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Abstract—This paper presents a machine learning-based char-
acterization of the quality (Q) factor in spiral coil designs for
wireless power transfer systems operating at MHz frequencies.
Due to skin and proximity effects, at such frequencies, it is
challenging to estimate the Q factor of the coupling coils, which
is a critical parameter to determine the system’s efficiency. A
three-dimensional (3D) electromagnetic (EM) simulator allows us
to precisely analyze the performance of different coil structures.
However, the long processing time in the simulator is a bottleneck
for quickly optimizing the coil design. To overcome this issue,
we here propose a design method with a feed-forward neural
network (FNN) to predict the parameters of the spiral coil. The
FNN leverages the data set collected via the 3D quasi-static EM
field simulator to train a predictor using the stochastic gradient
descent algorithm. After optimization, the FNN model estimates
the Q factor of the spiral coil without any delay. The proposed
algorithm shows an accuracy larger than 96% under an arbitrary
structure. Moreover, the proposed coil design method significantly
reduces the computation time and hence, the analysis complexity.

Index Terms—Spiral Coil Design, High-Frequency Wireless
Power Transfer, Machine Learning.

I. INTRODUCTION

In wireless power transfer (WPT) systems, the design of
the coupling coils is critical for achieving a high conversion
efficiency. High operating frequencies, such as 6.78 MHz and
13.56 MHz, are generally beneficial for obtaining amenable
(e.g., small and light) WPT systems with long transmission
distances. To estimate the efficiency of a WPT system, the
coils are modeled by the lumped elements, e.g., the resistance
R, inductance L and capacitance C, which determine the
quality Q factor of the coils, that also depends on the operating
frequency [1], [2]. During the operation of a WPT system,
the electromagnetic (EM) fields in a coil to transfer energy
usually cause power losses, such as radiation and conduction
losses. Radiation losses are typically negligible for a small
size coil due to the wavelength in the 10’s of MHz operation,
and conduction losses are mainly dependent on the value of
R of the coil [1]. Sadly, at MHz frequencies, because of the
proximity, skin effect, and other concealed losses, it is very
challenging to obtain mathematical expressions for R. More-
over, the parasitic parallel capacitance is no longer negligible

in the coil analysis at high frequencies [3], [4]. The stray
capacitance, in fact, resonates with L and forms a parasitic
parallel self-resonance frequency. This affects the performance
of the WPT system when the operating frequency and the
parasitic resonance frequency are close to each other [5]. In
the case of a series resonant-based compensation network
(e.g. Series-Series, Series-Parallel and LCC compensation
network) of the WPT system, the parasitic parallel capacitance
causes an unintentional degradation under the coupling coeffi-
cient or load variance conditions [6], [7]. Thus, it is necessary
to consider the coil parasitic capacitance and minimize its
effect. The stray capacitance of a spiral coil depends on the
diameter of each turn, the number of turns, the pitch, and
the conductor permittivity. However, the self-capacitance is
difficult to extract accurately due to the nonlinear adjacent
winding capacitance, which depends on the structure and shape
of the coil [3]–[5]. There are various software simulators,
based on numerical analyses, for the coil design optimization.
Three-dimensional (3D) finite element method (FEM) solvers,
such as Ansys-HFSS and COMSOL, are the most represen-
tative simulators for high-frequency electronic components.
Also, a 3D quasi-static electromagnetic field simulator, such
as Ansys-Q3D, can be used to extract directly the R, L, and C
values [8], [9]. However, such conventional methods consume
a significant amount of time to calculate the parameters and
find the optimized coil design.

In this paper, we propose a new method to estimate the
Q factor for spiral coils in a WPT system using machine
learning (ML). Our ML method leverages data collected using
the Ansys-Q3D simulator to train a model aimed at efficiently
predicting the Q factor, i.e., the figure-of-merit (FOM) of the
coil performance. The proposed method shows high accuracy
(> 91%) when we have enough data (> 2000 cases). These
results show the feasibility of our proposed method for real-
world applications that have enough data or coils’ samples.

II. PROPOSED SPIRAL COIL DESIGN

A. Spiral Coil for High-Frequency WPT Systems

The structure of a spiral coil consists of the outer diameter
(Do), inner diameter (Di), number of turns (N ), pitch size (p),
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(a) (b)

(c)

Fig. 1: Structure of a spiral coil: (a) design parameters; (b) lumped elements
model; and (c) WPT system structure.

and wire thickness (wt) of the coil, as illustrated in Fig. 1a. The
equivalent circuit model of the spiral coil is shown in Fig. 1b.
In particular, the input impedance (Zin) is computed as,

Zin = Req + jwLeq =
1

jwCp
||(R+ jwL)

=
R

1− 2CpLw2 +R2C2
pw2 + L2C2

pw4

+ j
wL− wCpR

2 − CpL
2w3

1− 2CpLw2 +R2C2
pw2 + L2C2

pw4
,

(1)

where the coil resistance is R, the inductance is L, the parasitic
capacitance1 is Cp, and the angular frequency is w. The
resistance R encompasses all the losses in the coil and its value
is complex to estimate accurately at MHz frequencies because
of the DC resistance, proximity, and skin-depth effects. To
calculate the efficiency of a WPT system, we find the Q factor
by using the input impedance, as shown below,

Q =
Xeq

Req
=

w
(
L− CpR

2 − CpL
2w2

)
R

, (2)

where Req is the equivalent resistance, and Xeq is the equiv-
alent reactance.

Then, the calculated Q value for the coupling coils are used
to find the efficiency of the WPT system. Fig. 1c shows a gen-
eral two-coil WPT system when the designed coils are used for
the transmitter/receiver. The maximum conversion efficiency
of the WPT system is denoted as ηmax and expressed as,

ηmax =
k2Q1Q2(

1 +
√
1 + k2Q1Q2

)2 , (3)

1As highlighted in Section I, at MHz frequencies, the parasitic capacitor
must be considered because it induces a parasitic self-resonance in the coil.

Fig. 2: FNN with three hidden layers and ReLU activation function.

where Q1, Q2 are the quality factors of L1, L2, respectively,
and k is the coupling coefficient between the two coils [10].

Extracting the value of the Q factor using conventional EM
field simulators requires a considerable amount of time. For
instance, it takes approximately 10 ∼ 15 hours for 50 different
designs (12 ∼ 18 minutes/design) using Ansys-HFSS, and
about 2 ∼ 4 hours for 50 designs (2 ∼ 5 minutes/design)
using Ansys-Q3D. Moreover, the simulation time depends on
the structure, solution setup, and computing resources. It is
clear that such long simulation times represent a bottleneck to
quickly optimize the coil design. Motivated by this observa-
tion, we next propose a ML-based spiral coil design, as we
describe in what follows.

B. Prediction using Deep Learning

ML [11] models are promising methods to accurately ap-
proximate a large class of functions between input features and
outputs, as long as enough data samples, that appropriately
represent the end-to-end relationship, are available. Moreover,
deep neural networks (DNN) [12] models yield unprecedented
performance for various classification and regression tasks. A
basic DNN model consists of the input layer, output layer, and
several hidden layers. Each layer has a number of neurons
that first perform a summation on their inputs, which is then
followed by a non-linear activation function. By leveraging
the non-linearity of the activation function, DNN can suitably
approximate almost any function.

Estimating the Q factor in (2), which is a continuous
real value, is cast as a regression problem. Thus, a properly
designed DNN is leveraged to learn the true function between
(Do, fs, N, p, wt) and Q based on the available dataset2.
Towards this end, we employ a feed-forward neural network
(FNN), which consists of fully connected layers, i.e., all
neurons in a layer are connected to every neuron in the
next layer. Fig. 2 represents a simple FNN model consisting
of five input features, one output, and three hidden layers.

2Here, fs denotes the frequency, and the other parameters are defined in
Section II-A.
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Fig. 3: System architecture including the data collection, FNN model training and performance evaluation for the spiral coil design.

In particular, each neuron in the hidden and output layers
first computes a summation over all of the incoming values.
Then, the neuron applies a non-linear activation function to
the computed value and outputs the result of the activation
function. Whenever there exists a next layer, the output of a
neuron is multiplied by a corresponding model parameter and
is conveyed to every neuron in the next layer.

With reference to Fig. 2, we denote by zℓ,i the output of the
i-th neuron in the ℓ-th layer, and the operation of the neuron
is formally expressed as

zℓ,i = σ
(〈

Θ
(ℓ)
i , uℓ

〉
+ b

(ℓ)
i

)
, (4)

where: (i) σ(·) is a non-linear activation function; (ii) ⟨·, ·⟩
denotes the inner product; (iii) Θ

(ℓ)
i is the weight vector for

the i-th neuron in the ℓ-th hidden layer, and Θ(ℓ) is obtained
by stacking together all the Θ

(ℓ)
i ’s; (iv) uℓ is the input vector

of the ℓ-th layer; and (v) b(ℓ)i is the bias term. We set the z0,i’s
(i.e., the input parameters) to be the parameters of the problem
of interest, i.e., Do, fs, N, p, and wt. We design a FNN model
that consists of three hidden layers (see Fig. 2), where each
layer has 64, 128, and 32 neurons, respectively, followed by
the rectified linear unit (ReLU) activation function, that is
ReLU(x) = max{0, x}. By calculating zℓ,i for all i’s, the
output vector (denoted by zℓ) of the ℓ-th layer is obtained by
stacking together the zℓ,i’s, and it can be used as the input
vector of the (ℓ+ 1)-th layer if ℓ ∈ {1, 2, 3} or as the output
of the FNN if ℓ = 4. The estimated output value, denoted as
Q̂, can then be expressed as Q̂ = z4,1 =

∑32
k=1 Θ

(4)
1,kz3,k+b

(4)
1 ,

where Θ
(4)
1,k is the k-th entry of Θ(4)

1 .
The number of neurons in each layer is an important

hyper-parameter since it controls the accuracy of a function
approximation. Roughly speaking, the more neurons a DNN
model has, the better result the model can produce. This trend
also occurs as a function of the number of hidden layers and
data samples. However, having too many parameters in the
model may lead to over-fitting. This is a case where the ML
model strongly memorizes its training dataset and yields a
poor generalized performance (i.e., test performance) if a new
unseen data (e.g., test data) is different (in a distribution sense)
from the training data. To mitigate the over-fitting phenomenon
in our model, we divide our dataset into three different

sets, namely training data, validation data, and test data. The
training data is used to train the ML model, and the validation
data is used to evaluate the model performance (i.e., validation
loss) during the training phase. The prediction performance is
evaluated based on the test data, which is unknown to the ML
model. In particular, we select the model parameters at the
point before which the validation loss increases.

The loss function we used to train the FNN model is the
well-known mean squared error (MSE) defined as

L(f(X),y) =
1

ND

ND∑
i=1

(f(xi; Θ)− yi)
2, (5)

where: (i) f(·; Θ) is the FNN model with parameters Θ; (ii)
(X,y) is the dataset; (iii) ND denotes the number of data
samples; and (iv) (xi, yi) is the i-th data sample. In our setting,
we used xi = (Do, fs, N, p, wt) and yi = Q for the i-th data
sample. During the training phase, the parameters Θ’s were
optimized by using the stochastic gradient descent algorithm
with batch size equal to 160, and total number of epochs equal
to 2000. Note that the selected number of epochs is smaller
than the one leading to an over-fitting in our ML model. Once
the FNN model is trained based on the given dataset (X,y),
it readily produces Q̂, i.e., the estimated value of the Q factor
corresponding to the coil design parameters.

III. SPIRAL COIL DESIGN USING ML

Fig. 3 shows the overall block diagram for our spiral coil
design using ML, including the data collection, the FNN model
training, and the ML-based spiral coil performance evaluation.
The Ansys-Q3D was used for the data collection for the
spiral coil design. The five input parameters (Do, fs, N, p, and
wt) have a specific range of values, selected by uniformly
distributing them with a specific resolution. The collected data
was used to train the FNN within the PyTorch ML framework.
Also, additional data was collected to verify the out-of-range
estimation performance. The fully-trained FNN model was
then used to estimate the Q factor of the spiral coil and
compared to the collected data to check the accuracy.

A. Data Collection

The Ansys-Q3D simulator was used to extract the spiral coil
characteristics for the training/evaluation data. The physical
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structure of the spiral coil is dictated by the geometrical
parameters such as Do, N , p, wt and fs, as shown in Fig. 4.
The enameled magnet wire, which has a copper conductor
covered by 80 µm polyester, was used for the winding of the
spiral coil. The start and end wires were further extended for
the lead connection.

The generated physical spiral coil was analyzed by the 3D
quasi-static electromagnetic field simulator, which was used
to extract the capacitance C, the AC resistance RAC and the
AC inductance LAC of the designed spiral coil. TABLE I
provides the adaptive setup for the design. The maximum
number of passes represents the maximum number of mesh
refinement cycles for the adaptive analysis. The adaptive
analysis stops once the maximum number of passes has been
completed. The minimum number of passes sets the minimum
number of mesh refinement cycles. The Q3D simulator stops
the analysis once this amount of passes has been finished.
The minimum number of converged passes determines the
amount of passes that must meet the convergence requirements
before the adaptive analysis is terminated. The percent error
sets the desired solution accuracy; smaller values produce
more accurate results. Finally, the percent refinement per pass
determines how many meshes are added at each iteration of
the adaptive refinement process. We ran the simulations with
general computing resources using a standard desktop, and
each design required approximately 2 ∼ 5 minutes.

Data collection was divided into three sets, namely Dataset-
I, Dataset-II, and Dataset-III. Dataset-I was mainly used to
train the ML model, whereas Dataset-II and Dataset-III are
an outside range of Dataset-I and were used to evaluate the

Fig. 4: Spiral coil design for data collection by using the Ansys-Q3D.

TABLE I: The analysis setup of the Ansys-Q3D for data collection.

Setting Parameters Value

Solution Selection C, RAC, LAC
Maximum # of Passes 10
Minimum # of Passes 1

Minimum Converged # of Passes 3
Percent Error 0.1%

Percent Refinement Per Pass 0.1%

TABLE II: The range of Dataset-I.

Variables Values # of Splits

fs [MHz] 1, 6.78, 13.56, 20.34, 27.12 5
N [turns] 3, 4, 5, 6, 7, 8, 9 7
p [mm] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 12
wt [mm] 0.822, 1.024, 1.290, 1.628, 2.052, 2.588 6
Do [cm] 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 11

Total : 19, 874 (27, 720) cases

TABLE III: The range of Dataset-II.

Variables Values # of Splits

fs [MHz] 3, 10, 17, 23 4
N [turns] 3, 4, 5, 6, 7, 8, 9 7
p [mm] 1.4, 5.1, 7.9 3
wt [mm] 0.9, 1.6, 2.3, 2.5 4
Do [cm] 10.2, 13.9, 17.6, 19.1 4

Total : 1, 091 (1, 344) cases

performance. Each dataset is composed of five inputs, namely
the design factors Do, fs, N, p, wt. The output is the Q factor,
which was computed from (2) using the values of RAC, LAC,
and C extracted from Ansys-Q3D.

1) Dataset-I: This dataset has a large number of simulation
cases and is used to train the FNN. The five input parameters
Do, fs, N, p, and wt have a specific range of values, which
were selected by uniformly distributing them with a specific
resolution as shown in TABLE II. The operating frequency fs
was divided into 5 steps, from 1 MHz to 27.12 MHz. The
number of turns N can take on 7 different values, from 3
to 9. The pitch p was divided into 12 steps, from 1 mm to
12 mm. The wire thickness wt can take on 6 different values,
from 20 AWG (= 0.822 mm) to 10 AWG (= 2.588 mm). The
outer diameter Do was separated into 11 values, from 100 mm
to 200 mm. We extracted a total of 19, 874 samples obtained
after removing some “impossible” cases from the collected
27, 720 samples. A total of 5, 645 “impossible” cases were
removed since they had either too large p and N values or a
too-small Do, which led to a negative Di,

Di = Do − 2N(p+ wt) > 0. (6)

Then, 2, 201 “impossible” cases were filtered out because they
had a negative Q value.

2) Dataset-II: As shown in TABLE III, this dataset is
within the minimum/maximum range of Dataset-I, but does not
overlap with Dataset-I. The operating frequency fs is swept
through 4 steps, namely [3 MHz, 10 MHz, 17 MHz, 23 MHz].
The turn N is swept through 7 steps, namely [3, 4, 5, 6, 7,
8, 9]. The pitch p is swept through 3 steps, namely [1.4 mm,
5.1 mm, 7.9 mm]. The wire thickness wt is swept through
3 steps, namely [0.9 mm, 1.6 mm, 2.3 mm, 2.5 mm]. The
outer diameter Do is swept through 4 steps, namely [102 mm,
139 mm, 176 mm, 191 mm].

3) Dataset-III: As indicated in TABLE IV, this dataset
includes the out of range values of Dataset-I. These values are
computed as a 5%− 15% differences from the minimum and
maximum ranges of Dataset-I. When one of the parameters
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is out-of-range, the other variables keep their values as in
Dataset-I. The N is excluded from Dataset-III, because N
has to be an integer and it is difficult to expand its range.

TABLE IV: The range of Dataset-III.

Variables Values # of cases

fs [MHz] 0.85, 0.9, 0.95, 28.48, 29.83, 31.19 82
p [mm] 0.85, 0.9, 0.95, 12.6, 13.2, 13.8 72
wt [mm] 0.691, 0.732, 0.772, 2.718, 2.847, 2.977 73
Do [cm] 8.5, 9.0, 9.5, 21, 22, 23 82

Total : 287 cases

B. FNN Training

Our FNN model for the spiral coil design is trained using
Dataset-I. As we described in Section II-B, our FNN model
for estimating the Q factor consists of three hidden layers
with 64, 128 and 32 neurons in each layers, and the activation
function is the ReLU function. The input values are the five
key parameters Do, fs, N, p and wt, and the output is the Q
factor. Using Dataset-I, we optimized the model parameters Θ
by making use of the stochastic gradient descent algorithm. In
particular, to train the model, we utilized the ADAM optimizer
with learning rate γ = 0.001. The loss function that we used
in the training phase is the MSE as described in (5).

To guarantee a stable training, we normalized the input
data. This ensures that the difference among the different
data features (i.e., Do, fs, N, p and wt) is not too large.
Another significant benefit of such a normalization is a time
reduction of the training phase. In particular, for an input
feature x ∈ {Do, fs, N, p, wt}, we used the standard score
normalization defined as follows,

x =
x− µx

σx
, (7)

where µx is the mean of x, and σx is the standard deviation of
x. Since we collected all the 27, 720 data samples uniformly
over the ranges described in Section III-A, for each data input
x, we calculated µx and σx based on the values shown in
Table II. For example, for the turn parameter N , we have
µN = 6 and σN = 2. These values, for N = 5, lead to
N = − 1

2 . The values of x are finally fed to our FNN.
Fig. 5 shows the training and validation losses as a function

of the number of training epochs (i.e., a number that represents
the amount of times that Dataset-I is used during training). As
expected, the training and validation losses tend to decrease
at each training epoch. During the training phase, we tried to
have our FNN model avoid over-fitting. To this end, we chose
the model parameters at a number of epochs after which the
validation loss starts to increase. In particular, we observed that
the over-fitting occurs in between 7, 000 and 10, 000 epochs.
Moreover, from Fig. 5, we observe that the validation loss
converges after 1, 000 epochs. Thus, to test our model, we
chose the parameters when the number of epochs is 2, 000.

In order to observe the effect of the amount of data on
the training, we randomly split Dataset-I (19, 874 cases) into
8 different training datasets. In particular, the number of data

(a)

(b)

Fig. 5: FNN model training using Dataset-I: (a) 10%/90% ; (b) 80%/20%.

samples in each training dataset gradually increases from 10%
to 80% of the total number of samples in Dataset-I (the
remaining data is used as validation data). For instance, the
first training dataset contains 10% of the total samples in
Dataset-I, the second training dataset contains 20% of the total
samples in Dataset-I, and so on till the eighth training dataset
that contains 80% of the total samples in Dataset-I. We also
highlight that we selected the data samples in the training
dataset number i ∈ {2, 3, . . . , 8} so as to include the data
samples in the data set number i− 1.

C. Evaluation of the ML-Based Spiral Coil Design

For the verification of the proposed spiral coil design,
we assessed the performance of the ML-based design using
Evaluation-I, Evaluation-II, and Evaluation-III, as illustrated
in Fig. 6. All the three evaluations used the same FNN model
trained by using Dataset-I, and the performance was measured
using Dataset-I, Dataset-II, and Dataset-III, respectively.

1) Evaluation-I: This evaluation aims to validate our ML-
based spiral coil design model in relation to the amount of
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(a)

(b)

(c)

Fig. 6: Block diagrams of the evaluation procedures: (a) Evaluation-I ; (b)
Evaluation-II ; (c) Evaluation-III.

training data. Fig. 6a shows the block diagram of the evalua-
tion procedure using Dataset-I. As mentioned in Section III-B,
Dataset-I (19, 748 cases) was randomly shuffled and separated
into eight training datasets Di, i ∈ {1, 2, . . . , 8}, e.g., the first
D1 having 10% of the total samples in Dataset-I, the last
D8 having 80% of the total samples in Dataset-I. For each
i ∈ {1, 2, . . . , 8}, the data inside Di was used to train the
FNN-based model, and the remaining (100%− (10i)%) data
in Dataset-I was used to evaluate the performance. In what
follows, for each Di, we use the notation (10i)%/(100% −
(10i)%) to denote that (10i)% of the data was used for training
and the remaining (100%− (10i)%) was used for validation.

The performance for the eight training models using
Dataset-I is shown in Fig. 7. The eight models have the
same number of training epochs and they only differ in the
amount of training data. Thus, from Fig. 7, we can observe the
prediction performance depending on the amount of available
training data. From our experiment in Fig. 7, the training
performance (measured in terms of the error and of the error
rate), improves as the amount of training data increases. The
average absolute error of the 10%/90% model is 15.6, while
the one of the 80%/20% model is 9.1. Also, the average error
rate of the 10%/90% model is 9.11% (90.89% accuracy),
while the one of the 80%/20% model is 3.45% (96.55%
accuracy). The result of the 10%/90% model empirically
shows that our ML-based Q factor estimation performs well
(the average error rate is below 10%) even if when less than
2, 000 training data samples are available.

2) Evaluation-II: This evaluation is illustrated in Fig. 6b
and aims to validate our ML-based spiral coil design in
scenarios that are not included in the training Dataset-I. In
particular, we used all the samples inside Dataset-I to train the

(a)

(b)

Fig. 7: Performance of the training model using the Dataset-I: (a) error
distribution ; (b) error rate distribution.

FNN, and then we evaluated the performance using Dataset-II
(see TABLE III). As highlighted in Section III-A, even though
Dataset-I and Dataset-II have the same range, they are disjoint.
The error and the error rate distributions evaluated by using
Dataset-II are shown in Fig. 8, and appear to follow a Gaussian
distribution (red curve). Most of the error values (Qtrue−Qest)
between the true Q factor and the estimated Q factor are
concentrated around 0, and only a few error values are greater
than 100. These can be considered as outliers and are due to
an over-estimation of the Q factor. The histogram for the error
rates is similar to the one for the error. The average absolute
error for Evaluation-II is 23.41, and the average error rate is
6.37%. These results indicate that our ML-based estimation
for the Q factor also performs well when the training and
evaluation datasets have the same range, but are disjoint.

3) Evaluation-III: This evaluation is illustrated in Fig. 6c
and it aims to verify the performance of our ML-based spiral
coil design in scenarios where the evaluation dataset contains
out-of-range values, i.e., values that are not in the range
of those in the training Dataset-I. In particular, we trained
our model using the entire Dataset-I, and then we evaluated
the performance using Dataset-III (see TABLE IV). Fig. 9
shows the error rate incurred by each of the four out-of-
range parameters in TABLE IV, while keeping the remaining
variables within the range as in TABLE II. As shown in Fig. 9,
fs incurs the highest error rate, which is around 5.1%. This
is because the number of unique values for fs in the training
Dataset-I is smaller than those of the other input variables.
The result of Evaluation-III suggests that our ML-based model
yields an estimated Q factor reasonably close to the true Q
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(a)

(b)

Fig. 8: Performance of the training model using Dataset-II: (a) error
distribution ; (b) error rate distribution.

Fig. 9: Performance of the training model using Dataset-III.

factor even when the evaluation dataset contains values that
are not in the range of the training dataset.

The Q values obtained using our proposed ML-based spiral
coil design were compared to those obtained using the HFSS
and the Q3D simulators, as shown in Fig. 10. Since we trained
the model using data collected from the Ansys-Q3D simulator,
our proposed model shows results closer to those of the Ansys-
Q3D than those of the Ansys-HFSS simulator. This suggests
that, if we have enough real-world data based on practical
fabrication, our proposed ML-based coil design may output
suitable results for real-world applications.

(a)

(b)

Fig. 10: Performance of the proposed spiral coil design: Comparison with
Ansys-HFSS and Ansys-Q3D: (a) Pitch variance ; (b) Turns variance.

IV. CONCLUSION

This paper presented a characterization of the Q factor for
spiral coil designs in a MHz-range WPT system using ML.
The proposed method is simple and effective in estimating
the performance of the spiral coil under the physical design
environment. The proposed design method based on ML
successfully predicts the Q factor by training over 19, 874
cases of the spiral coil characteristics.The Q factor of the
proposed model has a high accuracy ( > 93%) compared to
the actual value and it can be readily computed, hence signifi-
cantly reducing the computation time incurred by conventional
simulation based methods.
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