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Roll-to-roll printing has significantly shortened the time
from design to production of sensors and IoT devices,
while being cost-effective for mass production. But due
to less manufacturing tolerance controls available, prop-
erties such as sensor thickness, composition, roughness,
etc., cannot be precisely controlled. Since these proper-
ties likely affect the sensor behavior, roll-to-roll printed
sensors require validation testing before they can be de-
ployed in the field. In this work, we improve the testing
of Nitrate sensors that need to be calibrated in a solution
of known Nitrate concentration for around 1-2 days. To
accelerate this process, we observe the initial behavior of
the sensors for a few hours, and use a physics-informed
machine learning method to predict their measurements
24 hours in the future, thus saving valuable time and
testing resources. Due to the variability in roll-to-roll

printing, this prediction task requires models that are ro-
bust to changes in properties of the new test sensors. We
show that existing methods fail at this task and describe a
physics-informed machine learning method that improves
the prediction robustness to different testing conditions
(=~ 1.7x lower in real-world data and ~ 5x lower in
synthetic data when compared with the current state-of-
the-art physics-informed machine learning method).

Keywords: physics-informed machine learning, roll-
to-roll printing, out-of-distribution

1 INTRODUCTION

Roll-to-roll printing is being widely used for manu-
facturing a variety of flexible electronics including sen-
sors, wearable implants, capacitors etc., especially be-



cause of the reduced large-scale manufacturing cost.
However, unlike traditional high-cost manufacturing pro-
cesses, roll-to-roll printing does not allow precise control
over parameters such as thickness, chemical composition
of sensor membrane, and roughness/resistance of elec-
trodes. These properties can impact the sensors’ response,
resulting in a significant sensor-to-sensor variability mak-
ing precise measurements much harder. Thus, roll-to-
roll printed sensors typically require validation testing be-
fore they can be deployed in the field. We use machine
learning approaches to predict the behavior of roll-to-roll
printed sensors at the end of validation testing after ob-
serving only their initial measurements for a short pe-
riod of time. This way, we aim to accelerate the pre-
deployment validation of these printed sensors.

In this work, we consider potentiometric ion-
selective electrodes [10] that can measure the nitrate con-
centration in water and soil. These nitrate sensors are in-
tegral for real-time soil health monitoring for precision
agriculture. However, before deployment, these sensors
require a conditioning phase when they are kept in a so-
lution of known nitrate concentration until saturation (can
take around 1-2 days). To accelerate this process, we wish
to observe the initial behavior of the sensors for a few
hours, and predict the future measurements at the end of
conditioning.

Standard data-driven machine learning (ML) meth-
ods have shown a remarkable ability to fit the data and
could be used for this task. However, this ability can come
at the expense of lack of robustness to changes to the in-
put data, for example, when the test conditions are differ-
ent from those in training. This is known as an out-of-
distribution task: when the test data and the training data
are not from the same distribution. In our application, an
out-of-distribution scenario occurs when the test sensors
have very different membrane thickness when compared
to the sensors seen during training. ML methods tend
not to perform well under such out-of-distribution sce-
narios as they may learn shortcuts [6], simple but highly
predictive correlations between the known inputs and the
desirable outputs as seen in the training data. This abil-
ity is orthogonal to the concept of model overfitting: An
ML model that does not overfit can still rely on spuri-
ous correlations for its predictions. Physical models on
the other hand can calibrate their parameters to an out-
of-distribution test condition and are able to extrapolate;
however, they do not model all the complex real-world
processes and hence, do not fit the data well enough to
forecast accurately.

Physics-informed machine learning (PIML) has
emerged as a hybrid solution and positively impacted a
diverse set of fields over the past few years including

biological sciences [22], climate science [4], turbulence
modeling [12, 20], etc. The works in this field incorpo-
rate domain knowledge in the form of physics modeling
into standard machine learning models. The main goal
of PIML works is to improve standard machine learning
models so that they (a) produce physically-consistent re-
sults [11], (b) learn from less data, and (¢) can make bet-
ter predictions in out-of-distribution tasks, i.e., predict in
new conditions not seen in the training data.

We show that PIML methods have inherited the out-
of-distribution weakness from standard machine learning
models and cannot extrapolate in our application. Then,
we describe a physics-informed machine learning model
that is less sensitive to out-of-distribution tasks.

2 RELATED WORK

There are three standard ways of incorporating
physics-based constraints in machine learning models:

Learning physics constraints from data. Schmidt and
Lipson [19] propose a genetic algorithm to learn natural
laws such as Hamiltonian of a system, equations of mo-
tion, etc., in the form of invariances solely from exper-
imental data. More recent works [1, 13, 17] learn equa-
tions (explicit solution or partial differential equations) by
regressing over a dictionary of basis functions (e.g., sin,
cos, %, etc.) and use sparsity constraints to ensure learn-
ing of simpler laws.

Hard constraints. Many physics-informed ML meth-
ods enforce the constraints strictly in the architecture.
[18, 9] incorporate a known PDE in neural networks
as a hard constraint and learn the unknown parame-
ters via supervised learning. Works have strictly incor-
porated energy conservation by learning the Hamilto-
nian/Lagrangian [7, 3] of the given systems. Other works
have incorporated group symmetries such as translation
and rotation [21, 5]. The advantage of embedding hard
constraints is that the constraints continue to be satisfied
even outside the training domain. However, this requires
one to know all the constraints of the system precisely; if
the constraints do not hold or are misspecified, then we
cannot recover from an incorrect choice.

Soft constraints. Rather than enforcing physics-
informed constraints strictly in the architecture, many
works prefer to use a “soft” regularization of these
constraints [11, 16, 8]. This typically allows the neural
networks to violate the constraints if absolutely required
in training, thus allowing for noisy data. However, “soft”



constraints also have the drawback that they are typically
not satisfied outside the training domain.

3 PROBLEM STATEMENT

In this section we formally describe the out-of-
distribution task. Many dynamical systems can be writ-
ten as an ordinary differential equation (ODE) with X (¢)
describing the state of the system at time ¢:

dX(t
B _ e x(0). m
where X(t) € R? and ¢ is a deterministic func-

tion. We will restrict our attention to discrete time steps
{to,...,tr}. Given an initial value of the system X(¢o)
at time t = tp, one can solve the ODE in Equation (1)
for the future states of the system for t > t,. However,
since 1 is unknown to us, we wish to learn a machine
learning model that forecasts the future values of the dy-
namical system for ¢ > ¢,. when given initial observations
for t < ¢, as input. For ease of notation, we will denote
the past observations by X<, = X(tg),...,X(¢.) and
the future observations by X, = X(t41), ..., X(t7).

Physics model. We assume that we are given a physics
model dX(t)/dt = ¢(t,X(t);0pny) that approximately
describes the dynamical process v, where 8y are param-
eters that can be calibrated. Typically, ¢ is much sim-
pler than the real dynamical process ¢, and data-driven
approaches are needed to complement it for better predic-
tions.

Data-driven approach. The training data for the data-
driven approaches consists of multiple simulations of the
dynamical system in Equation (1) with different initial
conditions X(to) We denote our training data D™ =
{(z < o))}V After an ML model is trained on the
training data, at test time, we ask the question: what if the
initial conditions were different from those in training?
We call this the out-of-distribution test data. In our appli-
cation, one training sample consists of voltage measure-
ments of a nitrate sensor during its conditioning phase.
Out-of-distribution test data consists of voltage measure-
ments from sensors that were manufactured with different
control parameters.

While standard data-driven approaches are adept at
making accurate predictions when test is similar to the
training distribution, they fail to extrapolate to the out-of-
distribution datasets. Surprisingly, the physics-informed
machine learning models have inherited this drawback

from the data-driven approaches. The goal of the cur-
rent work is to train a physics-informed machine learning
model on the training data in such a way that it can ex-
trapolate to out-of-distribution test datasets.

In the next section, we describe our application in
detail.

4 APPLICATION:

DITIONING

Potentiometric ion-selective electrodes (ISEs) are be-
ing adopted as implantable sensors for precision agricul-
ture, for instance to measure nitrate concentrations in the
soil. This adoption has predominantly been due to their
easy and low-cost fabrication via roll-to-roll printing. Po-
tentiometric sensors are 2-electrode systems that are com-
prised of working and reference electrodes. The work-
ing electrode (ISE) is constructed with a selective plasti-
cized membrane deposited onto a conductive solid con-
tact. Activity of the ions in the solution results in a po-
tential change on the ISE that is measured with respect
to the reference electrode. Thus, target ion activities are
translated into potential readings providing an estimate
of the ion concentration in the solution. Nernst equation
can be used to obtain the ion concentration from the mea-
sured potential difference. In our application, we measure
the nitrate concentration by using a nitrate ion-selective
membrane coated on a printed silver working electrode.

The current usage of ISEs is not without its chal-
lenges. These sensors require a period of preconditioning
where the ISEs are activated by hydrating the ion selec-
tive membrane in a standard solution of known analyte
concentration before deployment in the field. They could
take around 1-2 days to reach a constant saturation volt-
age (thermodynamic equilibrium). Once the sensors are
preconditioned, any change in the nitrate concentration is
detected in a matter of seconds. Calibration of hundreds
of sensors is time-consuming and resource-intensive. Our
task then is to predict the saturation voltage at the end
of the conditioning period given a small initial period of
transient-state voltage measurements. However, the sat-
uration voltage depends upon the manufacturing condi-
tions that can vary for different sensors. As we show
later, thickness of a sensor’s ion-selective membrane has
a significant impact on its saturation voltage. We need to
predict the saturation voltage of a test sensor under this
out-of-distribution scenario.

ISE NITRATE SENSOR CON-

4.1 Real-world data
We evaluated the electrochemical performance of the
ISEs manufactured in different coating runs using Multi-
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Fig. 1: Potentiometric Nitrate sensors conditioned in 1
mM Nitrate solution until saturation. We wish to predict
the saturation behavior given first 6 hours of voltage read-
ings.

function DAQ system (National Instruments PXI-6225)
equipped with a LabView system engineering software.
We collected the potential outputs of around 300 elec-
trodes against a commercial Ag/AgCl reference electrode
(Orion 900200 Sure-Flow) with the ISEs placed in 1L of
1mM potassium nitrate solution until equilibrium. The
resultant voltage readings for a sample of the sensors are
shown in Figure 1. We can see that the sensors take
roughly 40 hours to reach a constant saturation voltage.
Our task then is to predict the saturation voltage given
a small initial period of voltage measurements (left of
dashed vertical line in Figure 1). Further, since the sen-
sors were manufactured with different control parameters,
they have very different saturation voltages even when
placed in a solution of same nitrate concentration. Thus,
our goal is to design methods that can extrapolate and
forecast robustly under changes in manufacturing param-
eters.

4.2 Synthetic data

In the following, we perform controlled out-of-
distribution experiments to evaluate the different forecast-
ing approaches. This way, we are able to ensure that
only certain manufacturing conditions change between
the training and the test data. We generate synthetic volt-
age curves from the following model proposed by Jin
et al. [10] that describes the conditioning behavior of the
potentiometric nitrate sensors:

kT
Vieans (1) = % In(t) + C1VDt+Cy,  (2)

kBT <n0h2
In

Via = — > +Cs, 3)
q

where Vipns(t) denotes the transient voltage readings and
Viat 1s the constant saturation voltage (independent of
time). In Equations (2) and (3), kp is the Boltzmann’s
constant, g is the elementary charge, T is the temperature
of the nitrate solution, D is the diffusivity of the nitrate
ion, and k is the dielectric constant of the ion-selective
membrane. In Equation (3), ny denotes the nitrate con-
centration of the solution, and h denotes the thickness of
the sensor membrane. The saturation voltage is propor-
tional to the logarithm of h?2, which is unknown to the
prediction methods.

The final voltage reading is an interpolation of the
transient Vi.ns and saturation voltage Vi, given by

Virans (t
V() = CLAURE @)
B\ #
‘/;rans(t)
(1 + ( Vi ) )
where we choose 8 = 1.5 in our experiments.
Training data and out-of-distribution test data. We

obtain voltage curves from Equation (4) with additive
Gaussian noise and fixed values for the Nitrate concen-
tration ng = 1073M and temperature 7 = 298K. We
keep these quantities fixed because these can typically
be controlled during the conditioning phase. However,
since there is little control over the membrane thickness
h in roll-to-roll printing, we sample a range of differ-
ent values for sensor thickness h. For training data, we
obtain voltage curves with sensor thickness between 50
to 60 microns. Then, we simulate the case when the
manufacturing control parameters change for the out-of-
distribution test data by sampling much higher sensor
membrane thickness between 150 to 160 micros. The sen-
sors in out-of-distribution test data have higher saturation
voltage than the ones in the training data.

4.3 Physics model for forecasting

In the next section, we describe a physics-informed
machine learning approach that improves the out-of-
distribution robustness of existing methods. We use the



following simpler physics model in our application [10]:

kT
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where 0oy = (0p,0c,0p) are the parameters of the

physics model and 6, directly corresponds to the sensor
thickness & in Equation (3). The model does not account
for effects of water in the membrane and thus, ¢g.,s does
not involve the v/ Dt term from Equation (2). While the
physics model in Equation (5) is given in closed form, we
can easily rewrite it as an ordinary differential equation
‘;—f = ¢(t; Opny) (as required by the physics-informed ma-
chine learning approaches we consider).

5 PROPOSED APPROACH

We begin with a description of a state-of-
the-art physics-informed machine learning framework,
APHYNITY [8].

5.1 APHYNITY

APHYNITY describes the prediction dynamics using
an ordinary differential equation (ODE),

%it) - ¢<ta X(t); éphy) + an(X(t); WF) , 6)

gphy = Rnn(Xgr; WR) ’

where X(t) denote the predictions, Fy, is a feedforward
neural network with learnable weights W, and ¢ is the
known physics model with parameters éphy that are pre-
dicted via a recurrent neural network R, with weights
Wr. Essentially, the neural network Fy, acts as a cor-
rection term on top of the physics model ¢. Given the
initial prediction at time ¢ = to as X(to) = X(to), the
ODE is solved to obtain the predictions at future times
X(t1), ..., X(tr).

Given the training data D™, the method learns
W, Wgr and 6,y by solving the following optimization

problem
N® T
R () 2
minimize Z Z Fon(x,”; W,
Wi . Wiy s k:OH nn( k> F)H

st 2 =2 vi=1,... N Vvk=0,....T, (7)

where :E;Ci) for time ¢y, is obtained by solving the ODE in

Equation (6) with the initial value :céi) at time t = to.

Note that in Equation (7), the predictions 551(5)
the parameters Wr, Wg, Oppy.
In words, APHYNITY minimizes norm of the out-

puts from the neural network Fj, (the correction terms)
with the constraint that the predictions X,(;) match the
corresponding training curve. In this way, the method is
able to give higher preference to the physics model and
only use the neural network if necessary. For example,
if the physics model ¢ is able to perfectly fit the train-
ing data, then the neural network outputs are forced to
be zero. The optimization in Equation (7) can be solved
via gradient descent with a sequence of Lagrangian relax-
ations to enforce the constraints [8].

depend on

5.2 PhysicsDNA

The APHYNITY model as described above works
wonderfully in-distribution (i.e., when the test and train-
ing data are sampled from the same distribution), but
faces several out-of-distribution challenges. We describe
these challenges next and show how PhysicsDNA [15] is
able to solve them and output more robust predictions.

Physics parameter prediction. In our application, the
calibration parameters Oy = (61,63, 0¢c) of the physics
model can be different for each curve because of the vari-
ations in the sensor membrane thickness h. As described
above, APHYNITY uses a recurrent neural network R,
to predict the physics model parameters and obtain éphy
(see Equation (6)). In out-of-distribution scenario with
very different manufacturing parameters (e.g., in our ap-
plication, sensor thicknesses in test are much higher com-
pared that in training), the prediction of physics parame-
ters by a neural network is not robust. Further, the physics
model may be very sensitive to some parameter; predict-
ing it with a neural network out of distribution could re-
sult in very strange final predictions. In some cases, the
neural network might even output physically meaningless
values for the physics parameters.

Instead, PhysicsDNA calibrates the parameters Oppy
of the physics model by fitting each individual voltage



curve from t, . . ., t, using the Levenberg—Marquardt al-
gorithm. This allows us to obtain the best fitted physics
parameter even for the out-of-distribution observations.
Note however that these fits may not be perfect as they
only consider the initial observations till time ¢, (since
t > t, is to be forecasted) and the physics model does
not capture all the transient behaviour. Thus, we need a
neural network to correct the physics model same as in
Equation (6).

Historical observations. The feedforward neural net-
work Fy, in Equation (6) does not use the history of in-
put observations X(¢g), ..., X(¢,). Only input to Fy,
is X(to) as the initial value for the ordinary differen-
tial equation. In our application, X(¢¢) denotes the
initial voltage measurement which is OmV in both in-
distribution and out-of-distribution data. On the other
hand, the rest of voltage measurements X (¢1), ..., X(¢,)
change between train and test. Thus, the feedforward neu-
ral network is not able to even detect the change in input
distribution.

Instead, PhysicsDNA proposes to use a sequence
model, e.g., a recurrent neural network, instead of the
feedforward network in Equation (6). This is similar to
the method of Mehta et al. [14]; however, their objective
is different from Equation (7) and do not minimize the
contributions of the neural network.

6 RESULTS

We evaluate four approaches for the out-of-
distribution forecasting in real-world and synthetic
datasets: (a) a standalone physics model (Equa-
tion (5)), (b) NeuralODE [2], a standalone deep learning
method, (¢) APHYNITY (Equation (6)), and (d) Physics-
DNA [15].

6.1 Real-world data

We use the physics model proposed by Jin et al.
[10] (Equation (4)) within the physics-informed machine
learning approaches (APHYNITY and PhysicsDNA). Ta-
ble 1 shows the root mean square error (RMSE) for two
test settings: (a) in-distribution, when the test data con-
sists of unseen sensors with similar manufacturing condi-
tions as in training, and (b) out-of-distribution, when the
test data consists of unseen sensors manufactured under
different conditions.

Training errors for NeuralODE and PhysicsDNA are
much lower compared to APHYNITY since the latter
does not use the historical measurements and is unable
to fit the training data. Standalone physics model is also

Train RMSE Test RMSE (mV)
Method In-distribution  Out-of-distribution
NeuralODE [2] 1.05 15.66 134.81
Physics model [10] 39.69 42.05 110.94
APHYNITY [8] 35.17 40.84 108.55
PhysicsDNA 1.36 15.10 62.30

Table 1: (Real-world data) Root mean squared error (mV)
for training, in-distribution and out-of-distribution (OOD)
test datasets.

unable to obtain a perfect fit given only a few hours of ini-
tial voltage measurements. A similar trend is observed for
in-distribution test errors computed over an unseen set of
test sensors that were manufactured under the same con-
ditions as the training sensors.

The out-of-distribution test error of NeuralODE,
a purely data-driven approach, is the highest. Since
APHYNITY does not make use of historical observa-
tions, it performs similarly to the physics model. Physics-
DNA has much lower out-of-distribution error than the
other methods (= 1.75x lower than the best competing
method). However, the corresponding OOD test error is
still much higher than its training error.

Our experiment shows that when the unseen test sen-
sors have similar properties to the sensors in training,
we can use a purely data-driven approach such as Neu-
ralODE to solve the task. However, such an approach is
not robust when the manufacturing conditions change for
the new test sensors. The proposed approach performs
similar to a data-driven approach over in-distribution ex-
amples, but is much more robust for out-of-distribution
examples.  Finally, we show that even state-of-the-art
physics-informed machine learning methods (while bet-
ter than standard ML methods) do not perfectly extrapo-
late to out-of-distribution data showcasing that radically
new approaches are needed.

6.2 Synthetic data

As described in the Section 4.2, we generate the syn-
thetic data using the physics model described in Equa-
tion (4) with different values for the sensor thickness
parameter h. We use a simpler physics model (Equa-
tion (5)) within the physics-informed machine learning
approaches (APHYNITY and PhysicsDNA).

Table 2 shows the root mean square error (RMSE)
for two test settings: (a) in-distribution, when the test data
consists of unseen sensors with thicknesses in the range



Train RMSE Test RMSE (mV)

Method In-distribution ~ Out-of-distribution
NeuralODE [2] 0.01 1.44 11.87
Physics model [10] 19.30 19.53 15.96
APHYNITY [8] 0.01 2.01 32.76
PhysicsDNA 0.01 2.80 6.73

Table 2: (Synthetic data) Root mean squared error (mV)
for training, in-distribution test and out-of-distribution
(OOD) test datasets.

50-60 microns, and (b) out-of-distribution, when the test
data consists of unseen sensors with thicknesses in the
range 150-160 microns.

All deep learning based models (NeuralODE,
APHYNITY, PhysicsDNA) are able to fit the synthetic
training data with very low errors. For the in-distribution
test data, these methods perform comparably and outper-
form the physics model. This is because the standalone
physics model is unable to obtain a perfect fit given only
a few hours of initial voltage measurements. Out-of-
distribution error of PhysicsDNA is much lower than the
competing baselines: ~ 1.7x lower than Neural ODE and
~ bx lower than APHYNITY.

Our experiment shows that any of the tested deep
learning based method can be used when the test sensors
are expected to be manufactured under similar conditions
to those in training. However, PhysicsDNA is expected to
be most robust for the out-of-distribution test sensors.

7 CONCLUSION

We explored the task of accelerated testing of roll-
to-roll printed sensors using machine learning. We
showed that due to shifts in manufacturing conditions,
the prediction task requires models that are robust out-
of-distribution.

Our real-world and synthetic experiments show that
one can use purely data-driven methods to predict the fu-
ture sensor behavior when the unseen sensors have similar
manufacturing conditions as those observed in training.
However, these methods are not expected to be robust for
the out-of-distribution examples.

We described a physics-informed machine learning
model, PhysicsDNA, that performs as well as purely data-
driven methods for the in-distribution sensors, but is far
more robust to out-of-distribution changes in the man-
ufacturing conditions. While none of the tested meth-
ods perfectly extrapolate to the out-of-distribution exam-

ples, synthetic experiments suggest that PhysicsDNA is
expected to perform well if the changes in manufacturing
conditions are minimal.
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