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Roll-to-roll printing has significantly shortened the time

from design to production of sensors and IoT devices,

while being cost-effective for mass production. But due

to less manufacturing tolerance controls available, prop-

erties such as sensor thickness, composition, roughness,

etc., cannot be precisely controlled. Since these proper-

ties likely affect the sensor behavior, roll-to-roll printed

sensors require validation testing before they can be de-

ployed in the field. In this work, we improve the testing

of Nitrate sensors that need to be calibrated in a solution

of known Nitrate concentration for around 1-2 days. To

accelerate this process, we observe the initial behavior of

the sensors for a few hours, and use a physics-informed

machine learning method to predict their measurements

24 hours in the future, thus saving valuable time and

testing resources. Due to the variability in roll-to-roll

printing, this prediction task requires models that are ro-

bust to changes in properties of the new test sensors. We

show that existing methods fail at this task and describe a

physics-informed machine learning method that improves

the prediction robustness to different testing conditions

(≈ 1.7× lower in real-world data and ≈ 5× lower in

synthetic data when compared with the current state-of-

the-art physics-informed machine learning method).

Keywords: physics-informed machine learning, roll-

to-roll printing, out-of-distribution

1 INTRODUCTION

Roll-to-roll printing is being widely used for manu-

facturing a variety of flexible electronics including sen-

sors, wearable implants, capacitors etc., especially be-



cause of the reduced large-scale manufacturing cost.

However, unlike traditional high-cost manufacturing pro-

cesses, roll-to-roll printing does not allow precise control

over parameters such as thickness, chemical composition

of sensor membrane, and roughness/resistance of elec-

trodes. These properties can impact the sensors’ response,

resulting in a significant sensor-to-sensor variability mak-

ing precise measurements much harder. Thus, roll-to-

roll printed sensors typically require validation testing be-

fore they can be deployed in the field. We use machine

learning approaches to predict the behavior of roll-to-roll

printed sensors at the end of validation testing after ob-

serving only their initial measurements for a short pe-

riod of time. This way, we aim to accelerate the pre-

deployment validation of these printed sensors.

In this work, we consider potentiometric ion-

selective electrodes [10] that can measure the nitrate con-

centration in water and soil. These nitrate sensors are in-

tegral for real-time soil health monitoring for precision

agriculture. However, before deployment, these sensors

require a conditioning phase when they are kept in a so-

lution of known nitrate concentration until saturation (can

take around 1-2 days). To accelerate this process, we wish

to observe the initial behavior of the sensors for a few

hours, and predict the future measurements at the end of

conditioning.

Standard data-driven machine learning (ML) meth-

ods have shown a remarkable ability to fit the data and

could be used for this task. However, this ability can come

at the expense of lack of robustness to changes to the in-

put data, for example, when the test conditions are differ-

ent from those in training. This is known as an out-of-

distribution task: when the test data and the training data

are not from the same distribution. In our application, an

out-of-distribution scenario occurs when the test sensors

have very different membrane thickness when compared

to the sensors seen during training. ML methods tend

not to perform well under such out-of-distribution sce-

narios as they may learn shortcuts [6], simple but highly

predictive correlations between the known inputs and the

desirable outputs as seen in the training data. This abil-

ity is orthogonal to the concept of model overfitting: An

ML model that does not overfit can still rely on spuri-

ous correlations for its predictions. Physical models on

the other hand can calibrate their parameters to an out-

of-distribution test condition and are able to extrapolate;

however, they do not model all the complex real-world

processes and hence, do not fit the data well enough to

forecast accurately.

Physics-informed machine learning (PIML) has

emerged as a hybrid solution and positively impacted a

diverse set of fields over the past few years including

biological sciences [22], climate science [4], turbulence

modeling [12, 20], etc. The works in this field incorpo-

rate domain knowledge in the form of physics modeling

into standard machine learning models. The main goal

of PIML works is to improve standard machine learning

models so that they (a) produce physically-consistent re-

sults [11], (b) learn from less data, and (c) can make bet-

ter predictions in out-of-distribution tasks, i.e., predict in

new conditions not seen in the training data.

We show that PIML methods have inherited the out-

of-distribution weakness from standard machine learning

models and cannot extrapolate in our application. Then,

we describe a physics-informed machine learning model

that is less sensitive to out-of-distribution tasks.

2 RELATED WORK

There are three standard ways of incorporating

physics-based constraints in machine learning models:

Learning physics constraints from data. Schmidt and

Lipson [19] propose a genetic algorithm to learn natural

laws such as Hamiltonian of a system, equations of mo-

tion, etc., in the form of invariances solely from exper-

imental data. More recent works [1, 13, 17] learn equa-

tions (explicit solution or partial differential equations) by

regressing over a dictionary of basis functions (e.g., sin,

cos, d
dt

, etc.) and use sparsity constraints to ensure learn-

ing of simpler laws.

Hard constraints. Many physics-informed ML meth-

ods enforce the constraints strictly in the architecture.

[18, 9] incorporate a known PDE in neural networks

as a hard constraint and learn the unknown parame-

ters via supervised learning. Works have strictly incor-

porated energy conservation by learning the Hamilto-

nian/Lagrangian [7, 3] of the given systems. Other works

have incorporated group symmetries such as translation

and rotation [21, 5]. The advantage of embedding hard

constraints is that the constraints continue to be satisfied

even outside the training domain. However, this requires

one to know all the constraints of the system precisely; if

the constraints do not hold or are misspecified, then we

cannot recover from an incorrect choice.

Soft constraints. Rather than enforcing physics-

informed constraints strictly in the architecture, many

works prefer to use a ªsoftº regularization of these

constraints [11, 16, 8]. This typically allows the neural

networks to violate the constraints if absolutely required

in training, thus allowing for noisy data. However, ªsoftº



constraints also have the drawback that they are typically

not satisfied outside the training domain.

3 PROBLEM STATEMENT

In this section we formally describe the out-of-

distribution task. Many dynamical systems can be writ-

ten as an ordinary differential equation (ODE) with X(t)
describing the state of the system at time t:

dX(t)

dt
= ψ(t,X(t)) , (1)

where X(t) ∈ R
d, and ψ is a deterministic func-

tion. We will restrict our attention to discrete time steps

{t0, . . . , tT }. Given an initial value of the system X(t0)
at time t = t0, one can solve the ODE in Equation (1)

for the future states of the system for t > t0. However,

since ψ is unknown to us, we wish to learn a machine

learning model that forecasts the future values of the dy-

namical system for t > tr when given initial observations

for t ≤ tr as input. For ease of notation, we will denote

the past observations by X≤r ≡ X(t0), . . . ,X(tr) and

the future observations by X>r ≡ X(tr+1), . . . ,X(tT ).

Physics model. We assume that we are given a physics

model dX(t)/dt = φ(t,X(t); θphy) that approximately

describes the dynamical process ψ, where θphy are param-

eters that can be calibrated. Typically, φ is much sim-

pler than the real dynamical process ψ, and data-driven

approaches are needed to complement it for better predic-

tions.

Data-driven approach. The training data for the data-

driven approaches consists of multiple simulations of the

dynamical system in Equation (1) with different initial

conditions X(t0). We denote our training data D(tr) =

{(x(i)
≤r,x

(i)
>r)}N

(tr)

i=1 . After an ML model is trained on the

training data, at test time, we ask the question: what if the

initial conditions were different from those in training?

We call this the out-of-distribution test data. In our appli-

cation, one training sample consists of voltage measure-

ments of a nitrate sensor during its conditioning phase.

Out-of-distribution test data consists of voltage measure-

ments from sensors that were manufactured with different

control parameters.

While standard data-driven approaches are adept at

making accurate predictions when test is similar to the

training distribution, they fail to extrapolate to the out-of-

distribution datasets. Surprisingly, the physics-informed

machine learning models have inherited this drawback

from the data-driven approaches. The goal of the cur-

rent work is to train a physics-informed machine learning

model on the training data in such a way that it can ex-

trapolate to out-of-distribution test datasets.

In the next section, we describe our application in

detail.

4 APPLICATION: ISE NITRATE SENSOR CON-

DITIONING

Potentiometric ion-selective electrodes (ISEs) are be-

ing adopted as implantable sensors for precision agricul-

ture, for instance to measure nitrate concentrations in the

soil. This adoption has predominantly been due to their

easy and low-cost fabrication via roll-to-roll printing. Po-

tentiometric sensors are 2-electrode systems that are com-

prised of working and reference electrodes. The work-

ing electrode (ISE) is constructed with a selective plasti-

cized membrane deposited onto a conductive solid con-

tact. Activity of the ions in the solution results in a po-

tential change on the ISE that is measured with respect

to the reference electrode. Thus, target ion activities are

translated into potential readings providing an estimate

of the ion concentration in the solution. Nernst equation

can be used to obtain the ion concentration from the mea-

sured potential difference. In our application, we measure

the nitrate concentration by using a nitrate ion-selective

membrane coated on a printed silver working electrode.

The current usage of ISEs is not without its chal-

lenges. These sensors require a period of preconditioning

where the ISEs are activated by hydrating the ion selec-

tive membrane in a standard solution of known analyte

concentration before deployment in the field. They could

take around 1-2 days to reach a constant saturation volt-

age (thermodynamic equilibrium). Once the sensors are

preconditioned, any change in the nitrate concentration is

detected in a matter of seconds. Calibration of hundreds

of sensors is time-consuming and resource-intensive. Our

task then is to predict the saturation voltage at the end

of the conditioning period given a small initial period of

transient-state voltage measurements. However, the sat-

uration voltage depends upon the manufacturing condi-

tions that can vary for different sensors. As we show

later, thickness of a sensor’s ion-selective membrane has

a significant impact on its saturation voltage. We need to

predict the saturation voltage of a test sensor under this

out-of-distribution scenario.

4.1 Real-world data

We evaluated the electrochemical performance of the

ISEs manufactured in different coating runs using Multi-
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Fig. 1: Potentiometric Nitrate sensors conditioned in 1

mM Nitrate solution until saturation. We wish to predict

the saturation behavior given first 6 hours of voltage read-

ings.

function DAQ system (National Instruments PXI-6225)

equipped with a LabView system engineering software.

We collected the potential outputs of around 300 elec-

trodes against a commercial Ag/AgCl reference electrode

(Orion 900200 Sure-Flow) with the ISEs placed in 1L of

1mM potassium nitrate solution until equilibrium. The

resultant voltage readings for a sample of the sensors are

shown in Figure 1. We can see that the sensors take

roughly 40 hours to reach a constant saturation voltage.

Our task then is to predict the saturation voltage given

a small initial period of voltage measurements (left of

dashed vertical line in Figure 1). Further, since the sen-

sors were manufactured with different control parameters,

they have very different saturation voltages even when

placed in a solution of same nitrate concentration. Thus,

our goal is to design methods that can extrapolate and

forecast robustly under changes in manufacturing param-

eters.

4.2 Synthetic data

In the following, we perform controlled out-of-

distribution experiments to evaluate the different forecast-

ing approaches. This way, we are able to ensure that

only certain manufacturing conditions change between

the training and the test data. We generate synthetic volt-

age curves from the following model proposed by Jin

et al. [10] that describes the conditioning behavior of the

potentiometric nitrate sensors:

Vtrans(t) =
kBT

q
ln(t) + C1

√
Dt+ C2 , (2)

Vsat =
kBT

q
ln

(

n0h
2

κ

)

+ C3 , (3)

where Vtrans(t) denotes the transient voltage readings and

Vsat is the constant saturation voltage (independent of

time). In Equations (2) and (3), kB is the Boltzmann’s

constant, q is the elementary charge, T is the temperature

of the nitrate solution, D is the diffusivity of the nitrate

ion, and κ is the dielectric constant of the ion-selective

membrane. In Equation (3), n0 denotes the nitrate con-

centration of the solution, and h denotes the thickness of

the sensor membrane. The saturation voltage is propor-

tional to the logarithm of h2, which is unknown to the

prediction methods.

The final voltage reading is an interpolation of the

transient Vtrans and saturation voltage Vsat, given by

V (t) =
Vtrans(t)

(

1 +
(

Vtrans(t)
Vsat

)β
)

1

β

, (4)

where we choose β = 1.5 in our experiments.

Training data and out-of-distribution test data. We

obtain voltage curves from Equation (4) with additive

Gaussian noise and fixed values for the Nitrate concen-

tration n0 = 10−3M and temperature T = 298K. We

keep these quantities fixed because these can typically

be controlled during the conditioning phase. However,

since there is little control over the membrane thickness

h in roll-to-roll printing, we sample a range of differ-

ent values for sensor thickness h. For training data, we

obtain voltage curves with sensor thickness between 50

to 60 microns. Then, we simulate the case when the

manufacturing control parameters change for the out-of-

distribution test data by sampling much higher sensor

membrane thickness between 150 to 160 micros. The sen-

sors in out-of-distribution test data have higher saturation

voltage than the ones in the training data.

4.3 Physics model for forecasting

In the next section, we describe a physics-informed

machine learning approach that improves the out-of-

distribution robustness of existing methods. We use the



following simpler physics model in our application [10]:

ϕtrans(t) =
kBT

q
ln(t) + C0 ,

ϕsat =
kBT

q
ln

(

n0θ
2
h

κ

)

+ θC ,

ϕ(t) =
ϕtrans(t)

(

1 +
(

ϕtrans(t)
ϕsat

)θβ
)

1

θβ

, (5)

where θphy = (θh, θC , θβ) are the parameters of the

physics model and θh directly corresponds to the sensor

thickness h in Equation (3). The model does not account

for effects of water in the membrane and thus, φtrans does

not involve the
√
Dt term from Equation (2). While the

physics model in Equation (5) is given in closed form, we

can easily rewrite it as an ordinary differential equation
dϕ
dt

= φ(t; θphy) (as required by the physics-informed ma-

chine learning approaches we consider).

5 PROPOSED APPROACH

We begin with a description of a state-of-

the-art physics-informed machine learning framework,

APHYNITY [8].

5.1 APHYNITY

APHYNITY describes the prediction dynamics using

an ordinary differential equation (ODE),

dX̂(t)

dt
= φ(t, X̂(t); θ̂phy) + Fnn(X̂(t);WF ) , (6)

θ̂phy = Rnn(X≤r;WR) ,

where X̂(t) denote the predictions, Fnn is a feedforward

neural network with learnable weights WF , and φ is the

known physics model with parameters θ̂phy that are pre-

dicted via a recurrent neural network Rnn with weights

WR. Essentially, the neural network Fnn acts as a cor-

rection term on top of the physics model φ. Given the

initial prediction at time t = t0 as X̂(t0) = X(t0), the

ODE is solved to obtain the predictions at future times

X̂(t1), . . . , X̂(tT ).

Given the training data D(tr), the method learns

WF ,WR and θphy by solving the following optimization

problem

minimize
WF ,WR,θphy

N (tr)

∑

i=1

T
∑

k=0

||Fnn(x
(i)
k ;WF )||2

s.t. x̂
(i)
k = x

(i)
k , ∀i = 1, . . . , N (tr), ∀k = 0, . . . , T , (7)

where x̂
(i)
k for time tk is obtained by solving the ODE in

Equation (6) with the initial value x
(i)
0 at time t = t0.

Note that in Equation (7), the predictions x̂
(i)
k depend on

the parameters WF ,WR, θphy.

In words, APHYNITY minimizes norm of the out-

puts from the neural network Fnn (the correction terms)

with the constraint that the predictions X̂
(i)
k match the

corresponding training curve. In this way, the method is

able to give higher preference to the physics model and

only use the neural network if necessary. For example,

if the physics model φ is able to perfectly fit the train-

ing data, then the neural network outputs are forced to

be zero. The optimization in Equation (7) can be solved

via gradient descent with a sequence of Lagrangian relax-

ations to enforce the constraints [8].

5.2 PhysicsDNA

The APHYNITY model as described above works

wonderfully in-distribution (i.e., when the test and train-

ing data are sampled from the same distribution), but

faces several out-of-distribution challenges. We describe

these challenges next and show how PhysicsDNA [15] is

able to solve them and output more robust predictions.

Physics parameter prediction. In our application, the

calibration parameters θphy = (θh, θβ , θC) of the physics

model can be different for each curve because of the vari-

ations in the sensor membrane thickness h. As described

above, APHYNITY uses a recurrent neural network Rnn

to predict the physics model parameters and obtain θ̂phy

(see Equation (6)). In out-of-distribution scenario with

very different manufacturing parameters (e.g., in our ap-

plication, sensor thicknesses in test are much higher com-

pared that in training), the prediction of physics parame-

ters by a neural network is not robust. Further, the physics

model may be very sensitive to some parameter; predict-

ing it with a neural network out of distribution could re-

sult in very strange final predictions. In some cases, the

neural network might even output physically meaningless

values for the physics parameters.

Instead, PhysicsDNA calibrates the parameters θphy

of the physics model by fitting each individual voltage



curve from t0, . . . , tr using the Levenberg±Marquardt al-

gorithm. This allows us to obtain the best fitted physics

parameter even for the out-of-distribution observations.

Note however that these fits may not be perfect as they

only consider the initial observations till time tr (since

t > tr is to be forecasted) and the physics model does

not capture all the transient behaviour. Thus, we need a

neural network to correct the physics model same as in

Equation (6).

Historical observations. The feedforward neural net-

work Fnn in Equation (6) does not use the history of in-

put observations X(t0), . . . ,X(tr). Only input to Fnn

is X(t0) as the initial value for the ordinary differen-

tial equation. In our application, X(t0) denotes the

initial voltage measurement which is 0mV in both in-

distribution and out-of-distribution data. On the other

hand, the rest of voltage measurements X(t1), . . . ,X(tr)
change between train and test. Thus, the feedforward neu-

ral network is not able to even detect the change in input

distribution.

Instead, PhysicsDNA proposes to use a sequence

model, e.g., a recurrent neural network, instead of the

feedforward network in Equation (6). This is similar to

the method of Mehta et al. [14]; however, their objective

is different from Equation (7) and do not minimize the

contributions of the neural network.

6 RESULTS

We evaluate four approaches for the out-of-

distribution forecasting in real-world and synthetic

datasets: (a) a standalone physics model (Equa-

tion (5)), (b) NeuralODE [2], a standalone deep learning

method, (c) APHYNITY (Equation (6)), and (d) Physics-

DNA [15].

6.1 Real-world data

We use the physics model proposed by Jin et al.

[10] (Equation (4)) within the physics-informed machine

learning approaches (APHYNITY and PhysicsDNA). Ta-

ble 1 shows the root mean square error (RMSE) for two

test settings: (a) in-distribution, when the test data con-

sists of unseen sensors with similar manufacturing condi-

tions as in training, and (b) out-of-distribution, when the

test data consists of unseen sensors manufactured under

different conditions.

Training errors for NeuralODE and PhysicsDNA are

much lower compared to APHYNITY since the latter

does not use the historical measurements and is unable

to fit the training data. Standalone physics model is also

Train RMSE Test RMSE (mV)

Method In-distribution Out-of-distribution

NeuralODE [2] 1.05 15.66 134.81

Physics model [10] 39.69 42.05 110.94

APHYNITY [8] 35.17 40.84 108.55

PhysicsDNA 1.36 15.10 62.30

Table 1: (Real-world data) Root mean squared error (mV)

for training, in-distribution and out-of-distribution (OOD)

test datasets.

unable to obtain a perfect fit given only a few hours of ini-

tial voltage measurements. A similar trend is observed for

in-distribution test errors computed over an unseen set of

test sensors that were manufactured under the same con-

ditions as the training sensors.

The out-of-distribution test error of NeuralODE,

a purely data-driven approach, is the highest. Since

APHYNITY does not make use of historical observa-

tions, it performs similarly to the physics model. Physics-

DNA has much lower out-of-distribution error than the

other methods (≈ 1.75× lower than the best competing

method). However, the corresponding OOD test error is

still much higher than its training error.

Our experiment shows that when the unseen test sen-

sors have similar properties to the sensors in training,

we can use a purely data-driven approach such as Neu-

ralODE to solve the task. However, such an approach is

not robust when the manufacturing conditions change for

the new test sensors. The proposed approach performs

similar to a data-driven approach over in-distribution ex-

amples, but is much more robust for out-of-distribution

examples. Finally, we show that even state-of-the-art

physics-informed machine learning methods (while bet-

ter than standard ML methods) do not perfectly extrapo-

late to out-of-distribution data showcasing that radically

new approaches are needed.

6.2 Synthetic data

As described in the Section 4.2, we generate the syn-

thetic data using the physics model described in Equa-

tion (4) with different values for the sensor thickness

parameter h. We use a simpler physics model (Equa-

tion (5)) within the physics-informed machine learning

approaches (APHYNITY and PhysicsDNA).

Table 2 shows the root mean square error (RMSE)

for two test settings: (a) in-distribution, when the test data

consists of unseen sensors with thicknesses in the range



Train RMSE Test RMSE (mV)

Method In-distribution Out-of-distribution

NeuralODE [2] 0.01 1.44 11.87

Physics model [10] 19.30 19.53 15.96

APHYNITY [8] 0.01 2.01 32.76

PhysicsDNA 0.01 2.80 6.73

Table 2: (Synthetic data) Root mean squared error (mV)

for training, in-distribution test and out-of-distribution

(OOD) test datasets.

50-60 microns, and (b) out-of-distribution, when the test

data consists of unseen sensors with thicknesses in the

range 150-160 microns.

All deep learning based models (NeuralODE,

APHYNITY, PhysicsDNA) are able to fit the synthetic

training data with very low errors. For the in-distribution

test data, these methods perform comparably and outper-

form the physics model. This is because the standalone

physics model is unable to obtain a perfect fit given only

a few hours of initial voltage measurements. Out-of-

distribution error of PhysicsDNA is much lower than the

competing baselines: ≈ 1.7× lower than NeuralODE and

≈ 5× lower than APHYNITY.

Our experiment shows that any of the tested deep

learning based method can be used when the test sensors

are expected to be manufactured under similar conditions

to those in training. However, PhysicsDNA is expected to

be most robust for the out-of-distribution test sensors.

7 CONCLUSION

We explored the task of accelerated testing of roll-

to-roll printed sensors using machine learning. We

showed that due to shifts in manufacturing conditions,

the prediction task requires models that are robust out-

of-distribution.

Our real-world and synthetic experiments show that

one can use purely data-driven methods to predict the fu-

ture sensor behavior when the unseen sensors have similar

manufacturing conditions as those observed in training.

However, these methods are not expected to be robust for

the out-of-distribution examples.

We described a physics-informed machine learning

model, PhysicsDNA, that performs as well as purely data-

driven methods for the in-distribution sensors, but is far

more robust to out-of-distribution changes in the man-

ufacturing conditions. While none of the tested meth-

ods perfectly extrapolate to the out-of-distribution exam-

ples, synthetic experiments suggest that PhysicsDNA is

expected to perform well if the changes in manufacturing

conditions are minimal.

ACKNOWLEDGMENTS

This work was funded by the Wabash Heartland

Innovation Network and the SMART films consortium.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the authors

and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Steven L. Brunton, Joshua L. Proctor, J. Nathan

Kutz, and William Bialek. Discovering govern-

ing equations from data by sparse identification

of nonlinear dynamical systems. Proceedings of

the National Academy of Sciences of the United

States of America, 113(15):3932±3937, 2016. ISSN

10916490. doi: 10.1073/pnas.1517384113.

[2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Betten-

court, and David Duvenaud. Neural ordinary dif-

ferential equations. In Proceedings of the 32nd In-

ternational Conference on Neural Information Pro-

cessing Systems, NIPS’18, pages 6572±6583, Red

Hook, NY, USA, December 2018. Curran Asso-

ciates Inc.

[3] Miles Cranmer, Sam Greydanus, Stephan Hoyer,

Peter Battaglia, David Spergel, and Shirley Ho.

Lagrangian Neural Networks. arXiv:2003.04630

[physics, stat], July 2020.

[4] James H Faghmous and Vipin Kumar. A big data

guide to understanding climate change: The case for

theory-guided data science. Big data, 2(3):155±163,

2014.

[5] Marc Finzi, Max Welling, and Andrew Gordon Wil-

son. A Practical Method for Constructing Equiv-

ariant Multilayer Perceptrons for Arbitrary Matrix

Groups. arXiv:2104.09459 [cs, math, stat], April

2021.

[6] Robert Geirhos, JÈorn-Henrik Jacobsen, Clau-

dio Michaelis, Richard Zemel, Wieland Bren-

del, Matthias Bethge, and Felix A. Wichmann.

Shortcut Learning in Deep Neural Networks.

arXiv:2004.07780 [cs, q-bio], April 2020.

[7] Sam Greydanus, Misko Dzamba, and Ja-

son Yosinski. Hamiltonian Neural Networks.

arXiv:1906.01563 [cs], September 2019.

[8] Vincent Le Guen, Yuan Yin, JÂerÂemie Dona, Ibrahim

Ayed, Emmanuel de BÂezenac, Nicolas Thome, and

Patrick Gallinari. Augmenting Physical Models



with Deep Networks for Complex Dynamics Fore-

casting. arXiv:2010.04456 [cs, stat], October 2020.

[9] Chiyu ºMaxº Jiang, Karthik Kashinath, Prabhat,

and Philip Marcus. Enforcing Physical Constraints

in Neural Neural Networks through Differentiable

PDE Layer. September 2019.

[10] Xin Jin, Ajanta Saha, Hongjie Jiang, Muhammed

R Oduncu, Qingyu Yang, Sotoudeh Sedaghat, Dar-

rel Kerry Maize, Jan P Allebach, Ali Shakouri,

Nicholas J Glassmaker, Alexander Wei, Rahim

Rahimi, and Muhammad Alam. Steady-State and

Transient Performance of Ion-Sensitive Electrodes

Suitable for Wearable and Implantable Electro-

chemical Sensing. IEEE Transactions on Biomedi-

cal Engineering, pages 1±1, 2021. ISSN 1558-2531.

doi: 10.1109/TBME.2021.3087444.

[11] Anuj Karpatne, William Watkins, Jordan Read,

and Vipin Kumar. Physics-guided neural networks

(PGNN): An application in lake temperature model-

ing. 2017.

[12] Julia Ling, Andrew Kurzawski, and Jeremy Tem-

pleton. Reynolds averaged turbulence modelling

using deep neural networks with embedded invari-

ance. Journal of Fluid Mechanics, 807:155±166,

November 2016. ISSN 0022-1120, 1469-7645. doi:

10.1017/jfm.2016.615.

[13] Georg Martius and Christoph H. Lampert. Extrap-

olation and learning equations. arXiv:1610.02995

[cs], October 2016.

[14] Viraj Mehta, Ian Char, Willie Neiswanger,

Youngseog Chung, Andrew Oakleigh Nelson,

Mark D. Boyer, Egemen Kolemen, and Jeff

Schneider. Neural Dynamical Systems: Balancing

Structure and Flexibility in Physical Prediction.

arXiv:2006.12682 [cs, stat], April 2021.

[15] S Chandra Mouli and Bruno Ribeiro. Physics-first

dynamic neural adaptation for more robust out-of-

distribution predictions. Manuscript in preparation,

2022.

[16] Nikhil Muralidhar, Mohammad Raihanul Islam,

Manish Marwah, Anuj Karpatne, and Naren Ra-

makrishnan. Incorporating Prior Domain Knowl-

edge into Deep Neural Networks. In 2018 IEEE

International Conference on Big Data (Big Data),

pages 36±45, December 2018. doi: 10.1109/

BigData.2018.8621955.

[17] Maziar Raissi. Deep hidden physics models: Deep

learning of nonlinear partial differential equations.

Technical report, 2018.

[18] Maziar Raissi, Paris Perdikaris, and George Em

Karniadakis. Physics informed deep learning (part

II): Data-driven discovery of nonlinear partial dif-

ferential equations. November 2017.

[19] Michael Schmidt and Hod Lipson. Distilling free-

form natural laws from experimental data. Science,

2009.

[20] Rui Wang, Karthik Kashinath, Mustafa Mustafa,

Adrian Albert, and Rose Yu. Towards Physics-

informed Deep Learning for Turbulent Flow Predic-

tion. arXiv:1911.08655 [physics, stat], June 2020.

[21] Rui Wang, Robin Walters, and Rose Yu. Incorpo-

rating Symmetry into Deep Dynamics Models for

Improved Generalization. February 2020.

[22] Alireza Yazdani, Lu Lu, Maziar Raissi, and

George Em Karniadakis. Systems biology informed

deep learning for inferring parameters and hidden

dynamics. PLoS computational biology, 16(11):

e1007575, 2020.


	Introduction
	Related Work
	Problem Statement
	Application: ISE Nitrate Sensor Conditioning
	Real-world data
	Synthetic data
	Physics model for forecasting

	Proposed Approach
	APHYNITY
	PhysicsDNA

	Results
	Real-world data
	Synthetic data

	Conclusion

