
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06307-y

1 3

Reducing classifier overconfidence against adversaries
through graph algorithms

Leonardo Teixeira1  · Brian Jalaian2 · Bruno Ribeiro1

Received: 15 February 2022 / Revised: 16 November 2022 / Accepted: 23 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
In this work we show that deep learning classifiers tend to become overconfident in their
answers under adversarial attacks, even when the classifier is optimized to survive such
attacks. Our work draws upon stochastic geometry and graph algorithms to propose a gen-
eral framework to replace the last fully connected layer and softmax output. This frame-
work (a) can be applied to any classifier and (b) significantly reduces the classifier’s over-
confidence in its output without much of an impact on its accuracy when compared to
original adversarially-trained classifiers. Its relative effectiveness increases as the attacker
becomes more powerful. Our use of graph algorithms in adversarial learning is new and of
independent interest. Finally, we show the advantages of this last-layer softmax replace-
ment over image tasks under common adversarial attacks.

Keywords  Adversarial robustness · Overconfidence · Gossip algorithm

1  Introduction

In critical applications, it is already hard to be sure if we can trust the predictions of exist-
ing neural network models (Guo et al., 2017). The potential presence of an adversary
makes it even harder to trust these systems. Is there a method to create classifiers that are
more robust, and less overconfident? In existing adversarial defenses, we show that the
classifier softmax output overestimates the probability its predicted class is correct, spe-
cially for powerful attackers (see Fig. 1).

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Leonardo Teixeira
	 lteixeir@purdue.edu

	 Brian Jalaian
	 brian.a.jalaian.civ@mail.mil

	 Bruno Ribeiro
	 ribeiro@cs.purdue.edu

1	 Department of Computer Science, Purdue University, West Lafayette, IN, USA
2	 U.S. Army Research Laboratory, Adelphi, MD, USA

http://orcid.org/0000-0002-5689-3544
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06307-y&domain=pdf

	 Machine Learning

1 3

A robust classifier must be (approximately) invariant to any transformation of the inputs
which doesn’t change the true label. Another desirable property is to avoid the overcon-
fidence of its predictions by not overestimating the probability that its predicted class is
correct—for example, whenever the classifier’s softmax output makes a prediction with
confidence of 0.9, then it must be correct at least 9 out of 10 times.

This is particularly important in the context of adversarial machine learning, where
the neural network’s failure to learn the correct input invariances enables an adversary to
craft small perturbations in the images which change the classifier’s predictions. This has
created a perpetual arms race of new methods of crafting adversarial examples (Kurakin
et al., 2017; Ma̧dry et al., 2018; Carlini & Wagner, 2017b) for which new defenses are pro-
posed (Papernot et al., 2017; Guo et al., 2018; Dhillon et al., 2018), which are then (again)
fooled by newer attack methods (Athalye et al., 2018).

In this work, we leverage the relationship between similar images to build a defense
that replaces the last layer and softmax output of a classifier with a graph-based method
that: (1) significantly reduces overconfidence; (2) survives adversarial attacks stronger than
what was seen during training; (3) does not require retraining of the classifier.

Under the assumption that the neural network maps similar examples to nearby regions
of the embedding space, we create a graph by connecting images whose representation
are close to each other (see Fig. 2). Then, we make use of a Gossip algorithm (Boyd et al.,
2005), to diffuse the labels through this graph, which improves the model’s predictive
uncertainty. Moreover, our defense refuses to give overconfident answers to test images
which are nowhere close to the curated validation examples, such as those under strong
adversarial attacks.

Note that a direct calibration objective under adversarial attacks would be the wrong
goal, since calibration with an imperfect classifier requires knowing the distribution of the
test data, i.e., knowing what the adversary will do. Calibrating existing machine learning
models is a topic which has been explored for decades (Platt, 1999; Niculescu-Mizil &
Caruana, 2005; Naeini et al., 2015) for traditional classifiers and recently gained focus in
the context of deep learning models (Guo et al., 2017). But these approaches do not tar-
get avoiding overconfident predictions and frequently are not developed in the context of
adversarial examples (where we observe an unknown distribution shift at test time).

Moreover, since our proposed framework is based on the representations learned by the
deep learning model, it can easily be combined with a multitude of current (and future)

Fig. 1   (CIFAR-10, ResNet-18) Confident predictions of an adversarially trained model (Ma̧dry et al. (2018)
with � =8

/

255
 ) surprisingly increases as attacks become stronger

Machine Learning	

1 3

defenses (e.g. adversarial training), without incurring additional cost of retraining the
model.

2 � Related work

While the field of adversarial examples is full of interesting developments over the past few
years, doing a thorough review of the literature is beyond the scope of this work. Instead,
we focus on those publications which are more closely related to our work and are more
relevant to the discussion we present in this paper.

(a) Radius measured by Lp

norm (p ∈ {2,∞})
(b) Points within radius are
connected

(c) Given a radius, a graph is
constructed

(d) Larger radius increases con-
nectivity of the graph

Fig. 2   Images whose representations are close (as measured by Lp norm), are connected, to form a graph.
The choice of the radius has a direct impact on the connectivity of the graph, which influences how we dif-
fuse label information, to reduce overconfidence of the predictions

	 Machine Learning

1 3

The study of adversarial examples within the context of deep learning models picked
up interest after the work of Szegedy et al. (2013). In the following years, the community
started an arms race of developing stronger attacks and developing defenses which are then
broken by even stronger attacks (Carlini & Wagner, 2017a). Despite this constant develop-
ment, some of the simpler methods, such as the Projected Gradient Descent (PGD), devel-
oped by Ma̧dry et al. (2018) are still very effective and an important tool to evaluate new
defenses and techniques.

While many important improvements have been made in securing deep learning models
and making them more robust to adversarial examples, most works in the field focus only
on improving accuracy and few works even look at the calibration of the produced clas-
sifier. While the topic of calibration has been extensively studied for decades, from the
analysis of weather forecasters in the 80 s (DeGroot & Fienberg, 1983), to the standard
machine learning classifiers such as SVM (Platt, 1999), Logistic Regression, Naïve Bayes
and others (Naeini et al., 2015; Niculescu-Mizil & Caruana, 2005), it was first studied in
the context of deep learning by Guo et al. (2017). The Expected Calibration Error (ECE)
metric we use was first proposed by Naeini et al. (2015), while the Overconfidence Error
(OE)—its counterpart that only considers the miscalibration caused by overconfident pre-
dictions—was proposed by (Thulasidasan et al., 2019). The improvement of calibration
(and in particular reducing overconfidence) of deep learning models under adversarial
attacks is an essential step to obtain a reliable and trustworthy classifier.

Open set recognition and other approaches: a related area of research is focused on the
problem setup where unknown (or new) classes are present at test time. See Geng et al.
(2020) for a survey of recent advances in this area. Also related are works which not only
aim at recongizing that an object is of an unknown class, but also try to continuously learn,
by incorporating new classes in successive rounds of training (Dai et al., 2021). Our work,
however, focuses on the adversarial setup, where the set of possible classes is fixed and an
adversary modifies an input to (incorrectly) change the model prediction.

Adversarial training and other similar procedures: Perhaps, the most common defense
against adversarial examples is retraining the classifier, augmenting the training data with
adversarial examples (adversarial training) (Goodfellow et al., 2015; Ma̧dry et al., 2018;
Wang et al., 2019). Together with adversarial training, are other strategies which seek to
harden the classifier by modifying the training procedure, usually by employing a regu-
larization strategy that encourages some type of smoothness in the final model (preventing
small perturbations of the input from producing large changes in the final output). Among
such methods are Parseval Networks (Cisse et al., 2017), which seek to train networks with
low ( < 1 ) Lipschitz constants and Laplacian Networks (Lassance et al., 2021) which use
tools from Graph Signal Processing to enforce smooth variations of the class boundaries.
These works are not alternatives to our work: they can be combined with our proposed
strategy, since we can use the (better) embeddings produced with such methods. In fact, in
our experiments, we use the embeddings of an adversarially trained model, since they pro-
vide a considerable improvement over vanilla (undefended) neural networks.

Recently, a trade-off between being accurate and being robust has been shown (Tsipras
et al., 2019; Zhang et al., 2019), and Hendrycks et al. (2019) show that pre-trained models
can be an important step in improving robustness. A better understanding of the the geom-
etry of adversarial examples has emerged: traditional adversarial examples are often frag-
ile to random perturbations, that is, a small perturbation added to an adversarial example
will revert back to the original class (Roth et al., 2019; Elliott et al., 2021; Hosseini et al.,
2019; Hu et al., 2019; Guo et al., 2018). These works can be seen as simple approaches for
classifier reliability, since they can output class priors whenever an adversarial example is

Machine Learning	

1 3

detected, even if reducing overconfidence or improving calibration is not their main goal.
These perturbations have inspired new defenses (Hu et al., 2019; Gopalakrishnan et al.,
2018; Xie et al., 2018). This robustness, however, relies on a weak adversary that can only
find fragile adversarial examples. This premise has been recently put into question with
trivial changes to the adversary (Hosseini et al., 2019).

Pinto et al. (2021) propose Mix-MaxEnt, a regularization approach to improve uncer-
tainty quantification. Serban et al. (2021) propose Deep Repulsive Prototypes, a modified
training proceedure, with a distance-based loss to encourage separation of classes, which
is competitive with adversarial training. However, both approaches require re-training and
cannot be applied post-hoc.

Other post-hoc defenses: In the realm of post-hoc defences, other works have used the
embeddings to construct alternative classifiers, mostly with the use of k-Nearest Neighbor
(k-NN) over the pre-trained embeddings. This approach was shown successful in simply
improving accuracy in language models (Khandelwal et al., 2020), while for adversarial
reliability, k-NNs have inspired defenses using the embeddings of neighbors from train-
ing data (Sitawarin & Wagner, 2019a) and embeddings of multiple distinct (Dubey et al.,
2019) datasets. Papernot and McDaniel (2018), propose Deep k-NN, which uses k-NN
together with principles from conformal predictions to improve reliability. Unfortunately,
new attacks have been shown effective against such methods (Sitawarin & Wagner, 2019b).
The use of a nearest neighbor approach to find related examples, however, could potentially
consider examples very far from each other, since their notion of being related is restricted
by quantity of such neighbors, rather than fixing a distance as we do in our proposed
method. Moreover, the existing k-NN defenses do not address the potential Palm distribu-
tion bias, and performed poorly in our experiments, becoming increasingly overconfident
when confronted with stronger attacks.

Recent approaches (Liu et al., 2020; van Amersfoort et al., 2020; Mukhoti et al., 2021)
proposed replacements of the final dense layer and softmax output, to promote distance-
aware uncertainty quantification, based on Gaussian processes, RBF kernels and discrimi-
nant analysis. In contrast to our work, their methods require modifications of the training
procedure (e.g. spectral normalization or gradient penalty regularization) and/or architec-
ture and their work focus on improving out-of-distribution detection, rather than investigat-
ing strong adversarial shifts. For example, in the work of Mukhoti et al. (2021), if an image
is incorrectly identified as in distribution, their method will still use the softmax outputs,
which may be overconfident.

Recently, Hess et al. (2020) and Wang and Loog (2022) propose post-hoc modifications
of the softmax, based on theoretical reinterpretations of the last-layer + softmax output.
We provide an analysis of these methods in the Appendix.

Certified defenses, such as Randomized Smoothing (Cohen et al., 2019) have gained
attention as they provide theoretical (and practical) guarantees of robustness for perturba-
tions within a given radius around images. But recent attacks have been effective against it
(Ghiasi et al., 2020) and, in our experiments, such defense displayed poor calibration and
strong overconfidence.

Gossip algorithms: The use of gossip algorithms to perform distributed computations
has been widely studied in the context of sensor and computer networks (Boyd et al.,
2005), where it first emerged. Gossip algorithms have been used to develop a distributed
SGD training strategy for neural networks (Blot et al., 2019). GossipNet (Hosang et al.,
2017) is a CNN architecture, which uses concepts from gossip algorithms by doing a mes-
sage passing operation among neighboring sets of pixels in a single image. While all these
works are based on Gossip algorithms, they are unrelated to our approach as they are not

	 Machine Learning

1 3

concerned with reducing overconfidence of the classifier and do not build a graph from
the datasets (as our approach does). Instead, they are focused on distributed training or on
exchanging information within a single image, whereas our use of gossip algorithm is to
diffuse label information among similar images on the dataset. Our use of the gossip algo-
rithm, in particular as a defense strategy against adversarial examples is novel.

Graph-based algorithms: Graph based algorithms have been used before in the context
of image processing, but most such works build a graph over pixels or regions of a single
image (Felzenszwalb & Huttenlocher, 2004; Shekkizhar & Ortega, 2020), with the goal of
denoising or performing other (single image) processing operation. In our work, instead,
we use the embeddings of images to build a graph that encodes how related (similar) the
images are to each other. We also note that while we experimented with a couple of ways
of creating such a graph of examples, other methods could easily be incorporated into our
proposed gossip framework.

Finally, we want to distinguish our work from those which are focused on attacking
graph-structured data and models, such as GNNS (Dai et al., 2018; Bojchevski & Günne-
mann, 2019; Liao et al., 2020). In this setting, the graph is the input to their models, which
produce embeddings used for downstream tasks. The attackers’ goal is to extract informa-
tion from the neighborhood or to influence the embeddings by modifying the input graph
(adding or removing nodes or edges).

In our proposed framework, the input data is not graph-related—we build the graph our-
selves based on the mapping produced by the neural network. And our graph is constructed
from a curated set of validation examples, which an adversary cannot modify.

3 � Classifier calibration and uncertainty quantification preliminaries

A classifier is said to be well-calibrated when its assessment of its own uncertainty is accu-
rate, that is, the confidence of its predictions (e.g. softmax values) matches its accuracy
(i.e. among predictions made with 80% confidence, 8 out of 10 are correct). When the
classifier makes more mistakes than expected (according to the confidence values), it is
overconfident.

As shown in Fig. 1, strong distribution shifts (e.g adversarial attacks) can cause models
to be exceedingly overconfident (even for models adversarially trained to defend against
such attacks). When such models can have their accuracy compromised by adversarial
attacks, it is desirable to at least have a reliable assessment of its uncertainty, by not being
overconfident, so we are not misled into making bad decision due to wrong confidence
estimation.

In this work, we assess the calibration of models with the Expected Calibration Error
(ECE) (Naeini et al., 2015; Guo et al., 2017), where we bin predictions based on their
confidence values and average the difference between accuracy and confidence of each bin.
Another important metric is the Overconfidence Error (OE), derived from ECE, where we
only consider the bins for which the confidence is higher than the accuracy. More formally,
consider a dataset D = {(xi, yi)}

N
i=1

 and denote by B1,… ,Bm the m bins of the predictions,
based on their confidence. We compute the metrics as:

and

(1)ECE =

m
∑

b=1

|Bb|

N
|conf(Bb) − acc(Bb)|

Machine Learning	

1 3

where conf(Bb) and acc(Bb) are the average confidence and accuracy of the examples in bin
Bb and overconf(Bb) = max

(

0, conf(Bb) − acc(Bb)

)

.

4 � Methodology

Having introduced the necessary concepts in the previous section, we now focus on
addressing the hypothesis: If we incorporate concepts of stochastic geometry to build a
relational method, to be applied on top of the embeddings produced by a pre-trained neu-
ral network, we can reduce overconfidence of the predictions, when compared to the origi-
nal fully-connected + softmax predictions, in particular for adversarial attacks stronger
than used in training.

We seek to leverage the representational power of the neural network by extracting
embeddings of the set of clean validation images and using them to build a graph-based
estimator, under the assumption that similar images will be have their embeddings mapped
close to each other.

We denote the neural network architecture by f (x) = h(z(x)) , where z(x) is the output
after all the convolutional layers (a d dimensional vector), and h(⋅) is the final dense layer
and softmax. We replace h(⋅) with a graph-based estimator constructed based on the dis-
tance between the embeddings z(x) of validation examples. This graph is then used in a
label diffusion algorithm to obtain an estimation of P(Y ∣ X) for validation images, with
reduced overconfidence. At test time, our predictions are based on this new estimation
of the label distribution for the relevant validation images (i.e. validation images whose
embeddings are close to the test image).

4.1 � Building a graph from embeddings of validation examples

As our method is based on proximity of embeddings of the images, we have found that
the smoothness of z(x) has a direct impact on the accuracy of our defense. See Sect. B.2
for a discussion of limitations of this assumption. For this reason, we extensively employ
adversarially trained embeddings in our experiments, and argue that any improvement that
can produce more robust embeddings can be combined with our approach to improve its
robustness.

We build a graph from the embeddings of (clean) validation examples, by treating each
validation image as a node in our graph and connecting the images whose embeddings
are within a radius r of each other (illustrated in Fig. 2). In what follows, we denote by
D(vl)

= {(xi, yi)}
N(vl)

i=1
 the set of N(vl) validation images and their labels. First, for each image

xi , we identify all other neighbor images within the radius r:

as shown in Fig. 2a. We then add the edges (i, j) connecting that node with each of its
neighbors in Nr

(

z(xi)
)

 , as seen in Fig. 2b.
The choice of the radius r can impact on the connectivity of the graph we build,

which then impacts the diffusion of label that we will perform based on this graph. As

(2)OE =

m
∑

b=1

|Bb|

N

[

conf(Bb) × overconf(Bb)

]

,

(3)Nr

�

z(xi)
�

= {j ∈ [N(vl)
] ∶ ‖z(xj) − z(xi)‖ ≤ r},

	 Machine Learning

1 3

the radius increases, the graph becomes more connected, as seen in Fig. 2c, d. We tried
two strategies to pick the radius, based on ensuring a connected graph or a minimum
edge density (what fraction of all possible edges to include in the graph). We observed
similar performance across both strategies. For completeness, in Sect. 5.3 discuss the
results obtained with each strategy.

4.2 � Diffusion of labels via Gossip algorithm

To obtain a smoother and less overconfident estimation of P(Y|X) , we diffuse the (one-
hot encoded) true label signal through the graph, so that, for each example, we obtain a
new distribution that incorporates the label information from nearby examples as well.
We will denote by p(k|xi;r) this new estimation of P(Y = k ∣ X = xi) , for the validation
example xi , based on the graph of radius r.

The final outcome of this label diffusion, however, needs to fulfill two important
desirable properties:

1.	 For each validation example, p(⋅|xi;r) must describe a valid probability distribution over
the classes:

2.	 The diffusion process must not change the marginal distribution of labels:

To achieve such properties, we took inspiration in Gossip Algorithms (Boyd et al.,
2005), a class of iterative distributed algorithms used for computing averages over net-
works of sensors or ad-hoc and peer-to-peer networks. At the center of a gossip algo-
rithm is the idea that, at a given iteration, nodes will exchange information with its
neighbors and replace its current value with an average of it and the values received
from the neighbors. These algorithms are generally focused on reaching a point of equi-
librium, but we, instead, focus on the transient phase, performing a finite number of
exchanges, so that the influence of an image remains local.

The information being exchanged is the estimated label distribution p(⋅ ∣ xi;r) , which
we initialize at time t = 0 with the one-hot encoding of the true label. Then, at each
iteration, the nodes update p , forming the following dynamic process:

with p(0)(k ∣ xi;r) = 1
(

yi = k
)

 , and with
[

Πr

]

ij
 denoting the weight that node i gives to the

information coming from j. Section 4.2.1 describes how to construct Πr ∈
N(vl)

×N(vl) from the
graph structure.

In a more general sense, if we stack the vectors p(⋅ ∣ xi;r) into a matrix p(D(vl), r) , we
can describe the final values, after M rounds as the following matrix multiplication:

C
∑

k=1

p(k ∣ xi;r) = 1.

1

N(vl)

N(vl)

∑

i=1

p(k|xi;r) =
1

N(vl)

N(vl)

∑

i=1

1
(

yi = k
)

.

p(t)(k ∣ xi;r) =
∑

j∈Nr(z(xi))

[

Πr

]

ij
p(t−1)(k ∣ xj;r),

Machine Learning	

1 3

where YOH ∈
N(vl)

×C is the matrix built by stacking the one-hot encoding of the labels of
each node of our graph. As before, the matrix Πr describes, at each round, how node i
incorporates the information coming from its neighbor j. With the matrix description of
Eq. (4), we can implement the diffusion with matrix operations, with time complexity of
O(MNvlC) , which can be accelerated with a GPU. By its nature and origin, it is scalable for
large datasets due to its distributed nature.

If we choose a large enough value of M in Eq. (4), it will converge to the average of
the labels in the dataset (the marginal distribution P(Y) ). While this would be perfectly
calibrated, having the same (prior) distribution for all validation points is undesirable.
Instead, we stop the gossip algorithm before convergence, allowing for some diffusion
of the label information through the nearby examples and this number of rounds M,
which we treat as a parameter to be tuned, gives us control of how much we want to
smooth the label information over the dataset.

4.2.1 � Construction of the diffusion matrix 5
r

An integral part of the method is the matrix Πr , which controls how the label diffu-
sion is done and how fast it converges. As per Eq. (4), this matrix controls how each
node averages the value of p coming from the other nodes, at each round. One required
property of Πr is for it to be doubly-stochastic, i.e., Πr ’s rows and columns both sum
to one. This constraint ensures that the total probability that a given label y is pre-
dicted matches the frequency of label y in the validation data. Using a doubly stochas-
tic matrix also guarantees the two desired properties described in the previous section.

A natural choice is to use the adjacency matrix, as it already encodes the relation-
ship between the validation examples. To make it a doubly-stochastic matrix, we apply
the Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967), which iteratively normal-
izes the rows and columns of the matrix. The advantage of this approach is that the
exchange of labels happens only between neighbors in the graph. The time complexity
of this step is O(kn2) where k is the number of iterations and n is the size of the graph
(usually k ≪ n ). Since it is implemented with matrix operations, this step can also be
accelerated by using a GPU.

We also experimented an alternative strategy to construct Πr using Personalized
PageRank, as a way to offload some of the label diffusion to the PageRank compu-
tation. In Sect. 5.3 we compare this PageRank approach with the simpler approach
of applying Sinkhorn-Knopp to the adjacency matrix. In practice, both performed
similarly.

We also note that this method puts an excessive emphasis on the information coming
from neighbors, and little reliance on the original signal of the node itself. To coun-
ter this effect, we add a final step of reinforcing the diagonal entries in the produced
doubly-stochastic matrix Π�

r
 , by mixing it with an identity matrix: Πr = �I + (1 − �)Π

�

r
 .

The lazy diffusion parameter 0 ≤ 𝜌 < 1 controls how much we should trust the original
label of the node itself versus how much to rely on the gossip diffusion process and is
tuned as a hyperparameter.

(4)p(M)

(D(vl), r) = Π
M
r
YOH ,

	 Machine Learning

1 3

4.3 � Making predictions at test time

The graph-building and gossip diffusion we described above needs to be performed only
once. After computing the p(k|xi;r) for all the validation examples, the predictions for a
test example x are much simpler: First we identify which validation points would be neigh-
bors of x in the graph Nr(z(x)) . If this set is empty, we simply output the marginal P(Y).

When the set of neighbors Nr(z(x)) is not empty, we output the average of their esti-
mated distributions:

Alternatively, we also investigate an attempt to counter-act a potential finite-sample bias
of z(x) being more likely closer to high-degree nodes in the graph, if the test x is a clean
image (since high-degree nodes are in denser regions of P(X) ). In this case, we apply the
Horvitz-Thompson estimator (Horvitz & Thompson, 1952), which corrects for estimator
biases known up to a constant:

where di is the degree of node i. This version estimates the label distribution of the region
defined by the hyper-sphere of radius r around the test point—the relative ratio of degrees
among the validation points in this region (the neighbors of the test point) reflect their sam-
pling probability.

The time complexity of making predictions at test time (given the pre-computed graph
and the embeddings of test images) is bounded by the cost of computing the distance to
validation points, which is O(Nvld) and can be done in parallel. In our experiments, making
predictions for a test set of 8000 images of size 3 × 32 × 32 takes less than a second on an
NVidia GeForce 1080 Ti GPU, comparable to other defenses we used.

4.4 � Estimator consistency, Gilbert graphs, and palm calculus

In what follows we prove the consistency of our estimator in Eq. (4). We also show that the
graph we built in Sect. 4.1 is a Gilbert graph (Penrose, 2003), whose connectivity proper-
ties follow that of continuum percolation, with the main result over a compact set A ⊂ X
given by Baccelli and Błaszczyszyn (2009).

In order to prove this property, we first introduce a few concepts from stochastic geom-
etry (see Daley and Vere-Jones (2007) for a reference). Proposition 1 below proves that our
validation image embedding dataset {(z(xi), yi)}N

(vl)

i=1
 can be described as N(vl) samples of a

Marked Poisson Point Process (MPPP), where the embedding z(X) has an associated mark
Y (the image’s class).

Proposition 1  If the D(vl) and D(te) datasets are MPPPs, and the embedding function
Z ∶ ℝ

d
→ ℝ

d� is injective, then the embedding datasets D(vl)

Z
 and D(te)

Z
 are also MPPPs.

Finally, if the derivative z(x) exists around the infinitesimal ball limr→0 Br(z(x)) , the num-
ber of neighbors Nr(X) in the Br(z(X)) ball, X ∈ D

(vl)
∪D

(te) , is Poisson distributed with

p̂Avg(⋅|x;r) =
1

|Nr(z(x)) ∣

∑

i∈Nr(z(x))

p(M)

(⋅|i;r).

p̂HT(⋅ ∣ x;r) =

(

∑

j∈Nr(z(x))

1

dj

)

−1
∑

i∈Nr(z(x))

p(M)
(⋅ ∣ xi;r)

di
,

Machine Learning	

1 3

intensity proportional to �(X)| det �z

�x
| , where �(X) is the spatial distribution density of a

clean image X in the validation data.

The proof is in the Appendix. It then follows directly that our graph is a Gilbert graph.
Another important property is the distribution of embeddings in the neighbors Nr

(

z(xi)
)

of validation image xi , i = 1,… ,N(vl) , which is a Palm distribution. A Palm distribu-
tion (Palm, 1943) of a point process is the conditional distribution of the point process
given one of its points z0 at the origin, denoted P0

z0
 . The proof of Proposition 1 (in Appen-

dix) also shows that the Palm distribution P0
z0

 of the clean image embeddings observed
around a validation example embedding z0 is the true distribution of clean image embed-
dings as if the validation point were not there.

Finally, we use these results to show that the estimator in Eq. (4) is consistent.

Proposition 2  Let p(y ∣ z) be uniformly continuous on z, that is ∀𝜖 > 0, ∃ 𝛿 > 0 such that
∀z1, z2 with ‖z1 − z2‖ ≤ �, ∣ p(y ∣ z1) − p(y ∣ z2) ∣≤ � . Then, p(M) in Eq. (4) converges to
p(Y ∣ xi) for a sufficiently large number of validation examples N(vl)

→ ∞ and an appropri-
ate choice of radius r > 0 in Eq. (3) and matrix power M ≥ 1 in Eq. (4).

The proof is in the Appendix.
Why we cannot construct the graph with training data
The consistency result is no longer true if we build our graph with the training data in

lieu of the validation data. The neighboring image embeddings of a training example may
be geometrically distorted (i.e., the Palm and true distributions can be different), since the
embeddings no longer would form an MPPP (since z(⋅) depends on the training data). In
summary, we should never use training in lieu of validation data to build our graph.

4.5 � Choosing hyperparameters

For a given graph and corresponding diffusion matrix, we tune two remaining parameters
for our gossip approach: the number of rounds M and the lazy diffusion parameter � . We
considered values for M in the range [10, 200] and for � between (0, 1), in a grid search.
We evaluated the configurations under a PGD attack with � = 8

/

255 , removed redundant
ones using a Pareto frontier and selected the best configuration using an utility function
that balances accuracy, calibration and the need to perform too many rounds. More exten-
sive discussion can be found in the Appendix.

5 � Results

5.1 � Experimental setup

Dataset and architecture: We follow a similar experimental setup as Ma̧dry et al. (2018),
on image classification in the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), using the
ResNet-18 (He et al., 2016) architecture, adversarially trained using the procedure from
Ma̧dry et al. (2018) with � = 8

/

255 , which we denote as AT. We employ a 5-fold cross
validation scheme, described in detail in the Appendix. These models were trained using
NVidia GeForce 1080 Ti GPUs with PyTorch (Paszke et al., 2019), with learning rate of

	 Machine Learning

1 3

10−2 and batch size of 64. Our code will be made available after acceptance. More details
about the training and the resources used can be found in the Appendix.

Attacks: We evaluate the defenses under a collection of L∞ attacks: Fast Gradient Sign
Method (FGSM) (Szegedy et al., 2013), Projected Gradient Descent (PGD) (Ma̧dry et al.,
2018) and the method from Carlini and Wagner (2017a), using the implementation from
the Adversarial Robustness Toolbox (ART) (Nicolae et al., 2018). For each image we
select the attacked version that was most successful at fooling the defense being evaluated.
We vary the maximum allowed perturbation between 2

/

255 and 24
/

255 by steps of 2
/

255 . The
second type of attack we used is LaVAN (Karmon et al., 2018), an attack where only a
small square patch of the image is changed, without restriction of how much noise is added
to it. We varied the side size of the square patch from 2 to 16 pixels, by multiples of 2.
More details about this can be found in the Appendix.

Note that, during training, the model is only exposed to a PGD attack with � = 8
/

255 , but
in the evaluation, it is presented not only with stronger versions of the same attack, but also
with different types of attack all together. We aim to prepare our defense to the worst-case,
reducing its overconfidence even for such stronger and unforeseen attacks.

Other defenses: Besides the baseline adversarially trained (AT) model (with the original
dense layer + softmax), we also compare Temperature Scaling (Guo et al., 2017), which
improves calibration by adding a temperature to the logit values. We also tried a variation
of temperature scaling where we set the temperature arbitrarily high (infinite), which we
denote by TS

∞
 , to investigate a simple alternative that simply forces the predicted prob-

abilities to resemble an uniform distribution.
We also tested two defenses which use the (adversarially trained) embeddings for

k-Nearest Neighbor approaches: a simple version that averages the one-hot encoded label
of neighbors and Deep k-NN (Papernot & McDaniel, 2018), which combines k-NN with
conformal predictions that incorporates the dissimilarity of the test example when com-
pared with validation and training examples. Due to the excessive memory requirements
of Deep k-NN when using the outputs of all layers (42 GiB for our setting), we use only
the outputs of a single layer, the same one we use as embeddings in our method, similar to
the approach by Sitawarin and Wagner (2020). Finally, we also include softRmax (Wang &
Loog, 2022), a polynomial version of softmax, aimed at reducing overconfidence.

5.2 � Discussion of the experiments

Both types of attack we use have a simple knob that can be used to change the strength of
the attack: the allowed L∞ norm of the distortion ( � ) or the size of the patch. We used these
knobs to study how the defenses cope against a wide range of attack strengths, in particular
for strong attacks which the models didn’t see in training. We present our main results in
Figs. 3, 4 and in Sect. 5.3 we include more results using variations of the graph and diffu-
sion matrix, which perform similarly. We use the ECE and OE metrics (Eqs. (1) and (2)) as
well as accuracy to evaluate the defenses, with a focus on overconfidence, as is the major
cause of miscalibration under medium and severe attacks, and a great cause of concern in
many applications.

To guide our analysis, we identify three regimes of the attack’s strength: mild, medium
and severe attacks. We emphasize that these thresholds are just visual aids to simplify
our exposition. We do not claim to have a general definition of attack strength, but rather
selected thresholds that helps describe the patterns we observe.

Machine Learning	

1 3

5.2.1 � Mild attacks

We name mild attacks, those with 𝜖 < 8
/

255 (the value used for adversarial training) or patch
sizes smaller than 7, which we mark in the left region of Figs. 3 and 4. We observe that
only randomized smoothing is significantly overconfident in this range, while most other
methods display their best ECE values in this range. Since our method has the goal of
reducing overconfidence (which is confirmed by achieving 0% OE), most of the miscali-
bration we present in this range is due to being underconfident, as we tend to give more
conservative predictions than other methods. This comes at the cost of a drop in accuracy
under the clean images, but as the attacks get stronger, we see similar accuracy as the other
defenses.

The only defenses which reach as low OE as we do are: temperature scaling with infinite
temperature (AT + TS

∞
 in the plots) and softRmax. However, TS

∞
 has the most uninform-

ative answers (akin to random guess), which means it also has the higher miscalibration,
precisely for that reason, showing around 80% ECE, even for clean images, 40% worse
than our approach. And softRmax also suffers from the same problem (too underconfident).

5.2.2 � Moderate attacks

In this range, defined by 8
/

255 < 𝜖 ≤ 18
/

255 and patch size between 7 and 11 pixels, we start
seeing attacks stronger than what was used during training, but not too strong to render
the defenses worse than random guess. For the patch attacks, it is during this range that
adversarially trained models (and temperature scaling variants) start to underperform as
compared to others, as we see in Fig. 4 where our accuracy is almost 4 times higher and in
Fig. 3 where OE and ECE is about 30% lower for our approach.

All defenses increase their overconfidence during this regime, except for our approach,
TS

∞
 , and softRmax, as seen in Figs. 4 and 3. In particular, Randomized Smoothing is the

Fig. 3   Performance of defenses over varying strength of standard L∞ attacks (worst case between PGD,
FGSM and CW). Our approach is particularly effective at reducing overconfidence for stronger attacks

Fig. 4   Performance of defenses over varying sizes of patch attack (LaVAN). While other defenses show
worse calibration as patches get larger, our approaches display lowest OE and ECE

	 Machine Learning

1 3

most overconfident, reaching close to 100% OE for L∞ attacks (cf Fig. 3). Most defenses
display between 6 and 8 times worse OE when compared with our gossip approach.

While this increase in overconfidence is reflected in the increase of ECE for most
defenses, the progressive strengthening of the attacks starts justifying the reduction in
overconfidence achieved by our approach, which is why we reach the lowest ECE values
towards the end of this range for L∞ attacks (Fig. 3), making it better calibrated for the
moderate-severe attack regime.

5.2.3 � Severe attacks

In this last range ( 𝜖 > 18
/

255 and patch size larger than 11 pixels), the attacks are so strong
that most defenses’ accuracy becomes worse than that of a random guess, as seen in Fig. 3.
For LaVAN (Fig. 4), we see the original AT defense and its temperature scaling variants
drop to worse-than-random accuracy, while all others sustain better accuracy, with Rand-
omized Smoothing as the most accurate, but also the most overconfident.

The calibration in this range, however, tells an opposite story. While a true random
guess would show 0% ECE, most defenses reach upwards of 70% ECE in this range. The
benefits of our approach are even more remarkable in this range, as we have much better
ECE and OE than other defenses. In particular, for L∞ attacks (Fig. 3), our approach is up
to 50% less overconfident than other competing approaches. Other defenses are the most
confident when they are making the most mistakes, while the gossip approaches show a
significant reduction in the overconfidence everywhere (See the Appendix for statistical
significance tests).

While for moderate and severe attacks our method’s accuracy is very much in par with
other defenses, we observe a drop in accuracy for the mildest attacks, which we attribute to
our intent on being conservative in our predictions. The parameters of our gossip algorithm
can be tuned to improve accuracy at the expense of worse calibration and less reduction of
overconfidence. If this trade-off is important for the user, our method provides the knobs to
tune it.

We also observe that variants using the Horvitz-Thompson estimator show better accu-
racy but worse calibration for milder attacks, but similar performance to their average
counterpart for stronger attacks. Under moderate to severe attacks, all our variants are still
considerably more calibrated than other defenses.

Lastly, we hypothesize that the localized nature of the patch attacks does not entice large
shift in the embedding, which is why all defenses which are based on the geometric prox-
imity of the embeddings (k-NN methods and our gossip approaches) cope better than other
defenses. We also note that our reduction in overconfidence is still significant, even when
compared to these k-NN inspired defenses.

5.3 � Further evaluation

In this section, we present further results evaluating the performance of the proposed
defence based on different strategies to the radius for Eq. (3) and for building the diffusion
matrix Πr . As expressed before, we observe similar results across all configurations, indi-
cating that our proposed method is somewhat robust to variations in the graph used in the
diffusion process.

For each type of attack ( L∞ and LaVAN), we tested two strategies for choosing r: (1)
choosing r that ensures a minimum edge density (we targeted density of either 15% or 25%

Machine Learning	

1 3

of all possible edges); and (2) ensuring the resulting graph has a Single Connected Com-
ponent (with and without a potential increase of the computed radius by 10%, which we
named “excess radius”). This gives us a total of 4 settings. In each set of plots we include
results using both versions of the diffusion matrix (based on Adjancency matrix or Person-
alized PageRank), as well as employing the Horvitz-Thompson estimator or not.

Figures 6 and 5 display the results for L∞ attacks, while Figs. 8 and 7 contain the
results for the LaVAN attack. The main behavior we observe is similar across all the

Fig. 5   Results for L∞ attacks, with graph constructed using Single Connected Component strategy. Top is
without excess radius, bottom is with 10% excess radius

Fig. 6   Results for L∞ attacks, with graph constructed using Edge Density strategy. Top is with target den-
sity of 15%, bottom is 25% density

	 Machine Learning

1 3

tested graphs. Within each strategy, the version with increased connectivity (density of
25% and excess radius of 10%) tend to show slightly lower accuracy for clean images.
The increased connectivity would make the diffusion converge faster, leading to more
reduced confidence levels, which could explain the lower accuracy for clean images.
This drop, however, is not observed for stronger attacks and the improvements in cali-
bration are equally remarkable, no matter what graph was used. Similarly, the versions
with PPR diffusion matrix tend to show lower accuracy under mild attacks but also
achieve lower calibration error for stronger attacks.

Fig. 7   Results for LaVAN attack, with graph constructed using Single Connected Component strategy. Top
is without excess radius, bottom is with 10% excess radius

Fig. 8   Results for LaVAN attack, with graph constructed using Edge Density strategy. Top is with target
density of 15%, bottom is 25% density

Machine Learning	

1 3

6 � Conclusions

In this work we showed that existing defenses against adversarial examples, when chal-
lenged by progressively stronger attacks, get more confident about their predictions as they
make more mistakes (overconfidence). We then developed a new graph-based framework
to replace the last fully-connected layer + softmax with a new estimator, whose predictions
rely on a gossip graph algorithm that diffuses the label from clean validation examples
(nodes) to other such nodes in the graph, collectively reducing overconfidence while pre-
serving the correct marginal distribution of labels after such diffusion.

We showed the effectiveness of our framework in drastically reducing overconfidence
when compared against existing defenses, particularly under stronger attacks. Our proposed
framework can be easily combined with any existing (and future) adversarial defenses, as
long as these produce embeddings which we can use, and we also have access to validation
data not used to learn the embedding function. We believe the use of collective graph-based
predictions to defend against adversarial examples, and its understanding through stochas-
tic geometry, brings new tools to tackle key challenges in adversarial machine learning.

Limitations: Given an embedding, the diffusion process over the Gilbert graph improves
upon existing softmax, tempered scaling, and K-NN outputs. However, the approach pro-
posed in this work depends on how well existing embeddings can cluster images of the
same class under adversarial attacks.

Appendix A: Theory

Our quest to build reliable classifiers will take us through important concepts in stochastic
geometry, which we introduce next. For the reader interested in a deep-dive, a good set of
references are Daley and Vere-Jones (2007), Baccelli and Błaszczyszyn (2010), and Chiu
et al. (2013).

Stochastic geometry primer A point process (p.p.) is a stochastic process composed
of binary events that occur in a continuous space, which we assume to be some high-
dimensional space ℝd , d > 1 . Note that w.l.o.g. we can represent images as d-dimensional
vectors. These events induce a counting process N that measures how many events (e.g.,
points, images) we observe in a region B ⊆ ℝ

d . A Marked Point Process (MPP) is obtained
when each of these sampled events X also has an associated mark Y. For us, Y will be the
class of image X.

We call N a Poisson p.p. if it satisfies the following properties:

Definition 1  (Poisson point process) Let � be an absolutely continuous measure over sub-
sets of ℝd , d > 0 . A Poisson process with intensity measure � is a point process N on ℝd
with the following two properties:

(�)	� For every B ⊂ ℝ
d the number of events in B, defined as N(B), is distributed accord-

ing to a Poisson with parameter �(B) , that is, P(N(B) = k) = Poisson(k;�(B)) for all
k ∈ ℕ0.

(��)	� For all collections of m ≥ 2 pairwise disjoint sets B1,… ,Bm ⊂ X , the random vari-
ables N(B1),… ,N(Bm) are independent.

	 Machine Learning

1 3

Property (i) of Definition 1 is the reason for the name Poisson process. The Poisson
process’ usefulness to point processes is similar to that of Gaussian distributions to
traditional statistics. This comes from the fact that most naturally occurring point pro-
cesses are Poisson due to the Palm-Khintchin convergence theorem:

Theorem 1  (The Palm–Khintchin theorem (informal)) The superposition of n independ-
ent i.i.d. nonstationary point processes in an area B ⊂ ℝ

d , d > 0 , with intensities �(B)∕n
converges in distribution to a nonhomogeneous Poisson process with arrival rate function
�(B) as n → ∞.

The Palm–Khintchin theorem allows us to claim that a dataset of images sampled
i.i.d. from a large number of real-world image generation processes is approximately
distributed according to a nonhomogeneous Poisson process. Hence, we will assume
that the samples D(tr) , D(vl) , and D(te) come from a Marked Poisson Point Process
(MPPP).

A Poisson p.p. is a special type of p.p., since it remains a Poisson p.p. even after an
injective mapping Z ∶ ℝ

d
→ ℝ

d� , d′ ≥ 1 , is applied to the points.

Theorem 2  (Mapping theorem (Kingman , 1993, Chapter 2.3)) The transformation of the
Poisson p.p. of intensity measure � by an injective function Z ∶ ℝ

d
→ ℝ

d� , d′ ≥ 1 , is a Pois-
son p.p. with intensity measure

The study of point processes also has a peculiarity first described by Palm (1943),
from which its theory, Palm Calculus, takes its name.

Definition 2  (Palm distribution (informal)) The Palm distribution of a point process is the
conditional distribution of the point process given one of its points z0 at the origin, denoted
P0
z0

 . For instance, if we consider the distribution of images around a given image, that dis-
tribution is a Palm distribution.

Palm distributions can be complex statistical objects to study, except when the point
process is Poisson, thanks to the Slivnyak–Mecke theorem:

Theorem 3  [Slivnyak–Mecke Theorem (Daley & Vere-Jones, 2007)] Let N be a Poisson
p.p. with intensity measure � . For almost all z0 ∈ ℝ

d,

that is, the Palm distribution of the Poisson p.p. is equal to its (original) distribution.

In what follows we prove that neural network embeddings of the validation D(vl) and
test D(te) examples are also guaranteed to form a Poisson p.p., while the embeddings
of the training data have no such guarantees. We then use this fact to design our graph
that takes into consideration the Palm distributions of the embedding MPPP.

𝜆Z(B) = ∫
ℝd

1(Z(x) ∈ B)𝜆(dx), ∀B ⊆ ℝ
d� .

P0
z0
(N(B) = k) = P(N(B) = k), ∀B ⊂ ℝ

d,

Machine Learning	

1 3

Validation and test embeddings as MPPPs

Our graph building approach hinges on the application of the Slivnyak–Mecke theorem
(Theorem 3) over the validation and test embedding datasets. This application, in turn,
requires the embedding datasets to be MPPPs. Thankfully, Proposition 1 shows that these
conditions hold if the embedding function Z(⋅) is injective:

Proof  The first part of Proposition 1 is a consequence of the Mapping theorem (Theo-
rem 2). We excluded D(tr) from Proposition 1 since the function Z depends on D(tr) , which
then creates dependencies between the mapping of the points in D(tr) , violating condition
(ii) in Definition 1 of a Poisson p.p.. Since, by Definition 1, D(vl)

Z and D(te)
Z are independ-

ent of D(tr) , the dependence of Z on the training data does not affect the mapping of the
validation and test datasets.

To find the density of the MPPP, Theorem 3 allow us to state that the distribution of
the number of neighbors around a validation/test image (point) X does not change if we
have a validation/test example X or not (by Slivnyak–Mecke’s theorem and the fact that the
embeddings are also a MPPP).

Now, the mapping theorem (Theorem 2) states that the average density of the Poisson
process in the ball Br(z(X)) is equal to the density �({x�|z(x�) ∈ Br(z(X))}) of images whose
embeddings fall into Br(z(X)) . If z(x) is differentiable w.r.t. x, this is proportional to
∫
x∈{x�|z(x�)∈Br(z(X))}

| det
�z

�x
|�(�x) from the calculation of the area for a change of variables. 	

� ◻

Gossip estimator consistency

Proof  Choose any 𝜖 > 0 . Since p(y|z) is uniformly continuous on z, obtain a radius � such
that ∀z1, z2 with ‖z1 − z2‖ ≤ �, �p(y�z1) − p(y�z2)� ≤ � . Let r = �∕M , so that any M-length
path in our graph falls from a test or validation example X falls within a �-sized ball around
z(X). Assume |Nr(z)| > 0 as N(vl)

→ ∞ (we will later prove this is true almost surely), so
that p̃(M) in Eq. (4) is well-defined. These two properties are enough to show that p̃(M) in
Eq. (4) yields |p(y|z(X)) − p̃(M)

| ≤ 𝜖 , since by construction all validation examples X′ that
are M hops away from X in our graph will satisfy ‖z(X) − z(X�

)‖ ≤ �.
Combining Theorem 3 and Proposition 1 we have that |Nr(z(X))| follows a Poisson dis-

tribution with intensity �Z(Br(z(X))) = ∫
ℝd 1

(

z(x) ∈ Br(z(X))
)

�(dx) . All we need now is to
make sure N(vl)

→ ∞ increases fast enough w.r.t. the decrease in radius r → 0 in order to
guarantee that �Z(Br(z(X))) → ∞ , which implies P(|Nr(z(X))| = 0) → 0 . This can be guar-
anteed by ensuring that N(vl)

= Ω(r−d
�

) , which implies that the number of validation exam-
ples in an area of the ball Br(z(X)) increases as the radius r decreases. 	� ◻

Appendix B: Choice of problem setup

Why not just out‑of‑distribution detection?

Since much of our focus is on being resilient and reliable, particularly when presented with
images from a distribution other than what we had access during training, it is natural to

	 Machine Learning

1 3

think of the similarities of our task with out-of-distribution detection (OODD) and covari-
ate shift adaptation (CFA).

However, there are fundamental aspects that drive our task and these other methods
apart. For instance, while methods have been developed for covariate shift adaptation that
seek to improve calibration (Wang et al., 2020), it is commonly assumed to have access,
during training, to sample of images from the target (test) distribution. In our task we don’t
assume the access to the test data and, while we can (and do) use PGD to produce adversar-
ial images (for training or parameter selection), we test our methods under a shift not seen
in training, be it a stronger version of the attack or even a completely new type of attack
(LaVAN). Therefore, we have to do the best we can with the samples we have from the
training and validation data and rely on the robustness of our geometrically-based graph
approach to deliver a more reliable prediction under completely unseen new distributions.

When performing OODD, it is common to have some score which is used to discrimi-
nate between in and out of distribution, such as a likelihood ratio (Ren et al., 2019) or
a test-statistic (Roth et al., 2019) and then choose a threshold which is used to separate
the trusted “in-distribution” images from the potentially attacked “out-of-distribution”
images. Choosing such parameters, as well as choosing what to do with images detected
as out-of-distribution comes with its own set of challenges. For instance, once an example
is detected as borderline between in and out of distribution, it is unclear which label prob-
abilities should be assigned to it. Another example is the method of (Mukhoti et al., 2021),
which uses the original softmax for in-distribution images, which could lead to overconfi-
dent answer if a shift is not detected.

In contrast, by its nature, our approach can seamlessly handle such out-of-distribution
examples. By grounding our prediction on the proximity with validation examples, images
which are out of distribution will be far from the clean validation data images and, thus,
will receive only our most conservative (and uncertain) predictions, reflecting the fact that
they are not similar to what the model was trained to handle.

Why adversarially trained models?

In our evaluation, we use adversarially trained models as the underlying classifier on top of
which we apply the defenses (both our gossip defense as well as other methods). Models
trained with vanilla SGD (undefended models) are very fragille: PGD attacks can easily
reduce the accuracy to 0. Not only are AT models more robust, but they are also smoother
functions, when compared to undefended models, which also means that, under attack, the
embeddings of the images will not be moved too far from their clean counterpart and, as a
result, will still be close to the validation data, as we show in Fig. 9.

Recall that our gossip method produces predictions by comparing test point with nearby
validation points. Therefore, one limitation of our method is the assumption that the images
(even under adversarial attack) will be mapped to nearby regions on the embedding space.
This is not the case for undefended models, where the adversarial images can be mapped
to distant regions on the embedding space. The implication is that, for undefended models,
the attacked images will all be far from the (clean) validation images and, thus, will all
receive a random (from the prior) prediction, which is trivially well calibrated.

Therefore, for an undefended model, the reduction in overconfidence is coming not from
the gossip algorithm, but from the fact that our defense would give random predictions for
the attacked images. Note that this would have higher accuracy—random predictions would
be correct for 1

C
 of images. While this means our defense can still be less overconfident than

Machine Learning	

1 3

the alternatives, this use case is less interesting due to the low accuracy and the fact that it
does not exploit the label diffusion aspect of our defense.

The choice of using adversarially trained models allows to: (1) illustrate how our
defense can be combined with (and make use of) existing and future training techniques;
(2) be competitive, in terms of accuracy; (3) show the impact of the gossip step, which
reduces the overconfident estimations of p(y ∣ x).

Appendix C: Adversarial attacks and threat model

Adversarial attacks can be classified based on the assumed threat model. A common divi-
sion is according to the amount of knowledge the attacker has about the model: a white-box
attack has full knowledge of the model and its parameters and can, for example, compute
exact gradients with respect to the inputs. Black-box attacks, on the other hand, are unaware
of model parameters and usually are restricted to querying the model with images, obtain-
ing either the predicted label only or an associated confidence score (e.g. softmax values).
Furthermore, adversarial examples are usually described as imperceptible changes in the
input images. However, such notion of “imperceptible” is often replaced in practice by a
constraint on the magnitude of the modification, usually measured by the Lp norm of the
difference, that is ‖[‖p]x − xadv ≤ �.

In this work, we consider white-box attacks, measured by L∞ norm. In particular, we
employ the following attacks: Fast Gradient Sign Method (FGSM) from Goodfellow
et al. (2015); Projected Gradient Descent (PGD) from Ma̧dry et al. (2018); a version of
the method proposed by Carlini and Wagner (2017b) which controls for the L∞ norm; and
LaVAN, a patch attack proposed in Karmon et al. (2018).

We make a distinction between the standard L∞ norm attacks (FGSM, PGD, CW) and
the patch attack, which does not limit the L∞ norm, but can only change a limited (square)
patch in the image. For the L∞ attacks, we use a per-image worst case in our evaluation,
that is, for each test image, we run all three methods and keep the adversarial image that
fools the evaluated defense (if more than one image leads to misclassification, we break
the tie by choosing the most wrong one—i.e. the one for which the defense gives highest
confidence for the wrongly predicted class). Note that all these attacks are unaware of any
defense added on top of the original classifier, so the images computed for the adversarially

Fig. 9   Distribution of distance from each test image embedding to the closest validation embedding. Adver-
sarially trained models are smoother, so even under attack the images are still closer to the validation data,
so our defense remains useful

	 Machine Learning

1 3

trained model will be the same used for the k-NN methods and or our proposed gossip
methods.

For FGSM, PGD and CW attacks, we used the implementation from the Adversarial
Robustness Toolbox (Nicolae et al., 2018), while for the LaVAN attack, we used our own
implementation (provided with our code), since no official implementation is available. For
the L∞ attacks, we vary the maximum allowed perturbation � between 2

/

255 and 24
/

255 , by
multiples of 2

/

255 , and 20 iterations for the iterative attacks. For LaVAN, we vary the patch
size between 1 × 1 and 16 × 16 , and use a maximum of 1500 iterations.

Appendix D: Dataset, pre‑processing and cross‑validation

In our experiments, we use the CIFAR-10 dataset1 (Krizhevsky & Hinton, 2009), readily
available via the torchvision package distributed with PyTorch (Paszke et al., 2019).
The dataset is composed of 60,000 colored images (3 channels, 32 ×32 ), distributed along
10 classes, originally split into 50,000 training images and 10,000 test images. We further
randomly split the original training set into train (80%) and validation (20%) sets, as we use
the validation set to perform early stopping, tune the Temperature Scaling method and to
build the graph we use in our gossip-based framework.

We wanted to provide a measure of variation from our experiments, but at the same time
respect the original train/test boundary. To achieve both, we employed the following 5-fold
cross-validation procedure (illustrated in Fig. 10): for each of the train/validation/test set,
we divide it into k = 5 folds: {D(tr)

1,⋯ ,D(tr)
5}, {D

(vl)
1,⋯ ,D(vl)

5}, {D
(te)

1,⋯ ,D(te)
5} .

Then, for the i-th run ( i ∈ {1, 2, 3, 4, 5} ), we exclude the i-th fold from each split, for exam-
ple, the first run will have train, validation and test folds 2 to 4. We independently run our

Train Split (50K images) Test Split (10K
images)

Train Split (40K images) Test Split (10K
images)

Val. Split (10K
images)

Original Split

Train/Val/Test

K-Folds

1st Run

2nd Run

3rd Run

4th Run

5th Run

Fig. 10   Cross validation scheme used. We respect the standard Train/Test boundaries, but further split the
train data to obtain a validation set and use k-fold split to produce the subsets used in each run

1  Hosted at: https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html.

https://www.cs.toronto.edu/%7ekriz/cifar.html

Machine Learning	

1 3

experiments for each of the 5 runs, from training the model to hyperparameter tuning of
defenses, to evaluation of the test images (clean and attacked). In our results, we average
over the 5 runs and display the corresponding standard deviation as error bands.

Appendix E: Implementation details

Graph building

An important aspect of our method is the choice of the radius r, used to build the graph.
We experimented with two strategies for choosing r, which we describe next. In our experi-
ments, both strategies yielded similar results, indicating that our framework is robust (to
some extent) to the structure of this graph. Further exploration of graph-building strategies
and their potential impact when used in our approach is left as future work.

Both strategies we tested center around choosing the smallest radius r that satisfy some
desired property. The first strategy targets a given edge density, that is, what fraction of all

possible
(

N(vl)

2

)

 edges do we want to include in the graph. The results presented in the

main paper use this strategy. The second strategy seeks to build a graph with a single con-
nected component. In both cases, we run a bisection search to find the first value r ∈

>0 that
satisfy the given condition. Each strategy has one parameter, specified by the user: the
desired edge density in the first case and, for the second case, a value 𝛼 > 0 , which we call
excess radius, used as follows: Once we determined the minimum radius r′ that makes the
resulting graph a single connected component, we increase the radius r = r�(1 + �) , to
increase connectivity and avoid potential bottlenecks in the graph (e.g. regions connected
by single edge).

The time complexity of this step is dominated by the cost of evaluating the desired
property (e.g. edge density) during the bisection. For both strategies, we first compute all
pairs of distances, which has cost of O(n2d) . The bisection procedure will take at most
O(log n) steps, and at each step we threshold the distance matrix to build the graph and
check the target property (e.g. edge density), costing O(n2) per bisection step, bringing the
total cost to O(n2 log n + n2d) . If we assume d ≪ log n , we obtain the final time complexity
of O(n2 log n).

For storage cost, we keep all the embeddings of validation points, since, at test time, we
need them to identify the images which are neighbors to the test point, bringing the cost
to O(nd) , which in our experiments (CIFAR-10 and d = 256 ) makes this 12 times smaller
than the cost of storing the original validation images. Exploring cheaper or faster alter-
natives to storing and searching nearest neighbors is left as future work. For our experi-
ments (CIFAR-10 dataset), the runtime of our defense is comparable with the other tested
defenses (except for randomized smoothing, which requires multiple forward passes).

Diffusion matrix

For the Gossip diffusion process, any doubly stochastic matrix is a valid choice. However,
as we seek to run the gossip algorithm for a finite number steps and not let it converge, it is
desirable top build a diffusion matrix that maintains the diffusion process local.

We experimented with two strategies. In the first, we get the adjacency matrix and turn
it into a doubly stochastic matrix by employing the Sinkhorn-Knopp algorithm (Sinkhorn

	 Machine Learning

1 3

& Knopp, 1967). This algorithm performs successive row and column normalization
(dividing rows/cols by their sum), in an alternating fashion, for a fixed number of itera-
tions (stopping early if convergence is achieved). This algorithm can utilize a GPU and, in
our experiments, for a 5000 × 5000 matrix, it takes about 2 s (using GPU) to compute the
Sinkhorn-Knopp algorithm. By definition, the resulting diffusion matrix will have the same
graph topology as the adjacency matrix (same nodes will be connected).

The second strategy involves computing a Personalized PageRank (PPR) vector for each
node. This is a variation of PageRank (Brin & Page, 1998) in which a restart sends the
random surfer back to node i instead of uniformly choosing a node in the graph (see Gleich
(2015) for a good review of PageRank and its applications). After computing the PPR vec-
tor for each node, we stack them in a matrix and then apply the Sinkhorn-Knopp algorithm.
In this strategy, the matrix Πr is dense and does not conform to the adjacency structure of
the graph. It can be seen as offloading part of the smoothing process to the PPR, and then
treating the data as a complete graph where the gossip exchange is controlled by the PPR
values (which carry over some of the notion of locality due to the personalization).

Usual implementations of personalized PageRank commonly support a single personali-
zation vector. In our case, we want a different personalization vector for each node (a one-
hot encoding of the vector, which makes the surfer return to the original node). This means
that we need to compute n PageRank vectors, since each version (starting from a different
node) defines a distinct Markov Chain for the PageRank algorithm. However, we imple-
ment the personalized PageRank algorithm ourselves, as a message passing algorithm,
with the help of the DGL library (Wang et al., 2019), which can use GPUs to accelerate
the computations. Since this is implemented as an iterative message passing algorithm, we
can store and compute all n PageRank vectors simultaneously, much more efficiently than
alternative implementations available in other graph libraries.

In our graph with n nodes, computing the n PageRank vectors, using a Nvidia GeForce
1080 Ti GPU, takes around 12 s. Once the PageRank vectors are computed, the Sinkhorn-
Knopp algorithm is applied as described above.

In our experiments, both alternatives performed equally well, so in the main paper we
restrict our discussion and results to the version using the adjacency matrix. Similarly, our
theoretical results (e.g. consistency of estimators) were developed with that version in mind
(e.g. if the graph is fully connected, assuming p(Y|X) to be uniformly continuous might be
less reasonable than the case where the neighborhood of the point reflects the nearby images).

Gossip algorithm

Once we obtained the diffusion matrix, we adjust its values by reinforcing the diagonal, as
described in Sect. 4. Then, we perform M rounds of the gossip algorithm, which amounts
to raising the diffusion matrix to the M-th power and multiplying the result by a matrix
with the stacked one-hot encoding of the labels of the validation examples. This, again, can
be accelerated by using a GPU and in our experiments (5000 node graph), takes less than
half a second to run.

After running the gossip algorithm, we obtain the final estimation of P(Y|X) for the
validation examples. This new estimation (a n × C matrix) and the validation points is all
that needs to be stored to be used at test time. For the test predictions, we need to compute
the distance between the test points and the validation points, to determine which valida-
tion points are the neighbors of each test point. If using the Horvitz-Thompson estimator,
we compute a matrix of weights for these neighbor points based on their degrees, which is

Machine Learning	

1 3

then used to average the computed P(Y|X) (see Sect. 4.3). All these steps can be computed
with vectorized matrix operations that can make use of a GPU. In our experiments, making
predictions for a set of 8000 test points, using the GPU, takes less than half a second.

Training specification

To expand on our experimental setup, we implemented our code in PyTorch (Paszke et al.,
2019) and used Nvidia GeForce 1080 Ti GPUs to accelerate the training. We fixed the
learning rate to 10−2 and batch size of 64. We use SGD with momentum factor of 0.9 and
weight decay of 5 × 10−4 . We train for 200 epochs and perform early stopping, keeping the
model with lowest validation loss. For the Randomized Smoothing defense, we train the
model from scratch, adding independently sampled Gaussian noise with � = 0.25 to the
training images at each step, as recommended in Cohen et al. (2019).

Choosing hyperparameters

There are a set of parameters and decision to be made in our approach: how to build a graph,
how to obtain a doubly-stochastic diffusion matrix from the graph, the lazy diffusion param-
eter � , the number of gossip rounds M to perform and the strategy to make test predictions.

In our experiments, we explicitly try both our graph construction methods, as well as the
strategies to obtain the diffusion matrix and to make predictions for the test examples, and
display the results for each combination. For each combination of those, the two remaining
parameters, M and � were tuned according to the following procedure.

We perform a grid search, varying M between 10 and 200 and � between 0 and 1. For
each combination, we use half of the validation examples to build our defense and, for the
other half, we compute adversarial examples using PGD with � = 8

/

255 and evaluate the
defense over this set of attacked images, computing accuracy and calibration (OE).

Choosing the best configuration is not straight-forward for our experiments. Since we
are concerned with maintaining lower calibration error, we cannot simply chose the most
accurate configuration and disregard calibration. To make matters worse, it is possible to
achieve perfect calibration with very low accuracy (when the predictions are like a random
guess). We also observed many configurations with similar accuracy and calibration, but
with very different number of rounds, for example configurations with 10 and 200 rounds
having same accuracy and OE differing by less than 1%. Since doing more rounds of the
gossip algorithm leads to probabilities closer to a uniform distribution, we want to avoid
selecting configuration with too many rounds if they are not that different from configura-
tions with fewer rounds, since those may give better accuracy under other distribution shift.

To reduce the search space, we discard the Pareto dominated configurations, that is, we
keep only those configuration for which no other parameters achieve, at the same time,
higher accuracy and lower OE, with fewer rounds. The remaining configurations are the
true trade-off that a user must choose from and this would be an ideal point to have a
human in the loop. But since we want to automate our tuning, we devised a utility function
that balances our goals by assigning the same utility to: reducing OE by 1%, improving
accuracy by 2% or performing 50 fewer rounds. This utility function converts each configu-
ration into a utility score, which we then use to pick the best configuration. We found that
using this utility score to select he best hyperparameters strikes a good balance between
optimizing both accuracy and calibration, while preventing doing too many rounds of the
gossip algorithm unless the benefits are very noticeable.

	 Machine Learning

1 3

Appendix F: Other softmax re‑interpretation

In this section, we compare two recent approaches which propose a post-hoc replacement
of the softmax based on a formal re-interpretation of the softmax function applied to the
last layer.

Softmax as k-means clustering: The recent work of Hess et al. (2020) shows a formal
connection between the softmax predictions and k-means clustering, where the last layer
followed by softmax partitions the data into clusters for each of the predicted classes.
Inspired by this, they propose to replace the softmax with a k-means approach, computing
the clusters centroid for each class (average representation of all datapoints in the class).
They name this approach Gauss networks.

To accommodate for out-of-distribution data, this approach discards the probabilistic
interpretation of the output of the neural network. The authors use a confidence value,
computed using a Gaussian kernel over the distance to each cluster centroid. This value,
however, is not a probability and doesn’t sum to one over all the classes, which renders
calibrations metrics (like ECE or OE) meaningless, as those metrics are computed from a
distribution over the possible classes (i.e. the output of the neural networks sums to 1).

Polynomial version: Another recent work (Wang & Loog, 2022) shows how, by assuming a
Gaussian distribution for the class conditional p(X|y), the posterior p(y|x) assumes the well-known
softmax function. Inspired by this observation, they replace the Gaussian distribution with a
Cauchy distribution, which yields a polynimial version of the softmax, which displays softer decay
in the tail, reducing overconfidence. This approach is named softRmax by the authors.

In Fig. 11 we compare the softRmax method described above with our gossip algorithm
approach, evaluating against both white-box L∞ attacks and patch attacks. As previously
mentioned, the Gauss networks do not produce probabilistic outputs, so the metrics meas-
ured (OE and ECE) cannot be computed. For this reason, we excluded the approach from

(a) L∞ attacks, based on underlying adversarially trained model.

(b) LaVAN patch attack, based on underlying adversarially trained model.

Fig. 11   Comparison between our method and softRmax, another simple post-hoc. While softRmax reduces
overconfidence, its behavior is similar to temperature scaling with infinite temperature, in that it loses accu-
racy and becomes too underconfident (poor ECE)

Machine Learning	

1 3

this analysis. The softRmax approach, however, reduces overconfidence, as claimed by the
authors. However, it has an interesting, but unfortunate behavior: similar to temperature
scaling with infinite temperature, it has worse ECE (too underconfident) and also reduced
accuracy under severe attacks, in particular for patch attacks.

Appendix G: Statistical significance tests

To strengthen our claim of obtaining significantly lower Overconfidence Error (OE), we
performed a multiple comparison statistical hypothesis test, using Tukey’s Honest Signifi-
cance Test (HS) Tukey (1949), which is an appropriate statistical test that adjusts for the
multiple comparisons. In Table 1 we display the results for severe L∞ attacks. In Fig. 12
we provide a corresponding visual representation which makes it easier to compare the
results. This figure shows the hypothesis test confidence intervals for the Overconfidence

Table 1   Multiple comparison of overconfidence error for L∞ attacks, using Tukey HS test

Alg. 1 Alg. 2 Mean diff. p-value CI Reject

AT + Deep k-NN AT + Gossip −36.97 0.0 (−39.86,−34.07) True
AT + Deep k-NN AT + TS

∞
−37.70 0.0 (−40.59,−34.81) True

AT + Deep k-NN AT + Temp. Scaling 6.59 0.0 (3.70, 9.48) True
AT + Deep k-NN AT + k-NN 12.96 0.0 (10.07, 15.85) True
AT + Deep k-NN AT + softRmax −37.45 0.0 (−40.34,−34.56) True
AT + Deep k-NN Adv. Training (AT) 15.24 0.0 (12.35, 18.13) True
AT + Deep k-NN Rand. Smoothing 60.17 0.0 (57.27, 63.06) True
AT + Gossip AT + TS

∞
−0.73 0.99 (−3.62, 2.15) False

AT + Gossip AT + Temp. Scaling 43.56 0.0 (40.67, 46.45) True
AT + Gossip AT + k-NN 49.93 0.0 (47.04, 52.82) True
AT + Gossip AT + softRmax −0.48 0.99 (−3.37, 2.40) False
AT + Gossip Adv. Training (AT) 52.21 0.0 (49.32, 55.10) True
AT + Gossip Rand. Smoothing 97.14 0.0 (94.24, 100.03) True
AT + TS

∞
AT + Temp. Scaling 44.30 0.0 (41.41, 47.19) True

AT + TS
∞

AT + k-NN 50.66 0.0 (47.77, 53.56) True
AT + TS

∞
AT + softRmax 0.24 1.0 (−2.64, 3.13) False

AT + TS
∞

Adv. Training (AT) 52.94 0.0 (50.05, 55.83) True
AT + TS

∞
Rand. Smoothing 97.87 0.0 (94.98, 100.76) True

AT + Temp. Scaling AT + k-NN 6.36 0.0 (3.47, 9.25) True
AT + Temp. Scaling AT + softRmax −44.05 0.0 (−46.94,−41.16) True
AT + Temp. Scaling Adv. Training (AT) 8.64 0.0 (5.75, 11.53) True
AT + Temp. Scaling Rand. Smoothing 53.57 0.0 (50.68, 56.46) True
AT + k-NN AT + softRmax −50.42 0.0 (−53.31,−47.53) True
AT + k-NN Adv. training (AT) 2.27 0.21 (−0.61, 5.16) False
AT + k-NN Rand. smoothing 47.20 0.0 (44.31, 50.09) True
AT + softRmax Adv. training (AT) 52.69 0.0 (49.80, 55.58) True
AT + softRmax Rand. smoothing 97.62 0.0 (94.73, 100.51) True
Adv. Training (AT) Rand. smoothing 44.92 0.0 (42.03, 47.81) True

	 Machine Learning

1 3

Error: overlapping CIs indicate pairs for which the hypothesis (that averages are different)
cannot be rejected. Further results are shown in Figs. 13 and 14 for all the 3 regimes for all
3 regimes (mild, moderate and severe) for L∞ and patch attacks.

Fig. 12   Visual representation of the Tukey HSD test for severe L∞ attacks. Highlighted in blue is our gossip
approach, with the confidence interval shown. Methods whose CI does overlap represent significant differ-
ence (in red) (Color figure online)

(a) Mild (ε = 4) (b) Moderate (ε = 12)

Fig. 13   Visual representation of the Tukey HSD test for L∞ attacks. Highlighted in blue is our gossip
approach, with the confidence interval shown. Methods whose CI does overlap represent significant differ-
ence (in red) (Color figure online)

Machine Learning	

1 3

Author contributions  All authors (Leonardo Teixeira, Brian Jalaian and Bruno Ribeiro) contributed to
the conception and design of this work. Code development, experiments and analysis were performed by
Leonardo Teixeira. The first draft of the manuscript was written by Leonardo Teixeira and all the authors
commented on previous versions of the manuscript and participated in reviewing and editing of same. All
authors read and approved the final manuscript.

Funding  This work was supported in part by the National Science Foundation (NSF) awards CAREER IIS-
1943364 and CCF1918483, and by the ARO, under the U.S. Army Research Laboratory contract number
W911NF-09-2-0053.

Availability of data and materials  The data used in this work is publicly available. Any additional data and
material produced as part of our analysis will be made public upon acceptance.

Code availability  All code used is publicly available at https://​github.​com/​Purdu​eMINDS/​reduc​ing-​overc​
onfid​ence.

Declaration 

Conflict of interest  Steve Hanneke is a member of the editorial board of the Machine Learning journal and is
affiliated to the same institution as two authors of this manuscript.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

(a) Mild (patch size = 4) (b) Moderate (patch size = 9)

(c) Severe (patch size = 16)

Fig. 14   Visual representation of the Tukey HSD test for LaVAN patch attacks. Highlighted in blue is our
gossip approach, with the confidence interval shown. Methods whose CI does overlap represent significant
difference (in red) (Color figure online)

https://github.com/PurdueMINDS/reducing-overconfidence
https://github.com/PurdueMINDS/reducing-overconfidence

	 Machine Learning

1 3

Ethics approval  Not applicable.

References

van Amersfoort, J., Smith, L., Teh, Y.W. & Gal, Y. (2020). Uncertainty estimation using a single deep deter-
ministic neural network. In H.D. III & A. Singh (Eds.), International conference on machine learning
(vol. 119, pp. 9690–9700). http://​proce​edings.​mlr.​press/​v119/​van-​amers​foort​20a.​html.

Athalye, A., Carlini, N. & Wagner, D. (2018). Obfuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In J. Dy & A. Krause (Eds.), International conference on
machine learning (vol. 80, pp. 274–283). https://​proce​edings.​mlr.​press/​v80/​athal​ye18a.​html.

Baccelli, F., & Błaszczyszyn, B. (2009). Stochastic geometry and wireless networks (vol. 1). Now Publish-
ers Inc.

Blot, M., Picard, D., Thome, N., & Cord, M. (2019). Distributed optimization for deep learning with gossip
exchange. Neurocomputing, 330, 287–296.

Bojchevski, A. & Günnemann, S. (2019). Adversarial attacks on node embeddings via graph poisoning. In
K. Chaudhuri & R. Salakhutdinov (Eds.), International conference on machine learning (vol. 97, pp.
695–704). http://​proce​edings.​mlr.​press/​v97/​bojch​evski​19a.​html.

Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2005). Gossip algorithms: Design, analysis and applica-
tions. Computer and Communications Societies. In Annual joint conference of the IEEE computer and
communications societies, vol. 3, 1653–1664.

Carlini, N. & Wagner, D. (2017a). Adversarial examples are not easily detected: Bypassing ten detection
methods. In Workshop on artificial intelligence and security ACM workshop on artificial intelli-
gence and security (pp. 3–14). Dallas, Texas, USAACM. https://​doi.​org/​10.​1145/​31285​72.​31404​44.

Carlini, N. & Wagner, D. (2017b). Towards evaluating the robustness of neural networks. In IEEE sym-
posium on security and privacy (pp. 39–57). https://​doi.​org/​10.​1109/​SP.​2017.​49.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y. & Usunier, N. (2017). Parseval networks: Improving
robustness to adversarial examples. In D. Precup & Y.W. Teh (Eds.), International conference on
machine learning (vol. 70, pp. 854–863). https://​proce​edings.​mlr.​press/​v70/​cisse​17a.​html.

Cohen, J., Rosenfeld, E. & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing.
In K. Chaudhuri & R. Salakhutdinov (Eds.), International conference on machine learning (vol. 97,
pp. 1310–1320). https://​proce​edings.​mlr.​press/​v97/​cohen​19c.​html.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J. & Song, L. (2018). Adversarial attack on graph
structured data. In J. Dy & A. Krause (Eds.), International conference on machine learning
(vol. 80, pp. 1115–1124). https://​proce​edings.​mlr.​press/​v80/​dai18b.​html.

Dai, R., Lefort, M., Armetta, F., Guillermin, M. & Duffner, S. (2021). Self-supervised continual learn-
ing for object recognition in image sequences. In Advances on neural information processing (pp.
239–247).

Daley, D. J., & Vere-Jones, D. (2007). An introduction to the theory of point processes: Volume II: Gen-
eral theory and structure. Springer.

DeGroot, M. H. & Fienberg, S. E. (1983). The comparison and evaluation of forecasters. Journal of
the Royal Statistical Society. Series D (The Statistician), 321, 212–22. http://​www.​jstor.​org/​stable/​
29875​88.

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bernstein, J. D., Kossaifi, J., Khanna, A. & Anandku-
mar, A. (2018). Stochastic activation pruning for robust adversarial defense. In International con-
ference on learning representations. https://​openr​eview.​net/​forum?​id=​H1uR4​GZRZ.

Dubey, A., Maatenvan der Maaten, L., Yalniz, Z., Li, Y. & Mahajan, D. (2019). Defense against adver-
sarial images using web-scale nearest-neighbor search. In Conference on computer vision and pat-
tern recognition. IEEE conference on computer vision and pattern recognition. arXiv:​1903.​01612.

Elliott, A., Law, S. & Russell, C. (2021). Explaining classifiers using adversarial perturbations on the
perceptual ball. In Conference on computer vision and pattern recognition IEEE conference on
computer vision and pattern recognition, (pp. 10693–10702).

Felzenszwalb, P. F. & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. Interna-
tional Journal of Computer Vision, 59, 167–181.

Geng, C., Huang, S., & Chen, S. (2020). Recent advances in open set recognition: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 4310, 3614–3631.

http://proceedings.mlr.press/v119/van-amersfoort20a.html
https://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v97/bojchevski19a.html
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1109/SP.2017.49
https://proceedings.mlr.press/v70/cisse17a.html
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v80/dai18b.html
http://www.jstor.org/stable/2987588
http://www.jstor.org/stable/2987588
https://openreview.net/forum?id=H1uR4GZRZ
http://arxiv.org/abs/1903.01612

Machine Learning	

1 3

Ghiasi, A., Shafahi, A. & Goldstein, T. (2020). Breaking certified defenses: Semantic adversarial exam-
ples with spoofed robustness certificate. In International conference on learning representations.
https://​openr​eview.​net/​forum?​id=​HJxdT​xHYvB.

Goodfellow, I. J., Shlens, J. & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In
International conference on learning representations. arXiv:​1412.​6572.

Gopalakrishnan, S., Marzi, Z., Madhow, U. & Pedarsani, R. (2018). Combating adversarial attacks using
sparse representations. In International conference on learning representations - workshop track.
https://​openr​eview.​net/​forum?​id=​S10qY​wywf.

Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. (2017). On calibration of modern neural networks. In
International conference on machine learning (pp. 1321–1330). http://​proce​edings.​mlr.​press/​v70/​
guo17a.​html.

Guo, C., Rana, M., Cisse, M. & Maatenvan der Maaten, L. (2018). Countering adversarial images using
input transformations. In International conference on learning representations. https://​openr​eview.​net/​
forum?​id=​SyJ7C​lWCb.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. In IEEE confer-
ence on computer vision and pattern recognition (pp. 770–778).

Hendrycks, D., Lee, K. & Mazeika, M. (2019). Using pre-training can improve model robustness and uncer-
tainty. In International conference on machine learning (p 2712-2721). http://​proce​edings.​mlr.​press/​
v97/​hendr​ycks1​9a.​html. arXiv:​1901.​09960

Hess, S., Duivesteijn, W. & Mocanu, D. (2020). Softmax-based classification is k-means clustering: Formal
proof, consequences for adversarial attacks, and improvement through centroid based tailoring. arXiv:​
2001.​01987 [cs.LG].

Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite
universe. Journal of the American Statistical Association, 47(260), 663–685.

Hosang, J., Benenson, R. & Schiele, B. (2017). Learning non-maximum suppression. In Conference on
computer vision and pattern recognition IEEE conference on computer vision and pattern recognition
(pp. 4507–4515).

Hosseini, H., Kannan, S. & Poovendran, R. (2019). Are odds really odd? bypassing statistical detection of
adversarial examples. arXiv:​1907.​12138 [cs.LG].

Hu, S., Yu, T., Guo, C., Chao, W.-L. & Weinberger, K.Q. (2019). A new defense against adversarial images:
Turning a weakness into a strength. In Advances in neural information processing systems (pp.
1633–1644).

Karmon, D., Zoran, D. & Goldberg, Y. (2018). LaVAN: Localized and visible adversarial noise LaVAN:
Localized and visible adversarial noise. In J. Dy & A. Krause (Eds.), International conference on
machine learning (vol. 80, pp. 2507–2515). https://​proce​edings.​mlr.​press/​v80/​karmo​n18a.​html.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L. & Lewis, M. (2020). Generalization through memo-
rization: Nearest neighbor language models. In International conference on learning representations.
https://​openr​eview.​net/​forum?​id=​HklBj​CEKvH.

Krizhevsky, A. & Hinton, G. (2009). Learning multiple layers of features from tiny images (Tech. Rep.).
Toronto, Canada: Department of Computer Science, University of Toronto.

Kurakin, A., Goodfellow, I. J. & Bengio, S. (2017). Adversarial machine learning at scale. In International
conference on learning representations. https://​openr​eview.​net/​forum?​id=​BJm4T​4Kgx.

Lassance, C., Gripon, V., & Ortega, A. (2021). Laplacian networks: Bounding indicator function smooth-
ness for neural networks robustness. APSIPA Transactions on Signal and Information Processing, 10,
e2.

Liao, P., Zhao, H., Xu, K., Jaakkola, T., Gordon, G., Jegelka, S. & Salakhutdinov, R. (2020). Graph adver-
sarial networks: Protecting information against adversarial attacks.

Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T. & Lakshminarayanan, B. (2020). Simple and princi-
pled uncertainty estimation with deterministic deep learning via distance awareness. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan & H. Lin (Eds.), Advances in neural information processing
systems (vol. 33, pp. 7498–7512). Curran Associates, Inc.

Ma̧dry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. (2018). Towards deep learning models resist-
ant to adversarial attacks. In International conference on learning representations. https://​openr​eview.​
net/​forum?​id=​rJzIB​fZAb.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. S. & Gal, Y. (2021). Deterministic neural networks
with appropriate inductive biases capture epistemic and aleatoric uncertainty.

Naeini, M. P., Cooper, G. F. & Hauskrecht, M. (2015). Obtaining well calibrated probabilities using Bayes-
ian binning. In Conference on artificial intelligence AAAI conference on artificial intelligence.

Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat, A., Wistuba, M., & Edwards, B. (2018).. Adver-
sarial robustness toolbox v1.2.0. arXiv:​1807.​01069 [cs.LG].

https://openreview.net/forum?id=HJxdTxHYvB
http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=S10qYwywf
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=SyJ7ClWCb
http://proceedings.mlr.press/v97/hendrycks19a.html
http://proceedings.mlr.press/v97/hendrycks19a.html
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/2001.01987
http://arxiv.org/abs/2001.01987
http://arxiv.org/abs/1907.12138
https://proceedings.mlr.press/v80/karmon18a.html
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1807.01069

	 Machine Learning

1 3

Niculescu-Mizil, A. & Caruana, R. (2005). Predicting good probabilities with supervised learning. In Inter-
national conference on machine learning (pp. 625–632). New York, NY, USAACM. https://​doi.​org/​10.​
1145/​11023​51.​11024​30.

Palm, C. (1943). Intensitatsschwankungen im fernsprechverker. Ericsson Technics.
Papernot, N. & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust

deep learning. arXiv:​1803.​04765 [cs, stat].
Papernot, N., McDaniel, P., Goodfellow, I. , Jha, S., Celik, Z.B. & Swami, A. (2017). Practical black-box

attacks against machine learning. In Asia conference on computer and communications security pro-
ceedings of the 2017 ACM on Asia conference on computer and communications security (pp. 506–
519). New York, NY, USAACM. https://​doi.​org/​10.​1145/​30529​73.​30530​09.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G. & Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. Advances in neural information processing
systems (pp. 8024–8035). Curran Associates, Inc. Retrieved from http://​papers.​neuri​ps.​cc/​paper/​9015-​
pytor​ch-​an-​imper​ative-​style-​high-​perfo​rmance-​deep-​learn​ing-​libra​ry.​pdf.

Penrose, M. (2003). Random geometric graphs. Oxford: Oxford University Press.
Pinto, F., Yang, H., Lim, S.-N., Torr, P. & Dokania, P. K. (2021). Mix-maxent: Improving accuracy and

uncertainty estimates of deterministic neural networks. In Neurips 2021 workshop on distribution
shifts: Connecting methods and applications. https://​openr​eview.​net/​forum?​id=​hlVgM​8XcssV.

Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in Large Margin Classifiers, 10(3), 61–74.

Roth, K., Kilcher, Y. & Hofmann, T. (2019). The odds are odd: A statistical test for detecting adversarial
examples. In K. Chaudhuri & R. Salakhutdinov (Eds.), International conference on machine learning
(vol. 97, pp. 5498–5507). https://​proce​edings.​mlr.​press/​v97/​roth1​9a.​html.

Serban, A., Poll, E. & Visser, J. (2021). Deep repulsive prototypes for adversarial robustness. arXiv:​2105.​
12427 [cs.LG].

Shekkizhar, S. & Ortega, A. (2020). Graph construction from data by non-negative kernel regression. In
International conference on acoustics, speech and signal processing IEEE international conference on
acoustics, speech and signal processing (pp. 3892–3896). https://​doi.​org/​10.​1109/​ICASS​P40776.​2020.​
90544​25

Sinkhorn, R., & Knopp, P. (1967). Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2), 343–348.

Sitawarin, C. & Wagner, D. (2019a). Defending against adversarial examples with k-nearest neighbor.
arXiv:​1906.​09525 [cs, stat].

Sitawarin, C. & Wagner, D. (2019b). On the robustness of deep k-nearest neighbors. In Security and privacy
workshops IEEE security and privacy workshops (p. 1-7). https://​doi.​org/​10.​1109/​SPW.​2019.​00014.

Sitawarin, C. & Wagner, D. (2020). Minimum-norm adversarial examples on KNN and KNN based models.
IEEE Security and Privacy Workshops, pp. 34–40.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. & Fergus, R. (2013). Intriguing
properties of neural networks. arXiv:​1312.​6199 [cs.CV].

Thulasidasan, S., Chennupati, G., Bilmes, J. A., Bhattacharya, T. & Michalak, S. (2019). On mixup training:
Improved calibration and predictive uncertainty for deep neural networks. Advances in neural informa-
tion processing systems (pp. 13888–13899).

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A. & Ma̧dry, A. (2019). Robustness may be at odds with
accuracy. In International conference on learning representations. https://​arxiv.​org/​pdf/​1805.​12152.​
pdf

Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B. & Gu, Q. (2019). On the convergence and robustness of adver-
sarial training. In K. Chaudhuri & R. Salakhutdinov (Eds.), International conference on machine
learning (vol. 97, pp. 6586–6595). https://​proce​edings.​mlr.​press/​v97/​wang1​9i.​html.

Wang, Z. & Loog, M. (2022). Enhancing classifier conservativeness and robustness by polynomiality. In
Conference on computer vision and pattern recognition IEEE conference on computer vision and pat-
tern recognition (pp. 13327–13336).

Xie, C., Wang, J., Zhang, Z., Ren, Z. & Yuille, A. (2018). Mitigating adversarial effects through randomiza-
tion. In International conference on learning representations.

Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L.E. & Jordan, M. (2019). Theoretically principled trade-off
between robustness and accuracy. In K. Chaudhuri & R. Salakhutdinov (Eds.), International confer-
ence on machine learning (vol. 97, pp. 7472–7482). https://​proce​edings.​mlr.​press/​v97/​zhang​19p.​html.

Baccelli, F., & Błaszczyszyn, B. (2010). Stochastic geometry and wireless networks: Volume II, applica-
tions. Foundations and Trends® in Networking, 4(1–2), 1–312.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Net-
works and ISDN Systems, 30(1–7), 107–117.

https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
http://arxiv.org/abs/1803.04765
https://doi.org/10.1145/3052973.3053009
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=hlVgM8XcssV
https://proceedings.mlr.press/v97/roth19a.html
http://arxiv.org/abs/2105.12427
http://arxiv.org/abs/2105.12427
https://doi.org/10.1109/ICASSP40776.2020.9054425
https://doi.org/10.1109/ICASSP40776.2020.9054425
http://arxiv.org/abs/1906.09525
https://doi.org/10.1109/SPW.2019.00014
http://arxiv.org/abs/1312.6199
https://arxiv.org/pdf/1805.12152.pdf
https://arxiv.org/pdf/1805.12152.pdf
https://proceedings.mlr.press/v97/wang19i.html
https://proceedings.mlr.press/v97/zhang19p.html

Machine Learning	

1 3

Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications. Lon-
don: Wiley.

Gleich, D. F. (2015). Pagerank beyond the web. SIAM Review, 57(3), 321–363. https://​doi.​org/​10.​1137/​
14097​6649

Kingman, J. (1993). Poisson processes. UK: Oxford University Press.
Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M. & Lakshminarayanan, B. (2019). Likelihood

ratios for out-of-distribution detection. In Advances in neural information processing systems (vol. 32,
pp. 14707–14718). Curran Associates, Inc.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 99–114.
Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X. & Zhang, Z. (2019). Deep graph library: A graph-

centric, highly-performant package for graph neural networks. arXiv:​1909.​01315 [cs.LG].
Wang, X., Long, M., Wang, J., & Jordan, M. I. (2020). Transferable calibration with lower bias and vari-

ance in domain adaptation advances on neural information processing systems. Red Hook, NY: Cur-
ran Associates Inc.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1137/140976649
https://doi.org/10.1137/140976649
http://arxiv.org/abs/1909.01315

	Reducing classifier overconfidence against adversaries through graph algorithms
	Abstract
	1 Introduction
	2 Related work
	3 Classifier calibration and uncertainty quantification preliminaries
	4 Methodology
	4.1 Building a graph from embeddings of validation examples
	4.2 Diffusion of labels via Gossip algorithm
	4.2.1 Construction of the diffusion matrix

	4.3 Making predictions at test time
	4.4 Estimator consistency, Gilbert graphs, and palm calculus
	4.5 Choosing hyperparameters

	5 Results
	5.1 Experimental setup
	5.2 Discussion of the experiments
	5.2.1 Mild attacks
	5.2.2 Moderate attacks
	5.2.3 Severe attacks

	5.3 Further evaluation

	6 Conclusions
	Appendix A: Theory
	Validation and test embeddings as MPPPs
	Gossip estimator consistency

	Appendix B: Choice of problem setup
	Why not just out-of-distribution detection?
	Why adversarially trained models?

	Appendix C: Adversarial attacks and threat model
	Appendix D: Dataset, pre-processing and cross-validation
	Appendix E: Implementation details
	Graph building
	Diffusion matrix
	Gossip algorithm
	Training specification
	Choosing hyperparameters

	Appendix F: Other softmax re-interpretation
	Appendix G: Statistical significance tests
	References

