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Abstract This work considers the general task of estimating the sum of a
bounded function over the edges of a graph, given neighborhood query ac-
cess and where access to the entire network is prohibitively expensive. To
estimate this sum, prior work proposes Markov chain Monte Carlo (MCMC)
methods that use random walks started at some seed vertex and whose equi-
librium distribution is the uniform distribution over all edges, eliminating the
need to iterate over all edges. Unfortunately, these existing estimators are not
scalable to massive real-world graphs. In this paper, we introduce Ripple, an
MCMC-based estimator that achieves unprecedented scalability by stratifying
the Markov chain state space into ordered strata with a new technique that we
denote sequential stratified regenerations. We show that the Ripple estimator
is consistent, highly parallelizable, and scales well.

We empirically evaluate our method by applying Ripple to the task of esti-
mating connected, induced subgraph counts given some input graph. Therein,
we demonstrate that Ripple is accurate and can estimate counts of up to
12-node subgraphs, which is a task at a scale that has been considered un-
reachable, not only by prior MCM(C-based methods but also by other sam-
pling approaches. For instance, in this target application, we present results
in which the Markov chain state space is as large as 10*3, for which Ripple
computes estimates in less than 4 hours, on average.
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1 Introduction

This work considers the following general task: Let G = (V,€) be a simple
graph, where V is the set of vertices, £ is the set of edges, and £ contains at
most a single edge between any pair of vertices and no self-loops. Our goal is
to efficiently estimate the sum of a bounded function over all the edges of G,

we = > fluw) (1)

(u,w)€E

where f: &€ - R, f() < B is a bounded function for some constant B € R
under the following query model from |[Avrachenkov et al.| (2016)).

Assumption 1 (Query Model) Assume we are given arbitrary seed ver-
tices and can query the neighborhood N(u) = {v € V : (u,v) € E} for any
vertex u € V such that accessing the entire graph G is prohibitively expensive.

This setting arises naturally in the subgraph counting problem, which we study
in Section [4] Simple Monte Carlo procedures are not useful because random
vertex and edge queries are not directly available, and reservoir sampling would
require iteration over all edges. Standard Markov chain Monte Carlo (MCMC)
methods cannot estimate the quantity in Equation and are limited to esti-
mate #(€)/|g|, because |£]| in our task is unknown (Ribeiro and Towsley, |2012).
Generally, under Assumption |1, Equation is estimated using specialized
MCMC estimators that use a random-walk-like Markov chain that has a uni-
form distribution over the edges £ as its equilibrium distribution. However,
these estimators (Avrachenkov et al.| [2016) are impractical in large graphs
because their running time is O(|€)).

Traditional MCMC methods are limited by their reliance on the Markov
chain on G reaching equilibrium or burning in. Because the rate of conver-
gence to equilibrium depends on the spectral gap (Aldous and Fill, [2002)), a
significant number of Markov chain steps is needed to burn in in order to pro-
duce accurate estimates of Equation , particularly in large graphs. Parallel
approaches that divide the state space into disjoint “chunks”, which are to
be processed in parallel (Wilkinson, [2006; [Neiswanger et al.| |2014), offer no
respite because we cannot access the entire graph. In fact, G may not even
have disconnected components (i.e., disjoint chunks) that can be parallelized.
Therefore, traditional MCMC on G offers no meaningful parallelization oppor-
tunities and running times may be arbitrarily long.

Contributions. This work introduces sequential stratified regeneration
(Ripple), a novel parallel MCMC technique that expands the application fron-
tier of MCMC to large state-space graphs G. Ripple stratifies the underlying
Markov chain state space into ordered strata that need not be disjoint chunks,
rather, they need to be connected. Markov chain regeneration (Nummelin,
1978) is then used to compute estimates in each stratum sequentially, us-
ing a recursive method, which improves regeneration frequencies and reduces
variance. Ripple offers an unprecedented level of efficiency and parallelism
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for MCMC sampling on large state-space graphs while retaining the benefits
of MCMC-based algorithms, such as low memory demand (polynomial w.r.t.
output).

Surprisingly, the parallelism of Ripple comes from the regeneration rather
than the stratification: the strata’s job is to keep regeneration times short. We
demonstrate that the estimates obtained by Ripple are consistent, among other
theoretical guarantees. In addition, we empirically show the power of Ripple in
a real-world application by specializing Equation to subgraph counting in
multi-million-node attributed graphs—to the best of our knowledge, a task at
a scale that has been thought unreachable by any other MCMC method. Our
specific contributions to the subgraph counting problem include streaming-
based optimizations coupled with a parallel reservoir sampling algorithm, novel
efficiency improvements to the random walk on the HON (Wang et al., 2014)
and a theoretical analysis of scalability in terms of running time and memory
w.r.t. the subgraph size, verified empirically on large datasets.

2 Background and Prior Work

The MCMC random-walk-like Markov chain over the graph G is defined as:

Definition 1 (Random Walk on G) Given a simple graph G = (V,€), a
simple random walk is a time-homogenous Markov chain @ with state space V
and transition probability pe(u,v) = 1/d(u), when (u,v) € £ and 0 otherwise,
where d(u) = |N(u)| is the degree of u in G and N(u) = {v: (u,v) € £} is the
neighborhood of u.

It is easy to check that the above random walk can be sampled under Assump-
tion |1| and that on a connected graph, this walk samples edges uniformly at
random in a steady state (check Appendix for details). Our notation is
summarized in Appendix [A]

2.1 Regenerations in Discrete Markov Chains

The rate of convergence to stationarity of the random walk ¢ from Definition|[1]
depends on the spectral ga (Aldous and Fill, |2002). As such, practitioners
are encouraged to run a single, long sample path, which prevents them from
splitting the task among multiple cores. Usually, because the spectral gap is
unknown or loosely bounded, practitioners use various diagnostics to eyeball
if the chain has mixed (Rosenthal, |1995). The variance of an estimate com-
puted from a stationary chain (Ribeiro and Towsley, 2012) also depends on
the spectral gap.

A solution to the above problems is to split (Nummelin, |[1978) the Markov
chain using regenerations. Discrete Markov chains regenerate every time they

1 The spectral gap is defined as § = 1 — max{|)\z], [Ajv|l}; where A; denotes the i-th
eigenvalue of the transition probability matrix of &.
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enter a fixed state, which is referred to as a regeneration point. This naturally
yields the definition of a random walk tour (RWT).

Definition 2 (RWT over #) Given a time-homogenous Markov chain @
over finite state space V and a fixed point g € V, an RWT X = (Xi)fz1 is a
sequence of states visited by @ between two consecutive visits to zg, that is,
X1 =x9 and £ = min{i > 1: X;y; = xo} is the first return time to xg.

Because of the strong Markov property (Bremaud, 2001, Chap-2,Thm-7.1),
RWTs started at xg are i.i.d. and can be used to estimate p(€) from Equa-
tion when |€| is unknown (Avrachenkov et al. [2016} 2018; |Teixeira et al.,
2018; [Savarese et al., |2018; |Cooper et al., [2016; Massoulié et al., |2006)).

Lemma 1 (RWT Estimate) Given the graph G = (V,€) and the random
walk @ from Definition [1, consider f: € — R bounded by B, and T, a set
of m RWTs started at zo € V (Definition @/ sampled in a parallel z core
environment assuming each core samples an equal number of tours. Then,

X d(25) —

T3 £,9) = — = D> HX X)), (2)

XeT j=1

is an unbiased and consistent estimator of (&) = 32, yee f(u,v) if G is
connected, where each X; refers to the jth state in the RWT X € T.

The expected running time for sampling m tours is O (m/ z d2(|ffo‘))7 and

when G is non-bipartite, the variance of the estimate is bounded as

2 2
Var (ji.(T)) < 35(;1), (3)

where §(P) is the spectral gap as defined in the beginning of this section.

The RWT Estimate can be considered a Las Vegas transformation of MCMC;
which takes random time but yields unbiased estimates of objectives, such
as Equation . The parallelism in the expected running time in Lemma
is directly due to the independence of RWTSs. Moreover, confidence intervals
for the RWT Estimate can be computed, because \/ﬁ% approaches

the standard normal distribution for sufficiently large m, where 6(7)? is the
empirical variance of [i.(X), the RWT Estimate computed using an individual
tour X € 7.

2.2 Improving the Regeneration Frequency

From Lemmall] it is clear that increasing the degree of the regeneration point
d(x0) and spectral gap 6(®) and decreasing |E| reduces the variance as well as
the running time of the RWT Estimate. | Avrachenkov et al.| (2016) showed that
using the supernode in a contracted graph as a regeneration point achieves the
above reductions.
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Definition 3 (Contracted Graph) (Avrachenkov et al., [2016) Given a
graph G = (V, ) from Definition |1/ and a set of vertices I C V), a contracted
graph is a multigraph G; formed by collapsing I into a single node (;. The
vertex set of Gy is then given by V\I U {(;}, and its edge multiset is obtained
by conditionally replacing each endpoint of each edge with (; if it is a member
of I and removing self-loops on (;. We refer to the set I and the vertex ( as
the supernode.

Contractions benefit RWTS because the supernode degree dg, (¢;) in G; and
the spectral gap (@) of the random walk on the contracted graph increase
monotonically with |I| (Avrachenkov et al.| [2016). Moreover, RWTs can be
sampled on G; without explicit construction, as we see next.

Remark 1 Let the multi-set N(¢r) £ WyuerNg(u)\I be the neighborhood of
the supernode in Gy from Definition [3| Let @; be the simple random walk on
Gr. An RWT (X,;)f:1 on @ from (; is sampled by setting X; = (7, sampling
Xo wa.r. from N({;) and subsequently sampling transitions from @ until the
chain enters I, i.e., £ = min{i > 1: X¢yq € I}.

This construction naturally stratifies £ and decomposes p(&) as p(€x) +
w(E\E,), where we can exactly compute the p(€,) and compute an RWT Esti-
mate of u(E\E,) on the contracted graph. However, to compute the supernode
degree, dg, (¢r); furthermore, to sample from N((;), we need to enumerate
the set of the edges incident on I in G given by &, C £. As such, a mas-
sive supernode I (which is crucial when |£| is large) makes enumerating &,
prohibitively expensive. We overcome these issues and gain additional control
over regenerations by further stratifying |€|.

3 Sequential Stratified Regenerations

Ripple controls regeneration times through a sequential stratification of the
vertices and edges of G into ordered strata as illustrated in Figure |1} which
allows us to control the regeneration frequency and the RWT Estimate vari-
ance. For each stratum, we then construct a graph in which the supernode is
created by collapsing all prior strata, from which RWTs can be sampled. We
use the RWTs from the previous strata to estimate the degree of and sample
transitions from the supernode. The core idea is described in two steps: Sec-
tion details the stratification and conditions that it needs to satisfy and
Section describes the recursion. Finally, we show that the estimator bias
converges to zero asymptotically in the number of tours. Particularly for sub-
graph counting, we show that Ripple’s time complexity is independent of the
(higher-order) graph size (|€]) and only depends polynomially on the diameter
and maximum degree of the input graph and the subgraph size (Section.

3.1 Sequential Stratification

Consider the following vertex and edge stratification procedure.
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(a) Stratification V =T (b) G2

Fig. 1: Figure shows a simple graph G that is stratified into four strata
{T1,7,,74,7,}. Figures to show the second, third and fourth graph
strata constructed by Definition |5 In the multi-graph G (Figure, vertices
in Z7 are collapsed into (2 and only edges incident on Zy are preserved. The
edge set therefore contains /3 and the edges between (» and T>. Consequently,
self-loops on ¢» and edges between Z3.4 are absent. Figures and follow
suit. In each stratum G,, RWTs from (, are started by sampling u.a.r. from
the dotted edges and estimates are computed over the solid edges.

Definition 4 (Sequential Stratification) Given G = (V,£) from Defini-
tion a function p: ¥V — {1,..., R} induces the stratification (Z,., 7,)% , if
5 € Ly, for each s € V, and (u, v) € Fin(p(u).p(v))» for each (u,v) € €.

Note that these strata are pairwise disjoint and their union is the set of vertices
and edges of the graph. Next, we describe the contracted graph over which
RWTs are to be sampled in each stratum.

Definition 5 (r-th Graph Stratum) Let A;; £ U _, A, be defined for
any ordered tuple of sets. Let (Z,,7,)F_, be the stratification induced by p
from Deﬁnitionon G = (V,&). The r-th graph stratum G, = (V,, &), r > 1,
is obtained by removing all edges not incident on 7, and vertices that do not
neighbor vertices in Z,. and subsequently contracting Zy.,._, into (, according
to Deﬁnition Further, let @, denote the simple random walk on G,.

It can be shown that the vertex set V, contains the r-th stratum Z,, the r-
th supernode (,., obtained by collapsing 7;.,._1, and vertices from subsequent
strata neighboring Z, Uyez, N(u) N Z.1.z. The edge multiset &£, is the union
of J, and edges that connect (. to vertices in Z,. resulting from the graph
contraction. A detailed example is shown in Figure Note that when R = 2,
Ripple reduces to the estimator from Avrachenkov et al.| (2016).

Ergodicity-Preserving Stratification. Because the RWT Estimate is consistent
only if the underlying graph is connected according to Lemma we have the
following definition:
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Definition 6 (Ergodicity-Preserving Stratification (EPS)) The strat-
ification due to p from Definition [4|is an Ergodicity-Preserving Stratification
if each graph stratum from Definition |5|is connected, i.e., ®,., 7 > 1, is irre-
ducible.

We propose necessary and sufficient conditions on p that yield an EPS.
Proposition 1 p yields an EPS if the following three conditions are satisfied:

(a) for at least one vertex in each connected component of G, p evaluates to 1;
(b) for each w: p(u) =r, there exists v € N(u) such that p(v) < r; and
(c) there exists (ug,vo) € € such that p(ug) = r and p(vy) < r.

Although the optimal stratification would depend on G and the quantity being
estimated, an ideal stratification would yield graph strata wherein the supern-
ode degree and connectivity are maximized (Lemma |1) while minimizing the
number of strata (because of the bias propagation described in T heorem. p
needs to be efficient as well because we will see that it is evaluated at each step
of the random walk and the Ripple estimators from Definitions[8|and [9/ heavily
depend on it. In Proposition (10| we show that return times to the supernode
are inversely proportional to the fraction of vertices in Z, connected to Zy.,_1.

3.2 Recursive Regenerations

Assume for the moment that in each stratum, r = 2,..., R, we know the de-
gree of the supernode d(¢,) and can sample directly from pg ((,-), which
is the transition probability out of (. in the graph stratum G,.. We could
then sample RWTs 7, and compute stratumwise RWT Estimates, which when
combined as u(J1) + Zf:2 i (T;) provide an unbiased estimate of p(€) as
a direct consequence of Lemma [1] and the linearity of expectations. Unfortu-
nately, the impracticality of this assumption, especially under Assumption
(when R > 2), necessitates the following relaxation.

Definition 7 (Supernode Estimates, a(Cr) and pg,(¢r,:)) Given an EPS
of G (Definition @, the supernode estimates in the r-th graph stratum G,
consist of the estimate of the degree a(g) and a sample from some approximate
transition probability out of the supernode pg. (¢, -). Let EST be the random
walk on G,., where transitions are sampled according to @,. everywhere except
¢r, where they are sampled from pg, ((r, -).

Although @r may not be reversible, RWTs on f/ir retain pairwise independence
and the benefits stated after Lemma [I] We leverage this fact in the following
recursive solution that computes supernode estimates in the current stratum
using supernode estimates and tours sampled in the previous strata.

Definition 8 (Ripple’s Recurrence Relation) Given a graph G stratified
according to p (Definition @ and some stratum r, 1 < r < R, assume access
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to the result of previous recursive steps, i.e., the set of m,; RWTs (7:;), su-
pernode degree estimates d({,) and estimated transition probabilities out of
the supernode pg, (¢q, ) (Deﬁnition for all 2 < ¢ < r. The estimate of the
number of edges between 7, and Z, is given by

\X\

(4)

q XeT) =2

where X is the j-th state visited in tour X, and by convention, Bl,r =[N
Ty x Z,| is exactly computed. The r-th supernode degree is then estimated as

=3 G (5)
qg=1

Transitions from pg _((,-) are sampled by sampling ¢ € {1,...,r — 1} with
probability 3,, and then sampling u.a.r. from U, ,, which is defined as

Uqr = Wyt ¥ U‘X‘2 {X;: p(X;) =7}, wheng > 1, (6)

and as Wyez, N(u) N Z, by convention when ¢ = 1, where W is the multi-set
union. Uy, ., ¢ > 1, is thus the multi-set of all states in Z,. visited by RWTs on
®,. An RWT so started stops when it reaches some state X', where p(X') = r.

Proposition (Appendix|C)) contains additional details for sampling RWTS on
@,.. The above recursion therefore allows us to estimate supernode degrees and
sample RWTs to compute an estimate of x(€) from Equation as follows:

Definition 9 (Ripple’s u Estimator) Given the supernode degree esti-

mates H(gr) and RWTs T,! sampled in each graph stratum from Definition
and the edge strata J,, 2 < r < R based on an EPS of G from Definition @
the Ripple estimate is defined as

R
ﬂRipple :/1*(»71) + Zﬂ (7—2Tr7 f) 9 (7)
r=2
-~ 1X]—1
~ T, _d(CT) . .
where, /1 (T3, f) i ng > F(X5, X541) 8)

and X; is the jth state visited by the RWT X € 7,1. The dependence of 7T
and d(¢,) on T, is suppressed for brevity.

This estimate of p(€) is unbiased when the number of tours is infinite.

Theorem 1 The Ripple estimate from Definition|9 is a consistent estimator
of w(&) (asymptotically unbiased in the number of tours), that is,

lim ... lim wu(J%) +ZH(T2T’ )—u()

|74 | =00 | T |00
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In the finite regime, however, there exists a bias in each stratum that depends
on the estimation bias in the previous strata, which we quantify as follows:

Theorem 2 Given the random walk @, on the EPS-stratum G, from Defi-
nitions [J] aAnd@ the estimates of the degree and transition probability at the
supernode d(¢,.) and pg,.(C.,-) from Definition|7, and assuming aperiodic P,.,
the bias of the Ripple estimate in the rth stratum from Equation 18 given
by
V3BIE, |

Vo,
where d,. is the spectral gap of P, B is the upper bound of f, v. = ||ps,.(¢ry ) —
P&, (G, -)|l2 ds the L? distance between transition probabilities out of ¢, (Aldous
and Fill,|2002) (Definition[13) and X, = 4(¢)/a,).

€[ (T 1) 17| — )

S ()\TVT + ‘1 - >\7’|)

Therefore, the bias in each stratum affects the bias in subsequent strata. Con-
sequently, we control the empirical variance in each stratum by increasing the
number of tours sampled (we detail this for subgraph counting in Section .

4 Applying Ripple to Count Subgraphs

We now focus on a concrete implementation of Ripple to count subgraphs on a
given simple input graph G = (V, E, L) with vertices V', edges F, and attribute
function L, which is assumed to be finite and undirected. In general, a subgraph
induced by any V' C V on G is given by G (V') = (V,En (V' x V'), L).
However, in this work, we are interested in subgraphs G (V) that are connected
and where |V’| = k, referred to as a connected, induced subgraph ( CIS) of size
k or k-CIS. As such, the task is defined as

Definition 10 (Subgraph Count) Let V*) be the set of all k- CISs of graph
G, let ~ denote the graph isomorphism equivalence relation (or any equivalence
relation), and let H be an arbitrary set of pairwise nonequivalent k- CISs. The

subgraph count is defined as the |#|-dimensional vector C(¥) = (Cg))HeH,
where Cg;) =Y sevw H{s~ H}, and 1{-} is the indicator function.

Therefore, C*) contains the count of subgraphs in V*) equivalent to each
subgraph in H. We suppress the dependence of C*) on H for simplicity.
Subgraph counting is challenging when k& > 3 in real-world input graphs
because V*) is not tractably enumerable and naively sampling k vertices to
obtain CISs is challenging because V*I/|v* — 0 (as evidenced by Table .
Next, we address this issue by reducing the subgraph counting problem to an
edge sum (Equation (1)) over a higher-order graph that only provides neigh-
borhood query access for large-real-world input graphs. We also propose a
stratification strategy compatible with the access model and introduce novel
solutions to improve speed and memory requirements. We defer the straight-
forward aspects to Appendix |[E| wherein we summarize the entire algorithm

(Algorithm [2).
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4.1 MCMC on the Subgraph Space

Wang et al.| (2014) proposed a network over subgraphs called the HON, which
exposes neighborhood query access from Assumption[l]and is therefore amenable
to MCMC solutions (which we optimize in Algorithm .

Definition 11 (Higher-Order Network (k-HON) (Wang et al.,|2014))
The higher-order network or HON G**) = (V(®)_ £(k)) is a graph whose vertices
are the set of all k-CIS contained in the input graph G, and (u,v) form an
edge in £ if they share all but k — 1 vertices, that is, |V (u) NV (v)| = k — 1.

In the k — 1-HON, the subgraph induced by an edge (u,v) € £*~V i.e.,
G (V(u) UV(v)), is a k-CIS. Thus, the subgraph counts from Definition
can then be expressed as an edge sum over G = G#~1 ag

e = pg®-Dy = 3 (1{G(V(U) UV (v)) ~ H}> ()
HeM

e V(u,v)

where y(u,v) = [{(4,9) € £: V(u) UV (v) = V(i) UV (9)}] is the number of
edges that represent the same subgraph as (u, v). The set of edges sampled by
a random walk on G*~1) is called the pairwise subgraph random walk (PSRW).
Having reduced the subgraph counting task to Equation , we proceed with
implementing Ripple.

4.2 Ergodicity-Preserving Stratification for Subgraph Counting

Toward using Ripple, we propose an Ergodicity-Preserving Stratification of G
via the stratification function p.

Proposition 2 (EPS for subgraphs) Consider the set of ny seed sub-
graphs T, whose vertex sets in G are pairwise non-intersecting. Let V(I) =
Uzez, V(8) be the set of all vertices in G forming subgraphs in Z,. Let DIST(u)
be the shortest path distance from uw € V' to any vertex in V(Z1). Define p as

p(s) =1+ Y (o1s7(u) + 1{u € V(T)\V*)})
u€eV(s)

where V* is the largest connected subset of V (s) such that V* C V(§) for some
seed vertex § € Iy with ties broken arbitrarily. If I; contains a subgraph from
each connected component of G, the stratification from Definition []] generated
using p is an Ergodicity-Preserving Stratification (Definition @

DIST can be precomputed for all u € V using a single BFS in O(|V| + |E|),
and p can be computed in O(k). Although R is unknown a priori, it is upper
bounded as (k—1)-D¢, where D¢ is the diameter of G and the Ripple estimator
simply ignores empty strata, i.e., strata in which the estimated degree of the
supernode d(¢,) = 0. To control bias, we aim to reduce max,ey DIST(u) by
recruiting seed subgraphs in 7, which are far apart in G.



Sequential Stratified Regenerations 11

4.3 Miscellaneous Optimizations

Controlling Memory through Streaming. In each pair of strata r < ¢, Defini-
tion E uses tours 7,1 to compute ﬂ(TJT, f), Brt and U, ,, which are, respec-
tively, the estimates of ;(7,-) and the size of and sample from the set of vertices
in Z, connected to Z,. Although (7, ; f) and Br,t can be computed as run-
ning sums, storing ﬂr,t requires memory on the order of the sum of all tour
lengths, which is random. Our solution is to use Algorithm R (Vitter,|1985), to
sample a fixed-size (M) sample without replacement from all the tours in 7,
(See Appendix [E.1). We note that although the hyperparameter M controls
memory, it may introduce bias when the number of tours |7,f| > M due to
(possible) oversampling, which we observe in Figure @ (Appendix [F).

Speeding up Subgraph Random Walks. To sample a random walk in the HON,
naively sampling u.a.r. from the neighborhood of a k—1-CIS requires O(k*Ag)
operations, where Ag is the maximum degree in the input graph (see Ap-
pendix. In Algorithm |1} we propose a rejection sampling algorithm that
does so efficiently using articulation points (Hopcroft and Tarjan, [1973).

Algorithm 1: Efficient Neighborhood Sampling in G+~

Input: k& — 1-CIS s, Graph G
Output: z ~ UNIF(Ng (k-1 (s))

if unir(0,1) < 1/pias then
2 =G (V(s) U{o}\{u})
if uw#vand (u¢ As or x is connected) then
‘ return z ; // Connectivity Check

1 Let deg, = ZuGV(S) d(u) and As be the articulating points of s

2 while True do

3 Sample u from V(s) w.p. « deg, —d(u) ; // u is the vertex to remove
a Sample a from V(s)\{u} w.p. « d(a)

5 Sample v ~ UNIF(N(a)) ; // v is the vertex to add
6 BIAS = |N(v) NV (s)\{u}|; // v’s sampling bias
7

8

9

[
(=}

Proposition 3 Given a subgraph s € V+—1), Algom'thm samples u.a.r. from
Ngw-1(s) in O(k2%k_:‘fl) expected time, where Ay £ max,cy(s) de(u) is
the maximum degree of vertices in s, and Ay contains articulation points of s.

Therefore, the running time of Algorithm [1|is € O(kA, + k%) when s is dense
(]As| =~ 0) and increases to O(k%2A, + k%) for sparse subgraphs, which is faster
than the naive algorithm.

From Error Bounds to Tour Counts. Ripple auto-decides the number of RWTs
required in each stratum based on an approximate error bound e provided as
input such that the number of tours — oo as € — 0, and the Ripple estimate
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converges to the ground truth (Theorem . Specifically, RWTs are sampled
until we satisfy

S(THIONITI < e (T f) (10)
where fi(7,7; f1) is the Ripple estimate from Equation of the number
of edges in the r-th graph stratum G, (i.e., fi(-) = 1), and 6%(T,}; f1) =
\/fa\rXNTTT (i1(X; f1)) is the former’s empirical variance over tours.

Performance Guarantees. Ignoring the complexity of loading the input graph
into memory, we show that for subgraph counting, the memory and time re-
quirements of Ripple are a polynomial in k. In Appendix[E] we state and prove
a detailed version in which the complexity also depends polynomially on the
diameter and maximum degree of G and is invariant to |V| and |E].

Proposition 4 Assuming a constant m RW'Ts sampled per stratum and ig-

noring_graph loadm the Ripple estimator for k-CIS counts detailed in Ap-

pendiz Algomthm 2 has total memory and time complexity in O(k3+|H|) and
O(K™ + |H|), respectively, when all factors other than k and |H| are ignored.

More details for subgraph counting with Ripple are provided in Appendix [E]

5 Experiments and Results

We now evaluate the Ripple estimator for k-node subgraph (k-CIS) counts on
large-real-world networks. We show that Ripple outperforms the state-of-the-
art method in terms of time and space and that Ripple converges to the ground
truth for various pattern sizes as hyperparameters are varied. Additional ex-
periments that evaluate the parallelism, etc., are deferred to Appendix[F] Our
code is available at https://github.com/dccspeed/ripple.

— Ezxecution environment. Our experiments were performed on a dual Intel
Xeon Gold 6254 CPU with 72 virtual cores (total) at 3.10 GHz and 392
GB of RAM. In addition, this machine is equipped with a fast SSD NVMe
PClex4 with 800 GB of free space available.

— Baselines. We use Motivo (Bressan et al., |2019)), a fast and parallel C++
system for subgraph counting, as the baseline because it is the only method
capable of counting large patterns (k>6), to the best of our knowledge.
Additionally, notice that existing MCMC methods for subgraph counting,
such as IMPRG (Chen and Lui, [2018) and RGPM (Teixeira et al., |2018),
cannot count beyond k = 5 in practice.

— Datasets. We use large networks from SNAP (Leskovec and Krevl, [2014),
representing diverse domains, which have been used to evaluate many sub-
graph counting algorithms (Bressan et al., 2018| [2019). Table |1| presents
the basic features of these datasets, including the order of magnitude of the
Ripple estimates of the subgraph counts |[V*)|, k = 6,8, 10, 12.

— Hyper-parameters Z;, M and €. Finally, we evaluate the trade-off between
accuracy and resource consumption by varying the aforementioned hyperpa-
rameters, detailed in Sections and (M is evaluated in Appendix )
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Magnitude of Est. # of CISs

Graph V] |E| Dg Ac VO] e pao|  pa)
Amazon 334,863 925, 872 44 549 | 10M1 101 1019 1072
DBLP 317,080 1,049, 866 21 343 | 1012 1016 1019 1023
Cit-Pat. 3,774,768 16,518,948 22 793 | 104 1018 1022 1026
Pokec 1,632,803 30,622,564 11 14,854 | 10'%  10%° 1032 1038
Livel. 3,997,962 34,681,189 17 14,815 | 10 1025 1032 1038
Orkut 3,072,441 117,185,083 9 33,313 | 10%! 1028 1035 1043

Table 1: The graphs that we used along with their diameter Dg, maximum
degree Ag and the estimated orders of magnitude of k-CIS counts, |[V*)|.

5.1 Scalability Assessment

We start by assessing the scalability of the methods when estimating k- CIS
counts for k > 6. To the best of our knowledge, Motivo is the only existing
method capable of estimating these patterns. Motivo has two phases: a build-
up phase, which constructs an index table in the disk, and a sampling phase
that queries this table. We only measure the time taken by the build-up phase
and the out-of-core (disk) usage because this is a bottleneck for Motivo. As
such, we report the best-case scenario for Motivo, and the reported values are
lower bounds for the actual time and space requirement. For Ripple, we report
the total time and the RAM usage as the space cost because our method works
purely in memory. Both methods were executed using all threads available.

In Tables|2|and 3| we compare the running time and space usage of Ripple
and Motivo. We also report their rate of increase in terms of the subgraph size k
in columns Time™ /Time(:=2 and Space™ /space=2. We fix € = 0.003, |Z;| = 10*
and M = 107 based on the analysis in Section and Appendix For Motivo,
we follow the authors’ suggestions. In Appendix [F} Table we report the
dispersion % of the Ripple estimates generated in the measured runs
to ensure that the results are not arbitrary.

Running time Scalability (Table . Although Motivo outperforms Ripple for
k = 6,8, it does not scale well for £ = 10,12, where the execution termi-
nates because of insufficient storage space. Particularly, for DBLP, Motivo
required approximately 10 minutes to process 10-CIS but almost 9 hours for
12-CIS, a growth rate of 58 x. On the other hand, Ripple not only succeeded
in all configurations in less than 4 hours on average but also exhibited a
smoother growth in running time, with the largest increase ratio being 2.7x,
observed for DBLP and LiveJournal when k& went from 8 to 10. Furthermore,
Time™ /pime(=2) < (k/(k-2))7 in all cases according to Proposition

Space Scalability (Table @ The trends in space usage mirror those of the
running time, where we see an almost exponential increase w.r.t. k& for Mo-
tivo compared to a near constant increase for Ripple despite its polynomial
complexity (Proposition. For example, in Amazon, Motivo’s space demand
increases by 7.5x when k goes from 6 to 8 and increases to 12x from 10 to
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Motivo Build-up only Ripple (e = 0.003) Ripple

Dataset k Time (hrs) 7T;Fl;’:(e,f)2) Time (hrs) 7TiT;‘:&(.f)2) gain (hrs)
6 0.002 £+ 0.000 - 0.020 £ 0.000 - -0.018

Amazon 8 0.006 4+ 0.000 3 0.029 £ 0.000 1.4x -0.023
10 0.082 £ 0.000 13.7x  0.056 + 0.000 1.9% +0.026

12 3.630 £ 0.002 44.3% 0.095 4+ 0.002 1.7x +3.535

6 0.002 4+ 0.000 — 0.013 £ 0.000 — -0.011

DBLP 8 0.007 £+ 0.000 3.5x 0.030 £ 0.000 2.3x -0.023
10 0.156 £ 0.000 22.3% 0.082 4+ 0.000 2.7x +0.074

12 9.099 £ 0.002 58.3x  0.105 4+ 0.002 1.3% +8.994

6 0.022 £+ 0.000 — 0.033 £+ 0.000 — -0.011

Patents 8 0.098 £ 0.000 4.5% 0.051 4+ 0.000 1.5x +0.047
10 > 1.1 hrs, crashed — 0.090 £+ 0.001 1.8x —

12 > 0.5 hrs, crashed — 0.117+0.003 1.3x —

6 0.012 4+ 0.000 — 0.459 £+ 0.142 — -0.447

Pokec 8 0.128 4+ 0.000 10.7x 0.759 £ 0.282 1.7x -0.631
10 5.965 + 0.000 46.6x 1.400 + 0.592 1.8x +4.565

12 > 1.5 hrs, crashed — 1.469+0.334 1x —

6 0.024 £+ 0.000 - 0.351 £+ 0.009 - -0.327

LiveJ 8 0.205 4+ 0.000 8.5 0.642 £ 0.074 1.8x -0.437
’ 10 > 2.3 hrs, crashed — 1.76 +1.550 2.7x —

12 > 0.7 hrs, crashed — 2.189+1.350 1.2x —

6 0.032 4+ 0.000 — 0.669 £ 0.026 — -0.637

Orkut 8 0.585 4+ 0.006 18.3x 1.744 4+ 0.983 2.6 -1.159
10 > 8.9 hrs, crashed — 2.633+1.065 1.5x —

12 > 1.8 hrs, crashed —  3.967 £3.162 1.5x —

Table 2: Running time comparison between Ripple and Motivo. The last col-
umn shows that for large k, Ripple provides gains of up to 9 hours when Motivo
can run to completion. Motivo crashes for large k£ on large graphs.

12. Ripple’s largest rate of increase is 1.4x when k goes from 6 to 8 for DBLP,
and it saves up to 600 GB of space when Motivo does not crash.

5.2 Accuracy and Convergence Assessment

Next, we evaluate the accuracy and convergence of Ripple on small and large
subgraph patterns, where the former refers to subgraph sizes in which the num-
ber of isomorphic subgraphs can be exactly computed using ESCAPE (Pinar
et al., [2017), i.e., k < 5.

Accuracy on Small k. For k € {3,5}, we evaluate the L2-norm between the
Ripple estimate and the exact value of the count vector C*) (Equation @)
of all non-isomorphic subgraph patterns. Figure |2| shows results for £k = 5
(where the number of patterns of interest |#H| = 21) for different settings of
the parameters € and |Z;|. In all datasets, we note that the L2-norm decreases
as € decreases from 0.3 to 0.003 and as |Z; | increases from 100 to 10*. Between
the worst setting, (e, |Z1]) = (0.3,100), and the best (e, |Z1|) = (0.003,10%), we
see an error reduction close to an order of magnitude. This is due to Theorem|[2]
and Lemmal(I|because reducing e increases the number of tours, lowers the error
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Motivo Build-up only Ripple (e = 0.003) Ripple
k k i

Dataset k Space (GB) SE':::% Space (GB) Si%(é}fj@ gain (GB)
6 0.53 £ 0.00 — 4.69 £ 0.06 — -4.16

Amazon 8 4.00 = 0.00 7.5% 5.73+£0.12 1.2x -1.73
10 48.00 £ 0.00 12x 7.38 £0.36 1.3x +40.62

12 559 + 0.00 11.6x 9.09 £1.02 1.2x +549.91

6 0.50 = 0.00 — 4.58 £0.02 — -4.08

DBLP 8 4.00 £ 0.00 8% 6.31 +0.00 1.4x -2.31
10 50.00 £ 0.00 12.5% 7.99 £0.01 1.3x +42.01

12 611.00 £ 0.00 12.2x 10.45 + 0.02 1.3x +-600.55

6 7.00 £ 0.00 — 11.50 +£ 0.05 — -4.5

Patents 8 66.00 £ 0.00 9.4x 13.80+0.03 1.2x +52.2
10 > 800, crashed — 15.85+0.08 1.1x > 800

12 > 800, crashed — 18.12+0.10 1.1x > 800

6 3.7+ 0.00 — 13.69 + 0.06 - -9.99

Pokec 8 36.00 £ 0.00 9.7x 17.17+£0.03 1.3x 18.83
10 407.00 £ 0.00 11.3x 20.31 £0.01 1.2x +386.69

12 > 800, crashed — 22.82+0.03 1.1x > 800

6 7.70 £ 0.00 - 18.26 +0.02 — -10.56

LiveJ 8 73.00 £ 0.00 9.5%x 21.26 £ 0.00 1.2x +51.74
’ 10 > 800, crashed —  2443+0.72 1.1x > 800

12 > 800, crashed — 27.75+0.00 1.1x > 800

6 7.90 £ 0.00 — 40.38 £ 0.00 - -32.48

Orkut 8 78.00 £ 0.000 9.9%x 43.49 + 0.00 1.1x +34.51
10 > 800, crashed — 46.63+0.00 1.1x > 800

12 > 800, crashed — 49.73+0.00 1.1x > 800

Table 3: Space usage comparison between Ripple and Motivo.Motivo runs out
of disk space for larger datasets in which & > 10, while Ripple scales almost
linearly. Ripple saves up to 600 GB of space when Motivo can run.

and therefore leads to reduced error propagation. Increasing 7; also reduces
the number of strata and therefore error propagation. Results for £ = 5 using
the L-co norm are deferred to Appendix [F}Figure [5]

Convergence for Large k. When k > 5, subgraph counts for real-world graphs
are computationally intractable. Therefore, we show that Ripple converges
in these cases as we increase the computing effort. Consider the hypothesis
that sparse patterns are frequent in power-law networks as k increases. To
glean empirical evidence for this, we choose an appropriate pattern set H and
equivalence relationship in Definition and we use Ripple to compute the
total number of k-CIS s and the number of sparse subgraphs and stars. A
subgraph is defined as sparse if its density lies between 0 and 0.25, according
to |[Liu and Wong (2008). In Figure we show that Ripple converges for
all datasets, and as expected, most patterns are sparse, with close to half of
the patterns in many of the studied networks being stars. This proportion is
attenuated in DBLP and Patents, where dense substructures naturally emerge
from collaboration/citation among the authors that these graphs represent.
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Fig. 2: Accuracy and convergence analysis for 5-CIS s. We plot the L2-norm
between the Ripple estimate and the exact value of the count vector ¢
(Equation @) of all non-isomorphic subgraph patterns against various config-
urations of the parameters € and |Z;|. As expected, the accuracy improves as
the error bound e decreases and the number of seed subgraphs |Z;| increases.
Each box and whisker represents 10 runs.

6 Related Work

For better presentation, we split this section into two parts: (1) parallel MCMC
techniques and (2) methods for subgraph counting.

Parallel MCMC through Splitting. Since Nummelin| (1978);|Athreya and Ney|
Il multiple techniques have been proposed to circumvent the burn-in
period by splitting the chain into i.i.d. sample paths. This approach allows
practitioners to compute unbiased estimates in parallel and determine con-
fidence intervals. Perfect sampling methods based on coupling

require the transitions to be monotonic w.r.t. some ordering
over the state space, and annealing /tempering methods require
some notion of temperature, which are absent in general graph random walks.
Methods such as (Mykland et al.| 1995} |Jacob et al.| 2020} |Glynn and Rhee|
require a minorization condition to hold, albeit implicitly.
Regeneration point-based methods on finite state chains |Cooper et al.
2016} [Massoulié et al.l 2006} |Avrachenkov et al.| [2016| 2018} [Savarese et al.
2018} [ Teixeira et al.l|2018) are more general because they only rely on stan-
dard ergodicity conditions. Although |Cooper et al.| (2016); [Massoulié et al.|
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Fig. 3: Convergence of Ripple estimates of 12-CIS pattern counts. We estimate
the total number of subgraphs |[V1?)| and the number of sparse patterns and
stars. Estimates over 10 runs are presented as box and whiskers plots, which
exhibit a reduction in variance as € increases. Indeed, almost all patterns are
sparse, and the most frequent substructure is a star.

used tours to estimate graph properties,|Avraﬂhenk0v et al.|q2016“2018D
proposed supernodes to reduce running times. The studies in Savarese et al.
(2018); [Teixeira et al.| (2018) further used supernode-based tours to estimate
gradients in RBM's and to count subgraphs. To the best of our knowledge, no
existing regeneration point method controls running times through stratifica-
tion.

Subgraph Counting through Sampling. Many random walk algorithms have
been proposed to sample subgraphs, with some methods only capable of esti-
mating subgraph pattern distributions, which is much easier than estimating
counts. The studies of GUISE (Bhuiyan et al.| |2012) and RSS (Matsuno and

2020) use a Metropolis-Hastings (Hastings| [1970) walk, and the lat-

ter improves the mixing time of the underlying Markov chain using canonical

paths (Sinclair}[1992). Waddling ([an and Sethu|[2016) and IMPRG|Chen and]

(2018) perform a simple random walk over the input graph and use spe-
cialized estimators to sample 5-node patterns. Although PSRW (Wang et al.
2014) first proposed the HON-based random walk and RGPM (Teixeira et al.
2018) used tours on it to estimate subgraph counts, both are limited to k& < 5
due to the size of the HON.




18 Teixeira et al.

Multiple attempts to Monte Carlo sample subgraphs have been proposed
whose scaling is limited because of the complexity of computing either the im-
portance weights, rejection rate or variance (Kashtan et al.| |2004; [Wernicke,
2006; Lyer et al.| 2018; |Yang et al., 2018; [Wang et al.| 2018). Efficient meth-
ods that sample dense regions/subgraphs are unfortunately not extensible to
sparse patterns|Jain and Seshadhri (2017}]2020). Motivo (Bressan et al.,|2018,
2019) is an example of color-coding methods in which an index table is built
using a deterministic dynamic programming algorithm, which is then exploited
to sample subgraphs uniformly and independently. However, CC methods suf-
fer from the exponential time and space complexities associated with building
and accessing the index table. Motivo proposed succinct index tables and ef-
ficient out-of-core I/O mechanisms to ameliorate this issue and extended the
applicability of C'C methods to larger subgraphs. Please, check Ribeiro et al.
(2019) for an extensive survey on subgraph counting methods.

7 Conclusions

In this paper, we propose the Ripple estimator that uses sequentially stratified
regenerations to control the running time of a random walk tour-based MCMC.
We prove that the estimator is consistent (w.r.t. the number of random walk
tours) and that the time and memory complexity of our implementation for
the subgraph counting problem is linear in the number of patterns of interest
and polynomial in the subgraph size. We empirically verify our claims on mul-
tiple graph datasets and show that Ripple can accurately estimate subgraph
counts with a smaller memory footprint compared to that of the state-of-the-
art Motivo (Bressan et al.[|2019). Ripple is currently the only subgraph pattern
count estimator that can estimate k = 10,12 node patterns in million-node
graphs. Beyond our specific application, Ripple provides a promising way to
expand the sphere of influence of regenerative simulation in discrete reversible

MCMC.
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A Notation

The most important notations from the paper are summarized in Table[4]

Symbol Explanation

G=(,¢) The graph where we have neighbor query access and whose edge sum
is being computed.

N(u), d(u) Neighborhood and degree of a vertex in G if no subscript is specified.

n(€) The sum over edges in £ (or some subset) of some function f.

D, pa(u,v), 7e(u) The random walker on G, its transition probability and stationary
distribution.

X, & T an RWT (tour), its length and a set of m RWTs.

0« (T5 f,G) an RWT Estimate of u(€).

3 The spectral gap of the transition probability matrix of a chain.

&()? Empirical variance of an RWT Estimate.

¢r, 91 Collapsed state and graph obtained by collapsing I C V.

g<r<t Strata ids always used in the same order 1 < g¢<r <t< R.

p:V—={1,...,R}
Zr, Ir

gr = (VT7£7‘)
T

Q(CT-)’ pd%((m )
d((r)a 1/7\¢7»(<r7 )
ET

o

Ug,r

/:LRippl& i <7—2]LW f)
Ory Ury Ar

G=(V,E,L)
G (V")
H

c® = (i en
gk = (VK e®)

v(u,v)
DIST(u)
v

M

Ag, Da
S

€

Stratification function.

r-th vertex and edge stratum.

r-th graph stratum.

Supernode in each stratum and a set of m, perfectly sampled tours
from (.

Degree and transition probability out of the supernode.

Estimated degree and transition probability out of the supernode.
mgq RWTs samples using supernode estimates.

The estimate of the number of edges between Z; and Z,.

Multiset of states visited by 7:11\ that lie in Z,.

Overall and per-stratum Ripple estimate.

Spectral gap and the errors in the supernode estimates in the r-th
stratum.

The labelled input graph in which we want to count subgraphs.
Subgraph induced by V’ in G.

Nonequivalent (non-isomorphic) patterns of interest.

The subgraph pattern count vector.

The k-HON that provides neighborhood query access and is used to
count subgraphs.

Number of edges in £¢ that represent the same subgraph as (u, v).
Shortest path distance from u € V to any seed vertex in V(Z1).
The largest connected subset of V (s) that constitutes an intersection
between s and § € 7.

Reservoir size.

Maximum degree in and diameter of G.

Articulation points in s.

Per-stratum error bound used to control tour count.

k—1)

Table 4: Table of Notations

B Proofs for Section

B.1 MCMC Estimates

Given a graph G, when the |£]| is unknown, the MCMC estimate of #(£)/|g| is given by:

Proposition 5 (MCMC Estimate (Geyer,|1992; Geman and Geman),|1984; Hast-
ings, 1970)) When G from Deﬁnition is connected, the random walk @ is reversible and
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positive recurrent with stationary distribution wg(u) = d(uw)/2|g|. Then, the MCMC estimate

t—1
. 1
fio ((Xi)iz1) = I—1 > (X X)),
i=1
computed using an arbitrarily started sample path (Xi)ﬁ:l from @ is an asymptotically
unbiased estimate of #(€)/|g|. When G is non-bipartite, i.e., D is aperiodic, and t is large,
fio converges to n(E)/|€| as

et (Gt - oyie| < 2 g

where §(®) is the spectral gap of & and C £ / 1;%}(()1()1) such that f (-) < B.

Proof (Asymptotic unbiasedness) Because G is undirected, finite and connected, @ is a
finite state space, irreducible, time-homogeneous Markov chain and is therefore positive
recurrent (Bremaud, 2001, 3-Thm.3.3). The reversibility and stationary distribution holds
from the detailed balance test (Bremaud) 2001, 2-Cor.6.1) because

1{(u,v) € €
e (u) pe (u,v) = e (v) pas (v, u) = % .
The ergodic theorem (Bremaud, 2001} 3-Cor.4.1) then applies because f is bounded and we
have
S u(€)
lim —— Zf(Xi,Xi+1) = Z e (u) pe(u,v) f(u,v) = W .
i=1

(u,v)EVXV
[m]

Proof (Bias) Let the i-step transition probability of & be given by pis(u, v). The bias at the
i-th step is given by

pias; = [ELf(X0 Xl = > ma(w) pa(u, ) f(u,v)]
(u,v)EVXV
=] > AL wps(wo)fe) = > me()ps(uv)f(w,)]
(u,v)EVXV (u,v)EV XV
< B‘ Z P& (X1,u) Z pa(u,v) — Z e (u) Zpgs(u,v)‘
uey veY uey vEY
<B| S pa(X1,u) = Y ma(w)| < BY [p(X1,u) - ma(u)],

ueV uey u€eVy

where f () < B, and the final inequality is due to Jensen’s inequality. From (Diaconis and

Stroock} (1991} Prop-3),

1-— T (Xl)
e (X1)

where 8, = 1 — §(P) is the SLEM of &#. Because of Jensen’s inequality and by summing a

GP,
&) 1 =2 B [1-ma(X1)1—pt
Elio (X)) - “E) | o 1 i < -
‘ [MO (( )1_1) ‘SI = t_]_;BIAS = ¢t-1 7T<P(X1) 1_5*

Assuming that 8¢ ~ 0 and t — 1 ~ t when ¢ is sufficiently large completes the proof. [}

BIAs; < B BL,
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Lemma 2 (Avrachenkov et al.| (2016)) Let @ be a finite state space, irreducible, time-
homogeneous Markov chain, and let §& denote the return time of RW'T started from some
zo € S as defined in Definition[2 If @ is reversible, then
3
g (0)25(®P) '
where wg(xg) is the stationary distribution of xo, and §(P) is the spectral gap of . When
@ is not reversible, the second moment of return times is given by Equation .

E[¢*] < (11)

Proof Using (Aldous and Fill, 2002, Eq 2.21), we have

E [52] — 1+ 2E7T¢ (Tmo) , (12)

e (o)

where Erg (Tk, ) is the expected hitting time of xo from the steady state. Combining (Aldous|

and Fill}|2002, Lemma 2.11 & Eq 3.41) and accounting for continuization yields

2
1 _ EREIETICO) 3
7 (20)5(P) 7g(20) g (20)25(P)

because 7g (o) and §(P) lie in the interval (0,1). O

Erg (Tzy) < and therefore, E [&2] <

Proposition 6 Given a positive recurrent Markov chain @ over state space S and a set of
m RWTs T and assuming an arbitrary ordering over T, where X @) s the ith RWT in T,
XD and |XD| are i.i.d. processes such that E[|X®|] < oo, and when the tours are stitched

together as defined next, the sample path is governed by ®. Fort > 1, define & = Xt]\itRN s
where R; = 1’_:11 |X*| when ¢ >1 and R1 =0 and Ny = max{i: R; < t}.

Proof R; is a sequence of stopping times. Therefore, the strong Markov property
2-Thm.7.1) states that sample paths before and after R; are independent and are
governed by ¢. Because P is positive recurrent and zo is visited i.o., the regenerative cycle
theorem , 2-Thm.7.4) states that these trajectories are identically distributed
and are equivalent to the tours 7 sampled according to Deﬁnition E[[X()|] < oo due to
positive recurrence. O

B.2 Proof of Lemmal/[I]

Proof (Unbiasedness and Consistency) Because G is connected, @ is positive recurrent with
steady state mg(u) o d(u) due to Proposition |5} Consider the reward process F() =

(i) . . i .
Zlfil ! f(XJ(.l),X](.QI), ¢ > 1. From Proposition E F(@) and |X®)| are i.i.d. sequences with
finite first moments, because F(V) < B|X®)|. Let N; and R; be as defined in Proposition@

Therefore, from the renewal reward theorem 1, 2001, 3-Thm.4.2), we have

E[F(®] ZNﬁ @) Z{"ﬁ FO Ry Z?\ﬁf )
— L = lim &=l = |jm ==l . t . £i=1 ,
E[IX®]] t—=oo t t—oo Ry, t Ry,

t—Ry,
t

7RNt

R t
where the final equality holds because lim¢_; N = 1-limy oo ;and limy s o

t t
converges to 0 as t — oo because |X(‘)| < oo w.p. 1 because @ is positive recurrent.

From Proposition@and the definition of F(), ngl FO = Zf:Nl‘ f(®j,Pj41), and

because f and mg are bounded, we have from the ergodic theorem l, 2001, 3-
Cor.4.1),

. R
EFO) _ S S0 00)

— lim 2p(€)
EIX®] t—>oo Ry,

Z e (u)pe (u, v)g(u,v) = ——=

(u,v) EV XV Z‘Sl
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From Kac’s formula (Aldous and Fill| {2002, Cor.2.24), 1/E[|X(D|] = wg(z0) = dQ(Iicfol)’ and

E [@FW} L (&),

i« (T f, G) is unbiased by linearity of expectations on the summation over 7', and consistency
is a consequence of Kolmogorov’s SLLN (Bremaud,|2001, 1-Thm.8.3). O

Proof (Runmning Time) From Kac’s formula (Aldous and Fill| [2002, Cor.2.24), E[|X(®|] =
21€|
d(zo) "
will sample an equal number of tours in expectation, yielding the running time bound. 0O

From Proposition|6} tours can be sampled independently and thus parallelly. All cores

Proof (Variance) Because f (-) < B, and tours are i.i.d., the variance is given by

|X]|

Var (e (7)) = Var | 2200 57 57 53, x50 ) <
M XeTj=1

d(:co)232

. Var (|X]) .

From Lemma [2and Kac’s formula (Aldous and Fill, 2002} Cor.2.24), Var (|X]) is given by

3 IR S 3 o 121E)?
7 (20)20(P)  ma(w0)? e (x0)26(®)  d(0)25(P)

Var (|X]) <

C Proofs for Section

Assumption 2 For each G, 1 < r < R from Deﬁnition assume d(¢r) is known and
that pg,.(Cr,-) can be sampled from.

Proposition 7 (RWTs in #,) Under Assumption given access only to the original
chain @ and stratifying function p, let @, be the random walk in the graph stratum G, from
Deﬁnition To sample an RWT (Xi)fz1 over @, from the supernode (., we set X1 = (r,

sample Xo ~ pg, (Cr, ), and then, until p(Xeqq) < T, we sample

uNIF(Ng(X;)) if p(X3)=7r

Ko~ onir (Ng, (X3)) = {UNIF(NQ(Xi) NT,) it p(Xi)>r

Proof The proof is a direct consequence of Definition [5] and Definition [T} m}

Proposition 8 (Perfectly Stratified Estimate) Under Assumption giwen the EPS
(Deﬁnition@ stratum Gy (Definition , bounded f: £ — R and a set of m RWTs T, over
&, from (- from Proposition@7 the per stratum estimate is given by

d IX]-1

i(Tr; £,Gr) = 2(5;) Do D> f(X X)), (13)

XET, j=2

where X is the jth state visited in the RWT X € Tp. For all v > 1, i(Tr; f,Gr) is an
unbiased and consistent estimator of pu(Jr) = Z(u,v)EJr f(u,v), where J, is the r-th edge
stratum defined in Definition[4]

Proof Define f': & — R as f'(u,v) £ 1{u,v # ¢} f(u,v). By Deﬁnition in each RWT
X e Tr, f/(XhX?) = f/(X|X|7X\XH—1) = 0, and therefore, ﬂ(ﬁ’vfa g?’) = [L*(T, flng‘):
where f[ix is the RWT Estimate from Lemma Moreover, because G, is connected,

E(T £,90)] =E [=(T5 £1,60)] = D> flww)y= > flwv),
(u,v)EE (u,v)ETr

where the final equality holds because &, is the union of 7, and edges incident on the
supernode. Consistency is also due to Lemmall] m}
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C.1 Proof of Proposition [1]

Proof is necessary because when does not hold, there

exists a component such that the minimum value of p in that component is # > 0 such
that in Gy (Definition , and the supernode (; will be disconnected from all vertices.
If |Proposition (1| (b)| is violated, a vertex # exists that is disconnected in Gp(i), and if
Proposition [I| (c)[is violated, the supernode is disconnected. Finally, it is easily seen that
these conditions sufficiently guarantee that each stratum is connected, and the stratification
is an EPS. O

C.2 Proof of Theorem [1]

We begin by defining the multi-set containing the end points of edges between vertex strata.

Definition 12 Given G stratified into R strata, V1 < ¢ < t < R define border multi-sets as
Byt =2 {vV(u,v) € E:u € Iyandv € Tt} .

The degree of the supernode in G, (Deﬁnition is then given by d(¢,) = Z;;} |Bg,r|, and
transitions out of ¢, can be sampled by sampling ¢ € {1,...,7 — 1} w.p. o |Bg,»| and then
by uniformly sampling from Bg,.

Proposition 9 Given the setting in Definitions[8 and[9] for all 1 <r <t < R,

lim ... lim Er,t =B, (14)
[T =0 1T =00

lim ... lim Uyt~ unie(Bry), (15)
[T |=so0 [T |00

lim ... lim pg (X)=ps, (X), VXeT]. (16)
[T |00 [T |00 "

i.e., each tour in 7}T is perfectly sampled from ®,.

Proof (By Strong Induction) The base case for »r = 1 holds by the base case in Deﬁnition
Now assume that Proposition @ holds for all strata up to and including r — 1. Because of
the inductive claim and by Deﬁnition

r—1 r—1
lim ... lim  d(¢) =D Ber = DY 1Berl =d(G),
1Ty =00 T =00 a=1 =1
and similarly, lim ... lim pg, () = ps,.(Cr)-)
ITd 100 T |00

because the inductive claim makes the procedure of sampling transitions out of ¢, in Defi-
nition equivalent to Deﬁnition Equation l} holds because transition probabilities at
all states other than (, are equivalent in @, and @, according to Deﬁnition Now recall

that
IX|

Er,t _ d&) Z Z {p(X;) =t}.

- il
lt="

Because (Ai(g}) = d(¢r) and the tours are sampled perfectly,

lim ... lim Br,t = [ix (TTT; f’) )

[Tf =m0 1T1_ 1500
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where f'(u,v) = 1{p(v) = t} and fi, is from Lemmall] from which we also use the consis-
tency guarantee to show that under an EPS, Equation l) holds as

lim ... lim Br,tais Z I/ (u,v) = |Brl .

1T I=wo0 T =0 (u,0)EE,

Because of Proposition@ concatenating tours X € '7:} yields a sample path from &,, and

these samples are distributed according to ng, as |7’TT,| — 0o, 7' < r. Therefore,

; ; 1X| . N — !
e ey O 05605 =) 5,
2 r

where ﬂfpr (u) o 1{p(u) =t}dg, (u), which is equivalent to UNIF(B¢) by Definitions
and thus proving Equation . O

Proof (Main Theorem) Combining Proposition@and Propositionproves Theorem O

C.3 Proof of Theorem

Definition 13 (L? Distance between 7 and 7 (Aldous and Fill, |2002) ) The L2
distance between discrete probability distribution 7 and reference distribution 7 with sample
~ . N2

space {2 is given by ||T — 7|2 = > ;c %
Definition 14 (Distorted chain) Given a Markov chain @ over finite state space S and
an arbitrary zg € S, let @ be the distorted chain such that Yu # zo, pg(u,-) = ps(u,-),

and pg(wo,-) is an arbitrary distribution with support supp(pg(zo,-)) € supp(ps(wo,-))-
The distortion is given by ||pg(xo,-) — pa(zo,-)|| as defined in Deﬁnition

Lemma 3 Given a finite state, positive recurrent Markouv chain @ over state space S, let
@ be the chain distorted at some xg € S from Deﬁm’tionm Let

X ={(X1,...,X¢): X1 =20, £ =min{t > 0: X¢11 =20}, pa(X1,...,Xe) >0},

denote the set of all possible arbitrary lengths RWTs that begin and end at xg from Defini-
tion[2 Given a tour Y € X sampled from @ and a bounded function F: X — R,

pz(Y1,Y2)

P mF(Y) = E$ [F(Y)], 17)

where Eg and Eg are expectations under the distribution of tours sampled from @ and o,

Proof All tours in X are of finite length because of the positive recurrence of ¢. The ratio
of the probability of sampling the tour Y = (Y1,...,Y,s) from the chain & to & is given by

’
pa(Y)  TI_ipa(¥sYit1)  pgp(¥i,Ya) (8)
pa(Y) Hﬁ/ﬂ pa(Y;,Yj41) Pa(Y1,Y2)’

because pg(Yj,-) = pg(Yj,), V1 < j < &’ because Y; # xo by the definitions of X and

&. Because supp(pg(zo,-)) C supp(pas(zo,-)), supp(pz(Y)) C supp(pa(Y)). The theorem
statement therefore directly draws from the definition of importance sampling (Robert and
Casella) 2013, Def 3.9) with the importance weights derived in Equation . m}
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Lemma 4 Given a simple random walk @ on the connected non-bipartite graph G from Def-

inition let @ be the chain distorted at some xg € S from with distortion v Deﬁnition

Let A = d(z0)/d(xo). Let f: £ — R bounded by B, and F(X) = Z‘Jﬁl f(X;,X;11), where

X is an RWT as defined in Append,i\m The Eias of an RWT Estimate (Equation )

computed using tours sampled over @ and using d(zo) as the degree is given by

£ |:a(yc0) V3BE|
& N

BIAS =

. < (w1 - A)

F (X)} — (&)

where § is the spectral gap of @, and B is the upper bound of f.

Proof From Lemma and Lemmawe have, respectively,

d(z d(z (X1, X
“a {d(;)F(X) =Fe [d(;) ZiEXi,Xz;F(X)} ’
(o) = €0 [ 29 o))

Subtracting the two, squaring both sides and using the Cauchy-Schwarz inequality decom-
poses the squared bias into

d(z0) p3 (X1, X2) ) d@o)
EéKd(wo)p@(Xl,XQ) 1) 2 F(X)H.

s g | (a0 raleo X2\ L[ d@o) by )
Bias® < E <d(a¢0)p$(m0,X2) 1> E|:( 2 F(X)) )

BIAS =

BIASgist BIASspectral

where the expectation is under @. Using definitions from the theorem statement,
d(z0)? (pg,(zo,xg))z o Za(wo) E [

d(zo)? pa (w0, X2) d(zo)

=N2A )+ 1220 =22 £ 222 1 -2

=222 L (1-N2< (w4 1=AD2.

BIAS{ist =

p@(wo,)@)}
pa(zo, X2)

Because F(X) < B¢, the tour length, from Lemma we see that

d(zo)2B? 3 3B2|&|?
BIASgpectral < 25 )
4 7 (20)20 0
and combining both biases completes the proof for BiAs. m}

Proof (Main Theorem) Note that by linearity of expectations

A <
Eld TTT’f |TT:T'— =E . Z Z f(X‘7X'+1) s
[ < 2 ) 2 1] 2|TrT| xe7l i=2 v

S IX
d((r ,
=Ex. 3, %Zf(xﬁxj—kl) ;
=1

where X is an RWT on &, that depends on 7-;:7071 and f'(u,v) 2 1{u,v # ¢ yf(u,v).

Applying Lemma completes the proof because §T is a distorted chain by Definition
O
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D Proofs for Section
D.1 Proof of Proposition [2]

Proof From Thm-3.1), we know that each disconnected component of
G leads to a disconnected component in G(*~1) and if Z; contains a subgraph in each
connected component, is satisfied. We now prove that Vs € V(=1 if
p(s) =r >1,3s" € N(s): p(s’) < r which simultaneously satisfies (b)| and

W.l.o.g. let the vertex with the smallest distance from the seed vertices be denoted by
@ = argmin, ¢y (5) DIST(u). When DI1sT(4) > 0, there exists v € N(4@) such that pisT(v) <
pisT(@) by the definition of pisT. More concretely, v would be the penultimate vertex in
the shortest path from the seed vertices to 4. Let v/ # @ be a nonarticulating vertex of s,
which is possible because any connected graph has at least 2 nonarticulating vertices. Let
s1 = G(V(s)\{v'} U {v}) € V=D Now, p(s1) < p(s) because v’ has been replaced with
a vertex at necessarily a smaller distance and because the indicator in the definition of rho
will always be 0 in this case. Moreover, s1 0 s = G (V(s) U {v}) € V(*) and hence an edge
exists between the two.

When pist(4) = 0, there exists v € N (@) such that pisT(v) = 0. There exists a nonar-

ticulating v’ € V(s)\V* because otherwise V* would have been disconnected. Observing
that pisT(v’) + 1{v" € V(Z1)\V*)} > 0 completes the proof of ergodicity. O

D.2 Proof of Proposition [3]

Proof (Sampling Probability) Consider the lines Lines to The probability of sampling
the pair (u,v) from V(s) x Ng (V(s)) is given by

P(u’ ”) = Z P(”L)|a,u)P(a|u)P(u)
a€V(s)\{u}
_ 1{v € N(a)} d(a) deg, —d(u)
acVnquy  d@  degy—d(u) (k—1-—1)deg,
o Z 1{v € N(a)} = |[N(v) N V(s)\{u}| = BIAS,
a€V(s)\{u}

where BiAs is defined in Line @ and corrected for in Line After the rejection, therefore,
(u,v) ~ UNIF(V (s) X Ng (V(s))).

Line @ constitutes an importance sampling with unit weight for pairs (u,v), where
removing v from and adding v to V(s) produces a k — 1-CIS and zero otherwise. In Line@
because removing a nonarticulating vertex and adding another vertex to s cannot lead to a
disconnected subgraph, we can avoid a DFS when u ¢ As. This completes the proof. m}

Proof (Time Complexity) Assuming access to a precomputed vector of degrees, the part up
to Lineis O(k—12). In each proposal, Linesandare O(k—1), and Lineis O(Ay). Line@
is O(k—1), and the expected complexity of Line@is O(k—12 |As]/k—1) because in expectation
only |Asl/k—1 graph traversals will be required. The acceptance probability is > 1/k—1 is

—1— 2
Line |7| and > %‘1’45‘ The expected number of proposals is therefore < S

k—1—]As]"
As+k—1|As]| ).

k—1—A,| o

such, the expected time complexity is O(k — 12 (1 +
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(a) T2, the set of RWTs sampled in G5.  (b) The reservoir matrix, U for2<r<
(<R

Fig. 4: Parallel RWTs and Reservoirs: Figureshows the set of m RWTs sampled on G
in parallel, where the supernode (2 is colored black. The gray, blue, red and green colors
represent states in stratum 2-5, respectively. Flgure.shows the upper triangular reservoir
matrix in which the cell in the r-th row and ¢-th column contains samples from U, .

E Additional Implementation Details
E.1 Parallel Sampling with a Reservoir Matrix.

Given a reasonably large M and the number of strata R, we initialize an upper triangular
matrix of empty reservoirs [Uy t]o<,<t<p and a matrix of atomic counters [Nig rlo<,ct<p
initialized to 0. In each stratum r, v\_ihile_being sampled in parallel whenever a tour enters the
t-th stratum, M, ¢ is incremented, and with a probability min(1, ¥/x,.;), the state is inserted
into a random position in the reservoir I/:T,‘_f and rejected otherwise. The only contention
between threads in this scheme is at the atomic counter and in the rare case where two
threads choose the same location to overwrite, wherein ties are broken based on the value of
the atomic counter at the insertion time, guaranteeing thread safety. The space complexity
of a reservoir matrix is therefore O(R?m).

A toy example of this matrix is presented in Figure where R = 5, and the RWT5s
are being sampled on the graph stratum Gs. Whenever (non-gray) states in Z3.5 are visited,
they are inserted into the corresponding reservoirsfﬁg_5 is depicted in detail.

E.2 PSRW Neighborhood

The neighborhood of a k-CIS s in G(*) is the set of all vertices u,v € V such that replacing
u with v in s yields a k- CIS. Formally,

Ny () = {(wv) € V(s) x Na (V()) : G (Vo) U {ehfuh) e VP L (19)

where Ng(V(s)) = Uzev ()N (2) is the union of the neighborhood of each vertex in s.
The size of the neighborhood is then O(kNg(V(s))) € O(k2Ag) because Ng(V(s)) €
O(kAg), where Ag is the maximum degree in . Each potential neighbor further requires
a connectivity check in the form of a BF'S or DFS, which implies that the naive neighborhood
sampling algorithm requires O(k?Ag) time.

E.2.1 Articulation Points

Apart from the rejection sampling algorithm from Algorithm we use articulation points
to efficiently compute the subgraph bias v from Equation . Specifically, given the k — 1-
CIS, s, v(s) = (”_2’4'*), As is the set of articulation points of s. This draws directly from
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(Wang et al.;|2014, Sec-3.3) and the definition of articulation points. Hopcroft and Tarjan
(1973) showed that for any simple graph s the set of articulation points can be computed
in O(|V(s)| + |E(s)]) time.

Algorithm 2: Ripple for Subgraph Counting

Input: Input graph G, Order k, Set of subgraph patterns H of interest
Input: Initial vertex stratum 7, Reservoir Size M and Error Bound e
Output: [, an asymptotically unbiased estimate of ck)

/* Initialization */
1 4=0,8,:=00U,:=0,V1<qg<t<R;
2 Run BFS for stratification p: V*~—1) — {1 ... R}, with 7y (Proposition

/* Exact computation in the first stratum */
3 foreach u € Z;,v € Ngw,}\) (u) do

a Update B p(v) +=1, Uy peo) U=
A 1{uov~H}) . .
5 Update g += (7%“%) e // Equation @
/* Estimate remaining strata */
6 forre2,...,Rdo
4 Initialize g =0, m, =0
8 parallel while Equation is not satisfied do
9 Sample ¢ from {1,...,7 — 1} w.p. Bq,r
10 Sample u from fLLT ; // Equation @D
11 Sample v ~ UNIF(Ngx—1) (u)) ; // Algorithm
12 while p(v) > r do
« _ (1{uov~H} . .
13 Update fir += <W>H6H ; // Equation
14 if p(v) > r then
15 Update B, pv) +=1; // Equation 1ED
16 Update ﬁnp(v) U=v; // Equation @D
17 U=
/* Proposition |7| and Algorithm */
18 if p(u) = r then
19 ‘ Sample v ~ UNIF(Ngx-1) (u))
20 else
21 while p(v) # r do
22 | Sample v ~ UNIF(Ng k-1 (u))
23 me+ =1
24 Complit\e deg, = Z;;i Ba,r 3 // Equation 1D
25 L+= geﬁ; fir 3 // Equations lb and lEb
26 Update B,-,t *= d;g:7 VE>r; // Equation lEb

27 return [

E.3 Proof of Proposition [4]

Proposition 10 (Extended Version of Proposition@ We assume a constant number
of tours m in each stratum and ignore graph loading. The Ripple estimator of k-CIS counts
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described in Algorithm has space complexity in
O(K3DEm + |H]) = O(K> + [H]),

where O tgnores all factors other than k and |H|, M is the size of the reservoir from Sec-
tzonn D¢ is the diameter of G, and |H| is the number of patterns of interest.

The total number of random walk steps is given by O(kSngAgCRm) where Crgy 18
the number of rejections in Line[21] of Algorithm[2, Ag is the largest degree in G, and the
total time complexity is O(kT + |H]).

Remark 2 In practice, we adapt the proposals in Algorithmto minimize Cgg; using heuris-
tics over the values of pisT () from Proposition

Lemma 5 Given a graph stratum G, from Definition for some r > 1, define a, =
{u€Zr: N(u)NZ1.r—1#0}/|Z,| as the fraction of vertices in the r-th vertex stratum that share
an edge with a previous stratum. The return time &, of the chain ®, to the supernode

¢r € Vr follows Eg, [6r] < 2;; , where d,- is the average degree in G of all vertices in .

Proof Because «a,Z, vertices have at least one edge incident on (, dgT(C,«) > arZy.
From Definition |5} because all edges not incident on Z, are removed from G,, Vol(G,) <
23 ez, dg(u). Therefore, from Lemma

Vol(Gr) _ 23 uez, dg(w) _ 2d,

3, [&r] = ac) = o, =

[}

Proposition 11 The Ergodicity-Preserving Stratification from Proposition is such that
ar =1 for allr > 1 as defined in Lemma and consequently, the diameter of each graph
stratum is < 4. The total number of strata R € O(k D¢g), where Dg is the diameter of G.

Proof We show in Appendix that for each vertex s € V=1 if p(s) = r > 1, there
exists s’ € N(s) such that p(s’) < r. This implies that a,- = 1. In G, therefore, from ¢,
all vertices in Z, are at unit distance from ¢, and vertices in N(Z,.)\Z, are at a distance of
2 from (. Because no other vertices are present in G,, this completes the proof of the first
part. Trivially, R < (k — 1) - max,cy DisT(u) € O(k - Dg). O

Proof (Memory Complezity) From Algorithm l we compute a single count estimate per
stratum and maintain reservoirs and inter-partition edge count estimates for each 2 < ¢ <
t < R. Because a reservoir Uq t needs O(kM) space (Appendix , the total memory re-
quirement is O(R? km), where R is the number of strata. From Prop051t10n 1} plugging
R € O(kD¢), and because storing the output i requires O(|#|) memory the proof is com-
pleted. O

Proof (Time Complexity) The stratification requires a single BFS € O(|V| + |E]|) from
Section [4.2] In Line [3] the estimation phase starts by iterating over the entire higher-order
neighborhood of each subgraphs in Z;. Based on Appendix Lineis in O(k2). Because
the size of the higher-order neighborhood of each subgraph is O(k?Ag) from Appendix
the initial estimation phase will require O(|Z1| k*Ag) time.

In all other strata r = 2, ..., R, we assume that m tours are sampled in Line Starting
each tour (Lines (9] to requires order of magnitude R time, leading to a total time of
O(m R?) € O(mk?D%) because R € O(kDG) from PropositionH The total time for these
ancilliary procedures is O(mk?D% + |I1| k*Ag)

Therefore, the time Complex1ty of bookkeeping and setup is O(mkzD + |Z1| k*Ag +
VI+IE] € O(k%). The time complexity at each random walk step is O(k—12Ag+k—1%) €
O(k4) from Appendix and Appendix We assume that the expected number of
rejections in Llnen [21]is given by Cggs. The total number of random walk steps is given by
O(Rm Chrg;) times the expected tour length. By Lernma and proposition the expected
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Rel. dispersion of estimates
6 8 10 12

Amazon | 0.203 0.241  0.285 0.268
DBLP 0.023  0.023 0.041 0.054
Patents 0.037 0.083 0.093 0.123
Pokec 0.065 0.044 0.037 0.046
Livel. 0.050  0.060 0.033 0.066
Orkut 0.021  0.761  0.053 0.031

Graph

max — min

Table 5: Dispersion, =2—=% of Ripple’s estimates of [V*)| computed using e = 0.003,
|Z| = 10* and m = 107 for k = 6,8, 10, 12 used in the analysis in Sectionﬂ The selected
hyper-parameters provide reasonably similar estimates over 10 independent runs. Orkut for
k = 8 exhibits the largest dispersion because of the presence of a single outlier.
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Fig. 5: Accuracy and convergence analysis for 5-CIS s using L-oo norm. The y-axes show
the L-oco norm between the Ripple estimate and the ground truth vector c), containing
counts of all possible non-isomorphic subgraph patterns for various settings of € and ;. As
expected, the accuracy improves as e decreases and |Z1| increases. Each box and whisker
represents 10 runs.

tour length is O(Agu—1) = O(k?Ag). Therefore, the total number of random walk steps
is O(k*mDgAGCres)-

O(|H]) time is to print the output fi. We assume that updating fi is amortized in constant
order if we use a hashmap to store elements of the vector, and because updating a single
key in said hashmap is by Equation @ increments, the proof is completed. O

F Additional Results

We now present the results of additional experiments performed on Ripple. Tableshows
the dispersion, %, of the estimates that were used to measure the running time and

space utilization of Ripple in Section Figureshows the L-oco norm from the ground
truth for k = 5 with M = 107 while ¢ and Iy vary.
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Fig. 6: Sensitivity of Ripple to the reservoir capacity m for k = 5. We verify that a larger
reservoir improves the accuracy of Ripple estimates in all graphs because it reduces over-
sampling bias. Each box and whisker plot represents 10 runs.

Trade-off between Convergence and Reservoir size. Next, we measure the effect of
the reservoir capacity M on accuracy, as discussed in Sectlon- We vary m from 50000 to
107 while keeping the other parameters fixed as € = 0.003 and [Z1| = 10* and measure the
L2-norm between the Ripple estimate and the exact value of the count vector C(a), such
as in Section We see that larger reservoirs reduce oversampling bias and improve the
convergence and accuracy in all datasets.

Scalability on Number of Threads (Figure Ij) In this experiment, because of Equa-
tion , we set e = 0.001 to force a larger number of tours, thereby increasing the load per
core and ensuring a sufficient workload. Further, we fix k = 5, set |Z;| = 10%, M = 107 and
compute running times over 10 executions while excluding the graph read time, which is
not parallel. We observe that our implementation does not scale linearly: as we double the
number of cores, the running time decreases by a2 1/14 rather than 1/2. Local profiling using
hardware performance counters (Linux’s perf) suggests that this overhead is an outcome of
increased random-access patterns of in-memory graph data, which limits the overall use of
the underlying processing pipeline. Indeed, sub-optimal access patterns of graph data are
a known issue that is currently handled by dedicated accelerator hardware deploying opti-
mized and specific caching mechanisms and memory access policies for workloads dominated

by subgraph enumeration .
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Fig. 7: Scalability w.r.t. the Number of Threads for 5-CIS. Despite a noticeable reduction
in running time, the scalability is not linear. In fact, as we double the number of cores, the
running time decreases by approximately a quarter instead of half, which may be due to the
memory bandwidth limit coupled with the lack of memory locality, which is a ubiquitous
problem in graph mining algorithms.
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