 0, and (73, — 033)/(27y/‘/§) =—0.79.
Eq. (S19) and Eq. (S20) lead to the relationship:
011 _ __P V3w

Ty(ﬁ) Ty(ﬁ) + 12 ° (821)
We aim to find the relationship between a; 4, g,1(0), and g;,(1). We will use the following
identity:

G11—011(0)

011 = 011 (Dw + 01, (0)(1 — w); wi=7 (D)=011(0) " (522)
11 11
Where w is treated as the weight factor. Utilizing Eq. (S16) and Eq. (S19), we obtain:
_q_m o® . m optbp
W= 4 0y(p(0)) - 4 0p+bp(0) ’ (S23)
Similar,
h = —w)- _ _p-p(0)
p=pMw+pO)A-w)  w=-7""-. (S24)

Here we used the same symbol w because from Eq. (S17) and Eq. (S20), it has the same
expression (Eq. (S23)) as for g;;. Also, we obtain from Eq. (S16) and Eq. (S18):

g
011(1) = =p(1) = 0355 611(0) = —p(0) + 27, (p(0)) = —p(0) + 35, (p(0)); (S25)
from Eq. (S17):
p(0) = —033 — 1.1557,(p(0)) = —a33 — 0.6670,,(p(0)) = p(1) — 0.6674,(p(0)); (S26)
from Eq. (S21):
11 = —p + 0.4537,(p) = —p + 0.2620,,(p) = 0.2620 + p(0.262b — 1). (S27)
Elaborating Eq. (S26) with allowing for Eq. (S6):
(1)-0.66709
p(0) = p(1) — 0.6670,(p(0)) = p(1) — 0.667[0y + bp(0)] - p(0) = ﬁ (S28)
Substitution of Eq. (S28) in Eq. (S23) and Eq. (S24) results in:

_ p(1)-0.6670y _ ) 1 oy+bp
p=p(w+ —Tocen 1-w); w =1-—(0.785 + 0.524b) SopD - (S29)
Resolving linear equations Eq. (S29) for w and p(1), we obtain:
_ 0411 $30)
w 1.910+b’ (
p(1) = 0.524039 + (1 + 0.524b)p. (S31)

Substituting in Eq. (S6) for 0,,(1) in Eq. (S31), we obtain:



0,(1) = a + bp(1) = (o + bp)(1 + 0.524b) (S32)
Substituting Eq. (S27) and Eq. (S32) in Eq. (S8) results in the final equilibrium equation for
parameters oy and b from the best fit to experiments:
dp _ 2 1+0.524b 0y+bp
dr V3 1-0262b h (533)
Eq. (S33) is the final mechanical equilibrium equation expressed in terms of measured pressure p

averaged of the sample thickness, which is used as Eq. (1) in the main text to determine the
pressure dependence of the yield strength. It transforms to the known equation'>!>!> for b = 0
only. We want to use data from all four compression stages as a single data set. To do this, we
must justify a way to combine all data in a single plot. Eq. (S33) and its solution in Eq. (1) in the
main text have the following properties:

(a) Pressure distribution depends on the dimensionless geometric parameter r/h rather
than on r and h separately.

(b) Pressure distribution curves for different applied forces and compression can be
overlapped by shifting curves along the r axis without changing o, (p), since change r - r + C

does not violate Eq. (S33). Indeed, one can choose the same p,, for all curves and choose

c )
constant C for each curve such that % = const is the same for all curves.

These properties are used in Fig. 1C in the main text. Practically, one can choose a fixed
(ps, 17) point in the p — r/h plane for all curves to pass through. Then the curve that originally
passes through the point (py, 1;), should be shifted in the positive direction by the distance (ry —
1;)/h, so that the new curve passes through (py, 7). Then we used all the points in the shifted
curve in Fig. 1C to find the best fit for Eq. (S33) (or Eq. (1) in the main text).

Supplementary Discussion

1. Rationales for the evolution of the crystallite size and dislocation density in ®-Zr during
the phase transformation

Small crystallite size in ®-Zr at the beginning of PT is caused by small transformed
regions. The growth of the crystallite size in ®-Zr is related to the growth of these regions in the
course of PT. Also, as it follows from’ and the current paper, the reduction in the crystallite size
of a-Zr reduces the minimum pressure for initiation of the strain-induced PT p¢ and promotes
the PT. That is why the smallest crystallites of a-Zr transform first to w-Zr, then larger grains
transform, so the crystallite size in w-Zr grows during PT. Since ®»-Zr is approximately two times
stronger than a-Zr, plastic strain is mostly localized in the a-Zr. That is why plastic strain and
strain path do not affect the crystallite size and dislocation density in o-Zr. Reduction in the
dislocation density in ®-Zr is caused by the inverse proportion between the dislocation density
and the crystallite size following from Eq. (5) and Eq. (6).

2. Explanation of the existence of outliers in the evolution of the crystallite size and
dislocation density in a-Zr during the phase transformation

As it follows from Fig. 2D and Fig. 3D, the crystallite size of and dislocation density in ®
-Zr during the phase transformation are unique functions of the volume fraction of ®-Zr
independent of pressure, plastic strain tensor, and its path. Similar dependence is found for a-Zr



in Fig. 2C and Fig. 3C, but there are outliers for 0.38<c<0.52 obtained at the 2 GPa step. Indeed,
at the 2 GPa step and in the two-phase region, the crystallite size of a-Zr remains constant while
its volume fraction is larger than 0.6 (Fig. 2A and Fig. 2C), same as the steady value before PT.
When the volume fraction of a-Zr gradually decreases to 0.48 towards the culet center, the
average crystallite size of a -Zr slightly increases to ~60 nm. This is caused by the statistical
effect. As it follows from’ and the current paper, the reduction in the crystallite size of a-Zr
reduces the minimum pressure for initiation of the strain-induced PT p¢ and promotes the PT.
That is why the smallest crystallites of a-Zr transform first to o-Zr, increasing the average size
of the remaining a-Zr crystallites. It is almost non-detectable at large volume fractions of a-Zr
but essential at small volume fractions. Also, constant crystallite size is observed for 7>60 um,
where, due to friction, plastic deformation is much larger than at the central part. This large
plastic strain restores the same steady averaged crystallite size by refining large crystallites. At
the center, plastic strain is much smaller and insufficient to restore the steady size. At the 3 GPa
step, with further reduction in the volume fractions of a-Zr and an increase in plastic strain, these
outliers disappear, and all points belong to the single red curve in Fig. 2C versus volume
fractions of a-Zr. Reduction in crystallite size is related to dividing a-Zr crystallite into two or
more parts due to PT inside of grains.

A similar statistical effect can explain outliers in the dislocation density in a-Zr for
0.38<¢<0.52 obtained at 2 GPa step. Formally, it is caused by the inverse proportion between the
dislocation density and the crystallite size that follows from Eq. (5) and Eq. (6). Physically, PT
starts and occurs first in the grains with the largest dislocation density, where the probability of
strong stress concentrators is higher. Transformation of these grains of a-Zr to o-Zr decreases
the averaged dislocation density in the remaining a-Zr crystallites. It is almost non-detectable at
large volume fractions of a-Zr but essential at decreasing volume fractions. Also, constant
dislocation density is observed for 7>60 um, where plastic deformation is much larger than at the
central part. This large plastic strain restores the same steady averaged dislocation density in the
large grains. At the center, plastic strain is much smaller and insufficient for restoring the steady
dislocation density. At the 3 GPa step, with further reduction in the volume fraction of a-Zr and
an increase in plastic strain, these outliers disappear, and all points belong to the single red curve
in Fig. 3C versus the volume fraction of w-Zr. An increase in averaged dislocation density is
probably caused by increased dislocation density near new a-w interfaces to accommodate local
transformation strain and decrease crystallite size. Large scatter in both crystallite size and
dislocation density in a-Zr near completion of PT is caused by increasing measurement error for
a tiny amount of a-Zr.

3. Scatter in crystallite size and dislocation density in ®-Zr after completing phase
transformation

While the crystallite size and the dislocation density in w-Zr after completing the phase
transformation are independent of the radius (Fig. 2B and Fig. 3B), there are some scatters
around the average along the radius. Also, the dislocation densities are slightly varying between
6, 10, and 14 GPa steps. These scatters cannot be attributed to the dependence of the crystallite
size and dislocation density on pressure, plastic strain, and strain path. Indeed, pressure strongly
and monotonously reduces, plastic strain strongly and monotonously increases along the radius,
and the plastic strain path also changes monotonically. However, there are no clear radial



dependence of the crystallite size and the dislocation density. Because of the large fluctuation,
the slight difference in the average dislocation density between 6, 10, and 14 GPa steps also
cannot be solely attributed to the growing pressure and plastic strain. A possibility is that the
observed fluctuations in the crystallite size and the dislocation density after PT completed are
due to evolving texture (i.e., dynamically changing distribution of crystallographic orientations
and uncharacterized preferred orientations) during the plastic deformation with increasing
pressure and errors in post-processing of XRD patterns as described in Method.

4. New findings relative to the previous works

The effects of severe plastic deformations under high pressure on phase transformations
and microstructure evolution are mostly studied with high-pressure torsion (HPT) with metallic
or ceramic anvils, see reviews!1%3%%0Stationary states after severe plastic straining in terms of
torque, hardness, and grain size are well-known in literature, particularly after HPT, along with
many cases where they were not observed. However, all these results were not observed in situ
but obtained postmortem after pressure release and further treatment during sample preparation
for mechanical and structural studies. The direct effect of pressure and the combined effect of
pressure and plastic straining on the yield strength, crystallite size, and dislocation density were
not determined in the literature. This is very important because, e.g., the yield strength of the ®-
Zr doubles at ~13 GPa. During unloading after compression or HPT, additional plastic
deformation may occur, which may also cause direct or reverse PT*'*2. Also, several PTs may
occur during the loading and others during unloading, e.g., Si-I—=Si-II— Si-XI— Si-V during
loading and Si-V—Si XII & III during unloading****, and the final product does not characterize
any PT and processes during the loading. Since after severe plastic deformation a material
becomes brittle and internal tensile stresses are present in some regions, damage may also occur.

Moreover, during machining, polishing, and electropolishing of the recovered sample,
with or without acids, direct or reverse PT may occur as well, in particular, for Zr*. It was
obtained in*® that the grain/crystallite size of o-Zr is smaller than those of a-Zr, while our in-situ
experiments show the opposite. Some samples were characterized six months later than HPT was
performed*, and some heterogeneities in hardness distribution along the radius were found. B-Zr
was found in?° after compression of optimally oriented highly textured Zr at 1 GPa and after five
anvil rotations at 0.5 GPa in*’ from the same Zr sample we are using here. However, in situ, we
did not find any traces of B-Zr even at 13 GPa. Our results are consistent with the first-principles
simulations in*®, in which B-Zr exhibits imaginary phonon frequencies and is dynamically
unstable at a pressure lower than 25 GPa. Grain size and dislocation density may also change
through recovery and recrystallization processes. Thus, in comparison with our in-situ
examination, various inaccuracies are introduced in postmortem studies. In addition, pressure
during compression and HPT with metallic/ceramic anvils is determined as a total force over
total area, which may underestimate the maximum pressure in a sample by a factor of 3 or
more*-, In particular, the above numbers for PT pressure and corresponding numbers in?%45-47
for a-® PT should be multiplied by these correcting factors.

Because of the above problems, the time-dependence of plastic strain-induced PT kinetics
was not reported previously and could be reliably determined only in in-situ experiments. The
same is true for the minimum pressure for the direct strain-induced PT and, consequently, for the
findings that it is independent of the preliminary plastic straining (above some critical
magnitude), pressure-accumulated plastic strain, and entire plastic strain path. The existence of



the unique curves for the dislocation density and crystallite size for both a-Zr and w-Zr during o-
path
P

Our results about the existence of multiple steady states are consistent with known results

that different ways to produce severe plastic deformation (e.g., HPT, equal channel extrusion,
ball milling, etc.) lead to different steady grain sizes'!%*. However, our results also find that the
different steady states in terms of the crystallite/grain size, dislocation density, and the minimum
pressure for the strain-induced PT can be produced in the same device by the same method just
by increasing the height of asperities and, consequently, the contact friction. Being different from
the previous studies, the existence of the multiple steady states is proved in situ under high
pressure in our study.

Our result in Fig. 1A on the existence of the fixed isotropic pressure-dependent surface of

o PT, independent of pressure, &, and & has not been reported in the previous studies.

perfect plasticity independent of &, and szath is far beyond the existence of the steady hardness,
the same for different processing techniques and initial states. An important point is how to relate

this surface with the traditional evolving yield surface, which is anisotropic and depends on &,

gath. In addition, our finding is formulated in the language of plasticity theory (plastic

strain and strain path tensors, yield surface, etc.) instead of technological language, which allows
one to use the obtained knowledge to significantly enrich fundamental plasticity in the
formulation and application of plastic models and computer simulations of various processes.
Note that the isotropy of the surface of perfect plasticity ¢ (s) = o,,(p) follows not only from
experiments but from the theory. Indeed, since initially polycrystalline material with stochastic
grain orientation without texture is isotropic, its anisotropy during deformation can come from

£, and sgath only, i.e., it is strain-induced. Since ¢(s) = o,,(p) is independent of &, and sgath ,
the only source for anisotropy disappears.

Similarly, the existence of (a) the steady crystallite/grain size and dislocation density
determined in situ under high pressure and independent of pressure, &, and £gath, and (b) its

connection to the surface of perfect plasticity and the minimum pressure for the direct strain-

and &

induced PT, both independent of &, and sgath , is well beyond of the known postmortem finding

of the steady grain size and (in few cases) the dislocation density, the same for different
processing techniques and initial states. Note that the steady state in the yield strength does not
correspond to the steady state in torque in high-pressure torsion>’, mostly due to the complexity
of the friction condition.

5. Rationales for the reduction in the minimum pressure for the strain-induced PT with
decreasing crystallite size and increasing dislocation density

As suggested in our analytical model’ and phase field models®'**, plastic strain-induced
PT occurs by nucleation at the tip of a dislocation pileup as the strongest possible stress
concentrator. All components of stress tensor & at the tip of dislocation pileup, modeled as a
superdislocation, are:

o~1l~N (S37)

where 7 is the applied shear stress limited by the yield strength in shear 7,,, / is the length of the
dislocation pileup, and N is the number of dislocations in a pileup. The higher the dislocation
density, the higher the probability of the appearance of dislocation pileups with a larger number
of dislocations. This trivially explains reducing the minimum pressure for the strain-induced PT



with increasing dislocation density. However, since / is limited by the fraction of the grain size
(e.g., half of the grain size), the main conclusion in” was that the greater grain size is the stronger
reduction in the PT pressure, i.e., opposite to what we found in experiments. Our later phase field
3134 “molecular dynamics®?, and concurrent atomistic-continuum simulations* allow us to
resolve the problem, at least qualitatively. In contrast to the analytical solution utilized in’, / is
not related to the grain size since most dislocations are localized at the grain boundary producing
a step (superdislocation, Extended Data Fig. 5) with effective length /=Nb<<d, where b is the
magnitude of the Burgers vector. At the same time, T = 7,, increases with the decrease in d

according to the Hall-Petch relationship 7, = 74 + kd=%>, where 7, and k are material

parameters. That is why the minimum pressure for the strain-induced PT decreases with
decreasing crystallite size.

6. On the possible source of the time dependence of the kinetics of strain-induced PTs

It was generally accepted that during shear under high pressure, PT stops when shear
stops>” . That means that time is not a governing parameter and plastic strain plays a role of a
time-like parameter. A nanoscale rationale in’ explaining this statement was that barrierless
nucleation at the tip of the dislocation pileup occurs extremely fast and, since stress decreases
like //r with distance from the tip 7, grows is very limited and is arrested when phase interface is
equilibrated. Since this process occurs in a much shorter time than the measurement time, a time-
dependent component is not detectable, and plastic strain is the only governing parameter. This
was implemented in’ in the strain-controlled kinetic equation, see Eq. (2) in the main text. This
equation was confirmed by experiments in’, but the time-dependent component of the kinetics at
fixed load/torque was not checked because it was not expected. After we found here the time
dependence of the kinetics of strain-induced PT experimentally, we can revisit the results of the
phase-field simulations to rationalize it. Extended Data Fig. 6 shows the time evolution of the
phase and dislocation structures at the fixed applied normal stress and shear strain after phase
nucleation in the right grain at the dislocation pileup in the left grain. Applied normal stress is 10
times lower than the PT pressure under hydrostatic conditions. One can see that after nucleation,
the high-pressure phase significantly grows and reaches the opposite grain boundary, the number
of dislocations in the dislocation pileup in the left grain increases (especially within step at the
grain boundary), dislocations nucleate and evolve in the right grain, the second nucleus appears
at the dislocation pileup that develops within the right grain, then nuclei coalesce, and the
stationary phase and dislocation configurations is achieved. The time scale for phase and
dislocation evolution is determined by two kinetic coefficients, which are different for different
materials. If the first measurement at the material point in a sample in DAC completes before a
stationary state is reached, this evolution is undetectable, the entire process looks instantaneous,
and the kinetics of the PT is fully plastic strain controlled. In the opposite case, phase evolution
at the fixed strain will be observed and time-dependent component of the kinetics should be
characterized and formalized.
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