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a b s t r a c t

Metaheuristic algorithms are derivative-free optimizers designed to estimate the global optima for
optimization problems. Keeping balance between exploitation and exploration and the performance
complementarity between the algorithms have led to the introduction of quite a few metaheuristic
methods. In this work, we propose a framework based on Multi-Armed Bandits (MAB) problem, which
is a classical Reinforcement Learning (RL) method, to intelligently select a suitable optimizer for
each optimization problem during the optimization process. This online algorithm selection technique
leverages on the convergence behavior of the algorithms to find the right balance of exploration–
exploitation by choosing the update rule of the algorithm with the most estimated improvement
in the solution. By performing experiments with three armed-bandits being Harris Hawks Optimizer
(HHO), Differential Evolution (DE), and Whale Optimization Algorithm (WOA), we show that the MAB
Optimizer Selection (named as MAB-OS) framework has the best overall performance on different types
of fitness landscapes in terms of both convergence rate and the final solution. The data and codes used
for this work are available at: https://github.com/BaratiLab/MAB-OS.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Metaheuristic Optimization algorithms have been developed
to solve a wide range of optimization problems in engineer-
ing and science. Due to the intrinsic differences of optimization
problems including the type of problem, conditions, and the
dimensions, there is a large quantity of algorithms that cater
such needs. The metaheuristic area, in particular, contains a vast
variety of algorithms that are modeled from different sources of
inspiration. A large group of them are nature-inspired algorithms
that get their sources of mathematical models from the nature.

Nature-inspired algorithms cover a large number of methods
that have been roughly categorized into several classes. Evo-
lutionary Algorithms (EA) are based on natural selection, and
contain mathematical models of mutation and crossover. Genetic
Algorithms (GA) [1] and Differential Evolution (DE) [2] are of
the most popular examples in this category. Human strategies
and laws of physics have also been inspiration sources for some
algorithms like Gravitational Search Algorithms (GSA) [3]. At last,
swarm-based algorithms or Swarm Intelligence (SI) mimic the
behavior of a group or swarm of animals. In fact, the optimization

⇤ Corresponding author at: Department of Mechanical Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA.

E-mail address: barati@cmu.edu (A. Barati Farimani).

search agents are observed as particles or members of a group.
Some of the well-known SI algorithms include Particle Swarm
Optimization (PSO) [4] and Artificial Bee Colony (ABC) [5].

All of the mentioned metaheuristic categories and sub-
categories have common features that make them suitable for
solving many types of problems [6–8]. These features include
the simplicity and flexibility as well as the effectiveness of these
methods to find global optima via avoiding local optima. More
importantly, they are all derivative-free algorithms. Derivative-
free or gradient-free algorithms are optimizers that do not
depend on the gradient of the objective function as opposed
to gradient-based methods such as gradient descent algorithms.
Therefore, a derivative-free algorithm (also called black box op-
timizer) is an appropriate choice when the mathematical forms
of objective function or its derivatives are either unknown or
expensive to be extracted.

The extensive variety of problems has led to the development
of a huge number of algorithms that perform well for different
types of problems. Performance complementarity [9] of the algo-
rithms, also known as No Free Lunch (NFL) theorem [10], provides
a logical explanation for the existence of so many different algo-
rithms. Researchers have been seeking comprehensive algorithms
to cover the efficient solution of different types of problems in
a single algorithm which has brough significant improvements
in the field recently. So, metaheuristic algorithms are usually
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proposed after testing on various problems. Nevertheless, the
performance complementarity of algorithms would still exist.
Therefore, among a set of algorithms, the best optimizer would
still depend on the type of problem. Moreover, there can be a
combination of algorithms that performs even better than each
of them individually. Hence, the best algorithm depends not only
on the problem but also on the stage of optimization that we are
currently in.

While there is an increasing number of optimization meth-
ods being introduced, issues such as the exploration-exploitation
dilemma always remain difficult to be addressed. The proposed
methods have different tendencies to perform exploitation, i.e.
using the so far achieved information, or exploration, i.e. spending
time to gather more information. Therefore, an algorithm with
more exploitation properties can outperform another in relatively
simpler problems such as unimodal objective functions, while
has the inferior performance in more complex multimodal fitness
landscapes.

Hybrid methods have been introduced as a possible solution to
address the issue of exploration-exploitation balance by improv-
ing the abilities of all of the underlying methods. For example, an
algorithm (A) with high exploitation capability can be hybridized
by another algorithm (B) that explores the search space better.
Such hybrid algorithms, however, are again limited to how they
have been combined together. These hybrid methods can also be
composed of some sub-parts of algorithms or external operators,
such as chaotic maps [11] or lévy flight [12], to devise a new
human-made algorithm.

As mentioned in the above discussion, the performance of
algorithms significantly depends on the problem. However, the
majority of the algorithms do not intend to rely on the feedback
from the type of problem or its landscape. Adaptive algorithms
have been known as another solution by adjusting the parame-
ters in the algorithm based on the history of the data gathered
throughout the optimization such as the features extracted from
its fitness landscape [13,14]. Another view of employing multiple
algorithms is to use algorithm selection and hyperheuristic tech-
niques in order to select the suitable choice of optimizer based on
the problem condition. Hyperheuristics are categorized into sev-
eral classes based on their methodology and objectives [15–19].
For example, features from the landscape, such as its complexity
or modality, can be extracted and used to select an algorithm up-
date rule among a set of algorithms in a portfolio [9,20,21]. Select-
ing the favorable parameters or operators based on these features
have been effective in reaching better solutions in GA [22,23] and
Differential Evolution (DE) [24,25].

Besides landscape-aware (using features) algorithm selection
techniques, there are other selection hyper-heuristic schemes
[15] that can make use of search operators (low-level heuristics)
from different metaheuristic (mid-level heuristic) algorithms in a
hyper-heuristic selection framework to find a sequence of opera-
tors that builds the best metaheuristic for a specific problem [16].
In [16], simulated annealing (SA) [26] is used to tune the hyper-
heuristic to find the best metaheuristic by assembling a set of
extracted search operators from various baseline metaheuristics
including direct search operators and more complicated opera-
tors in swarm algorithms. These hyper-heuristic frameworks can
potentially find a suitable set of operators for a given problem by
following an iterative search scheme such as SA. However, they
cannot be used for an online search of the suitable optimizers
when the problem is to be solved at once which is usually the
case when a new black box search space has to be approached
for optimization.

Such methods try to remedy the exploration balance issue,
yet they are limited in some aspects. The hybrid methods do not
use any feedback from the optimization process, and have to be

devised manually and independently from the problem. While
the fitness adaptive methods generally provide better solutions
to this issue, they are dependent on the definition of a mean-
ingful feature and its extraction during the optimization. This is,
however, not always readily accessible since the features may
not always be good representatives for the problem. Therefore,
making decision or planning strategy based on the extracted
feature can be misleading in some cases. Another major limitation
of the algorithm selection methods is that most of these methods
select a single algorithm among several options to perform the
whole optimization process. This makes the selected strategy to
be at most as best as the current algorithms and never outperform
them. Online algorithm selection during the course of optimization,

however, can provide us with the opportunity to use the merits

of different algorithms and reach an outstanding performance that

is better than all of the algorithm choices. In this work, we aim
to find the best algorithms in an online manner without using
the landscape features (feature-agnostic), so we only rely on the
convergence behavior and we do not compute any landscape
features.

Reinforcement learning (RL) techniques have shown promis-
ing results in many applications such as optimization problems
[27,28]. RL could be combined with metaheuristic optimization in
different ways. For instance, the agent can seek the best strategy
in a continuous or discrete space of strategies or parameters
to adjust the exploration rate [29]. Multi-Armed Bandits (MAB)
problem, as a classical RL algorithm, has also been considered in
the context of optimization [30]. The algorithm selection problem
can be viewed as an MAB problem [17,31] where the goal is
to let the agent find the best algorithm via interactive trials
based on the feedback from the optimization and its learning
curve [32]. MABs have been used to search for the operators in
the Evolutionary Algorithms (EA) [33,34] where different types of
problems and reward definitions are analyzed to select the best
operators [35]. MABs with Thompson Sampling (TS) have also
been introduced [17] in a generic evolutionary algorithm form to
improve the operator selection scheme by using TS over other
selection mechanisms such as upper confidence bound (UCB).

The mentioned hyper-heuristics, including stationary or dy-
namic MABs with different selection mechanisms, have shown
promising results on improving evolutionary algorithms (EA) to
have outstanding performances on various types of problems.
However, their span of control is usually limited to a set of
defined operators in the EA algorithm. In other words, they seek
tuning the defined parameters in an attempt to find the suitable
sets of parameters or operators for a single algorithm.

In this work, multi-armed bandits problem is applied for al-
gorithm selection to identify the best metaheuristic algorithm’s
update rule in an online manner during the optimization. In
this framework, each metaheuristic algorithm’s update rule is
viewed as an armed bandit. Each armed bandit can be a stand-
alone algorithm with its own sets of defined parameters and
update rules. Since the convergence curves usually have dynamic
behavior, the resulting MAB problem has a non-stationary setting
and the RL agent looks for the best algorithm in the current status
of optimization based on the achieved rewards.

The contribution of this work is to propose a general frame-
work that can use different stand-alone competent algorithms as
baseline and improve upon their performance overall by adap-
tively selecting the best optimizer among them for each specific
condition using an RL agent. We showcase the effectiveness of
the framework in finding better algorithms by evaluating its
performance on obtaining the good solutions and having high
convergence rate when three metaheuristic algorithms are con-
sidered as baselines. This framework then can be easily used in
various applications to efficiently find and use the best algorithm

2



K. Meidani, S. Mirjalili and A. Barati Farimani Applied Soft Computing 128 (2022) 109452

for optimization. Depending on the type of problem MAB-OS
framework can be applied on different choices of base algorithms.

The structure of this work is as follows: We review the Multi-
Armed Bandit (MAB) approach and its optimization methodology
in the context of algorithm selection in Section 2. Then, the base
algorithms and the experiments designed to show the perfor-
mance of the framework are elaborated upon in Section 3. Sec-
tion 4 discusses some of the observations from the experiments
and makes conclusions about the current and future possible
directions of the work.

2. Method

2.1. Multi-Armed Bandits problem

Multi-Armed Bandits (MAB) is a classical problem in Rein-
forcement Learning (RL) where the balance between exploitation
and exploration plays a key role. In this problem, N armed bandits
with different utility properties are considered. At the begin-
ning, there is usually no prior information on these bandits.
The resource, which can be observed in terms of computation
time, is fixed and limited. The goal is to maximize the gain or
equivalently minimize the regret when we allocate the resources
to the bandits. More interaction with the bandits would reveal
more information on their properties. In the classic static MAB
problem, the underlying value of the bandits are constant over
time, meaning that there is a single best bandit that can maximize
the reward. In many problems such as optimization, however, the
problem is dynamic, and the best operator can be variable based
on the problem situation.

The information about the bandits is stored in an array of
values Q that is updated as we get more feedback by interacting
with bandits. We have one scalar value for each bandit at each
time step, so we write the Q array as Q (t, a) where a denotes
action a. The feedback from the interaction with bandits appears
in terms of a reward (R(t, a)) that is defined as the outcome
of selecting a specific bandit. At each iteration, we select one
bandit based on the Q values and by following some exploration
strategy that is explained later. Selection of the best, i.e., highest,
Q at each time step leads to a greedy, fully exploiting strategy.
To allow other underestimated bandits to have more chance,
exploration mechanisms like ✏-greedy, optimistic initialization,
Upper Confidence Bound (UCB), and Thompson sampling [17] can
be integrated to the strategy. Dynamic systems, like selecting the
best optimizer, require even more exploration since the suitable
bandit can be changed over time.

Formally speaking, for a non-stationary multi-armed bandits
problem where the reward (R), values (q), and therefore esti-
mated values (Q ) are functions of time, we can define the true
action-value q as the expected reward achieved by selecting
action a at time step t:

q(t, a) := E [R(t)|A(t) = a] (1)

where A(t) = a denotes the selection of action a in the iteration
t , and R(t) is the corresponding reward as the consequence of
this action. However, since q(t, a) is unknown, we estimate it
by Q (t, a) / q(t, a), and the greedy action would be A

⇤(t) =
argmaxaQ (t, a). If the optimal action at time t is a

⇤(t), then the
optimal value is defined as:
v⇤(t) := q(a⇤, t) = max

a2A
q(a, t) (2)

and the total regret is defined as the opportunity loss throughout
the process as follows:

LT = E

"
TX

t=1

(v⇤(t) � q(a(t), t))

#
(3)

The goal of MAB is to minimize the total regret, or to equiva-
lently maximize the total gained rewards. Since we estimate the
true values, the regret is inevitable as we cannot always select
the optimal action. We expect the estimation to get more accurate
over time if the changes in the system are smooth. The estimation
of the value of action a is updated whenever the action is selected
and a reward is collected. By setting Nt (a) as the number of times
that action or operator a is selected, we can write: Q (t, a) =
f (R1, R2, . . . , RNt (a)). In a stationary problem where the rewards of
different time steps contain the same amount of information on
the current status of the system, Q can be calculated as a simple
average of the achieved rewards, i.e. Q (t, a) = P

Nt (a)
i=1 Ri/Nt (a). In

general, whether stationary or non-stationary, we can write the
estimation with incremental updates as follows:

Q (t + 1, a) = (↵)Q (t, a) + (1 � ↵)R(t) (4)

where ↵ is a hyperparameter (↵ 2 [0, 1]) that we can choose.
Lower values of ↵ result in more concentration on the recent
rewards and are more suitable for the dynamic systems. The
choice of a too small ↵, on the contrary, leads to relying only
on the current unstable reward. So, a balance is needed for
this parameter selection. The value of ↵ used for this study is
mentioned in the experiments section.

2.2. Action selection

One of the major concerns of this problem that is known
to be the most important aspect of MAB is to keep balance
between exploitation of the current uncertain estimations and
exploration to obtain better estimations with the possible cost of
increased regret. It is shown that employing the upper confidence
bound (UCB) [36] of the estimation for action selection can be
a good strategy that alleviates the greedy exploitation issue. In
this approach, in addition to estimating the expected value, the
uncertainty of the actions are also taken into account. The UCB is
defined as:

UCB(t, a) = Q (t, a) + cU(t, a) = Q (t, a) + c

s
ln(t)
Nt (a)

(5)

where c is a hyperparameter that determines the effect of upper
bound of confidence to the final estimation. c is a non-negative
real number where its small values reduce the effect of uncer-
tainties until it will have no effect in case of c = 0. Large values
of c , on the other hand, can overemphasize the uncertainties
that would fade the effect of Q values. Based on this, a balance
is required for the selection of this value. The choice of c for
our study is mentioned later in the experiments section. Also,
note that U(t, a) in the second term depends on both number of
total iterations so far t and the number of trials of action a. The
uncertainty shrinks over time, i.e. less uncertainty, as we have
more trials (Nt (a)) with a specific action and increases when we
have trials with other actions (increase in t).

Since at the beginning we have equal Q estimations for dif-
ferent actions and Nt (a) is zero for every actions, we have to
select the actions purely by exploration. This phase can be done
by random selection of actions. We, however, try each action for
only one duration in an arbitrary order of actions. After trying the
actions once, we have updated Q values and non-zero Nt (a), so we
can continue the process based on UCBs as follows.

Based on the estimation of the value and the upper confidence
bound, we expect that higher Q values correspond to better
actions. To softly select the action based on the UCB value, we
employ softmax sampling:

P(A = a) = softmax(UCB(a)) = exp [UCB(a)]P
a2A exp [UCB(a)]

(6)
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Fig. 1. The scheme of Multi-Armed Bandits (MAB) problem on the optimization with HHO, DE, and WOA as base algorithms viewed as armed-bandits. The collected
rewards update the Q values, and the action is softly sampled based on the Upper Confidence Bound (UCB) of bandits.

2.3. Optimizer selection

In the context of metaheuristics, we apply the multi-armed
bandits problem to the online selection of optimizers among a
set of multiple options. In fact, operators are observed as bandits
and the action is to use a specific update rule for the positions of
the search agents. This problem is highly dynamic since the op-
timization process includes a dynamic landscape and the agents
start from exploring the space toward convergence to the optima.
Therefore, different optimizers can be the optimal choice at dif-
ferent stages of the optimization. Viewing these optimizers as the
actions that should be selected over the course of optimization
justifies the use of MAB for Optimizer Selection (MAB-OS).

One of the most important aspects of reinforcement learning
and multi-armed bandits is the reward definition. The defined re-
ward has to be meaningful and representative of the task that we
are seeking to do. For metaheuristic optimization, the goodness of
the optimization is determined by the function values. In the case
that we want to train a model to find a single best algorithm from
a portfolio to perform the whole optimization, the final obtained
solution at the end of optimization can be considered as a sparse
reward. It should be noted that such a stochastic value depends
on a lot of parameters. Here, however, this is not the case since
in this work we are looking for an online method that can select

the update rules during the optimization, assuming that we have a

limited computational resources.

The improvements of the fitness values over the course of
optimization, for example after K iterations, can be a good rep-
resentation of the performance of the algorithm. The reasoning
for this choice is that better algorithms are able to achieve more
improvements in the same amount of time compared to their
alternatives. Therefore, we can consider this improvement as the
reward during the optimization (Eq. (7a)). Moreover, since the
problem is fully non-stationary, we do not want to rely on old
Q values, and thus we increase the weight of recent rewards
compared to the previous values. To this end, we choose ↵ =
0.5 to involve the most recent reward to high extent into the
estimated values (Eq. (7b)).

R(t) = F
⇤
t�K

� F
⇤
t

(7a)

Q (t + 1, a) = 0.5Q (t, a) + 0.5R(t) (7b)

Another important point about multi-armed bandits problem
is the effect of number of armed-bandits, i.e. algorithms in this

work, on the solution. In a stationary open-ended trial scheme,
adding a new armed-bandit may result in better asymptotic re-
sult since the new option can have better inherent value. In
the optimization problem considered in this work, the time, or
equivalently number of fitness evaluations, is limited. Hence,
while considering more options can bring about better limiting
behavior but also requires spending the time budget on the
evaluation of the new options. Therefore, a balance should be kept
for the number of algorithms in the framework. We argue that
choosing competitive algorithms as the base armed-bandits helps
the framework to exploit their merits compared to a case where
one algorithm outperforms the other in the majority of the prob-
lems. Algorithm 1 elaborates upon the steps taken in the MAB
framework using a set of base algorithms A = {A1, A2, . . . , Am}.
Algorithm 1: Multi-Armed Bandit Metaheuristic Algorithm
Selection

Input: Update rules of Metaheuristic Algorithms
A1, A2, ..., Am

Initialize the population Xi (i = 1, 2, ..., N) and maximum
number of iterations T

Set interval (K), and evaluate initial fitness values
Take each action (algorithm) for a K-iteration period and
update Q values using Eq. (7) for every iteration (K = 1
in Eq. (7a)).

while t  T do

if t % K = 0 then

Select algorithm Ai = a with soft sampling based
on Q values using Eq. (6)

Use algorithm Ai update rule
return X

⇤, F⇤

To showcase the performance of framework, we select three
successful metaheuristic algorithms as base armed-bandits. Based
on a primary observation on the performances of a set of optimiz-
ers on the objective functions (convergence curves are provided
in Appendix A), we select Harris Hawks Optimizer (HHO) [37],
Differential Evolution (DE) [2], and Whale Optimization Algo-
rithm (WOA) [38] as the options in the framework. Therefore,
at each stage of the optimization, the positions of agents gets
updated based on one of these algorithms that is selected based
on UCB of Q values (Fig. 1).

As shown in Fig. 1 and explained in the algorithm 1, the
algorithms are selected and used for some iterations during the
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Fig. 2. The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA)
compared to the vanilla DE, HHO, and WOA algorithms, and random bandit selection baseline on unimodal fitness landscapes.

optimization. Hence, there is a caveat for using the proposed
framework that the selected base algorithms have to be able to
communicate with each other in some way. By communication,
we point to the information exchange between the algorithms.
For example, the iteration, the best solution, and the position
matrix of agents should be shared among all of the algorithms
so that they can be updated using each of the update rules easily.
This feature is not easily and readily available for every choices
of metaheuristic algorithms. First, some algorithms require ad-
ditional computation or features that may not be provided with
other algorithms. The storage of personal best scores in Particle
Swarm Optimization (PSO) [4] is a good example of this extra
computation. To address this issue, we have to keep track of
these parameters globally for all of the algorithms. Second, there
is a need for the effective implementation of the main united
optimization with different subroutines to perform the update
rules.

3. Experiments

In this section, the experimental setup and environment are
first discussed. The convergence analysis of the proposed method
on several test cases are then covered in details. Next, the statisti-
cal analysis and comparison with other algorithms are provided.
And finally, we show that MAB-OS can be generalized to other
algorithms.

3.1. Experiments environment

We test the performance of algorithms as well as the Multi-
Armed Bandits Operator Selection (MAB-OS) on a set of bench-
mark functions containing unimodal, multimodal [39,40], and
composite functions from CEC-2017 [41]. The details and two-
dimensional landscapes (if applicable) of these 33 functions are
tabulated and depicted in the tables and figures in Appendix B.
The metaheuristic algorithms are based on stochastic calculations
which affect the results of each run. Therefore, the optimizers and

algorithms are evaluated multiple times on each benchmark func-
tion and the average and standard deviation of the performances
are reported. As a result, the obtained solution and convergence
curve of each pair of algorithm-function is extracted over 30
independent runs.

As mentioned before, several metaheuristic algorithms, and
especially recent swarm-based methods, have gone through a
primary examination to select the base algorithms for the frame-
work. We use Python and the implementation of the algorithms
are based on EvoloPy package [42,43]. In addition to HHO, DE, and
WOA that are selected, we also considered algorithms like Grey
Wolf Optimizer (GWO) [40], Moth–Flame Optimization Algorithm
(MFO) [44], Multi-verse Optimizer (MVO) [45], Salp Swarm Algo-
rithm (SSA) [46], and Sine Cosine Algorithm (SCA) [47]. Note that
the convergence curves of these methods on some benchmark
functions are provided in Appendix A. It is especially observed
that HHO performs better on unimodal functions than low di-
mensional multimodal or composite functions. On the other hand,
DE has an outstanding performance on these types of landscapes.
This observation is also aligned with the previous studies on these
algorithms [48,49]. DE is equipped with exploration operators
that make it a capable method for complex landscapes. On the
other hand, HHO has excellent built-in local search strategies that
result in its good performance in simpler unimodal functions.
Table 1 contains the parameters that are used for the experiments
in this work.

Before discussing the effectiveness of the framework in obtain-
ing good final solutions for the optimization problems, we need
to discuss its efficiency in terms of computation time and fitness
evaluations. The time budget for the optimization problems is
considered to be limited and the aim of these methods usually
is to provide fast convergence to good enough solutions. In the
context of algorithm selection, spending time on the examina-
tion and selection of algorithms would reduce the time for the
optimization itself. Hence, we are usually in need for exami-
nation and selection methods that are not too time-consuming.
An important remark here is that in MAB-OS, there is no need
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Fig. 3. The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA)
compared to the vanilla DE, HHO, and WOA algorithms, and random bandit selection baseline on high-dimensional multimodal fitness landscapes.

Table 1

The details of the parameters used for the optimization of each of the algorithms
in the experiments.
Algorithm Parameters Value

HHO E Linear from 2 to 0
LF � 1.5

DE Mutation Factor (F) 0.5
Crossover Ratio (CR) 0.7

WOA a Linear from 2 to 0
a2 Linear from �1 to �2

MAB
K 50
c 1
↵ 0.5

All algorithms
Max. Iteration (T ) 1000
No. search agents (N) 50
Dimensiona (D) 30

aFor the variable dimensional benchmark functions.

for additional iterations or multi-agent computations. Moreover,
there is no change in the number of fitness evaluations with the

MAB-OS framework as it does not require any extra evaluation.

We analyzed the wall-clock run time for the base algorithms
and the proposed implementation of MAB-OS, and noticed that
the extra operations including the computation of Q values and
algorithm selection do not cause any significant computation
time added to the normal run time of the algorithms. Please note

that the base algorithms do not have same average wall-clock
time as they consist of different operations, so we cannot expect
the MAB-OS to be more efficient than each of them, but it is
interestingly efficient compared to the average time over the base
algorithms.

3.2. Convergence analysis

The first evaluation of the performance of the framework is by
analyzing the convergence curves on the introduced benchmark
functions. Here, we compare the MAB-OS convergence behavior
with those of base algorithms, i.e. HHO, DE, and WOA, as well as
a random bandit selection baseline. In the random baseline, one
of the algorithms are selected in a uniformly randomly manner
and the positions are updated with that algorithm’s update rule.
This baseline would indicate the effect of non-intelligent and
non-systematic online hybridization of algorithms.

We start with the unimodal functions, F1–F7, where Fig. 2
shows the convergence curves of the algorithms and MAB frame-
works (top subplot) and the distribution of the active algorithm
in an example trial for the MAB-OS (bottom subplot). The MAB-
OS does not seem efficient in this type of functions compared
to the best algorithm which is usually HHO, or WOA (e.g. on
F1 and F2). The reason for this inferior performance is assumed
to be due to the fact that in unimodal functions, exploitation
is a suitable strategy that brings about fast convergence to the
very small values around the only local minimum, which is also
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Fig. 4. The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA)
compared to the vanilla DE, HHO, and WOA algorithms, and random bandit selection baseline on fixed-dimensional multimodal fitness landscapes.

the global optimum. As a result, the winning strategy focuses on
one specific superior update rule and does not lose any chance
for the improvement. This is probably the main reason for the
linear (in logarithmic scale) decrease of the curves in many of
these functions (e.g. WOA curve in F1). For MAB-OS, however, this
cannot be the case since it has to spend time on the evaluation
of all the constituting algorithms. Spending iterations on the
sub-par algorithms, e.g. DE for some unimodal functions, would
hinder the MAB-OS convergence rate to be as fast as the winning
algorithm. In fact, we consider this as a good indication of not
easily trapping in locally optimal solutions when using MAB-OS,
which will be investigated on multi-modal and composite test
functions. One might argue that such functions are more similar
to challenging, real-world optimization problems.

The convergence behavior of algorithms on high dimensional
multimodal functions are depicted in Fig. 3. There is no absolute
winner on this type of landscape, however, HHO and WOA are
still performing better in most cases. We can see that MAB
and random bandit also usually reach the solutions that HHO
achieves. In F8, HHO outperforms with high margin, and its
reason is similar to the unimodal case. In fact, the consistency
in the single update rule can sometimes lead to never-ceasing
improvement. An interesting observation in F8 is that the MAB-
OS also insists on using HHO in the majority of the iterations due

to its performance. Generally speaking, there is a relatively high
randomness in the behavior of algorithms on these functions that
strongly depends on a variety of parameters such as initialization
and local minima conditions. This leads to the observation that
while MAB algorithms are performing relatively good here, there
is no meaningful difference between the random bandit and MAB
in these functions.

The next type of functions are fixed dimensional multimodal
functions which usually have much lower dimensions but with
different modalities that can trap algorithms in locally optimal
solutions (Fig. 4). In such functions, DE has a better performance
compared to its performance in the previous functions. In fact, the
exploration capability of DE makes it converge to better solutions
in many of these multimodal landscapes. This is while HHO shows
inferior behavior now compared to its performance on unimodal
functions. Also, the superiority of intelligent MAB-OS compared to
random hybridization is observed in most of the cases. Especially,
in F21–F23, we can observe how MAB has a similar performance
to the winning algorithm DE while random bandit and WOA are
in the middle and HHO shows the worst behavior.

Fig. 5 illustrates the convergence curves for the composite
functions that have challenging landscape combined from differ-
ent types of landscapes. This feature complicates keeping balance

7
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Fig. 5. The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA)
compared to the vanilla DE, HHO, and WOA algorithms, and random bandit selection baseline on composite fitness landscapes.

between exploration and exploitation. As a result, algorithm se-
lection techniques that rely on landscape features would possibly
have difficulties to select the right choice of algorithm for these
functions. However, MAB-OS only depends on the rewards col-
lected from the function values which makes it independent
from the landscape features. The inferior performance of HHO
is again observable in such functions. Similar to fixed dimension
multimodal functions, DE has a good performance on the majority
of these problems.

It is evident that MAB follows the outstanding behavior of DE
andWOA in these functions and relies less on HHO. An interesting
observation is that generally MAB uses HHO in much less number
of iterations compared to previous functions. Another surprising
observation is that MAB can outperform all of the base algo-
rithms in some functions. For example in F24, F27, and F32, MAB
shows the best convergence rate and final solution. This indicates
that MAB is able to combine the merits of different algorithms
in a synergistic manner that leads to performing beyond the
underlying base algorithms.

In the previous convergence plots, an example of selected al-
gorithms were shown in the subplots. To extend on this analysis,
we measure the percentage of times each algorithm was selected
during the optimization. As it can be shown in the subplots of

Fig. 5, HHO algorithm (shown as algorithm ‘0’) is selected less
than the other two algorithms. The average percentage of using
HHO drops from around 32% to 27% when moving from unimodal
functions to the composite functions where HHO does not show a
satisfactory performance. A remark here is that this percentage is
not a sufficient metric to evaluate the framework since the order
by which these algorithms are selected is also very important as
discussed before.

3.3. Performance evaluation and statistical analysis

Now that the convergence rates, on average, are observed and
discussed, we provide the tabular results on the final obtained
solutions by the proposed framework compared to the base algo-
rithms. We evaluate the algorithms with different initialization
conditions and random seeds to have a fair comparison. The
quantity of interest is the best solution that the population has
achieved at each point of the optimization (F⇤). We provide the
average and standard deviation of this value over 30 runs. Also,
the best performance of these runs is reported as a measure of the
potential capability of the algorithms. The reason is that some al-
gorithms have more consistent, i.e. less variance, behaviors while
others have more stochastic, i.e. high variance, performances.

8
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Table 2

Performance table of unimodal test functions. Average, standard deviation, and the best obtained solutions are reported on each test
function for all the baseline algorithms as well as random selection and multi-armed bandit algorithm selection.
Objective function DE HHO WOA RANDOM MAB

F1
Ave 3.8485E�10 5.4443E�133 6.2894E�172 2.6749E�114 6.1063E�56
Std 1.6871E�10 2.9109E�132 0.00 1.4404E�113 3.2883E�55
Best 1.1296E�10 2.2541E�147 2.1945E�187 1.8336E�156 2.9331E�192

F2
Ave 5.9057E�06 3.1109E�69 9.4168E�110 1.4553E�67 5.0403E�32
Std 2.1499E�06 1.3889E�68 3.2983E�109 5.4537E�67 2.7143E�31
Best 2.0261E�06 3.7224E�78 2.7212E�117 2.2937E�84 1.5031E�107

F3
Ave 1.6513E+04 3.3200E�108 1.1920E+04 1.2984E�78 5.0697E�13
Std 2.8884E+03 1.4293E�107 7.3915E+03 6.9920E�78 2.2117E�12
Best 8.5027E+03 7.6186E�130 1.5087E+03 9.8246E�109 1.2515E�143

F4
Ave 1.4803E+00 2.0502E�65 2.3074E+01 2.8650E�56 4.6356E�10
Std 7.4467E�01 8.9544E�65 2.3223E+01 1.5337E�55 2.0187E�09
Best 5.9087E�01 5.8329E�77 4.5818E�04 8.6694E�71 1.7562E�70

F5
Ave 2.4287E+01 9.0637E�04 2.6587E+01 9.9512E�03 1.6498E�03
Std 6.7448E�01 1.2677E�03 3.0543E�01 7.8235E�03 2.2999E�03
Best 2.2817E+01 9.7848E�07 2.6023E+01 7.5730E�04 1.4117E�06

F6
Ave 2.6214E�10 1.7254E�05 3.9657E�03 3.4340E�06 1.2326E�05
Std 1.4904E�10 2.5979E�05 2.4786E�03 3.1424E�06 2.7365E�05
Best 9.1883E�11 2.8510E�10 1.7987E�03 3.5143E�07 5.1433E�11

F7
Ave 2.1427E�02 7.9972E�05 6.4471E�04 1.4265E�04 1.4964E�04
Std 5.9699E�03 9.6293E�05 5.9913E�04 1.6949E�04 1.8282E�04
Best 1.1012E�02 3.8186E�06 5.1377E�05 1.5354E�05 6.1500E�06

Table 3

Performance table of high-dimensional multimodal test functions. Average, standard deviation, and the best obtained solutions are
reported on each test function for all the baseline algorithms as well as random selection and multi-armed bandit algorithm selection.
Objective Function DE HHO WOA RANDOM MAB

F8
Ave 6.3708E+03 5.0348E�02 8.5920E+02 1.0601E+02 3.3269E+02
Std 2.9597E+02 7.9861E�02 1.0619E+03 3.1223E+02 1.0699E+03
Best 5.5537E+03 3.8183E�04 6.6231E�02 1.0721E�03 6.1516E�04

F9
Ave 1.7049E+02 0.00 3.7896E�15 0.00 0.00

Std 1.2061E+01 0.00 2.0407E�14 0.00 0.00
Best 1.2340E+02 0.00 0.00 0.00 0.00

F10
Ave 7.6018E�06 4.4409E�16 3.5231E�15 4.4409E�16 9.1778E�16
Std 3.2677E�06 9.8608E�32 2.1964E�15 9.8608E�32 1.5166E�15
Best 3.2440E�06 4.4409E�16 4.4409E�16 4.4409E�16 4.4409E�16

F11
Ave 8.9137E�04 0.00 0.00 0.00 0.00
Std 3.3461E�03 0.00 0.00 0.00 0.00
Best 1.9976E�10 0.00 0.00 0.00 0.00

F12
Ave 3.4556E�03 7.6125E�07 9.4544E�04 4.8148E�07 8.6700E�07
Std 1.8609E�02 7.4942E�07 1.4927E�03 2.9504E�07 2.1891E�06
Best 4.8539E�11 1.6914E�10 1.6506E�04 4.6654E�08 3.8436E�11

F13
Ave 1.2293E�09 9.6779E�06 4.0308E�02 3.7319E�04 1.0974E�05
Std 8.5030E�10 1.6950E�05 4.9275E�02 1.9740E�03 3.9282E�05
Best 1.1923E�10 2.1571E�08 3.3570E�03 1.4183E�06 1.4592E�09

We employ two metrics to compare the algorithms in this sec-
tion, The first metric is based on the comparison of the statistical
behavior of the algorithms. This metric considers all of the trials
and examines if there is a winning algorithm for each pair of
algorithms. To this end, we use paired t-test with significance
level of ↵ = 0.05 and rank them based on the pair results of
this test. This metric evaluates whether an algorithm’s better
performance is statistically meaningful or not and shows the
consistency of the performance. The second metric, focuses only
on the best performance, i.e. one trial, of the algorithms which can
represent the potential outcome of using a specific algorithm. We
can then rank the algorithms for each function based on this best
obtained solution.

The final solutions for the unimodal functions F1–F7 are tab-
ulated in Table 2. The results indicate that HHO has the best
overall performance. The random online hybridization and bandit
also have relatively good results that is much better than the
worst algorithm but not as well as the best algorithm. This is in
alignment with the observations from the convergence curves.

Tables 3 and 4 report the results for the high dimensional
and fixed dimensional multimodal functions, respectively. As dis-
cussed in the previous section, we can see that DE has a better
performance on low dimensional multimodal landscapes and the
MAB-OS is also good enough in most of the cases and performs
almost as well as the winning algorithm for both average and the
best performances.

At last, Table 5 shows the obtained solutions for the composi-
tion benchmark functions. Here, we can specifically observe that
MAB-OS can not only perform as well as the winning algorithm
which is DE in majority of the cases but also outperforms it and
achieves the first rank among the algorithms.

To show the overall performance of the MAB-OS, we compute
the relative ranking of the algorithms for different types of func-
tions based on the aforementioned metrics (Fig. 6). The results
capture the discussed results about the performance of HHO and
DE in different types of landscapes where each of them are good
only in specific types of landscapes. MAB, however, have a good
rank on all types of functions and on average achieves the first
rank. The order of the rankings of the algorithms over all of the
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Table 4

Performance table of fixed-dimensional multimodal test functions. Average, standard deviation, and the best obtained solutions are
reported on each test function for all the baseline algorithms as well as random selection and multi-armed bandit algorithm selection.
Objective Function DE HHO WOA RANDOM MAB

F14
Ave �1.9962E�03 1.6237E�01 3.8965E�01 �1.9962E�03 �1.9962E�03

Std 4.3368E�19 8.8511E�01 1.7766E+00 4.3368E�19 4.3368E�19
Best �1.9962E�03 �1.9962E�03 �1.9962E�03 �1.9962E�03 �1.9962E�03

F15
Ave 3.0823E�02 3.0008E�02 3.0201E�02 3.0038E�02 3.0007E�02

Std 3.5890E�03 3.7100E�07 2.4901E�04 1.6437E�04 4.8341E�09
Best 3.0007E�02 3.0007E�02 3.0009E�02 3.0007E�02 3.0007E�02

F16
Ave 1.5465E�06 1.5465E�06 1.5465E�06 1.5465E�06 1.5465E�06

Std 4.2352E�22 1.1248E�11 6.7713E�11 1.0378E�15 8.2753E�17
Best 1.5465E�06 1.5465E�06 1.5465E�06 1.5465E�06 1.5465E�06

F17
Ave 8.8736E�04 8.8743E�04 8.8755E�04 8.8736E�04 8.8736E�04

Std 2.1684E�19 9.8602E�08 3.6067E�07 2.1684E�19 2.6926E�10
Best 8.8736E�04 8.8736E�04 8.8736E�04 8.8736E�04 8.8736E�04

F18
Ave �7.8426E�14 9.0000E�01 2.3582E�06 1.7599E�13 �7.7360E�14
Std 7.9936E�16 4.8466E+00 4.4223E�06 4.3999E�13 4.0917E�15
Best �8.0824E�14 �7.4163E�14 4.7904E�12 �7.4163E�14 �8.0380E�14

F19
Ave 1.2179E�03 1.2199E�03 2.6664E�03 1.2179E�03 1.2179E�03

Std 2.1684E�19 2.5256E�06 2.0834E�03 2.1684E�19 2.1684E�19
Best 1.2179E�03 1.2179E�03 1.2185E�03 1.2179E�03 1.2179E�03

F20
Ave 6.1414E�02 4.9699E�02 6.9192E�02 4.1599E�02 6.5378E�02
Std 5.9314E�02 5.8990E�02 1.0629E�01 5.7294E�02 5.8916E�02
Best �1.9952E�03 �1.9786E�03 �1.9930E�03 �1.9952E�03 �1.9952E�03

F21
Ave 1.6841E�01 5.0980E+00 6.7321E�01 2.7189E+00 4.3476E�07

Std 9.0694E�01 2.1346E�05 2.0460E+00 2.5433E+00 6.1290E�07
Best 3.2094E�07 5.0980E+00 7.1072E�06 3.2094E�07 3.2094E�07

F22
Ave 2.2248E�01 4.9608E+00 1.7331E+00 1.2401E+00 �1.4054E�04

Std 1.1989E+00 1.3258E+00 2.9301E+00 2.2481E+00 1.6090E�07
Best �1.4057E�04 1.2712E�04 �1.2147E�04 �1.4057E�04 �1.4057E�04

F23
Ave �1.0982E�04 4.6869E+00 1.8077E+00 1.2617E+00 �1.0967E�04
Std 4.0658E�20 1.8382E+00 3.0929E+00 2.2873E+00 8.0408E�07
Best �1.0982E�04 8.2292E�05 �6.3864E�05 �1.0982E�04 �1.0982E�04

Table 5

Performance table of composite test functions. Average, standard deviation, and the best obtained solutions are reported on each
test function for all the baseline algorithms as well as random selection and multi-armed bandit algorithm selection.
Objective Function DE HHO WOA RANDOM MAB

F24
Ave 2.4909E+03 2.6521E+03 2.5847E+03 2.4941E+03 2.4033E+03

Std 1.3890E+01 5.3335E+01 6.0695E+01 5.3647E+01 3.4108E+01
Best 2.4687E+03 2.5139E+03 2.4869E+03 2.3826E+03 2.3262E+03

F25
Ave 7.4671E+03 8.3213E+03 7.1753E+03 4.9134E+03 5.8990E+03
Std 3.3703E+03 6.8934E+02 2.1715E+03 2.4121E+03 2.2190E+03
Best 2.3000E+03 6.9565E+03 2.3889E+03 2.3277E+03 2.3001E+03

F26
Ave 2.8474E+03 3.3338E+03 3.0875E+03 2.8889E+03 2.7384E+03

Std 8.6431E+00 1.0928E+02 7.7636E+01 7.0576E+01 2.1240E+01
Best 2.8300E+03 3.1648E+03 2.9733E+03 2.7853E+03 2.6996E+03

F27
Ave 3.0123E+03 3.5547E+03 3.1828E+03 3.0644E+03 2.9148E+03

Std 1.0713E+01 1.2507E+02 1.2140E+02 6.5126E+01 2.6482E+01
Best 2.9871E+03 3.3059E+03 2.9996E+03 2.9404E+03 2.8499E+03

F28
Ave 2.8871E+03 4.0346E+03 3.0518E+03 2.9627E+03 2.9028E+03
Std 1.0804E�01 2.7317E+02 5.8246E+01 2.9819E+01 3.7931E+01
Best 2.8868E+03 3.5207E+03 2.9566E+03 2.8974E+03 2.8835E+03

F29
Ave 5.6242E+03 1.0164E+04 7.7713E+03 6.0750E+03 5.0106E+03

Std 9.5219E+01 1.0697E+03 1.2860E+03 1.2786E+03 4.5631E+02
Best 5.3998E+03 8.2942E+03 3.4927E+03 2.9841E+03 4.0595E+03

F30
Ave 3.2033E+03 4.1035E+03 3.4124E+03 3.3068E+03 3.2267E+03
Std 6.5243E+00 3.0647E+02 1.0373E+02 5.3156E+01 1.8775E+01
Best 3.1908E+03 3.5440E+03 3.2589E+03 3.2377E+03 3.1992E+03

F31
Ave 3.2214E+03 5.8755E+03 3.4482E+03 3.3439E+03 3.2561E+03
Std 1.8212E+01 5.7905E+02 7.6608E+01 4.7560E+01 4.7881E+01
Best 3.2087E+03 4.3236E+03 3.3101E+03 3.2623E+03 3.2102E+03

F32
Ave 4.1334E+03 6.5483E+03 5.1554E+03 4.4442E+03 3.9744E+03

Std 1.6838E+02 1.0399E+03 5.1367E+02 3.1625E+02 3.3804E+02
Best 3.6610E+03 4.5833E+03 4.3048E+03 3.8496E+03 3.4411E+03

F33
Ave 4.8839E+04 1.6160E+09 1.9993E+08 6.0830E+06 2.7951E+07
Std 2.0401E+04 2.3742E+09 1.8260E+08 5.4657E+06 3.6157E+07
Best 2.4048E+04 4.2898E+06 2.1828E+07 3.4244E+05 1.7539E+04
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Fig. 6. The ranking of the base algorithms (HHO, DE, and WOA), random operator selection, and Multi-Armed Bandit Optimizer Selection (MAB-OS) for different
types of landscapes: (a) Based on best performance and (b) Based on the statistical tests. The bar chart shows that Bandit, i.e. MAB, holds a good ranking in almost
all functions while other base algorithms are only good in specific type of landscapes.

Fig. 7. The performance of multi-armed bandit (MAB) using moth–flame optimizer (MFO), multi-verse optimizer (MVO), and sine cosine algorithm (SCA) compared
to the vanilla MFO, MVO, and SCA on some benchmark problems.

benchmark functions is as follows: MAB-OS < Random Bandits <
DE < HHO < WOA.

Overall, the results of the convergence curves, the solution
tables, and the ranking charts indicate that MAB-OS can provide
a significant positive impact on the performance of the base
algorithms by employing the advantages of each method in the
right time. It can thus combine the local search capabilities of

HHO or WOA with the exploration strategies of DE in a systematic
manner that is identified intelligently by reinforcement learning.

3.4. Generality of the framework

In this section, we show that the proposed MAB-OS can be
used on different choices of base metaheuristic algorithms. To
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Fig. 8. The performance of multi-armed bandit (MAB) using Genetic Algorithm (GA), Differential Evolution (DE), and Cuckoo Search (CS) compared to the vanilla GA,
DE, and CS on some benchmark problems.

show the generalizability of the framework, we conduct two
more experiments on different groups of algorithms. In the first
experiment, we select three algorithms of moth–flame optimizer
(MFO) [44], multi-verse optimizer (MVO) [45], and sine–cosine
algorithm (SCA) [47] and we denote this experiment as (MFO,
MVO, SCA). In the second experiment, the base algorithms are
Genetic Algorithm (GA) [1], Differential Evolution (DE) [2], and
Cuckoo Search (CS) [50] and this experiment is denoted as (GA,
DE, CS). An important remark in the first (MFO, MVO, SCA) experi-
ment is that to let these three algorithms communicate with each
other and optimize together, we need some extra book-keeping
process that computes and keeps some parameters required by
MFO in the other two algorithms. We observe that this extra
computations are negligible in terms of computation time in
this example, but it should be noted when selecting the base
algorithms.

We apply MAB-OS on these two sets of three algorithms and
on the 23 benchmark functions with unimodal and multimodal
landscapes. In both experiments, we observe that the MAB-OS
overall ranking is better than each of the base algorithms, mean-
ing that if we have an unknown problem, MAB-OS is potentially
the best choice. Fig. 7 shows the convergence curves for (MFO,
MVO, SCA) on some of the benchmark problems and the overall
statistical ranking (considering statistical ties) is: MAB-OS (1.087)
< MFO (1.435) = MVO (1.435) < SCA (2.00). For the second
experiment, Fig. 8 depicts the convergence curves on some of
the benchmarks and the overall statistical ranking is: MAB-OS

(1.174) < DE (1.522) < CS (2.00) < GA (2.607). These two experi-
ments show the generality of MAB-OS when applying to different
choices of algorithms.

4. Conclusion

In this work, we proposed an online optimizer selection frame-
work based on the multi-armed bandits problem as a classical
reinforcement learning problem. In this framework, the behav-
ior of the optimization algorithms during the optimization are
evaluated and represented as estimated scores based on the re-
wards collected from their convergence curves. Then, the better
algorithms have a higher chance of selection based on the soft
sampling on the upper confidence bound of their scores. This
technique results in adaptive operator selection without spending
significant additional resources of time or fitness evaluation. The
results of using this framework on the base algorithms containing
HHO, DE, andWOA show that it can outperform them and achieve
the best ranking on average which can be viewed as a new opti-
mization algorithm with better performance without any manual
changes on the update rules of base algorithms. While this work
shows the effect of this framework, we should note that this
framework has the potential to be used on different sets of base
algorithms which can be an interesting direction for future works.
Also, the Multi-Armed Bandit problem contains different param-
eters, reward definition, and implementation schemes which can
be optimized for possible better results in the future works. Based
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Fig. A.1. Comparison of the convergence curves of several metaheuristic optimization algorithms on some of the benchmark functions. We can observe that Harris
Hawks Optimizer (HHO, orange curve), Differential Evolution (DE, yellow curve), and Whale Optimization Algorithm (WOA, Blue curve) have good performances
among the evolutionary and swarm-based algorithms on these benchmark functions.

on the type of baseline algorithms and the problem environ-
ment, MAB-OS can be used in many different applications for
efficient optimization as it attempts to combine time-efficiency
and effective search for the best optimization algorithm. The data
and codes used in this work are available at https://github.com/
BaratiLab/MAB-OS.
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Unimodal benchmark functions.
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Appendix A. Performance of metaheuristic algorithms on

some benchmark functions

See Fig. A.1.

Appendix B. Benchmark functions
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Fig. B.1. 2D version of unimodal test functions (30 dimensional versions are used for the experiments).

Fig. B.2. 2D version of some multimodal test functions (F8–F13) and fixed dimension multimodal functions (F14–F18).

Table B.1 shows the functional form of the unimodal functions,
and the multimodal functions are listed in Table B.2. For the
details of composition functions, please read the full details on
CEC-2017 benchmark [41] (see Figs. B.1 and B.2).

Appendix C. MAB-OS performance on higher dimensions

The convergence curves are shown for some of the unimodal
and multimodal benchmark functions defined in a 100 dimen-
sional search space. The results in the main manuscript were
for 30 dimensions. This change applies only on the high dimen-
sional benchmark functions. The other fixed dimension functions
remain the same. The results qualitatively shown that the MAB-
OS can be effective when applied to high dimensional landscapes
(see Fig. C.1).

Table B.2

Multimodal benchmark functions.
Function Range Dim

F8(x) = P
N

i=1 �xi sin
p|xi| + 12 569.487 [�500,500] 30

F9(x) = P
N

i=1 [x2
i
� 10 cos 2⇡xi + 10] [�5.12,5.12] 30

F10(x) = �20exp � 0.2
q

1
N

P
N

i=1 x
2
i
� exp( 1

N

P
N

i=1 cos (2⇡xi)) + 20 + e [�32,32] 30
F11(x) = 1

4000

P
N

i=1 x
2
i
� ⇧N

i=1 cos (
xip
i
) + 1 [�600,600] 30

F12(x) = ⇡
N
{10 sin (⇡y1) + P

N�1
i=1 (yi � 1)2[1 + 10 sin2 (⇡yi+1)] [�50,50] 30

+(yN � 1)2} + P
N

i=1 u(xi, 10, 100, 4), yi = 1 + xi+1
4

u(xi, a, k,m) =

8
<

:

k(xi � a)m xi > a

0 � a < xi < a

k(�xi � a)m xi < �a

(continued on next page)

14



K. Meidani, S. Mirjalili and A. Barati Farimani Applied Soft Computing 128 (2022) 109452

Table B.2 (continued).
Function Range Dim

F13(x) = 0.1{sin2 (3⇡x1) + P
N

i=1(xi � 1)2[1 + sin2 (3⇡xi + 1)] [�50,50] 30
+(xN � 1)2[1 + sin2 (2⇡xn)]} + P

N

i=1 u(xi, 5, 100, 4)
F14(x) = ( 1

500 + P25
j=1

1
j+P2

i=1(xi�aij)6
)�1 � 1 [�65,65] 2

F15(x) = P11
i=1[ai �

x1(b2i +bix2)
b
2
i
+bix3+x4

]2 + 0.0027 [�5,5] 4

F16(x) = 4x21 � 2.1x41 + 1
3 x

6
1 + x1x2 � 4x22 + 4x42 + 1.03163 [�5,5] 2

F17(x) = (x2 � 5.1
4⇡2 x

2
1 + 5

⇡
x1 � 6)2 + 10(1 � 1

8⇡ ) cos (x1) + 10 � 0.397 [�5,5] 2
F18(x) = [1 + (x1 + x2 + 1)2(19 � 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)] [�2,2] 2
⇥[30 + (2x1 � 3x2)2 ⇥ (18 � 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)] � 3
F19(x) = �P4

i=1 ciexp(�
P3

j=1 aij(xj � p�ij)2) + 3.864 [1,3] 3
F20(x) = �P4

i=1 ciexp(�
P6

j=1 aij(xj � pij)2) + 3.32 [0,1] 6
F21(x) = �P5

i=1 [(X � ai)(X � ai)T + ci]�1 + 10.1532 [0,10] 4
F22(x) = �P7

i=1 [(X � ai)(X � ai)T + ci]�1 + 10.4028 [0,10] 4
F23(x) = �P10

i=1 [(X � ai)(X � ai)T + ci]�1 + 10.5363 [0,10] 4

Fig. C.1. Comparison of the performance of MAB-OS with base algorithms of HHO, DE, and WOA, as well as random bandit on some 100 dimensional benchmark
functions.
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