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Abstract
In this work we show that deep learning classifiers tend to become overconfident in their 
answers under adversarial attacks, even when the classifier is optimized to survive such 
attacks. Our work draws upon stochastic geometry and graph algorithms to propose a gen-
eral framework to replace the last fully connected layer and softmax output. This frame-
work (a) can be applied to any classifier and (b) significantly reduces the classifier’s over-
confidence in its output without much of an impact on its accuracy when compared to 
original adversarially-trained classifiers. Its relative effectiveness increases as the attacker 
becomes more powerful. Our use of graph algorithms in adversarial learning is new and of 
independent interest. Finally, we show the advantages of this last-layer softmax replace-
ment over image tasks under common adversarial attacks.

Keywords  Adversarial robustness · Overconfidence · Gossip algorithm

1  Introduction

In critical applications, it is already hard to be sure if we can trust the predictions of exist-
ing neural network models  (Guo et  al., 2017). The potential presence of an adversary 
makes it even harder to trust these systems. Is there a method to create classifiers that are 
more robust, and less overconfident? In existing adversarial defenses, we show that the 
classifier softmax output overestimates the probability its predicted class is correct, spe-
cially for powerful attackers (see Fig. 1).
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A robust classifier must be (approximately) invariant to any transformation of the inputs 
which doesn’t change the true label. Another desirable property is to avoid the overcon-
fidence of its predictions by not overestimating the probability that its predicted class is 
correct—for example, whenever the classifier’s softmax output makes a prediction with 
confidence of 0.9, then it must be correct at least 9 out of 10 times.

This is particularly important in the context of adversarial machine learning, where 
the neural network’s failure to learn the correct input invariances enables an adversary to 
craft small perturbations in the images which change the classifier’s predictions. This has 
created a perpetual arms race of new methods of crafting adversarial examples (Kurakin 
et al., 2017; Ma̧dry et al., 2018; Carlini & Wagner, 2017b) for which new defenses are pro-
posed (Papernot et al., 2017; Guo et al., 2018; Dhillon et al., 2018), which are then (again) 
fooled by newer attack methods (Athalye et al., 2018).

In this work, we leverage the relationship between similar images to build a defense 
that replaces the last layer and softmax output of a classifier with a graph-based method 
that: (1) significantly reduces overconfidence; (2) survives adversarial attacks stronger than 
what was seen during training; (3) does not require retraining of the classifier.

Under the assumption that the neural network maps similar examples to nearby regions 
of the embedding space, we create a graph by connecting images whose representation 
are close to each other (see Fig. 2). Then, we make use of a Gossip algorithm (Boyd et al., 
2005), to diffuse the labels through this graph, which improves the model’s predictive 
uncertainty. Moreover, our defense refuses to give overconfident answers to test images 
which are nowhere close to the curated validation examples, such as those under strong 
adversarial attacks.

Note that a direct calibration objective under adversarial attacks would be the wrong 
goal, since calibration with an imperfect classifier requires knowing the distribution of the 
test data, i.e., knowing what the adversary will do. Calibrating existing machine learning 
models is a topic which has been explored for decades (Platt, 1999; Niculescu-Mizil & 
Caruana, 2005; Naeini et al., 2015) for traditional classifiers and recently gained focus in 
the context of deep learning models (Guo et al., 2017). But these approaches do not tar-
get avoiding overconfident predictions and frequently are not developed in the context of 
adversarial examples (where we observe an unknown distribution shift at test time).

Moreover, since our proposed framework is based on the representations learned by the 
deep learning model, it can easily be combined with a multitude of current (and future) 

Fig. 1   (CIFAR-10, ResNet-18) Confident predictions of an adversarially trained model (Ma̧dry et al. (2018) 
with � =8
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defenses (e.g. adversarial training), without incurring additional cost of retraining the 
model.

2 � Related work

While the field of adversarial examples is full of interesting developments over the past few 
years, doing a thorough review of the literature is beyond the scope of this work. Instead, 
we focus on those publications which are more closely related to our work and are more 
relevant to the discussion we present in this paper.

(a) Radius measured by Lp

norm (p ∈ {2,∞})
(b) Points within radius are
connected

(c) Given a radius, a graph is
constructed

(d) Larger radius increases con-
nectivity of the graph

Fig. 2   Images whose representations are close (as measured by Lp norm), are connected, to form a graph. 
The choice of the radius has a direct impact on the connectivity of the graph, which influences how we dif-
fuse label information, to reduce overconfidence of the predictions
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The study of adversarial examples within the context of deep learning models picked 
up interest after the work of Szegedy et al. (2013). In the following years, the community 
started an arms race of developing stronger attacks and developing defenses which are then 
broken by even stronger attacks (Carlini & Wagner, 2017a). Despite this constant develop-
ment, some of the simpler methods, such as the Projected Gradient Descent (PGD), devel-
oped by Ma̧dry et al. (2018) are still very effective and an important tool to evaluate new 
defenses and techniques.

While many important improvements have been made in securing deep learning models 
and making them more robust to adversarial examples, most works in the field focus only 
on improving accuracy and few works even look at the calibration of the produced clas-
sifier. While the topic of calibration has been extensively studied for decades, from the 
analysis of weather forecasters in the 80  s (DeGroot & Fienberg, 1983), to the standard 
machine learning classifiers such as SVM (Platt, 1999), Logistic Regression, Naïve Bayes 
and others (Naeini et al., 2015; Niculescu-Mizil & Caruana, 2005), it was first studied in 
the context of deep learning by Guo et al. (2017). The Expected Calibration Error (ECE) 
metric we use was first proposed by Naeini et al. (2015), while the Overconfidence Error 
(OE)—its counterpart that only considers the miscalibration caused by overconfident pre-
dictions—was proposed by (Thulasidasan et  al., 2019). The improvement of calibration 
(and in particular reducing overconfidence) of deep learning models under adversarial 
attacks is an essential step to obtain a reliable and trustworthy classifier.

Open set recognition and other approaches: a related area of research is focused on the 
problem setup where unknown (or new) classes are present at test time. See Geng et al. 
(2020) for a survey of recent advances in this area. Also related are works which not only 
aim at recongizing that an object is of an unknown class, but also try to continuously learn, 
by incorporating new classes in successive rounds of training (Dai et al., 2021). Our work, 
however, focuses on the adversarial setup, where the set of possible classes is fixed and an 
adversary modifies an input to (incorrectly) change the model prediction.

Adversarial training and other similar procedures: Perhaps, the most common defense 
against adversarial examples is retraining the classifier, augmenting the training data with 
adversarial examples (adversarial training) (Goodfellow et al., 2015; Ma̧dry et al., 2018; 
Wang et al., 2019). Together with adversarial training, are other strategies which seek to 
harden the classifier by modifying the training procedure, usually by employing a regu-
larization strategy that encourages some type of smoothness in the final model (preventing 
small perturbations of the input from producing large changes in the final output). Among 
such methods are Parseval Networks (Cisse et al., 2017), which seek to train networks with 
low ( < 1 ) Lipschitz constants and Laplacian Networks (Lassance et al., 2021) which use 
tools from Graph Signal Processing to enforce smooth variations of the class boundaries. 
These works are not alternatives to our work: they can be combined with our proposed 
strategy, since we can use the (better) embeddings produced with such methods. In fact, in 
our experiments, we use the embeddings of an adversarially trained model, since they pro-
vide a considerable improvement over vanilla (undefended) neural networks.

Recently, a trade-off between being accurate and being robust has been shown (Tsipras 
et al., 2019; Zhang et al., 2019), and Hendrycks et al. (2019) show that pre-trained models 
can be an important step in improving robustness. A better understanding of the the geom-
etry of adversarial examples has emerged: traditional adversarial examples are often frag-
ile to random perturbations, that is, a small perturbation added to an adversarial example 
will revert back to the original class (Roth et al., 2019; Elliott et al., 2021; Hosseini et al., 
2019; Hu et al., 2019; Guo et al., 2018). These works can be seen as simple approaches for 
classifier reliability, since they can output class priors whenever an adversarial example is 
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detected, even if reducing overconfidence or improving calibration is not their main goal. 
These perturbations have inspired new defenses  (Hu et  al., 2019; Gopalakrishnan et  al., 
2018; Xie et al., 2018). This robustness, however, relies on a weak adversary that can only 
find fragile adversarial examples. This premise has been recently put into question with 
trivial changes to the adversary (Hosseini et al., 2019).

Pinto et al. (2021) propose Mix-MaxEnt, a regularization approach to improve uncer-
tainty quantification. Serban et al. (2021) propose Deep Repulsive Prototypes, a modified 
training proceedure, with a distance-based loss to encourage separation of classes, which 
is competitive with adversarial training. However, both approaches require re-training and 
cannot be applied post-hoc.

Other post-hoc defenses: In the realm of post-hoc defences, other works have used the 
embeddings to construct alternative classifiers, mostly with the use of k-Nearest Neighbor 
(k-NN) over the pre-trained embeddings. This approach was shown successful in simply 
improving accuracy in language models (Khandelwal et  al., 2020), while for adversarial 
reliability, k-NNs have inspired defenses using the embeddings of neighbors from train-
ing data (Sitawarin & Wagner, 2019a) and embeddings of multiple distinct (Dubey et al., 
2019) datasets. Papernot and McDaniel (2018), propose Deep k-NN, which uses k-NN 
together with principles from conformal predictions to improve reliability. Unfortunately, 
new attacks have been shown effective against such methods (Sitawarin & Wagner, 2019b). 
The use of a nearest neighbor approach to find related examples, however, could potentially 
consider examples very far from each other, since their notion of being related is restricted 
by quantity of such neighbors, rather than fixing a distance as we do in our proposed 
method. Moreover, the existing k-NN defenses do not address the potential Palm distribu-
tion bias, and performed poorly in our experiments, becoming increasingly overconfident 
when confronted with stronger attacks.

Recent approaches (Liu et al., 2020; van Amersfoort et al., 2020; Mukhoti et al., 2021) 
proposed replacements of the final dense layer and softmax output, to promote distance-
aware uncertainty quantification, based on Gaussian processes, RBF kernels and discrimi-
nant analysis. In contrast to our work, their methods require modifications of the training 
procedure (e.g. spectral normalization or gradient penalty regularization) and/or architec-
ture and their work focus on improving out-of-distribution detection, rather than investigat-
ing strong adversarial shifts. For example, in the work of Mukhoti et al. (2021), if an image 
is incorrectly identified as in distribution, their method will still use the softmax outputs, 
which may be overconfident.

Recently, Hess et al. (2020) and Wang and Loog (2022) propose post-hoc modifications 
of the softmax, based on theoretical reinterpretations of the last-layer + softmax output. 
We provide an analysis of these methods in the Appendix.

Certified defenses, such as Randomized Smoothing (Cohen et  al., 2019) have gained 
attention as they provide theoretical (and practical) guarantees of robustness for perturba-
tions within a given radius around images. But recent attacks have been effective against it 
(Ghiasi et al., 2020) and, in our experiments, such defense displayed poor calibration and 
strong overconfidence.

Gossip algorithms: The use of gossip algorithms to perform distributed computations 
has been widely studied in the context of sensor and computer networks (Boyd et  al., 
2005), where it first emerged. Gossip algorithms have been used to develop a distributed 
SGD training strategy for neural networks (Blot et  al., 2019). GossipNet (Hosang et  al., 
2017) is a CNN architecture, which uses concepts from gossip algorithms by doing a mes-
sage passing operation among neighboring sets of pixels in a single image. While all these 
works are based on Gossip algorithms, they are unrelated to our approach as they are not 
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concerned with reducing overconfidence of the classifier and do not build a graph from 
the datasets (as our approach does). Instead, they are focused on distributed training or on 
exchanging information within a single image, whereas our use of gossip algorithm is to 
diffuse label information among similar images on the dataset. Our use of the gossip algo-
rithm, in particular as a defense strategy against adversarial examples is novel.

Graph-based algorithms: Graph based algorithms have been used before in the context 
of image processing, but most such works build a graph over pixels or regions of a single 
image (Felzenszwalb & Huttenlocher, 2004; Shekkizhar & Ortega, 2020), with the goal of 
denoising or performing other (single image) processing operation. In our work, instead, 
we use the embeddings of images to build a graph that encodes how related (similar) the 
images are to each other. We also note that while we experimented with a couple of ways 
of creating such a graph of examples, other methods could easily be incorporated into our 
proposed gossip framework.

Finally, we want to distinguish our work from those which are focused on attacking 
graph-structured data and models, such as GNNS (Dai et al., 2018; Bojchevski & Günne-
mann, 2019; Liao et al., 2020). In this setting, the graph is the input to their models, which 
produce embeddings used for downstream tasks. The attackers’ goal is to extract informa-
tion from the neighborhood or to influence the embeddings by modifying the input graph 
(adding or removing nodes or edges).

In our proposed framework, the input data is not graph-related—we build the graph our-
selves based on the mapping produced by the neural network. And our graph is constructed 
from a curated set of validation examples, which an adversary cannot modify.

3 � Classifier calibration and uncertainty quantification preliminaries

A classifier is said to be well-calibrated when its assessment of its own uncertainty is accu-
rate, that is, the confidence of its predictions (e.g. softmax values) matches its accuracy 
(i.e. among predictions made with 80% confidence, 8 out of 10 are correct). When the 
classifier makes more mistakes than expected (according to the confidence values), it is 
overconfident.

As shown in Fig. 1, strong distribution shifts (e.g adversarial attacks) can cause models 
to be exceedingly overconfident (even for models adversarially trained to defend against 
such attacks). When such models can have their accuracy compromised by adversarial 
attacks, it is desirable to at least have a reliable assessment of its uncertainty, by not being 
overconfident, so we are not misled into making bad decision due to wrong confidence 
estimation.

In this work, we assess the calibration of models with the Expected Calibration Error 
(ECE) (Naeini et  al., 2015; Guo et  al., 2017), where we bin predictions based on their 
confidence values and average the difference between accuracy and confidence of each bin. 
Another important metric is the Overconfidence Error (OE), derived from ECE, where we 
only consider the bins for which the confidence is higher than the accuracy. More formally, 
consider a dataset D = {(xi, yi)}

N
i=1

 and denote by B1,… ,Bm the m bins of the predictions, 
based on their confidence. We compute the metrics as:

and

(1)ECE =

m
∑

b=1

|Bb|

N
|conf(Bb) − acc(Bb)|
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where conf(Bb) and acc(Bb) are the average confidence and accuracy of the examples in bin 
Bb and overconf(Bb) = max

(

0, conf(Bb) − acc(Bb)

)

.

4 � Methodology

Having introduced the necessary concepts in the previous section, we now focus on 
addressing the hypothesis: If we incorporate concepts of stochastic geometry to build a 
relational method, to be applied on top of the embeddings produced by a pre-trained neu-
ral network, we can reduce overconfidence of the predictions, when compared to the origi-
nal fully-connected + softmax predictions, in particular for adversarial attacks stronger 
than used in training.

We seek to leverage the representational power of the neural network by extracting 
embeddings of the set of clean validation images and using them to build a graph-based 
estimator, under the assumption that similar images will be have their embeddings mapped 
close to each other.

We denote the neural network architecture by f (x) = h(z(x)) , where z(x) is the output 
after all the convolutional layers (a d dimensional vector), and h(⋅) is the final dense layer 
and softmax. We replace h(⋅) with a graph-based estimator constructed based on the dis-
tance between the embeddings z(x) of validation examples. This graph is then used in a 
label diffusion algorithm to obtain an estimation of P(Y ∣ X) for validation images, with 
reduced overconfidence. At test time, our predictions are based on this new estimation 
of the label distribution for the relevant validation images (i.e. validation images whose 
embeddings are close to the test image).

4.1 � Building a graph from embeddings of validation examples

As our method is based on proximity of embeddings of the images, we have found that 
the smoothness of z(x) has a direct impact on the accuracy of our defense. See Sect. B.2 
for a discussion of limitations of this assumption. For this reason, we extensively employ 
adversarially trained embeddings in our experiments, and argue that any improvement that 
can produce more robust embeddings can be combined with our approach to improve its 
robustness.

We build a graph from the embeddings of (clean) validation examples, by treating each 
validation image as a node in our graph and connecting the images whose embeddings 
are within a radius r of each other (illustrated in Fig. 2). In what follows, we denote by 
D(vl)

= {(xi, yi)}
N(vl)

i=1
 the set of N(vl) validation images and their labels. First, for each image 

xi , we identify all other neighbor images within the radius r:

as shown in Fig.  2a. We then add the edges (i, j) connecting that node with each of its 
neighbors in Nr

(

z(xi)
)

 , as seen in Fig. 2b.
The choice of the radius r can impact on the connectivity of the graph we build, 

which then impacts the diffusion of label that we will perform based on this graph. As 

(2)OE =

m
∑

b=1

|Bb|

N

[

conf(Bb) × overconf(Bb)

]

,

(3)Nr

�

z(xi)
�

= {j ∈ [N(vl)
] ∶ ‖z(xj) − z(xi)‖ ≤ r},
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the radius increases, the graph becomes more connected, as seen in Fig. 2c, d. We tried 
two strategies to pick the radius, based on ensuring a connected graph or a minimum 
edge density (what fraction of all possible edges to include in the graph). We observed 
similar performance across both strategies. For completeness, in Sect.  5.3 discuss the 
results obtained with each strategy.

4.2 � Diffusion of labels via Gossip algorithm

To obtain a smoother and less overconfident estimation of P(Y|X) , we diffuse the (one-
hot encoded) true label signal through the graph, so that, for each example, we obtain a 
new distribution that incorporates the label information from nearby examples as well. 
We will denote by p(k|xi;r) this new estimation of P(Y = k ∣ X = xi) , for the validation 
example xi , based on the graph of radius r.

The final outcome of this label diffusion, however, needs to fulfill two important 
desirable properties: 

1.	 For each validation example, p(⋅|xi;r) must describe a valid probability distribution over 
the classes: 

2.	 The diffusion process must not change the marginal distribution of labels: 

To achieve such properties, we took inspiration in Gossip Algorithms (Boyd et  al., 
2005), a class of iterative distributed algorithms used for computing averages over net-
works of sensors or ad-hoc and peer-to-peer networks. At the center of a gossip algo-
rithm is the idea that, at a given iteration, nodes will exchange information with its 
neighbors and replace its current value with an average of it and the values received 
from the neighbors. These algorithms are generally focused on reaching a point of equi-
librium, but we, instead, focus on the transient phase, performing a finite number of 
exchanges, so that the influence of an image remains local.

The information being exchanged is the estimated label distribution p(⋅ ∣ xi;r) , which 
we initialize at time t = 0 with the one-hot encoding of the true label. Then, at each 
iteration, the nodes update p , forming the following dynamic process:

with p(0)(k ∣ xi;r) = 1
(

yi = k
)

 , and with 
[

Πr

]

ij
 denoting the weight that node i gives to the 

information coming from j. Section 4.2.1 describes how to construct Πr ∈
N(vl)

×N(vl) from the 
graph structure.

In a more general sense, if we stack the vectors p(⋅ ∣ xi;r) into a matrix p(D(vl), r) , we 
can describe the final values, after M rounds as the following matrix multiplication:

C
∑

k=1

p(k ∣ xi;r) = 1.

1

N(vl)

N(vl)

∑

i=1

p(k|xi;r) =
1

N(vl)

N(vl)

∑

i=1

1
(

yi = k
)

.

p(t)(k ∣ xi;r) =
∑

j∈Nr(z(xi))

[

Πr

]

ij
p(t−1)(k ∣ xj;r),
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where YOH ∈
N(vl)

×C is the matrix built by stacking the one-hot encoding of the labels of 
each node of our graph. As before, the matrix Πr describes, at each round, how node i 
incorporates the information coming from its neighbor j. With the matrix description of 
Eq. (4), we can implement the diffusion with matrix operations, with time complexity of 
O(MNvlC) , which can be accelerated with a GPU. By its nature and origin, it is scalable for 
large datasets due to its distributed nature.

If we choose a large enough value of M in Eq. (4), it will converge to the average of 
the labels in the dataset (the marginal distribution P(Y) ). While this would be perfectly 
calibrated, having the same (prior) distribution for all validation points is undesirable. 
Instead, we stop the gossip algorithm before convergence, allowing for some diffusion 
of the label information through the nearby examples and this number of rounds M, 
which we treat as a parameter to be tuned, gives us control of how much we want to 
smooth the label information over the dataset.

4.2.1 � Construction of the diffusion matrix 5
r

An integral part of the method is the matrix Πr , which controls how the label diffu-
sion is done and how fast it converges. As per Eq. (4), this matrix controls how each 
node averages the value of p coming from the other nodes, at each round. One required 
property of Πr is for it to be doubly-stochastic, i.e., Πr ’s rows and columns both sum 
to one. This constraint ensures that the total probability that a given label y is pre-
dicted matches the frequency of label y in the validation data. Using a doubly stochas-
tic matrix also guarantees the two desired properties described in the previous section.

A natural choice is to use the adjacency matrix, as it already encodes the relation-
ship between the validation examples. To make it a doubly-stochastic matrix, we apply 
the Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967), which iteratively normal-
izes the rows and columns of the matrix. The advantage of this approach is that the 
exchange of labels happens only between neighbors in the graph. The time complexity 
of this step is O(kn2) where k is the number of iterations and n is the size of the graph 
(usually k ≪ n ). Since it is implemented with matrix operations, this step can also be 
accelerated by using a GPU.

We also experimented an alternative strategy to construct Πr using Personalized 
PageRank, as a way to offload some of the label diffusion to the PageRank compu-
tation. In Sect.  5.3 we compare this PageRank approach with the simpler approach 
of applying Sinkhorn-Knopp to the adjacency matrix. In practice, both performed 
similarly.

We also note that this method puts an excessive emphasis on the information coming 
from neighbors, and little reliance on the original signal of the node itself. To coun-
ter this effect, we add a final step of reinforcing the diagonal entries in the produced 
doubly-stochastic matrix Π�

r
 , by mixing it with an identity matrix: Πr = �I + (1 − �)Π

�

r
 . 

The lazy diffusion parameter 0 ≤ 𝜌 < 1 controls how much we should trust the original 
label of the node itself versus how much to rely on the gossip diffusion process and is 
tuned as a hyperparameter.

(4)p(M)

(D(vl), r) = Π
M
r
YOH ,
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4.3 � Making predictions at test time

The graph-building and gossip diffusion we described above needs to be performed only 
once. After computing the p(k|xi;r) for all the validation examples, the predictions for a 
test example x are much simpler: First we identify which validation points would be neigh-
bors of x in the graph Nr(z(x)) . If this set is empty, we simply output the marginal P(Y).

When the set of neighbors Nr(z(x)) is not empty, we output the average of their esti-
mated distributions:

Alternatively, we also investigate an attempt to counter-act a potential finite-sample bias 
of z(x) being more likely closer to high-degree nodes in the graph, if the test x is a clean 
image (since high-degree nodes are in denser regions of P(X) ). In this case, we apply the 
Horvitz-Thompson estimator (Horvitz & Thompson, 1952), which corrects for estimator 
biases known up to a constant:

where di is the degree of node i. This version estimates the label distribution of the region 
defined by the hyper-sphere of radius r around the test point—the relative ratio of degrees 
among the validation points in this region (the neighbors of the test point) reflect their sam-
pling probability.

The time complexity of making predictions at test time (given the pre-computed graph 
and the embeddings of test images) is bounded by the cost of computing the distance to 
validation points, which is O(Nvld) and can be done in parallel. In our experiments, making 
predictions for a test set of 8000 images of size 3 × 32 × 32 takes less than a second on an 
NVidia GeForce 1080 Ti GPU, comparable to other defenses we used.

4.4 � Estimator consistency, Gilbert graphs, and palm calculus

In what follows we prove the consistency of our estimator in Eq. (4). We also show that the 
graph we built in Sect. 4.1 is a Gilbert graph (Penrose, 2003), whose connectivity proper-
ties follow that of continuum percolation, with the main result over a compact set A ⊂ X  
given by Baccelli and Błaszczyszyn (2009).

In order to prove this property, we first introduce a few concepts from stochastic geom-
etry (see Daley and Vere-Jones (2007) for a reference). Proposition 1 below proves that our 
validation image embedding dataset {(z(xi), yi)}N

(vl)

i=1
 can be described as N(vl) samples of a 

Marked Poisson Point Process (MPPP), where the embedding z(X) has an associated mark 
Y (the image’s class).

Proposition 1  If the D(vl) and D(te) datasets are MPPPs, and the embedding function 
Z ∶ ℝ

d
→ ℝ

d� is injective, then the embedding datasets D(vl)

Z
 and D(te)

Z
 are also MPPPs. 

Finally, if the derivative z(x) exists around the infinitesimal ball limr→0 Br(z(x)) , the num-
ber of neighbors Nr(X) in the Br(z(X)) ball, X ∈ D

(vl)
∪D

(te) , is Poisson distributed with 

p̂Avg(⋅|x;r) =
1

|Nr(z(x)) ∣

∑

i∈Nr(z(x))

p(M)

(⋅|i;r).

p̂HT(⋅ ∣ x;r) =

(

∑

j∈Nr(z(x))

1

dj

)

−1
∑

i∈Nr(z(x))

p(M)
(⋅ ∣ xi;r)

di
,
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intensity proportional to �(X)| det �z

�x
| , where �(X) is the spatial distribution density of a 

clean image X in the validation data.

The proof is in the Appendix. It then follows directly that our graph is a Gilbert graph.
Another important property is the distribution of embeddings in the neighbors Nr

(

z(xi)
)

 
of validation image xi , i = 1,… ,N(vl) , which is a Palm distribution. A Palm distribu-
tion  (Palm, 1943) of a point process is the conditional distribution of the point process 
given one of its points z0 at the origin, denoted P0

z0
 . The proof of Proposition 1 (in Appen-

dix) also shows that the Palm distribution P0
z0

 of the clean image embeddings observed 
around a validation example embedding z0 is the true distribution of clean image embed-
dings as if the validation point were not there.

Finally, we use these results to show that the estimator in Eq. (4) is consistent.

Proposition 2  Let p(y ∣ z) be uniformly continuous on z, that is ∀𝜖 > 0, ∃ 𝛿 > 0 such that 
∀z1, z2 with ‖z1 − z2‖ ≤ �, ∣ p(y ∣ z1) − p(y ∣ z2) ∣≤ � . Then, p(M) in Eq. (4) converges to 
p(Y ∣ xi) for a sufficiently large number of validation examples N(vl)

→ ∞ and an appropri-
ate choice of radius r > 0 in Eq. (3) and matrix power M ≥ 1 in Eq. (4).

The proof is in the Appendix.
Why we cannot construct the graph with training data
The consistency result is no longer true if we build our graph with the training data in 

lieu of the validation data. The neighboring image embeddings of a training example may 
be geometrically distorted (i.e., the Palm and true distributions can be different), since the 
embeddings no longer would form an MPPP (since z(⋅) depends on the training data). In 
summary, we should never use training in lieu of validation data to build our graph.

4.5 � Choosing hyperparameters

For a given graph and corresponding diffusion matrix, we tune two remaining parameters 
for our gossip approach: the number of rounds M and the lazy diffusion parameter � . We 
considered values for M in the range [10, 200] and for � between (0, 1), in a grid search. 
We evaluated the configurations under a PGD attack with � = 8

/

255 , removed redundant 
ones using a Pareto frontier and selected the best configuration using an utility function 
that balances accuracy, calibration and the need to perform too many rounds. More exten-
sive discussion can be found in the Appendix.

5 � Results

5.1 � Experimental setup

Dataset and architecture: We follow a similar experimental setup as Ma̧dry et al. (2018), 
on image classification in the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), using the 
ResNet-18 (He et  al., 2016) architecture, adversarially trained using the procedure from 
Ma̧dry et  al. (2018) with � = 8

/

255 , which we denote as AT. We employ a 5-fold cross 
validation scheme, described in detail in the Appendix. These models were trained using 
NVidia GeForce 1080 Ti GPUs with PyTorch (Paszke et al., 2019), with learning rate of 
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10−2 and batch size of 64. Our code will be made available after acceptance. More details 
about the training and the resources used can be found in the Appendix.

Attacks: We evaluate the defenses under a collection of L∞ attacks: Fast Gradient Sign 
Method (FGSM) (Szegedy et al., 2013), Projected Gradient Descent (PGD) (Ma̧dry et al., 
2018) and the method from Carlini and Wagner (2017a), using the implementation from 
the Adversarial Robustness Toolbox (ART) (Nicolae et  al., 2018). For each image we 
select the attacked version that was most successful at fooling the defense being evaluated. 
We vary the maximum allowed perturbation between 2

/

255 and 24
/

255 by steps of 2
/

255 . The 
second type of attack we used is LaVAN (Karmon et  al., 2018), an attack where only a 
small square patch of the image is changed, without restriction of how much noise is added 
to it. We varied the side size of the square patch from 2 to 16 pixels, by multiples of 2. 
More details about this can be found in the Appendix.

Note that, during training, the model is only exposed to a PGD attack with � = 8
/

255 , but 
in the evaluation, it is presented not only with stronger versions of the same attack, but also 
with different types of attack all together. We aim to prepare our defense to the worst-case, 
reducing its overconfidence even for such stronger and unforeseen attacks.

Other defenses: Besides the baseline adversarially trained (AT) model (with the original 
dense layer + softmax), we also compare Temperature Scaling (Guo et al., 2017), which 
improves calibration by adding a temperature to the logit values. We also tried a variation 
of temperature scaling where we set the temperature arbitrarily high (infinite), which we 
denote by TS

∞
 , to investigate a simple alternative that simply forces the predicted prob-

abilities to resemble an uniform distribution.
We also tested two defenses which use the (adversarially trained) embeddings for 

k-Nearest Neighbor approaches: a simple version that averages the one-hot encoded label 
of neighbors and Deep k-NN (Papernot & McDaniel, 2018), which combines k-NN with 
conformal predictions that incorporates the dissimilarity of the test example when com-
pared with validation and training examples. Due to the excessive memory requirements 
of Deep k-NN when using the outputs of all layers (42 GiB for our setting), we use only 
the outputs of a single layer, the same one we use as embeddings in our method, similar to 
the approach by Sitawarin and Wagner (2020). Finally, we also include softRmax (Wang & 
Loog, 2022), a polynomial version of softmax, aimed at reducing overconfidence.

5.2 � Discussion of the experiments

Both types of attack we use have a simple knob that can be used to change the strength of 
the attack: the allowed L∞ norm of the distortion ( � ) or the size of the patch. We used these 
knobs to study how the defenses cope against a wide range of attack strengths, in particular 
for strong attacks which the models didn’t see in training. We present our main results in 
Figs. 3, 4 and in Sect. 5.3 we include more results using variations of the graph and diffu-
sion matrix, which perform similarly. We use the ECE and OE metrics (Eqs. (1) and (2)) as 
well as accuracy to evaluate the defenses, with a focus on overconfidence, as is the major 
cause of miscalibration under medium and severe attacks, and a great cause of concern in 
many applications.

To guide our analysis, we identify three regimes of the attack’s strength: mild, medium 
and severe attacks. We emphasize that these thresholds are just visual aids to simplify 
our exposition. We do not claim to have a general definition of attack strength, but rather 
selected thresholds that helps describe the patterns we observe.
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5.2.1 � Mild attacks

We name mild attacks, those with 𝜖 < 8
/

255 (the value used for adversarial training) or patch 
sizes smaller than 7, which we mark in the left region of Figs. 3 and 4. We observe that 
only randomized smoothing is significantly overconfident in this range, while most other 
methods display their best ECE values in this range. Since our method has the goal of 
reducing overconfidence (which is confirmed by achieving 0% OE), most of the miscali-
bration we present in this range is due to being underconfident, as we tend to give more 
conservative predictions than other methods. This comes at the cost of a drop in accuracy 
under the clean images, but as the attacks get stronger, we see similar accuracy as the other 
defenses.

The only defenses which reach as low OE as we do are: temperature scaling with infinite 
temperature (AT + TS

∞
 in the plots) and softRmax. However, TS

∞
 has the most uninform-

ative answers (akin to random guess), which means it also has the higher miscalibration, 
precisely for that reason, showing around 80% ECE, even for clean images, 40% worse 
than our approach. And softRmax also suffers from the same problem (too underconfident).

5.2.2 � Moderate attacks

In this range, defined by 8
/

255 < 𝜖 ≤ 18
/

255 and patch size between 7 and 11 pixels, we start 
seeing attacks stronger than what was used during training, but not too strong to render 
the defenses worse than random guess. For the patch attacks, it is during this range that 
adversarially trained models (and temperature scaling variants) start to underperform as 
compared to others, as we see in Fig. 4 where our accuracy is almost 4 times higher and in 
Fig. 3 where OE and ECE is about 30% lower for our approach.

All defenses increase their overconfidence during this regime, except for our approach, 
TS

∞
 , and softRmax, as seen in Figs. 4 and 3. In particular, Randomized Smoothing is the 

Fig. 3   Performance of defenses over varying strength of standard L∞ attacks (worst case between PGD, 
FGSM and CW). Our approach is particularly effective at reducing overconfidence for stronger attacks

Fig. 4   Performance of defenses over varying sizes of patch attack (LaVAN). While other defenses show 
worse calibration as patches get larger, our approaches display lowest OE and ECE
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most overconfident, reaching close to 100% OE for L∞ attacks (cf Fig. 3). Most defenses 
display between 6 and 8 times worse OE when compared with our gossip approach.

While this increase in overconfidence is reflected in the increase of ECE for most 
defenses, the progressive strengthening of the attacks starts justifying the reduction in 
overconfidence achieved by our approach, which is why we reach the lowest ECE values 
towards the end of this range for L∞ attacks (Fig.  3), making it better calibrated for the 
moderate-severe attack regime.

5.2.3 � Severe attacks

In this last range ( 𝜖 > 18
/

255 and patch size larger than 11 pixels), the attacks are so strong 
that most defenses’ accuracy becomes worse than that of a random guess, as seen in Fig. 3. 
For LaVAN (Fig. 4), we see the original AT defense and its temperature scaling variants 
drop to worse-than-random accuracy, while all others sustain better accuracy, with Rand-
omized Smoothing as the most accurate, but also the most overconfident.

The calibration in this range, however, tells an opposite story. While a true random 
guess would show 0% ECE, most defenses reach upwards of 70% ECE in this range. The 
benefits of our approach are even more remarkable in this range, as we have much better 
ECE and OE than other defenses. In particular, for L∞ attacks (Fig. 3), our approach is up 
to 50% less overconfident than other competing approaches. Other defenses are the most 
confident when they are making the most mistakes, while the gossip approaches show a 
significant reduction in the overconfidence everywhere (See the Appendix for statistical 
significance tests).

While for moderate and severe attacks our method’s accuracy is very much in par with 
other defenses, we observe a drop in accuracy for the mildest attacks, which we attribute to 
our intent on being conservative in our predictions. The parameters of our gossip algorithm 
can be tuned to improve accuracy at the expense of worse calibration and less reduction of 
overconfidence. If this trade-off is important for the user, our method provides the knobs to 
tune it.

We also observe that variants using the Horvitz-Thompson estimator show better accu-
racy but worse calibration for milder attacks, but similar performance to their average 
counterpart for stronger attacks. Under moderate to severe attacks, all our variants are still 
considerably more calibrated than other defenses.

Lastly, we hypothesize that the localized nature of the patch attacks does not entice large 
shift in the embedding, which is why all defenses which are based on the geometric prox-
imity of the embeddings (k-NN methods and our gossip approaches) cope better than other 
defenses. We also note that our reduction in overconfidence is still significant, even when 
compared to these k-NN inspired defenses.

5.3 � Further evaluation

In this section, we present further results evaluating the performance of the proposed 
defence based on different strategies to the radius for Eq. (3) and for building the diffusion 
matrix Πr . As expressed before, we observe similar results across all configurations, indi-
cating that our proposed method is somewhat robust to variations in the graph used in the 
diffusion process.

For each type of attack ( L∞ and LaVAN), we tested two strategies for choosing r: (1) 
choosing r that ensures a minimum edge density (we targeted density of either 15% or 25% 
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of all possible edges); and (2) ensuring the resulting graph has a Single Connected Com-
ponent (with and without a potential increase of the computed radius by 10%, which we 
named “excess radius”). This gives us a total of 4 settings. In each set of plots we include 
results using both versions of the diffusion matrix (based on Adjancency matrix or Person-
alized PageRank), as well as employing the Horvitz-Thompson estimator or not.

Figures  6 and 5 display the results for L∞ attacks, while Figs.  8 and 7 contain the 
results for the LaVAN attack. The main behavior we observe is similar across all the 

Fig. 5   Results for L∞ attacks, with graph constructed using Single Connected Component strategy. Top is 
without excess radius, bottom is with 10% excess radius

Fig. 6   Results for L∞ attacks, with graph constructed using Edge Density strategy. Top is with target den-
sity of 15%, bottom is 25% density
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tested graphs. Within each strategy, the version with increased connectivity (density of 
25% and excess radius of 10%) tend to show slightly lower accuracy for clean images. 
The increased connectivity would make the diffusion converge faster, leading to more 
reduced confidence levels, which could explain the lower accuracy for clean images. 
This drop, however, is not observed for stronger attacks and the improvements in cali-
bration are equally remarkable, no matter what graph was used. Similarly, the versions 
with PPR diffusion matrix tend to show lower accuracy under mild attacks but also 
achieve lower calibration error for stronger attacks.

Fig. 7   Results for LaVAN attack, with graph constructed using Single Connected Component strategy. Top 
is without excess radius, bottom is with 10% excess radius

Fig. 8   Results for LaVAN attack, with graph constructed using Edge Density strategy. Top is with target 
density of 15%, bottom is 25% density



Machine Learning	

1 3

6 � Conclusions

In this work we showed that existing defenses against adversarial examples, when chal-
lenged by progressively stronger attacks, get more confident about their predictions as they 
make more mistakes (overconfidence). We then developed a new graph-based framework 
to replace the last fully-connected layer + softmax with a new estimator, whose predictions 
rely on a gossip graph algorithm that diffuses the label from clean validation examples 
(nodes) to other such nodes in the graph, collectively reducing overconfidence while pre-
serving the correct marginal distribution of labels after such diffusion.

We showed the effectiveness of our framework in drastically reducing overconfidence 
when compared against existing defenses, particularly under stronger attacks. Our proposed 
framework can be easily combined with any existing (and future) adversarial defenses, as 
long as these produce embeddings which we can use, and we also have access to validation 
data not used to learn the embedding function. We believe the use of collective graph-based 
predictions to defend against adversarial examples, and its understanding through stochas-
tic geometry, brings new tools to tackle key challenges in adversarial machine learning.

Limitations: Given an embedding, the diffusion process over the Gilbert graph improves 
upon existing softmax, tempered scaling, and K-NN outputs. However, the approach pro-
posed in this work depends on how well existing embeddings can cluster images of the 
same class under adversarial attacks.

Appendix A: Theory

Our quest to build reliable classifiers will take us through important concepts in stochastic 
geometry, which we introduce next. For the reader interested in a deep-dive, a good set of 
references are  Daley and Vere-Jones (2007), Baccelli and Błaszczyszyn (2010), and Chiu 
et al. (2013).

Stochastic geometry primer A point process (p.p.) is a stochastic process composed 
of binary events that occur in a continuous space, which we assume to be some high-
dimensional space ℝd , d > 1 . Note that w.l.o.g. we can represent images as d-dimensional 
vectors. These events induce a counting process N that measures how many events (e.g., 
points, images) we observe in a region B ⊆ ℝ

d . A Marked Point Process (MPP) is obtained 
when each of these sampled events X also has an associated mark Y. For us, Y will be the 
class of image X.

We call N a Poisson p.p. if it satisfies the following properties:

Definition 1  (Poisson point process) Let � be an absolutely continuous measure over sub-
sets of ℝd , d > 0 . A Poisson process with intensity measure � is a point process N on ℝd 
with the following two properties: 

(�)	� For every B ⊂ ℝ
d the number of events in B, defined as N(B), is distributed accord-

ing to a Poisson with parameter �(B) , that is, P(N(B) = k) = Poisson(k;�(B)) for all 
k ∈ ℕ0.

(��)	� For all collections of m ≥ 2 pairwise disjoint sets B1,… ,Bm ⊂ X , the random vari-
ables N(B1),… ,N(Bm) are independent.
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Property (i) of Definition 1 is the reason for the name Poisson process. The Poisson 
process’ usefulness to point processes is similar to that of Gaussian distributions to 
traditional statistics. This comes from the fact that most naturally occurring point pro-
cesses are Poisson due to the Palm-Khintchin convergence theorem:

Theorem  1  (The Palm–Khintchin theorem (informal)) The superposition of n independ-
ent i.i.d. nonstationary point processes in an area B ⊂ ℝ

d , d > 0 , with intensities �(B)∕n 
converges in distribution to a nonhomogeneous Poisson process with arrival rate function 
�(B) as n → ∞.

The Palm–Khintchin theorem allows us to claim that a dataset of images sampled 
i.i.d. from a large number of real-world image generation processes is approximately 
distributed according to a nonhomogeneous Poisson process. Hence, we will assume 
that the samples D(tr) , D(vl) , and D(te) come from a Marked Poisson Point Process 
(MPPP).

A Poisson p.p. is a special type of p.p., since it remains a Poisson p.p. even after an 
injective mapping Z ∶ ℝ

d
→ ℝ

d� , d′ ≥ 1 , is applied to the points.

Theorem 2  (Mapping theorem (Kingman , 1993, Chapter 2.3)) The transformation of the 
Poisson p.p. of intensity measure � by an injective function Z ∶ ℝ

d
→ ℝ

d� , d′ ≥ 1 , is a Pois-
son p.p. with intensity measure

The study of point processes also has a peculiarity first described by Palm (1943), 
from which its theory, Palm Calculus, takes its name.

Definition 2  (Palm distribution (informal)) The Palm distribution of a point process is the 
conditional distribution of the point process given one of its points z0 at the origin, denoted 
P0
z0

 . For instance, if we consider the distribution of images around a given image, that dis-
tribution is a Palm distribution.

Palm distributions can be complex statistical objects to study, except when the point 
process is Poisson, thanks to the Slivnyak–Mecke theorem:

Theorem  3  [Slivnyak–Mecke Theorem  (Daley & Vere-Jones, 2007)] Let N be a Poisson 
p.p. with intensity measure � . For almost all z0 ∈ ℝ

d,

that is, the Palm distribution of the Poisson p.p. is equal to its (original) distribution.

In what follows we prove that neural network embeddings of the validation D(vl) and 
test D(te) examples are also guaranteed to form a Poisson p.p., while the embeddings 
of the training data have no such guarantees. We then use this fact to design our graph 
that takes into consideration the Palm distributions of the embedding MPPP.

𝜆Z(B) = ∫
ℝd

1(Z(x) ∈ B)𝜆(dx), ∀B ⊆ ℝ
d� .

P0
z0
(N(B) = k) = P(N(B) = k), ∀B ⊂ ℝ

d,
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Validation and test embeddings as MPPPs

Our graph building approach hinges on the application of the Slivnyak–Mecke theorem 
(Theorem  3) over the validation and test embedding datasets. This application, in turn, 
requires the embedding datasets to be MPPPs. Thankfully, Proposition 1 shows that these 
conditions hold if the embedding function Z(⋅) is injective:

Proof  The first part of Proposition 1 is a consequence of the Mapping theorem (Theo-
rem 2). We excluded D(tr) from Proposition 1 since the function Z depends on D(tr) , which 
then creates dependencies between the mapping of the points in D(tr) , violating condition 
(ii) in Definition 1 of a Poisson p.p.. Since, by Definition 1, D(vl)

Z and D(te)
Z are independ-

ent of D(tr) , the dependence of Z on the training data does not affect the mapping of the 
validation and test datasets.

To find the density of the MPPP, Theorem 3 allow us to state that the distribution of 
the number of neighbors around a validation/test image (point) X does not change if we 
have a validation/test example X or not (by Slivnyak–Mecke’s theorem and the fact that the 
embeddings are also a MPPP).

Now, the mapping theorem (Theorem 2) states that the average density of the Poisson 
process in the ball Br(z(X)) is equal to the density �({x�|z(x�) ∈ Br(z(X))}) of images whose 
embeddings fall into Br(z(X)) . If z(x) is differentiable w.r.t. x, this is proportional to 
∫
x∈{x�|z(x�)∈Br(z(X))}

| det
�z

�x
|�(�x) from the calculation of the area for a change of variables. 	

� ◻

Gossip estimator consistency

Proof  Choose any 𝜖 > 0 . Since p(y|z) is uniformly continuous on z, obtain a radius � such 
that ∀z1, z2 with ‖z1 − z2‖ ≤ �, �p(y�z1) − p(y�z2)� ≤ � . Let r = �∕M , so that any M-length 
path in our graph falls from a test or validation example X falls within a �-sized ball around 
z(X). Assume |Nr(z)| > 0 as N(vl)

→ ∞ (we will later prove this is true almost surely), so 
that p̃(M) in Eq. (4) is well-defined. These two properties are enough to show that p̃(M) in 
Eq. (4) yields |p(y|z(X)) − p̃(M)

| ≤ 𝜖 , since by construction all validation examples X′ that 
are M hops away from X in our graph will satisfy ‖z(X) − z(X�

)‖ ≤ �.
Combining Theorem 3 and Proposition 1 we have that |Nr(z(X))| follows a Poisson dis-

tribution with intensity �Z(Br(z(X))) = ∫
ℝd 1

(

z(x) ∈ Br(z(X))
)

�(dx) . All we need now is to 
make sure N(vl)

→ ∞ increases fast enough w.r.t. the decrease in radius r → 0 in order to 
guarantee that �Z(Br(z(X))) → ∞ , which implies P(|Nr(z(X))| = 0) → 0 . This can be guar-
anteed by ensuring that N(vl)

= Ω(r−d
�

) , which implies that the number of validation exam-
ples in an area of the ball Br(z(X)) increases as the radius r decreases. 	�  ◻

Appendix B: Choice of problem setup

Why not just out‑of‑distribution detection?

Since much of our focus is on being resilient and reliable, particularly when presented with 
images from a distribution other than what we had access during training, it is natural to 
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think of the similarities of our task with out-of-distribution detection (OODD) and covari-
ate shift adaptation (CFA).

However, there are fundamental aspects that drive our task and these other methods 
apart. For instance, while methods have been developed for covariate shift adaptation that 
seek to improve calibration (Wang et al., 2020), it is commonly assumed to have access, 
during training, to sample of images from the target (test) distribution. In our task we don’t 
assume the access to the test data and, while we can (and do) use PGD to produce adversar-
ial images (for training or parameter selection), we test our methods under a shift not seen 
in training, be it a stronger version of the attack or even a completely new type of attack 
(LaVAN). Therefore, we have to do the best we can with the samples we have from the 
training and validation data and rely on the robustness of our geometrically-based graph 
approach to deliver a more reliable prediction under completely unseen new distributions.

When performing OODD, it is common to have some score which is used to discrimi-
nate between in and out of distribution, such as a likelihood ratio (Ren et  al., 2019) or 
a test-statistic (Roth et  al., 2019) and then choose a threshold which is used to separate 
the trusted “in-distribution” images from the potentially attacked “out-of-distribution” 
images. Choosing such parameters, as well as choosing what to do with images detected 
as out-of-distribution comes with its own set of challenges. For instance, once an example 
is detected as borderline between in and out of distribution, it is unclear which label prob-
abilities should be assigned to it. Another example is the method of (Mukhoti et al., 2021), 
which uses the original softmax for in-distribution images, which could lead to overconfi-
dent answer if a shift is not detected.

In contrast, by its nature, our approach can seamlessly handle such out-of-distribution 
examples. By grounding our prediction on the proximity with validation examples, images 
which are out of distribution will be far from the clean validation data images and, thus, 
will receive only our most conservative (and uncertain) predictions, reflecting the fact that 
they are not similar to what the model was trained to handle.

Why adversarially trained models?

In our evaluation, we use adversarially trained models as the underlying classifier on top of 
which we apply the defenses (both our gossip defense as well as other methods). Models 
trained with vanilla SGD (undefended models) are very fragille: PGD attacks can easily 
reduce the accuracy to 0. Not only are AT models more robust, but they are also smoother 
functions, when compared to undefended models, which also means that, under attack, the 
embeddings of the images will not be moved too far from their clean counterpart and, as a 
result, will still be close to the validation data, as we show in Fig. 9.

Recall that our gossip method produces predictions by comparing test point with nearby 
validation points. Therefore, one limitation of our method is the assumption that the images 
(even under adversarial attack) will be mapped to nearby regions on the embedding space. 
This is not the case for undefended models, where the adversarial images can be mapped 
to distant regions on the embedding space. The implication is that, for undefended models, 
the attacked images will all be far from the (clean) validation images and, thus, will all 
receive a random (from the prior) prediction, which is trivially well calibrated.

Therefore, for an undefended model, the reduction in overconfidence is coming not from 
the gossip algorithm, but from the fact that our defense would give random predictions for 
the attacked images. Note that this would have higher accuracy—random predictions would 
be correct for 1

C
 of images. While this means our defense can still be less overconfident than 
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the alternatives, this use case is less interesting due to the low accuracy and the fact that it 
does not exploit the label diffusion aspect of our defense.

The choice of using adversarially trained models allows to: (1) illustrate how our 
defense can be combined with (and make use of) existing and future training techniques; 
(2) be competitive, in terms of accuracy; (3) show the impact of the gossip step, which 
reduces the overconfident estimations of p(y ∣ x).

Appendix C: Adversarial attacks and threat model

Adversarial attacks can be classified based on the assumed threat model. A common divi-
sion is according to the amount of knowledge the attacker has about the model: a white-box 
attack has full knowledge of the model and its parameters and can, for example, compute 
exact gradients with respect to the inputs. Black-box attacks, on the other hand, are unaware 
of model parameters and usually are restricted to querying the model with images, obtain-
ing either the predicted label only or an associated confidence score (e.g. softmax values). 
Furthermore, adversarial examples are usually described as imperceptible changes in the 
input images. However, such notion of “imperceptible” is often replaced in practice by a 
constraint on the magnitude of the modification, usually measured by the Lp norm of the 
difference, that is ‖[‖p]x − xadv ≤ �.

In this work, we consider white-box attacks, measured by L∞ norm. In particular, we 
employ the following attacks: Fast Gradient Sign Method (FGSM) from Goodfellow 
et  al. (2015); Projected Gradient Descent (PGD) from Ma̧dry et  al. (2018); a version of 
the method proposed by Carlini and Wagner (2017b) which controls for the L∞ norm; and 
LaVAN, a patch attack proposed in Karmon et al. (2018).

We make a distinction between the standard L∞ norm attacks (FGSM, PGD, CW) and 
the patch attack, which does not limit the L∞ norm, but can only change a limited (square) 
patch in the image. For the L∞ attacks, we use a per-image worst case in our evaluation, 
that is, for each test image, we run all three methods and keep the adversarial image that 
fools the evaluated defense (if more than one image leads to misclassification, we break 
the tie by choosing the most wrong one—i.e. the one for which the defense gives highest 
confidence for the wrongly predicted class). Note that all these attacks are unaware of any 
defense added on top of the original classifier, so the images computed for the adversarially 

Fig. 9   Distribution of distance from each test image embedding to the closest validation embedding. Adver-
sarially trained models are smoother, so even under attack the images are still closer to the validation data, 
so our defense remains useful
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trained model will be the same used for the k-NN methods and or our proposed gossip 
methods.

For FGSM, PGD and CW attacks, we used the implementation from the Adversarial 
Robustness Toolbox (Nicolae et al., 2018), while for the LaVAN attack, we used our own 
implementation (provided with our code), since no official implementation is available. For 
the L∞ attacks, we vary the maximum allowed perturbation � between 2

/

255 and 24
/

255 , by 
multiples of 2

/

255 , and 20 iterations for the iterative attacks. For LaVAN, we vary the patch 
size between 1 × 1 and 16 × 16 , and use a maximum of 1500 iterations.

Appendix D: Dataset, pre‑processing and cross‑validation

In our experiments, we use the CIFAR-10 dataset1 (Krizhevsky & Hinton, 2009), readily 
available via the torchvision package distributed with PyTorch (Paszke et al., 2019). 
The dataset is composed of 60,000 colored images (3 channels, 32 ×32 ), distributed along 
10 classes, originally split into 50,000 training images and 10,000 test images. We further 
randomly split the original training set into train (80%) and validation (20%) sets, as we use 
the validation set to perform early stopping, tune the Temperature Scaling method and to 
build the graph we use in our gossip-based framework.

We wanted to provide a measure of variation from our experiments, but at the same time 
respect the original train/test boundary. To achieve both, we employed the following 5-fold 
cross-validation procedure (illustrated in Fig. 10): for each of the train/validation/test set, 
we divide it into k = 5 folds: {D(tr)

1,⋯ ,D(tr)
5}, {D

(vl)
1,⋯ ,D(vl)

5}, {D
(te)

1,⋯ ,D(te)
5} . 

Then, for the i-th run ( i ∈ {1, 2, 3, 4, 5} ), we exclude the i-th fold from each split, for exam-
ple, the first run will have train, validation and test folds 2 to 4. We independently run our 

Train Split (50K images) Test Split (10K
images)

Train Split (40K images) Test Split (10K
images)

Val. Split (10K
images)

Original Split

Train/Val/Test

K-Folds

1st Run

2nd Run

3rd Run

4th Run

5th Run

Fig. 10   Cross validation scheme used. We respect the standard Train/Test boundaries, but further split the 
train data to obtain a validation set and use k-fold split to produce the subsets used in each run

1  Hosted at: https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html.

https://www.cs.toronto.edu/%7ekriz/cifar.html
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experiments for each of the 5 runs, from training the model to hyperparameter tuning of 
defenses, to evaluation of the test images (clean and attacked). In our results, we average 
over the 5 runs and display the corresponding standard deviation as error bands.

Appendix E: Implementation details

Graph building

An important aspect of our method is the choice of the radius r, used to build the graph. 
We experimented with two strategies for choosing r, which we describe next. In our experi-
ments, both strategies yielded similar results, indicating that our framework is robust (to 
some extent) to the structure of this graph. Further exploration of graph-building strategies 
and their potential impact when used in our approach is left as future work.

Both strategies we tested center around choosing the smallest radius r that satisfy some 
desired property. The first strategy targets a given edge density, that is, what fraction of all 

possible 
(

N(vl)

2

)

 edges do we want to include in the graph. The results presented in the 

main paper use this strategy. The second strategy seeks to build a graph with a single con-
nected component. In both cases, we run a bisection search to find the first value r ∈

>0 that 
satisfy the given condition. Each strategy has one parameter, specified by the user: the 
desired edge density in the first case and, for the second case, a value 𝛼 > 0 , which we call 
excess radius, used as follows: Once we determined the minimum radius r′ that makes the 
resulting graph a single connected component, we increase the radius r = r�(1 + �) , to 
increase connectivity and avoid potential bottlenecks in the graph (e.g. regions connected 
by single edge).

The time complexity of this step is dominated by the cost of evaluating the desired 
property (e.g. edge density) during the bisection. For both strategies, we first compute all 
pairs of distances, which has cost of O(n2d) . The bisection procedure will take at most 
O(log n) steps, and at each step we threshold the distance matrix to build the graph and 
check the target property (e.g. edge density), costing O(n2) per bisection step, bringing the 
total cost to O(n2 log n + n2d) . If we assume d ≪ log n , we obtain the final time complexity 
of O(n2 log n).

For storage cost, we keep all the embeddings of validation points, since, at test time, we 
need them to identify the images which are neighbors to the test point, bringing the cost 
to O(nd) , which in our experiments (CIFAR-10 and d = 256 ) makes this 12 times smaller 
than the cost of storing the original validation images. Exploring cheaper or faster alter-
natives to storing and searching nearest neighbors is left as future work. For our experi-
ments (CIFAR-10 dataset), the runtime of our defense is comparable with the other tested 
defenses (except for randomized smoothing, which requires multiple forward passes).

Diffusion matrix

For the Gossip diffusion process, any doubly stochastic matrix is a valid choice. However, 
as we seek to run the gossip algorithm for a finite number steps and not let it converge, it is 
desirable top build a diffusion matrix that maintains the diffusion process local.

We experimented with two strategies. In the first, we get the adjacency matrix and turn 
it into a doubly stochastic matrix by employing the Sinkhorn-Knopp algorithm (Sinkhorn 
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& Knopp, 1967). This algorithm performs successive row and column normalization 
(dividing rows/cols by their sum), in an alternating fashion, for a fixed number of itera-
tions (stopping early if convergence is achieved). This algorithm can utilize a GPU and, in 
our experiments, for a 5000 × 5000 matrix, it takes about 2 s (using GPU) to compute the 
Sinkhorn-Knopp algorithm. By definition, the resulting diffusion matrix will have the same 
graph topology as the adjacency matrix (same nodes will be connected).

The second strategy involves computing a Personalized PageRank (PPR) vector for each 
node. This is a variation of PageRank (Brin & Page, 1998) in which a restart sends the 
random surfer back to node i instead of uniformly choosing a node in the graph (see Gleich 
(2015) for a good review of PageRank and its applications). After computing the PPR vec-
tor for each node, we stack them in a matrix and then apply the Sinkhorn-Knopp algorithm. 
In this strategy, the matrix Πr is dense and does not conform to the adjacency structure of 
the graph. It can be seen as offloading part of the smoothing process to the PPR, and then 
treating the data as a complete graph where the gossip exchange is controlled by the PPR 
values (which carry over some of the notion of locality due to the personalization).

Usual implementations of personalized PageRank commonly support a single personali-
zation vector. In our case, we want a different personalization vector for each node (a one-
hot encoding of the vector, which makes the surfer return to the original node). This means 
that we need to compute n PageRank vectors, since each version (starting from a different 
node) defines a distinct Markov Chain for the PageRank algorithm. However, we imple-
ment the personalized PageRank algorithm ourselves, as a message passing algorithm, 
with the help of the DGL library (Wang et al., 2019), which can use GPUs to accelerate 
the computations. Since this is implemented as an iterative message passing algorithm, we 
can store and compute all n PageRank vectors simultaneously, much more efficiently than 
alternative implementations available in other graph libraries.

In our graph with n nodes, computing the n PageRank vectors, using a Nvidia GeForce 
1080 Ti GPU, takes around 12 s. Once the PageRank vectors are computed, the Sinkhorn-
Knopp algorithm is applied as described above.

In our experiments, both alternatives performed equally well, so in the main paper we 
restrict our discussion and results to the version using the adjacency matrix. Similarly, our 
theoretical results (e.g. consistency of estimators) were developed with that version in mind 
(e.g. if the graph is fully connected, assuming p(Y|X) to be uniformly continuous might be 
less reasonable than the case where the neighborhood of the point reflects the nearby images).

Gossip algorithm

Once we obtained the diffusion matrix, we adjust its values by reinforcing the diagonal, as 
described in Sect. 4. Then, we perform M rounds of the gossip algorithm, which amounts 
to raising the diffusion matrix to the M-th power and multiplying the result by a matrix 
with the stacked one-hot encoding of the labels of the validation examples. This, again, can 
be accelerated by using a GPU and in our experiments (5000 node graph), takes less than 
half a second to run.

After running the gossip algorithm, we obtain the final estimation of P(Y|X) for the 
validation examples. This new estimation (a n × C matrix) and the validation points is all 
that needs to be stored to be used at test time. For the test predictions, we need to compute 
the distance between the test points and the validation points, to determine which valida-
tion points are the neighbors of each test point. If using the Horvitz-Thompson estimator, 
we compute a matrix of weights for these neighbor points based on their degrees, which is 
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then used to average the computed P(Y|X) (see Sect. 4.3). All these steps can be computed 
with vectorized matrix operations that can make use of a GPU. In our experiments, making 
predictions for a set of 8000 test points, using the GPU, takes less than half a second.

Training specification

To expand on our experimental setup, we implemented our code in PyTorch (Paszke et al., 
2019) and used Nvidia GeForce 1080 Ti GPUs to accelerate the training. We fixed the 
learning rate to 10−2 and batch size of 64. We use SGD with momentum factor of 0.9 and 
weight decay of 5 × 10−4 . We train for 200 epochs and perform early stopping, keeping the 
model with lowest validation loss. For the Randomized Smoothing defense, we train the 
model from scratch, adding independently sampled Gaussian noise with � = 0.25 to the 
training images at each step, as recommended in Cohen et al. (2019).

Choosing hyperparameters

There are a set of parameters and decision to be made in our approach: how to build a graph, 
how to obtain a doubly-stochastic diffusion matrix from the graph, the lazy diffusion param-
eter � , the number of gossip rounds M to perform and the strategy to make test predictions.

In our experiments, we explicitly try both our graph construction methods, as well as the 
strategies to obtain the diffusion matrix and to make predictions for the test examples, and 
display the results for each combination. For each combination of those, the two remaining 
parameters, M and � were tuned according to the following procedure.

We perform a grid search, varying M between 10 and 200 and � between 0 and 1. For 
each combination, we use half of the validation examples to build our defense and, for the 
other half, we compute adversarial examples using PGD with � = 8

/

255 and evaluate the 
defense over this set of attacked images, computing accuracy and calibration (OE).

Choosing the best configuration is not straight-forward for our experiments. Since we 
are concerned with maintaining lower calibration error, we cannot simply chose the most 
accurate configuration and disregard calibration. To make matters worse, it is possible to 
achieve perfect calibration with very low accuracy (when the predictions are like a random 
guess). We also observed many configurations with similar accuracy and calibration, but 
with very different number of rounds, for example configurations with 10 and 200 rounds 
having same accuracy and OE differing by less than 1%. Since doing more rounds of the 
gossip algorithm leads to probabilities closer to a uniform distribution, we want to avoid 
selecting configuration with too many rounds if they are not that different from configura-
tions with fewer rounds, since those may give better accuracy under other distribution shift.

To reduce the search space, we discard the Pareto dominated configurations, that is, we 
keep only those configuration for which no other parameters achieve, at the same time, 
higher accuracy and lower OE, with fewer rounds. The remaining configurations are the 
true trade-off that a user must choose from and this would be an ideal point to have a 
human in the loop. But since we want to automate our tuning, we devised a utility function 
that balances our goals by assigning the same utility to: reducing OE by 1%, improving 
accuracy by 2% or performing 50 fewer rounds. This utility function converts each configu-
ration into a utility score, which we then use to pick the best configuration. We found that 
using this utility score to select he best hyperparameters strikes a good balance between 
optimizing both accuracy and calibration, while preventing doing too many rounds of the 
gossip algorithm unless the benefits are very noticeable.
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Appendix F: Other softmax re‑interpretation

In this section, we compare two recent approaches which propose a post-hoc replacement 
of the softmax based on a formal re-interpretation of the softmax function applied to the 
last layer.

Softmax as k-means clustering: The recent work of Hess et al. (2020) shows a formal 
connection between the softmax predictions and k-means clustering, where the last layer 
followed by softmax partitions the data into clusters for each of the predicted classes. 
Inspired by this, they propose to replace the softmax with a k-means approach, computing 
the clusters centroid for each class (average representation of all datapoints in the class). 
They name this approach Gauss networks.

To accommodate for out-of-distribution data, this approach discards the probabilistic 
interpretation of the output of the neural network. The authors use a confidence value, 
computed using a Gaussian kernel over the distance to each cluster centroid. This value, 
however, is not a probability and doesn’t sum to one over all the classes, which renders 
calibrations metrics (like ECE or OE) meaningless, as those metrics are computed from a 
distribution over the possible classes (i.e. the output of the neural networks sums to 1).

Polynomial version: Another recent work (Wang & Loog, 2022) shows how, by assuming a 
Gaussian distribution for the class conditional p(X|y), the posterior p(y|x) assumes the well-known 
softmax function. Inspired by this observation, they replace the Gaussian distribution with a 
Cauchy distribution, which yields a polynimial version of the softmax, which displays softer decay 
in the tail, reducing overconfidence. This approach is named softRmax by the authors.

In Fig. 11 we compare the softRmax method described above with our gossip algorithm 
approach, evaluating against both white-box L∞ attacks and patch attacks. As previously 
mentioned, the Gauss networks do not produce probabilistic outputs, so the metrics meas-
ured (OE and ECE) cannot be computed. For this reason, we excluded the approach from 

(a) L∞ attacks, based on underlying adversarially trained model.

(b) LaVAN patch attack, based on underlying adversarially trained model.

Fig. 11   Comparison between our method and softRmax, another simple post-hoc. While softRmax reduces 
overconfidence, its behavior is similar to temperature scaling with infinite temperature, in that it loses accu-
racy and becomes too underconfident (poor ECE)
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this analysis. The softRmax approach, however, reduces overconfidence, as claimed by the 
authors. However, it has an interesting, but unfortunate behavior: similar to temperature 
scaling with infinite temperature, it has worse ECE (too underconfident) and also reduced 
accuracy under severe attacks, in particular for patch attacks.

Appendix G: Statistical significance tests

To strengthen our claim of obtaining significantly lower Overconfidence Error (OE), we 
performed a multiple comparison statistical hypothesis test, using Tukey’s Honest Signifi-
cance Test (HS) Tukey (1949), which is an appropriate statistical test that adjusts for the 
multiple comparisons. In Table 1 we display the results for severe L∞ attacks. In Fig. 12 
we provide a corresponding visual representation which makes it easier to compare the 
results. This figure shows the hypothesis test confidence intervals for the Overconfidence 

Table 1   Multiple comparison of overconfidence error for L∞ attacks, using Tukey HS test

Alg. 1 Alg. 2 Mean diff. p-value CI Reject

AT + Deep k-NN AT + Gossip −36.97 0.0 (−39.86,−34.07) True
AT + Deep k-NN AT + TS

∞
−37.70 0.0 (−40.59,−34.81) True

AT + Deep k-NN AT + Temp. Scaling 6.59 0.0 (3.70, 9.48) True
AT + Deep k-NN AT + k-NN 12.96 0.0 (10.07, 15.85) True
AT + Deep k-NN AT + softRmax −37.45 0.0 (−40.34,−34.56) True
AT + Deep k-NN Adv. Training (AT) 15.24 0.0 (12.35, 18.13) True
AT + Deep k-NN Rand. Smoothing 60.17 0.0 (57.27, 63.06) True
AT + Gossip AT + TS

∞
−0.73 0.99 (−3.62, 2.15) False

AT + Gossip AT + Temp. Scaling 43.56 0.0 (40.67, 46.45) True
AT + Gossip AT + k-NN 49.93 0.0 (47.04, 52.82) True
AT + Gossip AT + softRmax −0.48 0.99 (−3.37, 2.40) False
AT + Gossip Adv. Training (AT) 52.21 0.0 (49.32, 55.10) True
AT + Gossip Rand. Smoothing 97.14 0.0 (94.24, 100.03) True
AT + TS

∞
AT + Temp. Scaling 44.30 0.0 (41.41, 47.19) True

AT + TS
∞

AT + k-NN 50.66 0.0 (47.77, 53.56) True
AT + TS

∞
AT + softRmax 0.24 1.0 (−2.64, 3.13) False

AT + TS
∞

Adv. Training (AT) 52.94 0.0 (50.05, 55.83) True
AT + TS

∞
Rand. Smoothing 97.87 0.0 (94.98, 100.76) True

AT + Temp. Scaling AT + k-NN 6.36 0.0 (3.47, 9.25) True
AT + Temp. Scaling AT + softRmax −44.05 0.0 (−46.94,−41.16) True
AT + Temp. Scaling Adv. Training (AT) 8.64 0.0 (5.75, 11.53) True
AT + Temp. Scaling Rand. Smoothing 53.57 0.0 (50.68, 56.46) True
AT + k-NN AT + softRmax −50.42 0.0 (−53.31,−47.53) True
AT + k-NN Adv. training (AT) 2.27 0.21 (−0.61, 5.16) False
AT + k-NN Rand. smoothing 47.20 0.0 (44.31, 50.09) True
AT + softRmax Adv. training (AT) 52.69 0.0 (49.80, 55.58) True
AT + softRmax Rand. smoothing 97.62 0.0 (94.73, 100.51) True
Adv. Training (AT) Rand. smoothing 44.92 0.0 (42.03, 47.81) True
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Error: overlapping CIs indicate pairs for which the hypothesis (that averages are different) 
cannot be rejected. Further results are shown in Figs. 13 and 14 for all the 3 regimes for all 
3 regimes (mild, moderate and severe) for L∞ and patch attacks.

Fig. 12   Visual representation of the Tukey HSD test for severe L∞ attacks. Highlighted in blue is our gossip 
approach, with the confidence interval shown. Methods whose CI does overlap represent significant differ-
ence (in red) (Color figure online)

(a) Mild (ε = 4) (b) Moderate ( ε = 12)

Fig. 13   Visual representation of the Tukey HSD test for L∞ attacks. Highlighted in blue is our gossip 
approach, with the confidence interval shown. Methods whose CI does overlap represent significant differ-
ence (in red) (Color figure online)
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