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Machine learning models are gaining increasing popularity in the domain of fluid dynamics 
for their potential to accelerate the production of high-fidelity computational fluid 
dynamics data. However, many recently proposed machine learning models for high-
fidelity data reconstruction require low-fidelity data for model training. Such requirement 
restrains the application performance of these models, since their data reconstruction 
accuracy would drop significantly if the low-fidelity input data used in model test has 
a large deviation from the training data. To overcome this restraint, we propose a diffusion 
model which only uses high-fidelity data at training. With different configurations, our 
model is able to reconstruct high-fidelity data from either a regular low-fidelity sample 
or a randomly measured sample, and is also able to gain an accuracy increase by using 
physics-informed conditioning information from a known partial differential equation 
when that is available. Experimental results demonstrate that our model can produce 
accurate reconstruction results for 2d turbulent flows based on different input sources 
without retraining.

 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

Introduction

High-fidelity numerical simulation of fluid dynamics offers valuable information on how engineering systems interact 
with fluid flows, and is therefore of great interest to engineering design and related fields. Numerical methods for high-
fidelity computational fluid dynamics (CFD) simulation, such as the Direct Numerical Simulation (DNS) [1], often require 
numerically solving the Navier-Stokes equations at a fine scale in both space and time. Such methods have a high com-
putational expense, especially for simulations with high Reynolds numbers. Various fluid modeling techniques have been 
developed to reduce the computational cost of DNS, including the Reynolds Averaged Navier-Stokes (RANS) modeling [2,3], 
the Large Eddy Simulations (LES) [4,5], hybrid RANS-LES models [6–11], functional sub-grid models which determine an 
effective eddy viscosity by wave number and an a priori specified mixing length [12–16], and the Explicit LES closure mod-
els [17–21]. These techniques increase the computational efficiency of the CFD simulation at the expense of reducing the 
fidelity of the simulation results. The underlying conflict between computational complexity and simulation fidelity mo-
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tivates the study of using machine learning for surrogate modeling to accelerate CFD simulation. Machine learning-based 
surrogate models cover a wide range of data representations and problem formulations for CFD data, including learned CFD 
solvers based on Lagrangian representation [22–25] or Eulerian representation [26–35]. In this work, we aim to develop a 
machine learning model which reconstructs high-fidelity CFD data from low-fidelity input. Since low-fidelity data requires 
less computational resources to generate, by using a machine learning model to reconstruct high-fidelity data from the 
numerically-solved low-fidelity one, we can mitigate the conflicts between computational cost and simulation accuracy, and 
increase the cost-effectiveness of CFD simulations.

Inspired by the various research progress in deep learning for image super-resolution, such as the progressive GAN train-
ing approach [36–38], the transformer-based approach [39–41], and the diffusion model-based approach [42–44], several 
neural network models have been proposed to increase the resolution and reconstruct under-resolved CFD simulations. 
Pant et al. [45] proposed a CNN-based U-Net model to reconstruct turbulent DNS data from the filtered data and achieved 
state-of-the-art results in terms of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). With a 
design using skip-connections and multi-scale filters, Fukami et al. [46,47] proposed a convolutional neural network-based 
model to reconstruct high-resolution flow field data from low-resolution data in both space and time domains. A multi-
scale enhanced super-resolution generative adversarial network with a physics-based loss function was proposed by Yousif 
et al. [48] to reconstruct high-fidelity turbulent flow with minimal use of training data. To address the case where low and 
high-resolution flow fields are not matched, Kim et al. [49] proposed a CycleGAN [50]-based model trained with unpaired 
turbulence data for super-resolution. The effectiveness of generative neural networks in CFD data super-resolution is not 
limited to the 2d domain but also 3d volumetric flow data [51,52] and particle-based fluids [53,54]. The learned recon-
struction networks can also be coupled with a numerical solver to build effective coarse-grained simulators. Kochkov et al. 
[55] proposed to use a convolutional neural network to correct the error of a simulator that runs on an under-resolved 
grid. Um et al. [56] generalized the idea of using neural networks to correct the error of numerical PDE solution arising 
in under-resolved discretization, and incorporated the solver into the training loop by running differentiable solver on the 
reconstructed results to account for future loss.

The aforementioned deep learning models have yielded promising results in their respective applications and problem 
settings, yet they share one common limitation: The models are all trained to fit a particular type of under-resolved CFD 
data as specified by their corresponding training datasets (e.g., a specific filter). As a result, if a trained model is used to 
reconstruct high-fidelity CFD data from low-fidelity input that significantly deviates from the training dataset (e.g., in terms 
of resolution or a Gaussian blurring process), the accuracy of data reconstruction will drop significantly. In other words, 
to ensure the best performance, the users will always have to retrain those models when a new set of under-resolved 
CFD data is given. The dependency on model retraining has significantly restrained the applicability of deep learning tools 
in high-fidelity CFD data reconstruction. To resolve this issue, we propose a diffusion-based deep learning framework for 
CFD data super-resolution. In this framework, we reformulate the problem of reconstructing high-fidelity CFD data from 
low-fidelity input as a problem of data denoising, and use a Denoising Diffusion Probabilistic Model (DDPM) [57] to recon-
struct high-fidelity CFD data from noisy input. Motivated by the advancement in solving fluid mechanics problems using the 
Physics-informed neural networks (PINNs) [58–60], we propose a procedure to incorporate physics-informed conditioning 
information in diffusion model training and sampling, which increases the data reconstruction accuracy by making use of 
the PDE information that determines the fluid flow. Experimental results show that our diffusion model is able to pro-
duce comparable results to the state-of-the-art models on the task of high-fidelity CFD data, where it remains accurate in 
terms of kinetic energy spectrum and PDE residual loss under different input data distribution but without any retrain-
ing.

Method

Problem formulation

Let fθ : X → Y be a machine learning model which maps data samples from a low-fidelity data domain X to a high-
fidelity data domain Y . By optimizing model parameters θ over a training dataset 

(
X (train), Y (train)

)
, we aim to make fθ

achieve a high data reconstruction accuracy on a test dataset 
(

X (test), Y (test)
)
. Let p(train)

X , p(test)
X denote the data distributions 

of X (train) and X (test) , respectively. Ideally, for a well-trained model to achieve high data reconstruction performance on the 
test dataset, we need to have p(train)

X ≈ p(test)
X . In practice, however, such condition is generally not satisfied. If p(train)

X and 
p(test)

X have a large difference, the data reconstruction accuracy will drop significantly. One idea to mitigate this potential 
issue is to introduce a preprocessing procedure g : X → X , such that the preprocessed low-fidelity data sampled from X (train)

and X (test) have similar distributions (e.g., p(train)
g(X) ≈ p(test)

g(X) ). One way to increase the similarity between p(train)
g(X) and p(test)

g(X)

is to add Gaussian noise to the low-fidelity data samples, such that both p(train)
g(X) and p(test)

g(X) are drawn towards a Gaussian 
distribution from p(train)

X and p(test)
X , and subsequently become more similar to each other. Since our goal is to reconstruct 

high-fidelity CFD data, after introducing Gaussian noise via the preprocessing procedure g (·), we need a denoising procedure 
to obtain noise-free high-fidelity results. Recent works [61–64] have shown successful examples in using a pretrained DDPM 
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Fig. 1. An overview of our proposed framework for high-fidelity CFD data reconstruction using DDPM model. Given input of low-fidelity CFD data samples 
(x, ̃x(1), ̃x(2), ̃x(3)) with various distributions (p(train)

X , p(test,1)
X , p(test,2)

X , p(test,3)
X , respectively), we apply a preprocessing procedure g := h(x, z) which mixes 

the input data x with random noise z, such that the resulting noisy data samples (g (x) , g (
x̃(1)

)
, g (

x̃(2)
)
, g (

x̃(3)
)
) have much more similar distributions 

(p(train)
g(X) , p(test,1)

g(X) , p(test,2)
g(X) , p(test,3)

g(X) , respectively). We then send the noisy data samples to a pretrained DDPM model for data denoising. The output of the 
DDPM model is a group of noise-free data samples ( fθ (x) , fθ

(
x̃(1)

)
, fθ

(
x̃(2)

)
, fθ

(
x̃(3)

)
) which are close reconstruction of the corresponding ground truth 

samples (y, ̃y(1), ̃y(2), ̃y(3)) of high-fidelity. Inside the DDPM-based data denoising module, we implement a partial backward diffusion process, which is 
a Markov process starting from a conditioning sample xt = g(x) and ends at a denoised data sample x0 = fθ (x), as shown in the dotted blue box. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

model for guided image synthesis and editing. These examples demonstrate the potential of DDPM model in eliminating 
Gaussian noise from CFD data, and motivate us to use it for our denoising task. An overview of our high-fidelity CFD data 
reconstruction framework with DDPM as the denoising module is shown in Fig. 1. More details of the DDPM model and 
how it is used for CFD data reconstruction are provided in the following subsections.
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Denoising diffusion probabilistic model

A DDPM model is a generative model that generates data of interest using a Markov chain starting from a sample of 
standard Gaussian distribution. Let x0 be the data sample to generate, and let θ be a set of neural network parameters of 
the DDPM model, the Markov chain can be represented as follows.

pθ (x0:T ) := p (xT )

T∏

t=1

pθ (xt−1|xt) (1)

where p (xT ) := N (xT ;0, I) and the probability transition pθ (xt−1|xt) is chosen as pθ (xt−1|xt) := N (xt−1; µθ (xt , t) ,

"θ (xt , t)). In diffusion model, such a process to convert a data sample to a random noise sample (e.g., a sample from 
the standard Gaussian distribution) is referred to as the forward process or the forward diffusion process. If a neural network 
model can be used to estimate the inverse of the forward process (which is referred to as the reverse process or the backward 
diffusion process), then it can be used to generate data from noise. Formally, starting from the data sample x0, a forward 
process of length T can be constructed as follows.

q (x1:T |x0) :=
T∏

t=1

q (xt |xt−1) , q (xt |xt−1) := N
(

xt;
√

1 − βt xt−1,βt I
)

where β1, ..., βT are a sequence of scaling factors to scale the variance of noise added to each step of the forward process. In 
order to generate an authentic data sample x0, the backward diffusion process implemented by the DDPM model needs to be 
trained to maximize the probability distribution pθ (x0), or equivalently to minimize the negative log-likelihood − log pθ (x0). 
Ho et al. [57] showed that the negative log-likelihood term can be upper-bounded by the variational lower bound [65], from 
which the following model training objective can be derived by reparameterizing the Gaussian probability density function 
and ignoring the weighting terms containing βt ’s and "θ .

Lsimple
t = Et∼[1,T ],x0,ε

[
‖εt − εθ

(√
ᾱt x0 +

√
1 − ᾱtεt, t

)
‖

2
]

(2)

where αt := 1 − βt , ᾱt := ∏t
i=1 αi , εt ∼ N (0, I) is the standard Gaussian noise sampled at time t , and εθ (·) denotes the 

prediction of the DDPM neural network model given 
√

ᾱt x0 +√
1 − ᾱtεt and t as inputs. An illustration of the model training 

procedure is shown in the upper subplot of Fig. 2.

Guided data synthesis with DDPM

The original DDPM sampling algorithm [57] generates data samples via a Markov chain starting from xT ∼ N (0, I). 
However, the randomness of xT makes it difficult to control the data generation process and therefore does not satisfy the 
need for high-fidelity CFD data reconstruction from a low-fidelity reference. To address this issue, a guided data generation 
procedure is needed where the low-fidelity CFD data is used as the condition to generate the high-fidelity one. As suggested 
by Meng et al. [61], the Markovian property of the backward diffusion process means that the process to generate x0 does 
not have to start from xT but can start from any time-step t ∈ {1, ..., T } provided that xt is available. This property allows 
users to select an intermediate sample at a particular time-step of the backward diffusion process, and send it to the 
remaining part of the Markov chain to obtain x0. By controlling the signal component of the intermediate sample, the user 
can control the content of x0. More specifically, let xforward

0 denote the initial data sample at the beginning of the forward 
diffusion process, then the intermediate sample xt at an arbitrary time-step t can always be calculated as follows.

xt =
√

ᾱt xforward
0 +

√
1 − ᾱtεt (3)

Equation (3) indicates that xt is a weighted combination of a signal component xforward
0 and a random noise component εt . 

Hence, for a guided data synthesis, one can assign a guidance data point x(g) to the signal component xforward
0 . The resulting 

Markov chain to generate a data sample x0 conditioned on a reference x(g) is shown as follows.

pθ (x0:t) := p (xt)

t∏

i=1

pθ (xi−1|xi) where xt :=
√

ᾱt x(g) +
√

1 − ᾱtεt (4)

Note that the intermediate denoising result xt obtained from Eq. (3) and Eq. (4) are different since xforward
0 )= x(g)

0 . During 
model training, DDPM learns to generate a data sample x0 using a Markov process starting from the xt in Eq. (3), such that 
x0 approximates xforward

0 (In the context of CFD data reconstruction, xforward
0 is a high-fidelity CFD data sample from a training 

dataset, and x0 is a reconstruction of xforward
0 by DDPM). Nevertheless, when applying a trained DDPM model for conditional 

sampling, x0 is generated using a Markov process starting from the xt in Eq. (4), given a guidance data point x(g) . On one 
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Fig. 2. The procedures of model training (upper subplot) using Algorithm 1 and model inference (lower subplot) using Algorithms 2. Each blue box repre-
sents a step in the backward diffusion process computed by a neural network model with parameter θ . Blocks and arrows with dotted lines (e.g., randomly 
measured samples and physics-informed conditioning) represents optional steps in the framework.

hand, we choose to use x(g) in data generation despite its difference from xforward
0 , because x(g) contains the conditioning 

information (e.g., a low-fidelity CFD data sample) which controls the backward diffusion process; on the other hand, by 
mixing the signal component (xforward

0 or x(g)
0 ) with random noise component εt , we try to bring 

√
ᾱt x(g) +√

1 − ᾱtεt closer 
to 

√
ᾱt xforward + √

1 − ᾱtεt in the statistical sense (e.g., the distributions of the two quantities are both closer towards 
Gaussian), such that the disturbance to the quality of conditional sampling due to the discrepancy between xforward

0 and x(g)

will be mitigated.

Improved procedures for DDPM-based conditional sampling
A related problem to the reconstruction of high-fidelity CFD data from low-fidelity input is the problem of reconstructing 

a high-fidelity data sample from an incomplete and randomly measured data sample, as shown in the lower subplot of 
Fig. 2. Unmeasured components from random locations in a data sample are quite challenging to data reconstruction since 
they reduce the amount of information to use. One method to address this challenge is to add an iteration loop to the 
data reconstruction procedure. Given a sparse data sample measured at random locations, x(sparse) , we first apply nearest-
neighbor padding to fill the unmeasured data space, and then send the padded data sample to an iteration of DDPM-
based conditional sampling procedure, where the reconstructed sample from the previous iteration is used as a low-fidelity 
reference to guide the next iteration of conditional sampling. This iteration can be repeated until the reconstruction quality 
has improved sufficiently. In general, the necessary number of iterations increases as the difference between xforward

0 and 
x(g) becomes larger.

The iterative sampling procedure above is one modification to the basic diffusion-based method made to address the 
special case of reconstructing high-fidelity CFD data from randomly measured data samples. Additionally, we have consid-
ered a second special case where the analytical form of the Partial Differential Equation (PDE) determining the CFD data is 
known. To improve the backward diffusion process with the knowledge of the PDE, we propose another modification to the 
basic data sampling procedure using DDPM model. Let the following equation be the known PDE operator that determines 
a fluid flow simulation from which the ground truth CFD data is collected,

G
(

u,
∂u
∂ξ1

, · · · ,
∂u
∂ξi

, · · · ,
∂2u
∂ξiξ j

, · · · ;(
)

= 0, ξ = (ξ1, ξ2, · · · ) ∈ ), (5)
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where G denotes the differential operator for the corresponding PDE, u (ξ) is the solution to the PDE, ( denotes the 
parameters in the PDE (e.g. viscosity, constants in forcing term), and ) denotes the computational domain on which the 
PDE is defined. If we substitute u = xt (where xt the intermediate step of the backward diffusion process) into the left-
hand-side of Eq. (5), due to model prediction error and truncation error on the discretization grid, we will in general obtain 
a non-zero quantity on the right-hand-side of Eq. (5), e.g., G|u=xt = rt , rt )= 0. The non-zero term rt is usually referred to 
as the residual of the PDE and can be used to evaluate the accuracy of a numerical solution to the PDE. For conditional 
data generation, Ho et al. [66] proposed a classifier-free diffusion model that generates data samples from a conditional 
distribution pθ (xt |c) where c is the class label of the data sample. Inspired by this work, we propose to use the gradient of 
the PDE residual as the conditioning information, which yields the following data sampling process.

pθ (x0:t) := p (xt)

t∏

i=1

pθ (xi−1|xi, c) where xt =
√

ᾱt x(g) +
√

1 − ᾱtεt, c = ∂rt

∂x
(6)

We refer to the conditioning information c in Eq. (6) as the physics-informed condition, as it is obtained from the PDE 
which governs the physical process of the fluid flow. An overview of the model training and inference procedures for 
the physics-informed CFD data reconstruction is shown in Fig. 2. Two methods are proposed in this work to implement 
the physics-informed data generation process shown in Eq. (6): 1. Data sampling with learned encoding of physics-informed 
condition. 2. Data sampling with direct gradient descent of physics-informed condition. In the first method, we modified the 
architecture of the original DDPM model by adding an extra module which encodes the PDE residual gradient c = ∂rt/∂xt , 
so that the model can be used to sample xi−1, i ∈ {1, ..., t} from pθ (xi−1|xi, c) rather than pθ (xi−1|xi). The modified model 
is trained using the following Algorithm 1.

Algorithm 1 Physics-informed DDPM Model Training.
Require: pu (probability of unconditional training), G = 0 (PDE that determines the CFD data)
1: repeat
2: x0 ∼ q (x0)

3: t ∼ Uniform ({1, ..., T })
4: εt ∼ N (0, I)
5: rt = G|x=xt * Compute the residual of the PDE.

6: c =
{

∂rt/∂xt , with probability 1 − pu

∅, with probability pu
* Randomly discard conditioning information to train unconditionally.

7: Take a step of gradient descent on θ with the following gradient.
∇θ ‖εt − εθ

(√
ᾱt x0 + √

1 − ᾱtεt , t, c
)
‖2

8: until converged

Once the model is trained with Algorithm 1, it can be used in the data generation procedure specified by the following 
Algorithm 2.

Algorithm 2 Physics-informed Conditional Sampling with DDPM.
Require: x(g) (guide), t (time-step location of x(g) in the backward diffusion process, t < T ), τ = {τ0, τ1, ..., τS } (an increasing subsequence of [0,1, ..., t]

where τ0 = 0 and τS = t), εθ (a pretrained DDPM model), G = 0 (PDE that determines the CFD data), w (conditioning strength)
1: for k = 1, 2, ..., K do
2: εt ∼ N (0, I)
3: xt = √

ᾱt x(g) + √
1 − ᾱtεt

4: for i = S, S − 1, ..., 1 do
5: z ∼ N (0, I) if i > 1 else z = 0
6: rτi = G|u=xτi

* Compute the residual of the PDE.
7: c = ∂rτi /∂xτi

8: ε̃θ = εθ

(
xτi ,τi , c

)
+ w [εθ

(
xτi ,τi , c

)
− εθ

(
xτi ,τi ,∅

)]

9: xτi−1 =
√

ᾱτi−1
ᾱτi

(
xτi −

√
1 − ᾱτi · ε̃θ

)
+

√
1 − ᾱτi−1 − σ 2

τi
· ε̃θ + σ 2

τi
ετi

10: end for
11: x(g) = x0 * xτ0 = x0 since τ0 := 0.
12: end for
13: return x0

In the context of high-fidelity CFD data reconstruction, x(g) represents a sample of low-fidelity CFD data, x0 represents 
the corresponding sample of high-fidelity CFD data, the DDPM model εθ is pretrained on a high-fidelity CFD dataset, and 
t is a main hyper-parameter for conditional data sampling using Algorithm 2. In practice, t is selected from the interval [
0, T

2

]
for a more accurate and less noisy data reconstruction. Instead of following the data sampling procedure from the 

original DDPM model, we designed Algorithm 2 based on the accelerated sampling procedure proposed by Song et al. [67], 
named the Denoising Diffusion Implicit Model (DDIM). We also adopted the same design choice στi = 0 ∀ i as suggested in 
the original DDIM model. The intuition behind Line 8 in Algorithm 2 is briefly discussed as follows. Ho et al. pointed out in 
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their work [57] that the data sampling process presented in the original DDPM resembles the Langevin dynamics with εθ

as a learned gradient of the data density, referred to as the score function [68]. The resemblance between εθ and the score 
function enables the following approximation.

εθ (xi, i,∅) ≈ −σi∇xi log pθ (xi) , εθ (xi, i, c) ≈ −σi∇xi log pθ (xi, c) (7)

Eq. (7) indicates that the neural network model εθ in the DDPM and DDIM models can be considered as an estimator of 
the score function. Substitute Eq. (7) into Line 8 of Algorithm 2, we have

ε̃θ = εθ (xi, i, c) + w [εθ (xi, i, c) − εθ (xi, i,∅)]

≈ −σi∇xi log pθ (xi, c) − w
[
σi∇xi log pθ (xi, c) − σi∇xi log pθ (xi)

]

= −σi∇xi log pθ (xi, c) − wσi∇xi log pθ (c|xi)

(8)

Equation (8) shows that Algorithm 2 is designed to sample xi−1 using a weighted combination of the data prediction 
pθ (xi, c) and the PDE residual gradient prediction pθ (c|xi), where the weight is determined by the conditioning strength 
w . In our second method to implement the physics-informed data generation process, data sampling with direct gradient 
descent of physics-informed condition, we do not modify the original DDPM model architecture or training procedure to 
accommodate PDE residual gradient c in model input. Instead, we directly incorporate gradient descent in the conditional 
sampling process of DDIM model. The intuition for this method is as follows. Consider the PDE in Eq. (5) which models 
the fluid flow. Any ground truth CFD data sample should satisfy this PDE and produce a zero residual. Therefore, a valid 
goal of high-fidelity CFD data reconstruction is to optimize the DDPM model preditction x0, such that the corresponding 
residual r0 := G|u=x0 is minimized. A gradient-descent method to achieve this goal is to search for the high-fidelity CFD data 
using the following update rule, xi−1 = xi − λ∂ri/∂xi , where λ represents the step size of gradient descent. For an improved 
performance of high-fidelity CFD data reconstruction, we combined the original goal of DDPM-based data sampling (which is 
to minimize the KL-divergence between the forward and the backward diffusion processes for an authentic data generation) 
with the goal of minimizing the residual of CFD data reconstruction. More specifically, to implement our data sampling 
method with direct gradient descent of physics-informed condition, we modified Line 8 of Algorithm 2 as follows.

xτi−1 =
√

ᾱτi−1

ᾱτi

(
xτi −

√
1 − ᾱτi · ε̃θ

)
+

√
1 − ᾱτi−1 − σ 2

τi
· ε̃θ − λc + σ 2

τi
ετi (9)

The sampling procedure introduced in (9) is essentially a linear combination between score function and the negative gradi-
ent of PDE residual (which we denote as “Linear” in the Experiment section), whereas Algorithm 2 is a learned combination 
of two components (which we denote as “Learned” in the Experiment section).

Experiments

Implementation

The dataset we considered is the 2-dimensional Kolmogorov flow [69], governed by the Navier-Stokes equation for in-
compressible flow. The vorticity form of it reads as,

∂ω(x, t)
∂t

+ u(x, t) · ∇ω(x, t) = 1
Re

∇2ω(x, t) + f (x), x ∈ (0,2π)2, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0,2π)2, t ∈ (0, T ],
ω(x,0) = ω0(x), x ∈ (0,2π)2,

(10)

where ω is the vorticity, u represents the velocity field, Re denotes the Reynolds number which is set to 1000 in this 
problem, f (x) is the forcing term, and x = [x1, x2]. The boundary condition considered is periodic boundary condition. 
The forcing term for 2-d Kolmogorov flow studied here is defined as: f (x) = −4 cos(4x2) − 0.1ω(x, t), which contains an 
additional drag force term 0.1ω(x, t) similar to Kochkov et al. [70], in order to prevent energy accumulation at large scales 
[71]. We numerically solve Equation (10) using a pseudo-spectral solver implemented in PyTorch [72] from Li et al. [73], 
which samples initial condition ω0(x) from a Gaussian random field N (0, 73/2(−/ + 49I)−5/2). The discretization grid used 
is a 2048 × 2048 uniform grid. The data derived from the direct numerical simulation are considered the high-fidelity data 
we aim to reconstruct using the machine learning model, and are referred to as ground truth in the dataset.

We simulate 40 sequences in total, each with a temporal length of 10 seconds (T = 10). We then downsample these data 
to a 256 × 256 grid spatially with a fixed time interval /t = 1/32s, resulting in a dataset comprising 40 sequences each 
with 320 frames. Among them, we use the first 36 sequences as the training set and the rest 4 for testing. As our model 
operates on the same input and output grid, we use nearest (based on Euclidean norm) interpolation to process the input 
such that it has the same resolution as the target.
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For the calculation of the PDE’s residual, we use discrete Fourier transform to calculate spatial derivatives and finite dif-
ference to calculate time derivatives. Given that the proposed diffusion model operates on the vorticity of three consecutive 
frames [ωt−1(x), ωt(x), ωt+1(x)], we can approximate ∂tω via ∂tω ≈ (ωt+1(x) − ωt−1(x))/(2/t). For the convection term 
and diffusion term, we approximate them by calculating the Laplacian and gradient of vorticity in the Fourier space, derive 
velocity using the stream function ψ : u = ∇ × ψ, −∇2ψ = ω, and then convert them back to the physical space via inverse 
Fourier transform.

The proposed denoising diffusion model is parameterized by a UNet [74], which has empirically been shown effective 
for estimating the score function [57,68] (or equivalently the noise in DDPM). UNet is a neural network architecture with 
hierarchical convolution blocks and multi-level skip connections, which allows it to better capture the dependency of dif-
ferent ranges (resembles multigrid method). In addition, we use self-attention [75] in the bottleneck layer (corresponds to 
the coarsest resolution) to further increase the receptive field. Based on the UNet architecture, we investigate three types of 
training strategies as below.

• Diffusion model with learned residual condition. The residual information is directly provided to the diffusion model as 
input features, i.e. εθ

[
xt ,∇xt G (xt)

]
, where G(·) is the corresponding differential operator of the Navier-Stokes equation. 

In this way, the final guidance is the learned combination between residual gradient and score function.
• Original diffusion model. In this case, the diffusion process will not take residual information into account.
• A UNet that learns a fixed mapping: f : X /→ Y where X is the low fidelity data domain and Y is the high fidelity data 

domain. This is the setup which most deep-learning-based flow reconstruction methods have adopted [45–48]. This 
setup requires paired training data and the learned mapping is usually locked to a specific distribution in X .

We adopt a recursive refinement strategy for which we apply K = 3 (see Algorithm 2 for detailed definition of K ) 
times of backward diffusion process recursively for 4× upsampling and 5% points’ sparse reconstruction tasks, and we set 
S = 160, 114, 80 for k = 1, 2, 3 respectively. However, for input data that is farther away from the target data distribution, 
we observe that a single diffusion chain with larger injected noise (i.e. larger t in line 3 of Algorithm 2) is often more 
beneficial. Therefore, for 8× upsampling task we use S = 320 and set K = 1, and S = 400, K = 1 for 1.5625% reconstruction 
task.

Results

We conduct experiments on the following tasks to investigate the capability of the diffusion model on reconstructing 
high fidelity flow field. The task in the first experiment is reconstructing high-resolution field from low-resolution field, 
where the low-resolution field is uniformly downsampled from the high-resolution one. The task in the second experiment 
is to reconstruct high-resolution field from randomly sampled collocation points (not necessarily equidistant). The second 
task aims to reconstruct dense field from sparse sensory observation data. For the first task, we test our reconstruction 
model on two levels of input resolution, 64 × 64 /→ 256 × 256 (4× upsampling) and 32 × 32 /→ 256 × 256 (8× upsampling). 
For the second task, we also test our reconstruction model on two different levels of sparsity, where we sampled 5% and 
1.5625% (same amount of grid points as 32 ×32 grid). The collocation points is randomly sampled with uniform probability. 
Note that for all the experiments (except the ablation for different conditioning methods), we use the same diffusion model 
(with learned guidance), which means we do not retrain the model for a specific task. To reduce the aliasing effect when 
applying direct mapping model to out-of-distribution data, we applied Gaussian smoothing kernel with σ = 5 to data used 
in 32 × 32 /→ 256 × 256 and 1.5625% /→ 256 × 256 tasks.

The visualization of our model’s reconstruction results are shown in the Figs. 3, 4, 5, 6. We can observe that both 
bicubic interpolation and diffusion model generate satisfactory results for the easier task of 4× upsampling (Fig. 3), but the 
diffusion model can recover more details for the more challenging scenarios (Fig. 4, 5, 6). This qualitatively demonstrates 
the capability of using diffusion model to reconstruct high-resolution flow field given inputs with different distributions.

To quantitatively evaluate the reconstruction results, we use L2 norm to measure the pointwise error between prediction 
and ground truth on each grid point (with n representing the total number of grid points per sample):

D L2(ω̂,ω) =

√√√√1
n

n∑

i=1

(ω̂i − ωi)2. (11)

We also evaluate the normalized residual of each predicted result that comprise three consecutive frames. This measures if 
the results are aligned with the underlying governing equation.

Dequation(ω̂,ω) = 1
n

∑n
i=1 |G(ω̂i)|2

||ω||22
, (12)

where G(·) is the differential operator as described in Equation (10), ||ω||22 is the average squared L2 norm of the vorticity.
In addition to the pointwise metric, we compare the statistics between the reconstructed results and the ground truth. 
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Fig. 3. Qualitative comparison of different upsampling methods on 4x upsampling task.

More specifically, we inspect the energy spectrum and vorticity distribution to validate the alignment between prediction 
and ground truth distribution.

The pointwise error of different models’ reconstruction results are shown in the Table 1. Both the diffusion model and 
the learned direct mapping model outperform bicubic interpolation by a margin, which indicates the strength of data-driven 
learning-based methods. In terms of L2 loss, direct mapping model has similar performance as diffusion model, yet the mar-
gin enlarges when applying the direct mapping model to a new data distribution (mapping from observation on 5% of the 
grid points to full resolution grid). Both the L2 loss and the equation loss increase significantly for the direct mapping model, 
while the diffusion model shows more robustness. As shown in Fig. 8a, the learned direct mapping model’s prediction is 
much blurrier when applied to out-of-distribution data. This signifies the difference between the two learning paradigms. 
Direct mapping model is sensitive with respect to the input distribution, while in diffusion model, the input is perturbed 
with noises and thus the perturbed input distribution still intersects with the distribution of which the diffusion model can 
effectively estimate the score function. Furthermore, with physics-informed condition, the PDE residual of diffusion model’s 
predicted results is lower than other models that do not take PDE information into account.
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Fig. 4. Qualitative comparison of different upsampling methods on 8x upsampling task.

Table 1
Quantitative comparison of diffusion model and other interpolation/reconstruction methods. The “Direct 
map” model is trained on 64 × 64 /→ 256 × 256 data, data in other tasks are considered out-of-distribution 
data for it.

Task L2 norm Equation loss

Diffusion Direct map Bicubic Diffusion Direct map Bicubic

64 × 64 /→ 256 × 256 0.5622 0.6048 1.3355 0.2178 0.5438 10.6639
32 × 32 /→ 256 × 256 1.3035 1.3700 2.5179 0.2039 9.9291 20.0008
5% /→ 256 × 256 0.9318 1.2426 - 0.2815 20.2853 -
1.5625% /→ 256 × 256 1.8213 1.9149 - 0.2290 17.5249 -

Next we compare the vorticity distribution between the predicted data and the ground truth. Fig. 7b shows that the 
results of the diffusion model have a sharper distribution than both the ground truth and bicubic interpolated data. This 
is likely caused by the noise estimation error of the diffusion model. Before the backward diffusion process starts, the 
input data is mixed with Gaussian noise, then the diffusion model gradually removes the noise and steps towards the 
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Fig. 5. Qualitative comparison of different upsampling methods on non-equidistant sparse reconstruction task using 5% of grid points. White cross in the 
input indicates the collocation points (zoom in for clarity).

target distribution. However, as the noise estimation from diffusion model always contains error to some degrees, the 
final result is not guaranteed to be perfectly noise-free and exhibits a slight distribution drift. This is more obvious for 
upsampling case with higher sparsity, where we inject the input data with larger noise and diffuse for more steps. For 
the energy spectrum, compared to bicubic interpolation, we observe that diffusion model can better capture the trend in 
high wavenumber regime and exhibits less truncation effect. As for the direct mapping model, it has reasonable accuracy 
on the data it was trained on. However, when extrapolated to the out-of-distribution data, its performance degrades and 
produces results that has much higher residual. As shown in Fig. 8a, its prediction becomes non-smooth and less physical 
coherent.

PDE’s residual calculation is sensitive with respect to noise and aliasing (due to nearest padding). To accommodate 
for this, for task with high sparsity (1.5625%), we apply Gaussian filter to smooth the field before inputting them to the 
model. From Table 2 and Fig. 8b, we observe that while smoothing can alleviate direct mapping model’s degradation, it 
still struggles to predict physically coherent result compared to diffusion model. Furthermore, despite a smoothing process 
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Fig. 6. Qualitative comparison of different upsampling methods on non-equidistant sparse reconstruction task using 1.5625% of grid points. White cross in 
the input indicates the collocation points (zoom in for clarity).

Table 2
Quantitative comparison of diffusion model and direct mapping model 
on sparse reconstruction task with 1.5625% sparsity using different filter 
scales.

Data L2 norm Equation loss

Diffusion Direct map Diffusion Direct map

No filter 1.8802 2.1144 0.5428 42.9115
σ = 5 1.8213 1.9149 0.2290 17.5249
σ = 7 1.8188 1.8408 0.1682 12.5251

can help improve prediction’s L2 norm, a low-pass filter like Gaussian filter will lose energy in higher frequency regime (as 
shown in Fig. 8b).
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Fig. 7. Statistics of different reconstruction methods and reference result.

Table 3
A comparison of convergence trend for different methods of combining residual information, where the baseline is the original dif-
fusion model that does not use any residual information. S denotes the total number of backward diffusion steps, while Iter denotes 
the outer diffusion loop as described in Algorithm 2. The upper table is evaluated on the non-equidistant sparse reconstruction task, 
the bottom table is evaluated on the 8× upsampling task.

Method L2 norm Equation loss

Iter 1 Iter 1 Iter 2 Iter 3 Iter 1 Iter 1 Iter 2 Iter 3
S = 8 S = 16 S = 30 S = 36 S = 8 S = 16 S = 24 S = 36

Learned 1.74 1.00 0.94 0.93 419.80 7.79 0.36 0.27
Linear 1.75 0.99 0.94 0.93 755.23 8.83 0.52 0.38
Baseline 1.75 0.99 0.94 0.93 832.42 11.17 0.55 0.39

Method L2 norm Equation loss

Iter 1 Iter 1 Iter 1 Iter 1 Iter 1 Iter 1 Iter 1 Iter 1
S = 8 S = 16 S = 24 S = 32 S = 8 S = 16 S = 24 S = 32

Learned 3.69 2.72 1.77 1.30 1572.02 744.18 177.68 0.20
Linear 3.70 2.74 1.79 1.26 2546.79 1623.54 498.23 0.99
Baseline 3.70 2.75 1.80 1.26 2740.99 1876.36 621.12 1.47

We also study the influence of adding physics-informed condition using different ways. The two different ways are the 
learned and linear combination between the gradient of data distribution and the gradient of residuals. First, all models have 
a similar trend on L2 norm and a negligible difference in the final results (Fig. 9a, 10a). Yet with the residual information, 
diffusion model converges faster on the equation loss and has a lower final residual (Fig. 9b, 10b, especially for more 
challenging task where stronger Gaussian noise are added to the input data. More specifically, we observe better convergence 
for the learned combination which combines the residual gradient with the score function non-linearly via the neural 
network. This is because at the early stage of backward diffusion the sampled data is very noisy and thus the residual 
gradient is not very informative, so balancing score function with the gradient of density distribution using a learned neural 
network is often better than simply combining them linearly. (See Table 3.)

As shown in the previous part of Results section, we have selected three performance metrics to evaluate the model 
for high-fidelity CFD data reconstruction: 1) L2 norm, 2) equation loss, and 3) kinetic energy spectrum. L2 norm is a 
straightforward way to measure the reconstruction error with respect to the ground truth and has been widely used as 
a performance metric in many data prediction tasks. L2 norm is also the loss function used in the training and test of 
the direct mapping method that benchmarks our proposed method. However, the L2 norm has two limitations in evalu-
ating the CFD data reconstruction. First, the L2 norm is less sensitive to the blurring of data. In the case where a large 
amount of blurring effect is added (e.g., through Gaussian blur) to a CFD data sample, its L2 norm tends to have an in-
significant increase (or even decrease). Second, despite being a popular universal metric to measure the distance between 
two data points, L2 norm is not specialized to reveal how accurately a model’s prediction reflects the physical character-
istics of the fluid, for example, it does not indicate how well the prediction fits the Navier-Stokes equation, or whether 
the eddies of different scales in the prediction contain the accurate amount of turbulence kinetic energy. While the L2
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Fig. 8. Comparison of the UNet that learns a direct mapping and the UNet that learns to estimate noise in the diffusion process.

norm is a direct indicator of the averaged point-wise reconstruction error, other metrics such as the equation loss and 
the kinetic energy spectrum help to reveal how well a reconstructed CFD data sample fits the expected physical charac-
teristics seen in the ground truth sample. Therefore, we include equation loss and kinetic energy spectrum in addition 
to L2 norm as the performance metrics in order to have a more comprehensive evaluation of the reconstruction meth-
ods. We consider that our proposed method outperforms the benchmark methods such as the direct mapping model 
and the bicubic interpolation, given the case that our model shows a marginal improvement on L2 loss, a significant 
improvement on equation loss, and a closer alignment to the ground truth in terms of the kinetic energy spectrum, as 
such experimental result indicates that the reconstruction obtained by our proposed method has a comparable L2-loss 
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Fig. 9. Convergence plots on sparse (5% collocation points) reconstruction using different methods of combining residual information. The vertical red dotted 
line indicates a new Gaussian noise injection.

Fig. 10. Convergence plots on 8× upsampling using different methods of combining residual information. The vertical red dotted line indicates a new 
Gaussian noise injection.

accuracy with the benchmark method while being more coherent with the ground truth physical characteristics of the 
fluid.

Conclusion

In this work, we presented a diffusion model for high-fidelity CFD data reconstruction from low-fidelity input. We 
showed that a diffusion model is able to solve the data reconstruction problem as a conditional data denoising problem. 
Compared with the benchmark method which learns the direct-mapping from low-fidelity to high-fidelity data, our model 
has a similar (marginally better) reconstruction accuracy in terms of the L2 loss, while having the advantage of being much 
more robust to variation in the low-fidelity input data and being more accurate in terms of data kinetic energy spectrum. 
In addition, we showed how to incorporate the physics-informed information such as the PDE residual gradient in model 
training and model inference for an improved performance, and how to reconstruct high-fidelity CFD data from sparsely 
measured inputs using nearest padding and iterative reconstruction.

Compared with the direct-mapping models, a diffusion model is not trained to directly minimize the reconstruction loss 
in the sense of an Lp norm. Instead, it is trained to minimize the KL-divergence between the forward diffusion process and 
the backward diffusion process. As a result, a diffusion model is essentially designed to be only sensitive to data recon-
struction error in a statistical sense with the presence of Gaussian noise. We consider the absence of an L p reconstruction 
loss as a potential limitation that prevents a diffusion model from further improving its reconstruction accuracy. To resolve 
such limitation, a new design of the data sampling procedure for the diffusion model is needed. Alternatively, it might be 
interesting to investigate an ensemble learning method which incorporates a diffusion model and a direct-mapping model, 
so that the merits of both methods can be retained. These potential ways to resolve the limitation of diffusion models for 
data reconstruction will be the main direction of our future work.
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